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Abstract Evidence for an accelerated expansion of the universe as it has been
revealed 10 years ago by the Hubble diagram of distant type Ia supernovae rep-
resents one of the major modern revolutions for fundamental physics and cos-
mology. It is yet unclear whether the explanation of the fact that gravity becomes
repulsive on large scales should be found within general relativity or within a
new theory of gravitation. However, existing evidences for this acceleration all
come from astrophysical observations. Before accepting a drastic revision of fun-
damental physics, it is interesting to critically examine the present situation of
the astrophysical observations and the possible limitation in their interpretation.
In this review, the main various observational probes are presented as well as the
framework to interpret them with special attention to the complex astrophysics
and theoretical hypotheses that may limit actual evidences for the acceleration of
the expansion. Even when scrutinized with skeptical eyes, the evidence for an ac-
celerating universe is robust. Investigation of its very origin appears as the most
fascinating challenge of modern physics.

Keywords Cosmology, Dark energy, Cosmological models

1 Introduction

Modern cosmology has achieved remarkable progresses during the last 50 years.
The general picture originally designed as the “Primeval atom” by Lemaı̂tre and
which has become the “Big Bang” model according to the word of one of its most
famous opponent, F. Hoyle, is now recognized as the successful scientific repre-
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Toulouse, CNRS 14, Avenue E. Belin 31400 Toulouse, France alain.blanchard@ast.obs-mip.fr



2 A. Blanchard

sentation of the world at the large scales (in space and in time) we can measure.1
Construction of this picture has necessitated the successive abandonment of philo-
sophical and scientific ideas, some of which are not only those of physicists but
are also shared by the more general public. Maybe the first to be given up was the
idea that it is hopeless to try to figure out a global picture of the universe. Although
heroic pioneers can be traced back since a long time ago, undoubtedly Einstein is
the first one to directly address the question of handling the universe as a single
physical object with an appropriate tool in hands, general relativity (GR). The fact
that one of the very first applications of his theory was Cosmology is an evidence
that the cosmological question was central in his thoughts. This is reinforced by
the fact that he proposed to modify the initial formulation of his theory given the
problems he encountered. It is commonly said that Einstein introduced the cos-
mological constant to obtain a static universe because he was reluctant to the idea
of an expanding picture. This formulation is inappropriate: it merely suggests that
Einstein was willing to avoid an expanding universe, while he actually wanted to
find at least one solution to the cosmological problem with an initial formulation
which assumes the universe to be stationary, there is no indication in his seminal
paper that he wished to reject a non-stationary universe: he actually started his pa-
per by discussing the problem of having mass at large distances in the Newtonian
approach, noticing that this leads to divergence of the potential. He insisted that
this would lead to unacceptably large velocities for stars. He also quoted that this
can be cured by assuming a correcting term to the Newtonian potential equation:

∇
2
ϕ−λϕ = 4πGρ (1)

and then proposed to modify his initial theory with the addition of the cosmo-
logical term Λ . This allowed him to construct the first relativistic cosmological
model, the Einstein solution, which is spatially closed (because being spherical)
and static. In 1919, de Sitter discovered a new solution to Einstein equation which
was written in a stationary form2 and contains no matter (but a non-zero cosmo-
logical constant). It is only a few years after, in 1925, that Lemaı̂tre identified
the de Sitter solution to an homogeneous expanding universe (Lemaı̂tre 1925).
Friedmann (1922, 1924) found the general homogeneous solutions, providing the
equation for the scale factor R(t) and recognisee their expanding nature. It is some-
what surprising that his work has remained totally unnoticed, despite a controversy
with Einstein. During this period it is clear that the nature of the redshift of what
Hubble had identified as extragalactic nebulae became a question addressed by
many astronomers. Slipher’s discovery was probably much more intriguing now
that the nature of nebulae had been identified. Eddington is often mentioned as

1 It is fair to say that few scientists are still opposed to the “Big Bang” picture. Most of the
serious opponents try to demonstrate that some observational facts, most often only one, which
are coming in support of the Big Bang may be interpreted in a different way and therefore
the whole construction has to be questioned. It is useful to remember that the success of a
scientific model is—in some sense—measured by the number of predictions it leads to and
how many are successful. Newton theory of gravity is wrong, but nevertheless it remains a high
quality scientific theory because of its past (and present) successes. It is in this sense that modern
cosmology should be regarded as successful, and this will remain in the future, even if it might
be regarded as being “wrong”. . .

2 The choice of the coordinates system lead to a form of the metric for which the coefficients
are constant.
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the first astronomer to have noticed a possible connection between redshift and
the de Sitter solution (Lemaı̂tre 1925). Wirtz (1922) was clearly looking for a re-
lation between redshift and distance and had in mind the possible cosmological
information it might provide (Wirtz 1924; Seitter and Duerbeck 1990). Lemaı̂tre
reestablished the equations that Friedmann derived, showing that expanding so-
lutions were leading to a redshift proportional to the distance. He proposed that
this effect was the origin of known redshift and provided the first estimation of the
Hubble constant (Lemaı̂tre 1927). In 1929, Robertson published the now so called
Robertson–Walker metric. In the same paper he mentioned that distant sources
appear to have a frequency shift.

2 Basics of Friedmann–Lemaı̂tre models

The fundamental idea of the geometrical theory of gravity starts from the fact that
we can assign four coordinates to any event observed in our vicinity, for instance
in Cartesian coordinates: (x,y,z, t). Locally, space appears flat to be. However, this
does not determine the geometry of space at larger scales: local observations put
us in the same situation that led people to think the earth was flat: the fact that we
can describe our vicinity by a flat map does not determine the actual geometry on
larger scales. Let us take the line element of a homogeneous 3D space which can
be shown3 to be:

dl2 = r̃2(dθ
2 + sin2

θdφ
2)+

dr̃2

1− k
( r̃

R

)2 (2)

where k is −1,0,1 according to whether space is hyperbolic, flat, or spherical. R
is a characteristic size (in the spherical case, that is the radius of the 3D-sphere
embedded in a 4D space).

We then add the time as the fourth coordinate to build the equivalent of the
Minkowski space–time element of special relativity and get the Robertson–Walker
(RW) line element after the change of variables r̃

R → r:

ds2 =−c2dt2 +R(t)2
[

r2(dθ
2 + sin2

θdφ
2)+

dr2

1− kr2

]
(3)

2.1 Topology

The above line element describes the local shape of space: the curvature is only a
local property of space, but does not tell us about the global shape of space. For
instance, the Euclidean plane is an infinite flat surface, while the surface of a cylin-
der is a 2D-space which is flat everywhere but is finite in one direction. GR will
in principle allow us to derive the local geometry of space and its dynamics, but
does not specify of the global topology of space. Only direct observations would

3 It is an instructive exercise to start from an Euclidean 4D space x,y,z,u and derive the
line elements dl2 on the 3D sphere (x2 + y2 + z2 + u2 = R2) in internal spherical coordinates
(r̃ =

√
x2 + y2 + z2,θ ,φ ).
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allow to test what the topology actually is. Of course this will not be possible
on scales much larger than what can be observed (the horizon). We can therefore
hope to prove that the universe is finite, if it is small enough, but we could not
know whether we are in a finite universe of which the scale is larger than the
horizon, or whether we are in an infinite universe. The interest in the topic of the
cosmic topology, with possible observational signature, has been recently revived
(Lachièze-Rey and Luminet 1995; Luminet et al. 2003).

2.2 Dynamics

The function R(t), which appears in the RW line element, is totally independent of
any further geometrical consideration. It can be specified only within a theory of
gravity. The basic equation of GR relates the geometrical tensor Gi j to the energy-
momentum tensor Ti j

Gi j = Ri j−
1
2

gi jR = 8πGTi j (4)

where gi j is the metric tensor, Ri j is the Ricci tensor, R the Ricci scalar. For a
perfect fluid, there exists a coordinates system, called the comoving coordinates,
in which the matter is at rest and the tensor Ti j is diagonal with T00 = ρ and T11 =
T22 = T33 = p, ρ being the density and p the pressure. A fundamental aspect of GR
is that the source of gravity includes explicitly a term coming from the pressure:
ρ + 3p/c2. Finally, there is an analog of the Gauss theorem, i.e., the Birkhoff’s
theorem (1923)4: if the matter distribution is spherical then the evolution of the
radius of a given shell of matter depends only on its content.

From the above rules, we can easily derive the equation for R(t). Let us con-
sider a spherical region of radius a in a homogeneous distribution of matter. The
equivalent Newtonian acceleration is:

d2a
dt2 = g (5)

with the acceleration being generated by the “mass” M(a) of the above spherical
region:

g =−GM(a)
a2 =−4

3
πG(ρ +3p/c2)a (6)

The density term includes the effect of kinetic energy (E = mc2!). Writing total
energy (Et) conservation inside the volume of the sphere from elementary thermo-
dynamics gives:

d(Et) = d(ρV c2) =−pdV (7)

leading to:

ρ̇ =−3
( p

c2 +ρ

) ȧ
a

(8)

4 Apparently, this theorem should be named Birkhoff–Jebsen, as it has been published 2 years
earlier by an Norwegian physicist, Jebsen (Johansen and Ravndal 2006).
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From these two equations, the pressure can be eliminated, and, after having mul-
tiply both terms by ȧ, the differential equation can be easily integrated. This leads
to the following equation: (

ȧ
a

)2

=
8πGρ

3
− Kc2

a2(t)
(9)

The last term corresponds to the constant of integration. Its value cannot be spec-
ified, depending on the initial conditions. The form of the above equation is inde-
pendent of the radius a of the sphere and the solution a(t) should be proportional
to the quantity R(t). R(t) should also be solution of an equation of the same form,
the constant K, which depends on the radius a0, being related to the constant k
which is involved in the Robertson–Walker metric element, something which can
be established only within GR:(

Ṙ
R

)2

=
8πGρ

3
− kc2

R2(t)
(10)

This relation expresses the link within the framework of GR between the geom-
etry and the material content of the universe. In order to specify completely the
function R(t), one needs an equation of state for the content of the universe. The
two cases often seen in cosmology are the dust case (p = 0) and the radiation
dominated regime (p = 1

3 ρc2).

2.3 Vacuum and the cosmological constant

Vacuum is a particular medium, and one should wonder what is the equation of
state of this medium. Naively, one would think that the equation will be pv = 0
and ρv = 0. However, let us try to derive the vacuum equation of state from first
principles. As in classical thermodynamics let us assume that we have a piston
with vacuum in it. We also assume that simple vacuum (p = 0,ρ = 0) is present
outside.

The energy inside the piston is E = ρvc2V . If the volume changes by a small
amount the net energy change is:

dE = d(ρvV c2) = ρvc2dV (11)

this change is equal to the work of the pressure:

dE =−pvdV (12)

so the equation of state is:

pv =−ρvc2 (13)

As one can see, the conditions p ≥ 0 and ρ ≥ 0 ensure that the simple solution
is the only one. However, there is nothing which imposes these conditions for
the vacuum, and we can therefore decide to keep such a possible term. This can
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be directly translate in the equations governing R(t) by introducing the following
constant:

Λ = 8πGρv (14)

Such a term is called the cosmological constant and has been historically in-
troduced by Einstein as a modification of his original theory. It appears as an
additional term in the left-hand side of Eq. 4. We have recovered the two usual
Einstein–Friedmann–Lemaı̂tre (EFL) equations:(

Ṙ
R

)2

=
8πGρ

3
− kc2

R2 +
Λ

3
(15)

and
R̈
R

=−4πG
3

(
ρ +

3p
c2

)
+

Λ

3
(16)

There are several ways to write the EFL equations. For instance, we used energy
conservation, Eq. 8, which can be kept instead of one of the above equations. It
can also be useful to use:

Ḣ =−4πG
(

ρ +
p
c2

)
+

kc2

R2 (17)

Only two independent equations were obtainable, while three unknown quanti-
ties are to be determined (R(t),ρ(t), p(t)); therefore, we need a further constraint
which is provided by the equation of state F(ρ, p) = 0.

It is quite usual to write the fundamental cosmological quantities as non-
dimensional quantities which depend on redshift. The following notations are very
common:

H = Ṙ
R , the Hubble parameter,

ΩM = Ω = 8πGρ

3H2 the density parameter,

q =− R̈R
Ṙ2 , the deceleration parameter,

Ωv = Ωλ = λ = Λ

3H2 , the (reduced) cosmological constant,

Ωc =− kc2

H2R2 =−α , the curvature parameter.

Quantities are labeled with a 0 when they are referred to their present value.
For instance, the present day value of the density parameter Ω is Ω0. With the
above notations, the first EFL equation 15 then reads:

ΩM +Ωc +Ωλ = 1 (18)

or:

α = Ω +λ −1 (19)

so that the “radius of the universe” can be written:

R =
c
H

1√
|α|

(20)

while the Hubble constant evolution is given by:

H2 = H2
0 (ΩM(1+ z)3 +Ωc(1+ z)2 +Ωλ ) (21)
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2.4 Important quantities needed for observations

In this section, we only need to work in the framework of a geometrical theory
of space–time, in which the trajectories of light rays are assumed to be the null
geodesics. Let us have a comoving spherical coordinate system (r,θ ,φ , t) the ob-
server being at the origin of the spatial coordinates (r = 0,θ = 0,φ = 0, t0), let
assume that the observed source is emitting light at the coordinates (rS,θ = 0,φ =
0, tS), and let r(t) be the trajectory of the emitted photons. As this trajectory is a
null geodesic, we have:

c2dt2−R2(t)
dr2

1− kr2 = 0 (22)

so the variables can be separated and the integration over r is analytical:

t0∫
tS

cdt
R(t)

=
rS∫

0

dr

(1− kr2)1/2 = S−1
k (rS) (23)

with:

Sk(rS) =

 sin(rS) if k = +1
rS if k = 0
sinh(rS) if k =−1

(24)

When the distance is small with respect to R0 we just have S−1
k (r)∼ r.

2.5 The Redshift

In order to derive the observed frequency ν0 of the light from a source emitted
at the frequency ν , we consider the trajectory of a second light ray emitted at the
time tS + 1

ν
. As the source is comoving its coordinate is unchanged and we have:

S−1
k (rS) =

t0∫
tS

cdt
R(t)

=

t0+1/ν0∫
tS+1/ν

cdt
R(t)

(25)

which implies:

ν0

ν
=

λS

λ0
=

RS

R0
=

1
1+ z

(26)

where z is the redshift. This is the standard formula for the cosmological shift of
the frequencies. This result shows that the redshift z is a natural consequence of
the expansion.
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2.6 The proper distance

In GR, space changes with time, and there is no proper time, so that the “intuitive”
notion of distance between two points is not a well-defined quantity. Therefore,
the various methods to measure the distance between an observer and a given
source give different answers. The proper distance—between the source and the
observer—can be seen as a distance measured by a set of rulers at time t. The
distance element is given by:

dl2 = ds2 = R(t)2 dr2

1− kr2 (27)

so that the proper distance is:

Dp = R(t)S−1
k (rS) (28)

The fact that this distance changes with time is the direct consequence of the
expansion of the universe. We can now examine how this length changes with
time :

Ḋp = ṘS−1
k (r) (29)

so that the source is actually receding from the observer with a speed:

V = Ḋp =
Ṙ
R

Dp = HDp (30)

The fact that this speed could be larger than the speed of light should not be con-
sidered as a problem: this speed can be measured but cannot transport information
faster than light. When the distance is small, the Doppler frequency shift is:

δν

ν
=

Ṙ
R

δ t = H
D
c

=
V
c

(31)

so that the shift is the one corresponding to the Doppler shift associated with
the above velocity. For large distances, the total shift results from the product of
small Doppler shifts and the redshift is therefore purely kinematic. The physical
nature of the expansion has been recently the subject of interesting discussions
(Chodorowski 2007; Abramowicz et al. 2007; Peacock 2008; Cook and Burns
2009).

2.6.1 Comoving distances

It is sometimes useful to refer to comoving distances.5 The comoving distance
Dc(z) associated to the distance D(z) is :

Dc(z) =
R0

R
D(z) = (1+ z)D(z) (32)

In the case of the proper distance, this becomes:

Dc
p(z) = R0S−1

k (r) =
t0∫

tS

cdt
R(t)/R0

= c
z∫

0

dz
H(z)

(33)

5 This could also be confusing!
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2.7 The angular distance

Let us suppose that we observe a ruler orthogonal to the line of sight. The extrem-
ities of the ruler have the coordinates (r,0,0, tS) and (r,θ ,0, tS). The proper length
l between the extremities is:

l2 = ds2 = R(tS)2r2
θ

2 (34)

which provides the relation between the angle θ and the length l and thereby the
angular distance defined by:

Dang =
l
θ

= R(tS)r (35)

2.8 The luminosity distance

Let us assume that we observe a source with an absolute luminosity L through
a telescope with a diameter d and let us choose a coordinates system which is
centered on the source. Let θ be the angle between two rays reaching two points
diametrically opposite on the telescope. We have d = R(t0)rθ . The energy emitted
by the source that reaches the telescope is:

s =
L

4π
× πθ 2

4
(36)

When observed, the energy of photons has been shifted by 1/(1 + z) but also the
frequency at which they arrive is reduced by the same factor. Therefore, the flux
(energy per unit time and unit surface) one gets is:

f =
s

πl2/4
1

(1+ z)2 =
L

4πR(t0)2r2(1+ z)2 =
L

4πD2
lum

(37)

This relation provides the luminosity distance:

Dlum = R(t0)r(1+ z) = R(tS)r(1+ z)2 = Dang(1+ z)2 (38)

2.9 Distance along the line of sight

We consider here the length along the path of a photon trajectory. The length
element is

dl = cdt = c
dR
Ṙ

=− c
H(z)

dz
1+ z

(39)

This relation is useful to write the volume element.
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2.10 The age of the universe

The general expression of time interval is:

dt =
dR
Ṙ

=− 1
H(z)

dz
1+ z

(40)

3 Some solutions of the EFL equations: relativistic cosmological models

The various possible theories of gravitation provide different functions R(t) and
through the above tests may in principle be distinguished by observations. How-
ever, it is easy to check that the difference only occurs at high redshift. In practice,
these tests may not be discriminant because the observations of distant objects are
difficult and because the universe at high redshift is younger, so any object at high
redshift is likely to be different from today because of evolution. In other words,
general geometrical tests rely on the assumption that the typical evolution time
scale of the objects under study is much larger than the age of the universe.

One must also underline that as already mentioned the EFL equations can be
solved only once the equation of state is specified, i.e., a relation between p and ρ

is adopted. It is now quite common to specify this relation by the w parameter:

p = wρc2 (41)

If w is constant, then Eq. 8 allows to find the evolution of the field density:

ρ(z) = ρ0(1+ z)3(1+w) (42)

while for a general function w(z) one has:

ρ(z) = ρ0 exp

 z∫
0

3(1+w(z))
dz

1+ z

 (43)

There are three particular regimes: the matter dominated one, the radiation-
dominated one and the vacuum-dominated one.

In the matter-dominated case one has p = 0, so w = 0 and the mass (per co-
moving volume) is conserved :

ρa3 = ρ(1+ z)−3 = cste (44)

while in the pressure-dominated case p = 1
3 ρc2, so w = 1

3

ρa4 = ρ(1+ z)−4 = cste (45)

Finally, in the vacuum-dominated case p =−ρc2, so w =−1 and

ρ = cste (46)

In some models w <−1, and therefore the density of the universe increases when
it expands.
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Fig. 1 Evolution of the scale-factor R(t) with time, in FL models according to the values of the
parameters ΩM and ΩΛ . One notes that above the critical line universes has no initial singularity;
on the right side of the second branch of the critical line are the re-collapsing models

3.1 Case (λ0 = 0, p = 0)

When the cosmological constant is zero, there are three types of solutions:

(a) when the density is above the critical density:

ρ > ρc =
3H2

0
8πG

= 2. 10−29 h2 g/cm3 (47)

the spatial solution is the spherical space. The function R(t) grows from zero
to a maximum value then a collapse phase follows to zero.

(b) when the density is equal to the critical density, the solution is named the
Einstein–de Sitter universe and R(t) is simple:

R(t) = R0

(
3
2

H0t
)2/3

= R0

(
t
t0

)2/3

(48)

with t0 = 2
3 H−1

0 = 1/(6πGρc)1/2

(c) when the density is below the critical density, the function R(t) grows from
zero to infinity. It is easy to check from the EFL equations that the function
R(t) behaves like t when R is large.

The behavior of R(t) can be found when t → 0 independently of the model:
R(t) ∝ t2/3.

Finally, the relation between the comoving coordinate r and the redshift can
be expressed:

R0r =
c

H0

2
Ω 2

0

Ω0(1+ z)+2−2Ω0− (2−Ω0)
√

1+Ω0z
1+ z

This is known as the Mattig relation. Others useful quantities can be found in
Weinberg recent text book (Weinberg 2008).

3.2 Case (λ0 > 0, p = 0)

There are many possibilities when a cosmological constant is allowed. To spec-
ify a cosmological model, it is customary to specify two “observables”: Ω0 and
Ωλ . For instance, the cosmological view of the Friedmann–Lemaı̂tre models is
summarized in Fig. 1.

The look back time, i.e., the time since the epoch corresponding to the redshift
z can be obtained from (40):

τ(z) =
1

H0

1+z∫
1

du

u
√

Ω0u3−α0u2 +λ0
(49)
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where u = 1+ z. When λ ≤ 0 it can be shown from the expression of R̈ that

t0 = τ(∞)≤ 1
H0

(50)

3.3 Radiation-dominated case

As we have seen the density associated with radiation evolves according to ργ a4 =
cste. It is clear that this radiation term will be dominant over the matter term for
small a, i.e., at the “beginning”. In this regime, if we neglect other terms in the
EFL equation, we have:

Ṙ =
(

8πGρ1

3

)1/2 R2
1

R
(51)

so that R ∝ t1/2

3.4 Basics of structure formation

Structure formation in an expanding universe through gravitational instability can
be traced back to the early works of Lemaı̂tre (1933), who established the spherical
solution and discussed its relevance to cluster formation. In modern cosmology,
linear and non-linear regime (δρρ � 1) are used to obtain useful constraints.

3.4.1 The gravitational instability picture

The linear regime of small perturbations (both in size and in amplitude) in the
matter field (ρ(x) = ρ(1 + δ (x))) in the absence of pressure can be derived from
Newtonian equations (Peebles 1980):

δ̈ +2Hδ̇ = 4πGρmδ =
3
2

ΩmH2
δ (52)

Because there is no spatial derivatives in the equation, the evolution with time is
independent of the scale (this does not hold any more when the pressure is taken
into account). There are generally two distinct solutions to this equation, one is
a decaying mode and the second one is a growing mode which is of relevance
for cosmology. The growing mode is usually written as D(t) with a normalization
such that the present day value is one: D(t0) = 1. The evolution of a perturbation
can then be written:

δ (t) = D(t)δ0 (53)

where δ0 is the linear amplitude that the fluctuation would have today. The qualita-
tive behavior of solutions of Eq. 52 is easy to understand: if Ωm � 1 the right-hand
side is zero and the growing mode is frozen, while if Ωm ∼ 1 there is a growing
mode with D(t) ∝ a(t). The form of Eq. 52 implies that once the expansion rate
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history (H(z)) and the present day density of the universe ρ0 are known, the so-
lution D(t) is entirely determined (the matter density parameter can be inferred

from its definition Ωm(z) =
8πGρm

3H2 = Ω0
(1+ z)3

H(z)2

)
. Therefore, having a mea-

sure of the growing rate of perturbations is a direct test of the relevance of Newto-
nian gravity on the scale under consideration. Theories beyond GR might lead to
growing rates that depend on the scale and departs from their standard values.

Non-Baryonic dark matter and cold dark matter (CDM) scenario In the early
universe, the growth rate of fluctuations is more complex: pressure has to be
taken into account, and there are at least two matter contents to take into account:
baryons and the non-baryonic matter. These ingredients will introduce scales in
the dynamics of fluctuations. Ultimately these scales will leave visible imprints
in observable quantities: the fluctuations of the cosmic background radiation and
the power spectrum of the matter distribution (or equivalently in the correlation
function). The first scale comes from the difference in the dynamics for fluctua-
tions larger than the horizon when compared to the ones that are smaller. Indeed,
when photons (and other relativistic particles) dominated the density of the uni-
verse the right-hand side of Eq. 52 is negligible, and therefore the growing mode is
frozen. However, on scales larger than the horizon the dynamics should be evalu-
ated within a full GR treatment. Intuitively, on these large scales the radiation acts
as a source of gravity which will allow the fluctuations density to grow. Therefore,
a scale appears corresponding to the scale of the horizon. When the universe en-
ters the matter-dominated area, fluctuations on all scales will grow provided that
the pressure term is negligible, i.e., for the non-baryonic matter. The scale which
is imprinted is therefore the size of the horizon at the time of equality between
matter and radiation and is characteristic of CDM. However, the baryons are still
tightly coupled to the photons and thereby their dynamics is under the control of
the pressure term to be added in the right-hand side of Eq. 52. This coupling stops
when the matter becomes neutral enough (z ≈ 1500). A second scale is therefore
imprinted in the baryonic component corresponding to the scale of the horizon of
sound’s velocity at the epoch of recombination. Although the baryonic matter is
subdominant, the distribution of dark matter will nevertheless reflect this scale.
This feature appears as oscillations in the power spectrum, but more distinctly as
a peak in the correlation function (Matsubara 2004). In practice, the dark mater
distribution is described by its linear power spectrum PDM(k) at present epoch cor-
responding to the initial power spectrum Pi(k) modified by the evolution. In the
linear regime, the various wave numbers are independent so:

PDM(k) = Pi(k)TDM(k) (54)

The nature of the initial fluctuations, the nature of dark matter (hot, warm, . . . )
are other ingredients that determine the shape of the transfer function. In practice,
the computation of the transfer function is to be done numerically. In the CDM
case, analytical functional forms have been provided (Peebles 1982; Bardeen et
al. 1986; Eisenstein and Hu 1998) including the detailed baryonic features (Eisen-
stein and Hu 1998).
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4 The quest for cosmological parameters

4.1 Hubble diagram

Looking for a possible relation between apparent velocities and distances was a
scientific question that few astronomers addressed before Hubble’s discovery. The
determination of Hubble’s constant have been the subject of considerable effort
over the next 80 years following his discovery. One of the major scientific question
that the Hubble Space Telescope was aimed to address was precisely the determi-
nation of the distance of close galaxies and thereby to offer an accurate measure-
ment of the Hubble constant. The final value obtained from the HST key project to
measure the Hubble constant concluded H0 = 72±8 km/s/Mpc (Freedman 2001),
also the debate is not entirely closed as Sandage and Tammann still concluded
to a lower value: H0 = 62.3±4 km/s/Mpc (Tammann et al. 2008) although these
values are marginally consistent given the quoted—systematic—uncertainties.6

4.2 Going further and other geometrical tests

The first cosmological tests which have been proposed were based on the rela-
tion between some observable quantity to a corresponding intrinsic property of
the source (like the relation between the apparent luminosity and the intrinsic
luminosity). These tests are essentially geometrical in nature, they involve the co-
ordinate r given by Eq. 25 or the relation between the coordinate r and the redshift
z:

r = Sk

 c
R0

z∫
0

dz
H(z)

 (55)

the dependence on cosmological parameters coming from the difference in the ex-
pansion rate according to Eq. 15. The Hubble diagram which has been extended
to high redshift thanks to type-Ia supernovae is the most popularized example of
these geometrical tests. It is also rather intuitive that the Hubble diagram which
expressed the speed of the expansion will provide direct information on the rate
of acceleration/deceleration when extended to objects distant enough to be seen at
appreciably early epoch of the history of the universe. A reliable extension of the
Hubble diagram to high redshift has been made possible thanks to the use of type-
Ia supernovae. SNIa could have a maximum luminosity (M ∼−19.5) comparable
to that of an entire galaxy. Furthermore, there is a relation between the decline
rate and the intrinsic luminosity making them suitable for distance measurements
at cosmological scale. Because SNIa are rare, large sky area have to be surveyed
on a regular basis to collect samples of SNIa. At the end of last century, two groups
have independently investigated the distant SNIa Hubble diagram and concluded
that supernovae at redshift ∼0.5 were dimmer by ∼0.2 mag when compared to

6 The Hubble constant is traditionally noticed: H0 = h100 km/s/Mpc.
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what was expected in a unaccelerated universe. This was interpreted as an evi-
dence for an accelerated expansion (Riess et al. 1998; Goldhaber and Perlmutter
1998; Filippenko and Riess 1998; Perlmutter et al. 1999).7

4.3 The age of the universe

Formally, we have no direct information on the actual age of the universe t0. But
there are several astrophysical objects for which an age can be derived. The most
common one is probably the age of globular clusters. There are different limita-
tions which make determinations of absolute ages problematic. Distance estima-
tions is for instance one limitation. Hipparcos results have helped, but the uncer-
tainty remains significant. Recent estimate for the age of globular clusters was
given to be 12,6−2.2

+3.4(95%) Gyr (Krauss and Chaboyer 2003), an age consistent
with that of the star CS 31082-001 estimated to be 14.± 2.4 Gyr, based on the
decay of U-238 (Hill et al. 2002). It has been noticed since the beginning of cos-
mology that age estimations were high given the preferred value of the Hubble
constant. This has been noticed by Lemaı̂tre when debating with Einstein, Pee-
bles (1993) and many others since, providing thereby an argument in favor of the
cosmological constant which holds until the late 90s (Krauss and Turner 1995;
Ellis 2002). However, this argument is relatively weak because of the difficulty
to achieve reliable astrophysical estimates of H0. With modern best values, the
product H0t0 can be evaluated numerically:

H0t0 ≈ 0.102htGyr (56)

with h = 0.72 one gets H0t0 ∼ 0.93, while only values greater than 1 would request
an accelerated universe. Although, it is important to have a consistency check,
improvement by one order of magnitude in precision will be necessary in order
that age and Hubble constant values could be combined to provide constraints on
cosmological parameters competitive with current constraints.

4.4 The cosmic microwave radiation

4.4.1 Spectrum and uniformity

The measurement of the CMB spectrum to check for the black-body shape of this
spectrum was one of the most important cosmological test awaited for since the

7 There is an intense debate on the “discovery” of acceleration from SNIa Hubble diagram in
order to specify who did what and who said what. The history of the research program devel-
oped within the SCP is summarized by Goldhaber (2009). An early popular scientific report on
SCP talk at AAS meeting January 1998 meeting has been published by John Glanz (Science,
279, 651), while some view from the High Z team by Kirshner (2002) is available at http:
//www.cfa.harvard.edu/˜rkirshner/whowhatwhen/Thoughts.htm. It is also
interesting to mention that claim for evidence of an accelerated expansion from a totally differ-
ent technique has been presented at the same AAS meeting: http://www.bk.psu.edu/
faculty/daly/PU98.pdf. These data taken at face value were pointing to a low density
universe, but only the flatness of the universe as already evidenced by CMB fluctuations would
have allowed to conclude on the actual acceleration of the expansion.

http://www.cfa.harvard.edu/~rkirshner/whowhatwhen/Thoughts.htm
http://www.cfa.harvard.edu/~rkirshner/whowhatwhen/Thoughts.htm
http://www.bk.psu.edu/faculty/daly/PU98.pdf
http://www.bk.psu.edu/faculty/daly/PU98.pdf
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discovery of the background radiation. Two high-quality measurements have been
published in 1990 (Gush et al. 1990; Mather et al. 1990), while the FIRAS final
results were remarkably accurate (Fixsen et al. 1996): any departure from a black-
body should represent only a tiny perturbation of the total energy: δE/E ≤ 10−4.

An interesting application of cosmic background radiation is to provide a test
of the reality of the expansion: if we are able to measure the temperature of the
background at higher redshift it should scale according to:

T (z) = T0(1+ z) (57)

It is actually possible to measure the temperature of the background radiation
through the observations of the ratio of molecular lines: the ratio of the popu-
lation on two levels for which the difference in energy is only a few Kelvin is
sensitive to the cosmic radiation field and therefore provides a way to actually
measure the temperature of the background. Such lines can be detected in the
optical domain. Actually, the first detection of the CBR was obtained by this
method with CN lines (McKellar 1941; http://www.astro.ucla.edu/
˜wright/CMB.html). It has also been successfully applied to distant QSO’s
to measure the variation of the temperature of the background with redshift and
the result are consistent with the expanding picture (Songaila et al. 1994; Srianand
et al. 2008).

These measurements provide a fundamental test of the Big Bang picture but
do not provide a source of constraint on the cosmological parameters.

4.4.2 Fluctuations

Since the discovery of the CMB fluctuations by COBE (Smoot et al. 1992) the
idea that early universe physics has left imprints revealed by these fluctuations has
gained an enormous attention. In this respect, DMR results have played a funda-
mental role in modern cosmology comparable to the discovery of the expansion of
the universe or the discovery of the microwave background by Penzias and Wil-
son, and indeed this has motivated the delivering of the Nobel prize to Smoot and
Mather for this discovery. One of the fundamental reasons for this is that fluc-
tuations on scales larger than one degree in the microwave background radiation
correspond to scales greater than the horizon at last scattering epoch and cannot
therefore been altered by any physical process and should therefore reflect pri-
mordial fluctuations (Weinberg 1972). This also means that the very existence of
these fluctuations could be explained only from yet undiscovered physics, proba-
bly relevant to the very early universe (Guth 1981), for which the expansion law
has been modified when compared to the standard picture. The DMR results were
providing some constraints on cosmological models (Wright et al. 1992) but it has
been realized that the measure of fluctuations on smaller scales will provide much
stringent information. Early detection of fluctuations on degree scales allowed to

Fig. 2 The amplitude of angular fluctuations of the CMB is expressed through their angular
power spectrum. Data are WMAP, Boomerang, ACBAR Reichardt et al. (2008). A simple mini-
mal six parameter models including a cosmological constant provides an excellent fit to the data.
This is one of the most important successes of modern cosmology

http://www.astro.ucla.edu/~wright/CMB.html
http://www.astro.ucla.edu/~wright/CMB.html
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set interesting constraints and provided the first evidence for a flat geometry of
space (Lineweaver et al. 1997; Lineweaver and Barbosa 1998). If estimations of
low matter density were to be regarded as robust, this was inevitably leading to a
non-zero cosmologcial constant. Even before the availability of the WMAP data,
considerable progresses have been achieved on the measurement of fluctuations on
all angular scales. Archeops (Benoı̂t et al. 2003a) and Boomerang (de Bernardis et
al. 2000), as well as many other small scale measurements, already provided mea-
surements allowing tight constraints on cosmological parameters (Benoı̂t et al.
2003b). Although the observed fluctuations were consistent with a Λ -dominated
universe, a cosmological constant was not explicitly requested by the CMB data
alone. Indeed, even the WMAP data were consistent with a vanishing cosmolog-
ical constant, provided the Hubble constant was left as an entirely free parame-
ter. A positive detection of a cosmological constant could be obtained only using
some additional data in conjunction with CMB (Fig. 2), like the measurement of
the Hubble constant. A further restriction came from the fact that the constraint on
cosmological parameters were obtained within the standard CDM picture, and that
many ingredients were specified without being necessarily confirmed by observa-
tions: for instance initial fluctuations are supposed to be adiabatic and to follow
some power law. Therefore the “concordance” (Ostriker and Steinhardt 1995a,b)
cosmology was an appropriate terminology: the model was consistent with most
existing data, but the introduction of a cosmological constant was not requested
by any single data, and it was far from being clear whether relaxing some of the
input hypotheses would not allow for solutions without the introduction of a cos-
mological constant.

4.5 Clusters of galaxies

Most talks on clusters of galaxies start with stating the fact that they are the largest
virialized structures in the universe. Another reason for the strong interest they
represent is due to the fact that clusters are the only astronomical large objects
for which we have such a wide range of information: their total mass is in princi-
ple accessible from X-ray spectroscopy, velocity dispersion, weak lensing signal,
their gas content can be investigated through X-ray observations but also through
their imprint on the microwave background, the thermal Sunyaev–Zel’dovich ef-
fect. Obviously, their star content can be evaluated, but also the metal content of
their gas. Clusters are therefore the astrophysical objects relevant to cosmology
on which the most comprehensive set of data can be obtained.

4.5.1 Baryon fraction

X-ray data allow to determine at the same time the mass of the gas content of clus-
ters, through imagery, as well as the gas temperature, through spectroscopy. The
temperature can be used to estimate their total mass. It is therefore straightforward
then to infer their baryon fraction (most of the baryons being in the gas, the star
even if uncertain can be taken into account without making much difference). Be-
cause, the gravitational collapse is expected to be identical for dark matter and for
baryons, at least before the first shocks occur, the baryon fraction should reflect
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the primordial baryon fraction:

Mb

Mt
= ϒ

Ωb

ΩM
(58)

where ϒ is expected to be close to one. Numerical simulations shows indeed
that ϒ should lie in the range 0.85–1. Ωb can be known from primordial nu-
cleosynthesis results, and therefore constraints can be obtained on ΩM (White
et al. 1993). Although this test is attractive in its principle, its application, es-
pecially in the context of precision cosmology, is somewhat problematic. There
are several reasons for that: for instance, in numerical simulations, as well as in
the observations, ϒ seems to depend on the radius and is therefore a function
ϒ (r) on radius. The precise value of ϒ (r) is likely to depend on the physics of
the non-gravitational heating and cooling processes which are necessary to re-
produce observed properties of clusters in numerical simulations. However, these
possible limitations still allow to infer an upper limit on ΩM from Eq. 58. A fi-
nal limitation comes from the clumping of the gas which would lead to an un-
derestimation of ΩM . On the observational side, it is unclear to which accuracy
cluster masses are known: agreement between lensing masses and X-ray mass
is under debate. Estimations of total mass and baryon mass in the outer parts of
clusters, which are expected to provide the most reliable estimation of the primor-
dial baryon fraction, are subject to uncertainties: the X-ray emission of the gas
at the virial radius is low and only for few clusters do we have a firm detection.
At this outer part, the gas is eventually clumped which would bias the gas mass
estimates.

4.5.2 Geometrical tests

Another strategy is to use clusters as standard candles in some sense and to con-
strain the cosmological parameters from the observed properties of distant clus-
ters. For instance, it has been proposed to use cluster X-ray radius as a standard
ruler (Mohr et al. 2000). Additional information may allow direct distance mea-
surements. This is what the Sunyaev–Zel’dovich (SZ) signal provides: because
the X-ray emissivity goes as the square of the gas density, while the SZ signal just
goes as the density the distance can be directly obtained. Not only this method
can be used to estimate the Hubble constant, but also possible to extend the Hub-
ble diagram to distant clusters and thereby to get the same information provided
by the SNIa diagram. Another variant of these tests has been proposed from the
baryon fraction of clusters against redshift: because the gas fraction inferred from
observations depends on the angular distance to the cluster, requesting that the gas
fraction does not evolve with redshift will result on constraints on the cosmologi-
cal parameters (Sasaki 1996). This test has deserved recent attention (Allen et al.
2008), but uncertainties mentioned about the baryon fraction are likely to alter this
test either and it is difficult to draw robust conclusions from it (Sadat et al. 2005;
Ferramacho and Blanchard 2007; Ettori et al. 2009).

4.5.3 The use of cluster abundance

The theoretical mass function A theoretical expression for the abundance of viri-
alized structures in hierarchical picture has been first proposed by Press and



Evidence for the fifth element 19

Schechter in (1974). From scaling arguments, a general expression for the mass
function can be derived (Blanchard et al. 1992):

N(M,z) =− ρ

M2σz(M)
δNL(z)

dlnσ

dlnM
F (ν) (59)

δNL(z) being the threshold for non-linear collapse of spherical density perturba-
tions (in an EdS universe δNL(z) = 1.68), σz(M) the amplitude of mass fluctu-
ations on the mass scale M (σz(M) = σ0(M)D(z), D(z) being the normalized
growing rate of linear fluctuations) and νNL the normalized threshold (νNL =
δNL/σ(M) ) for non-linear collapse,

∫ +∞

ν
F (ν)dν is the fraction of space cov-

ered by spheres of mass ≥M satisfying the non-linear criteria. Such an expression
can be rigorously justified only for a given power law spectrum in an Einstein–de
Sitter universe. However, the numerical investigations of the mass function have
shown that it does follow the above scaling to a very high accuracy (Efstathiou et
al. 1988; Sheth and Tormen 1999; Jenkins et al. 2001). Press and Schechter used
for the function F :

F (ν) =

√
2
π

exp
(
−ν2

2

)
(60)

while the expression proposed by Steh and Tormen (1999; 2001), possibly extend-
ing the non-linear condition to take into account ellipsoidal collapse, was found to
produce a more accurate agreement with numerical simulations:

F (ν) =

√
2A
π

C exp(−0.5Aν
2)(1.+(1./(Aν)2)Q) (61)

with A = 0.707, C = 0.3222, and Q = 0.3. Jenkins et al. (2001) did provide an-
other fitting formula in which the amplitude of δNL is set constant (independently
of the cosmology) which was found to provide an accurate fit to within 20% in
relative amplitude.8 This accuracy is sufficient for present-day available data to be
compared with. More recently, larger numerical simulations were used (Warren et
al. 2006; Tinker et al. 2008; Crocce et al. 2010) to investigate the mass function
to a precision higher than 20%, finding some departures from strict universality
and providing more accurate fitting formula, but cosmological data are not yet at
a precision level for which such departures could be observed.

Local abundance The observed local abundance of clusters of a given mass M
can be used to infer directly the average amplitude of matter fluctuations, σ(M),
through the expression of the mass function. Such a derived value depends weakly
on cosmology (Blanchard and Bartlett 1998) as cosmology enters only through
δNL, which as we have mentioned is almost independent on Cosmology. However,
the traditional way to express the amplitude of matter fluctuations is through σ8
and therefore the dependence of this quantity appears on cosmology and on the

8 Another complication happens from the definition of “an object with a mass M”. Two al-
gorithms are commonly used, the friend of friend one (FOF) and the spherical overdensity one
(SO). In addition, the non-linear contrast density ∆ which is used could be set to an arbitrary
fixed value or to depend on Cosmology according to the virial value ∆v evaluated within the
spherical collapse model.
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initial spectrum. There is a source of uncertainty due to the fact that the mass is not
directly an observable quantity. Therefore, one has to use a relation between mass
and some observable quantity. At the same time, the selection function of clusters
within a given sample has to be known to infer the actual number per unit volume.
X-ray clusters are a priori the easiest choice, as the selection function from X-
ray surveys is easy to model and the X-ray temperature is a priori a reliable and
physically motivated proxy of the total mass. There are various arguments from
which one expects that Tx ∝ GM/r. This leads to a scaling relation between mass
and temperature:

T = AT MM2/3
15 (ΩM(1+∆)/179)1/3h2/3(1+ z)keV (62)

an expression in which the contrast density ∆ is the relative density when com-
pared to the background density of the universe. An other density contrast is also
used which refers to the contrast density ∆c relative to the critical density of the
universe ρc(z). The above scaling reads then:

T = AT MM2/3
15 (ΩM(1+∆c)/179)1/3(E(z)h)2/3 keV (63)

where the redshift-dependent Hubble constant is written H(z)= 100hE(z)km/s/Mpc.
There has been much debate on which value of the normalization AT M is to be
used and this translates in an uncertainty in σ8 (Pierpaoli et al. 2003). The vari-
ous values published for σ8, ranging from 0.6 to 1.05 for a ΛCDM model with
Ω = 0.3 (Blanchard and Douspis 2005) are consistent with each other when the
various values of the normalization constant AT M are taken into account. However,
because of this uncertainty the actual value of σ8 inferred from cluster abundance
is still subject to some debate (Reiprich 2006; Evrard et al. 2008; Rines et al.
2007).

Abundance evolution Peebles et al. (1989) and Evrard (1989) discussed the con-
straints that the existence of high redshift clusters were setting on CDM models, at
a time when Einstein–de Sitter cosmology was fashionable. These works followed
some earlier ones on the use of cluster abundance in cosmology (Perrenod 1980).
The evolution of the abundance of clusters of a given mass is a sensitive function
of the growing rate of fluctuations therefore offering a powerful cosmological test
(Lilje 1992; Oukbir and Blanchard 1992). Rather obviously, this test needs that lo-
cal abundance to be adequately normalized. This test is primarily sensitive to the
cosmological density of the universe, very weakly depending on other quantities
(Blanchard and Bartlett 1998). Attempts to apply directly the test of the evolution
of the temperature distribution function of clusters have been performed but still
from a very limited number of clusters (typically 10 at redshift 0.35) and lead
to somewhat apparently conflicting results (Henry 1997; Viana and Liddle 1999;
Blanchard et al. 2000).

On the other hand, redshift number counts (without temperature information
available) allow one to use samples comprising many more clusters. Indeed us-
ing simultaneously different existing surveys one can use information provided
by more than 300 clusters with z > 0.3 (not necessarily independent). In order to
model clusters number counts, for which temperatures are not known, it is neces-
sary to have a good knowledge of the L–T relation over the redshift range which
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Fig. 3 The low and high redshift temperature distributions compared to predictions of an Ein-
stein de Sitter Universe (left side, σ8 = 0.55, AT M = 6.35 in Eq. 62, Γ = 0.135 is a shape pa-
rameter for the spectrum) and to predictions of the concordance model (right side, σ8 = 0.81,
AT M = 7.75, Γ = 0.168). Upper (blue) losanges are the local data. Lower (red) losanges are
the temperature distribution function (z ∼ 0.33) derived from EMSS, (yellow) squares are high
redshift (z∼ 0.5) clusters from MACS and the 4002 deg survey

is investigated (Oukbir and Blanchard 1997). Early investigations indicated the
absence of evolution of the L–T relation or a slight positive evolution, indicative
of a high density universe (Sadat et al. 1998; Reichart et al. 1999; Borgani et al.
1999). The L–T relation at high redshift has been more recently determined by the
XMM-Ω project (Bartlett et al. 2001; Lumb 2004) and Chandra (Vikhlinin et al.
2002). Number counts can then be computed:

N(> fx,z,2∆z) = Ω

z+∆z∫
z−∆z

∂N
∂ z

(Lx > 4πD2
l fx)dz

= Ω

z+∆z∫
z−∆z

N(> T (z))dV (z)

= Ω

z+∆z∫
z−∆z

+∞∫
M(z)

N(M,z)dMdV (z) (64)

where T (z) is the temperature threshold at redshift z corresponding to the flux
fx as given by the observations, being therefore independent of the cosmological
model. This approach has been used to model all available ROSAT surveys and
using the latter L–T measurement provided by XMM (Vauclair et al. 2003). All
existing X-ray cluster surveys systematically point toward high ΩM . A combina-
tion allowed a determination of ΩM with a 15% precision: 0.85 < ΩM < 1.15(1σ)
(depending somewhat on the calibration issue, this is part of the systematic).
During this analysis numerous possible sources of systematics were investigated
with great detail and are representing roughly an additional 15% uncertainty. This
means that global uncertainty is roughly 20%. This gives unambiguous evidence
that the observed high redshift cluster abundance compared to local one is incon-
sistent with the one modeled within the concordance model. This is confirmed by
the recently availability of a large sample of high redshift clusters with measure-
ments provided by Chandra (Vikhlinin et al. 2009) and a sample of high redshift
massive clusters Ebeling et al. (2007). The temperature distributions drawn from
these samples is shown in Fig. 3: in agreement with previous results these tem-
perature distributions are inconsistent with the concordance cosmology. A critical
ingredient in the modeling of X-ray clusters is the mass temperature relation 62. A
possible strong evolution of this relation, as proposed to reconcile redshift number
counts with predictions (Vauclair et al. 2003), would allow the agreement of the
concordance model with the observed temperature distributions as well.
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Fig. 4 Large scale correlation function of the SDSS Luminous Red Galaxies Eisenstein et al.
(2005). Three ΛCDM models (ΩMh2 = 0.12,0.13,0.14) are shown with a baryonic content
evaluated from the CMB (Ωbh2 = 0.024). A model without baryon corresponds to the bottom
(magenta) line

4.6 Large scale structure of the universe

The properties of the galaxy distribution on large scales has been a major source
of constraints for cosmology in the past. The most often quoted quantity is the
correlation function of galaxies. Until the 1990s the correlation function was rela-
tively well know only on scales which are non-linear or nearly so. Therefore, the
correlation function could be adjusted only by means of numerical simulations.
Two major breakthroughs enabled important progresses in this area: the first one
was the measurement of the correlation function of galaxy from the APM survey
allowing to exclude the standard CDM picture (Maddox et al. 1990). Furthermore,
the data were consistent with the predictions of a low density CDM model with
ΩM ∼ 0.3 and it has been argued (Efstathiou et al. 1990) that the introduction of a
cosmological constant was a way to reconcile CDM with inflation predictions, in
the spirit of an earlier proposition (Peebles 1984). The second one was the discov-
ery of a simple analytical formalism allowing to construct the correlation function
in the non-linear regime from the initial spectrum (Hamilton et al. 1991). More re-
cently, the most critical advance resulted from the availability of very large galaxy
surveys, the 2Df redshift survey and the SDSS survey, allowing to measure the
amplitude of galaxy fluctuations on scales as large as 100h−1 Mpc (Percival et al.
2001; Tegmark et al. 2004; Eisenstein et al. 2005; Percival et al. 2007). This has
provided a remarkable success to the ΛCDM picture because the amplitude of the
correlation function could be predicted for models that already match the CMB
fluctuations measured by WMAP: not only ΛCDM model reproduces the shape
of the correlation function, but also the specific presence of a bump in the correla-
tion function at scale of the order of 100h−1 Mpc due to the detailed dynamics of
fluctuations when the baryons are taken into account, the so called acoustic peak
(Fig. 4), corresponding to the “peak” in the Cl of the CMB. More detailed use of
power spectrum measurements might be limited by our understanding of the exact
relation between galaxies distribution and the underlying dark matter distribution
(Sánchez and Cole 2008).

5 Possible origin of the apparent acceleration

5.1 An Einstein-de Sitter Model

5.1.1 Supernovae Hubble diagram

The first convincing evidence for acceleration is generally considered as coming
from the SNIa Hubble diagram. However, use of geometrical tests based on the
assumption of no-evolution of the parent population of the test is always possibly
subject to produce biased values because of un-anticipated evolution. One possible
way to cure this problem is to assume some evolution and see whether the data
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Fig. 5 Fitting the SNIa Hubble diagram with two free parameters, one being the cosmological
constant in a flat cosmological model and the second being a parameter describing a possible
time evolution of the luminosity of distant supernovae (∆m(z) = K(t0− t(z))) leads to the fol-
lowing constraints Ferramacho et al. (2009). Contours are 1, 2, and 3 sigma regions. There is
a severe degeneracy between the two parameters which prevents an unambiguous determina-
tion of the cosmological constant. A vanishing cosmological constant is entirely consistent with
SNIa diagram provided that a significant but not unrealistic amount of evolution is allowed for.
The major issue is that it is extremely difficult from a purely observational point of view to reject
such a possibility

Fig. 6 The TT spectrum of the first year WMAP data compared to three different models: one
is the concordance, the two others are Einstein de Sitter models, one of which comprises neu-
trino contribution of ∼ 10% corresponding to three degenerate families with mν ∼ 0.7eV. From
Blanchard et al. (2003)

still provide evidence for the claim. For instance, an evolution term like:

∆me ∝ z (65)

cannot mimic the observed Hubble diagram. The limitation of this approach is
due to the fact that we have no model for this evolution and therefore we are left
with a purely empirical approach. Other forms of evolution may therefore lead to
different conclusions. Indeed, it has been suggested that the correction term might
be (Wright 2002):

∆me ∝ ∆ t (66)

such term leads to large degeneracy between cosmology and possible evolution
(Ferramacho et al. 2009; Linden et al. 2009) (Fig. 5). Undoubtfully, despite its
possible limitation, the determination of the Hubble diagram from SNIa has led to
a major and rapid change of paradigm in modern cosmology. However, this change
has been possible because the previous situation was problematic. Although some
observational indications were favoring a low density universe, the first detections
of fluctuations on degree scales were in conflict with open low density universe
(Lineweaver and Barbosa 1998).

5.1.2 Fluctuations of the cosmological background radiation

The remarkable results of the WMAP experiment, with accurate measurements of
the Cl and additional measurements on the polarization, are often quoted as pro-
viding a direct evidence for an accelerating universe. This is incorrect: cosmologi-

Fig. 7 Data from the SDSS have allowed to measure the amplitude of galaxy fluctuations on
large scales. In this respect, Luminous Red Galaxies (LRG) provided measurement of the power
spectrum on the largest scales. Green crosses correspond to Tegmark et al. (2006) and black
crosses correspond to the latest measurements of the power spectrum of LRG from the SDSS
Data Release 5 by Percival et al. (2007). The red continuous curve is the predicted spectrum for a
typical concordance model, while the dotted and dashed lines correspond to the power spectrum
for Einstein de Sitter models consistent with the WMAP fluctuation angular power spectrum Cl
(Blanchard et al. 2003; Hunt and Sarkar 2007)
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cal constraints established from CMB entirely rely on the spectrum shape assump-
tions, which is commonly assumed to be described by a single power law. There-
fore, the conclusions on the high precision obtained on cosmological parameters
could be erroneous (Kinney 2001). Indeed, relaxing this hypothesis, i.e., assum-
ing a non-power-law power spectrum, it is possible to produce Cl curve within an
Einstein de Sitter cosmological model which provides a fit as good as the concor-
dance model. This is illustrated in Fig. 6 on which three models are compared to
the WMAP data, two being Einstein de Sitter models. Such models not only repro-
duce the TT (temperature–temperature) spectrum, but are also extremely close in
terms of ET (polarization–temperature) and EE (polarization–polarization) spec-
tra. Furthermore, the matter power spectra are similar on scales probed by current
galaxy surveys before the availability of the SDSS LRG sample. An un-clustered
component of matter like a neutrino contribution or a quintessence field with w∼ 0
is necessary to obtain an acceptable amplitude of matter fluctuations on clus-
ters scales (Blanchard et al. 2003). Such models require a low Hubble constant
∼46 km/s/Mpc. Such a value might be viewed as terribly at odd with canonical
HST key program value (∼72 km/s/Mpc) but is actually only ∼ 3σ away from
this value, this can certainly not be considered as a fatal problem for an Einstein–
de Sitter universe. The introduction of a non-power law power spectrum might
appear as unnatural. However, such a feature can be produced by some models of
inflation to match the Cl curve (Hunt and Sarkar 2007). Therefore, the amplitude
and shape of the CMB fluctuations as measured by WMAP is certainly a success
for the ΛCDM model but cannot be regarded as a direct indication of the presence
of dark energy.

5.1.3 Large scale structure

Once an Einstein de Sitter model is built to reproduce the CMB Cl , the ampli-
tude of the matter fluctuations on large scales is set up and the measurement of
the matter fluctuations on large scales in the present day universe is a critical way
to distinguish models which are otherwise degenerated in their Cl . The compar-
ison of the power spectrum from the SDSS LRG with the predicted spectra for
Einstein de Sitter models is clearly in favor of the concordance model (Blan-
chard et al. 2006), see Fig. 7. One should add some caution here: it might be
possible that the biasing mechanism leads to a power spectrum at small k (large
scales) which is not proportional to the actual matter power spectrum (Durrer
et al. 2003), in which case the above comparison might not be a fatal failure
of the Einstein de Sitter models. However, biasing mechanisms systematically
lead to a correlation function on large scales which is still proportional to the
matter correlation function on large scales. Comparison of the correlation func-
tion on large scales is therefore less ambiguous and its measurement should be
unambiguously discriminant. Hunt and Sarkar (2007) have provided a compre-
hensive MCMC investigation of the Einstein de Sitter parameter space, finding
models which acceptably fit the correlation function on scales below 70 h−1Mpc,
but were nevertheless systematically negative on scales of the BAO peak. This
is a strong evidence that there is no way in an Einstein de Sitter universe to fit
simultaneously the Cl and the observed distribution of galaxies on large scales.
This should be regarded as a remarkable success of the concordance cosmolog-
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ical model: although there were little doubts that this model could fit accurately
most of the major existing observational facts in cosmology, the ability to pro-
duce predictions that are verified a posteriori is the signature of a satisfying sci-
entific theory. Number counts of X-ray clusters were found to match the expec-
tations of an EdS universe and conflict with the concordance model. However, if
the standard scaling of the M–T relation 62 is broken by some non-gravitational
processes, the number counts and temperature distribution function could be al-
tered in a way that the concordance model can accommodate data (Vauclair et al.
2003).

5.2 Einstein cosmological constant or vacuum contribution

The most direct explanation one can provide to the cosmic acceleration is that it is
due to a true cosmological constant appearing in the geometrical part of Einstein’s
equation, i.e., the left-hand side of Eq. 4. However, it is much more common to be-
lieve that this term arises from some contribution to the energy-momentum tensor
on the right-hand side. As we have seen, from a classical point of view the vacuum
might have a non-zero density and behaves identically to a cosmological constant.
In addition, quantum mechanics provides an intriguing hint in this direction. The
possible energy levels of an harmonic oscillator are known to be:

En =
(

n+
1
2

)
hν (67)

and so the state of lowest possible energy, the zero point, is not zero but hν/2. This
non-zero value is often noticed in standard text book of quantum mechanic, but,
because observable quantities correspond to transitions from one state to an other
one, is not regarded as being problematic. However, as soon as gravitational inter-
action has to be added, one cannot avoid to take the absolute energy into account.
Summing all the contributions of modes of the fluctuations of the electromagnetic
field up to some wave number kc gives a density ρV :

ρV =
kc∫

0

4πk2dk
8π3

1
2

k ∼ kc
4

8π2 (68)

The total contribution therefore depends on the cutoff scale kc. If the Planck scale
is taken, this leads to a density which is something like 10120 too large. For all
energy scales in physics does ρV end up with an unacceptable large value, which
looks like a fundamental problem.9 An elegant solution to this problem is ob-
tained from supersymmetry: the contribution to vacuum from fermion is negative
and therefore with an equal number of modes in fermions and bosons one gets
a cancelation. However, because the supersymmetry should be broken at energy
below 1 TeV or so, the problem of the vacuum density is still not solved, even
if its strength has been noticeably reduced. An other possibility is that the vac-
uum actually behaves differently from (68) (Branchina and Zappalà 2010). Others
arguments to reject this option have proposed (Perivolaropoulos 2008).

9 It has been suggested that the zero-point fields should not be regarded as real, despite the
fact that they are at the basis of the calculation of the Casimir effect (Michel 1996).
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5.2.1 Detecting the cosmological constant in a laboratory experiment

The above considerations might lead to a fascinating possibility. If the observed
dark energy corresponds to an actual contribution of the electromagnetic field
there will be a frequency νc associated to the cut off in (68), and the value as-
sociated with the present value of dark energy is:

νc ∼ 1.7 1012 Hz (69)

Vacuum fluctuations produce noise which can be detected experimentally with
Josephson junctions (Koch et al. 1980), it is therefore possible that the frequency
cut-off kc could be measured in a laboratory experiment (Beck and Mackey 2005).
This point of view has been criticized by (Jetzer and Straumann 2005). A further
problem arises from the fact that the existence of a cut-off like (69) could modify
the classical Casimir force (Bressi et al. 2002), in a way which is excluded by
existing data (Mahajan et al. 2006). However, the origin of the noise current in the
Josephson junction may have nothing to do with the electromagnetic field in the
device (Branchi et al. 2009).

5.3 The effect of inhomogeneities

The standard formalism of Friedmann–Lemaı̂tre models relies on the assumption
that matter is uniformly distributed. Since the early work of Sachs and Wolfe
(1967), perturbations are commonly written as departure hαβ from the Robertson–
Walker metric element gαβ :

g̃αβ = gαβ +hαβ . (70)

This is a qualitative expression, as there are many ways to write perturbations de-
pending first on the choice of the initial form of the metric and coordinate systems.
The analysis of linear perturbations (|hαβ | � 〈gαβ 〉) is rich and not as trivial as
one might naively think. However, the dynamics of relativistic linear perturbations
to first order is well understood. Three distinct physical modes are possible: scalar
perturbations which represent fluctuations of the density field ρ , vector perturba-
tions which represent the vorticity of the velocity field, and tensor perturbations
which represent gravitational waves. Only this last term is obviously not present
in Newtonian dynamics. This has legitimated the use of Newtonian theory to de-
scribe evolution and average effect of perturbations on scales much smaller than
the Hubble scale and for velocities much smaller than the speed of light. It is
therefore common to use the Newtonian perturbed RW metric:

ds2 =−(1+2ψ)dt2 +a(t)2(1−2ψ)γi j dxidx j (71)

ψ being the Newtonian potential. However, the fact that we live in an inhomoge-
neous universe has always left open the possibility that average observable quan-
tities may be definitively different from what can be obtained in a rigorous homo-
geneous world, this question discussed in the context of relativistic world models,
can be traced back to thirties (Eddington 1930; Tolman 1934). One early worry
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of this kind was about the average effect of gravitational lensing. It has been sug-
gested that the average magnification from inhomogeneities in the universe might
produce an apparent redshift–magnitude relation which behaves differently from
that in a homogeneous universe and would therefore bias inferred values of the
cosmological parameters (Dyer et al. 1972). Weinberg (1976) did provide a gen-
eral argument to show that there is an integral constraint that guarantees the av-
erage relation in inhomogeneous worlds to be identical to the homogeneous case
but that the way perturbations are handled may lead to lose this general integral
constraint on average quantities even to the first order in perturbation (while it is
valid at all orders). Although Weinberg’s theorem is extremely clever, it relies on
some hypotheses, one is that the universe still behaves as a FLRW model with its
density being equal to the average density, and the subject has still been addressed
in recent years (Holza and Wald 1998; Kibble and Lieu 2005; Barausse et al. 2005;
Biswas and Notari 2008).

In this approach, the consequences of the presence of inhomogeneities were
analyzed assuming the background evolution of the universe was still following
the usual Friedmann–Lemaı̂tre equations. However, beyond the problem of prop-
erly evaluating the observable consequences of the presence of inhomogeneities
(as illustrated by the calculation of the fluctuations of the CMB), one fundamental
question is whether the Friedmann–Lemaı̂tre equations describing the expansion
could be significantly altered by the presence of inhomogeneities, an effect named
“back reaction” (Futamase 1989). At first look one would naively expect that the
average effect of linear perturbations to first order is zero and that to the second or-
der one would get something like (for the case of perturbations around an Einstein
de Sitter universe): (

ȧ
a

)2

=
8πGρ

3
(
1+F(hαβ )

)
(72)

with :

F(hαβ ) ∝ 〈h2〉 (73)

For the observable part of the universe, as we are within some perturbation with a
typical size corresponding to the horizon, one expects that

ρobs ∼ ρ(1±hαβ ) (74)

(this is written in a very loose way that would probably horrify relativity experts,
but it is done for the purpose of a qualitative illustration on how the problem is
settled). Now, astrophysical data show that 〈h〉 is always of the order of 10−5,
or less, except in the vicinity of neutron stars and black holes, departures at this
level would therefore not be very surprising. Actually, the non-linear collapse of
structures like clusters or galaxies modestly enhances initial metric perturbations
by a factor ∆ 1/3, but lensing measurements of galaxies and clusters directly prove
that on these scales the metric perturbations remain tiny and one expects the linear
approximation to be sufficient even when the structures are becoming non-linear
( δρ

ρ
� 1). Of course it is clear that some observables would be distorted at a
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level of h ∼ 10−5. However, the possible non-negligible contribution of inhomo-
geneities to the global dynamics of the present universe, the so called back reac-
tion has been proposed10 with the idea that the actual dynamics of the universe
is much more distorted by non-linear terms than naively anticipated. Ironically
enough, early propositions of back reaction were suggested as a way to reduce or
even cancel the presence of a large cosmological constant (Tsamis and Woodard
1993; Mukhanov et al. 1997; Brandenberger 2002), while nowadays, the impor-
tant question is whether this back reaction could explain the apparent cosmologi-
cal constant. This perspective has attracted a lot of attention (see Buchert 2008 for
a recent review on this issue): it may even offer a possible solution to explain the
acceleration of the universe, within the context of general relativity and without
the introduction of any further exotic ingredient. Buchert (2000) derived the exact
dynamical equations governing the average size aD of a domain D in an inhomo-
geneous matter distribution. These equations can be written in the following form:(

ȧD

aD

)2

=
8πGρ

3
−Q

6
− R

6
(75)(

äD

aD

)
= −4πGρ

3
+

Q

3
(76)

for irrotational dust, and after dropping the cosmological constant for clarity. In
this expression, R is the average curvature over the domain and Q is an average
quantity over the domain D :

Q =
2
3
(
〈θ 2〉−〈θ〉2−2〈σ2〉

)
(77)

θ being 3(ȧD/aD ) and σ is the rate of shear σ
2 =

1
2

σi jσi j (σi j being the shear
tensor).

Given the analogy with the classical EFL equations, the possible consequence
of back reaction has been discussed on this ground (Buchert et al. 2000; Buchert
and Carfora 2003; Buchert 2008).

Following Buchert’s work, several authors regard the back reaction problem
as an essentially non perturbative question which cannot be solved without an
appropriate treatment (Rasanen 2008; Kolb et al. 2006).

The question was handled from an other point of view by looking at second-
order effect from superhorizon perturbations generated during inflation (Barausse
et al. 2005; Kolb et al. 2005). The conclusion was that some acceleration could
be generated in this way. However, this result has been disproved (Flanagan 2005;
Geshnizjani et al. 2005; Hirata and Seljak 2005; Giovannini 2006; Räsänen 2006).
The same conclusion holds for superhorizon perturbations in presence of a scalar
field (Kumar and Flanagan 2008). The possibility remains open that back reaction
from subhorizon scales induces a modification of the equations governing the ex-
pansion (Räsänen 2006; Kolb et al. 2006) and observational relations. However,
from the astrophysical point of view what matters precisely is whether back reac-
tion could alter significantly cosmological observations and fools the traditional

10 The idea that the small scale evolution may have a connection with large scale dynamics in
relativistic cosmology can be traced back to Eddington in (1930).
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interpretation. Clearly, if the back reaction has to modify cosmological quantities
by a factor h2 ≈ 10−10 the study of back reaction would remain of pure academic
interest. Actually, modifications at the level of h ≈ 10−5 are expected from lin-
ear perturbations at the scale of our horizon. Indeed, (Wetterich 2003) examined
back reaction in a perturbative approach and concluded that gravitational energy
of structure contributes as a back reaction term, but unless dark matter is essen-
tially made of black holes, no appreciable change beyond the 10−5 level is to be
anticipated. Such a term should be called a weak back reaction, because it can
be anticipated from simple dimensional arguments. The important question is:
are there strong back reaction terms? i.e., terms which arise from non-linear ef-
fects and which could contribute at a level much larger than the naive order of
magnitude ≈ 10−10 or even be of the order of being dynamically as important as
the density ρ . At this level, we are facing traditional difficulties when handling
with relativistic effects. For instance, Buchert equation are written in a comoving
frame in which particles are at rest. Therefore, the non-zero “mass” associated
with the kinetic energy of particles should appear as a “back reaction” term in
the EFL equations. Identically, the energy associated to a gravitational field has
to be taken into account. These are weak back reaction terms. Using Newtonian
perturbed RW metric (Gruzinov et al. 2006) showed that back reaction term can
entirely disappear from the second EFL equation 16 when the density is properly
evaluated, but with a different choice of coordinates, and concluded that we are
very close to a “no-go” theorem: “no cosmic acceleration occurs as a result of the
non-linear back reaction via averaging” (on this question a major source of com-
plication arises from the gauge issue and different authors may find apparently
discrepant results because of the use of different gauges). The present formulation
of Buchert’s equation is likely to depend explicitly on the choice of the coordi-
nate system and therefore the relevance to observations is unclear. It is not even
clear whether a clever gauge transformation would not allow to suppress entirely
this back reaction term. Similar conclusions were reached by Kasai et al. (2006),
who emphasized again that gravitational energy is a source of the gravity field
which can appear as a “back reaction” term, i.e., is a weak back reaction term, and
could be qualified as such, in agreement with Wetterich (2003), but which remains
small in practice. In addition, they showed in some exact solutions the absence of
observable “back reaction”. In this respect, the Swiss cheese-model (Schücking
1954) is an interesting exact solution in which the presence of inhomogeneities
(that could even be non-linear, i.e., h ∼ 1) does not lead to any unexpected be-
havior, i.e., in which there is no strong back reaction effect. From a second-order
perturbation analysis (Kasai et al. 2006) also argued that as long as the Newtonian
conditions are satisfied:

l � c
H0

and v� c (78)

“there always exist gauges where the metric differs from the RW metric only at
order 〈h〉.” Of course, when the size of the perturbations becomes comparable
to the Hubble radius, one expects significant alteration of the standard relations
(Kolb et al. 2008). A more troubling paper has been put on the ARXIV, but re-
mains unpublished which: Nambu and Tanimoto (2005) investigated the solution
of Buchert’ equations in a exact spherical solution (the LTB that is described in
the next section), actually a very interesting approach. They concluded that at
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some point “the universe starts accelerated expansion,” a similar conclusion was
drawn by Chuang et al. (2008), Mansouri (2005, 2006), Moffat (2006), while it
is clear that from spherical solution no physical acceleration is possible thanks to
Birkhoff’s theorem and as it has been confirmed by Alnes et al. (2007), Enqvist
and Mattsson (2007). This is a direct indication that acceleration could appear in
some quantities but which is by no means related to the observed acceleration.
The question has fallen in the arena of subtle general relativity issues, but it seems
that there are serious claims that back reaction cannot produce an acceleration
comparable to what is requested from the observations. There are also convinc-
ing indications that no correction to standard EFL equations is expected above
the amplitude of first order perturbation 10−5. There is therefore an important
“cosmological no-go theorem” which remains by now only a conjecture that for
the standard CDM fluctuations spectrum, there is no significant back reaction and
the classical description is sufficient. It is by now the duty of advocates of real
back reaction effect to demonstrate that interesting terms may exist beyond stan-
dard known linear and non-linear contributions. It remains important to examine
whether weak back reaction could raise changes of the order of 10−3 or more,
as such an effect would start to be of the order of the precision anticipated for
the determination of the cosmological parameters from future experiments. The
fact that Eq. 75 looks like standard one, i.e., first EFL equation, does not at all
mean that terms appearing in it should be identified with similar looking standard
cosmological parameters. These equations are valid for a given special choice of
coordinates and it is therefore far from trivial to identify which observable conse-
quences would follow. Even the term ȧD

aD
should not a priori be identified to the

standard Hubble expansion rate nor should äD be used in comparison with to−q0.
Strictly speaking when observers determine the Hubble constant H0 they compare
the observed linear relation between luminosity distance and redshift from some
galaxy sample, which are both observable quantities, and q0 is related to the lead-
ing second-order term in z. Identically, when the cosmological density parameter
(for instance) is determined by fitting the CMB Cl , they do not proceed with the
measurement of the actual density of the present day universe. A further problem
is the fact that quantities entering Eqs. 75 and 76 are averaged over some volume
with some characteristic scale. They are therefore expected to vary with this scale.
Indeed, virulent criticisms have been raised up against the (strong) back reaction
program, pointing out that the metric Eq. 70, with Friedmann–Lemaı̂tre equations
have been fully successful to describe and to predict master pieces of observa-
tional cosmology; therefore, any alternative model should demonstrate its ability
to reproduce these data as well with the same level of concordance (Ishibashi and
Wald 2006).

Claims have been made recently for the detection of observable effects that
could be attributed to the back reaction (Li and Schwarz 2008). Some models
have been built (Mattsson 2010; Wiltshire et al. 2007) which were compared, suc-
cessfully, to the main cosmological data (Leith et al. 2008; Larena et al. 2009),
in agreement with the “low” Hubble constant found by Tammann et al. (2008).
One can hope that this is the sign that the actual importance of back reaction will
soon be clarified; although, Cosmology is a field where there is a tradition for
opponents to the standard paradigm not to resign easily (Narlikar et al. 2008).
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5.4 Large scale void(s)

After the discovery of an apparent acceleration from the SNIa Hubble diagram
it has been emphasized that the Hubble diagram in its own was not a direct
proof of an actual acceleration: even if the assumption that SNIa are standard
candles is correct, an apparent acceleration could be obtained from the Hubble
diagram within an inhomogeneous cosmological model (Célérier 2000) when in-
terpreted with the presumption of an homogeneous world. The possible existence
of large scale structure up to 200 Mpc suggests that this option was to be con-
sidered (Tomita 2001a). The existence of very large scale structure has been a
subject of regular claims in cosmology (de Lapparent et al. 1986; Einasto et al.
1997). Such a possibility was regarded as a potential major failure of the standard
view, and would even support the idea of a fractal distribution of matter on large
scales (Fournier d’Albe 1907; Mandelbrot 1979; Grujic 2002). The availability of
very large scale surveys like the SDSS and the 2DF has almost entirely closed
this issue: although the visual impression from galaxy surveys might be that struc-
tures occasionally exist on very large scales, they are not the signature of average
(r.m.s.) fluctuations on large scales greater than what could be anticipated for let
say a standard ΛCDM spectrum, when measured with appropriate tools like the
correlation function or the power spectrum. There is therefore no serious piece of
data that suggests that the average level of fluctuations on large scales (as long as
they remain smaller than the Hubble scale) is much larger than anticipated from
the standard picture. The anomalous character of some rare high fluctuations is
still possible (Vielva et al. 2004; Hunt and Sarkar 2010) and could for instance
be due to some non-Gaussian features of the primordial fluctuations, but the ten-
dency of the human brain (Peebles 1993) to identify insignificant patterns is a
serious worry when dealing with these questions.

Given that observations tell us that the universe is isotropic around us, if some
large scale inhomogeneity has to exist and be in agreement with present day obser-
vations it has to be nearly spherical and we should occupy a very specific place in
this universe: for instance it may happen that we are close to the center of a nearly
spherical perturbation. Such a possibility might have some theoretical motivation
(Linde et al. 1995). If we actually live inside a gigantic void, close to its center
(to preserve the observed isotropy of the sky), this requires the abandonment of
the Einstein cosmological principle that postulates a homogeneous matter distri-
bution on large scales, and of the Copernican principle, that we are not in a special
location in the universe.

The homogeneity of the universe is directly observable in principle on scales
much smaller than the Hubble radius, it is by no way obvious that it can actually be
tested from observations on the largest scales (standard textbooks of relativity of-
ten mentioned that it cannot be actually tested, but this is assuming a restricted set
of observable quantities). Detailed investigations of inhomogeneous models were
carried out earlier, but not essentially with the purpose to provide an alternative
explanation of the apparent acceleration, see for instance (Barrett and Clarkson
2000) for a description of various class of inhomogeneous cosmological solutions
and references to earlier works on this subject.

The exact solution of the spherical inhomogeneity in general relativity was
first published by Lemaı̂tre (1933). Tolman (1934) and Bondi (1947), aware of
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Lemaı̂tre’s work published studies on the same solutions. These solutions have
been extensively used to examine closely whether the apparent acceleration could
actually be due to such an inhomogeneous spherical solution (Tomita 2001a,b;
Iguchi et al. 2002; Bolejko 2008; Chung and Romano 2006; Garfinkle 2006; Mof-
fat 2006; Enqvist and Mattsson 2007). More complex inhomogeneous world solu-
tions to Einstein equations have also been proposed to reproduce the observed
SNIa Hubble diagram (Ishak et al. 2008). Interestingly enough, Biswas et al.
(2007) found that some “onion” structure could leave no strong apparent effect.
Qualitatively speaking, a void is a region with a typical size L where the den-
sity is lower than the average, in order for the initial singularity to happen at the
same “initial time” in the past, the expansion rate in the region should be higher.
This requirement is however not mandatory and it is possible to build isotropic in-
homogeneous solutions with singularity starting at a different time (Célérier and
Schneider 1998). Usually the “true” universe is an Einstein de Sitter ΩM = 1 and
the parameters inside the void are such that it looks like a low density universe.
So that inside the void:

Ω̃M ∼ 0.25 and H̃0 ∼ 0.72 (79)

while asymptotically (outside the void):

ΩM = 1 and H0 ∼ 0.50 (80)

the value of the Hubble constant being set by the “initial time” constraint. Roughly
speaking in such models the distant universe has a Hubble constant lower than the
local one, which is interpreted as an acceleration. The minimal size of the void to
produce an apparent acceleration from supernovae at z∼ 0.5 is typically of the or-
der 300 h−1 Mpc, or slightly less, i.e., up to z∼ 0.1 (Alexander et al. 2007). How-
ever, this kind of consideration is not sufficient to offer a satisfying alternative: the
Hubble flow is known to be quite smooth and in agreement with an uniform ex-
pansion. A significant change of the Hubble constant over a volume of size smaller
than the horizon size will lead to an appreciable change of the apparent Hubble
constant. Actually, such effect has been found (Jha and Riess 2007), who notice a
Hubble constant 6.5% smaller on scales greater than 75 h−1 Mpc, a small number
that might be due to a problem in the calibration of close supernovae (Conley et al.
2007). No other significant departure from an uniform Hubble constant has been
recently reported, actually the Hubble diagram appears to be remarkably regular
from a few Mpc up to redshift where cosmological correction are needed (Madore
and Freedman 1998; Kowalski et al. 2008; Tammann et al. 2008). Therefore, one
can expect that voids witch size L is significantly smaller than the Hubble radius
will not mimic adequately the present day Hubble diagram. Appreciable differ-
ence would be easy to check in the near future. However, if the voids are large,
comparable to the size of the Hubble radius, it is intuitive that a good match to the
supernova data could be achieved. Vanderveld et al. (2006) showed that to match
closely the apparent acceleration of the Hubble diagram, a singularity at the origin
should be present in the metric and other pathologies may exist. It is therefore far
from being obvious that dust-filled LTB can reproduce the apparent acceleration
in detail. Indeed, (Clifton et al. 2008) concluded, that if one keeps the constraint
that the curvature has to remain smooth around the origin, the Hubble diagram
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from an LTB will be different from the one in ΛCDM and could be distinguished
thereby with enough statistics at low redshit or intermediate redshift.

Convincing examples of successive models have been obtained by Garcia-
Bellido and Haugbølle (2008a), who also provided a public code: http://www.
phys.au.dk/˜haugboel/software.shtml. For their best LTB model
differences in the Hubble diagram between ΛCDM and LTB appear to be ¡0.05 m.
Such differences are probably due to the choice of the analytical profile, and
might therefore being reduced (or fitted to future data), even if this would be
at the price of introducing further free parameters. The local Hubble constant is
rather low (H0 ∼ 60 km/s/Mpc) but still acceptable. It would be interesting to ex-
amine whether this behavior is generic or specific to their model. However, the
confidence in the ΛCDM relies on other pieces of evidence and the question of
whether the CMB and the BAO feature can be reproduced has been also incorpo-
rated (Alnes et al. 2006; Alexander et al. 2007; Enqvist 2008; Garcia-Bellido and
Haugbølle 2008a). Because the outer cosmology is an Einstein de Sitter universe
with a small Hubble constant, an appropriate fit can be obtained relatively easily
provided that the angular distance to the CMB is matched appropriately. These
are rough evaluations, as a detailed formalism to deal with perturbations in a LTB
model is lacking. However, this might soon become available (Clarkson 2007;
Zibin 2008), and it is reasonable to believe that an adequate fit can be obtained.
It is nevertheless fair to say that these models are not yet as impressively good
to fit cosmological data as the concordance is, perhaps because of their intrinsic
complexity (but on the other hand, they contain many more degrees of freedom).
The situation looks like that this type of hypotheses (large void) could be adjusted
to the data and could not therefore be rejected from observations if enough tuning
is allowed. However, fortunately, this is not the case! Uzan (2008) have shown
that in a LTB model, the time drift of the cosmological redshift can be different
from what it is in homogeneous worlds, providing a possible test of the Coperni-
can principle. The kinematic Sunyaev–Zel’dovich (kSZ) effect on distant clusters
will be significantly different for distant clusters offering a different method of
testing LTB (Garcia-Bellido and Haugboelle 2008b). Another impressive tool for
constraining LTB models has been proposed by Caldwell and Stebbins (2008): we
know that the intergalactic medium which probably contains most of the baryon
is highly ionized up to redshifts ¿5; CMB photons are scattered by the electrons
of this plasma, so photons we collect from the CMB are a mixture of photons
which have traveled straight towards us and of photons which have been scattered
at lower redshifts, if these electrons are within the void region, they are scattering
a very different CMB because they are moving rapidly. In addition, even electrons
which are out of the void will see a different CMB sky because the void itself and
will be a further source of a distorted CMB. Therefore, contrary to the homoge-
neous case, an observer in the center will observe a combination of black-bodies
with different temperatures, resulting in a distorted spectrum. Present day limits
on possible spectral distortion of the CMB already provide interesting constraints
and could become critically more stringent if limits could be improved by an order
of magnitude (Caldwell and Stebbins 2008).

http://www.phys.au.dk/~haugboel/software.shtml
http://www.phys.au.dk/~haugboel/software.shtml
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5.5 Quintessence

A true cosmological constant is an object that is largely unwanted from the theo-
retical point of view. Ratra and Peebles introduced the idea that the acceleration
could be due to the presence of some scalar field dominating present day density
of the universe (Ratra and Peebles 1988; Peebles and Ratra 1988). Quintessence
names a scalar field that coupled to gravity. The canonical Lagrangian of a scalar
field is:

L =
1
2
(∂iφ)2−V (φ) (81)

the first term being the kinetic energy (X = 1
2 (∂iφ)2), and the second one the

potential. The stress-energy tensor has a form identical to that of an ideal fluid
with pressure and density given by:

p = L =
1
2
(∂iφ)2−V (φ) (82)

ρ = 2 X∂XL −L =
1
2
(∂iφ)2 +V (φ) (83)

For a field which is spatially homogeneous the equation of state parameter w is:

w =
p
ρ

=
1
2 φ̇ 2−V (φ)
1
2 φ̇ 2 +V (φ)

(84)

which remains ≥−1. The equation driving the field in a FL world is:

φ̈ +3Hφ̇ =−dV
dφ

(φ) (85)

The original scenario was proposed (Ratra and Peebles 1988) with a potential of
the form:

V (φ) =
M4+α

φ α
(86)

Let us suppose that we are at some late time when radiation or matter dominates.

Then the expansion factor is a(t) ∝ tn with n =
1
2
,

2
3

. A power law solution of

Eq. 85 φ ∝ tβ behaves as:

φ ∝ t
2

α+2 (87)

and the ratio of the density of the scalar field to the total density is:

ρφ

ρ
∝ a

4
n(α+2) (88)

So that if α > 0 the density of the scalar field will be dominant. Another important
property is that solution 87 is an attractor in that it describes the late solution of a
large class of initial conditions. If the kinetic term becomes small at a later epoch
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in 84, the field behaves like a cosmological constant. This does not necessary solve
the coincidence problem, but at least alleviates it.

Dark energy has become the subject of intense theoretical efforts, which lead
to investigate different forms of the Lagrangian. One first generalization consists
in modifying the potential V (φ). A more radical approach is to modify the kinetic
term. In k−essence models (Armendariz-Picon et al. 2000, 2001), inspired from
k−inflation (Armendariz-Picon et al. 1999), the Lagrangian is written in a general
form:

L = p(φ ,X) (89)

and contains therefore a non-canonical kinetic term.
Few constraints can be added. It can be requested that the density ρ remains

positive, although there is no decisive argument against a negative cosmological
constant and so this constraint might not be necessary. On the other hand, such
a term would lead to a rapid big crunch, which is unwanted. Another possible
constraint is that the square of the sound’s speed remains positive (Armendariz-
Picon et al. 1999):

c2
s =

∂X p
∂X ρ

=
L,X

L,X +2XL,XX
(90)

(,X stands for
∂

∂X
and ,XX

∂ 2

∂X2 ).
Such models easily lead to large variations of cs (while quintessence based on

(81) automatically leads to cs = 1) and one can have cs > 1, this is not problematic
because the theory remains Lorentz invariant, so there is no violation of causality
(Erickson et al. 2002; Babichev et al. 2008).11 Within such models the equation
of state parameter w could take any value (Melchiorri et al. 2003) and so one can
have:

w <−1. (91)

Such dark energy is referred to as phantom (ghost) energy. A simple example is
obtained by changing the sign of the kinetic energy term in 81.

So from the astrophysical point of view w can be regarded as a free func-
tion which values should be determined from observations. From the fundamental
point of view V (φ) or the Lagrangian itself are the quantities to be determined and
therefore observations have to be used to constrain directly these quantities, rather
than the parameter w(z). Finally, let us mention that more details on scalar field
models of dark energy can be found in the recent review (Copeland et al. 2006).

5.6 New gravity law on large scales

The existence of a large scale acceleration in the universe is a serious indication
that our present knowledge of gravity is actually incomplete. Although the intro-
duction of a new component, quintessence, might provide the explanation for the

11 For a different point of view see Bonvin et al. (2006); Ellis et al. (2007).
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acceleration, i.e., a new term in the energy momentum tensor, the historical cos-
mological constant introduced a new term in the other side of Einstein equation.
Therefore, it might well be that the geometrical term is more complex that we
used to believe. This option of modifying gravity to account for the acceleration
is briefly introduced in this section. More details can be found in recent reviews
on this topic (Durrer and Maartens 2008; Nojiri and Odintsov 2007).

While general relativity can be derived from the Einstein–Hilbert action:

S =
∫

dx4R (92)

where R is the Ricci scalar, one can try a more general action, leading to the so
called f (R) theories:

S =
∫

dx4 f (R) (93)

where f is an unknown function. Such theories have to pass solar system tests as
well as pulsar chronometry tests on small scales and cosmological tests on large
scales. In practice, such theories met considerable problems, and it is far from
being clear that viable models can be built in this way. An alternative procedure,
is the so called Palatini formalism, in which the variation principle is modified:
the metric and the connection are regarded as independent quantities, and the re-
sulting equations are in general different but for f (R) ∝ R. Within this formalism,
Amarzguioui et al. (2006) have examined constraints on a specific model:

f (R) = R

(
1+α

(
−R
H2

0

)β−1
)

(94)

where the second term is essentially a correction term to the classical Einstein–
Hilbert Lagrangian. Acceptable regions of the parameter space encompass the
standard ΛCDM model, but these models differ from standard cosmological mod-

els, as the relations between Ωk, Ωm, q0 and the growth rate
d lnD
dlna

are different.

A more radical way to modify gravity in our world is through the idea of higher
dimensional space. Such propositions can be traced back to 1919 with the work of
Kaluza (1921) who proposed an unification scheme for gravity and electromag-
netism within a fifth dimensional space. Klein (1926) pointed out the interest of
having a fifth compact dimension to avoid observational constraints on large ad-
ditional dimension. Superstring theory and supergravity theories possess remark-
able properties in higher dimensional space and have therefore deserved strong
attention from theorists. Modern versions are known as braneworlds or brane cos-
mology (Arkani-Hamed et al. 1998; Binétruy et al. 2000a). Our 3 + 1 world lies on
the brane, while the remaining space is the bulk. Matter, with pressure and density,
is present only in the brane, but gravity is present in all dimensions. The vacuum
energy in the brane provides a tension term σ and there is an other vacuum energy
in the bulk ΛB. The general action now contains terms involving an equivalent of
the Ricci scalar corresponding to gravity in higher dimension. The inferred equa-
tions describing the expansion on the brane, the generalized FL equations, contain
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more new terms which could be non-linear and which are related to the properties
of the bulk (Binétruy et al. 2000b):

H2
∝ · · ·ρ2 + · · ·ΛB +

C

a(t)4 −
k

a(t)
(95)

the third additional term behaves like radiation but comes from the bulk and is
sometime called the dark radiation on which BBN provides stringent constraints
(Binétruy et al. 2000a,b; Flanagan et al. 2000; Iocco et al. 2009).

Direct modification of the FL equations have also been proposed through Car-
dassian models (Freese and Lewis 2002):

H2 = Aρ +Bρ
n (96)

which does not contain a vacuum contribution, although in models with n = 0 the
second term of the right-hand side behaves identically to a Λ term. Such a form
for the EFL equation can arise from some particular fluid properties of dark matter
or from higher dimensions (Gondolo and Freese, 2003).

In DGP models, extra dimensions are infinite (Dvali et al. 2000), and the ef-
fective action contains explicitly a 4-D Einstein–Hilbert term, i.e., on the brane in
addition to the 5-D term on the bulk. This introduces a scale rc and two distinct
regimes appear: on scales smaller than rc gravity essentially results from the 4-D
term and classical GR is recovered (although high precision tests might lead to
some differences (Lue and Starkman 2003; Battat et al. 2008); on larger scales the
gravity is “leaking” the expansion is eventually accelerated. The FL equation is
replaced by (Deffayet 2001):

H2 =

(√
ρ

3M2
Pl

+
1

4r2
c

+ ε
1

2rc

)2

(97)

with ε = ±1. From this it is clear that at early times
ρ

3M2
Pl
� 1

4r2
c

allows to re-

cover the classical EFL regime, while at late times the accelerated expansion is
recovered (provided that ε = +1). Detailed predictions of DGP models may not
be identical to those of ΛCDM, and recent investigations found some tension be-
tween data and theory (Rydbeck et al. 2007; Rubin et al. 2009; Fang et al. 2008),
although the predictions are not as straightforward as in the standard model. From
the astrophysical point of view, an interesting aspect of these classes of models
in which gravity is modified is that relations between cosmological parameters
are not identical to those in the ΛCDM and the evolution of the growth factor
is expected to be different (Linder 2005), with a possible dependence on scales,
allowing for possible discrimination between various possible origins for the ac-
celeration (Uzan 2007; Bertschinger and Zukin 2008).

A more radical option has emerged in recent years: given the fact that the
accelerated expansion clearly needs some revision of our knowledge of the gravi-
tational sector, could it be that the problem of dark matter itself is due to the break
of standard gravity laws at finite distance? This possibility has been introduced
in an empiric way by Milgrom to explain the rotation curves of galaxies without
invoking dark matter (Milgrom 1983). A fully relativistic theory has been built by
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Table 1 Summary of the mean values and 68% confidence intervals for the parameters con-
strained from CMB, SNIa and BAO for different models (θ is the ratio of sound horizon to
angular diameter distance)

Parameter Vanilla Vanilla + Ωk Vanilla + w Vanilla + Ωk +w
Ωbh2 0.0227±0.0005 0.0227±0.0006 0.0228±0.0006 0.0227±0.0005
Ωch2 0.112±0.003 0.109±0.005 0.109±0.005 0.109±0.005
θ 1.042±0.003 1.042±0.003 1.042±0.003 1.042±0.003
τ 0.085±0.017 0.088±0.017 0.087±0.017 0.088±0.017
ns 0.963±0.012 0.964±0.013 0.967±0.014 0.964±0.014
Ωk 0 −0.005±0.007 0 −0.005±0.0121
w −1 −1 −0.965±0.056 −1.003±0.102
Ωλ 0.738±0.015 0.735±0.016 0.739±0.014 0.733±0.020
Age 13.7±0.1 13.9±0.4 13.7±0.1 13.9±0.6
ΩM 0.262±0.015 0.270±0.019 0.261±0.020 0.272±0.029
σ8 0.806±0.023 0.791±0.030 0.816±0.014 0.788±0.042
zre 10.9±1.4 11.0±1.5 11.0±1.5 11.0±1.4
h 0.716±0.014 0.699±0.028 0.713±0.015 0.698±0.037

These

constraints are quite tight, most of them are below 5%, and are stable when additional degrees
of freedom are added to the model (w,Ωk), adapted from Ferramacho et al. (2009)

Bekenstein (2004) which behaves like Milgrom’ law in the weak field regime: the
TeVeS (tensor-vector-theory) theory. Quite remarkably, it has been shown recently
that this theory can reproduce the observed cosmic acceleration, large scale power
spectrum (at the time of the work) and CMB with comparable success as ΛCDM
(Skordis et al. 2006). The present status of this theory is not as satisfactory as with
the standard concordance model: this theory did not lead to specific predictions
which have been verified a posteriori, and it needs the introduction of a new type
of fields in physics in the form of vector fields. However, MOND is a clear exam-
ple of an alternative view, which differs drastically in its fundamental ingredients
and illustrates the fact that our understanding of the gravitation sector relevant to
cosmology might be more limited than commonly assumed.

6 The area of precision cosmology

After the discovery of the fluctuations of the cosmological background by COBE
the perspective to achieve precision measurements of the angular power spec-
trum of these fluctuations appears to be within reach and two satellite experi-
ments were designed to reach this target: WMAP and Planck. This has opened
a new avenue for Cosmology to benefit from high precision measurements with
well-controlled systematics. Indeed, WMAP delivered data of high accuracy, al-
lowing for high precision estimations of the cosmological parameters (Spergel
et al. 2003; Dunkley et al. 2009). Furthermore, the consistency of SNIa, BAO,
and CMB data allows reliable accurate estimations by combining constraints (Ko-
matsu et al. 2009; Kowalski et al. 2008). The possibility of reaching high preci-
sion measurements with different techniques (distant SNIa with SNAP, proper-
ties of distant X-ray clusters as proposed by Panoramix some years ago or the
recent WFXT (2008), or with the SZ sample of clusters expected with Planck
and other CMB experiment like SPT, full sky weak lensing surveys with DUNE,
or the more recently proposed redshift surveys of hundred millions of galaxies
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with SPACE or ADEPT) has not only reinforced the perspective to determine cos-
mological parameters with high precision, but will also allow to investigate the
very nature of dark energy. The Dark Energy Task Force report (Albrecht et al.
2006) presented a summary of the different levels of progress expected for var-
ious projects. Ultimate constraints will be obtained by combination of various
experiments. It is interesting to summarize what present day data allow. There
are many possible data to combine, but the three most currently used are SNIa,
CMB and measure of the large scale distribution, either through the power spec-
trum or through the correlation function. A combination of these three data sets
leads to tight constraints on the minimal ΛCDM model. These constraints are
summarized in Table 1 adapted from Ferramacho et al. (2009). Different groups
recently got similar results with approaches which slightly differ in the techni-
cal details (Komatsu et al. 2009; Kowalski et al. 2008; Sánchez et al. 2009), so
these numbers can be regarded as very robust. As one can see, most of the cosmo-
logical parameters describing our Friedmann–Lemaı̂tre universe are constrained
to an accuracy better than 5%. Furthermore, when the parameter space is en-
larged the constraints remain essentially unchanged. This calls for some caution.
Quoted uncertainties reflects statistical uncertainties. Unidentified systematics are
the critical issues in this topic. Variations in published values of σ8 from various
approaches (CMB, Clusters, weak lensing) have provided an illustration that sys-
tematics uncertainties could alter preferred values beyond statistical uncertainties.
On the other hand, given possible systematics which have been identified until
now, it is likely that future estimations will remain within the two sigma domains.
First, when combining only two probes, one already gets tight constraints which
are within this range. A second argument is that when one allows for additional pa-
rameters (free equation of state parameters w, curvature, non-zero neutrino mass,
tensor contribution, . . . ) preferred values and interval ranges are not changed by
much. These are indications that we are already in the precision area of cosmol-
ogy: present day estimations of cosmological parameters are likely not to change
by much in the near future and investigations of the nature of dark energy will
need extremely accurate control of systematics. Whether the necessary invest-
ments will be valuable for the astronomical field is a subject of debate (White
2007).

7 Conclusions

The Copernician model of the world was the first revolution of a series in the
construction of modern cosmology, and the discovery of the accelerated expan-
sion being the latest in date. Theoretical considerations have always been a source
of remarkable observational investigation and Cosmology has always benefited
from the confrontation of models with observations. Since the 30s, the big bang
picture, the modern version of Lemaı̂tre’s primeval atom has been remarkably suc-
cessful, based on simple assumptions and physics laws that have been validated
by accurate experimental results. Although alternative theories have been devel-
oped, these alternative were based on hypothetical unknown physics advocated to
interpret cosmological observations. None of these alternative theories has pro-
duced predictions that have been comforted a posteriori. Rather new observations
in agreement with predictions of the big bang picture necessitated deep revision
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of the unorthodox view, at the cost of rather ad hoc assumptions added to fit the
new observations. The situation has evolved when the standard picture has ne-
cessitated the introduction of new ingredients, first dark matter and more recently
dark energy. The very nature of these new ingredients, which are supposed to
dominate the mean density of the universe has not been established by direct labo-
ratory experiments, nor by astronomical observations, and this situation may some
time lead to the question whether cosmologists have not introduced new aethers.
We had the opportunity to see that the situation is not so. The introduction of—
cold—non-baryonic dark matter has led to specific predictions, the amplitude of
the fluctuations of the cosmological background on various angular scales, which
were verified with high accuracy precision. The presence of dark energy has lead
to a specific prediction, the shape of the power spectrum on large scales, which has
been verified a posteriori. Although, the inclusion of a cosmological constant was
concomitant to general relativity, the actual origin of dark energy remains totally
unknown and the presence of dark energy in the present day universe represents
probably the most fundamental and unexpected new element in modern physics.
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M-N Célérier J Schneider (1998) A solution to the horizon problem: a delayed
big bang singularity Phys Lett A 249 37

Chodorowski MJ (2007) A direct consequence of the expansion of space? MN-
RAS 378:239–244

DJH Chung AE Romano (2006) Mapping luminosity-redshift relationship to
Lemaitre-Tolman-Bondi cosmology Phys Rev D 74 103507

C-H Chuang J-A Gu WP Hwang (2008) Inhomogeneity-induced cosmic accel-
eration in a dust universe Class Quantum Gravity 25 175001

C Clarkson (2007) Covariant approach for perturbations of rotationally symmetric
spacetimes Phys Rev D 76 104034

Clifton T, Ferreira PG, Land K (2008) Living in a void: testing the Copernican
principle with distant supernovae. Phys Rev Lett 101:131302

A Conley RG Carlberg J Guy DA Howell S Jha AG Riess M Sullivan
(2007) Is there evidence for a hubble bubble? The nature of type Ia supernova
colors and dust in external galaxies ApJ 664 L13

RJ Cook MS Burns (2009) Interpretation of the cosmological metric Am J Phys
77 59

EJ Copeland M Sami S Tsujikawa (2006) Dynamics of dark energy Int J Mod
Phys D 15 1753

Crocce M, Fosalba P, Castander FJ, Gaztanaga E (2009) Simulating the Universe
with MICE: the abundance of massive clusters arXiv:0907.0019

M Crocce P Fosalba FJ Castander E Gaztanaga (2010) Simulating the universe



Evidence for the fifth element 43

with MICE: the abundance of massive clusters MNRAS 403 1353
P de Bernardis etal (2000) A flat universe from high-resolution maps of the cos-

mic microwave background radiation Nature 404 955
V de Lapparent MJ Geller JP Huchra (1986) A slice of the universe ApJ 302

L1
C Deffayet (2001) Cosmology on a brane in Minkowski bulk Phys Lett B 502 199
R Durrer R Maartens (2008) Dark energy and dark gravity: theory overview Gen

Relat Gravit 40 301
R Durrer A Gabrielli M Joyce F Sylos Labini (2003) Bias and the power

spectrum beyond the turnover ApJ 585 L1
J Dunkley etal (2009) Five-year wilkinson microwave anisotropy probe observa-

tions: likelihoods and parameters from the WMAP data ApJ Suppl 180 306
G Dvali G Gabadadze M. Porrati (2000) Metastable gravitons and infinite

volume extra dimensions Phys Lett B 484 112
CC Dyer RC Roeder (1972) The distance-redshift relation for universes with no

intergalactic medium ApJ 174 L115
H Ebeling E Barrett D Donovan C-J Ma AC Edge L van Speybroeck (2007)

A complete sample of 12 very X-ray luminous galaxy clusters at z > 0.5 ApJ
661 L33

AS Eddington (1930) On the instability of Einstein’s spherical world MNRAS 90
668

G Efstathiou CS Frenk SDM White M Davis (1988) Gravitational clustering
from scale-free initial conditions MNRAS 235 715

G Efstathiou WJ Sutherland SJ Maddox (1990) The cosmological constant and
cold dark matter Nature 348 705

J Einasto etal (1997) A 120 Mpc periodicity in the three-dimensional distribution
of galaxy superclusters Nature 385 139

DJ Eisenstein W Hu (1998) Baryonic features in the matter transfer function
ApJ 496 605

DJ Eisenstein etal (2005) Detection of the Baryon acoustic peak in the large-scale
correlation function of SDSS luminous red galaxies ApJ 633 560

GFR Ellis (2002) A historical review of how the cosmological constant has fared
in general relativity and cosmology, Chaos, Solitons Fractals Elsevier 46 505

GFR Ellis R Maartens MAH MacCallum (2007) Causality and the speed of
sound Gen Relat Gravit 39 1651

K Enqvist (2008) Lemaı̂tre Tolman Bondi model and accelerating expansion Gen
Relat Gravit 40 451

K Enqvist T Mattsson (2007) The effect of inhomogeneous expansion on the
supernova observations J Cosmol Astro-Particle Phys 2 19

JK Erickson RR Caldwell PJ Steinhardt C Armendariz-Picon V Mukhanov
(2002) Measuring the speed of sound of quintessence Phys Rev Lett 88 121301

S Ettori A Morandi P Tozzi I Balestra S Borgani P Rosati L Lovisari
F Terenziani (2009) The cluster gas mass fraction as a cosmological probe: a
revised study A&A 501 61

AE Evrard (1989) Biased cold dark matter theory—trouble from rich clusters?
ApJ 341 L71

AE Evrard etal (2008) Virial scaling of massive dark matter Halos: why clusters
prefer a high normalization cosmology ApJ 672 122



44 A. Blanchard

Fang W, Wang S, Hu W, Haiman Z, Hui L, May M (2008) Challenges to the
DGP Model from horizon-scale growth and geometry ArXiv e-prints, 808,
arXiv:0808.2208

LD Ferramacho A Blanchard (2007) Gas mass fraction from XMM-Newton and
Chandra high redshift clusters and its use as a cosmological test A&A 463 423

LD Ferramacho A Blanchard Y Zolnierowski (2009) Constraints on CDM
cosmology from galaxy power spectrum, CMB and SNIa evolution A&A 499
21

AV Filippenko AG Riess (1998) Results from the High-z Supernova Search
Team Phys Rep 307 31

DJ Fixsen ES Cheng JM Gales JC Mather RA Shafer EL Wright (1996)
The cosmic microwave background spectrum from the full COBE FIRAS data
set ApJ 473 576
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