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Abstract We discuss several properties of two families of
finite-range interactions in infinite nuclear matter, aiming in
particular to their isovector properties. We find that the recent
parameterisations of both Gogny and Nakada provide a rea-
sonable description of the properties of the infinite medium
as well as an equation of state capable of sustaining a two
solar mass neutron star. We also discuss the pairing properties
in the spin-singlet channel for both families of interactions.

1 Introduction

The use of mean-field methods based on the effective
nucleon-nucleon (NN) interaction is very popular in the
nuclear physics community [1], since it allows a variety of
nuclear observables to be reproduced with good accuracy all
along the nuclear chart [2]. According to their radial form
factor, we define three main families of effective interactions
used for this purpose: the Skyrme [3], characterised by a zero-
range form factor, and the Gogny [4] and Nakada [5], which
have a finite range. We recall that a finite range is important
to avoid spurious truncations in the pairing channels within
Hartree-Fock-Bogoliubov (HBF) calculations [6], as a conse-
quence one can use the same interaction for both particle-hole
and particle-particle sector. Besides, using finite range inter-
actions can help to be in touch, at least qualitatively, with
realistic interactions. Regardless of the type of interaction,
they are all characterised by some adjustable parameters that
must be determined by a well-defined fitting protocol [7].
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There is no unique way to define such a protocol: different
groups use different observables and weights to define their
penalty function [8]. However, it is possible to see that the
vast majority of these fits include some properties of infinite
nuclear matter (INM), which we assume to be spin-saturated.
Symmetric (SNM) and asymmetric (ANM) nuclear matter
are uniquely characterised by their density and isospin imbal-
ance. Although such a model can be considered as an over-
simplification, it is capable of describing some features of
massive compact objects such as neutron stars [9]. It is also
possible to use it to compare the results obtained at the mean-
field level with more sophisticated tools such as ab-initio
methods [10]. Thanks to all this information, it is possible to
better constrain the effective NN interactions, especially in
the case of large isospin asymmetry, in order to have a better
predictive power when used to describe nuclei close to drip
lines [11]. For all these reasons it is important to study in
detail the properties of INM with effective interactions. The
case of Gogny interactions was addressed in Ref. [12], where
it was shown that, using the set of eleven Gogny interactions
available at that time, there is a large variation in the isospin
properties. In particular, the predicted density dependence
of the symmetry energy is too soft and lies outside the cur-
rently accepted values. The authors also showed that most
of the parameterisations are not applicable to astrophysical
calculations.

In this work, we have decided to repeat part of the analysis
carried out in Ref. [12], but focusing on the Nakada interac-
tions with the aim of studying their isovector properties. We
will present analytical results for some quantities relevant to
astrophysics, such as the symmetry energy and its slope, as
well as the general equation of state of hadronic matter. We
have chosen to follow the notations given in Ref. [12] to facil-
itate the comparison between the results obtained from the
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Gogny and Nakada interactions. We also include in the cur-
rent article the new Gogny interactions with a non-standard
central term [4] in order to test their applicability in astro-
physical scenarios. The systematic comparison between the
two families of interactions will then provide a better insight
into the role of the radial form factor, but also into the flexi-
bility of the model in simultaneously reproducing INM and
finite nuclei properties.

The article is structured as follows: in Sect. 2 we introduce
the interactions considered in this paper. In Sect. 3 we dis-
cuss the main features of asymmetric nuclear matter obtained
with these interactions, and in Sect. 4 we study the pairing
properties. Finally, in Sect. 5 we present our conclusions.

2 Interactions

In the present work, we perform Hartree-Fock (HF) calcula-
tions using an uncoupled basis in an infinite homogeneous
system. This allows us to write only the central and den-
sity dependent part of each interaction, since the tensor and
spin-orbit terms do not contribute [13,14].

The Nakada interaction is derived from the so-called
Michigan three-range Yukawa (M3Y) interaction [15], which
was originally constructed by fitting its matrix elements, cal-
culated in an oscillator basis, to the G-matrix elements cal-
culated with realistic NN potentials such as Reid [15] and
Paris [16]. The M3Y interaction was designed for inelas-
tic nucleon-nucleus scattering studies and failed to repro-
duce the saturation point of symmetric nuclear matter [17].
Density-dependent coupling constants have been introduced
to remedy this failure and applied to the study of nucleon-
nucleon scattering [18,19] in the folding model. However,
these extensions give unsatisfactory results in finite nuclei,
especially for saturation and spin-orbit splitting. For more
details on the INM properties of these additional interactions,
we refer to Refs. [20,21].

In a series of papers, Nakada defined a new extension, also
starting from a M3Y parameterisation, whose G-matrix was
obtained from the Paris NN interaction [16], including both
tensor and spin-orbit terms, and adding an explicit Skyrme-
like density-dependent term to properly account for INM
saturation properties as well as various ground state prop-
erties of finite nuclei. The long-range part of the original
M3Y interaction was retained, so that the main features of
the one-pion exchange potential (OPEP) are asymptotically
fulfilled. Various optimisations of the interaction parameters
have led to the M3Y-Pn family of semi-realistic NN interac-
tions [5,22–24]. These interactions are able to satisfy basic
constraints in INM, such as saturation, and also provide a
reasonable description of various properties of atomic nuclei
[25–27]. A recent paper [28] also shows that these interac-

tions can be used to calculate differential cross sections with
reasonable accuracy.

The general Nakada interaction [5] (central part) takes the
form

VNakada(r) = t0(1 + x0Pσ )ργ δ(r) + t SEρ PSEργSE δ(r)

+t T E
ρ PT EργT E δ(r)

+
∑

i

(
t SEi PSE + t T E

i PT E + t SOi PSO

+ t T O
i PT O

) 1

rμi
e−rμi . (1)

In fact, the first density-dependent term in this equation corre-
sponds to the first version of the interaction (M3Y-P2), while
more recently it has been replaced by two separate contribu-
tions in the singlet-even (SE) and triplet-even (T E) channels,
which are the second and third terms in Eq. (1). We start from
the above general expression in order to include the existing
parameterisations in the general expressions derived along
this paper. This interaction is characterised by three ranges
μ−1 = 0.25, 0.4, 1.414 fm corresponding to the Compton
wavelengths of mesons with masses of 790, 490 and 140
MeV respectively. Contrary to the case of Gogny, where we
observe a certain variance in the adopted ranges, Nakada kept
them fixed for all the optimisations.

As in the Gogny case, the Nakada interaction is the same
in the particle-hole and particle-particle channels to account
for nuclear superfluidity [29]. This is an additional constraint
to take into account when fitting the coupling constants of
the interaction. This is not the case for typical Skyrme inter-
actions [3], where two different interactions are used in these
channels.

As anticipated in the introduction, we want to compare
the Nakada M3Y-Pn results with some recent Gogny param-
eterisations. As typical examples of Gogny interactions, we
have chosen D1 [4] and D1P [30] and four recent ones such
as D1M∗ [31], D2 [32], D3G3 [33] and D3G3M [34], which
were not considered in Ref. [12]. These parameterisations
have been adjusted to improve the properties of the INM,
especially in view of astrophysical applications. The interest
of these interactions is that they differ not only in the fitting
protocol, but also in the structure of the central term. For
example, D1P has two zero-range density dependent terms,
D2 has one finite range density dependent term, while D3G3
and D3G3M have three ranges instead of the canonical two.

Since the Nakada interaction already contains three ranges
and two independent density dependent terms, it already has
a structure that is richer than the standard Gogny such as
D1, and as such, we expect to be able to obtain INM results
comparable to the extended Gogny interactions.

Within the HF approach to INM, the coupling constants
appear under specific combinations which, following the
notation of Ref. [12], we write with the letters A, B for the
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Fig. 1 Relevant combinations of interaction parameters. The left
(right) panel shows the matrix elements of various Nakada (Gogny)
interactions. Note that the B1

nn matrix element of D1M∗, D3G3 and

D3G3M has been divided by a factor of 4 to fit the scale of the plot. The
units are [MeV fm3] for A, [MeV] for B and [MeV fm3γ+3] for C

direct and exchange terms of the finite-range part of the inter-
action, respectively, and with the letter C for the zero-range
one. Their explicit expressions are

Ai
0 = π

4μ3
i

(3t (SE)
i + 3t (T E)

i + t (SO)
i + 9t (T O)

i ), (2)

Ai
1 = π

4μ3
i

(t (SE)
i − 3t (T E)

i − t (SO)
i + 3t (T O)

i ), (3)

Bi
nn = 1

16π
(t SEi − 3t T O

i ), (4)

Bi
np = 1

32π
(t SEi + 3t T E − t T SO

i − 3t T O
i ), (5)

C0 = 3

4
t0, (6)

C1 = −1

4
t0(1 + 2x0), (7)

CSE = 1

16
t SEρ , (8)

CT E = 3

16
t T E
ρ . (9)

We define also the combinations

Bi
0 = Bi

nn + Bi
np, (10)

Bi
1 = Bi

nn − Bi
np. (11)

Unlike the zero-range case of Skyrme [35], one cannot
directly relate the parameters of the interaction to some infi-
nite matter properties. For finite-range interactions, these
properties are related to specific linear combinations (as
shown above). In Fig. 1, we show the matrix elements for
the Nakada M3Y-Pn family (left panel) and Gogny (right
panel). The explicit expressions of these quantities for the
Gogny interactions are given in Appendix A.

A very striking feature of this comparison is the large
variability of the Gogny matrix elements compared to the

Nakada ones. The Gogny interactions have been fitted by
several groups and many people, using many different ingre-
dients for the fits. Presumably, Nakada has proceeded in a
more smooth way. This is why the values of the matrix ele-
ments are more concentrated for Nakada (except for A0,C1)
and more scattered for Gogny. We also note that the terms
A3

0,1 for the Nakada interactions are zero by construction,
and that the same method has been used to fit the third range
of D3G3 and D3G3M. Finally, we included in this figure the
density-dependent dependent term of the D2 interaction in
the A3, B3 terms. Due to the presence of a range now the den-
sity dependence enter in all combinations of matrix elements
and it is no more restricted to theC coefficients only as for the
other interactions. We recall that D1P is the only interaction
having two explicit density dependences, for simplicity in
Fig. 1 we showed just the first one. We give here the explicit
values for the second C2

0(1) = 192.0 (192.9) [MeVfm3α2+3]
respectively.

3 Asymmetric nuclear matter

In asymmetric nuclear matter, we define the isospin asym-
metry as

β = ρn − ρp

ρ
, (12)

where ρn(p) is the density of neutron (protons). The respec-
tive Fermi momenta are defined as

kF =
(

3π2

2
ρ

)1/3

, (13)

kFτ =
(

3π2ρτ

)1/3 =
(

3π2

2
ρ[1 + τβ]

)1/3

, (14)
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Fig. 2 Functions u(x, xF ) for different values of μ plotted as a function of momentum at saturation density. Yukawa (left) and Gaussian (right)
form factors

with τ = +1 for neutrons and -1 for protons. For the sake of
simplicity, we also assume the system saturated in spin and
we neglect electromagnetic interactions.

3.1 Mean field potential

We start our analysis by considering the single particle mean
field potential

Uτ (k) = 1

2

∑

τ ′σσ ′

∫
dk′

(2π3)

〈kστ ;k′σ ′τ ′|V (1 − Px Pσ Pτ )|kστ ;k′σ ′τ ′〉, (15)

where we have antisymmetrised the matrix elements via the
spatial Px , spin Pσ , and isospin Pτ exchange operators. Since
the wavefunctions of the systems are plane waves, this equa-
tion can be calculated analytically and we obtain the follow-
ing expression, written in a general form that is valid for both
Nakada and Gogny interactions

Uτ (k) =
∑

i

Ai
0ρ + Ai

1τβρ

+Bi
nnu(xi , xiτ ) + Bi

npu(xi , xi−τ )

+
[

1

2
(2 + γ )C0ρ

γ+1 +
(

τβ + 1

2
γβ2

)
C1ρ

γ+1
]

+2CSE ργSE+1(3 + τβ)

+2CT E ργT E+1(1−τβ)+CSE γSEργSE+1(3 + β2)

+CT E γT EργT E+1(1 − β2). (16)

In this equation, we have defined the dimensionless quantities
xi = k/μi , xiτ = kFτ /μi for Nakada and xi = kμi , xiτ =
kFτμi for Gogny. Notice that each form factor uses a param-
eter μ with a different meaning (range and inverse range).
We have maintained their original notation, using a dimen-
sionless parameter x . The whole momentum dependence is
contained in the functions u(x, xF ) and their explicit expres-

sion is given in Appendix B. We plot them as a function of k
for SNM and several ranges in Fig. 2 at ρ = 0.16 [fm−3].

Apart from the obvious difference in absolute scale, one
notices that due to the nature of the Yukawa form factor, the
u(x, xF ) functions go to zero relatively slowly compared to
the Gogny case. As discussed below, this has a direct impact
on the evolution Uτ (k) for large values of k.

In Fig. 3 we show the momentum dependence of the sin-
gle particle potential Uτ (k) for both neutrons and protons at
four values of asymmetry β = 0, 0.3, 0.6, 1. For the proton
mean-field, the case β = 1 should be understood as β → 1,
which is the limit of proton impurity in neutron matter. All the
calculations have been carried out at the saturation density
specific to each interaction, given in Tables 1 and 2.

We observe a common trend for all interactions. For SNM
(β = 0) they all lead to similar values of the single-particle
potential in the range of momenta from zero to about 2 fm−1.
All interactions sensibly give the same value, about –80 MeV
at zero momentum. At 2 fm−1 the values rise smoothly to –
34 MeV for M3Y-P2 to –27 MeV for M3Y-P7. At higher
momenta the potential increases, although the interactions
M3Y-P2 and M3Y-P4 seem to reach a constant value at about
4 fm−1. For a non-zero isospin asymmetry we observe that
at zero momentum the potential values are practically the
same for parameterisations M3Y-P2 to M3Y-P5 and become
slightly more repulsive for the newer M3Y-P6 and M3Y-P7.
It is worth noting that microscopic results for the energy per
particle of neutron matter [36,37] were used to fit the lat-
ter interactions. In all cases, we observe that as β increases
the neutron potential increases while the proton potential
decreases, reflecting the fact that in neutron-rich systems neu-
trons are less bound while protons are more bound. We also
notice that asymmetry effects are reduced with increasing
momentum, especially for the neutron potential.

In Fig. 4 we show the same quantities for some selected
Gogny interactions. As shown in Ref. [12], the existing
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Fig. 3 Single-particle potentialsUτ (k) for neutrons (solid) and protons
(dashed) as a function of the single-particle momentum k at saturation
density and different isospin asymmetries for the Nakada interactions

considered in this work. The symbols denote the single-particle poten-
tial of a neutron (circles) or a proton (square) at the respective Fermi
momentum kFτ . See text for details

Table 1 INM properties of Nakada interactions evaluated at saturation density ρ. See text for details

E/A [MeV] ρ0 [fm−3] m∗/mN K0 [MeV] Q0 [MeV] S(ρ0) [MeV] L(ρ0) [MeV] Ksym(ρ0)[MeV] Qsym(ρ0) [MeV]

M3Y-P2 −16.144 0.163 0.652 221 −435 30.6 27.9 −220.6 547.3

M3Y-P3 −16.508 0.163 0.657 247 −367 29.8 25.2 −209.9 573.7

M3Y-P4 −16.135 0.163 0.665 236 −374 28.7 17.8 −230.7 613.4

M3Y-P5 −16.117 0.163 0.629 236 −383 29.6 24.5 −213.5 566.6

M3Y-P6 −16.235 0.163 0.596 240 −379 32.1 44.6 −165.5 459.5

M3Y-P7 −16.224 0.163 0.589 255 −321 31.7 51.5 −127.9 414.9

Table 2 Same as Table 2, but for Gogny

E/A [MeV] ρ0 [fm−3] m∗/mN K0 [MeV] Q0 [MeV] S(ρ0) [MeV] L(ρ0) [MeV] Ksym(ρ0)[MeV] Qsym(ρ0) [MeV]

D1 −16.304 0.166 0.670 230 −462 30.7 18.3 −275.1 618.0

D1P −15.040 0.169 0.672 250 −336 32.4 49.7 −157.1 404.6

D3G3 −16.048 0.164 0.678 227 −316 32.5 36.7 −131.4 789.6

D3G3M −16.058 0.164 0.739 240 −292 28.5 25.4 −124.5 813.1

D1M∗ −16.058 0.164 0.746 225 −459 30.2 43.1 −47.3 705.7

D2 −15.996 0.163 0.738 209 −427 31.1 44.8 −88.8 666.8

Gogny parameterisations lead to large variations in the
isospin properties. In the range of momenta from zero to
about 2 fm−1, the potentials show a similar trend as com-
pared to those obtained with Nakada interactions. At zero
momentum, Gogny interactions give a value of about –80
MeV (β = 0). However, for larger momenta we observe that
for D1 there is a crossing of the neutron/proton potential at

large asymmetry, meaning that neutrons are bound more than
protons in very neutron-rich systems. This problem has been
recognised and corrected, leading to the D1N parameterisa-
tion [38].

Since the momentum functions u(x, xF ) vanish at k →
+∞, the behavior of the single particle potential at large
momentum values is dominated by the direct and density-
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dependent parts of the interaction (except for D2). The
momentum at which the momentum dependent part of the
potential vanishes depends on the interaction: typically for
Gogny interactions it is around k ≈ 4/5 [fm−1], while for
Nakada interactions it is around k ≈ 6/8 [fm−1] (or even
higher). It is interesting to observe that also the D3G3 and
D3G3M, due to the presence of a very short range, show a
non-negligible momentum dependence of the potential up to
very high momenta and thus have a comparable behaviour to
the M3Y-Pn family.

Regardless of the asymptotic value of Uτ (k), we find that
for the majority of interactions (except D2 and D1M∗) the
minimum of the single-particle potential occurs at k = 0.
The special cases of D2 and D1M∗ together with M3Y-P7
(for comparison) are illustrated in Fig. 5, where we show
the evolution of the single particle potential up to larger
momenta. Once isospin asymmetry is present, the minimum
of the proton potential is shifted to k ≈ 5 (for D2) or k ≈ 8
fm−1 for D1M∗. Such a behavior has not been observed for
any other interaction, and although not relevant for simple
Hartree-Fock calculations, it may play a role in beyond mean-
field calculations of neutron-rich nuclei, revealing a possible
pathology of the interactions.

As can be seen from Eq. (16), the single-particle poten-
tial is the sum of three contributions: the Hartree (direct),
the Fock (exchange) and a density dependent one. Their rel-
ative intensities are usually not constrained, since they are
not observable, but it is still interesting to observe their rela-
tive importance, since this can have an impact on numerical
calculations. For most interactions, such as D1, D1P or M3Y-
P2, the Hartree term in the SNM at saturation almost cancels
out the density dependent one, and thus the main contribu-
tion to the single particle comes from the Fock term. For
other interactions, such as D2, the Fock term is quite weak
and the bulk of the contribution comes from an attractive
Hartree plus density dependent term. Finally, another group
of interactions such as D3G3, D3G3M, M3Y-P5, M3Y-P6
and M3Y-P7 have a very strong repulsive direct term (of the
order of 50 to 200 MeV) and a strong attractive Fock term
(≈ –150 to –300 MeV) around k = 0, and thus the standard
value of U τ (k = 0) ≈ −80 MeV arises from a strong can-
cellation of these two terms. This situation is quite similar to
what happens in relativistic mean field theory [39]. This is not
a problem in itself, but this cancellation requires knowledge
of the parameters of the interaction up to several digits [33]
and also a careful implementation of the numerical solver to
avoid large errors when using these interactions.

Following Ref. [12], one can also define an isoscalar U0

and isovector U1 potential as1

U0(k) =
∑

i

Ai
0ρ + Bi

0u(xi , xiF )

+1

2
(2 + γ )C0ρ

γ+1 + 3(2 + γSE )CSE ργSE+1

+(2 + γT E )CT E ργT E+1, (17)

U1(k) = ∂Un(k)

∂β

∣∣∣∣
β=0

= C1ρ
γ+1 + 2CSEργSE+1

−2CT EργT E+1 +
∑

i

Ai
1ρ + 1

3
Bi

1 u1(x
i , xiF )

(18)

We report in Fig. 6 and in Fig. 7 the evolution of these
isoscalar and isovector potentials for three values of the den-
sity, namely 1/2, 1 and 3/2 of ρ0 for the Nakada and Gogny
interactions. As shown in Fig. 5, we see that the isoscalar
potential for D2, and to some extent also for D1M∗, exhibits
a secondary minimum at high momenta not only at satura-
tion, but also at other values of the density of the system. For
the isovector case, we see that all Nakada interactions show
a decreasing behavior, while the Gogny interactions, apart
D1 and D1P, present an opposite trend. The only constraint
we have is represented by the shaded are at ρ = ρ0 panel
and it is obtained from Ref. [40] via fits of optical potentials.
We see that (apart from the absolute value) the trend derived
from the analysis of Ref. [40] is a decreasing potential as k
increases, thus in good agreement with what observed for the
Nakada interactions.

3.2 Effective mass

The effective mass also provides an important characteri-
sation of the momentum dependence of the single-particle
potential. It is obtained as

m

m∗
τ

= 1 + m

h̄2k

∂Uτ (k)

∂k
, (19)

where m is the bare nucleon mass, which for simplicity we
assume to be the same for protons and neutrons. A straight-
forward calculation leads to the following expression

h̄2

2m∗
τ (k)

= h̄2

2m
+

∑

i

d2
i

[
Bi
nnm(xi , xiτ )

+Bi
npm(xi , xi−τ )

]
. (20)

where we defined di = 1
μi

for Nakada and di = μi for
Gogny. As can be seen by inspecting Eq. (20), the effective
mass arises entirely from the momentum dependent part of

1 Note that in Eqs. A9-A11 of Ref. [12], the rearrangement term is
missing.
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Fig. 4 Same as Fig. 3, but for Gogny interactions

Fig. 5 Same as Fig. 3, but for large values of k and for Gogny D2 (left panel), Gogny D1M∗ (central panel) and Nakada M3Y-P7 (right panel)

the interaction, and for finite range interactions this depen-
dence is encapsulated in the function m(x, xτ ). The explicit
expressions are given in Appendix B. In Fig. 8 we show for
SNM and saturation density the evolution of this function for
Nakada (left) and Gogny (right) as a function of momentum
k. We observe that, apart from an obvious scale factor, the
m(x, xF ) functions have a monotonous behavior dropping to
zero faster in the case of Gogny than Nakada.

In Figs. 9-10, we show the evolution of the effective mass
as a function of the momentum k for selected Nakada and
Gogny interactions and 4 values of isospin asymmetry, going
from SNM (β = 0) to pure neutron matter (PNM) (β = 1).
As in the case of the single particle potential, we observe
quite a variety of behaviors. A common feature of the Nakada
interactions is that neutrons have a larger effective mass than
protons, which is also the case for D1 and D1P. For the most
recent Gogny interactions on the contrary, an inversion is
observed around kF for D1M* and slightly above for D2,
D3G3 and D3G3M. This region is not relevant for finite

nuclei, but it may play a role in some astrophysical calcu-
lations such as the neutrino mean free path as discussed in
Ref. [41].

Most of the interactions have been constrained using SNM
at saturation density to obtain a value ofm∗/mN ≈ 0.6−0.7,
and we observe that both families of interactions respect such
a constraint, but with a very different momentum depen-
dence. In the case of Nakada we observe a monotonous
behavior with all values of the effective mass converging
to mN at large momenta, while in the case of Gogny we
observe a variety of behaviors still converging to mN at large
momenta, but with crossings and inversions depending on β.
No firm conclusions can be drawn, since the exact structure of
the momentum dependence of the effective mass is not fully
known. Some results are available from Brueckner-Hartree-
Fock (BHF) calculations, but only for a limited range of den-
sities and asymmetries. See Ref. [42] for a recent review on
this topic.
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Fig. 6 Isoscalar and isovector potentials for Nakada interactions as a function of momentum and several values of the density. The shaded area is
taken from Ref. [40]

Fig. 7 Same as Fig. 6, but for Gogny interactions
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Fig. 8 Functions m(x, xF ) in SNM at saturation density for several values of μ plotted as a function of momentum. Yukawa (left) and Gaussian
(right) form factors

Fig. 9 Effective mass ratiom∗
τ (k)/mN for neutrons (solid) and protons

(dashed) as a function of the single particle momentum k at saturation
density and various isospin asymmetries for Nakada interactions. The

symbols denote the effective mass ratio of a neutron (circles) or a proton
(square) at the respective Fermi momentum kFτ . See text for details

A more interesting quantity that allows us to summarise
the properties of the various interactions is therefore the so-
called mass splitting, i.e. the difference between the neutron
and proton effective masses at saturation density

�m(ρ, β) ≡ m∗
n(ρ, β)

mN
− m∗

p(ρ, β)

mN

=
⎧
⎨

⎩1 + 2m

h̄2

∑

i

d2
i
[
Bi
nnm(xin, x

i
n) + Bi

npm(xin, x
i
p)

]
⎫
⎬

⎭

−1

−
⎧
⎨

⎩1 + 2m

h̄2

∑

i

d2
i
[
Bi
nnm(xip, x

i
p) + Bi

npm(xip, x
i
n)

]
⎫
⎬

⎭

−1

(21)

To obtain this equation, we inject in Eq. 20 k = kτ
F . For a

fixed density, this quantity simply depends on the asymmetry
parameter β. Although such a quantity is not strictly speaking
an observable, we can still compare with the BHF results [41]
and see if the trends are similar or not.

In Fig. 11, we show �m(β) calculated at ρ = 0.16
[fm−3] as a function of isospin asymmetry for both Gogny
and Nakada interactions. As a reference, we report the BHF
results discussed in Ref. [41] (shaded band). This band is
obtained by taking into account the various changes made
in the BHF calculations, such as the variation of the three-
and two-body interactions. We see that all Nakada interac-
tions have the correct sign of the mass splitting, although the
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Fig. 10 Same as Fig. 9, but for Gogny interactions

absolute value is slightly overestimated when approaching
the PNM limit. However, it remains fairly consistent with the
BHF results. The Gogny interactions are also in fairly good
agreement with the BHF results, except for D1M* which has
an opposite splitting.

Finally, it is interesting to study the evolution of the effec-
tive masses of neutrons and protons in function of the density
of the system for few selected asymmetries since they can
play a role in modelling cold neutron stars [35]. The results
are illustrated in Fig. 12 for Nakada and Fig. 13 for Gogny.
We notice that all the Nakada interaction have a decreasing
monotonous behaviour as we increase the density, while the
Gogny show a larger variety of trends: D1 and D1P behaves as
the Nakada ones although the asymptotic values of the effec-
tive masses are different. The D3G3 and D3G3M present a
crossing of the proton and neutron effective mass at around
ρ ≈ 0.2 [fm−3]. Also D1M* and D2 present a crossing, but
even more interesting, they do present poles in the proton
effective mass in the case of very large isospin asymme-
try. This nonphysical feature is also present in some Skyrme
functionals and discussed in detail in Ref. [43]. The high
density behavior can be compared with some existing ab-
initio calculations [41], although the results strongly depend
on the choice of three-body interaction, we notice that the
proton effective mass becomes larger than the neutron one
at high density, so a crossing, but with the masses of the two
species at first decreasing and then increasing again beyond
two times saturation density. Such a feature has not been
observed in none of the interactions presented in this article.

3.3 Energy per particle

Having presented the detailed properties of the mean field
potential for each interaction, we can now characterise the
system by examining its energy per particle. We give here
the most general expression as a function of the density and
isospin asymmetry

eANM = EANM

A

= 3

10

h̄2

2m
k2
F

[
(1 + β)5/3 + (1 − β)5/3

]

+1

2
(C0 + C1β

2)ργ+1

+CSE ργSE+1(3 + β2) + CT E ργT E+1(1 − β2)

+
∑

i

1

2
ρ(Ai

0 + Ai
1β

2)

+1

2
Bi
nn

[
1

2
(1 + β)g(xin) + 1

2
(1 − β)g(xip)

]

+1

2
Bi
nph(xin, x

i
p). (22)

The explicit expression of the functions g(x) and h(x, x ′) is
given in Appendix B, and one can see that g(x) = h(x, x).
These functions contain the form factor contribution resulting
from the Fock (exchange) terms. In Ref. [5] such contribution
was contained in a function named WF . In Appendix B is
given the relation between both functions for each type of
form factor.
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Fig. 11 Difference between the neutron and proton effective mass as defined in Eq. (21) for Nakada (left panel) and Gogny (right panel) at ρ = 0.16
fm−3 as a function of isospin asymmetry. The band represent the BHF results [41]. See text for details

Fig. 12 Effective mass ratio m∗
τ (kF )/mN for neutrons (solid) and protons (dashed) as a function of the density of the system and various isospin

asymmetries for Nakada interactions. See text for details

From this equation, depending on the values of β, we can
derive some interesting quantities as discussed below.

3.3.1 Symmetric nuclear matter

In case of equal number of neutrons and protons (β = 0)
Eq. (22) becomes

eSNM = E

A

∣∣∣∣
SNM

= 3

5

h̄2

2m
k2
F + 1

2
C0ρ

γ+1 + 3CSEργSE+1

+CT EργT E+1 + 1

2

∑

i

[
Ai

0ρ + Bi
0g(xiF )

]
. (23)

The equation of state of SNM is quite similar for all the
interactions shown in Fig. 14, especially around the satura-
tion density. Given the importance of having good saturation
properties to obtain valuable results in atomic nuclei, it is
expected that all these interactions have been built with par-
ticular care to these quantities (see explicit values in Tables 1-
2). In the high-energy region, on the other hand, we observe
some variance. For example, at 5 times the saturation density,
we observe a maximum difference of ≈ 45 MeV between the
different M3Y interactions and of ≈ 40 MeV for the Gogny
interactions.

However, in order to assess in a more quantitative way the
high density behavior of the equation of state, we will exam-
ine other quantities such as the pressure PSNM , the nuclear
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Fig. 13 Same as Fig. 12, but for selected Gogny interactions

Fig. 14 Energy per particle in SNM as a function of the density of the system for the Nakada (left panel) and Gogny (right panel) interactions.
See text for details

Fig. 15 Pressure in SNM as a function of the density of the system for the Nakada (left panel) and Gogny (right panel) interactions. The density
is given in units of the respective saturation density for each interaction. The shaded area is taken from Ref. [44]. See text for details
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compressibility K0 and the skewness Q0, since in these cases
we can compare them with some experimental data. Explic-
itly, we have

PSNM = ρ2 ∂eSNM

∂ρ

= 2

5

h̄2

2m
ρk2

F + 1

2
C0(γ + 1)ργ+2

+3(γSE + 1)CSE ργSE+2 + (γT E + 1)CT E ργT E+2

+
∑

i

1

2
Ai0ρ2 + Bi

0 ρ p(xiF ), (24)

K0 = 9ρ2 ∂2eSNM

∂ρ2

= −6

5

h̄2

2m
k2
F

+9

2
C0(γ + 1)γργ+1 + 27(γSE + 1)γSECSE ργSE+1

+9(γT E + 1)γT ECT E ργT E+1 − 3
∑

i

Bi
0 k(xiF ),

(25)

Q0 = 27ρ3 ∂2eSNM

∂ρ3

= 24

5

h̄2

2m
k2
F + 27

2
C0(γ + 1)γ (γ − 1)ργ+1

+81(γSE + 1)γSE (γSE − 1)CSE ργSE+1

+27(γT E + 1)γT E (γT E − 1)CT E ργT E+1

+3
∑

i

Bi
0 q(xiF ). (26)

The explicit expressions of the functions p(x), k(x) and
q(x) are given in Appendix B.

From heavy ion collision experiments [44] it is possible
to derive a credible range of pressure as a function of density.
This is shown in Fig. 15, where the pressure in SNM is plotted
for Nakada (left panel) and Gogny (right panel) interactions.
We see that all the interactions considered here are inside
the shaded area. This is consistent with the relatively small
variance in energy per particle observed previously.

The curvature of the equation of state around the satura-
tion density is described by the value of K0. This quantity
is usually related to compressional modes in atomic nuclei
[45] as obtained from measurements of giant monopole reso-
nances (GMR) [46]. From Tables 1, 2, we see that the incom-
pressibility values for Gogny range from 209 MeV to 250
MeV, while for Nakada they range from 221 to 255 MeV.
Typically the value of ≈ 220 MeV is considered accept-
able in order to reproduce the GMR in lead isotopes [47].
Instead, a smaller value of ≈ 200 MeV is required to repro-
duce the same quantity in tin isotopes [48]. All interactions
presented here are thus compatible with the accepted range
of K0 ≈ 220 ± 20/30 MeV proposed in Ref. [35].

Finally, the third derivative of the equation of state is
described by Q0. Typically this value is not constrained in

the fitting protocol of the interactions. According to Ref.
[35], this quantity should be negative2 and of the order of
magnitude of a few hundreds of MeV. Recently, some new
astrophysical models for the nuclear equation of state (EOS)
and based on a Taylor series expansion around the satura-
tion density have been proposed for astrophysical applica-
tions [49]. Using these models, the authors have been able
to infer stronger constraints on Q0 [50], but how the model
assumptions affect these new limits is still a matter of scien-
tific debate. For each interaction, we report the precise value
in Tables 1, 2. It is interesting to note that all finite range
interactions are consistent with such a weak constraint of
Ref. [35].

In Ref. [51] a strong correlation between K0 and Q0

is suggested to be due to the density dependent term. We
have calculated the Pearson correlation coefficient r [52] and
obtained a value of r = +0.97 for all Gogny interactions
with a standard t3 term (zero range) and two ranges (con-
sidering also the Gogny interactions discussed in Ref. [12]
and not presented here). However, including the interactions
D2, D3G3 and D3G3M, which have a different structure and
therefore possibly a different set of correlations, the Pearson
coefficient drops to r = +0.80, confirming that part of the
observed correlation is due to the particular choice of the
density dependent term. For the Nakada interaction the cor-
relation is also very strong with r = +0.97, showing that
using one or two density dependent terms, as long as they
are in the zero range, does not change the conclusion.

3.3.2 Pure neutron matter

We now come to the other extreme case of infinite matter
without protons, i.e the case of pure neutron matter. In this
case, the energy per particle is3

ePNM = E

A

∣∣∣∣
PNM

= 3

5

h̄2

2m
k2
Fn

+1

2
(C0 + C1)ρ

γ+1
n + 4CSE ρ

γSE+1
n

+1

2

∑

i

[
ρn(A

i
0 + Ai

1) + Bi
nng(xin)

]
. (27)

This quantity is of fundamental importance since it has
a direct impact on the structure of compact astrophysical
objects [53]. We show the evolution of the energy per particle
for the two families of interactions in Fig. 16. As a reference,
in the same figure, we show the results obtained with the
Chiral Effective field Theory (χEFT) of Ref. [54] at third
order (shaded area).

2 Note that in Ref. [35] the constraint is on K ′ which is defined as
K ′ = −Q0.
3 Notice that there is a mistake in Eq. (20) of Ref. [12].
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Fig. 16 Energy per particle as a function of the density of the system in PNM for Nakada (left panel) and Gogny (right panel) interactions. The
shaded areas represent the results of χEFT obtained in Ref. [54]

Fig. 17 Symmetry energy as a function of the density of the system for Nakada (left panel) and Gogny (right panel) interactions. The shaded area
represent the results of Ref. [60] obtained by analysing IAS in finite nuclei

We note that all Nakada interactions lead to a non-
collapsing EOS (such as in the case of the Gogny D1 inter-
action), but are not compatible with the χEFT constraints,
except for the most recent M3Y-P6 and M3Y-P7. This is also
usually the case for the first versions of the Gogny interaction
as shown in Ref. [12], but the most recent parameterisations
tend to provide quite stiff PNM EOS in fair agreement with
recent ab-initio results.

The high density behavior of the EOS is not fully con-
strained by these ab-initio calculations, but it can be inferred
by combining our knowledge of neutron stars [55,56]. For
this purpose, it is useful to provide the expression of the pres-
sure of PNM as

PPNM = 2

5

h̄2

2m
k2
Fnρn + 1

2
(C0 + C1)(γ + 1)ρ

γ+2
n

+4CSE (γSE + 1)ρ
γSE+2
n

+
∑

i

1

2
(Ai

0 + Ai
1)ρ

2
n + Bi

nnρn p(xin). (28)

This quantity is used to solve the relativistic Tolman-
Oppenheimer-Volkov (TOV) [57] equations as discussed in
Sect. 3.5.

3.4 Isovector properties

In the previous sections, we have studied various properties
of the infinite medium for a fixed isospin asymmetry. We
now examine its isovector properties. To do this, we consider
the symmetry energy S(ρ) which is obtained as the second
derivative of the energy per particle with respect to the isospin
asymmetry parameter

S(ρ) = 1

2

∂2eANM (ρ, β)

∂β2

∣∣∣∣
β=0

= 1

3

h̄2

2m
k2
F + 1

2
C1ρ

γ+1 + CSE ργSE+1 − CT E ργT E+1

+
∑

i

1

2
Ai

1ρ + 1

6

[
Bi
nns1(x

i ) + Bi
nps2(x

i )
]
. (29)
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In Fig. 17 we show the behavior of S(ρ) as a function
of density for the different interactions considered here. All
interactions are within a narrow energy window around the
saturation density. We report the precise value at the satu-
ration density in Tables 1, 2, mainly because there are some
stringent constraints coming from previous studies of nuclear
masses and neutron stars [35,58], but, as one moves to higher
densities, we observe a wide variety of trends. Some inter-
actions, such as D1 and M3Y-P(2-5), give negative values,
implying a crossing between the EOS in SNM and PNM.
Such a crossing is most likely non-physical, since the cor-
responding hadronic equation of state would not be able to
support very massive neutron stars. A very detailed analysis
done in Ref. [59] show that effective interactions leading to
very soft or even negative S(ρ) at suprasaturation densities
in neutron are not capable to produce hadronic equation of
state capable of sustaining neutron stars heavier than two
times the Solar mass. On the other hand, its effect on finite
nuclei is not entirely clear, since in all cases it occurs at den-
sities well above saturation. On these figures we also report
as a shaded area the constraints obtained in Ref. [60] using
excitation energies of isobaric analog states (IAS) in atomic
nuclei. We see that essentially all interactions do respect such
a constraint.

Another interesting quantity used to determine the prop-
erties of the interaction is the slope of the symmetry energy

L(ρ) = 3ρ
∂S(ρ)

∂ρ

= +2

3

h̄2

2m
k2
F + 3

2
(γ + 1)C1ρ

γ+1

+3(γSE + 1)CSEργSE+1 − 3(γT E + 1)CT EργT E+1

+
∑

i

3

2
Ai

1ρ + 1

6

[
Bi
nn l1(x

i ) + Bi
np l2(x

i )
]
. (30)

A strong correlation has been found between L(ρ0) and the
neutron skin of heavy nuclei [61]. By combining the results
of 24 different analyses, the authors of Ref. [62] give a value
of L(ρ0) = 58 ± 19 MeV with 68% confidence. This means
that all finite-range interactions except D1P, D2, M3Y-P6
and M3Y-P7 give a result that is in tension with the current
knowledge of such a quantity. Recent studies based on the
results of the PREX II experiment [63] even suggest a value
of L(ρ0) = 106±37 MeV [64] which is much higher than the
previous estimate. Such a result is clearly incompatible with
all the finite range models analysed here and in Ref. [12]. To
date, the scientific debate on these conclusions is still open,
but it is clear that the finite range interactions tend to under-
estimate this quantity and thus, according to the correlation
detected in Ref. [61], are most likely not suitable to describe
the appearance of a large neutron skin in heavy nuclei. Some
additional studies are needed to clarify this point. However,
if the high value of L0 is confirmed, it would represent a

major challenge in the finite-range interaction optimisation
procedure and would probably require some modifications
to the structure of the central term.

As in the isoscalar case, we can also consider the higher
order derivatives of the symmetry energy such as

Ksym = 9ρ2 ∂2S(ρ)

∂ρ2

= −2

3

h̄2

2m
k2
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2
(γ + 1)γC1ρ

γ+1

+9(γSE + 1)γSECSE ργSE+1
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, (31)

Qsym = 27ρ3 ∂3S(ρ)

∂ρ3
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h̄2

2m
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2
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Bi
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. (32)

In this case we do not have precise constraints against
which to compare our results. According to the authors of
Refs. [50,65], one can infer some values of Qsym by exploit-
ing its correlation with 3S(ρ0)−L(ρ0). For the Nakada inter-
actions we observed a Pearson coefficient of r = −0.99,
while for all available Gogny interactions (including the one
in Ref. [12]) we have r = −0.78. The large variation in the
r coefficient may be a sign of a limitation of the model itself
rather than a true correlation, as discussed in Ref. [66] for the
t3 versus α correlation in the case of Skyrme interactions.

3.5 Neutron stars

In this section, we present the basic features of a non-
accreting neutron star (NS) at zero temperature, using the
finite-range interactions discussed in the text. In our descrip-
tion, we assume that the composition of the star consists only
of neutrons, protons and electrons in β equilibrium [57]. Also
assuming charge neutrality, it follows that the proton density
is equal to the electron density. As discussed in Ref. [67], the
β equilibrium condition within the parabolic approximation
leads to the relation

μe = μn − μp ≈ 4(1 − 2Yp)S(ρ), (33)

where μe,n,p are the chemical potentials of the different
species. Higher order terms of the symmetry energy do con-
tribute to this equation as discussed in Ref. [68], so that
one should take them into account in order to get accurate
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Fig. 18 Proton fraction Yp as a function of the density of the star for Nakada (left panel) and Gogny (right panel) interactions

results. By solving this equation, under the assumption of
ultra-relativistic electrons, we obtain the evolution of the pro-
ton fraction Yp at various densities. In Fig. 18, we show the
evolution of Yp as a function of the density of the system for
the Nakada (left panel) and the Gogny (right panel) interac-
tions.

Since essentially all interactions give very close values of
S(ρ) around the saturation density, we observe that they all
lead to essentially the same value of Yp according to Eq. 33.
On the contrary, in the high density region we observe a large
variety of results. All Nakada interactions except M3Y-P7
lead to a full neutronisation of the system. This is also the
case for the D1 and D1P Gogny interactions. The interest of
Yp is related to the possibility of allowing or not the direct
Urca process during the cooling of a NS [69]. This can take
place when Yp ≈ 0.11 − 0.15 [70]. We see that only two
Gogny interactions satisfy such a criterion, namely D2 and
D1M∗ (albeit at very high densities). By studying the thermal
evolution of a NS [71], it would then be possible to provide
some information on this quantity and indirectly on the sym-
metry energy at high density [72]. Using the previous results,
we can thus calculate the hadronic equation of state, which
will be used to describe some macroscopic properties of the
NS. To do this, we solve the TOV equations [57]

dP(r)

dr
= −Gm(r)ε(r)

r2

[(
1 + P(r)ε(r)

c2

)

(
1 + 4πr3P(r)

ε(r)c2

)] [(
1 − 2Gm(r)

rc2

)]−1

,

(34)
dm(r)

dr
= 4πr2ε(r). (35)

G is the gravitational constant and ε(r) is the total energy
density of the system, thus including also the electron con-
tribution. See Ref. [68] for more details on the electronic
contribution.

In the crust region of the star, we have crystalline struc-
tures which cannot be described using a INM approximation.
We therefore use the results of Ref. [73] to describe the NS
at densities lower than ρ ≈ 0.08 fm−3. This small inconsis-
tency will not affect the results concerning the radius or the
maximum mass of a NS by more than 5% [74]. In Fig. 19,
we show the mass-radius relation obtained by solving the
TOV equations. The interactions with a collapsing EOS in
PNM such as D1 do not produce any physical solution once
injected into the TOV equations.

Most of the finite range interactions are incompatible with
current constraints on the maximum NS mass as given in
Ref. [75]. We also refer to the discussion in Ref. [12]. Only
D1M∗, D2,D3G3, D3G3M and M3Y-P7 provide a NS with
a mass greater than 2 solar masses. Recent measurements
reported in Ref. [76] give a maximum mass of 2.35 M
.
This constraint, if confirmed, would rule out all finite range
interactions except D3G3M, which is marginally compatible
with these new data. Considering only those interactions that
satisfy the 2 solar masses constraint, we find that the radii at
1.4 M
 are about ≈ 11 km. This value is in good agreement
with recent constraints from gravitational wave studies [77].

4 Pairing in infinite matter

In the previous analysis, we have considered the system only
at the HF level. It is now interesting to study its super-
fluid properties using the various interactions described in
the present article. As discussed in the literature, we can
describe a non-polarised infinite system by means of simple
BCS equations [78–80]. They read

�αα′(k) = −
∑

ββ ′k′

〈kαα′|v|k′ββ ′〉�ββ ′(k′)

2
√

(εk − εF )2 + 1
2 Tr[��†](k′)

, (36)
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Fig. 19 Mass-radius relation for NS obtained from the EoS by solving
TOV equations for selected Nakada (left panel) and Gogny (right panel)
interactions. The two horizontal bands refer to the NS mass measure-

ments of Antoniadis et al. M/MSun = 2.01 ± 0.04 [75] and Romani et
al. M/MSun = 2.35 ± 0.17 [76]. See text for details

where 〈kαα′|v|k′ββ ′〉 is the antisymmetrized matrix element
of the effective pairing interaction in momentum space. εk =
h̄2k2

2m + U (k) is the single particle spectrum, εF the Fermi
energy, α, β indices stand for the single-particle spin states
and k(k′) their momenta. For simplicity we have omitted the
isospin index, since we only consider Cooper pairs of the
same species. The pairing gap is therefore a 2 × 2 matrix in
single-particle spin space.

The basis function of the system are plane waves, which
we can couple in order to work with a good total spin S
and relative angular momentum L . If J is the total angular
momentum, we can distinguish the different couplings using
the spectroscopic notation 2S+1L J .

The 1S0 coupling is the most important for providing a
good description of the pairing properties of atomic nuclei
[81]. Other channels may also play a role in astrophysical
scenarios, such as the cooling of neutron stars [71], but they
are not considered here. A number of studies based on bare
NN interactions have shown that the 1S0 pairing gap in infi-
nite matter calculated at the BCS level is not strongly depen-
dent on the choice of interaction [82], thus providing some
guidance on how to construct effective interactions. In the
other channels the situation is less clear [80] and the results
show a much stronger dependence on the details of the inter-
action. The situation becomes even more complicated when
considers many body effects beyond BCS [83,84].

In the spin singlet channel 1S0, the BCS equations reduce
to [85]

�(k) = −1

2

∫ ∞

0
dk′k′2 v(k, k′)�(k′)√

(εk − εF )2 + �(k′)2
. (37)

The Nakada pairing matrix elements reads

v(k, k′) = 1
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i

t SEi

2kk′μi
log

[
4kk′

(k − k′)2 + μ2
i

+ 1

]

+ 1

2π2 t
SE
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while for Gogny interactions we have [85]

v(k, k′) = 1
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∑

i
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−μ2
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4
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]
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2

)
+ 1

2π2

∑

j

t0 j (1 − x0 j )ρ
γ j ,

(39)

where Ci = μi (Wi − Bi − Hi + Mi ).
Note that for most Gogny interactions x0 = 1, so the

density-dependent term does not enter the pairing matrix ele-
ments and there is no divergence due to the presence of a
Dirac delta in the matrix element [6]. In some interactions
such as D1P x0 �= 1. As a consequence, a cut-off in quasi-
particle space is required to make the calculations converge
[86]. For D1P, the authors fix the value of the integral of the
pairing gap in infinite matter to the same value as for D1,
so the cut-off is adjusted to satisfy this constraint. However,
we have found that the contribution of the density dependent
terms to D1P is rather weak, so there is actually no need to
fine-tune the cut-off.

In Fig. 20 we show the evolution of the pairing gap at
the Fermi momentum as a function of kF in SNM for our
two families of interactions: Nakada (left panel) and Gogny
(right panel). On the same figure we also plot the results
obtained from ab initio calculations suggested in Ref. [85].
These calculations are based on a Vlow-k interaction at BCS
level on top of a renormalised single particle spectrum com-
puted using Brueckner Hartree Fock methods. We conclude
that at the BCS level the pairing gap should have a maxi-
mum around kF ≈ 0.8 fm−1 at about �kF ≈ 2.5 − 3 MeV.
We observe that M3Y-P3, P4 and P5 follow such a behavior,
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Fig. 20 Evolution of the pairing gap at kF in SNM as a function of the Fermi momentum kF for Nakada (left panel) and Gogny (right panel)
interactions. We also report on the figure (circles) the results obtained in Ref. [85] based on Vlow-k interaction at BCS level. See text for details

while M3Y-P2, P6, P7 lead to a very strong pairing gap. It is
worth noting that, as discussed in Ref. [22], the convergence
in momentum space of the BCS equations using the Nakada
interaction is extremely slow and requires the inclusion of
states beyond k = 10 fm−1, leading to a too large basis set to
treat atomic nuclei. As a consequence, Nakada introduced a
cut-off also in the finite range part, as presented in Ref. [22],
where different types of cut-offs are discussed. For the sake
of simplicity we have simply implemented the sharp cut-off
at kc = 4 fm−1 for all interactions. This is somehow arbi-
trary, but we have not been able to find more details about the
basis size of the most recent interactions such as P6 and P7.
Most likely a smaller space is used. If we use kc = 1.55 fm−1

(which corresponds roughly to the basis used for finite nuclei
[87]) we obtain a maximum value of the pairing gap in SNM
of �kF = 3.3 MeV for M3Y-P6 and �kF = 3.8 MeV for
M3Y-P7, which are now closer to the ab-initio BCS results.
We conclude that since these interactions have been care-
fully tuned to reproduce the pairing properties within the
chosen pairing window, as a consequence one needs its exact
definition in order to reproduce the results correctly. There-
fore, apart from M3Y-P5, for which an explicit calculation
is provided, we cannot draw any conclusions about the other
interactions.

Contrary to the Nakada case, the Gogny interactions do
not have a pairing window (apart from D1P as discussed
above). Leaving aside D3G3, which is unable to produce a
sufficiently strong pairing gap, we can identify two types
of structure: D1, D1P and D2, all of which give a pairing
curve with a maximum around kF ≈ 0.8 fm−1 with a gap
of �kF ≈ 3 MeV; D1M∗ and D3G3M with a maximum
value of the gap at only 2 MeV, but the shape of the curve
is shifted at high densities so that the maximum occurs at
kF ≈ 1 fm−1. The region of interest for pairing in atomic
nuclei is around kF ≈ 1.2 − 1.3 fm−1. In this interval, all
Gogny interactions still produce a pairing gap of about 1−1.5

MeV, which is compatible with the typical value of the gap
in a heavy nucleus [78]. This is not the case for D3G3, and
as discussed in Ref. [33], the resulting pairing gap in finite
nuclei is too weak compared to experimental ones.

5 Conclusions

In this article we have carried out a systematic investiga-
tion of the isovector properties of the Nakada finite range
interactions. Following the scheme proposed in Ref. [12],
we have studied all relevant quantities that characterise infi-
nite systems at the Hartree-Fock level, such as the single
particle potential, the effective mass, the equation of state
and the pressure. We have also included the case of super-
fluid systems relevant to the study of atomic nuclei. We have
compared the Nakada results with those obtained with the
latest Gogny parameterisations not discussed in Ref. [12].
These new interactions, in particular D2, required the intro-
duction of additional terms in the various equations, and we
have therefore presented all these necessary modifications in
detail in the Appendix.

One of the main conclusions is that the Gogny interactions
typically show quite a large variance in results compared to
the Nakada interactions. In the case of Gogny, especially for
the most recent ones, the fitting protocols vary a lot, although
they have some common features. Such a large variance is
very interesting as it allows to explore a very large parameter
space and thus to infer the quality of the structure of the
interaction itself and to identify possible constraints.

In general, the conclusions presented in Ref. [12] regard-
ing the predicted quantities of the various interactions in
the isovector channels still hold here: a lack of direct con-
straint can lead to a variety of behaviours, as in the case of
the high-momentum sector of the single-particle potential.
However, future parameterisations should benefit from new
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results. Thanks to advances in astrophysical observations, it
is becoming increasingly common to integrate astrophysi-
cal data into the fitting protocol. For example, we can see the
evolution of the EOS in PNM, from very soft ones such as D1
or M3Y-P2 to the latest parameterisations, which give a very
stiff EOS capable of supporting the heaviest NS observed
so far. Ab-initio methods have also made great progress, so
that we now have access to a variety of results with more
controlled extrapolations and also credible regions that can
be used within a fitting protocol to improve the isovector
properties of the effective interactions.

We conclude by noting that the finite-range interac-
tions have historically had some problems in satisfying the
accepted constraints of infinite matter. Therefore, they were
not adapted to perform astrophysical calculations. Today this
is no longer the case, and one can obtain very accurate Nakada
or Gogny interactions, which are able to reproduce the prop-
erties of atomic nuclei and infinite matter equally well. Some
open questions, such as the small values of the slope of the
symmetry energy, will probably require a better exploration
of the parameter space or even a change in the analytical
forms of the interactions.
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Appendix A Gogny’s coupling constants

For completeness, we collect here the combinations of
parameters A, B,C , which were defined in Ref. [12]. The
general form of a Gogny interaction, restricted to its central
and density-dependent terms is written as

VGogny(r) =
∑

j

t j0 (1 + x j
0 Pσ )ργ j δ(r) +

∑

i

(Wi + Bi Pσ

−Hi Pτ − Mi Pσ Pτ )e
−r2/μ2

i . (A1)

The form given here is general to accommodate additional
density dependencies such as in D1P. The special case of
Gogny D2 is discussed in detail in Appendix C.

Ai
0 = π3/2μ3

i

4
(4Wi + 2Bi − 2Hi − Mi ) (A2)

Ai
1 = π3/2μ3

i

4
(−2Hi − Mi ) (A3)

Bi
nn = − 1√

π
(Wi + 2Bi − Hi − 2Mi ) (A4)

Bi
np = 1√

π
(Hi + 2Mi ) (A5)

C j
0 = 3

4
t j0 (A6)

C j
1 = −1

4
t j0 (1 + 2x j

0 ) (A7)

CSE = 0 (A8)

CT E = 0 (A9)

Bd
nn = − 1

μ3
dπ

2
(Wd + 2Bd − Hd − 2Md) (A10)

Bd
np = 1

μ3
dπ

2
(Hd + 2Md) (A11)

Appendix B Momentum-dependent functions

We provide here the explicit expressions of the various
momentum-dependent functions entering the expressions
given in this article.

B.1 Nakada

We define some special functions in terms of dimension-
less variables z = k/μ. The subindex F refers to the Fermi
momentum kF .

g(z) = 12z − 2

z
− 16ArcTan(2z)

+
(

6

z
+ 1

2z3

)
Log(1 + 4z2) (B1)

h(z1, z2) = 4z1z2{3(z2
1 + z2

2) − 1}
z3

1 + z3
2

− 16ArcTan(z1 + z2)

+16
z3

2 − z3
1

z3
1 + z3

2

ArcTan(z2 − z1)

−3(z2
2 − z2

1)
2 − 6(z2

1 + z2
2) − 1

z3
1 + z3

2

×Log
1 + (z1 + z2)

2

1 + (z1 − z2)2 (B2)
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The latter function is related to the WF function defined in
Ref. [5] as

WF (k1, k2) = 2π3

3
(k3

1 + k3
2)h(z1, z2) (B3)

The other functions read

u(z, zF ) = 8zF + 2
−z2 + z2

F + 1

z
Log

(zF + z)2 + 1

(zF − z)2 + 1
−8Arctan (zF + z) − 8Arctan (zF − z)

(B4)

u1(z, zF ) = 4z2
F

z
Log

(zF + z)2 + 1

(zF − z)2 + 1
(B5)

m(z, zF ) = 4
zF
z2 − z2

F + z2 + 1

z3 Log
1 + (zF + z)2

1 + (zF − z)2

(B6)

p(z) = 1

z
+ 2z −

(
1

z
+ 1

4z3

)
Log(1 + 4z2) (B7)

k(z) = 6

z
+ 4z −

(
3

2z3 + 4

z

)
Log(1 + 4z2) (B8)

q(z) = 20z + 54

z
− 16z

1 + 4z2

−
(

27

2z3 + 28

z

)
Log(1 + 4z2) (B9)

s1(z) = 8z − 2

z
Log(1 + 4z2) (B10)

s2(z) = 8z −
(

8z + 2

z

)
Log(1 + 4z2) (B11)

l1(z) = 8z − 16z

4z2 + 1
+ 2

z
Log(1 + 4z2) (B12)

l2(z) = −8z −
(

8z − 2

z

)
Log(1 + 4z2) (B13)

k1(z) = 4z − 32z3

(4z2 + 1)2

− 12z

4z2 + 1
+ 2

z
Log(1 + 4z2) (B14)

k2(z) = − 8z

4z2 + 1
−

(
4z − 2

z

)
Log(1 + 4z2) (B15)

q1(z) = 40z − 1024z5

(4z2 + 1)3 − 384z3

(4z2 + 1)2

− 152z

4z2 + 1
+ 28

z
Log(1 + 4z2) (B16)

q2(z) = 16z − 128z3

(4z2 + 1)2 − 128z

4z2 + 1

−
(

40z − 28

z

)
Log(1 + 4z2) (B17)

B.2 Gogny

We define some special functions in terms of dimension-
less variables z = kμ. The subindex F refers to the Fermi
momentum kF . We have

g(z) = 2

z3 − 3

z
−

(
2

z3 − 1

z

)
e−z2

+√
πErf(z) (B18)

h(z1, z2) = 2
z2

1 − z1z2 + z2
2 − 2

z3
1 + z3

2

e− 1
4 (z1+z2)

2

+√
πErf

(
z1 + z2

2

)

−2
z2

1 + z1z2 + z2
2 − 2

z3
1 + z3

2

e− 1
4 (z1−z2)

2

−√
π
z3

1 − z3
2

z3
1 + z3

2

Erf

(
z1 − z2

2

)
(B19)

The latter function is related to the WF function defined in
Ref. [5] as

WF (k1, k2) = 16π7/2

3
(k3

1 + k3
2) h(z1, z2) (B20)

The other functions read

u(z, zF ) = 1

z

[
e− 1

4 (z+zF )2 − e− 1
4 (z−zF )2

]

+
√

π

2

[
Erf

(
z + zF

2

)
− Erf

(
z − zF

2

)]

(B21)

u1(z, zF ) = − z2
F

2z

[
e− 1

4 (z+zF )2 − e− 1
4 (z−zF )2

]
(B22)

m(z, zF ) = 1

4z3

{
(2 − zzF )e− 1

4 (z−zF )2

−(2 + zzF )e− 1
4 (z+zF )2

}
(B23)

Note that in Ref. [12] a factor of 1/2 is missing.

p(z) = − 1

z3 + 1

2z
+

(
1

z3 + 1

2z

)
e−z2

(B24)

k(z) = − 6

z3 + 2

z
+

(
6

z3 + 4

z
+ z

)
e−z2

(B25)

q(z) = −54

z3 + 14

z
+

(
54

z3 + 40

z
+ 13z + 2z3

)
e−z2

(B26)

We notice that in Ref. [12] there is a missprint in Eq. B10.

s1(z) = 1

z
−

(
z + 1

z

)
e−z2

(B27)

s2(z) = −z + 1

z
− 1

z
e−z2

(B28)
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l1(z) = −1

z
+

(
1

z
+ z + 2z3

)
e−z2

(B29)

l2(z) = −1

z
− z +

(
1

z
+ 2z

)
e−z2

(B30)

k1(z) = −1

z
+

(
1

z
+ z + z3

2
+ z5

)
e−z2

(B31)

k2(z) = −1

z
− z

2
+

(
1

z
+ 3z

2
+ z3

)
e−z2

(B32)

q1(z) = −14

z
+

(
14

z
+ 14z + 7z3 + 4z5 + 4z7

)
e−z2

(B33)

q2(z) = −14

z
− 5z +

(
14

z
+ 19z + 12z3 + 4z5

)
e−z2

(B34)

Appendix C Finite-range density-dependent D2
interaction

In Ref. [32], the Skyrme-like zero-range density-dependent
term entering Gogny interaction, was replaced by a finite-
range one of the form

{
Wd + Bd Pσ − Hd Pτ − Md Pσ,τ

} ρα

(μd
√

π)3
e−r2

12/μ2
d .

(C1)

We define the combinations

Ad
0 = 1

4
(4Wd + 2Bd − 2Hd − Md) (C2)

Ad
1 = 1

4
(−2Hd − Md) (C3)

Bd
nn = − 1

μ3
dπ

2
(Wd + 2Bd − Hd − 2Md) (C4)

Bd
np = 1

μ3
dπ

2
(Hd + 2Md) (C5)

Bd
0 = Bd

nn + Bd
np (C6)

Bd
1 = Bd

nn − Bd
np (C7)

We define the dimensionless quantity xd = μdk and the
subindex F refers to the Fermi momentum. The functions u,
m, g, h, etc. are the same as before.

The following contributions should be added to the differ-
ent quantities defined in the text

• single-particle potential

Uτ (D2) ← Ad0ρα+1 + Ad1τβρα+1

+ραBd
nnu(xd , xdτ ) + ραBd

npu(xd , xd−τ ))

+1

2
α

[
1

2

(
Ad0 + Ad1β2

)
ρα+1

+1

4
ραBd

nn

[
(1 + β)g(xdn ) + (1 − β)g(xdp)

]

+1

2
ραBd

nph(xdn , xdp)

]
(C8)

• isoscalar potential

U0(D2) ← Ad
0ρα+1 + Bd

0 ραu(xd , xdF )

+1

4
α

[
Ad

0ρα+1 + ραBd
0 g(xdF )

]
(C9)

• isovector potential

U1(D2) ← Ad
1ρα+1 + 1

3
ραBd

1 u1(x
d
F ) (C10)

Note that the rearrangement contribution (term propor-
tional to α in Eq. C8), cancels out exactly in this case.

• effective mass

h̄2

2m∗
τ

← ραμ2
d

(
Bd
nnm(xd , xdτ ) + Bd

npm(xd , xd−τ )
)

(C11)

• energy per particle in asymmetric nuclear matter

eANM ← 1

2

(
Ad

0 + Ad
1β2

)
ρα+1

+1

4
ραBd

nn

[
(1 + β)g(xdn ) + (1 − β)g(xdp)

]

+1

2
ραBd

nph(xdn , xdp) (C12)

• quantities relevant in symmetric nuclear matter

eSNM ← 1

2
Ad

0ρα+1 + 1

2
ραBd

0 g(xdF ) (C13)

PSNM ← 1

2
(α + 1)Ad

0ρα+2

+ρα+1Bd
0

(
1

2
αg(xdF ) + p(xdF )

)
(C14)

K0 ← 9

2
α(α + 1)ρα+1Ad

0

−3Bd
0 ρα

{
− 3

2
α(α − 1)g(xdF )

−6αp(xdF ) + k(xdF )

}
(C15)

Qd
0 ← 27

2
α(α2 − 1)ρα+1Ad

0

+3Bd
0 ρα

{
9

2
α(α − 1)(α − 2)g(xdF )

+α(27α − 43)p(xdF ) − αk(xdF ) + q(xdF )
}

(C16)
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• quantities relevant in pure neutron matter

ePNM ← 1

2

(
Ad

0 + Ad
1

)
ρα+1 + 1

2
ραBd

nng(xdF ) (C17)

PPNM ← 1

2
(α + 1)

(
Ad

0 + Ad
1

)
ρα+2

+ρα+1Bd
nn

(
1

2
αg(xdF ) + p(xdF )

)
(C18)

• isovector properties

S(ρ) ← 1

2
Ad

1ρα+1 + 1

6
ραBd

nns1(x
d
F )

+1

6
ραBd

nps2(x
d
F ) (C19)

L(ρ) ← 3

2
Ad

1ρα+1 + 1

6
ραBd

nn l1(x
d
F )

+1

6
ραBd

np l2(x
d
F )

+3

2
αAd

1ρα+1

+1

2
αρα

[
Bd
nns1(x

d
F ) + Bd

nps2(x
d
F )

]
(C20)

Ksym ← 9

2
α(α + 1)Ad

1ρα+1 − 2

3
ραBd

nn k1(x
d
F )

−2

3
ραBd

np k2(x
d
F )

+3

2
α(α − 1)ρα

[
Bd
nns1(x

d
F ) + Bd

nps2(x
d
F )

]

+αρα
[
Bd
nn l1(x

d
F ) + Bd

npl2(x
d
F )

]
(C21)

Qsym ← 27

2
α(α2 − 1)Ad

1ρα+1 + 1

3
ραBd

nn q1(x
d
F )

+1

3
ραBd

npq2(x
d
F )

−3αρα
[
Bd
nnk1(x

d
F ) + Bd

npk2(x
d
F )

]

+9

2
α(α − 1)ρα

[
Bd
nn l1(x

d
F ) + Bd

npl2(x
d
F )

]

+9

2
α(α − 1)(α − 2)ρα

[
Bd
nns1(x

d
F ) + Bd

nps2(x
d
F )

]
(C22)
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