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ZUSAMMENFASSUNG

Theoretische Vorhersagen in der Hochenergie-Teilchenphysik erfordern die Be-
rechnung von Feynman-Integralen. Im Zuge solcher Berechnungen treten in
bestimmten Zwischenschritten oft Quadratwurzeln in den kinematischen Vari-
ablen auf. Eine Moglichkeit, Feynman-Integrale in Form multipler Polyloga-
rithmen darzustellen, besteht darin, alle auftretenden Quadratwurzeln durch
eine geeignete Variablentransformation zu rationalisieren. Diese Strategie lasst
sich auf sehr viele Berechnungen der modernen Hochenergiephysik anwenden.
In dieser Arbeit untersuchen wir daher die Frage, mit welchen Methoden man
Quadratwurzeln rationalisieren kann. Einerseits werden wir feststellen, dass
nicht alle Quadratwurzeln rationalisierbar sind. Fiir diese Fille erarbeiten
wir Kriterien, die es uns erlauben werden, die Nicht-Rationalisierbarkeit einer
gegebenen Quadratwurzel zu beweisen. In vielen anderen Berechnungen ist eine
Rationalisierung der auftretenden Quadratwurzeln jedoch durchaus moglich.
Fiir die Behandlung solcher Falle werden wir einen Rationalisierungsalgorithmus
erarbeiten. Dieser ist immer dann anwendbar, wenn die gegebene Quadratwurzel
einer Hyperflache entspricht, die einen Punkt der Multiplizitat d — 1 aufweist,
wobei d den Grad der Hyperfliche beschreibt. In diesem Zusammenhang wer-
den wir auBerdem den F-Zerlegungssatz formulieren. Dieser erlaubt es uns, den
Rationalisierungsalgorithmus auch auf viele andere Quadratwurzeln anwenden
zu konnen, deren assoziierte Hyperflache keinen Punkt der Multiplizitdt d — 1
aufweist. Abschlieffend prasentieren wir das Softwarepaket RationalizeRoots,
das die von uns untersuchten Rationalisierungsmethoden fiir Mathematica und
Maple implementiert. Alle hier diskutierten Techniken werden wir anhand von
Beispielen aus der modernen Hochenergiephysik erklaren und verdeutlichen.






ABSTRACT

Theoretical predictions in high energy particle physics require the computation
of Feynman integrals. Certain steps in these computations generate square roots
in the kinematic variables. One way to express Feynman integrals in terms of
multiple polylogarithms is to rationalize all occurring square roots by a suitable
variable change. Although such a variable change does not always exist, there
are many examples from recent high energy physics that admit a rationalization.
In this thesis, we study the question of how to rationalize a given set of square
roots in detail. On the one hand, not all square roots are rationalizable. For
these cases, we establish criteria that allow us to prove non-rationalizability in a
rigorous manner. On the other hand, many square roots admit a rationalization.
For these cases, we give a rationalization algorithm that is applicable whenever
the hypersurface associated to the square root has a point of multiplicity d — 1,
where d is the degree of the hypersurface. Furthermore, we present the F-
decomposition theorem, which expands the scope of the algorithm to square
roots whose rationalization would otherwise be out of reach. Lastly, we present
the RationalizeRoots software package, which implements our rationalization
methods for Mathematica and Maple. We clarify all of our techniques through
several examples from modern high energy physics.
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PREFACE

At the time when I attended my very first physics conference and asked one of
the senior scientists how to write a good piece in mathematical physics, I got
the following answer:

“Marco,” he said, “whenever you explain algebraic geometry to physicists, the
odds are high that none of them has ever read about anything in the field. Thus,
you should not hesitate to introduce even the most basic notions and only raise
the abstraction level if you absolutely have to. Keep in mind that your readers
are looking for a text that solves their problems, not for a text that lowers their
academic egos.”

I fully agree. Writing a thesis in such a way does, however, come with some
trade-offs in mathematical generality and conciseness. Mathematicians should,
therefore, bear in mind that this text is deliberately written to be accessible for
theoretical physicists.

Most of the material is based on [1]-[3]. In addition, I also included not yet
published insights from [4].

It is my sincere hope that the presented material will serve as a useful resource
for many physicists and will inspire other algebraic geometers to build upon the
results of this thesis.

March 4, 2020
Mainz, Germany Marco Rene Besier
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Introduction

High energy particle physics studies the fundamental building blocks of nature:
elementary particles and their interactions. It assumes that all interactions of
matter are governed by four fundamental forces:

1. Gravity

2. Electromagnetic interaction
3. Weak interaction

4. Strong interaction

We experience the effects of gravity and electromagnetism in our everyday life.
Strong and weak interactions, however, are only present at subatomic scales.

There are two theoretical frameworks to investigate these fundamental forces:
Einstein’s general relativity for gravity and the Standard Model (SM) of particle
physics for electromagnetic, weak, and strong interactions. While general rela-
tivity is an active field of research in and of itself, much effort in contemporary
particle physics is devoted to the investigation of the SM.

To test the validity of the SM, physicists study scattering processes, i.e., they
collide particles at high energies in huge particle colliders—the world’s most
famous being the Large Hadron Collider (LHC) at the CERN laboratory in
Geneva, Switzerland. The advancing precision of the experimental measure-
ments requires equally precise theoretical predictions. To perform the necessary
computations, one has to solve Feynman integrals. These integrals are often ex-
pressible in terms of special functions, called multiple polylogarithms (MPLs),
which admit a representation as iterated integrals with integration kernels of
the form

dz

)
r—z




2 INTRODUCTION

where z is independent of £ but may depend on kinematic variables such as par-
ticle masses or momenta. In practice, however, one often encounters integration
kernels that involve square roots, for example,

dr
\/(95 —21)(z — Z2)'

In order to find a result in terms of MPLs, one can try to rationalize the square

roots in the integration kernels by a suitable variable change and, subsequently,
apply partial fractioning to express the integral in terms of the desired integra-
tion kernels plus trivial integrations.

With this technique, one can solve a large number of Feynman integrals in
terms of MPLs. For this reason, the problem of rationalizing a given set of
square roots has played a crucial role in modern physics applications [5]-[16].
It is tempting to think that the rationalization of square roots is the only way
to express the solution in terms of MPLs. Let us, therefore, emphasize that
Heller, Schabinger, and von Manteuffel recently discovered the first examples
of Feynman integrals expressible through MPLs despite the presence of non-
rationalizable square roots [13]. Nevertheless, the rationalization of square roots
is often the most convenient strategy to find a solution in terms of MPLs.

This thesis provides a thorough study of rationalization methods for square
roots. Part 1 covers the foundations that are necessary to understand the phys-
ical background and to get acquainted with the mathematical tools. Further,
it gives a brief historical overview, showing that the rationalization question is
one of the oldest problems in mathematics. In Part 2, we will establish specific
criteria that help us decide whether a rationalization of a given set of square
roots is possible. Finally, Part 3 gives a detailed account on practical rational-
ization techniques such as our main algorithm, the F-decomposition theorem,
and the usage of the RationalizeRoots package [1].



Part 1

Foundations






CHAPTER 1

The Rationality Question in Mathematics

The following chapter covers some of the fundamental results about the ratio-
nality of algebraic hypersurfaces. Its purpose is to, on the one hand, provide
the reader with an overview of the most important mathematical results on the
topic and, on the other hand, give credit to the outstanding mathematicians
that developed those results.

1.1. CURVES AND CALcULUS: A BRIEF HISTORY

In his “Géométrie” [17] from 1637, Descartes showed that conical sections can
be viewed as zero sets of degree-2 polynomials. A few decades later, in the last
quarter of the same century, Leibniz and Newton developed the foundations
of differential and integral calculus. This triggered one of most fundamental
mathematical questions: If f(x) is a function—a term coined by Leibniz—how
can one explicitly integrate differentials of the form f(z)dz?

For rational functions, a solution to this problem is known since the time of
Euler: using partial fraction decomposition, one can write the primitive

/ R(t) dt

of a rational function R(t) as a sum of logarithms plus a rational function. For
example, one may express the arctangent function through a logarithm via

/Z dt 1/z dt dt 1 1+iz
= — — + — | = —log - .
o 1+82 2/, \1+4+it 11—t 2 1—iz

During this era, the concerted efforts of Bernoulli, Fagano, Legendre, Euler, and

Abel culminated in the study of abelian integrals, i.e., primitives of the form
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[ Rew ds,

where R(z,y) is a rational function depending on two variables that are related
through a polynomial equation

f(z,y) =0.

Thus, one may say that the given integral “depends” on the curve defined by
this polynomial. For example, we may say that the integral

/x+\/1—x2
PO gy

“depends on the circle” since we can view it as an integral

/m-l—y dx
2+y

of a rational function in two variables that are related through the polynomial

dz

equation

2+ —-1=0.
This raised the following question: Under which conditions can an abelian in-
tegral be reduced to the primitive of a rational function and, therefore, be
computed as a sum of logarithms plus a rational function? As we will see in the
upcoming section, this naturally leads us to the question under which conditions
a given algebraic curve is parametrizable by rational functions.

1.2. THE RATIONALITY QUESTION FOR CURVES

Before we proceed with the discussion on abelian integrals, let us give a brief
introduction to rational algebraic curves.

We define an affine plane curve as the curve consisting of the points of C2 whose
coordinates z, y satisfy an equation

f(z,y) =0,
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where [ is a non-constant polynomial with complex coefficients. A curve is
called irreducible if its defining polynomial is irreducible over the field of complex
numbers. The degree of the curve is defined as the degree of f.

An irreducible affine plane curve C' defined by f(z,y) = 0 is called uni-rational
or parametrizable by rational functions if there exist two rational functions
#:(t), dy(t) € C(t), at least one non-constant, such that

f(¢z(t)a ¢y(t)) =0

as an identity in the complex variable ¢. Notice that, if ¢ = tg is a fixed value
and not one of the finitely many values at which the denominator of ¢,(t) or
¢, (t) vanishes, then (¢, (%), #y(to)) is a point of C.

We say that C is rational if there is a rational parametrization (@5 (t), ¢y(t))
such that the map ¢t — (¢4(t), d,(t)) is a one-to-one correspondence between
the values of ¢ and the points of C, provided that we exclude certain finite sets
from both the set of values of £ and the points of C. A map with this property
is called a birational map.

In his three pages paper from 1875 [18], Liiroth proved that, whenever a curve
can be parametrized by rational functions, one can find a rational parametriza-
tion that is one-to-one. In other words, the notions of uni-rationality and ratio-
nality are equivalent for the case of curves.

For many affine plane curves, we can find a parametrization through simple geo-
metric arguments. As an example, let us construct a rational parametrization
for the unit circle, which is defined by the equation z2? +y? — 1 = 0. Consider a
fixed point P on the circle and a variable point () moving on a line not passing
through P. Look at the second point of intersection R of the line PQ) with
the circle. Notice that, if ) traces its line, then R traces the circle. If we fix
P = (—1,0) and assume @ to move along the y-axis, i.e., @ = (0,%), then the
equation of the line PQ is given by y = ¢(1 + z). Next, we determine the in-
tersection points of the line PQ : y = t(1 + ) and the circle 22 + y?> = 1 which
leads us to the equation
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l+2)l=¢y’=1-22=1-2)1+2z).
We see that the first point of intersection is P = (—1,0). For the coordinates
of the point R, we find

2(1+2)=(1-1)
4tz =1—2x
1—t?
T = 1re
and y = t(1+z) = 2t/(1+t?). Finally, recall that R traces the circle for varying
values of t. Therefore, the coordinates of R provide us with the sought-after
rational parametrization:

R= (6.0, 6,0) = (15 1)

FIGURE 1.1. Parametrization of the unit circle by a family of lines.

While the first geometric parametrization of a curve appeared in the works of
Newton [19], there is remarkable evidence that similar techniques were already
known to the ancient Babylonians in 1500 BC [20] to systematically generate
the famous Pythagorean triples, i.e., triples (a,b,c) of natural numbers that
satisfy the equation a? + b = 2.
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Furthermore, we should mention that one can use the above method to parame-
trize any affine plane curve that is defined by an irreducible degree-2 polynomial.
This brings us to the fundamental question:

Which curves admit a rational parametrization?

The answer was found in 1865 by Clebsch [21], who proved that curves can be
parametrized by rational functions if and only if a certain birational invariant,
called the genus, is equal to 0.

To get an idea of how to compute this quantity, let us consider an affine plane
curve C defined by a degree-d polynomial equation f(z,y) = 0. Through ho-
mogenization of f, we obtain a degree-d homogeneous polynomial

F(x,y, z) = zdf(ac/z,y/z),

which defines a projective curve

C:={[z:y:2] € P?|F(z,y,2) =0} C P2
We call C the projective closure of the affine curve C. Provided that C is
smooth, we can compute its genus as

— d—1)(d—-2
9(C) = d-1)d-2) )2( ),

and define the genus of the affine curve C to be the genus of its projective
closure.

In general, however, C' will not be smooth. We say that a point p € C is a
singular point of C if

5 0) = 5 £6) = 5 0) =0,

and write ¥ for the singular locus, i.e., the set of singular points of C. The most
common singularities are the ordinary double point and the cusp.
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FiGURE 1.2. The ordinary double point and the cusp.

To each singular point p € C, we can associate an integer 6(C,p), called the
d-tnvariant or virtual number of double points. Some important values are that
of the cusp with 6 = 1 and that of the ordinary m-point, i.e., the intersection
of m lines that have pairwise different tangents. The d-invariant of such points
is d = m(m — 1)/2. One can compute the genus of a curve through its degree
and the d-invariant of its singular points via

- (d—=1)(d-2) —
9(0) = =252 37 6(C.n).
peEX
Notice that, by the above formula and Clebsch’s criterion, a degree-d curve
whose singular locus is given by r ordinary double points is parametrizable by

rational functions if and only if
(d—1)(d—-2)
B 2
In particular, an irreducible degree-3 curve with an ordinary double point is

rational. Consider, for example, the nodal cubic C’ defined by y? — 23 — 22 = 0.

FI1GURE 1.3. The nodal cubic.
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The projective closure of C’ has an ordinary double point, namely p = [0: 0 : 1].
Therefore, we have g(C’) = 0, telling us that C’ is a rational curve. Furthermore,
we will see in Part 3 that the existence of a double point allows us to parametrize
any irreducible degree-3 curve similarly to the circle, namely by intersecting it
with a family of lines through the double point.

It is, however, not always possible to find a parametrization in that way. A
simple counterexample is the lemniscate—a degree-4 curve whose projective
closure has 3 double points and, therefore, genus 0. Though rational, one cannot
parametrize the lemniscate by a family of lines [22]. Nevertheless, one can use a
more general method and parametrize through curves of higher degree. In fact,
this more general method can be used to find a rational parametrization of any
genus-0 curve [23].

To conclude this section, let us come back to the study of abelian integrals.
Recall that we want to know under which circumstances we can reduce an
abelian integral

/R(x, y) dx

to a primitive of a univariate rational function. We now see that this is always
the case if the curve that the abelian integral “depends” on is a rational curve.

For example, we can use the parametrization of the unit circle in the simple
case where R(z,y) = 1/y with y = v/1 — 22 to compute

/ dz _/d_x__2/ Ao (117 4
iz ) v 1+ B 1 %

with ¢ being a complex constant.

More generally, if an abelian integral “depends” on a curve that is defined by
f(z,y) = 0 and if (¢,(¢), P,(t)) is a rational parametrization for this curve, then
we can reduce the abelian integral via

[ B do= [ Reea0),8,0)0100)

where the right-hand side is indeed a primitive of a rational function.
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In particular, since any curve defined by y?> = az? + bz + ¢, with complex
coefficients a, b, and c, can be parametrized similarly to the circle, we can
reduce any abelian integral

/R(x, Vazr? + bz +¢) dx

to a primitive of a rational function. The corresponding variable changes are
also known as Fuler substitutions.

On the other hand, we see that abelian integrals involving smooth degree-3
curves like y?2 = 1 — 3 cannot be reduced to primitives of a rational function
since y? = 1—22 defines a curve of genus 1. Rather, the abelian integral belongs,
in general, to a new class of functions called elliptic integrals.

Let us, however, clarify a common misconception about the elementarity of
abelian integrals. We say that a given function is elementary if it is a finite
composition of logarithms, exponentials, and algebraic functions. In particular,
the above mentioned class of elliptic integrals is not elementary. Clearly, abelian
integrals that are reducible to a primitive of a rational function are elementary
because we can write them as a sum of logarithms plus a rational function.
There are, however, some special cases in which the abelian integral involves a
non-rational curve but is still elementary. A trivial example is given by

3z + 2 1
/ v hert dm:log(\/w3+x2+w+1>+c
V3 +zr24+z+1

with ¢ being a complex constant. A less obvious example is the integral

x

vVt + 1022 — 96z — 71
which can be expressed in terms of elementary functions as well [24]. The

T,

corresponding expression is given by

1
—glog ((:1:6 + 152* — 80z® + 272° — 528z + 781) vzt + 1022 — 96z — 71

— 28 — 202% + 1282° — 542 + 140823 — 312422 — 10001) +c,

where c is, again, a complex constant.
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The two difficult problems of

1. deciding under which circumstances a given integral is elementary, and
2. how to obtain a solution in terms of elementary functions

were finally solved by Liouville [25]-[27] and Risch [28], [29]. Special integrals
like the above examples, i.e., integrals that are elementary although they “de-
pend” on a non-rational curve are, however, the exception rather than the norm.

1.3. THE RATIONALITY QUESTION IN HIGHER DIMENSIONS

Now that we have discussed the rationality question for curves, let us give a brief
overview of what is known beyond the one-dimensional case. Historically, after
the extensive study of curves, the next logical step was to develop a birationally
invariant theory of surfaces. While it was clear that any irreducible surface of
degree two can be parametrized through a family of lines, the first interesting
insights started with the study of smooth cubic surfaces, i.e., surfaces of degree
three.

In 1849, Cayley observed that the number of straight lines on a smooth cubic
surface must be finite, and Salmon found this number to be 27 [30], [31]. One
decade later, Clebsch gave the explicit equation of a degree-9 surface that in-
tersects the cubic surface exactly in its 27 lines [32], proving both the existence
and the number of lines on smooth cubic surfaces. It was also Clebsch who first
proved in 1866 that smooth cubic surfaces are always rational [33].

After those important contributions, Enriques and Castelnuovo finally suc-
ceeded in giving a rationality criterion for surfaces. They showed that a surface
is rational if and only if its irregularity and its second plurigenus both vanish
[34]. In particular, their results implied that uni-rationality and rationality are
equivalent for surfaces.

Beyond two dimensions, however, things become considerably more complicated
since uni-rationality and rationality are no longer equivalent, i.e., the existence
of a rational parametrization does no longer imply the existence of a rational
parametrization that is one-to-one. Even the case of threefolds is still not fully
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understood, but there are some important results that we should mention:

e Any smooth cubic threefold is uni-rational but not rational [35].

e Any smooth quartic threefold is not rational [36]. There are, however,
some quartic threefolds that are known to be uni-rational [37].

e Any smooth degree-d hypersurface in P* with d > n+ 1 is not rational
by a standard argument on the existence of holomorphic (n — 1)-forms
on such hypersurfaces.

e There is a particular double covering of P2, branched along a quartic
surface in P® with ten nodes which is uni-rational but not rational [38].

e There are at least some cubic fourfolds that are known to be rational
[39]. While most of them are expected to be irrational, there is not a
single known example of a smooth cubic fourfold that is proven to be
irrational.

Although we know very little about the rationality of hypersurfaces beyond
two dimensions, we will see that the results for curves and surfaces already
turn out to be very useful for various applications in contemporary high energy
particle physics. However, before discussing these techniques in detail, let us
first explain where the rationality question for algebraic hypersurfaces appears
in physics computations.



CHAPTER 2

The Rationalization Question in High Energy Physics

2.1. FEYNMAN INTEGRALS

Theoretical predictions for collider experiments in high energy physics require
the computation of Feynman integrals. Most Feynman integrals are difficult to
compute and often divergent under the assumption of four-dimensional space-
time. To deal with these divergences, physicists often calculate Feynman in-
tegrals via dimensional regularization, i.e., they replace the original integral in
four dimensions with an integral in D dimensions [40]. This D is then assumed
to depend on a small regularization parameter ¢ > 0. In practice, one often
assumes D = 4 — 2¢ so that the physically relevant limit is recovered through
e — 0.

Every dimensionally regularized Feynman integral is a meromorphic function of
the regularization parameter [41]—[43]. Thus, we can ask for the corresponding
Laurent expansion. Because ¢ — 0 is the physical limit, we are particularly
interested in the Laurent expansion around € = 0. For this reason, we may view
a Feynman integral [ as a Laurent series

I=Y" I,

k>ko
where ky € Z. The main objects of interest are, therefore, the coeflicients Ij.
So whenever we speak of computing a Feynman integral, we are referring to the
computation of its Laurent coefficients. We will be particularly interested in
the case when these coefficients have a representation in terms of MPLs.

15
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2.2. DIFFERENTIAL EQUATIONS FOR FEYNMAN INTEGRALS

One of the predominant ways to compute Feynman integrals is the differential
equations method [44]-[47]. To get an idea of how it works, let us sketch the
calculation of two Feynman integrals that are relevant for the gauge boson self-
energy in quantum electrodynamics (QED). The explicit integrals read

_b [ dPk 1
I = 2 2 2 / y
' (m ) iw% [m2 - k2]2

_p [ dPk 1
I - — .
ix® [ — T i — (5 — D)1

Working in dimensional regularization, we assume D = 4 — 2¢. Furthermore,

we may regard I; and I, as functions of x = p?/m?2, where m is a particle mass
and p is a particle momentum.

The two integrals I; and I5 represent a particular choice of what is called a basis
of master integrals. More precisely, all Feynman integrals that are relevant for
the sought-after theoretical prediction can be reduced to I; and . The choice
of a master integral basis is, however, not unique, and we will soon see that
some choices are more appropriate than others.

As functions of z = p?/m?, the integrals I; and I, satisfy

i Il . 0 0 Il
dz \ I T iwd) —55 2%:—22) I

To derive this differential equation, one can use several different programs, for

example, LiteRed [48]. Note that all matrix entries are rational functions of z.

Recall that we have some freedom in choosing a basis of master integrals. Thus,
we may switch to a different set of master integrals that satisfies a simpler
differential equation. More precisely, we want to choose master integrals such
that the e-dependence of the matrix is only given by a constant prefactor [49],
[50]. Let us, therefore, switch from I; and I to

J1=2ely, Jo=2e\/—x(4—1x)l>.
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Finding an optimal basis of master integrals is a non-trivial problem. However,
Dlapa, Henn, and Yan recently presented an algorithm to find such a basis,
which is applicable as soon as one of the initial master integrals has a particular
property, called uniform weight. For details on this technique, we refer the
reader to their recent paper [51], which appeared only a few weeks before this
thesis was published.

The new choice of master integrals fulfills the following differential equation:

d - 0 0 -
d—J =€ _ 1 1 J.
L v —z(4—x) z—4
Notice that the simplified e-dependence comes with a penalty: one of the matrix
entries is no longer a rational function but “depends” on a square root.

Recall that, viewing J; and J as Laurent series in €, our ultimate goal is to
find analytic expressions for their Laurent coefficients. More precisely, we want
to express them in terms of MPLs. What is hindering us, is the presence of the

square root y/—z(4 — x).

To solve this problem, we substitute

(1-1)?
o
This turns all matrix entries into rational functions in ¢:

d—l -
—Jze( 01 1 02 )J.
dt ~i ¢ &I

With the simplified e-dependence and rational matrix entries, it is now a stan-

xTr =

dard exercise to solve the differential equation order by order in terms of MPLs.

2.3. THE RATIONALIZATION QUESTION FOR FEYNMAN INTEGRALS

The previous section provided a typical sample calculation of Feynman integrals.
We have seen that one of the most demanding tasks in these computations is
to find a substitution that transforms a given set of square roots into rational
functions. In the above example, we only had to rationalize one square root in
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one variable. In general, however, one has to rationalize a whole set of square
roots that depend on several variables. This rationalization problem often marks
an insurmountable difficulty for many practitioners.

The goal of this thesis is to tackle this problem systematically. The main ques-
tions we will ask are:

1. Can we establish systematic methods to rationalize a given set of square
roots?

2. In case we are unable to rationalize: Can we find a rigorous proof that
the given set of square roots is not rationalizable?

We will start out with a discussion of the second question in Part 2 and subse-
quently present systematic rationalization techniques as well as their implemen-
tation in the RationalizeRoots package [1]. Our methods will make extensive
use of the fact that the rationalization problem for square roots is directly re-
lated to the rationality question for algebraic hypersurfaces.

For instance, we may associate a one-dimensional hypersurface to the square
root 1/—z(4 — z), namely the plane affine curve C defined by y*>+z(4—z) = 0.
We can then use the rational parametrization

(62(2), 8y(2)) = (_(1 — ) 1- t2)

t 7t
of C to rationalize \/—x(4 — z). Indeed, ¢,(t) is precisely the substitution
we used in the sample calculation of the previous section, while ¢, (t) gives us
the rationalized version of the square root up to sign. Conversely, if C' would
not be a rational curve, then this would prove that one cannot find a rational
substitution to rationalize the square root.



CHAPTER 3

Algebraic Hypersurfaces

Now that we have discussed the physical context of the rationalization problem,
let us introduce the mathematical vocabulary that we will use throughout the
thesis. Unless otherwise stated, we will always work over the field of complex
numbers C.

3.1. AFFINE HYPERSURFACES

An affine hypersurface V is the zero set V(f) of a non-constant polynomial
f € Clzy,...,x,] in n variables, embedded in C":

V =V(f) cC".

We call f the defining polynomial of V. The degree of V is defined as the degree
of f. Notice that the embedding is an essential part of the definition: without
specifying the ambient space, the one-point set {0} C C could be confused with
the y-axis in C? since both are defined as the zeros of f = x. We will, therefore,
agree on the convention to view the zero set of a polynomial in n variables as a
subset of C". Whenever there is an exception to this convention, the embedding
will be specified.

Examples If V' = V(f) is defined by a degree-d polynomial f € C|z,y] in
two variables, then V defines an affine plane curve of degree d. Curves of
degree 1 are called lines, of degree 2 conics, of degree 3 cubics. The unit circle
V(z% + y% — 1) is an example of a conic.

19
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The zero set of a degree-1 polynomial is called an affine hyperplane. For instance,

the line V(az + by — ¢) with non-zero scalars a, b, and ¢, is an affine hyperplane
in C2. o

If f=T1I", fik" is the defining polynomial of an affine hypersurface V', where
fi denote the irreducible factors of f and m, ky,...,ky, € N, then V; = V(f;) is
called a component of V. Every hypersurface V is the union of its components,
ie, V=, Vi. An affine hypersurface is said to be irreducible if it has only
one component.

The defining polynomial is only unique up to multiplication by non-zero con-
stants and powers of its irreducible factors. Affine hypersurfaces should, there-
fore, be defined via reduced polynomials, i.e., instead of taking the defining
polynomial to be [[, f¥, we take [[, fi. Notice that reduced polynomials
must not be confused with irreducible polynomials. For example, the polyno-
mial f =2% —y® = (z +y) - (z — y) is reduced but not irreducible.

Finally, a rational parametrization of an affine hypersurface V = V(f) c C"
with f € C[zy,...,z,] is an n-tuple of rational functions (@, (t),- .., ¢z, (t))
which depend on n—1 variables t = (¢, ..., t,—1) and define a dominant rational
map ¢ : C*! — V. This means that

1. for almost all parameter values t € C*~?, the n-tuple (¢y, (), - . . , ¢z, (1))
defines a point on V, provided that we exclude the parameter values
for which the denominators of the ¢, vanish.

2. up to subsets U C V of positive codimension, i.e., subsets of “measure
zero,” we can write every point of V' as an n-tuple (@, (1), - ., ¢z, (t))
for some ¢ of the parameter space C" .

3.2. PROJECTIVE SPACE

The projective n-space P" is the set of all complex lines through the origin in
Cr*l. If ~ denotes the equivalence relation of points lying on the same line
through the origin, then
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_ Cn+1\{0} .

~Y

]P)’n

Points in P™ are equivalence classes [(x,...,Zn)] = {(AZo, ..., Az,)}, where A
can be any non-zero complex number and at least one of the coordinates z; is
non-zero. We denote an element p € P” by one of its representatives.

To distinguish the class from its representative, we use square brackets rather
than parenthesis and write colons between the coordinates of the representing
point:

[Zo:...:z,] € P

These homogeneous coordinates emphasize that a point in IP" is only defined up
to a non-zero scalar multiple.

3.3. POINTS AT INFINITY

The projective space P" is often viewed as the complex n-space C™ together
with an “infinitely distant point in every direction.” To clarify this interpre-
tation, consider the one-dimensional projective space P!. If we fix a reference
hyperplane in C2, i.e., a complex line not passing through the origin, we obtain
a representative for each point p € P! by taking the unique point where the
reference line meets the line through the origin that defines p. Only one point
in P! fails to have such a representative, namely the point corresponding to the
line through the origin that is parallel to the reference line. This point is called
the point at infinity. Therefore, we can regard P! as the union C U {oo} via

z1
2, for o # 0,

[0 : 1] —
0o, for g = 0.

To take this construction one step further, consider the projective plane P2
First, we fix a reference hyperplane in C3, i.e., a complex plane not passing
through the origin. Almost all points in P? will have a unique representative
on this reference plane. The exceptions are the points corresponding to the
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lines through the origin that are parallel to the reference plane. These points at
infinity form a copy of P! so that P2 = C2 U P*.

We can generalize this idea to the case of P" as follows: if Uy, is the subset of
P™ in which the zy-coordinate is non-zero, then we can identify U,, with the
hyperplane zy = 1 in C"*! via

Z1 Tn Z1 Tn
[Zo: @y :...: 2] = [1:—:...:—] —> (1,—,...,—).
To To To Zo

Thus, U,, is a copy of C", and we may think of it as the “finite part” of P".
We will call the affine space that corresponds to U,, the coordinate chart in
which xo = 1. The remaining points, for which zq = 0, are called the points at
infinity. These are representatives of the lines through the origin in C**! that
are parallel to the reference hyperplane o = 1. They form an n — 1-dimensional
projective space P"~! so that P* = C* UP™! via

Z1 ””"), for xq # 0,

ZO,...,E

[To:...:2p] — (
[Z1:...:2,], for o = 0.

Notice that our choice of a reference hyperplane is arbitrary. For instance,
instead of U,,, we could have considered any U,, with 0 < ¢ < n. Therefore,
what is “finite” and what is “at infinity” is a matter of perspective—it depends
on the coordinate chart that we are working in.

3.4. PROJECTIVE HYPERSURFACES

A polynomial F' € Clzy, ..., x,] is called homogeneous of degree d if all its terms
have the same degree d. In particular, a degree-d homogeneous polynomial
satisfies

F(\xog, ..., z,) = MNF (g, ...,2,), A € C.
Notice that, if a point (g, . . . , £,) € C"*! is a zero of a homogeneous polynomial
F, then every point (Azo, ..., Az,) is a zero of F. Thus, the zero set of F is a

union of complex lines through the origin in C"*1.
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We define a projective hypersurface as the zero set of a homogeneous polynomial
F € Clxy,...,z,|, embedded in P™:

V=V(F) cP"
Recall that U,, denotes the subset of P” in which the coordinate z; is non-zero,
and that U,, corresponds to a copy of C", namely the coordinate chart of P" in
which z; = 1. Similarly, the intersection V,, = V N U,, C P" corresponds to an
affine hypersurface

V(F(.’Eo, ey Li_1, 1, Litly--- ,xn)) C (Cn,
called the affine chart of V in which z; = 1. Notice that we can always regard
a projective hypersurface as the union V = U?:(Jl Vi -

By abuse of notation, we will denote by U, not only the subset of P" in which
the coordinate z; is non-zero, but also the coordinate chart of P™ in which
z; = 1. Likewise, we will denote by V,, not only the intersection V N U,, C P",
but also the affine chart of V' in which z; = 1.

Example The affine charts of W = V(22 + y2 — 2%) C P? are given by the
hyperbolas W, = V(1 + y? — 2%) € C? and W, = V(2% + 1 — 2?) C C? together
with the complex unit circle W, = V(22 + y? — 1) C C%. Notice that we can
find a representative for each point of W in at least one of its affine charts. Put
differently, for every point p € W, we can always find at least one affine chart
of W so that p is not “at infinity.” O

3.5. PROJECTIVE CLOSURE OF AN AFFINE HYPERSURFACE

The projective closure of an affine hypersurface V' = V(f) C C™ is the projective
hypersurface V = V(F) C P", defined by the homogenization F of f. We can
homogenize a degree-d polynomial f in n variables to turn it into a degree-d
homogeneous polynomial F' in n + 1 variables in the following way: decompose
f into the sum of its homogeneous components of various degrees, i.e., write
f =9o+...+ g4, where the g; are homogeneous polynomials of degree i. Notice
that some g;’s may be zero, but g; # 0. The homogeneous component gy is
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already homogeneous of degree d. The term g;—; € C[zy,...,z,], however, is
homogeneous of degree d — 1. To make it homogeneous of degree d as well, we
multiply by a new variable zy and obtain a polynomial zogs—1 € C|zo, ..., Z,)].
In the same manner, we turn all of the remaining g¢;’s into a homogeneous
degree-d polynomials via multiplication by a:g_i. The sum of these terms is the
homogenization of f, a degree-d homogeneous polynomial

F=zxfgo+z 01+ ...+ ga-
We call =y the homogenizing variable. Notice that the restriction of F' to the
hyperplane xy = 1 recovers the original polynomial f.

Example The projective closure V of the unit circle V = V(z% + y? — 1) C C?
is given by the projective hypersurface V = V(22 + 3% — 2%) C P2. We see that
the unit circle has two points “at infinity.” Put differently, we see that V has
two points that lack a representative in the affine chart V of V in which z = 1.
These two points are given by [1:4:0] and [1: —i: 0]. ¢

3.6. SINGULAR POINTS OF HiIGH MULTIPLICITY

The tangent space T,V at a point p = (p1,...,p,) € V of an affine hypersur-
face V = V(f) C C" with defining polynomial f € Clzy,...,z,] is the affine
hyperplane with defining polynomial

§—£<p> (21— pa).

A point p € C" is a singular point of V if it does not allow for a well-defined
tangent space, i.e., if

f0) = o) =+ = () =o.

We say that p € V is a regular point of V| if it is not a singular point of V.

A point p € V is of multiplicity r € N if there exists at least one non-vanishing
r-th partial derivative
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8i1+...+inf
Oz - - Oxir

and, at the same time, all lower-order partial derivatives vanish at p:

(p) #O0withéy +...+ i, =7

ail-i-...—i-’inf
Oxf' - - Oxin

We write mult,(V) = r. Notice that the regular points of V are precisely the

(p)=0withé; +...+4é,=kforallk=0,...,r—1.

points of multiplicity 1. Later, in Part 3, we will be particularly interested in
the points of V' with multiplicity d — 1, where d denotes the degree of V. We
will often speak of these points as (d — 1)-points, implicitly assuming that d
denotes the degree of the hypersurface under consideration.

The above notions carry over to the case of projective hypersurfaces in an ob-
vious way: If V.= V(F) C P" denotes a projective hypersurface defined by a
homogeneous polynomial F' € C[xy, ..., z,], then a singular point of V' is a point
where all n + 1 partial derivatives of F’ vanish. A point p € V is of multiplicity
r if there is at least one non-vanishing r-th partial derivative of F' at p and, at
the same time, all lower-order partial derivatives of F' vanish at p.

3 — 22 and

Example The nodal cubic has defining polynomial f(z,y) =4*> — =
a singular point at p = (0,0) since f(p) = 2(p) = g—i(p) = 0. Furthermore, we
see that %é(p) # 0, telling us that the nodal cubic has a point of multiplicity 2

at the origin. O

FIGURE 3.1. The nodal cubic V(y? — z® — z?).
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Notice that if we assume a given affine hypersurface to contain the origin, then
we can define the multiplicity of the origin as the minimum degree of the non-
zero homogeneous components of the defining polynomial. Since the notion of
multiplicity is invariant under linear changes of coordinates, we can also deter-
mine the multiplicity of any point of the hypersurface by moving the point to
the origin via a linear coordinate change and subsequently reading off the min-
imum of the degrees of the non-zero homogeneous components of the defining
polynomial of the translated hypersurface.

So whenever we have a degree-d hypersurface V = V(f) C C" with a point
p = (p1,--.,pn) of multiplicity r < d and move p = (ps, ..., pn) to the origin by
considering the hypersurface with defining polynomial

g(xl""axn) = f(wl +p1a“"x'n+p'n))

then g can always be written as

9(x1, . Zn) = gr(Z1, .y Tn) + -+ ga(Z1, - -, 20),

where g, denote degree-k homogeneous components of g with k=r,...,d.

3.7. SIMPLE SINGULARITIES OF CURVES

To conclude the present chapter, let us sketch some ideas behind the theory of
plane curve singularities. On the one hand, this subject requires many notions
that most physicists will not be familiar with. On the other hand, we will be able
to perform the relevant techniques in an automated fashion using the ClassSing
function [52]. It is, therefore, much more in line with the idea of this thesis to
acquaint the reader with some intuition behind plane curve singularities, rather
than to elaborate the theory in detail. We do, however, strongly recommend
the book by Greuel, Lossen, and Shustin [53] for a thorough treatment of the
subject.

In Chapter 1, we have already seen two different types of plane curve singulari-
ties, namely the cusp and the ordinary double point. This raises the question,
whether one can develop a reasonable classification of singularities.
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As an example, consider the affine plane curves V(y? — 22) and V(y? — 23 — z2),
whose real points are depicted below.

FIGURE 3.2. The curves V(y? — z2) and V(y? — 23 — z2).

Both curves have a singular point at the origin. From a geometric point of view,
it is evident that, taking successively smaller neighborhoods around the origin,
the two curves look increasingly similar. Thus, in an attempt to classify plane
curve singularities, it would be reasonable to require that these two singularities
should belong to the same class.

We can encode such similarities algebraically by regarding defining polynomials
of curves as elements of the ring of formal power series C[z,y]. More precisely,
if C; = V(f1) and Cy = V(f2) denote two affine plane curves that both have a
singularity at the origin, then we say that these two singularities are of the same
type if the two quotient rings Cz,y]/{f1) and C[z,y]/(f2) are isomorphic. We
call C[z, y]/(f;) the associated quotient ring of C;.

Example For the two curves V(y? — z?) and V(y? — 2% — z2), we can find an

isomorphism between the associated quotient rings as follows: first, notice that

the polynomial f, = y* — 23 — 22 is, in contrast to fi = y* — 2, an irreducible
element of C[z,y]. If we, however, regard f, as an element of C[x,y], then we

can write
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This factorization is easily obtained by observing that

fe=y-2*Q+2z)=(@y—2vV1+z)(y+zv1+z)

and expanding

1—2
1+x—1+2 ™)

Finally, the sought-after 1somorph1sm between the rings C[z,y]/(y*> — z%) and
Clz,y]/{y* — 2 — z?) is given by the map

(x, (3: + Z =20 it y) ,

showing that C; and Cs have a smgularlty of the same type at the origin. ¢

In the late 1960’s, Arnold started the classification of hypersurface singularities.
Those efforts culminated in the famous list of ADE singularities [54], [55].

Definition If an affine hypersurface V = V(f) C C" has a singular point at the
origin of C", then we say that the origin is a simple or ADE singularity of V, if
the associated quotient ring is isomorphic to a quotient ring C[z1, ..., z,]/{g),
where g is a polynomial from the following list:

Ap ot 422 4 g, B> 1,

Dy : zo(x? + 2572) 4 ¢, k> 4,
Es: 23 +15+q,

Ey:x1(22 +33) +q,

Eg: 23+ 25 +q,

where q := 22 + -+ + z2. 0

The type of a singularity is invariant under linear coordinate transformations
[63]. Therefore, we can classify any singular point p = (p,...,p,) of a given
affine hypersurface V- = V(f(zy,...,z,)) C C" by classifying the origin sin-
gularity of V' = V(f(z1 + p1,...,Zn + pn)) C C". Further, if F denotes a
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homogeneous polynomial in n + 1 variables, we say that a projective hypersur-
face W = V(F) C P" has a simple singularity at ¢ € W, if there is an affine
chart of W, in which ¢ is not “at infinity,” that has a simple singularity at
the respective affine representative of q. The type of the singularity does not
depend on the choice of the affine chart [53].

Note that many common hypersurface singularities, like the ordinary double
point or the cusp, are simple singularities. In particular, we see that the two
curves of our example have an A; singularity at the origin since

Clz, yl/(y* — 2* — 2?) ~ Clz, y]/(y* — 2*) ~ Clz, y]/(«® + v*).

To have some concrete examples in mind, the figures below depict the affine
curve singularities of type Ai,...,As and Dy,..., Dy.

Al A2 A3 A4

FI1GURE 3.3. The first four A; curve singularities.

D4 D5 DG D7

FIGURE 3.4. The first four Dy, curve singularities.

These singularity types will play an important role in our non-rationalizability
proofs for certain sets of square roots from high energy physics.
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Theoretical physicists will, of course, be particularly interested in how to classify
hypersurface singularities. What is needed is a simple, preferably automated,
way to solve the classification problem for physically relevant examples. While
some cases allow for a full classification by plain geometric reasoning, we will
also present the ClassSing function, which one can use to automatically show
that all singularities of a given curve are simple.



Part 2

Non-Rationalizable Square Roots






CHAPTER 4

Rationalizability

While many physically relevant sets of square roots are rationalizable, there are
also various cases where a rationalization is not possible. Therefore, let us start
with a discussion on how to prove such non-rationalizability statements before
proceeding to the rationalization techniques of Part 3.

4.1. THE NOTION OF RATIONALIZABILITY
A square root /p with p € C[zy, ..., x,] is called rationalizable if and only if the

affine hypersurface V = V(f) c C**! with f(r,z1,...,2,) =12 — p(21,. .., Zn)
has a rational parametrization.

Example The square root 1/ —xz(4 — z) is rationalizable. A rational parametriza-
tion of V = V(r? 4+ z(4 — z)) has been given in Chapter 2. O

More generally, if p1,...,pm € Clzy,...,z,| are polynomials, then the set of
square roots

{\/p_la ceey vpm}
is called rationalizable if and only if there are n rational functions ¢,,, ..., ¢, €

C(t4,...,t,) and m rational functions @,,, ..., o, € C(ty,...,t,) such that, for
all k=1,...,m, the (n + 1)-tuple (¢, bz, - .-, Psz,) is a rational parametriza-
tion for the hypersurface V(r2 — py(z1,...,T,)) C C*L.

This is the same as saying that there is a single variable change in the z; that
rationalizes all of the given square roots simultaneously. If a parametrization of
this form does not exist, we say that the set of square root is not rationalizable
or call it a non-rationalizable set of square roots.

33
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Example The set

{V=aa=2),v5}

is rationalizable because there exist rational parametrizations

@n0.0:0) = (L5505,

(Ba(®), 6a(8)) = ((1 ) e ”4) |

t 7 t2
for the two hypersurfaces V) = V(r?2 + z(4 — z)) and V, = V(r2 — z) that share
the same expression for ¢,. Put differently, there is a single rational substitution

that rationalizes all of the given square roots.

Conversely, the set

{\/—x(4 — 1), \/x+4}

is a non-rationalizable set of square roots. While we will discuss the techniques
to prove such a statement in one of the upcoming chapters, the purpose of
this example is rather to clarify the condition on the ¢,,: at first sight, it may
seem strange to call this set non-rationalizable because both square roots of the
set are rationalizable—the first via the substitution from Chapter 2 and the
second via ¢ = 2 — 4. These substitutions are, however, not the same and will,
therefore, not be useful in Feynman integral computations. Instead, for practical
applications in physics, we need a single substitution that rationalizes all of the
given square roots and, as already touched upon above, such a substitution does
not exist for the given set. O

Notice that the definitions of this section also make sense for square roots with
rational arguments, i.e., we could assume py,...,p, € C(z1,...,z,) instead of
D1y Pm € Clz1,...,2,]. It is, however, enough to consider polynomial square
root arguments as guaranteed by the following lemma.
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Lemma The set of square roots

i)

with fi,..., fm, 91, -+, 9m € Clz1,...x,], is rationalizable if and only if the set

:{m,...,\/fm-gm}

is rationalizable.

Proof If R is rationalizable, then there exist m rational parametrizations
(Dri> Pays - - -, Pz,) With & = 1,... m for the hypersurfaces with defining equa-

tions
2 f 1 2 f’m
TI=— T =
(231 Im
Therefore, these also solve the equations
r? — fig1 2 _ Jm9m
gt g

But this means that the functions

ko ¢T'k : gk(¢$1a v a¢mn)

1 ¢m1
(pmn = ¢$n
give us m rational parametrizations (¢r,, @z, --.,¥s,) that parametrize the

hypersurfaces defined by

™ =f1~gl,...,7”,2n=fm-gm.
The converse statement is proven in the same manner and skipped for the sake
of brevity. (]

In addition to this simple mathematical argument, the author is not aware of
a single example from theoretical high energy physics where the initial set of
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square roots that appears in a calculation contains non-polynomial arguments.
Therefore, we will focus on sets of square roots with polynomial arguments.
Notice, however, that we will only make this assumption in the context of non-
rationalizability proofs. In the context of the rationalization methods of Part 3,
square roots with rational arguments will be unavoidable and sometimes even
be preferred over square roots with non-rational arguments.

4.2. ON THE SCOPE OF NON-RATIONALIZABILITY PROOFS

Most physicists have an intuitive idea of what the term “rationalizable square
root” should imply, namely one’s ability to find a substitution that turns the
given square root into a rational function. Most of the current physics literature
does, however, not specify what kind of substitutions are allowed or excluded.
It is tempting to discount this as an unnecessary detail, but it turns out that
the situation is more delicate than one might think.

Consider, for example, the square root v/t* + 2 + 1. We will soon see that it
corresponds to a non-rational plane affine curve and is, therefore, not rationaliz-
able in the sense of the previous section. Nevertheless, we can find a substitution
that rationalizes this square root, namely

(2—s)-s
s2—-1 "7
which turns the square root under consideration into a rational function

_ s2 -1
C1+s-(s—1)
As we see from this simple example, it is crucial to understand that our notion

tt+t2+1

of non-rationalizability only implies that there is no rational substitution that
rationalizes the given square root. It does, however, not exclude the existence
algebraic substitutions as the one above. In the end, we are particularly inter-
ested in finding rational substitutions since they do not introduce new square
roots in other parts of our computation. Algebraic substitutions, on the other
hand, may rationalize the given square root, but will introduce new square roots
in other places.
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We should stress, though, that algebraic substitutions sometimes play an impor-
tant role in intermediate steps when constructing a rational parametrization. In
fact, we will present an example in Part 3 where it is necessary to use algebraic
intermediate substitutions for our rationalization methods to succeed.

4.3. PROVING NON-RATIONALIZABILITY: THE STRATEGY

Our non-rationalizability proofs are always going to be proofs by contradiction
and will rely on the following theorem:

Theorem If a given set of square roots

{vp1, VP2, .-, V/Pm}

with polynomial arguments py, ..., p, € Clzy,...,z,] is rationalizable then, for
every subset 0 # J C {1,...,m}, the hypersurface defined by the equation

T 2= H b;
jeJ
is parametrizable by rational functions.

Proof If the given set of square roots is rationalizable, then there exist m
rational parametrizations of the form (¢, , @zy, ..., ¢z,) With £ =1,...,m that
parametrize the m hypersurfaces defined by

2 _ 2 _

7’1 —p]_,...,rm —pm
Using these parametrizations, we can construct a rational parametrization for
every hypersurface of the form

’1”2 = H b;
jeJ
by mapping the rational functions that constitute the given parametrizations
via
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(Fy @1,y Tn) > (Hrj,xl,...,xn) :
jeJ
where the entries of 7 are formed by the variables r; with j € J. O

Furthermore, we will make use of the following corollary.

Corollary If R is a non-rationalizable set of square roots, then any larger set
of square roots R’ that contains R as a subset is also not rationalizable.

Proof Suppose R’ is a set of square roots that contains a non-rationalizable
subset R = {{/P1,...,y/Pm} C R/, where 1 < m < |R/|. If R’ would be
rationalizable, then this would, in particular, imply the existence of a rational
parametrization of the affine hypersurface defined by

m

2 _

r* =11
j=1

which contradicts the non-rationalizability of R. O

Based on these statements, we arrive at the following strategy to prove non-
rationalizability of a given set of square roots R’:

Strategy for Non-Rationalizability Proofs

1. Assume that a subset

R ={vP1,V/P2,---,/Pm} CR'

of R’ is rationalizable.
2. By the above theorem, this implies that every hypersurface of the form

’1”2 = H b;
jeJ
has a rational parametrization. Therefore, consider any hypersurface
of this form.
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3. Prove that the hypersurface under consideration is not parametrizable
by rational functions to contradict the assumption that R is rational-
izable.

4. Lastly, apply the above corollary to conclude that R’ is not rationaliz-
able.

4.4. ON THE ROLE OF SQUARES

As explained in the previous section, we can prove the non-rationalizability of
a given set of square roots

{vP1, VP2s - v/Pm}

by showing that at least one affine hypersurface of the form

T2=Hpj

jeJ
is not parametrizable by rational functions, where pq,...,pm € Clzy,...,z,]
and 0 # J C {1,...,m}.

Depending on the number of square roots m, one often has many different
choices for a hypersurface of this type. While there may be many of these
choices that will work to prove the non-rationalizability of the given set, some
of the hypersurfaces will be more difficult to study than others. Therefore, one
should try to pick the hypersurface that is easiest to investigate.

For instance, hypersurfaces of comparatively low degree will usually be easier
to study than hypersurfaces of higher degree. Put differently, we usually want
to pick the minimum number of polynomials p; necessary for our hypersurface
to be not parametrizable by rational functions.

Example Consider the set

{V(z-1),V/(z-2)(z—3),V/(z — 4)(z - 5)}.
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Naively, we could take all square roots of the set into account and pick the affine
plane curve V =V (r2— (z — 1)(z — 2)(z — 3)(z — 4)(z — 5)) as our hypersurface
of choice. By the methods of the next chapter, one can then prove the non-
rationalizability of the given set by showing that V' is not parametrizable by
rational functions.

On the other hand, we could also consider only the first two square root argu-
ments and use W = V(r2 — (z — 1)(z — 2)(z — 3)) instead of V, giving us an
irrational curve as well, but being slightly easier to study. O

In addition to the fact that we want to pick a hypersurface of a suitable degree,
there is another—more subtle—condition that we want to impose on the defining
equation of our hypersurface. For non-rationalizability proofs beyond square
roots in one variable, our techniques will heavily rely on the presence of simple
singularities. The singularities of the relevant hypersurface will, however, never
be exclusively simple as soon as the right-hand side of the defining equation
2 =T] jeg Pj contains a square.

For example, in the important case where the zeros of Hje ;p; define a one-
dimensional hypersurface, i.e., a curve, the presence of a square would imply
that this affine plane curve has an entire component of higher multiplicity. In
other words, the singular locus of this curve has dimension greater than zero,
i.e., the set of singularities is not just a set of isolated points. Simple singular
points are, however, necessarily isolated. Therefore, the presence of a single
square on the right-hand side of 2 = [] jes P will immediately imply that not
all singularities of the hypersurface are simple so that our main technique for
square roots in two variables will not be applicable. Fortunately, the following
lemma allows us to ignore all squares on the right-hand side of 72 = [] e Di-

Lemma If p,q € Cxy,...,%,| are non-constant polynomials, then the affine
hypersurface W = V(r? —p- ¢>) C C*™! is parametrizable by rational functions
if and only if V = V(r? — p) C C**™! is parametrizable by rational functions.

Proof If W is parametrizable by rational functions, then there exist rational
functions ¢, ¢z, .- ., ¢z, € C(t1,...,t,) with
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¢12~ = p(¢z1a <. 7¢wn) ) (Q(¢w17 ) ¢zn))2
But this means that the functions ¢,,, ..., ¢s,, and ¢z = &,/(q(dzy,- -, Dz,))
satisfy the equation 72 = p(zy,...,Z,). The proof of the converse statement is
just as simple and skipped for the sake of brevity. O

Lastly, let us emphasize that “ignoring squares” means to ignore them entirely,
e.g., we replace 22 by 1 rather than by z.

4.5. When TO PROVE NON-RATIONALIZABILITY

When trying to prove the non-rationalizability of a given set of square roots, it
is crucial to pick the right “starting point” for the proof. The problem is that
certain substitutions can give the impression that rationalizable sets of square
roots look like non-rationalizable ones. To clarify what we mean by this, let us
discuss a simple example.

Example Consider the following set of square roots:

{\/m -1,V — 2} .
In an attempt to rationalize this set, we may proceed as follows:

1. Try to rationalize the first square root.

2. If successful, plug the corresponding substitution into the second square
root and try to rationalize the resulting square root.

3. If successful, compose both substitutions to obtain a single substitution
that will rationalize both square roots.

In Part 3, we will discuss this procedure in more detail. For now, let us apply
it to the example at hand: as a first step, we rationalize the first square root by
putting x = #* + 1 so that

Vz—1=1¢.

With this substitution, the second square root becomes

1,
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giving us a square root of a degree-4 polynomial with distinct complex zeros. As
we will see in the next chapter, this square root is not rationalizable. Therefore,
it is very tempting to naively assume that the non-rationalizability of this square
root implies non-rationalizability of the original set of square roots.

This assumption is, however, not true: suppose that we substitute z = ¢2 + 1
instead of z = t* + 1 for the rationalization of the first square root. Clearly, the
former is a valid substitution as well and yields

r—1=t

for the first square root and

Vr—2=+vt2-1
for the second. But the hypersurface corresponding to this new square root is

just a plane conic curve so that we easily rationalize it with an Euler substitu-
tion. One of those is, for example, given by

24
C1—s2
Finally, the composition of these two substitutions yields a substitution that

t +1.

rationalizes both original square roots simultaneously and is given by

252 2
= 1 1
T (1—32+) +1,

showing that the given set of square roots is indeed rationalizable. ¢

This example illustrates that proving non-rationalizability after some substitu-
tions have already been made, does not necessarily imply non-rationalizability of
the original set of square roots. For this reason, physicists should always prove
non-rationalizability as early as possible, i.e., as soon as the square roots arise
in the calculation. In typical physical applications like our sample calculation
of Part 1, this means that one should always consider the square roots in the
original kinematics in which they first appeared. In practice, these will often be
given by squared masses and the common Mandelstam variables. The correct
“starting point” to prove the non-rationalizability of a given set of square roots
should, therefore, always be “as soon as they arise.”



CHAPTER 5

Sets of Square Roots in One Variable

In this chapter, we will explain how to prove non-rationalizability for sets of
square roots in one variable. This means that we will only consider sets of the

form

{VP1, VP2, -5 V/Pm} s
where all square root arguments are polynomials p,...,p, € C[z] in a single
variable x.

5.1. NON-RATIONALIZABILITY VIA GENUS

Recall from the previous chapter that, to show non-rationalizability of such a
set, we have to find at least one hypersurface V' of the form

7‘2=Hpj

jeJ
with § # J C {1,...,m} such that V is not parametrizable by rational func-
tions. In the case where all square root arguments are non-constant univariate
polynomials depending on the same variable, this hypersurface V' will always
be a plane affine curve.

To prove the non-rationalizability of the given set, we need to show that V' is not
parametrizable by rational functions. As mentioned in Chapter 1, this problem
was already solved by Clebsch [21] over 150 years ago. For our purposes, we
may formulate Clebsch’s result as follows:

Theorem A plane affine curve V C C? is parametrizable by rational functions
if and only if its genus is 0.
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For a proof of this statement, we refer to the original work of Clebsch [21] or
any textbook on basic algebraic geometry, e.g., the one by Shafarevich [56].

In Chapter 1, we have already seen how to compute the genus of a curve based
on its degree and the d-invariant of its singular points. The easiest and most
reliable way to perform this computation is to use computer algebra software.
In this thesis, we will use Magma [57] but there are many other programs, e.g.,
Singular [58] that will compute the genus just as fine.

Given the set

{VP1, VP2, -, v/Pm}

the curves of interest are defined by polynomials of the form f(r,z) = r? —p(z),
where p(z) = [[;c,p; with @ # J C {1,...,m}.

In Magma, we can then compute the genus of one of these curves, call it V', with
only a few lines of code

> A<r,x> := AffineSpace(Rationals(),2);
>f :=1r"2 - p(z);

>V := Curve(A,f);

> Genus(V);

where the polynomial p(z) = [[,.;p; is to be substituted for the italic expres-
sion p(z) in the definition of £. As soon as we find that such a curve has a
non-zero genus, we can conclude that the given set is not rationalizable.

5.2. NON-RATIONALIZABILITY VIA DISTINCT ZEROS

Another straightforward way to prove the non-rationalizability of univariate sets
of square roots is to check whether the polynomial p(z) = [];;p;, as defined in
the previous section, has at least 3 distinct complex zeros of odd multiplicity. To
see that this statement is indeed true, let us first consider the following lemma:
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Lemma If p € Clz] is a polynomial whose complex zeros are all distinct and
deg(p) > 3, then V = V(r? — p(z)) C C? is not parametrizable by rational
functions.

Proof Using the definition of singular points, one can easily check that the
affine curve V = V(r? — p(z)) has a singular point if and only if p(z) has a
double zero. Thus, if all complex zeros of p(z) are distinct, then V is smooth,
and the statement follows from the genus formula

_(@-1)(d-2)
B 2
for smooth degree-d curves together with Clebsch’s genus criterion. O

With the above lemma, we arrive at the following theorem:

Theorem If a degree-d polynomial p € C|z] has at least 3 distinct complex zeros
of odd multiplicity, then V' = V(r? — p(z)) is not parametrizable by rational
functions.

Proof We write n < d for the number of distinct zeros a; € C of p. Furthermore,
we take m := |{a; € C|p(a;) = 0,v(a;) is odd}| to be the number of zeros of p
that have odd multiplicity, where v(-) denotes the multiplicity of a given zero of
p. By assumption, we have 3 < m < n < d. We write a, ..., a,, for the zeros of
odd multiplicity and @, 1, - - -, a, for the zeros of even multiplicity. Therefore,
by the fundamental theorem of algebra, we have

p(x) = (c. H(x_ai)> . (H(x_a J(a)— 1) ( H T — a u(al))

i=1 i=1 +1

—(c-T[e-a)) - [[[e=a)™ ) | [] @-a)" ),
i—1 i—1 i—m+1

where ¢ € C is the leading coefficient of p. The lemma of Chapter 4 tells us

that we can ignore squares in p, i.e., if W = V(r? — ¢ [[%;(z — a;)) is not
parametrizable by rational functions, then V' = V(r? — p(z)) is not parametriz-
able by rational functions. But, by the previous lemma, it is clear that W is
not parametrizable by rational functions. O



46 5. SETS OF SQUARE ROOTS IN ONE VARIABLE

In conclusion, to prove non-rationalizability of a univariate set of square roots

{v/P1s VP2, - V/Pm}
one only needs to show that there is at least one polynomial p(z) = [[;c;p;
with @ # J C {1,...,m} that has at least 3 distinct complex zeros of odd
multiplicity.

5.3. AN ExaMPLE FroM HiGcH ENERGY PHYSICS

Sets of square roots in a single variable occurred in many Feynman integral
computations, especially throughout the last decade [59]—[83]. Let us, therefore,
show how the criteria of the previous sections are to be applied in practice. As
an example, consider the set

R ={Ve, VIt Ve@- D},

which appears in perturbative corrections for Higgs production [84]. Our goal is
to show that these three square roots cannot be rationalized simultaneously. We
prove this using the strategy of the previous chapter, i.e., we show that at least
one hypersurface of the form V = V(r? — [[,_; p;) with @ # J C {1,2,3} and
m(z) =z, pao(x) = 1 + 4z, p3(z) = z(z — 4) is not parametrizable by rational
functions. For instance, consider the affine curve V = V(r? — p,(z)ps(x)). On
the one hand, we see that the polynomial ps(z)ps(x) has 3 distinct complex
zeros of multiplicity 1, namely z; = —1/4, o = 0, and z3 = 4. On the other
hand, we can check that V has a non-zero genus with Magma:

> A<r,x> := AffineSpace(Rationals(),2);

> f 1= 172 - (1+4x)*x*x(x-4);
> V := Curve(A,f);

> Genus(V);

1

We conclude that V' cannot be parametrized by rational functions. Therefore,
the square roots of R cannot be rationalized simultaneously.



CHAPTER 6

Sets of Square Roots in Two Variables and Beyond

6.1. NON-RATIONALIZABILITY CRITERION

In this chapter, we will consider sets of square roots

{VP1,v/P2, - s /Pm} s
where all square root arguments are polynomials ps, .. .,pn € C[z,y]. To prove

non-rationalizability of such a set, we have to find at least one hypersurface V'
of the form

’1”2 = H b;
jedJ
with @ # J C {1,...,m} such that V is not parametrizable by rational func-
tions. We start our discussion with the following lemma.

Lemma If Fy; € C|z,y, 2] is the homogenization of a polynomial fo, € C[z, y]
of even degree 2k, where k > 1 and z denotes the homogenizing variable, then
the hypersurface V' = V(r? — for(z,y)) C C? is parametrizable by rational
functions if and only if W = V(r? — Fy(z,y,2)) C C* is parametrizable by
rational functions.

Proof If (¢, (t1,t2), ¢x(t1,t2), dy(t1,t2)) is a rational parametrization of V' then,
because the homogenization of for(z,y) is defined as

F2k:(ma Y, Z) = z%f%(x/z, y/Z),

we can define
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which gives us a rational parametrization (¢y, ¢/, ¢, ¢;) of W since

(8,)2 =13" - ¢}
=13 for(z, By)
= (¢.)° - for($3/ 8., 8,/ 9%)
= For (¢}, By, 42)-

The proof of the converse direction is just as simple and skipped for the sake of
brevity. (]

Let us now formulate the criterion that we will use for our non-rationalizability
proofs in the two-variable case.

Theorem If Fy, € C[z,y, 2] is a homogeneous polynomial of degree 2k with
k > 3, and if the projective curve B = V(Fy(x,y,2)) C P? has only simple
singularities, then V = V(r?2 — Fy(z,y,2)) C C* is not parametrizable by
rational functions.

Proof A detailed proof of this theorem requires notions whose introduction goes
beyond the point of this thesis. We should, however, provide the key arguments
for the reader that is familiar with those notions. Furthermore, we give a few
short comments for physicists in the form of indented text blocks to spark some
intuition behind the mathematical vocabulary. For a thorough treatment, we
refer to Section 22 of Chapter 5 in [85], and to [86] for an introduction to the
theory of weighted projective spaces.
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We may view V as a two-dimensional hypersurface in the weighted projective
space P(k,1,1,1), where z, y, and z are homogeneous coordinates of weight 1,
and r is a homogeneous coordinate of weight k.

Weighted projective spaces are a generalization of the projective spaces P™.
They are obtained by changing the weight of the coordinates of the space and,
hence, changing the condition for a polynomial to be homogeneous. For ex-
ample, in a space in which the coordinates zo, and x; have weight 1 and 2,

respectively, the polynomial 2 — z; is homogeneous of degree 2.

This corresponds to a double covering o : V — P2 ramified over the projective
curve B.

To have an easy example in mind, consider the affine plane curve C defined by
y? = x, which corresponds to a double covering p : C — C of the affine line
C. The zero set of the right-hand side of y? = z is given by the one-point set
{0} c C. Notice that the fiber p~1(0) is a double point, while for any other
z # 0, it consists of two distinct points. Therefore, we say that {0} C C is the

branch locus and that the covering is ramified over {0} C C.
We write V for the smooth model of V.

One may think of the smooth model V as a smoothened version of V that has
no singular points. The smooth model is obtained by blowing up all singulari-
ties of the original hypersurface. Blow-ups of singularities are always given by
birational maps. Thus, a hypersurface is always birational to its smooth model.

To learn how to perform blow-ups in practice, we refer the reader to [56].

A necessary condition for V to be rational is that its Kodaira dimension kod (V)
is equal to —oo.

The Kodaira dimension kod(V) of V is a birational invariant of V. Physicists
may think of it as a generalization of the genus notion for higher-dimensional

hypersurfaces beyond the case of curves. One can use the Kodaira dimension
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to divide algebraic hypersurfaces into several classes. In particular, all rational

hypersurfaces have Kodaira dimension —oo.

Since all singularities of the degree-2k curve B are simple, the Kodaira dimen-
sion of V is given by

—o0, if k=1,2,
kod(V)={ 0, if k=3,
2, if k> 4.

These values for kod(V) are derived in Section 22 of Chapter 5 in [85].

Thus, if k > 3, then V is not rational. Recall that V is birational to V and that
V defines surface in P(k,1,1,1), i.e., the notions of uni-rationality and ratio-
nality are equivalent for V. Therefore, if £ > 3, then V is not parametrizable
by rational functions. O

In conclusion, the only task to perform in practice is to classify the singularities
of a projective curve. In the remaining sections of this chapter, we will explain
how to do this in two different manners: on the one hand, we will see that, in
special cases, one can classify singularities via elementary geometric arguments.
On the other hand, we will show how to use the ClassSing function to auto-
matically check for simple singularities. Both methods will be applied to a set
of square roots that is relevant for high energy physics.

6.2. CLASSIFICATION OF SINGULARITIES BY GEOMETRIC ARGUMENTS
To get an idea of how to perform the classification of curve singularities in
practice, let us discuss an example of physical relevance. In some cases, such

as the one at hand, the given set of square roots yields a singularity structure
that allows us to deduce the full classification by geometric arguments.

We consider the set of square roots
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R:{\/x—i-l,\/x—1,\/y+1,\/x+y+1,\/16$+(4+y)2},

which appears in the computation of certain quantum chromodynamics (QCD)
corrections [6], and want to show that this set is not rationalizable. By the
results of the previous section, it is sufficient to prove that the projective closure
B of the affine degree-6 curve defined by

O=(z+1)-(z—=1)-(y+1)- (z+y+1)- (16z+ (4 +9)?)
has only simple singularities. Notice that the projective curve B is a union
of four lines L; = V(l;) C P?, i = 1,2,3,4, together with a smooth conic
Q@ = V(q) C P2. More precisely, we have

B:V(ll'lz'l3'l4'Q)CP2

with homogeneous polynomials

lhiz,y,2) =z+2, lo(z,y,2) =z—2, l3(z,y,2) =y+2z, UL(z,y,2) =z+y+z,

and

q(z,y,2) = 162z + (42 + y)°.
Since all components of B define smooth curves themselves, possible singulari-

ties of B can only arise from intersection points of these components. The four
lines intersect in six points, namely

LlﬂLzz[OZ].ZO], Llﬂng[—ll—lil], L10L4:[—12021],
L20L3=[12—111], L20L4=[1I—211], L3ﬂL4=[OZ—121].

Five of these points are intersection points of two lines and, therefore, A; sin-
gularities of B. The point [—1: 0 : 1] is, however, an exception. The reason is
that [—1:0: 1] is a point of @, as well. So instead of two smooth branches, we
see that three smooth branches of B pass through this point. It is easy to check
that all three branches have different tangent spaces in this point. Therefore,
we conclude that [—1 : 0 : 1] is a D, singularity. Calculating the intersection
points of () with each line, we obtain



52 6. SETS OF SQUARE ROOTS IN TWO VARIABLES AND BEYOND

LinQ={-1:0:1],[-1:-8:1]},
LNQ={[1:—4—4i:1],[1: —~4+4i:1]},
Lsn@={[1:0:0],[-9/16 : -1 : 1]},
Ly,n@Q={[-1:0:1],[-9:8:1]}.

Except [—1 : 0 : 1], all of these points are again intersections of two smooth
branches with different tangent spaces in the respective point.

In summary, the singular locus of B is given by eleven A; and a single D,
singularity. In particular, all singularities of B are simple, and we can conclude
that the set R is not rationalizable.

6.3. THE CLASSSING FUNCTION

We can also perform the singularity classification in an automated fashion with
Magma. For this purpose, we will use the ClassSing function, which was de-
veloped in joint work with Dino Festi [4]. The latest version is available at the
author’s GitHub repository [52].

The function is executed with the following command:
> ClassSing(basering, polynomial);

Its first input is the ring of polynomials in three variables K[z, y, z|, where K
is a field. Let us stress that the user always has to use the letters z, y, and z
for the variable names. The second input is the homogeneous polynomial that
defines the projective curve whose singularities we want to study. The output
is a string that tells the user whether all singularities of the given projective
curve are ADE singularities.

Internally, ClassSing examines three affine surfaces. Each of these surfaces cor-
responds to one of the affine charts of the input curve. Subsequently, ClassSing
calls the Magma function HasOnlySimpleSingularities. The output of this
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function is then used to draw conclusions on the singularity structure of the
input curve.

To see how ClassSing is to be applied in practice, let us consider the set of
square roots R of the previous section. Recall that, in order to show non-
rationalizability of R, we need to prove that all singularities of the projective
curve

B=V((z +2)(z - 2)(y + 2)(z +y + 2)(16zz + (42 + y)*)) C P?

are ADE singularities.

Before we can use ClassSing, there is one important subtlety that we have to
address. As we have already seen, not all singular points of B have rational
coordinates. This is problematic, because Magma will not allow us to choose
K = C for our base ring K|z,y,2]. It does, however, allow us to choose the
field of rational numbers K = Q. But if we would determine the singular points
of B with this choice of base ring, it would only give us the singular points
of B that have purely rational coordinates, i.e., we would overlook two of the
singular points of B in our analysis.

To resolve this issue, we first compute the singular points with a different com-
puter algebra software that will not only be sensitive to singularities over Q but
to all singular points over C. For example, we can compute the singular points
of B in Mathematica via

>fi= (x+ 2)x(x - 2)*(y + 2)*(x + y + 2)*(16*x*xz + (4*z + y)~2)
> Solvel[f == 0 & D[f, x] == 0 && D[f, y] == 0 && D[f, z] == 0]

giving us the output

{{x > -z, y >0}, {x->-z, y > -8z}, {x->-z, y-> -z},
x>z, y=>(4-4149)z}, x>z, y->((-4+41i) z},
x>z, y-> 22 (x> 2y > zhix > 2 y > 0},

{x > -((9 2)/16), y > -z}, {x > -9 z, y -> 8 z},
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{x->0,2->0}, {y>0,z->0} {x->0,y > -z},
x —> 0, >0,z ->0
y

which corresponds to the 12 singular points that we already determined in the
previous section. Notice that we ignore the trivial solution, since [0 : 0 : 0]
is not an element of P2. From the Mathematica output, we see that two of
the singular points have irrational numbers in their coordinates. Now that we
know the exact irrationalities in the coordinates of the singular points, we can
perform the remaining analysis in Magma.

In order for ClassSing to be able to consider all of the singular points of B,
we have to adjoin the imaginary unit to the coefficient field Q of our base ring
Q[z, vy, 2]. Put differently, we have to pass from Q to the extension field Q(v/—1).
A convenient way to construct an extension field for Q is to consider a quotient
ring of the polynomial ring Q[z] that corresponds to the irrational numbers we
want to be contained in the extension field. In our example, Q does not contain
the imaginary unit 4, i.e., it does not contain any element z with z2 + 1 = 0.
The sought-after extension field Q(y/—1) is, therefore, to be constructed as the

quotient ring Q(v/—1) = Q[z]/(z?* + 1). In Magma, Q(1/—1) is easily defined via

> QQ:=Rationals();
> F<i>:=ext<QQ| [Polynomial ([1,0,1])]1>;

where Polynomial([1,0,1]) specifies the coefficients of the polynomial g in
the quotient Q[z]/g, in our case g =1-2°+0-z! +1- 22

If the coordinates of the singular points under consideration would contain more
than one irrationality, for instance the imaginary unit ¢ and, in addition, the
irrational number a := /5, then the corresponding field extension Q(v/5,v/—1)
can be created via

> QQ:=Rationals();
> F<i,a>:=ext<QQ| [Polynomial([1,0,1]), Polynomial([-5,0,1]1)]>;
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Now, we can easily prove the non-rationalizability of R using ClassSing:

> QQ:=Rationals();

> F<i>:=ext<QQ| [Polynomial ([1,0,1]1)1>;

> K<x,y,z>:=PolynomialRing(F,3);

> f:=(x+2) *(x-2) * (y+2) * (x+y+2) * (16*x*z+ (4*z+y) “2) ;
> ClassSing(X,f);

A1l singularities of the given projective curve
are ADE singularities.

6.4. SETS OF SQUARE R0OTS BEYOND TWO VARIABLES

To conclude Part 2, let us give some final comments on how the presented tech-
niques may be applied beyond the case of two variables. As already mentioned
in Chapter 1, a general treatment of the case in three or more variables will
immediately lead us to the edge of knowledge of contemporary mathematics
since the relevant hypersurfaces are no longer given by curves or surfaces. Nev-
ertheless, even the cases of square roots in one and two variables are already
relevant for a large number of modern physics applications.

Further, the reader should bear in mind that it is sufficient to prove non-
rationalizability for a subset of square roots. So even in the case of large sets,
one might be able to find a subset that consists only of square roots whose non-
rationalizability can be proven by our techniques. Also, we want to point out
that the theorem at the beginning of the present chapter applies naturally to
sets of square roots in three variables, whenever there exists a subset of square
roots whose arguments are all given by homogeneous polynomials.

In conclusion, our methods can also be useful beyond the case of two variables
as long as the given set of square roots has a subset that depends on at most
two variables or may consist of square roots in three variables whose arguments
are all homogeneous polynomials.
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CHAPTER 7

The Main Rationalization Algorithm

In this final part of the thesis, we will give a detailed discussion on how one
can rationalize a given set of square roots. The presented algorithm is based on
the parametrization by lines method—a technique well-known in the theory of
curves and surfaces—and generalizes this method to the case of hypersurfaces
of dimension n € N. We will see that the algorithm is applicable whenever
the degree-d hypersurface under consideration has a point of multiplicity d — 1.
Then, considering a family of lines through this (d — 1)-point, this family will
intersect the hypersurface in only a single other point whose coordinates we can
use as a rational parametrization. In this way, we can always find a rational
parametrization algorithmically as soon as the given hypersurface has a (d—1)-
point.

7.1. INTRODUCTORY EXAMPLES

Consider a square root \/m of a rational function, where p,q € Clzy,...,z,]
are polynomials. We associate a hypersurface to this square root by naming it,
e.g., denote it by r, squaring the resulting equation, and clearing the denomina-
tor. More precisely, we define the associated hypersurface of \/I% as the affine
hypersurface given by V = V(q - r? — p) Cc C**1,

Notice that we can also associate a hypersurface to more general algebraic func-
tions such as roots of degree greater than 2 or nested roots. For example,

V =V(r® — 23 — 1?) is associated to v/z3 + z2 and

W =V((? — 22 2t — o)

is associated to
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\/ 2+ xt + 13
To clarify the idea behind the rationalization algorithm, we will devote this

introductory section to the simple case of square roots in a single variable so
that the associated hypersurfaces are always given by curves.

Example Suppose we want to rationalize the square root v/z3 + z2. Its asso-
ciated hypersurface is the nodal cubic V = V(r? — 23 — z?). We have already
seen in Part 1 that a degree-3 curve is parametrizable by rational functions if it
has an ordinary double point.

FIGURE 7.1. Parametrizing the nodal cubic by a family of lines.

In fact, we can parametrize the nodal cubic similarly to the circle by intersecting
it with a family of lines: if we consider a family of lines r = tz through the
singular point, then each member of this family will intersect the curve in only
a single other point whose coordinates provide the sought-after parametrization
(¢r(t), d2(t)) = (¢(t* — 1),#* — 1). Finally, we can use this parametrization to

rationalize \/z3 + x2:

$3(t) + ¢2(t) = ¢(t* - 1).
O

The most important thing that the reader should take away from this example
is that it is precisely the fact that the nodal cubic has a point of multiplicity 2,
which allows us to parametrize the curve by a family of lines. More generally, we
can always parametrize a given degree-d hypersurface through lines whenever it
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has at least one (d — 1)-point. This is easiest to see through another example.
Let us, therefore, consider the case of the unit circle one more time.

Example We have already seen how to construct the parametrization of the unit
circle geometrically. Let us now go through the same construction again, but
in a more algebraic manner. In order to determine a rational parametrization
of V. =V(f) = V(2% + 4> — 1), we need to find a (d — 1)-point. Because the
degree of V' is given by d = deg(V') = 2, we may choose any regular point of V/,
e.g., po = (zo,%) = (—1,0) € V. Next, we translate py to the origin, i.e., we
send z — z + 1 and y — y. The polynomial f becomes

f(xa y) = fl(xay) + f2(x7y)

with homogeneous components

fi(@,y) = =20 and fy(z,y) = 2 + 4
of degree 1 and 2, respectively. Now, consider a family of lines y = ¢tz through
po- We determine the two intersection points of each of the lines with the circle
by plugging the line equation into f(z,y) = 0:

0= fi(z,tz) + folz,tz) = 2f1(1,t) + 22 fo(1,1).

The solution z = 0 gives py. The second solution yields

_ Ay AL
- - y Y= —t .
f2(1’t) f2(17t)
Translating back to the original setting via z — x — 1 and y — y, we see that
fl(]-’t) fl(]-’t)
(1) = — -1, t)=—t ,
¢ ( ) fg(].,t) ¢y( ) fg(].,t)

yields the sought-after parametrization. Notice that we had a choice in picking
the family of lines through py which we intersected with the circle. In fact, one
can easily produce a different rational parametrization by considering a different
family of lines. For instance, taking the family to be = ty instead, we find
the parametrization

fl(t’ ]-)
f2(t’ ]-)

1, gy0) = 10D

Pall) =~ L1
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This brings us to the main algorithm that we will use for our rationalizations.

7.2. THE ALGORITHM

Input A degree-d hypersurface V that is associated to a given root, and whose
projective closure V has at least one point of multiplicity d — 1.

Output A rational parametrization of V.

1. Determine a point py with mult, )V =d — 1.

2. If pg is mot at infinity, continue with step 3. and 4., and finish with
step 5.
If po is at infinity, consider another affine chart V' of the projective
closure V in which py is not a point at infinity, continue with steps 3.,
4., 5., and finish with step 6.

3. With py = (ay,- - .,a,), compute

g(raxla"'axn)=f(r+a07x1+a17"'7xn+an)a

and write

9(r,x1, ..., T) = ga(r, 1, .. ., Zp) + Ga—1(r, 21, . .., Zy),

where g; and g4_; are homogeneous components of degree d and d — 1.

4. Return
¢ (t t ): —t gd_l(t())tla---,tn) ta
T 07-.-717. Ogd(to,tl,...,tn) 07
_1(to,t1,...,¢
¢zn(t1,...,tn):_t 9d 1( 0,1, , n) ta,

" gd(th tla s 7tn)
5. For a single i € {0,...,n}, set t; = 1.
6. Change coordinates, to switch from V' to the original affine chart V.
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7.3. SAMPLE APPLICATIONS

Example As a first example, let us apply the algorithm to rationalize the square
root v/1 — 22 with associated hypersurface V = V(r? +z2 — 1) C C2.

Step 1. Because deg(V) = 2, we can use any regular point of V' as our point
of multiplicity d — 1. For instance, choose pg = (9, o) = (0, —1).

Step 2. pg is not a point at infinity.

Step 3. Consider g(r,z) = f(r + 0,z + (—1)) = ga(r,z) + g1(r, z), where
g2(r, ) = r2 + 2% and gy(r,z) = —2z.

Step 4. Return

91(to, t1)
- (to, t t 10,
¢ ( 0 1) OQQ(tO,tl)
g1(to, t1)
W(to, 1) = —t 250 (g
9a(to; 1) lgz(to,tl) =1

Step 5. Setting tg = 1 we obtain

_gl(l,tl) _ 2t1
gg(l,tl) t% —+ 17

bo(t1) = do(1,t1) = —t g(lt)  _#-1

1 - )
gz(l, tl) t% +1
and ¢,(t1) provides a substitution that rationalizes /1 — z2.

¢r(t1) == ¢r(1,t1) =

Example Let us proceed with a more involved example. Consider the square
root

\/ x4+ 4x2y? + 4
412 '
The associated hypersurface is V = V(f) = V(z* + 422y? + 4 — 4r%z?).



64 7. THE MAIN RATIONALIZATION ALGORITHM

Step 1. Because deg(V) = 4, we need a point of multiplicity 3 to apply the
algorithm. Looking at the partial derivatives of f, we see that V' does not have
such a point. There is, however, a point of multiplicity 3 at infinity as we can
see by considering the projective closure

V = V(z* + 40%* + 42* — 4r%2?).
This (d — 1)-point is given by po = [ro : o : Yo : 20/ =[1:0:1:0].

Step 2. Viewed from the affine chart V, py is at infinity. Therefore, we have to
consider a different affine chart V' of V for which py is not at infinity. In this
particular example, we have two choices: either we consider the chart in which
r = 1 or the chart in which y = 1. Let us choose the former, which corresponds
to a map
[riz:y:2]— (E,Q’f) =: (,y,7).
r'r’'r

Under this mapping, py € V is send to pj, := (0,1,0) € V’. The affine hyper-
surface V' is given by V' = V((z/)* + 4(z')2(v')? + 4(2)* — 4(z')?).

Step 3. Consider g(z/, v/, 2') = f(2'+0,y'+1,2'4+0) = g4(«', ¥/, 2')+93(¢', V', 2'),
where gy(2',9/, 2') = (z')* + 4(2")* + 4(2')?(v')? and g3(2’, v/, 2') = 8(z')%y/.

Step 4. Return

g3 (t07 tla t2)
(tg, t1,t0) = —t 0
Gu (to, t1,t2) Og4(t0,t1,t2) +0,
g3 (t()) tla t2)
(to, b1, tg) = —ty 20 °L22) 4 g
by (fo, 1, 2) 194(t0,t1,t2)
g3 (t07 t17 t2)
(tg, t1,t9) = —t 0.
¢ (to, t1,t2) 2 g (lor s 1a) +
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Step 5. Setting o = 1 we obtain

93(17t17t2) 8t1
a:’tat = Qg 17t7t = - = - )
Poltnte) = o (Lt = = 0 G Y = T T g 1 1
g3(1,t1,t) 4ty — 482 + 1
(t1,t0) ==y (Lt b)) = -t +1=-—2 1~
byt ta) = dy (1t to) 9u(1,t1, 12) Aty + 42 +1
g3(1,t,t2) 8t1to

z/t,t = z/].,t,t =—t = — .
¢ (1 2) ¢ ( ! 2) 2g4(1,t1,t2) 4t%+4t%+1

Step 6. Finally, we use the parametrization for V' to construct a parametriza-
tion for V. More precisely, we solve

Pz ¢ -
¢z’ = ¢y’ = _y7 e
Pr br br
for ¢,, ¢, and ¢, while putting ¢, = 1. We find that the sought-after substi-
tutions are given by

and ¢zl =

1
Ps(t1,t2) = o
2

45 — 412 + 1
t,ty) = —————+ "~

and can easily check that they rationalize our square root:

(Ds(ts,t2))* +4(Ba(ts, t2))2(9y (b1, 2))* +4 _ 485+ 443 +1
4(¢x(t1a t2))2 8t1t2 )

7.4. SIMULTANEOUS RATIONALIZATION OF MULTIPLE SQUARE ROOTS

Now that we have seen how to rationalize individual square roots, let us demon-
strate how to find a variable change that rationalizes a whole set of square roots.
Consider the set

R = {\/a:+1,\/x—1,\/y+1,\/ac+y—|—1}
whose rationalization is relevant in the computation of certain QCD corrections

[6]. In fact, this set is a rationalizable subset of the non-rationalizable set that
we have studied in Part 2.
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Our strategy will be to rationalize one square root at a time in an iterative
manner. More precisely, we first choose one of the square roots as our starting
point and apply our rationalization algorithm to this square root. While the
resulting substitution will rationalize this particular square root, it will not
rationalize the remaining ones. Instead, it will affect all of the other square root
arguments that depend on the variable that we have changed. This will leave us
with a new set of square roots with more complicated square root arguments.
In particular, these new arguments will, in general, be rational functions rather
than polynomials. Nevertheless, this new set of square roots will contain one
element less. Therefore, we may repeat this procedure until all square roots
are rationalized. Finally, the composition of all the variable changes that we
have found will give us a single variable change that rationalizes all of the given
square roots simultaneously.

To clarify this procedure, let us present the rationalization of R in detail.
Step 1: Rationalizing \/x + 1

The associated hypersurface of 1/z + 1 is the conic plane curve V; = V(r?—z—1)
Since deg(V1) = 2, any regular point p; of V; is a (d — 1)-point. For instance,
we apply the algorithm with the choice p; = (0, —1), which yields the following
rational parametrization of Vi:

(Brs(00), Ba(t2)) = (1 L ‘t?) |

t’ 2
Admittedly, this parametrization is more complicated than it needs to be since
the substitution z = ¢2 — 1 would also rationalize the square root. However,
this choice would lead to more complicated coefficients in a later step, which is
why we stick with the parametrization above.

Step 2: Rationalizing \/z — 1

Next, we want to find a substitution which rationalizes v/ — 1. At the same
time, we have to guarantee that this new substitution, which we denote by
©4(t2), also rationalizes the first square root v/z + 1. To achieve this, we first
substitute ¢,(t;) in the square root v/z — 1:
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Since the denominator of the right-hand side is already a square, we just need
to rationalize the square root of the numerator. We should stress, though, that
excluding square factors from the analysis is not always beneficial. We will
discuss the role of squares in more detail in one of the upcoming chapters.

For now, notice that the associated hypersurface of our new square root 1/1 — 2t2
is given by Vo = V(72 +2t2 — 1). Again, since deg(V3) = 2, any regular point p,
of V4 is a (d — 1)-point. For instance, we may choose ps = (1,0). Applying the
algorithm with this choice yields the parametrization

2t2 2ty
(¢r2(t2)7¢t1(t2)) = (1 - t% +22,_t%—|—2) .

We can now write down the expression for ¢, (t2) by composing the two substi-

tutions that rationalize the individual square roots:

4
Pulta) 1= 6a(n (1) = 257
2

Indeed, we can check that plugging ¢, (ts) into v/z + 1 and v/z — 1 yields ratio-
nal expressions:

242

z (¢ 1= )

Pz (t2) + ot
t2-2

Vot —1= 2",
Pz (t2) 5%

Step 8: Rationalizing /y + 1

In principle, we could rationalize 1/y + 1 similarly to /= + 1, i.e., we could sim-
ply replace y by (1 — t2)/t2. However, this substitution would yield a rather
complicated hypersurface when we try to rationalize v/z + y + 1 in the upcom-
ing step. So in the case at hand, it is better to take the obvious choice

oy (ts) =2 — 1.
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Step 4: Rationalizing /T +y+1

We have seen that the first three square roots of R can be rationalized with the
substitutions

t3+4
b t2) = y

o, (ts) =12 — 1.

Plugging these expressions into the remaining square root v/z + y + 1, we obtain

5+ 4t2t2 + 4
4t2 '

The associated hypersurface is given by V, = V(¢35 + 4t2t2 + 4 — 4r3t2). Notice
that this is precisely the hypersurface that we studied in the second example

of the previous section. A rational parametrization of V} is, therefore, given by
the three rational functions

4s5+ 453+ 1

¢1‘4(817 82) = — 83132 3
1
bty (51, 82) = —,
S2
4st — 452 + 1
bis (51, 82) = ——2——.

88182

Finally, composing these functions with the ones that rationalize the other
square roots, we obtain substitutions that rationalize all of the four square
roots in R simultaneously:

(I)w(sb 32) = <Pm(¢t2 (317 52))7
D, (51, 82) 1 = Py(Prs(51, 52))-
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Indeed, we find that

2s2 +1
\/@1(31732)+1: 82+ )

282
2531
- 232

45 — 452 +1
\/‘I) +1= /2 -
y(sla 32) 88182 )

455 +4s2 +1
88182 '

(I)z(Sl, 82) -1

\/q)m(sl, s2) + ®y(s1,82) +1 =

69






CHAPTER 8

The F-Decomposition Theorem

Now that we have a good understanding of the standard machinery, let us turn
to a more advanced technique. In the following chapter, we will present the F-
decomposition theorem, which was first proved by the author in the appendix
of [3] and turned out to be a useful tool in many applications. In fact, it often
allows for rationalizations that would otherwise be out of reach.

8.1. THE THEOREM

If k is a positive integer and f € Clzy,...,2,] a polynomial of degree d with
d < k, then the k-homogenization of f is a degree-k homogeneous polynomial

F(x1,...,%0,2) := 2% f(21/2,...,2,/2).
For example, the 4-homogenization of f(z,y) = zy is given by F(z,y, z) = zy2>.
The d-homogenization of a degree-d polynomial is the usual homogenization.

Theorem (F-Decomposition Theorem) If V = V(r? — f2 +4 fa fg_l) c ctt
2

denotes the hypersurface associated to

VI3 = 4enfe
where each f;, € Clzy,...,z,] is a polynomial of degree deg(fz) < k, then V
has a rational parametrization if and only if W = V(Fa,+Fa+Fa_,) C crtt
has a rational parametrization with Fj being the k-homogenization of f; using
the same homogenizing variable, say z, for each of the three homogenizations.

Proof If (¢,...,¢Y  ¢¥) is a rational parametrization of W, then we obtain

a rational parametrization of V' by defining

71
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S =207 - fayy (60,/82 s bnn /2 ) + fa (/Y- 00 /2 ),

w
V . Tz
T1 T ¢W’
z
w
V . TZn
mn Ll ¢W'
2

For the converse direction, which we will not use in this thesis, we refer the
reader to the original paper [3]. O

8.2. SAMPLE APPLICATION

To see how useful the F-decomposition theorem is in practice, let us discuss a
rationalization that uses all of the techniques discussed so far.

Consider the square root \/m. The associated affine hypersurface reads
V = V(f) = V(r?2 — z* — 43). Because V has degree 4, we need to find a
point p of multiplicity 3 to apply the rationalization algorithm. Computing the
partial derivatives of the homogenization of f, however, we see that V' does not
have a point of multiplicity 3—not even at infinity. Let us, therefore, apply the
F-decomposition theorem:

First, we observe that

Vat+yt =1/ —4fsh

with

1
fl(may) = _A_l’ fZ(may) = $2, f3(xa y) = y37
and corresponding k-homogenizations

1
Fl(l',’y, Z) = _ZZ, F2(x7y7 z) = 1,27 Fg(x,y,z) = y3'

According to the theorem, V' has a rational parametrization if the hypersurface
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W=V(F+F+F)=V(-z/4+2*+y*) cC?
has a rational parametrization. Thus, we try to apply the algorithm to W'

Step 1. Because deg(W) = 3, we need to find a point of multiplicity 2. Looking
at the partial derivatives of F; + F5 + F3, we see that W does not have such a
point. There is, however, a point of multiplicity 2 at infinity. We see this by
considering the projective closure

W = V(’UzFl + ’UF2 + F3) C ]P3.

This projective hypersurface has a single point of multiplicity 2, namely

Po=1[To:Y:20:v]=[0:0:1:0].
Step 2. Viewed from the affine chart W, p, is at infinity because vy is zero.
Therefore, we have to consider a different affine chart W’ of W in which pq is
not at infinity. In this particular example, we only have one choice, namely to
consider the chart where z = 1. Switching from W to W’ corresponds to a map

By 2 0] (5/2,0/2,0/2) = (@9, 0)
Under this mapping, po € W is send to pj, := (0,0,0) € W’. The affine hyper-
surface W' is given by

W =V (_ )2 J4+o' (&) + (y')3> c Cs.

Step 3. Consider

9(@,y,v) = — (V' +0)? /4 + (v +0) (& +0)° + (4 +0)°
= g3(x’, yla ’Ul) + 92(17,7 yla U,)a

where
g3(xla ?/I; UI) = UI (xl)2 + (yl)3 and 92(xlv yI7 UI) = - (,U/)2 /4

Step 4. Return
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92 (t07 tla t2)
(o, t1,%2) = 0,
P (b0, b1, t2) 93(t t1,t2) *
gz(t t1,12)
(to, t1,t2) = + 0,
gz(t tl,tz)
(tg, t1,t0) = 0.
¢U ( 0" 2) g3(t07t1at2) +

Step 5. Setting ¢y = 1, we obtain

92(17t1at2) t%
a:’tat = Qg 17t7t = - = )
Pty to) = 0w (L) = = g 0y = M@+ 1)
92(1,%1,t2) tyt2
(T1,12) 1= ll,t,t =—t = ’
Gy (t1,t2) == @y (1,11, 12) Uoo(Ltnty) 4B +18)
1,q,t t3
bu(tr, t2) == P (1, b1, t0) = —t CAICUNL N

2 = .
9a(L,t1,t2) 4t +t2)

Step 6. The next step is to translate the rational parametrization for W’ into

a rational parametrization for W. To do this, we solve

[ _ Py Po
¢m’ ) ¢ -=, and ¢v’ = -0

6. V¢ ¢
for ¢, ¢y, and ¢, while putting ¢, = 1. In this way, we obtain a rational
parametrization of W as

1
Y (t1,t2) %
t
%4 1
t1,t —=
Yy ( 1 2) tg,
A3+t
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Finally, we use the F-decomposition theorem to obtain the change of variables

that rationalizes /z* + y3:

% . ¢};V(t17t2) _ t%
92 (hot2) = St 1) ~ 1B + 1)’

¢ (tit) it}

v . . 2
¢y (1, t2) = ¢§V(t1,t2) A+t

Indeed, we have

\/(¢¥(t1, ta2))* + (8Y (t1,12))° = %






CHAPTER 9

The RationalizeRoots Software

The RationalizeRoots software package implements all of the techniques that
we discussed in the two previous chapters and is the result of joint work with
Pascal Wasser and Stefan Weinzierl. The package comes in two versions: one
for Mathematica and one for Maple. In this thesis, we will focus on the
Mathematica version of the package. For the corresponding Maple commands,
we refer the reader to the original paper [1].

9.1. SETUP AND DOCUMENTATION

In this first section, we will give a brief overview of the functions of the package
and their basic options.

The package is loaded with the command:

Get["RationalizeRoots.m"]

Once loaded, it provides the following routines:

e ParametrizePolynomial [poly, options]

— The input poly is a (multivariate) polynomial.

— The output is a list of rational parametrizations for the hypersur-
face defined by poly. Each rational parametrization is given as a
substitution list. By default, only one rational parametrization is
returned. If no rational parametrization is found, the empty list
is returned.

— Basic Options:

* Variables — {x1,x2,...}: Only the variables appearing
in the list are considered as variables of poly. In case this
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option is not specified, all variables appearing in poly are
taken into account.

* OutputVariables — {y1,y2,...}: The variables appearing
in the list are used as new variables, i.e., as parameters of
the rational parametrization. By default, t[1], t[2],
are used as new variables.

*x MultipleSolutions — True / False: If true, a list of mul-
tiple rational parametrizations is returned. If false, the first
rational parametrization found is returned. The default value
is false.

* GeneralC — True / False: If true, the rational parametri-
zation may depend on free parameters C[1], C[2], ... If
false, a default value is substituted for all occurring free pa-
rameters. The default value of the option is false.

*x GeneralT — True / False: If true, the option skips step 5
of the rationalization algorithm and leaves it to the user to
set one of the new variables equal to one. The default value
is false.

*x ForceFDecomposition — True / False: If true, the F-
decomposition theorem is applied before searching for (d—1)-
points on the original hypersurface. The default value is
false.

* FPolynomials — {f1,f2,f3}: Given the list {f1,f2,£3},
assume that poly is of the form r"2-f2°2+4f1f3 and use
these polynomials for the F-decomposition theorem. If this
option is not specified, a heuristic algorithm is used to find
an F-decomposition.

e RationalizeRoot[root, options]

— The input root is of the form R;+/R;, where R; and R, are (mul-
tivariate) rational functions.

— The output is a list of variable changes that rationalize the given
square root. Each variable change is given as a substitution list.
By default, only one variable change is returned. If no variable
change is found, the empty list is returned.

— Basic Options:
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Variables: As above.
OutputVariables: As above.
MultipleSolutions: As above.
GeneralC: As above.

GeneralT: As above.
ForceFDecomposition: As above.

¥ X X ¥ X X% %

FPolynomials: As above, but with the restriction that the
input is assumed to be a square root of a polynomial P,

which can be written as VP = \/£22 — 4f1£3.

9.2. FUNCTIONS AND OPTIONS

Let us now describe the functions and options of the package in more detail and
show how the user can apply them to concrete examples.

9.2.1. RationalizeRoot

When using the package for the first time, the RationalizeRoot function is an
excellent way to get started. Without requiring any prior knowledge about the
rationalization method, the user can provide a square root and obtain a variable
change that turns this square root into a rational function. For example, con-
sider the square root m . To find a rationalizing change of variables,
we can apply the package as follows:

RationalizeRoot [Sqrt[1-x~2-y~2]]
o 2af1] 1—t[1]2+t[2)?
== t=iprege Y e )
With this substitution, we have /1 — 22 — y2 = 2t1t,/(£3 + t2 + 1).

Although RationalizeRoot is already quite powerful, it is considered a pre-
liminary function. For example, RationalizeRoot will not rationalize nested
square roots. Using ParametrizePolynomial instead, the user has more con-
trol over the hypersurface associated to the square root, which also allows for
the rationalization of more general algebraic functions. Advanced users should,
therefore, work with the ParametrizePolynomial function.
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9.2.2. ParametrizePolynomial

As a first step, we demonstrate the basic usage of ParametrizePolynomial
using the square root m . Instead of the actual square root, we have
to provide the defining polynomial of the associated hypersurface as input for
the function:

ParametrizePolynomial [r~2+x"2+y~2-1]

2t[1]t[2 2t[1] 1—t
{{r— LR

2+t 2
THtAP+t e Y T it

2+t22}}

[y
N

[y

We see that, in addition to the change of variables, the output also contains the
expression of the rationalized square root up to sign. Now that we understand
the basic usage of ParametrizePoylnomial, let us go through the different
options of the function.

Variables

By default, ParametrizePolynomial performs the transformation in all vari-
ables of the input. Depending on the context, however, it can be advantageous
to transform only a subset of the variables. The Variables option allows the
user to specify which variables should be changed. For example, consider the
rationalization of \/z + y + 1. On the one hand, we can rationalize using:

ParametrizePolynomial [r~2-x-y-1]

1+t[1] 1481 —t[1]*—t[1]+5[2)?
{{r_> t[2] »X— £[2)° y— — t[2]? }}

On the other hand, we can use the Variables option to only change variables
in y:

ParametrizePolynomial [r~2-x-y-1,Variables—{r,y}]
{{r— 1 +x)t[1],y— —1 — x + t[1]> + 2xt[1]* + x*t[1]*}}

As we will see later, this option is particularly powerful when it comes to the
simultaneous rationalization of multiple square roots. We want to point out
that, although the output obtained in this way is guaranteed to be rational in
the new variables (in this case t[1]), one might encounter new square roots
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that depend on the variables we viewed as parameters (in this case x). We will
provide a more detailed discussion of such an example in the last section.

OutputVariables

By default, the new variables of a transformation are called t[1],t[2], ..., as
we have already seen. Using the option OutputVariables, however, the user
can specify the names of the new variables to be, for instance, v and w:

ParametrizePolynomial [r~2+x~2+y~2-1, OutputVariables—{v,w}]

2vw 2v _1—v*4w?
{{I‘—) 1+v24w? s X 1+v24w? Y= 1+v24w? }}

This option is convenient when we apply the function iteratively to rationalize
multiple square roots simultaneously.

MultipleSolutions

Setting MultipleSolutions to True provides the user with multiple rational
parametrizations. These parametrizations are obtained by applying the algo-
rithm multiple times using all the different (d — 1)-points across all affine charts
of the projective closure of the given hypersurface.

GeneralC

Some square roots have an associated hypersurface with infinitely many (d—1)-
points. Consider, for instance, the square root v/1 — 22, which is associated
to the unit circle. The unit circle is a hypersurface of degree 2. Therefore, a
(d — 1)-point is given by any regular point. The rational parametrization that
the algorithm produces is, however, not independent of the choice of the (d—1)-
point. In fact, what point we choose will have an impact on the coefficients that
we get in our variable change. To see this, we take (ro,zo) = (v/3/2,1/2) as
our (d — 1)-point, instead of our usual choice (rg,zp) = (—1,0). This produces
rational parametrizations of the unit circle like

¢(t)=£—@ ) (t)=1_t(\/§—+t)

" 2 2+177° 2 2+1
The GeneralC option encodes how the parametrization depends on the choice
of the (d — 1)-point—in case there are infinitely many of these points. More

precisely, if the option is enabled, the output will depend on free parameters
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C[1], C[2], etc. By substituting concrete values for these parameters, the user
is effectively fixing a (d — 1)-point, in retrospect, which allows the user to find
a change of variables that is most suitable in the given context. Applying the
GeneralC option to the unit circle, we get:

ParametrizePolynomial [r"2+x"2-1, GeneralC—Truel

cl2]—2c[1]t[1]+c[2]t[1]? V12 —c[22—/cl1]? —c[2]¢[1]?
H{r— T c[1]—2c[2le[t]+C[1]e[1]? X — c[1]—2c[2]t[L]+C[1]t[1)? 1

Notice that at least one of the free parameters has to be chosen different
from zero. In most cases, an integer choice of coordinates will produce the
parametrizations that are least cluttered. Therefore, whenever possible, the
package chooses integer coordinates if the GeneralC option is not specified.

GeneralT

The GeneralT option skips step 5 of the rationalization algorithm and leaves
it to the user to set one of the new variables ¢; equal to one in retrospect.
This has the advantage that one can spot what choice of ¢; = 1 produces the
variable change that is most suitable in the user’s context. As an example, let
us consider the hypersurface associated to v/23 4+ z2. Applying the GeneralT
option, we obtain:

ParametrizePolynomial [r"2-x"3-x"2, GeneralT—True]

{{r— Sl o, (eleliebliel) )

From this output, we see that we can simplify the variable change—in the
sense that we avoid rational expressions—by choosing t [0]=1 instead of t [1]=1.
Without setting GeneralT to True, the package would make a choice automat-
ically, which does not necessarily lead to the most suitable result.

ForceFDecomposition

Some square roots have the property that their associated hypersurface has a
(d—1)-point and is, also, F-decomposable. Consider, for instance, the following
square root:

\/(1 — 1 — X9 — 1'3)2 - 4.’E1£L'2$3.
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The associated hypersurface has several (d — 1)-points, so the package will
easily find multiple parametrizations. In particular, it will not apply the F-
decomposition theorem to generate the output. We observe, however, that the
square root is F-decomposable. Thus, we can use the ForceFDecomposition
option to force an application of the F-decomposition theorem. This will give
us variable changes that are, in general, different from the ones we get when not
specifying the option. In this way, we are able to produce even more variable
changes for square roots of that type.

FPolynomials

Notice that, whenever we apply the F-decomposition theorem, we have a free-
dom in choosing fg_l, fg , and f% 4+1- For the above square root, two appropriate
choices would be:

1. i=1, fo=1—21 — 29 — 3, f3= 12223,
2. fi=x1, fo=1—21— 20— 23, f3=12023.

Making different choices for the f;’s will result in different parametrizations.
Therefore, it can be useful to try different choices of the f;’s to optimize the
final variable transformation. The user can specify a particular choice as follows:
if the input polynomial is of the form

f= r’ — fg +4fg—1fg+1;

then the user has to provide the list

{f%—l:fgafg+1}'

Notice that, in order to apply the F-decomposition with this particular choice
of fi’s, one has to set ForceFDecomposition to True in case V = V(f) has a
(d — 1)-point.

9.3. ON THE ROLE OF SQUARES

It is now the right time to come back to the role of perfect squares in a rational-
ization procedure. We have seen that, especially in the process of rationalizing
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multiple square roots, one often encounters square roots whose arguments con-
tain factors that are perfect squares. Recall that a rationalization of the square
root without the perfect square factor already gives a rationalization of the
square root that includes the perfect square factor. For instance, consider the

square root v/z3 + 22 = y/(z + 1)z2. Since one of the factors of the argument
is already a perfect square, it suffices to find a suitable variable change for the
simpler square root vz + 1, e.g., x = t? — 1, in order to rationalize v/z3 + z2.

From the above example, one might be tempted to think that leaving out perfect
squares is always a good idea. This is, however, not always true. In fact, both
cases can occur:

1. Leaving out a perfect square can make the rationalization procedure
easier:

The reader is invited to check that the package does not find a rational

parametrization of V = V(r?z? — z* — z%y — 2y? — 22y?), which is

associated to the square root

zt + oty + zy? 4 122
z2 ‘

If we, however, leave out the perfect square in the denominator and
instead consider

Vet + oty + oy? + 122
with the associated hypersurface W = V(r?2 — z* — zty — zy? — 2%9?),
then the package will find a parametrization. This result can then, of
course, also be used to rationalize the square root we wanted to ratio-
nalize in the first place.

2. Leaving out a perfect square can make the rationalization procedure
harder:

Suppose we want to rationalize
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\/ T4+ 4292 + 4
Ax? '
The reader can check that leaving out the perfect square in the denom-

inator, i.e., considering

Vit + 4z2y? + 4,
leads to an associated hypersurface V = V(r? — z* — 422y% — 4), which
does not have a single (d — 1)-point. The package will still find a ra-
tional parametrization, but only after employing the F-decomposition
theorem.

If we, however, try to rationalize the original square root by considering
W = V(4riz? — z* — 4z%y* — 4), we have already seen that W has a
(d—1)-point at infinity. Therefore, we can directly apply the algorithm
so that, in this particular case, it is advantageous to keep the perfect
square for the rationalization procedure.

From these two examples, we learn that it is a, worthwhile exercise for the user
to factor the perfect squares of the argument of the square root and try to find
rationalizations while keeping and leaving out perfect squares as above. With
this strategy, one can produce different, possibly refined variable transforma-
tions, which sometimes even will allow for the rationalization of square roots
that were—on first sight—not rationalizable by our methods.

9.4. RATIONALIZATION VIA VARIABLES OPTION
The purpose of this final section is to illustrate the usefulness of the Variables

option, which can be crucial in the simultaneous rationalization of multiple
square roots. Suppose we want to rationalize

{\/1—x2,\/1—x2—y2}.

Starting with the rationalization of the second square root, we find:
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ParametrizePolynomial [r[1] ~2+x~2+y~2-1,0utputVariables—{v,w}]

2vw 2v _2v®
{{r [1] — 1+v2 w2 sy X— 1+v2 w2 ’y_) 1+v2i4w? 1}}

The next step is to substitute the above expression for x into /1 — z2 and try
to rationalize the resulting square root. We observe, however, that the package
is not able to find a rationalization:

ParametrizePolynomial [r[2] "2(1+v~2+w"2) "2+4v"2-(1+v~2+w"2) " 2]

{}

In such a case, the user might be tempted to think that the given set of square
roots cannot be rationalized with the package. There is, however, a way in
which we can still succeed, namely by using the Variables option. We start
again by rationalizing /1 — 22 — 42, but this time we specify the Variables
option as follows:

ParametrizePolynomial [r[1] “2+x~2+y~2-1,Variables—{r[1],y},

OutputVariables—{w}]
w(x?— —x2((x2-1)w?
{{rl1)— FCo y—» iy

o2 _a\a2_ 4
x“—1)w—1 x“—1)w
’ 2 2

We see that the transformation is rational in the new variable w, but contains
a square root in the variable x that we did not specify to be a variable of the
input polynomial. This square root in z is, however, the second square root
of our original set. Because the rationalization of /1 — 22 — 42 happened only
via a change in y, the other original square root /1 — 22 does not change under
this transformation. Thus, we can rationalize the remaining square root via
z = (v —1)/(v? + 1), as discussed previously. Substituting this expression for
z in the transformation of y yields:
v -1 20(1 + vt 4+ v%(2 — 4w?))
T Y T T o)A ot 22 + 4u?))

Indeed, we can check that these substitutions turn the initial square roots into

rational functions of v and w:

2
,/1_3;2:2_1),1/1_3:2_1!2: 8v'w

14+ v +0%(2 + 4w?)




Conclusions and Outlook

In this thesis, we studied the question of how to rationalize sets of square roots
that appear in the computation of Feynman integrals. We addressed the prob-
lem by relating it to one of the most fundamental questions in algebraic geom-
etry, namely the rationality problem for hypersurfaces.

On the one hand, we have seen that not all square roots are rationalizable. We
used several known results from the theory of curves and surfaces to establish
rigorous criteria for the non-rationalizability of a given set of square roots. We
clarified these techniques through examples of physical relevance.

On the other hand, we discussed an algorithm that yields a rationalization of
a given square root whenever the associated hypersurface has a point of multi-
plicity d — 1, where d is the degree of the hypersurface. This algorithm covers
many cases from high energy physics that admit a rational parametrization. In
addition, we presented the F-decomposition theorem, which enables the ratio-
nalization of many square roots that would otherwise not be rationalizable by
our methods.

Furthermore, we presented the RationalizeRoots software package that im-
plements our rationalization techniques in Mathematica. A detailed account on
the Maple version of the package can be found in [1].

The results of this thesis are broadly applicable in many Feynman integral com-
putations. For physics applications of the last two years, where the presented

techniques were of relevance, we refer the reader to [13]-[16], [87]-[103].

Finally, let us give some suggestions for future work: one possible future project
would be a further refinement of our non-rationalizability criteria. In this thesis,

87
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we mainly focused on the case of curves and double coverings of the projective
plane. One could, for example, collect special cases of hypersurfaces beyond two
dimensions that are associated to a square root and known to be not parametriz-
able by rational functions.

There may also be several ways to expand the current version of our rational-
ization algorithm. For example, one might be able to formulate other theorems
like the F'-decomposition theorem that would allow to use parametrization by
lines for hypersurfaces that do not have a (d — 1)-point. Furthermore, the are
some univariate square roots that RationalizeRoots will not be able to ratio-
nalize. Although non of these cases is known to be of physical relevance, for the
sake of completeness, it would be good to add the parametrization by adjoints
technique [23] to the package. This would enable our software to rationalize all
rationalizable univariate square roots.

Finally, there is a Singular library, called classify2.1ib, which can be used
to classify simple curve singularities. While we focused on Magma in this thesis,
it would be beneficial for the physics community to explain how to classify
singularities with this free, open source alternative.



[1]
[2]

3]

[4]
[5]

[6]

[7]

8]

[9]

Bibliography

M. Besier, P. Wasser, and S. Weinzierl, “RationalizeRoots: Software Pa-
ckage for the Rationalization of Square Roots”, 2019. arXiv: 1910.13251.
M. Besier, D. Festi, M. Harrison, and B. Naskrecki, “Arithmetic and
geometry of a K3 surface emerging from virtual corrections to Drell-Yan
scattering”, 2019. arXiv: 1908.01079.

M. Besier, D. van Straten, and S. Weinzierl, “Rationalizing roots: an
algorithmic approach”, Communications in Number Theory and Physics,
vol. 13, 2019. arXiv: 1809.10983.

M. Besier and D. Festi, “Rationalizability Criteria for Square Roots”, to
appear.

J. L. Bourjaily, A. J. McLeod, M. von Hippel, and M. Wilhelm, “Ratio-
nalizing Loop Integration”, Journal of High Energy Physics, vol. 8, 2018.
arXiv: 1805.10281.

M. Becchetti and R. Bonciani, “T'wo-Loop Master Integrals for the Planar
QCD Massive Corrections to Di-photon and Di-jet Hadro-production”,
Journal of High Energy Physics, vol. 1, 2018. arXiv: 1712.02537.

D. J. Broadhurst, J. Fleischer, and O. V. Tarasov, “T'wo loop two point
functions with masses: Asymptotic expansions and Taylor series, in any
dimension”, Zeitschrift fiir Physik C Particles and Fields, vol. 60, 1993.
arXiv: hep-ph/9304303.

J. Fleischer, A. V. Kotikov, and O. L. Veretin, “Analytic two loop results
for selfenergy type and vertex type diagrams with one nonzero mass”,
Nuclear Physics, vol. B547, 1999. arXiv: hep-ph/9808242.

U. Aglietti and R. Bonciani, “Master integrals with 2 and 3 massive pro-
pagators for the 2 loop electroweak form-factor - planar case”, Nuclear
Physics, vol. B698, 2004. arXiv: hep-ph/0401193.

89



90

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]

BIBLIOGRAPHY

T. Gehrmann, J. M. Henn, and N. A. Lo Presti, “Pentagon functions for
massless planar scattering amplitudes”, Journal of High Energy Physics,
vol. 10, 2018. arXiv: 1807.09812.

J. M. Henn and V. A. Smirnov, “Analytic results for two-loop master in-
tegrals for Bhabha scattering I”, Journal of High Energy Physics, vol. 11,
2013. arXiv: 1307.4083.

R. N. Lee and A. A. Pomeransky, “Normalized Fuchsian form on Rie-
mann sphere and differential equations for multiloop integrals”, 2017.
arXiv: 1707.07856.

M. Heller, A. von Manteuffel, and R. M. Schabinger, “Multiple poly-
logarithms with algebraic arguments and the two-loop EW-QCD Drell-
Yan master integrals”, 2019. arXiv: 1907.00491.

L. V. Bork and A. I. Onishchenko, “Pentagon OPE resummation in N=4
SYM: hexagons with one effective particle contribution”, 2019. arXiv:
1909.13675.

S. Abreu, L. J. Dixon, E. Herrmann, B. Page, and M. Zeng, “The two-
loop five-point amplitude in N = 8 supergravity”, Journal of High Energy
Physics, vol. 3, 2019. arXiv: 1901.08563.

A. Primo, G. Sasso, G. Somogyi, and F. Tramontano, “Exact Top Yukawa
corrections to Higgs boson decay into bottom quarks”, Physical Review,
vol. D99, 2019. arXiv: 1812.07811.

R. Descartes, D. Smith, and M. Latham, The Geometry of Rene Descartes.
Cosimo Classics, 2007.

J. Liiroth, “Beweis eines Satzes iiber rationale Curven”, Mathematische
Annalen, vol. 9, 1875.

I. Newton, The Mathematical Papers of Isaac Newton: Volume 4, 1674—
1684. Cambridge University Press, 2008.

G. Ifrah, The Universal History of Numbers: From Prehistory to the In-
vention of the Computer. Wiley, 1999.

A. Clebsch, “Ueber diejenigen ebenen Curven, deren Coordinaten ratio-
nale Functionen eines Parameters sind”, Journal fiir die reine und ange-
wandte Mathematik, vol. 64, 1865.

F. Lemmermeyer, “Parametrizing algebraic curves”, 2011. arXiv: 1108.
6219.



[23]

[24]
[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

BIBLIOGRAPHY 91

J. R. Sendra, F. Winkler, and S. Pérez-Diaz, Rational algebraic curves.
Springer, 2008.

M. Bronstein, Integration algorithm, comp.soft-sys.math.maple.

J. Liouville, “Premier mémoire sur la détermination des intégrales dont
la valeur est algébrique”, Journal de [ ’Ecole Polytechnique, vol. 14, 1833.
J. Liouville, “Second mémoire sur la détermination des intégrales dont la
valeur est algébrique”, Journal de IEcole Polytechnique, vol. 14, 1833.
J. Liouville, “Note sur la détermination des intégrales dont la valeur est
algébrique”, Journal fir die reine und angewandte Mathematik, vol. 10,
1833.

R. H. Risch, “The problem of integration in finite terms”, Transactions
of the American Mathematical Society, vol. 139, 1969.

R. H. Risch, “The solution of the problem of integration in finite terms”,
Bulletin of the American Mathematical Society, vol. 76, 1970.

G. Salmon, “On the triple tangent planes to a surface of the third order”,
The Cambridge and Dublin mathematical journal, vol. 4, 1849.

A. Cayley, “On the triple tangent planes to a surface of the third order”,
The Cambridge and Dublin mathematical journal, vol. 4, 1849.

A. Clebsch, “Zur Theorie der algebraischen Flachen”, Journal fiir die
reine und angewandte Mathematik, vol. 58, 1861.

A. Clebsch, “Die Geometrie auf den Flachen dritter Ordnung”, Journal
fur die reine und angewandte Mathematik, vol. 65, 1866.

G. Castelnuovo and F. Enriques, “Die algebraischen Flachen vom Ge-
sichtspunkt der birationalen Transformationen aus”, Encyklopddie der
mathematischen Wissenschaften 111, 1915.

H. Clemens and P. Griffiths, “The intermediate Jacobian of the cubic
threefold”, Annals of Mathematics, vol. 95, 1972.

V. Iskovskikh and Y. Manin, “Three-dimensional quartics and counter-
examples to the Liiroth problem”, Mathematics of the USSR-Sbornik,
vol. 15, 1971.

B. Segre, “Variazione continua ed omotopia in geometria algebrica”, An-
nali di Matematica Pura ed Applicata, vol. 50, 1960.

M. Artin and D. Mumford, “Some Elementary Examples of Unirational
Varieties Which are Not Rational”, Proceedings of the London Mathe-
matical Society, vol. s3-25, 1972.



92

39)
[40]
[41)
42)
[43]
[44]
5]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

BIBLIOGRAPHY

B. Hassett, “Cubic fourfolds, K3 surfaces, and rationality questions”,
2016. arXiv: 1601.05501.

G. ’t Hooft and M. J. G. Veltman, “Regularization and Renormalization
of Gauge Fields”, Nuclear Physics, vol. B44, 1972.

E. R. Speer, “Ultraviolet and Infrared Singularity Structure of Generic
Feynman Amplitudes”, Annales Henri Poincaré, vol. 23, 1975.

R. Meyer, “Dimensional regularization”, 2010.

P. Etingof, “Note on dimensional regularization”, 1999.

A. V. Kotikov, “Differential equations method: New technique for massive
Feynman diagrams calculation”, Physics Letters, vol. B254, 1991.
Z.Bern, L. J. Dixon, and D. A. Kosower, “Dimensionally regulated penta-
gon integrals”, Nuclear Physics, vol. B412, 1994. arXiv: hep-ph/9306240.
E. Remiddi, “Differential equations for Feynman graph amplitudes”, Nuo-
vo Cimento, vol. A110, 1997. arXiv: hep-th/9711188.

T. Gehrmann and E. Remiddi, “Differential equations for two loop four
point functions”, Nuclear Physics, vol. B580, 2000. arXiv: hep - ph/
9912329.

R. N. Lee, “Presenting LiteRed: a tool for the Loop InTEgrals REDuc-
tion”, 2012. arXiv: 1212.2685.

J. M. Henn, “Multiloop integrals in dimensional regularization made sim-
ple”, Physical Review Letters, vol. 110, 2013. arXiv: 1304.1806.

A. V. Kotikov, “The Property of maximal transcendentality in the N=4
Supersymmetric Yang-Mills”, in Subtleties in quantum field theory: Lev
Lipatov Festschrift, 2010. arXiv: 1005.5029.

C. Dlapa, J. Henn, and K. Yan, “Deriving canonical differential equations
for Feynman integrals from a single uniform weight integral”, 2020. arXiv:
2002.02340.

https://github. com/marcobesier.

G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to Singularities
and Deformations. Springer, 2007.

V. Arnold, S. Gusein-Zade, and A. Varchenko, Singularities of Differen-
tiable Maps, Volume 1: Classification of Critical Points, Caustics and
Wave Fronts. Birkhauser Boston, 2012.



[55]
[56]
[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

BIBLIOGRAPHY 93

V. Arnold, S. Gusein-Zade, and A. Varchenko, Singularities of Differen-
tiable Maps, Volume 2: Monodromy and Asymptotics of Integrals. Birkhau-
ser Boston, 2012.

I. R. Shafarevich, Basic algebraic geometry. Springer, 2013.

W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. 1.
The user language”, Journal of Symbolic Computation, vol. 24, 1997.
W. Decker, G.-M. Greuel, G. Pfister, and H. Schonemann, “Singular”,
2019, http://www.singular.uni-kl.de.

S. Laporta and E. Remiddi, “Analytic treatment of the two loop equal
mass sunrise graph”, Nuclear Physics, vol. B704, 2005. arXiv: hep-ph/
0406160.

S. Miiller-Stach, S. Weinzierl, and R.. Zayadeh, “A Second-Order Differen-
tial Equation for the Two-Loop Sunrise Graph with Arbitrary Masses”,
Communications in Number Theory and Physics, vol. 6, 2012. arXiv:
1112.4360.

L. Adams, C. Bogner, and S. Weinzierl, “The two-loop sunrise graph with
arbitrary masses”, Journal of Mathematical Physics, vol. 54, 2013. arXiv:
1302.7004.

S. Bloch and P. Vanhove, “The elliptic dilogarithm for the sunset graph”,
Journal of Number Theory, vol. 148, 2015. arXiv: 1309.5865.

L. Adams, C. Bogner, and S. Weinzierl, “The two-loop sunrise graph
in two space-time dimensions with arbitrary masses in terms of elliptic
dilogarithms”, Journal of Mathematical Physics, vol. 55, 2014. arXiv:
1405.5640.

L. Adams, C. Bogner, and S. Weinzierl, “The two-loop sunrise integral
around four space-time dimensions and generalisations of the Clausen and
Glaisher functions towards the elliptic case”, Journal of Mathematical
Physics, vol. 56, 2015. arXiv: 1504 .03255.

L. Adams, C. Bogner, and S. Weinzierl, “The iterated structure of the all-
order result for the two-loop sunrise integral”, Journal of Mathematical
Physics, vol. 57, 2016. arXiv: 1512.05630.

M. Sggaard and Y. Zhang, “Elliptic Functions and Maximal Unitarity”,
Physical Review, vol. D91, 2015. arXiv: 1412.5577.



94

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

BIBLIOGRAPHY

S. Bloch, M. Kerr, and P. Vanhove, “Local mirror symmetry and the
sunset Feynman integral”, Advances in Theoretical and Mathematical
Physics, vol. 21, 2017. arXiv: 1601.08181.

E. Remiddi and L. Tancredi, “Differential equations and dispersion re-
lations for Feynman amplitudes. The two-loop massive sunrise and the
kite integral”, Nuclear Physics, vol. B907, 2016. arXiv: 1602.01481.

L. Adams, C. Bogner, A. Schweitzer, and S. Weinzierl, “The kite integral
to all orders in terms of elliptic polylogarithms”, Journal of Mathematical
Physics, vol. 57, 2016. arXiv: 1607.01571.

R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, F. Moriello, and
V. A. Smirnov, “Two-loop planar master integrals for Higgs— 3 partons
with full heavy-quark mass dependence”, Journal of High Energy Physics,
vol. 12, 2016. arXiv: 1609.06685.

A. von Manteuffel and L. Tancredi, “A non-planar two-loop three-point
function beyond multiple polylogarithms”, Journal of High Energy Physics,
vol. 6, 2017. arXiv: 1701.05905.

L. Adams and S. Weinzierl, “Feynman integrals and iterated integrals
of modular forms”, Communications in Number Theory and Physics,
vol. 12, 2018. arXiv: 1704.08895.

C. Bogner, A. Schweitzer, and S. Weinzierl, “Analytic continuation and
numerical evaluation of the kite integral and the equal mass sunrise in-
tegral”, Nuclear Physics, vol. B922, 2017. arXiv: 1705.08952.

J. Ablinger, J. Bliimlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C. G.
Raab, C. S. Radu, and C. Schneider, “Iterated Elliptic and Hypergeomet-
ric Integrals for Feynman Diagrams”, Journal of Mathematical Physics,
vol. 59, 2018. arXiv: 1706.01299.

E. Remiddi and L. Tancredi, “An Elliptic Generalization of Multiple
Polylogarithms”, Nuclear Physics, vol. B925, 2017. arXiv: 1709.03622.
J. L. Bourjaily, A. J. McLeod, M. Spradlin, M. von Hippel, and M. Wil-
helm, “Elliptic Double-Box Integrals: Massless Scattering Amplitudes be-
yond Polylogarithms”, Physical Review Letters, vol. 120, 2018. arXiv:
1712.02785.

M. Hidding and F. Moriello, “All orders structure and efficient compu-
tation of linearly reducible elliptic Feynman integrals”, Journal of High
Energy Physics, vol. 1, 2019. arXiv: 1712.04441.



[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]
[87]

[88]

BIBLIOGRAPHY 95

J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, “Elliptic polylogarithms
and iterated integrals on elliptic curves. Part I: general formalism”, Jour-
nal of High Energy Physics, vol. 5, 2018. arXiv: 1712.07089.

J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, “Elliptic polylogarithms
and iterated integrals on elliptic curves II: an application to the sunrise
integral”, Physical Review, vol. D97, 2018. arXiv: 1712.07095.

J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, “Ellip-
tic symbol calculus: from elliptic polylogarithms to iterated integrals of
Eisenstein series”, Journal of High Energy Physics, vol. 8, 2018. arXiv:
1803.10256.

L. Adams and S. Weinzierl, “The e-form of the differential equations for
Feynman integrals in the elliptic case”, Physics Letters, vol. B781, 2018.
arXiv: 1802.05020.

L. Adams, E. Chaubey, and S. Weinzierl, “Planar Double Box Integral
for Top Pair Production with a Closed Top Loop to all orders in the Di-
mensional Regularization Parameter”, Physical Review Letters, vol. 121,
2018. arXiv: 1804.11144.

L. Adams, E. Chaubey, and S. Weinzierl, “Analytic results for the planar
double box integral relevant to top-pair production with a closed top
loop”, Journal of High Energy Physics, vol. 10, 2018. arXiv: 1806.04981.
C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, F. Herzog, and B. Mistl-
berger, “Soft expansion of double-real-virtual corrections to Higgs pro-
duction at N3LO”, Journal of High Energy Physics, vol. 8, 2015. arXiv:
1505.04110.

W. Barth, C. Peters, and A. Ven, Compact Complex Curfaces. Springer,
1984.

T. Hosgood, “An introduction to varieties in weighted projective space”,
2016. arXiv: 1604.02441.

N. Arkani-Hamed, T. Lam, and M. Spradlin, “Non-perturbative geome-
tries for planar N' =4 SYM amplitudes”, 2019. arXiv: 1912.08222.

M. Becchetti, R. Bonciani, V. Casconi, A. Ferroglia, S. Lavacca, and A.
von Manteuffel, “Two-loop non-planar master integrals for top-pair pro-
duction in the quark-annihilation channel”, in 14th International Sym-
posium on Radiative Corrections: Application of Quantum Field Theory



96

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

BIBLIOGRAPHY

to Phenomenology (RADCOR 2019) Avignon, France, September 8-13,
2019, 2019. arXiv: 1912.06006.

S. Weinzierl, “Simple differential equations for Feynman integrals associ-
ated to elliptic curves”, in 14th International Symposium on Radiative
Corrections: Application of Quantum Field Theory to Phenomenology
(RADCOR 2019) Avignon, France, September 8-13, 2019, 2019. arXiv:
1912.02578.

J. L. Bourjaily, E. Gardi, A. J. McLeod, and C. Vergu, “All-Mass n-gon
Integrals in n Dimensions”, 2019. arXiv: 1912.11067.

M. Heller, A. von Manteuffel, R. M. Schabinger, and H. Spiesberger,
“Mixed QCD-EW two-loop corrections to Drell-Yan production”, in 14th
International Symposium on Radiative Corrections: Application of Quan-
tum Field Theory to Phenomenology (RADCOR 2019) Avignon, France,
September 8-13, 2019, 2019. arXiv: 1912.09110.

S. Mizera and A. Pokraka, “From Infinity to Four Dimensions: Higher
Residue Pairings and Feynman Integrals”, 2019. arXiv: 1910.11852.

J. L. Bourjaily, A. J. McLeod, C. Vergu, M. Volk, M. von Hippel, and
M. Wilhelm, “Embedding Feynman Integral (Calabi-Yau) Geometries in
Weighted Projective Space”, Journal of High Energy Physics, vol. 1, 2020.
arXiv: 1910.01534.

J. L. Bourjaily, M. Volk, and M. von Hippel, “Conformally Regulated
Direct Integration of the Two-Loop Heptagon Remainder”, Journal of
High Energy Physics, vol. 2, 2020. arXiv: 1912.05690.

E. Chaubey, “Techniques for solving two-loop massive Feynman inte-
grals”, PhD thesis, 2019.

J. L. Bourjaily, A. J. McLeod, C. Vergu, M. Volk, M. von Hippel, and
M. Wilhelm, “Rooting Out Letters: Octagonal Symbol Alphabets and
Algebraic Number Theory”, Journal of High Energy Physics, vol. 2, 2020.
arXiv: 1910.14224.

C. Bogner, S. Miiller-Stach, and S. Weinzierl, “The unequal mass sun-
rise integral expressed through iterated integrals on ﬂl,g”, 2019. arXiv:
1907.01251.

C. Bogner, I. Honemann, K. Tempest, A. Schweitzer, and S. Weinzierl,
“Numerics for elliptic Feynman integrals”, in Theory report on the 11th
FCC-ee workshop, 2019.



BIBLIOGRAPHY 97

[99] J. Bliimlein, “Large scale analytic calculations in quantum field theories”,

2019. arXiv: 1905.02148.

[100] E. Chaubey and S. Weinzierl, “Two-loop master integrals for the mixed
QCD-electroweak corrections for H — bb through a Htt-coupling”, Jour-
nal of High Energy Physics, vol. 5, 2019. arXiv: 1904.00382.

[101] J. L. Bourjaily, F. Dulat, and E. Panzer, “Manifestly Dual-Conformal
Loop Integration”, Nuclear Physics, vol. B942, 2019. arXiv: 1901.02887.

[102] I. Honemann, K. Tempest, and S. Weinzierl, “Electron self-energy in
QED at two loops revisited”, Physical Review, vol. D98, 2018. arXiv:
1811.09308.

[103] J. L. Bourjaily, A. J. McLeod, M. von Hippel, and M. Wilhelm, “Bounded
Collection of Feynman Integral Calabi-Yau Geometries”, Physical Review
Letters, vol. 122, 2019. arXiv: 1810.07689.






Personal

Name:

Date of Birth:
Place of Birth:
Citizenship:
Address:

Email:

Education

05,/2017-03,/2020

10/2010-12/2016

08,/2007-06/2010

Curriculum Vitae

Marco Rene Besier
11.08.1990

Wiesbaden, Germany
German

Bismarckring 40

65183 Wiesbaden
marcobesier@icloud.com

University of Mainz
PhD Student, Mathematics (Mathematical Physics)

University of Mainz

Physics and Mathematics

Degrees: M.Sc. Physics, M.Sc. Mathematics (12/2016)
B.Sc. Physics (12/2013)

Gymnasium Taunusstein
Degree: Allgemeine Hochschulreife

Work Experience

05,/2017-03,/2020
05/2017-10,/2018
02/2017-04/2017

04/2012-06,/2016

Research Associate, University of Mainz

Research and Academic Teaching in Mathematics and Physics
Trainee, d-fine GmbH

Full Stack Web Application Development

Intern, d-fine GmbH

Front End Web Application Development

Research Assistant, University of Mainz

Academic Teaching in Mathematics and Physics

99



100 CURRICULUM VITAE

Further Skills

Languages: German (Native Tongue)

English (Fluent)

Russian (Basics)

Latin (Basics)
Nanodegree: Udacity Nanodegree “Al Programming with Python”
IT: Python, PyTorch, Git, Oracle Stack

List of Publications

1 M. Besier, D. van Straten, and S. Weinzierl, “Rationalizing roots: an al-
gorithmic approach”, Communications in Number Theory and Physics, vol.
13, 2019. arXiv: 1809.10983.

2 M. Besier, D. Festi, M. Harrison, and B. Naskrecki, “Arithmetic and geo-
metry of a K3 surface emerging from virtual corrections to Drell-Yan scat-
tering”, 2019. arXiv: 1908.01079.

3 M. Besier, P. Wasser, and S. Weinzierl, “RationalizeRoots: Software Pa-
ckage for the Rationalization of Square Roots”, 2019. arXiv: 1910.13251.



