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Zusammenfassung

Theoretische Vorhersagen in der Hochenergie-Teilchenphysik erfordern die Be-

rechnung von Feynman-Integralen. Im Zuge solcher Berechnungen treten in

bestimmten Zwischenschritten oft Quadratwurzeln in den kinematischen Vari-

ablen auf. Eine Möglichkeit, Feynman-Integrale in Form multipler Polyloga-

rithmen darzustellen, besteht darin, alle auftretenden Quadratwurzeln durch

eine geeignete Variablentransformation zu rationalisieren. Diese Strategie lässt

sich auf sehr viele Berechnungen der modernen Hochenergiephysik anwenden.

In dieser Arbeit untersuchen wir daher die Frage, mit welchen Methoden man

Quadratwurzeln rationalisieren kann. Einerseits werden wir feststellen, dass

nicht alle Quadratwurzeln rationalisierbar sind. Für diese Fälle erarbeiten

wir Kriterien, die es uns erlauben werden, die Nicht-Rationalisierbarkeit einer

gegebenen Quadratwurzel zu beweisen. In vielen anderen Berechnungen ist eine

Rationalisierung der auftretenden Quadratwurzeln jedoch durchaus möglich.

Für die Behandlung solcher Fälle werden wir einen Rationalisierungsalgorithmus

erarbeiten. Dieser ist immer dann anwendbar, wenn die gegebene Quadratwurzel

einer Hyperfläche entspricht, die einen Punkt der Multiplizität d − 1 aufweist,

wobei d den Grad der Hyperfläche beschreibt. In diesem Zusammenhang wer-

den wir außerdem den F -Zerlegungssatz formulieren. Dieser erlaubt es uns, den

Rationalisierungsalgorithmus auch auf viele andere Quadratwurzeln anwenden

zu können, deren assoziierte Hyperfläche keinen Punkt der Multiplizität d − 1

aufweist. Abschließend präsentieren wir das Softwarepaket RationalizeRoots,

das die von uns untersuchten Rationalisierungsmethoden für Mathematica und

Maple implementiert. Alle hier diskutierten Techniken werden wir anhand von

Beispielen aus der modernen Hochenergiephysik erklären und verdeutlichen.
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Abstract

Theoretical predictions in high energy particle physics require the computation

of Feynman integrals. Certain steps in these computations generate square roots

in the kinematic variables. One way to express Feynman integrals in terms of

multiple polylogarithms is to rationalize all occurring square roots by a suitable

variable change. Although such a variable change does not always exist, there

are many examples from recent high energy physics that admit a rationalization.

In this thesis, we study the question of how to rationalize a given set of square

roots in detail. On the one hand, not all square roots are rationalizable. For

these cases, we establish criteria that allow us to prove non-rationalizability in a

rigorous manner. On the other hand, many square roots admit a rationalization.

For these cases, we give a rationalization algorithm that is applicable whenever

the hypersurface associated to the square root has a point of multiplicity d− 1,

where d is the degree of the hypersurface. Furthermore, we present the F -

decomposition theorem, which expands the scope of the algorithm to square

roots whose rationalization would otherwise be out of reach. Lastly, we present

the RationalizeRoots software package, which implements our rationalization

methods for Mathematica and Maple. We clarify all of our techniques through

several examples from modern high energy physics.
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Preface

At the time when I attended my very first physics conference and asked one of

the senior scientists how to write a good piece in mathematical physics, I got

the following answer:

“Marco,” he said, “whenever you explain algebraic geometry to physicists, the

odds are high that none of them has ever read about anything in the field. Thus,

you should not hesitate to introduce even the most basic notions and only raise

the abstraction level if you absolutely have to. Keep in mind that your readers

are looking for a text that solves their problems, not for a text that lowers their

academic egos.”

I fully agree. Writing a thesis in such a way does, however, come with some

trade-offs in mathematical generality and conciseness. Mathematicians should,

therefore, bear in mind that this text is deliberately written to be accessible for

theoretical physicists.

Most of the material is based on [1]–[3]. In addition, I also included not yet

published insights from [4].

It is my sincere hope that the presented material will serve as a useful resource

for many physicists and will inspire other algebraic geometers to build upon the

results of this thesis.

March 4, 2020

Mainz, Germany Marco Rene Besier
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Introduction

High energy particle physics studies the fundamental building blocks of nature:

elementary particles and their interactions. It assumes that all interactions of

matter are governed by four fundamental forces:

1. Gravity

2. Electromagnetic interaction

3. Weak interaction

4. Strong interaction

We experience the effects of gravity and electromagnetism in our everyday life.

Strong and weak interactions, however, are only present at subatomic scales.

There are two theoretical frameworks to investigate these fundamental forces:

Einstein’s general relativity for gravity and the Standard Model (SM) of particle

physics for electromagnetic, weak, and strong interactions. While general rela-

tivity is an active field of research in and of itself, much effort in contemporary

particle physics is devoted to the investigation of the SM.

To test the validity of the SM, physicists study scattering processes, i.e., they

collide particles at high energies in huge particle colliders—the world’s most

famous being the Large Hadron Collider (LHC) at the CERN laboratory in

Geneva, Switzerland. The advancing precision of the experimental measure-

ments requires equally precise theoretical predictions. To perform the necessary

computations, one has to solve Feynman integrals. These integrals are often ex-

pressible in terms of special functions, called multiple polylogarithms (MPLs),

which admit a representation as iterated integrals with integration kernels of

the form

dx

x− z
,
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2 INTRODUCTION

where z is independent of x but may depend on kinematic variables such as par-

ticle masses or momenta. In practice, however, one often encounters integration

kernels that involve square roots, for example,

dx√
(x− z1)(x− z2)

.

In order to find a result in terms of MPLs, one can try to rationalize the square

roots in the integration kernels by a suitable variable change and, subsequently,

apply partial fractioning to express the integral in terms of the desired integra-

tion kernels plus trivial integrations.

With this technique, one can solve a large number of Feynman integrals in

terms of MPLs. For this reason, the problem of rationalizing a given set of

square roots has played a crucial role in modern physics applications [5]–[16].

It is tempting to think that the rationalization of square roots is the only way

to express the solution in terms of MPLs. Let us, therefore, emphasize that

Heller, Schabinger, and von Manteuffel recently discovered the first examples

of Feynman integrals expressible through MPLs despite the presence of non-

rationalizable square roots [13]. Nevertheless, the rationalization of square roots

is often the most convenient strategy to find a solution in terms of MPLs.

This thesis provides a thorough study of rationalization methods for square

roots. Part 1 covers the foundations that are necessary to understand the phys-

ical background and to get acquainted with the mathematical tools. Further,

it gives a brief historical overview, showing that the rationalization question is

one of the oldest problems in mathematics. In Part 2, we will establish specific

criteria that help us decide whether a rationalization of a given set of square

roots is possible. Finally, Part 3 gives a detailed account on practical rational-

ization techniques such as our main algorithm, the F -decomposition theorem,

and the usage of the RationalizeRoots package [1].



Part 1

Foundations





CHAPTER 1

The Rationality Question in Mathematics

The following chapter covers some of the fundamental results about the ratio-

nality of algebraic hypersurfaces. Its purpose is to, on the one hand, provide

the reader with an overview of the most important mathematical results on the

topic and, on the other hand, give credit to the outstanding mathematicians

that developed those results.

1.1. Curves and Calculus: A Brief History

In his “Géométrie” [17] from 1637, Descartes showed that conical sections can

be viewed as zero sets of degree-2 polynomials. A few decades later, in the last

quarter of the same century, Leibniz and Newton developed the foundations

of differential and integral calculus. This triggered one of most fundamental

mathematical questions: If f(x) is a function—a term coined by Leibniz—how

can one explicitly integrate differentials of the form f(x)dx?

For rational functions, a solution to this problem is known since the time of

Euler: using partial fraction decomposition, one can write the primitive∫
R(t) dt

of a rational function R(t) as a sum of logarithms plus a rational function. For

example, one may express the arctangent function through a logarithm via∫ z

0

dt

1 + t2
=

1

2

∫ z

0

(
dt

1 + it
+

dt

1− it

)
=

1

2i
log

(
1 + iz

1− iz

)
.

During this era, the concerted efforts of Bernoulli, Fagano, Legendre, Euler, and

Abel culminated in the study of abelian integrals, i.e., primitives of the form

5



6 1. THE RATIONALITY QUESTION IN MATHEMATICS

∫
R(x, y) dx,

where R(x, y) is a rational function depending on two variables that are related

through a polynomial equation

f(x, y) = 0.

Thus, one may say that the given integral “depends” on the curve defined by

this polynomial. For example, we may say that the integral∫
x+
√

1− x2

x2 +
√

1− x2
dx

“depends on the circle” since we can view it as an integral∫
x+ y

x2 + y
dx

of a rational function in two variables that are related through the polynomial

equation

x2 + y2 − 1 = 0.

This raised the following question: Under which conditions can an abelian in-

tegral be reduced to the primitive of a rational function and, therefore, be

computed as a sum of logarithms plus a rational function? As we will see in the

upcoming section, this naturally leads us to the question under which conditions

a given algebraic curve is parametrizable by rational functions.

1.2. The Rationality Question for Curves

Before we proceed with the discussion on abelian integrals, let us give a brief

introduction to rational algebraic curves.

We define an affine plane curve as the curve consisting of the points of C2 whose

coordinates x, y satisfy an equation

f(x, y) = 0,
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where f is a non-constant polynomial with complex coefficients. A curve is

called irreducible if its defining polynomial is irreducible over the field of complex

numbers. The degree of the curve is defined as the degree of f .

An irreducible affine plane curve C defined by f(x, y) = 0 is called uni-rational

or parametrizable by rational functions if there exist two rational functions

φx(t), φy(t) ∈ C(t), at least one non-constant, such that

f(φx(t), φy(t)) = 0

as an identity in the complex variable t. Notice that, if t = t0 is a fixed value

and not one of the finitely many values at which the denominator of φx(t) or

φy(t) vanishes, then (φx(t0), φy(t0)) is a point of C.

We say that C is rational if there is a rational parametrization (φx(t), φy(t))

such that the map t 7→ (φx(t), φy(t)) is a one-to-one correspondence between

the values of t and the points of C, provided that we exclude certain finite sets

from both the set of values of t and the points of C. A map with this property

is called a birational map.

In his three pages paper from 1875 [18], Lüroth proved that, whenever a curve

can be parametrized by rational functions, one can find a rational parametriza-

tion that is one-to-one. In other words, the notions of uni-rationality and ratio-

nality are equivalent for the case of curves.

For many affine plane curves, we can find a parametrization through simple geo-

metric arguments. As an example, let us construct a rational parametrization

for the unit circle, which is defined by the equation x2 + y2− 1 = 0. Consider a

fixed point P on the circle and a variable point Q moving on a line not passing

through P . Look at the second point of intersection R of the line PQ with

the circle. Notice that, if Q traces its line, then R traces the circle. If we fix

P = (−1, 0) and assume Q to move along the y-axis, i.e., Q = (0, t), then the

equation of the line PQ is given by y = t(1 + x). Next, we determine the in-

tersection points of the line PQ : y = t(1 + x) and the circle x2 + y2 = 1 which

leads us to the equation
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t2(1 + x)2 = y2 = 1− x2 = (1− x)(1 + x).

We see that the first point of intersection is P = (−1, 0). For the coordinates

of the point R, we find

t2(1 + x) = (1− x)

t2 + t2x = 1− x

x =
1− t2

1 + t2

and y = t(1+x) = 2t/(1+t2). Finally, recall that R traces the circle for varying

values of t. Therefore, the coordinates of R provide us with the sought-after

rational parametrization:

R = (φx(t), φy(t)) =

(
1− t2

1 + t2
,

2t

1 + t2

)

Figure 1.1. Parametrization of the unit circle by a family of lines.

While the first geometric parametrization of a curve appeared in the works of

Newton [19], there is remarkable evidence that similar techniques were already

known to the ancient Babylonians in 1500 BC [20] to systematically generate

the famous Pythagorean triples, i.e., triples (a, b, c) of natural numbers that

satisfy the equation a2 + b2 = c2.
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Furthermore, we should mention that one can use the above method to parame-

trize any affine plane curve that is defined by an irreducible degree-2 polynomial.

This brings us to the fundamental question:

Which curves admit a rational parametrization?

The answer was found in 1865 by Clebsch [21], who proved that curves can be

parametrized by rational functions if and only if a certain birational invariant,

called the genus, is equal to 0.

To get an idea of how to compute this quantity, let us consider an affine plane

curve C defined by a degree-d polynomial equation f(x, y) = 0. Through ho-

mogenization of f , we obtain a degree-d homogeneous polynomial

F (x, y, z) := zdf(x/z, y/z),

which defines a projective curve

C := {[x : y : z] ∈ P2|F (x, y, z) = 0} ⊂ P2.

We call C the projective closure of the affine curve C. Provided that C is

smooth, we can compute its genus as

g(C) =
(d− 1)(d− 2)

2
,

and define the genus of the affine curve C to be the genus of its projective

closure.

In general, however, C will not be smooth. We say that a point p ∈ C is a

singular point of C if

∂

∂x
f(p) =

∂

∂y
f(p) =

∂

∂z
f(p) = 0,

and write Σ for the singular locus, i.e., the set of singular points of C. The most

common singularities are the ordinary double point and the cusp.
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Figure 1.2. The ordinary double point and the cusp.

To each singular point p ∈ C, we can associate an integer δ(C, p), called the

δ-invariant or virtual number of double points. Some important values are that

of the cusp with δ = 1 and that of the ordinary m-point, i.e., the intersection

of m lines that have pairwise different tangents. The δ-invariant of such points

is δ = m(m − 1)/2. One can compute the genus of a curve through its degree

and the δ-invariant of its singular points via

g(C) =
(d− 1)(d− 2)

2
−
∑
p∈Σ

δ(C, p).

Notice that, by the above formula and Clebsch’s criterion, a degree-d curve

whose singular locus is given by r ordinary double points is parametrizable by

rational functions if and only if

r =
(d− 1)(d− 2)

2
.

In particular, an irreducible degree-3 curve with an ordinary double point is

rational. Consider, for example, the nodal cubic C ′ defined by y2−x3−x2 = 0.

Figure 1.3. The nodal cubic.



1.2. THE RATIONALITY QUESTION FOR CURVES 11

The projective closure of C ′ has an ordinary double point, namely p = [0 : 0 : 1].

Therefore, we have g(C ′) = 0, telling us that C ′ is a rational curve. Furthermore,

we will see in Part 3 that the existence of a double point allows us to parametrize

any irreducible degree-3 curve similarly to the circle, namely by intersecting it

with a family of lines through the double point.

It is, however, not always possible to find a parametrization in that way. A

simple counterexample is the lemniscate—a degree-4 curve whose projective

closure has 3 double points and, therefore, genus 0. Though rational, one cannot

parametrize the lemniscate by a family of lines [22]. Nevertheless, one can use a

more general method and parametrize through curves of higher degree. In fact,

this more general method can be used to find a rational parametrization of any

genus-0 curve [23].

To conclude this section, let us come back to the study of abelian integrals.

Recall that we want to know under which circumstances we can reduce an

abelian integral ∫
R(x, y) dx

to a primitive of a univariate rational function. We now see that this is always

the case if the curve that the abelian integral “depends” on is a rational curve.

For example, we can use the parametrization of the unit circle in the simple

case where R(x, y) = 1/y with y =
√

1− x2 to compute∫
dx√

1− x2
=

∫
dx

y
= −2

∫
dt

1 + t2
= i log

(
1 + iz

1− iz

)
+ c

with c being a complex constant.

More generally, if an abelian integral “depends” on a curve that is defined by

f(x, y) = 0 and if (φx(t), φy(t)) is a rational parametrization for this curve, then

we can reduce the abelian integral via∫
R(x, y) dx =

∫
R(φx(t), φy(t))φ

′
x(t) dt,

where the right-hand side is indeed a primitive of a rational function.
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In particular, since any curve defined by y2 = ax2 + bx + c, with complex

coefficients a, b, and c, can be parametrized similarly to the circle, we can

reduce any abelian integral∫
R(x,

√
ax2 + bx+ c) dx

to a primitive of a rational function. The corresponding variable changes are

also known as Euler substitutions.

On the other hand, we see that abelian integrals involving smooth degree-3

curves like y2 = 1 − x3 cannot be reduced to primitives of a rational function

since y2 = 1−x3 defines a curve of genus 1. Rather, the abelian integral belongs,

in general, to a new class of functions called elliptic integrals.

Let us, however, clarify a common misconception about the elementarity of

abelian integrals. We say that a given function is elementary if it is a finite

composition of logarithms, exponentials, and algebraic functions. In particular,

the above mentioned class of elliptic integrals is not elementary. Clearly, abelian

integrals that are reducible to a primitive of a rational function are elementary

because we can write them as a sum of logarithms plus a rational function.

There are, however, some special cases in which the abelian integral involves a

non-rational curve but is still elementary. A trivial example is given by∫
3x2 + 2x+ 1√
x3 + x2 + x+ 1

dx = log
(√

x3 + x2 + x+ 1
)

+ c

with c being a complex constant. A less obvious example is the integral∫
x√

x4 + 10x2 − 96x− 71
dx,

which can be expressed in terms of elementary functions as well [24]. The

corresponding expression is given by

− 1

8
log
((
x6 + 15x4 − 80x3 + 27x2 − 528x+ 781

)√
x4 + 10x2 − 96x− 71

− x8 − 20x6 + 128x5 − 54x4 + 1408x3 − 3124x2 − 10001
)

+ c,

where c is, again, a complex constant.
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The two difficult problems of

1. deciding under which circumstances a given integral is elementary, and

2. how to obtain a solution in terms of elementary functions

were finally solved by Liouville [25]–[27] and Risch [28], [29]. Special integrals

like the above examples, i.e., integrals that are elementary although they “de-

pend” on a non-rational curve are, however, the exception rather than the norm.

1.3. The Rationality Question in Higher Dimensions

Now that we have discussed the rationality question for curves, let us give a brief

overview of what is known beyond the one-dimensional case. Historically, after

the extensive study of curves, the next logical step was to develop a birationally

invariant theory of surfaces. While it was clear that any irreducible surface of

degree two can be parametrized through a family of lines, the first interesting

insights started with the study of smooth cubic surfaces, i.e., surfaces of degree

three.

In 1849, Cayley observed that the number of straight lines on a smooth cubic

surface must be finite, and Salmon found this number to be 27 [30], [31]. One

decade later, Clebsch gave the explicit equation of a degree-9 surface that in-

tersects the cubic surface exactly in its 27 lines [32], proving both the existence

and the number of lines on smooth cubic surfaces. It was also Clebsch who first

proved in 1866 that smooth cubic surfaces are always rational [33].

After those important contributions, Enriques and Castelnuovo finally suc-

ceeded in giving a rationality criterion for surfaces. They showed that a surface

is rational if and only if its irregularity and its second plurigenus both vanish

[34]. In particular, their results implied that uni-rationality and rationality are

equivalent for surfaces.

Beyond two dimensions, however, things become considerably more complicated

since uni-rationality and rationality are no longer equivalent, i.e., the existence

of a rational parametrization does no longer imply the existence of a rational

parametrization that is one-to-one. Even the case of threefolds is still not fully
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understood, but there are some important results that we should mention:

• Any smooth cubic threefold is uni-rational but not rational [35].

• Any smooth quartic threefold is not rational [36]. There are, however,

some quartic threefolds that are known to be uni-rational [37].

• Any smooth degree-d hypersurface in Pn with d ≥ n+ 1 is not rational

by a standard argument on the existence of holomorphic (n− 1)-forms

on such hypersurfaces.

• There is a particular double covering of P3, branched along a quartic

surface in P3 with ten nodes which is uni-rational but not rational [38].

• There are at least some cubic fourfolds that are known to be rational

[39]. While most of them are expected to be irrational, there is not a

single known example of a smooth cubic fourfold that is proven to be

irrational.

Although we know very little about the rationality of hypersurfaces beyond

two dimensions, we will see that the results for curves and surfaces already

turn out to be very useful for various applications in contemporary high energy

particle physics. However, before discussing these techniques in detail, let us

first explain where the rationality question for algebraic hypersurfaces appears

in physics computations.



CHAPTER 2

The Rationalization Question in High Energy Physics

2.1. Feynman Integrals

Theoretical predictions for collider experiments in high energy physics require

the computation of Feynman integrals. Most Feynman integrals are difficult to

compute and often divergent under the assumption of four-dimensional space-

time. To deal with these divergences, physicists often calculate Feynman in-

tegrals via dimensional regularization, i.e., they replace the original integral in

four dimensions with an integral in D dimensions [40]. This D is then assumed

to depend on a small regularization parameter ε > 0. In practice, one often

assumes D = 4 − 2ε so that the physically relevant limit is recovered through

ε→ 0.

Every dimensionally regularized Feynman integral is a meromorphic function of

the regularization parameter [41]–[43]. Thus, we can ask for the corresponding

Laurent expansion. Because ε → 0 is the physical limit, we are particularly

interested in the Laurent expansion around ε = 0. For this reason, we may view

a Feynman integral I as a Laurent series

I =
∑
k≥k0

Ikε
k,

where k0 ∈ Z. The main objects of interest are, therefore, the coefficients Ik.

So whenever we speak of computing a Feynman integral, we are referring to the

computation of its Laurent coefficients. We will be particularly interested in

the case when these coefficients have a representation in terms of MPLs.

15



16 2. THE RATIONALIZATION QUESTION IN HIGH ENERGY PHYSICS

2.2. Differential Equations for Feynman Integrals

One of the predominant ways to compute Feynman integrals is the differential

equations method [44]–[47]. To get an idea of how it works, let us sketch the

calculation of two Feynman integrals that are relevant for the gauge boson self-

energy in quantum electrodynamics (QED). The explicit integrals read

I1 =
(
m2
)2−D

2

∫
dDk

iπ
D
2

1

[m2 − k2]2
,

I2 =
(
m2
)3−D

2

∫
dDk

iπ
D
2

1

[m2 − k2]2 [m2 − (k − p)2]
.

Working in dimensional regularization, we assume D = 4 − 2ε. Furthermore,

we may regard I1 and I2 as functions of x = p2/m2, where m is a particle mass

and p is a particle momentum.

The two integrals I1 and I2 represent a particular choice of what is called a basis

of master integrals. More precisely, all Feynman integrals that are relevant for

the sought-after theoretical prediction can be reduced to I1 and I2. The choice

of a master integral basis is, however, not unique, and we will soon see that

some choices are more appropriate than others.

As functions of x = p2/m2, the integrals I1 and I2 satisfy

d

dx

(
I1

I2

)
=

(
0 0

ε
4x
− ε

4(x−4)
− 1

2x
− 1+2ε

2(x−4)

)(
I1

I2

)
.

To derive this differential equation, one can use several different programs, for

example, LiteRed [48]. Note that all matrix entries are rational functions of x.

Recall that we have some freedom in choosing a basis of master integrals. Thus,

we may switch to a different set of master integrals that satisfies a simpler

differential equation. More precisely, we want to choose master integrals such

that the ε-dependence of the matrix is only given by a constant prefactor [49],

[50]. Let us, therefore, switch from I1 and I2 to

J1 = 2εI1, J2 = 2ε
√
−x(4− x)I2.
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Finding an optimal basis of master integrals is a non-trivial problem. However,

Dlapa, Henn, and Yan recently presented an algorithm to find such a basis,

which is applicable as soon as one of the initial master integrals has a particular

property, called uniform weight. For details on this technique, we refer the

reader to their recent paper [51], which appeared only a few weeks before this

thesis was published.

The new choice of master integrals fulfills the following differential equation:

d

dx
~J = ε

(
0 0

− 1√
−x(4−x)

− 1
x−4

)
~J.

Notice that the simplified ε-dependence comes with a penalty: one of the matrix

entries is no longer a rational function but “depends” on a square root.

Recall that, viewing J1 and J2 as Laurent series in ε, our ultimate goal is to

find analytic expressions for their Laurent coefficients. More precisely, we want

to express them in terms of MPLs. What is hindering us, is the presence of the

square root
√
−x(4− x).

To solve this problem, we substitute

x = −(1− t)2

t
.

This turns all matrix entries into rational functions in t:

d

dt
~J = ε

(
0 0

−1
t

1
t
− 2

t+1

)
~J.

With the simplified ε-dependence and rational matrix entries, it is now a stan-

dard exercise to solve the differential equation order by order in terms of MPLs.

2.3. The Rationalization Question for Feynman Integrals

The previous section provided a typical sample calculation of Feynman integrals.

We have seen that one of the most demanding tasks in these computations is

to find a substitution that transforms a given set of square roots into rational

functions. In the above example, we only had to rationalize one square root in
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one variable. In general, however, one has to rationalize a whole set of square

roots that depend on several variables. This rationalization problem often marks

an insurmountable difficulty for many practitioners.

The goal of this thesis is to tackle this problem systematically. The main ques-

tions we will ask are:

1. Can we establish systematic methods to rationalize a given set of square

roots?

2. In case we are unable to rationalize: Can we find a rigorous proof that

the given set of square roots is not rationalizable?

We will start out with a discussion of the second question in Part 2 and subse-

quently present systematic rationalization techniques as well as their implemen-

tation in the RationalizeRoots package [1]. Our methods will make extensive

use of the fact that the rationalization problem for square roots is directly re-

lated to the rationality question for algebraic hypersurfaces.

For instance, we may associate a one-dimensional hypersurface to the square

root
√
−x(4− x), namely the plane affine curve C defined by y2 +x(4−x) = 0.

We can then use the rational parametrization

(φx(t), φy(t)) =

(
−(1− t)2

t
,
1− t2

t

)
of C to rationalize

√
−x(4− x). Indeed, φx(t) is precisely the substitution

we used in the sample calculation of the previous section, while φy(t) gives us

the rationalized version of the square root up to sign. Conversely, if C would

not be a rational curve, then this would prove that one cannot find a rational

substitution to rationalize the square root.



CHAPTER 3

Algebraic Hypersurfaces

Now that we have discussed the physical context of the rationalization problem,

let us introduce the mathematical vocabulary that we will use throughout the

thesis. Unless otherwise stated, we will always work over the field of complex

numbers C.

3.1. Affine Hypersurfaces

An affine hypersurface V is the zero set V(f) of a non-constant polynomial

f ∈ C[x1, . . . , xn] in n variables, embedded in Cn:

V = V(f) ⊂ Cn.

We call f the defining polynomial of V . The degree of V is defined as the degree

of f . Notice that the embedding is an essential part of the definition: without

specifying the ambient space, the one-point set {0} ⊂ C could be confused with

the y-axis in C2 since both are defined as the zeros of f = x. We will, therefore,

agree on the convention to view the zero set of a polynomial in n variables as a

subset of Cn. Whenever there is an exception to this convention, the embedding

will be specified.

Examples If V = V(f) is defined by a degree-d polynomial f ∈ C[x, y] in

two variables, then V defines an affine plane curve of degree d. Curves of

degree 1 are called lines, of degree 2 conics, of degree 3 cubics. The unit circle

V(x2 + y2 − 1) is an example of a conic.

19
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The zero set of a degree-1 polynomial is called an affine hyperplane. For instance,

the line V(ax+ by− c) with non-zero scalars a, b, and c, is an affine hyperplane

in C2. ♦

If f =
∏m

i=1 f
ki
i is the defining polynomial of an affine hypersurface V , where

fi denote the irreducible factors of f and m, k1, . . . , km ∈ N, then Vi = V(fi) is

called a component of V . Every hypersurface V is the union of its components,

i.e., V =
⋃m
i=1 Vi. An affine hypersurface is said to be irreducible if it has only

one component.

The defining polynomial is only unique up to multiplication by non-zero con-

stants and powers of its irreducible factors. Affine hypersurfaces should, there-

fore, be defined via reduced polynomials, i.e., instead of taking the defining

polynomial to be
∏m

i=1 f
ki
i , we take

∏m
i=1 fi. Notice that reduced polynomials

must not be confused with irreducible polynomials. For example, the polyno-

mial f = x2 − y2 = (x+ y) · (x− y) is reduced but not irreducible.

Finally, a rational parametrization of an affine hypersurface V = V(f) ⊂ Cn

with f ∈ C[x1, . . . , xn] is an n-tuple of rational functions (φx1(t), . . . , φxn(t))

which depend on n−1 variables t = (t1, . . . , tn−1) and define a dominant rational

map φ : Cn−1 → V . This means that

1. for almost all parameter values t ∈ Cn−1, the n-tuple (φx1(t), . . . , φxn(t))

defines a point on V , provided that we exclude the parameter values

for which the denominators of the φxi vanish.

2. up to subsets U ⊂ V of positive codimension, i.e., subsets of “measure

zero,” we can write every point of V as an n-tuple (φx1(t), . . . , φxn(t))

for some t of the parameter space Cn−1.

3.2. Projective Space

The projective n-space Pn is the set of all complex lines through the origin in

Cn+1. If ∼ denotes the equivalence relation of points lying on the same line

through the origin, then
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Pn =
Cn+1\{0}
∼

.

Points in Pn are equivalence classes [(x0, . . . , xn)] = {(λx0, . . . , λxn)}, where λ

can be any non-zero complex number and at least one of the coordinates xi is

non-zero. We denote an element p ∈ Pn by one of its representatives.

To distinguish the class from its representative, we use square brackets rather

than parenthesis and write colons between the coordinates of the representing

point:

[x0 : . . . : xn] ∈ Pn.

These homogeneous coordinates emphasize that a point in Pn is only defined up

to a non-zero scalar multiple.

3.3. Points at Infinity

The projective space Pn is often viewed as the complex n-space Cn together

with an “infinitely distant point in every direction.” To clarify this interpre-

tation, consider the one-dimensional projective space P1. If we fix a reference

hyperplane in C2, i.e., a complex line not passing through the origin, we obtain

a representative for each point p ∈ P1 by taking the unique point where the

reference line meets the line through the origin that defines p. Only one point

in P1 fails to have such a representative, namely the point corresponding to the

line through the origin that is parallel to the reference line. This point is called

the point at infinity. Therefore, we can regard P1 as the union C ∪ {∞} via

[x0 : x1] 7→

x1
x0
, for x0 6= 0,

∞, for x0 = 0.

To take this construction one step further, consider the projective plane P2.

First, we fix a reference hyperplane in C3, i.e., a complex plane not passing

through the origin. Almost all points in P2 will have a unique representative

on this reference plane. The exceptions are the points corresponding to the
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lines through the origin that are parallel to the reference plane. These points at

infinity form a copy of P1 so that P2 = C2 ∪ P1.

We can generalize this idea to the case of Pn as follows: if Ux0 is the subset of

Pn in which the x0-coordinate is non-zero, then we can identify Ux0 with the

hyperplane x0 = 1 in Cn+1 via

[x0 : x1 : . . . : xn] =

[
1 :

x1

x0

: . . . :
xn
x0

]
7→
(

1,
x1

x0

, . . . ,
xn
x0

)
.

Thus, Ux0 is a copy of Cn, and we may think of it as the “finite part” of Pn.

We will call the affine space that corresponds to Ux0 the coordinate chart in

which x0 = 1. The remaining points, for which x0 = 0, are called the points at

infinity. These are representatives of the lines through the origin in Cn+1 that

are parallel to the reference hyperplane x0 = 1. They form an n−1-dimensional

projective space Pn−1 so that Pn = Cn ∪ Pn−1 via

[x0 : . . . : xn] 7→


(
x1
x0
, . . . , xn

x0

)
, for x0 6= 0,

[x1 : . . . : xn], for x0 = 0.

Notice that our choice of a reference hyperplane is arbitrary. For instance,

instead of Ux0 , we could have considered any Uxi with 0 ≤ i ≤ n. Therefore,

what is “finite” and what is “at infinity” is a matter of perspective—it depends

on the coordinate chart that we are working in.

3.4. Projective Hypersurfaces

A polynomial F ∈ C[x0, . . . , xn] is called homogeneous of degree d if all its terms

have the same degree d. In particular, a degree-d homogeneous polynomial

satisfies

F (λx0, . . . , λxn) = λdF (x0, . . . , xn), λ ∈ C.

Notice that, if a point (x0, . . . , xn) ∈ Cn+1 is a zero of a homogeneous polynomial

F , then every point (λx0, . . . , λxn) is a zero of F . Thus, the zero set of F is a

union of complex lines through the origin in Cn+1.
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We define a projective hypersurface as the zero set of a homogeneous polynomial

F ∈ C[x0, . . . , xn], embedded in Pn:

V = V(F ) ⊂ Pn.

Recall that Uxi denotes the subset of Pn in which the coordinate xi is non-zero,

and that Uxi corresponds to a copy of Cn, namely the coordinate chart of Pn in

which xi = 1. Similarly, the intersection Vxi = V ∩ Uxi ⊂ Pn corresponds to an

affine hypersurface

V(F (x0, . . . , xi−1, 1, xi+1, . . . , xn)) ⊂ Cn,

called the affine chart of V in which xi = 1. Notice that we can always regard

a projective hypersurface as the union V =
⋃n+1
i=0 Vxi .

By abuse of notation, we will denote by Uxi not only the subset of Pn in which

the coordinate xi is non-zero, but also the coordinate chart of Pn in which

xi = 1. Likewise, we will denote by Vxi not only the intersection V ∩ Uxi ⊂ Pn,

but also the affine chart of V in which xi = 1.

Example The affine charts of W = V(x2 + y2 − z2) ⊂ P2 are given by the

hyperbolas Wx = V(1 + y2 − z2) ⊂ C2 and Wy = V(x2 + 1− z2) ⊂ C2 together

with the complex unit circle Wz = V(x2 + y2 − 1) ⊂ C2. Notice that we can

find a representative for each point of W in at least one of its affine charts. Put

differently, for every point p ∈ W , we can always find at least one affine chart

of W so that p is not “at infinity.” ♦

3.5. Projective Closure of an Affine Hypersurface

The projective closure of an affine hypersurface V = V(f) ⊂ Cn is the projective

hypersurface V = V(F ) ⊂ Pn, defined by the homogenization F of f . We can

homogenize a degree-d polynomial f in n variables to turn it into a degree-d

homogeneous polynomial F in n+ 1 variables in the following way: decompose

f into the sum of its homogeneous components of various degrees, i.e., write

f = g0 + . . .+gd, where the gi are homogeneous polynomials of degree i. Notice

that some gi’s may be zero, but gd 6= 0. The homogeneous component gd is
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already homogeneous of degree d. The term gd−1 ∈ C[x1, . . . , xn], however, is

homogeneous of degree d− 1. To make it homogeneous of degree d as well, we

multiply by a new variable x0 and obtain a polynomial x0gd−1 ∈ C[x0, . . . , xn].

In the same manner, we turn all of the remaining gi’s into a homogeneous

degree-d polynomials via multiplication by xd−i0 . The sum of these terms is the

homogenization of f , a degree-d homogeneous polynomial

F = xd0g0 + xd−1
0 g1 + . . .+ gd.

We call x0 the homogenizing variable. Notice that the restriction of F to the

hyperplane x0 = 1 recovers the original polynomial f .

Example The projective closure V of the unit circle V = V(x2 + y2 − 1) ⊂ C2

is given by the projective hypersurface V = V(x2 + y2 − z2) ⊂ P2. We see that

the unit circle has two points “at infinity.” Put differently, we see that V has

two points that lack a representative in the affine chart V of V in which z = 1.

These two points are given by [1 : i : 0] and [1 : −i : 0]. ♦

3.6. Singular Points of High Multiplicity

The tangent space TpV at a point p = (p1, . . . , pn) ∈ V of an affine hypersur-

face V = V(f) ⊂ Cn with defining polynomial f ∈ C[x1, . . . , xn] is the affine

hyperplane with defining polynomial

n∑
i=1

∂f

∂xi
(p) · (xi − pi).

A point p ∈ Cn is a singular point of V if it does not allow for a well-defined

tangent space, i.e., if

f(p) =
∂f

∂x1

(p) = · · · = ∂f

∂xn
(p) = 0.

We say that p ∈ V is a regular point of V , if it is not a singular point of V .

A point p ∈ V is of multiplicity r ∈ N if there exists at least one non-vanishing

r-th partial derivative
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∂i1+...+inf

∂xi11 · · · ∂xinn
(p) 6= 0 with i1 + . . .+ in = r

and, at the same time, all lower-order partial derivatives vanish at p:

∂i1+...+inf

∂xi11 · · · ∂xinn
(p) = 0 with i1 + . . .+ in = k for all k = 0, . . . , r − 1.

We write multp(V ) = r. Notice that the regular points of V are precisely the

points of multiplicity 1. Later, in Part 3, we will be particularly interested in

the points of V with multiplicity d − 1, where d denotes the degree of V . We

will often speak of these points as (d − 1)-points, implicitly assuming that d

denotes the degree of the hypersurface under consideration.

The above notions carry over to the case of projective hypersurfaces in an ob-

vious way: If V = V(F ) ⊂ Pn denotes a projective hypersurface defined by a

homogeneous polynomial F ∈ C[x0, . . . , xn], then a singular point of V is a point

where all n+ 1 partial derivatives of F vanish. A point p ∈ V is of multiplicity

r if there is at least one non-vanishing r-th partial derivative of F at p and, at

the same time, all lower-order partial derivatives of F vanish at p.

Example The nodal cubic has defining polynomial f(x, y) = y2− x3− x2, and

a singular point at p = (0, 0) since f(p) = ∂f
∂x

(p) = ∂f
∂y

(p) = 0. Furthermore, we

see that ∂2f
∂y2

(p) 6= 0, telling us that the nodal cubic has a point of multiplicity 2

at the origin. ♦

Figure 3.1. The nodal cubic V(y2 − x3 − x2).
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Notice that if we assume a given affine hypersurface to contain the origin, then

we can define the multiplicity of the origin as the minimum degree of the non-

zero homogeneous components of the defining polynomial. Since the notion of

multiplicity is invariant under linear changes of coordinates, we can also deter-

mine the multiplicity of any point of the hypersurface by moving the point to

the origin via a linear coordinate change and subsequently reading off the min-

imum of the degrees of the non-zero homogeneous components of the defining

polynomial of the translated hypersurface.

So whenever we have a degree-d hypersurface V = V(f) ⊂ Cn with a point

p = (p1, . . . , pn) of multiplicity r < d and move p = (p1, . . . , pn) to the origin by

considering the hypersurface with defining polynomial

g(x1, . . . , xn) := f(x1 + p1, . . . , xn + pn),

then g can always be written as

g(x1, . . . , xn) = gr(x1, . . . , xn) + · · ·+ gd(x1, . . . , xn),

where gk denote degree-k homogeneous components of g with k = r, . . . , d.

3.7. Simple Singularities of Curves

To conclude the present chapter, let us sketch some ideas behind the theory of

plane curve singularities. On the one hand, this subject requires many notions

that most physicists will not be familiar with. On the other hand, we will be able

to perform the relevant techniques in an automated fashion using the ClassSing

function [52]. It is, therefore, much more in line with the idea of this thesis to

acquaint the reader with some intuition behind plane curve singularities, rather

than to elaborate the theory in detail. We do, however, strongly recommend

the book by Greuel, Lossen, and Shustin [53] for a thorough treatment of the

subject.

In Chapter 1, we have already seen two different types of plane curve singulari-

ties, namely the cusp and the ordinary double point. This raises the question,

whether one can develop a reasonable classification of singularities.
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As an example, consider the affine plane curves V(y2−x2) and V(y2−x3−x2),

whose real points are depicted below.

Figure 3.2. The curves V(y2 − x2) and V(y2 − x3 − x2).

Both curves have a singular point at the origin. From a geometric point of view,

it is evident that, taking successively smaller neighborhoods around the origin,

the two curves look increasingly similar. Thus, in an attempt to classify plane

curve singularities, it would be reasonable to require that these two singularities

should belong to the same class.

We can encode such similarities algebraically by regarding defining polynomials

of curves as elements of the ring of formal power series C[[x, y]]. More precisely,

if C1 = V(f1) and C2 = V(f2) denote two affine plane curves that both have a

singularity at the origin, then we say that these two singularities are of the same

type if the two quotient rings C[[x, y]]/〈f1〉 and C[[x, y]]/〈f2〉 are isomorphic. We

call C[[x, y]]/〈fi〉 the associated quotient ring of Ci.

Example For the two curves V(y2 − x2) and V(y2 − x3 − x2), we can find an

isomorphism between the associated quotient rings as follows: first, notice that

the polynomial f2 = y2 − x3 − x2 is, in contrast to f1 = y2 − x2, an irreducible

element of C[x, y]. If we, however, regard f2 as an element of C[[x, y]], then we

can write

f2 =

(
y − x−

∞∑
n=1

(−1) · · · (1− 2n)

2n
xn+1

)
×(

y + x+
∞∑
n=1

(−1) · · · (1− 2n)

2n
xn+1

)
.
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This factorization is easily obtained by observing that

f2 = y2 − x2(1 + x) = (y − x
√

1 + x)(y + x
√

1 + x)

and expanding

√
1 + x = 1 +

∞∑
n=1

(−1) · · · (1− 2n)

2n
xn.

Finally, the sought-after isomorphism between the rings C[[x, y]]/〈y2 − x2〉 and

C[[x, y]]/〈y2 − x3 − x2〉 is given by the map

(x, y) 7→

(
x+

∞∑
n=1

(−1) · · · (1− 2n)

2n
xn+1, y

)
,

showing that C1 and C2 have a singularity of the same type at the origin. ♦

In the late 1960’s, Arnold started the classification of hypersurface singularities.

Those efforts culminated in the famous list of ADE singularities [54], [55].

Definition If an affine hypersurface V = V(f) ⊂ Cn has a singular point at the

origin of Cn, then we say that the origin is a simple or ADE singularity of V , if

the associated quotient ring is isomorphic to a quotient ring C[[x1, . . . , xn]]/〈g〉,
where g is a polynomial from the following list:

Ak : xk+1
1 + x2

2 + q, k ≥ 1,

Dk : x2(x2
1 + xk−2

2 ) + q, k ≥ 4,

E6 : x3
1 + x4

2 + q,

E7 : x1(x2
1 + x3

2) + q,

E8 : x3
1 + x5

2 + q,

where q := x2
3 + · · ·+ x2

n. ♦

The type of a singularity is invariant under linear coordinate transformations

[53]. Therefore, we can classify any singular point p = (p1, . . . , pn) of a given

affine hypersurface V = V(f(x1, . . . , xn)) ⊂ Cn by classifying the origin sin-

gularity of V ′ = V(f(x1 + p1, . . . , xn + pn)) ⊂ Cn. Further, if F denotes a
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homogeneous polynomial in n+ 1 variables, we say that a projective hypersur-

face W = V(F ) ⊂ Pn has a simple singularity at q ∈ W , if there is an affine

chart of W , in which q is not “at infinity,” that has a simple singularity at

the respective affine representative of q. The type of the singularity does not

depend on the choice of the affine chart [53].

Note that many common hypersurface singularities, like the ordinary double

point or the cusp, are simple singularities. In particular, we see that the two

curves of our example have an A1 singularity at the origin since

C[[x, y]]/〈y2 − x3 − x2〉 ' C[[x, y]]/〈y2 − x2〉 ' C[[x, y]]/〈x2 + y2〉.
To have some concrete examples in mind, the figures below depict the affine

curve singularities of type A1, . . . , A4 and D4, . . . , D7.

Figure 3.3. The first four Ak curve singularities.

Figure 3.4. The first four Dk curve singularities.

These singularity types will play an important role in our non-rationalizability

proofs for certain sets of square roots from high energy physics.
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Theoretical physicists will, of course, be particularly interested in how to classify

hypersurface singularities. What is needed is a simple, preferably automated,

way to solve the classification problem for physically relevant examples. While

some cases allow for a full classification by plain geometric reasoning, we will

also present the ClassSing function, which one can use to automatically show

that all singularities of a given curve are simple.



Part 2

Non-Rationalizable Square Roots





CHAPTER 4

Rationalizability

While many physically relevant sets of square roots are rationalizable, there are

also various cases where a rationalization is not possible. Therefore, let us start

with a discussion on how to prove such non-rationalizability statements before

proceeding to the rationalization techniques of Part 3.

4.1. The Notion of Rationalizability

A square root
√
p with p ∈ C[x1, . . . , xn] is called rationalizable if and only if the

affine hypersurface V = V(f) ⊂ Cn+1 with f(r, x1, . . . , xn) = r2 − p(x1, . . . , xn)

has a rational parametrization.

Example The square root
√
−x(4− x) is rationalizable. A rational parametriza-

tion of V = V(r2 + x(4− x)) has been given in Chapter 2. ♦

More generally, if p1, . . . , pm ∈ C[x1, . . . , xn] are polynomials, then the set of

square roots

{√p1, . . . ,
√
pm}

is called rationalizable if and only if there are n rational functions φx1 , . . . , φxn ∈
C(t1, . . . , tn) and m rational functions φr1 , . . . , φrm ∈ C(t1, . . . , tn) such that, for

all k = 1, . . . ,m, the (n+ 1)-tuple (φrk , φx1 , . . . , φxn) is a rational parametriza-

tion for the hypersurface V(r2
k − pk(x1, . . . , xn)) ⊂ Cn+1.

This is the same as saying that there is a single variable change in the xi that

rationalizes all of the given square roots simultaneously. If a parametrization of

this form does not exist, we say that the set of square root is not rationalizable

or call it a non-rationalizable set of square roots.

33
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Example The set {√
−x(4− x),

√
x
}

is rationalizable because there exist rational parametrizations

(φr1(t), φx(t)) =

(
(1− t2)2

t2
,
(1− t)4

t2

)
,

(φr2(t), φx(t)) =

(
(1− t)2

t
,
(1− t)4

t2

)
,

for the two hypersurfaces V1 = V(r2
1 + x(4− x)) and V2 = V(r2

2 − x) that share

the same expression for φx. Put differently, there is a single rational substitution

x =
(1− t)4

t2

that rationalizes all of the given square roots.

Conversely, the set {√
−x(4− x),

√
x+ 4

}
is a non-rationalizable set of square roots. While we will discuss the techniques

to prove such a statement in one of the upcoming chapters, the purpose of

this example is rather to clarify the condition on the φxi : at first sight, it may

seem strange to call this set non-rationalizable because both square roots of the

set are rationalizable—the first via the substitution from Chapter 2 and the

second via x = t2− 4. These substitutions are, however, not the same and will,

therefore, not be useful in Feynman integral computations. Instead, for practical

applications in physics, we need a single substitution that rationalizes all of the

given square roots and, as already touched upon above, such a substitution does

not exist for the given set. ♦

Notice that the definitions of this section also make sense for square roots with

rational arguments, i.e., we could assume p1, . . . , pm ∈ C(x1, . . . , xn) instead of

p1, . . . , pm ∈ C[x1, . . . , xn]. It is, however, enough to consider polynomial square

root arguments as guaranteed by the following lemma.
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Lemma The set of square roots

R =

{√
f1

g1

, . . . ,

√
fm
gm

}
,

with f1, . . . , fm, g1, . . . , gm ∈ C[x1, . . . xn], is rationalizable if and only if the set

R′ =
{√

f1 · g1, . . . ,
√
fm · gm

}
is rationalizable.

Proof If R is rationalizable, then there exist m rational parametrizations

(φrk , φx1 , . . . , φxn) with k = 1, . . . ,m for the hypersurfaces with defining equa-

tions

r2
1 =

f1

g1

, . . . , r2
m =

fm
gm
.

Therefore, these also solve the equations

r2
1 =

f1g1

g2
1

, . . . , r2
m =

fmgm
g2
m

.

But this means that the functions

ϕrk := φrk · gk(φx1 , . . . , φxn)

ϕx1 := φx1
...

ϕxn := φxn

give us m rational parametrizations (ϕrk , ϕx1 , . . . , ϕxn) that parametrize the

hypersurfaces defined by

r2
1 = f1 · g1, . . . , r

2
m = fm · gm.

The converse statement is proven in the same manner and skipped for the sake

of brevity. �

In addition to this simple mathematical argument, the author is not aware of

a single example from theoretical high energy physics where the initial set of
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square roots that appears in a calculation contains non-polynomial arguments.

Therefore, we will focus on sets of square roots with polynomial arguments.

Notice, however, that we will only make this assumption in the context of non-

rationalizability proofs. In the context of the rationalization methods of Part 3,

square roots with rational arguments will be unavoidable and sometimes even

be preferred over square roots with non-rational arguments.

4.2. On the Scope of Non-Rationalizability Proofs

Most physicists have an intuitive idea of what the term “rationalizable square

root” should imply, namely one’s ability to find a substitution that turns the

given square root into a rational function. Most of the current physics literature

does, however, not specify what kind of substitutions are allowed or excluded.

It is tempting to discount this as an unnecessary detail, but it turns out that

the situation is more delicate than one might think.

Consider, for example, the square root
√
t4 + t2 + 1. We will soon see that it

corresponds to a non-rational plane affine curve and is, therefore, not rationaliz-

able in the sense of the previous section. Nevertheless, we can find a substitution

that rationalizes this square root, namely

t =

√
(2− s) · s
s2 − 1

,

which turns the square root under consideration into a rational function

√
t4 + t2 + 1 =

s2 − 1

1 + s · (s− 1)
.

As we see from this simple example, it is crucial to understand that our notion

of non-rationalizability only implies that there is no rational substitution that

rationalizes the given square root. It does, however, not exclude the existence

algebraic substitutions as the one above. In the end, we are particularly inter-

ested in finding rational substitutions since they do not introduce new square

roots in other parts of our computation. Algebraic substitutions, on the other

hand, may rationalize the given square root, but will introduce new square roots

in other places.
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We should stress, though, that algebraic substitutions sometimes play an impor-

tant role in intermediate steps when constructing a rational parametrization. In

fact, we will present an example in Part 3 where it is necessary to use algebraic

intermediate substitutions for our rationalization methods to succeed.

4.3. Proving Non-Rationalizability: The Strategy

Our non-rationalizability proofs are always going to be proofs by contradiction

and will rely on the following theorem:

Theorem If a given set of square roots

{√p1,
√
p2, . . . ,

√
pm}

with polynomial arguments p1, . . . , pm ∈ C[x1, . . . , xn] is rationalizable then, for

every subset ∅ 6= J ⊂ {1, . . . ,m}, the hypersurface defined by the equation

r2 =
∏
j∈J

pj

is parametrizable by rational functions.

Proof If the given set of square roots is rationalizable, then there exist m

rational parametrizations of the form (φrk , φx1 , . . . , φxn) with k = 1, . . . ,m that

parametrize the m hypersurfaces defined by

r2
1 = p1, . . . , r

2
m = pm.

Using these parametrizations, we can construct a rational parametrization for

every hypersurface of the form

r2 =
∏
j∈J

pj

by mapping the rational functions that constitute the given parametrizations

via
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(~r, x1, . . . , xn) 7→

(∏
j∈J

rj, x1, . . . , xn

)
,

where the entries of ~r are formed by the variables rj with j ∈ J . �

Furthermore, we will make use of the following corollary.

Corollary If R is a non-rationalizable set of square roots, then any larger set

of square roots R′ that contains R as a subset is also not rationalizable.

Proof Suppose R′ is a set of square roots that contains a non-rationalizable

subset R = {√p1, . . . ,
√
pm} ⊂ R′, where 1 ≤ m ≤ |R′|. If R′ would be

rationalizable, then this would, in particular, imply the existence of a rational

parametrization of the affine hypersurface defined by

r2 =
m∏
j=1

pj,

which contradicts the non-rationalizability of R. �

Based on these statements, we arrive at the following strategy to prove non-

rationalizability of a given set of square roots R′:

Strategy for Non-Rationalizability Proofs

1. Assume that a subset

R = {√p1,
√
p2, . . . ,

√
pm} ⊂ R′

of R′ is rationalizable.

2. By the above theorem, this implies that every hypersurface of the form

r2 =
∏
j∈J

pj

has a rational parametrization. Therefore, consider any hypersurface

of this form.
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3. Prove that the hypersurface under consideration is not parametrizable

by rational functions to contradict the assumption that R is rational-

izable.

4. Lastly, apply the above corollary to conclude that R′ is not rationaliz-

able.

4.4. On the Role of Squares

As explained in the previous section, we can prove the non-rationalizability of

a given set of square roots

{√p1,
√
p2, . . . ,

√
pm}

by showing that at least one affine hypersurface of the form

r2 =
∏
j∈J

pj

is not parametrizable by rational functions, where p1, . . . , pm ∈ C[x1, . . . , xn]

and ∅ 6= J ⊂ {1, . . . ,m}.

Depending on the number of square roots m, one often has many different

choices for a hypersurface of this type. While there may be many of these

choices that will work to prove the non-rationalizability of the given set, some

of the hypersurfaces will be more difficult to study than others. Therefore, one

should try to pick the hypersurface that is easiest to investigate.

For instance, hypersurfaces of comparatively low degree will usually be easier

to study than hypersurfaces of higher degree. Put differently, we usually want

to pick the minimum number of polynomials pj necessary for our hypersurface

to be not parametrizable by rational functions.

Example Consider the set

{
√

(x− 1),
√

(x− 2)(x− 3),
√

(x− 4)(x− 5)}.
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Naively, we could take all square roots of the set into account and pick the affine

plane curve V = V(r2− (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)) as our hypersurface

of choice. By the methods of the next chapter, one can then prove the non-

rationalizability of the given set by showing that V is not parametrizable by

rational functions.

On the other hand, we could also consider only the first two square root argu-

ments and use W = V(r2 − (x − 1)(x − 2)(x − 3)) instead of V , giving us an

irrational curve as well, but being slightly easier to study. ♦

In addition to the fact that we want to pick a hypersurface of a suitable degree,

there is another—more subtle—condition that we want to impose on the defining

equation of our hypersurface. For non-rationalizability proofs beyond square

roots in one variable, our techniques will heavily rely on the presence of simple

singularities. The singularities of the relevant hypersurface will, however, never

be exclusively simple as soon as the right-hand side of the defining equation

r2 =
∏

j∈J pj contains a square.

For example, in the important case where the zeros of
∏

j∈J pj define a one-

dimensional hypersurface, i.e., a curve, the presence of a square would imply

that this affine plane curve has an entire component of higher multiplicity. In

other words, the singular locus of this curve has dimension greater than zero,

i.e., the set of singularities is not just a set of isolated points. Simple singular

points are, however, necessarily isolated. Therefore, the presence of a single

square on the right-hand side of r2 =
∏

j∈J pj will immediately imply that not

all singularities of the hypersurface are simple so that our main technique for

square roots in two variables will not be applicable. Fortunately, the following

lemma allows us to ignore all squares on the right-hand side of r2 =
∏

j∈J pj.

Lemma If p, q ∈ C[x1, . . . , xn] are non-constant polynomials, then the affine

hypersurface W = V(r2− p · q2) ⊂ Cn+1 is parametrizable by rational functions

if and only if V = V(r2 − p) ⊂ Cn+1 is parametrizable by rational functions.

Proof If W is parametrizable by rational functions, then there exist rational

functions φr, φx1 , . . . , φxn ∈ C(t1, . . . , tn) with
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φ2
r = p(φx1 , . . . , φxn) · (q(φx1 , . . . , φxn))2.

But this means that the functions φx1 , . . . , φxn , and φr̃ := φr/(q(φx1 , . . . , φxn))

satisfy the equation r̃2 = p(x1, . . . , xn). The proof of the converse statement is

just as simple and skipped for the sake of brevity. �

Lastly, let us emphasize that “ignoring squares” means to ignore them entirely,

e.g., we replace x2 by 1 rather than by x.

4.5. When to Prove Non-Rationalizability

When trying to prove the non-rationalizability of a given set of square roots, it

is crucial to pick the right “starting point” for the proof. The problem is that

certain substitutions can give the impression that rationalizable sets of square

roots look like non-rationalizable ones. To clarify what we mean by this, let us

discuss a simple example.

Example Consider the following set of square roots:

{√
x− 1,

√
x− 2

}
.

In an attempt to rationalize this set, we may proceed as follows:

1. Try to rationalize the first square root.

2. If successful, plug the corresponding substitution into the second square

root and try to rationalize the resulting square root.

3. If successful, compose both substitutions to obtain a single substitution

that will rationalize both square roots.

In Part 3, we will discuss this procedure in more detail. For now, let us apply

it to the example at hand: as a first step, we rationalize the first square root by

putting x = t4 + 1 so that

√
x− 1 = t2.

With this substitution, the second square root becomes

√
t4 − 1,
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giving us a square root of a degree-4 polynomial with distinct complex zeros. As

we will see in the next chapter, this square root is not rationalizable. Therefore,

it is very tempting to naively assume that the non-rationalizability of this square

root implies non-rationalizability of the original set of square roots.

This assumption is, however, not true: suppose that we substitute x = t2 + 1

instead of x = t4 + 1 for the rationalization of the first square root. Clearly, the

former is a valid substitution as well and yields

√
x− 1 = t

for the first square root and

√
x− 2 =

√
t2 − 1

for the second. But the hypersurface corresponding to this new square root is

just a plane conic curve so that we easily rationalize it with an Euler substitu-

tion. One of those is, for example, given by

t =
2s2

1− s2
+ 1.

Finally, the composition of these two substitutions yields a substitution that

rationalizes both original square roots simultaneously and is given by

x =

(
2s2

1− s2
+ 1

)2

+ 1,

showing that the given set of square roots is indeed rationalizable. ♦

This example illustrates that proving non-rationalizability after some substitu-

tions have already been made, does not necessarily imply non-rationalizability of

the original set of square roots. For this reason, physicists should always prove

non-rationalizability as early as possible, i.e., as soon as the square roots arise

in the calculation. In typical physical applications like our sample calculation

of Part 1, this means that one should always consider the square roots in the

original kinematics in which they first appeared. In practice, these will often be

given by squared masses and the common Mandelstam variables. The correct

“starting point” to prove the non-rationalizability of a given set of square roots

should, therefore, always be “as soon as they arise.”
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Sets of Square Roots in One Variable

In this chapter, we will explain how to prove non-rationalizability for sets of

square roots in one variable. This means that we will only consider sets of the

form

{√p1,
√
p2, . . . ,

√
pm} ,

where all square root arguments are polynomials p1, . . . , pm ∈ C[x] in a single

variable x.

5.1. Non-Rationalizability via Genus

Recall from the previous chapter that, to show non-rationalizability of such a

set, we have to find at least one hypersurface V of the form

r2 =
∏
j∈J

pj

with ∅ 6= J ⊂ {1, . . . ,m} such that V is not parametrizable by rational func-

tions. In the case where all square root arguments are non-constant univariate

polynomials depending on the same variable, this hypersurface V will always

be a plane affine curve.

To prove the non-rationalizability of the given set, we need to show that V is not

parametrizable by rational functions. As mentioned in Chapter 1, this problem

was already solved by Clebsch [21] over 150 years ago. For our purposes, we

may formulate Clebsch’s result as follows:

Theorem A plane affine curve V ⊂ C2 is parametrizable by rational functions

if and only if its genus is 0.

43
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For a proof of this statement, we refer to the original work of Clebsch [21] or

any textbook on basic algebraic geometry, e.g., the one by Shafarevich [56].

In Chapter 1, we have already seen how to compute the genus of a curve based

on its degree and the δ-invariant of its singular points. The easiest and most

reliable way to perform this computation is to use computer algebra software.

In this thesis, we will use Magma [57] but there are many other programs, e.g.,

Singular [58] that will compute the genus just as fine.

Given the set

{√p1,
√
p2, . . . ,

√
pm} ,

the curves of interest are defined by polynomials of the form f(r, x) = r2−p(x),

where p(x) =
∏

j∈J pj with ∅ 6= J ⊂ {1, . . . ,m}.

In Magma, we can then compute the genus of one of these curves, call it V , with

only a few lines of code

> A<r,x> := AffineSpace(Rationals(),2);

> f := r^2 - p(x) ;

> V := Curve(A,f);

> Genus(V);

where the polynomial p(x) =
∏

j∈J pj is to be substituted for the italic expres-

sion p(x) in the definition of f. As soon as we find that such a curve has a

non-zero genus, we can conclude that the given set is not rationalizable.

5.2. Non-Rationalizability via Distinct Zeros

Another straightforward way to prove the non-rationalizability of univariate sets

of square roots is to check whether the polynomial p(x) =
∏

j∈J pj, as defined in

the previous section, has at least 3 distinct complex zeros of odd multiplicity. To

see that this statement is indeed true, let us first consider the following lemma:
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Lemma If p ∈ C[x] is a polynomial whose complex zeros are all distinct and

deg(p) ≥ 3, then V = V(r2 − p(x)) ⊂ C2 is not parametrizable by rational

functions.

Proof Using the definition of singular points, one can easily check that the

affine curve V = V(r2 − p(x)) has a singular point if and only if p(x) has a

double zero. Thus, if all complex zeros of p(x) are distinct, then V is smooth,

and the statement follows from the genus formula

g =
(d− 1)(d− 2)

2
for smooth degree-d curves together with Clebsch’s genus criterion. �

With the above lemma, we arrive at the following theorem:

Theorem If a degree-d polynomial p ∈ C[x] has at least 3 distinct complex zeros

of odd multiplicity, then V = V(r2 − p(x)) is not parametrizable by rational

functions.

Proof We write n ≤ d for the number of distinct zeros ai ∈ C of p. Furthermore,

we take m := |{ai ∈ C|p(ai) = 0, ν(ai) is odd}| to be the number of zeros of p

that have odd multiplicity, where ν(·) denotes the multiplicity of a given zero of

p. By assumption, we have 3 ≤ m ≤ n ≤ d. We write a1, . . . , am for the zeros of

odd multiplicity and am+1, . . . , an for the zeros of even multiplicity. Therefore,

by the fundamental theorem of algebra, we have

p(x) =

(
c ·

m∏
i=1

(x− ai)

)
·

(
m∏
i=1

(x− ai)ν(ai)−1

)
·

(
n∏

i=m+1

(x− ai)ν(ai)

)

=

(
c ·

m∏
i=1

(x− ai)

)
·

(
m∏
i=1

(x− ai)
ν(ai)−1

2

)2

·

(
n∏

i=m+1

(x− ai)
ν(ai)

2

)2

,

where c ∈ C is the leading coefficient of p. The lemma of Chapter 4 tells us

that we can ignore squares in p, i.e., if W = V(r2 − c ·
∏m

i=1(x − ai)) is not

parametrizable by rational functions, then V = V(r2− p(x)) is not parametriz-

able by rational functions. But, by the previous lemma, it is clear that W is

not parametrizable by rational functions. �
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In conclusion, to prove non-rationalizability of a univariate set of square roots

{√p1,
√
p2, . . . ,

√
pm} ,

one only needs to show that there is at least one polynomial p(x) =
∏

j∈J pj

with ∅ 6= J ⊂ {1, . . . ,m} that has at least 3 distinct complex zeros of odd

multiplicity.

5.3. An Example From High Energy Physics

Sets of square roots in a single variable occurred in many Feynman integral

computations, especially throughout the last decade [59]–[83]. Let us, therefore,

show how the criteria of the previous sections are to be applied in practice. As

an example, consider the set

R =
{√

x,
√

1 + 4x,
√
x (x− 4)

}
,

which appears in perturbative corrections for Higgs production [84]. Our goal is

to show that these three square roots cannot be rationalized simultaneously. We

prove this using the strategy of the previous chapter, i.e., we show that at least

one hypersurface of the form V = V(r2 −
∏

j∈J pj) with ∅ 6= J ⊂ {1, 2, 3} and

p1(x) = x, p2(x) = 1 + 4x, p3(x) = x(x − 4) is not parametrizable by rational

functions. For instance, consider the affine curve V = V(r2 − p2(x)p3(x)). On

the one hand, we see that the polynomial p2(x)p3(x) has 3 distinct complex

zeros of multiplicity 1, namely x1 = −1/4, x2 = 0, and x3 = 4. On the other

hand, we can check that V has a non-zero genus with Magma:

> A<r,x> := AffineSpace(Rationals(),2);

> f := r^2 - (1+4x)*x*(x-4);

> V := Curve(A,f);

> Genus(V);

1

We conclude that V cannot be parametrized by rational functions. Therefore,

the square roots of R cannot be rationalized simultaneously.
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Sets of Square Roots in Two Variables and Beyond

6.1. Non-Rationalizability Criterion

In this chapter, we will consider sets of square roots

{√p1,
√
p2, . . . ,

√
pm} ,

where all square root arguments are polynomials p1, . . . , pm ∈ C[x, y]. To prove

non-rationalizability of such a set, we have to find at least one hypersurface V

of the form

r2 =
∏
j∈J

pj

with ∅ 6= J ⊆ {1, . . . ,m} such that V is not parametrizable by rational func-

tions. We start our discussion with the following lemma.

Lemma If F2k ∈ C[x, y, z] is the homogenization of a polynomial f2k ∈ C[x, y]

of even degree 2k, where k ≥ 1 and z denotes the homogenizing variable, then

the hypersurface V = V(r2 − f2k(x, y)) ⊂ C3 is parametrizable by rational

functions if and only if W = V(r2 − F2k(x, y, z)) ⊂ C4 is parametrizable by

rational functions.

Proof If (φr(t1, t2), φx(t1, t2), φy(t1, t2)) is a rational parametrization of V then,

because the homogenization of f2k(x, y) is defined as

F2k(x, y, z) := z2kf2k(x/z, y/z),

we can define

47
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φ′r(t1, t2, t3) := tk3φr(t1, t2),

φ′x(t1, t2, t3) := t3φx(t1, t2),

φ′y(t1, t2, t3) := t3φy(t1, t2),

φ′z(t1, t2, t3) := t3,

which gives us a rational parametrization (φ′r, φ
′
x, φ

′
y, φ

′
z) of W since

(φ′r)
2 = t2k3 · φ2

r

= t2k3 · f2k(φx, φy)

= (φ′z)
2k · f2k(φ

′
x/φ

′
z, φ

′
y/φ

′
z)

= F2k(φ
′
x, φ

′
y, φ

′
z).

The proof of the converse direction is just as simple and skipped for the sake of

brevity. �

Let us now formulate the criterion that we will use for our non-rationalizability

proofs in the two-variable case.

Theorem If F2k ∈ C[x, y, z] is a homogeneous polynomial of degree 2k with

k ≥ 3, and if the projective curve B = V(F2k(x, y, z)) ⊂ P2 has only simple

singularities, then V = V(r2 − F2k(x, y, z)) ⊂ C4 is not parametrizable by

rational functions.

Proof A detailed proof of this theorem requires notions whose introduction goes

beyond the point of this thesis. We should, however, provide the key arguments

for the reader that is familiar with those notions. Furthermore, we give a few

short comments for physicists in the form of indented text blocks to spark some

intuition behind the mathematical vocabulary. For a thorough treatment, we

refer to Section 22 of Chapter 5 in [85], and to [86] for an introduction to the

theory of weighted projective spaces.
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We may view V as a two-dimensional hypersurface in the weighted projective

space P(k, 1, 1, 1), where x, y, and z are homogeneous coordinates of weight 1,

and r is a homogeneous coordinate of weight k.

Weighted projective spaces are a generalization of the projective spaces Pn.

They are obtained by changing the weight of the coordinates of the space and,

hence, changing the condition for a polynomial to be homogeneous. For ex-

ample, in a space in which the coordinates x0 and x1 have weight 1 and 2,

respectively, the polynomial x20 − x1 is homogeneous of degree 2.

This corresponds to a double covering σ : V → P2 ramified over the projective

curve B.

To have an easy example in mind, consider the affine plane curve C defined by

y2 = x, which corresponds to a double covering ρ : C → C of the affine line

C. The zero set of the right-hand side of y2 = x is given by the one-point set

{0} ⊂ C. Notice that the fiber ρ−1(0) is a double point, while for any other

x 6= 0, it consists of two distinct points. Therefore, we say that {0} ⊂ C is the

branch locus and that the covering is ramified over {0} ⊂ C.

We write Ṽ for the smooth model of V .

One may think of the smooth model Ṽ as a smoothened version of V that has

no singular points. The smooth model is obtained by blowing up all singulari-

ties of the original hypersurface. Blow-ups of singularities are always given by

birational maps. Thus, a hypersurface is always birational to its smooth model.

To learn how to perform blow-ups in practice, we refer the reader to [56].

A necessary condition for Ṽ to be rational is that its Kodaira dimension kod(Ṽ )

is equal to −∞.

The Kodaira dimension kod(Ṽ ) of Ṽ is a birational invariant of Ṽ . Physicists

may think of it as a generalization of the genus notion for higher-dimensional

hypersurfaces beyond the case of curves. One can use the Kodaira dimension
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to divide algebraic hypersurfaces into several classes. In particular, all rational

hypersurfaces have Kodaira dimension −∞.

Since all singularities of the degree-2k curve B are simple, the Kodaira dimen-

sion of Ṽ is given by

kod(Ṽ ) =


−∞, if k = 1, 2,

0, if k = 3,

2, if k ≥ 4.

These values for kod(Ṽ ) are derived in Section 22 of Chapter 5 in [85].

Thus, if k ≥ 3, then Ṽ is not rational. Recall that Ṽ is birational to V and that

V defines surface in P(k, 1, 1, 1), i.e., the notions of uni-rationality and ratio-

nality are equivalent for V . Therefore, if k ≥ 3, then V is not parametrizable

by rational functions. �

In conclusion, the only task to perform in practice is to classify the singularities

of a projective curve. In the remaining sections of this chapter, we will explain

how to do this in two different manners: on the one hand, we will see that, in

special cases, one can classify singularities via elementary geometric arguments.

On the other hand, we will show how to use the ClassSing function to auto-

matically check for simple singularities. Both methods will be applied to a set

of square roots that is relevant for high energy physics.

6.2. Classification of Singularities by Geometric Arguments

To get an idea of how to perform the classification of curve singularities in

practice, let us discuss an example of physical relevance. In some cases, such

as the one at hand, the given set of square roots yields a singularity structure

that allows us to deduce the full classification by geometric arguments.

We consider the set of square roots
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R =
{√

x+ 1,
√
x− 1,

√
y + 1,

√
x+ y + 1,

√
16x+ (4 + y)2

}
,

which appears in the computation of certain quantum chromodynamics (QCD)

corrections [6], and want to show that this set is not rationalizable. By the

results of the previous section, it is sufficient to prove that the projective closure

B of the affine degree-6 curve defined by

0 = (x+ 1) · (x− 1) · (y + 1) · (x+ y + 1) ·
(
16x+ (4 + y)2

)
has only simple singularities. Notice that the projective curve B is a union

of four lines Li = V(li) ⊂ P2, i = 1, 2, 3, 4, together with a smooth conic

Q = V(q) ⊂ P2. More precisely, we have

B = V(l1 · l2 · l3 · l4 · q) ⊂ P2

with homogeneous polynomials

l1(x, y, z) = x+z, l2(x, y, z) = x−z, l3(x, y, z) = y+z, l4(x, y, z) = x+y+z,

and

q(x, y, z) = 16xz + (4z + y)2.

Since all components of B define smooth curves themselves, possible singulari-

ties of B can only arise from intersection points of these components. The four

lines intersect in six points, namely

L1 ∩ L2 = [0 : 1 : 0], L1 ∩ L3 = [−1 : −1 : 1], L1 ∩ L4 = [−1 : 0 : 1],

L2 ∩ L3 = [1 : −1 : 1], L2 ∩ L4 = [1 : −2 : 1], L3 ∩ L4 = [0 : −1 : 1].

Five of these points are intersection points of two lines and, therefore, A1 sin-

gularities of B. The point [−1 : 0 : 1] is, however, an exception. The reason is

that [−1 : 0 : 1] is a point of Q, as well. So instead of two smooth branches, we

see that three smooth branches of B pass through this point. It is easy to check

that all three branches have different tangent spaces in this point. Therefore,

we conclude that [−1 : 0 : 1] is a D4 singularity. Calculating the intersection

points of Q with each line, we obtain
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L1 ∩Q = {[−1 : 0 : 1], [−1 : −8 : 1]} ,

L2 ∩Q = {[1 : −4− 4i : 1], [1 : −4 + 4i : 1]} ,

L3 ∩Q = {[1 : 0 : 0], [−9/16 : −1 : 1]} ,

L4 ∩Q = {[−1 : 0 : 1], [−9 : 8 : 1]} .

Except [−1 : 0 : 1], all of these points are again intersections of two smooth

branches with different tangent spaces in the respective point.

In summary, the singular locus of B is given by eleven A1 and a single D4

singularity. In particular, all singularities of B are simple, and we can conclude

that the set R is not rationalizable.

6.3. The ClassSing Function

We can also perform the singularity classification in an automated fashion with

Magma. For this purpose, we will use the ClassSing function, which was de-

veloped in joint work with Dino Festi [4]. The latest version is available at the

author’s GitHub repository [52].

The function is executed with the following command:

> ClassSing(basering, polynomial);

Its first input is the ring of polynomials in three variables K[x, y, z], where K

is a field. Let us stress that the user always has to use the letters x, y, and z

for the variable names. The second input is the homogeneous polynomial that

defines the projective curve whose singularities we want to study. The output

is a string that tells the user whether all singularities of the given projective

curve are ADE singularities.

Internally, ClassSing examines three affine surfaces. Each of these surfaces cor-

responds to one of the affine charts of the input curve. Subsequently, ClassSing

calls the Magma function HasOnlySimpleSingularities. The output of this
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function is then used to draw conclusions on the singularity structure of the

input curve.

To see how ClassSing is to be applied in practice, let us consider the set of

square roots R of the previous section. Recall that, in order to show non-

rationalizability of R, we need to prove that all singularities of the projective

curve

B = V((x+ z)(x− z)(y + z)(x+ y + z)(16xz + (4z + y)2)) ⊂ P2

are ADE singularities.

Before we can use ClassSing, there is one important subtlety that we have to

address. As we have already seen, not all singular points of B have rational

coordinates. This is problematic, because Magma will not allow us to choose

K = C for our base ring K[x, y, z]. It does, however, allow us to choose the

field of rational numbers K = Q. But if we would determine the singular points

of B with this choice of base ring, it would only give us the singular points

of B that have purely rational coordinates, i.e., we would overlook two of the

singular points of B in our analysis.

To resolve this issue, we first compute the singular points with a different com-

puter algebra software that will not only be sensitive to singularities over Q but

to all singular points over C. For example, we can compute the singular points

of B in Mathematica via

> f:= (x + z)*(x - z)*(y + z)*(x + y + z)*(16*x*z + (4*z + y)^2)

> Solve[f == 0 && D[f, x] == 0 && D[f, y] == 0 && D[f, z] == 0]

giving us the output

{{x -> -z, y -> 0}, {x -> -z, y -> -8 z}, {x -> -z, y -> -z},
{x -> z, y -> (-4 - 4 i) z}, {x -> z, y -> (-4 + 4 i) z},
{x -> z, y -> -2 z}, {x -> z, y -> -z},{x -> -z, y -> 0},
{x -> -((9 z)/16), y -> -z}, {x -> -9 z, y -> 8 z},
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{x -> 0, z -> 0}, {y -> 0, z -> 0}, {x -> 0, y -> -z},
{x -> 0, y -> 0, z -> 0}}

which corresponds to the 12 singular points that we already determined in the

previous section. Notice that we ignore the trivial solution, since [0 : 0 : 0]

is not an element of P2. From the Mathematica output, we see that two of

the singular points have irrational numbers in their coordinates. Now that we

know the exact irrationalities in the coordinates of the singular points, we can

perform the remaining analysis in Magma.

In order for ClassSing to be able to consider all of the singular points of B,

we have to adjoin the imaginary unit to the coefficient field Q of our base ring

Q[x, y, z]. Put differently, we have to pass from Q to the extension field Q(
√
−1).

A convenient way to construct an extension field for Q is to consider a quotient

ring of the polynomial ring Q[x] that corresponds to the irrational numbers we

want to be contained in the extension field. In our example, Q does not contain

the imaginary unit i, i.e., it does not contain any element x with x2 + 1 = 0.

The sought-after extension field Q(
√
−1) is, therefore, to be constructed as the

quotient ring Q(
√
−1) = Q[x]/(x2 + 1). In Magma, Q(

√
−1) is easily defined via

> QQ:=Rationals();

> F<i>:=ext<QQ|[Polynomial([1,0,1])]>;

where Polynomial([1,0,1]) specifies the coefficients of the polynomial g in

the quotient Q[x]/g, in our case g = 1 · x0 + 0 · x1 + 1 · x2.

If the coordinates of the singular points under consideration would contain more

than one irrationality, for instance the imaginary unit i and, in addition, the

irrational number a :=
√

5, then the corresponding field extension Q(
√

5,
√
−1)

can be created via

> QQ:=Rationals();

> F<i,a>:=ext<QQ|[Polynomial([1,0,1]), Polynomial([-5,0,1])]>;
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Now, we can easily prove the non-rationalizability of R using ClassSing:

> QQ:=Rationals();

> F<i>:=ext<QQ|[Polynomial([1,0,1])]>;

> K<x,y,z>:=PolynomialRing(F,3);

> f:=(x+z)*(x-z)*(y+z)*(x+y+z)*(16*x*z+(4*z+y)^2);

> ClassSing(K,f);

All singularities of the given projective curve

are ADE singularities.

6.4. Sets of Square Roots Beyond Two Variables

To conclude Part 2, let us give some final comments on how the presented tech-

niques may be applied beyond the case of two variables. As already mentioned

in Chapter 1, a general treatment of the case in three or more variables will

immediately lead us to the edge of knowledge of contemporary mathematics

since the relevant hypersurfaces are no longer given by curves or surfaces. Nev-

ertheless, even the cases of square roots in one and two variables are already

relevant for a large number of modern physics applications.

Further, the reader should bear in mind that it is sufficient to prove non-

rationalizability for a subset of square roots. So even in the case of large sets,

one might be able to find a subset that consists only of square roots whose non-

rationalizability can be proven by our techniques. Also, we want to point out

that the theorem at the beginning of the present chapter applies naturally to

sets of square roots in three variables, whenever there exists a subset of square

roots whose arguments are all given by homogeneous polynomials.

In conclusion, our methods can also be useful beyond the case of two variables

as long as the given set of square roots has a subset that depends on at most

two variables or may consist of square roots in three variables whose arguments

are all homogeneous polynomials.
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Rationalization Techniques





CHAPTER 7

The Main Rationalization Algorithm

In this final part of the thesis, we will give a detailed discussion on how one

can rationalize a given set of square roots. The presented algorithm is based on

the parametrization by lines method—a technique well-known in the theory of

curves and surfaces—and generalizes this method to the case of hypersurfaces

of dimension n ∈ N. We will see that the algorithm is applicable whenever

the degree-d hypersurface under consideration has a point of multiplicity d− 1.

Then, considering a family of lines through this (d − 1)-point, this family will

intersect the hypersurface in only a single other point whose coordinates we can

use as a rational parametrization. In this way, we can always find a rational

parametrization algorithmically as soon as the given hypersurface has a (d−1)-

point.

7.1. Introductory Examples

Consider a square root
√
p/q of a rational function, where p, q ∈ C[x1, . . . , xn]

are polynomials. We associate a hypersurface to this square root by naming it,

e.g., denote it by r, squaring the resulting equation, and clearing the denomina-

tor. More precisely, we define the associated hypersurface of
√
p/q as the affine

hypersurface given by V = V(q · r2 − p) ⊂ Cn+1.

Notice that we can also associate a hypersurface to more general algebraic func-

tions such as roots of degree greater than 2 or nested roots. For example,

V = V(r3 − x3 − x2) is associated to 3
√
x3 + x2 and

W = V((r2 − x2)2 − x4 − y3)

is associated to

59
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√
x2 +

√
x4 + y3.

To clarify the idea behind the rationalization algorithm, we will devote this

introductory section to the simple case of square roots in a single variable so

that the associated hypersurfaces are always given by curves.

Example Suppose we want to rationalize the square root
√
x3 + x2. Its asso-

ciated hypersurface is the nodal cubic V = V(r2 − x3 − x2). We have already

seen in Part 1 that a degree-3 curve is parametrizable by rational functions if it

has an ordinary double point.

Figure 7.1. Parametrizing the nodal cubic by a family of lines.

In fact, we can parametrize the nodal cubic similarly to the circle by intersecting

it with a family of lines: if we consider a family of lines r = tx through the

singular point, then each member of this family will intersect the curve in only

a single other point whose coordinates provide the sought-after parametrization

(φr(t), φx(t)) = (t(t2 − 1), t2 − 1). Finally, we can use this parametrization to

rationalize
√
x3 + x2:

√
φ3
x(t) + φ2

x(t) = t(t2 − 1).

♦

The most important thing that the reader should take away from this example

is that it is precisely the fact that the nodal cubic has a point of multiplicity 2,

which allows us to parametrize the curve by a family of lines. More generally, we

can always parametrize a given degree-d hypersurface through lines whenever it
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has at least one (d − 1)-point. This is easiest to see through another example.

Let us, therefore, consider the case of the unit circle one more time.

Example We have already seen how to construct the parametrization of the unit

circle geometrically. Let us now go through the same construction again, but

in a more algebraic manner. In order to determine a rational parametrization

of V = V(f) = V(x2 + y2 − 1), we need to find a (d − 1)-point. Because the

degree of V is given by d = deg(V ) = 2, we may choose any regular point of V ,

e.g., p0 = (x0, y0) = (−1, 0) ∈ V . Next, we translate p0 to the origin, i.e., we

send x 7→ x+ 1 and y 7→ y. The polynomial f becomes

f(x, y) = f1(x, y) + f2(x, y)

with homogeneous components

f1(x, y) = −2x and f2(x, y) = x2 + y2

of degree 1 and 2, respectively. Now, consider a family of lines y = tx through

p0. We determine the two intersection points of each of the lines with the circle

by plugging the line equation into f(x, y) = 0:

0 = f1(x, tx) + f2(x, tx) = xf1(1, t) + x2f2(1, t).

The solution x = 0 gives p0. The second solution yields

x = −f1(1, t)

f2(1, t)
, y = −tf1(1, t)

f2(1, t)
.

Translating back to the original setting via x 7→ x− 1 and y 7→ y, we see that

φx(t) = −f1(1, t)

f2(1, t)
− 1, φy(t) = −tf1(1, t)

f2(1, t)
,

yields the sought-after parametrization. Notice that we had a choice in picking

the family of lines through p0 which we intersected with the circle. In fact, one

can easily produce a different rational parametrization by considering a different

family of lines. For instance, taking the family to be x = ty instead, we find

the parametrization

φx(t) = −tf1(t, 1)

f2(t, 1)
− 1, φy(t) = −f1(t, 1)

f2(t, 1)
.
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This brings us to the main algorithm that we will use for our rationalizations.

7.2. The Algorithm

Input A degree-d hypersurface V that is associated to a given root, and whose

projective closure V has at least one point of multiplicity d− 1.

Output A rational parametrization of V .

1. Determine a point p0 with multp0V = d− 1.

2. If p0 is not at infinity, continue with step 3. and 4., and finish with

step 5.

If p0 is at infinity, consider another affine chart V ′ of the projective

closure V in which p0 is not a point at infinity, continue with steps 3.,

4., 5., and finish with step 6.

3. With p0 = (a0, . . . , an), compute

g(r, x1, . . . , xn) = f(r + a0, x1 + a1, . . . , xn + an),

and write

g(r, x1, . . . , xn) = gd(r, x1, . . . , xn) + gd−1(r, x1, . . . , xn),

where gd and gd−1 are homogeneous components of degree d and d− 1.

4. Return

φr(t0, . . . , tn) = −t0
gd−1(t0, t1, . . . , tn)

gd(t0, t1, . . . , tn)
+ a0,

...

φxn(t1, . . . , tn) = −tn
gd−1(t0, t1, . . . , tn)

gd(t0, t1, . . . , tn)
+ an.

5. For a single i ∈ {0, . . . , n}, set ti = 1.

6. Change coordinates, to switch from V ′ to the original affine chart V .
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7.3. Sample Applications

Example As a first example, let us apply the algorithm to rationalize the square

root
√

1− x2 with associated hypersurface V = V(r2 + x2 − 1) ⊂ C2.

Step 1. Because deg(V ) = 2, we can use any regular point of V as our point

of multiplicity d− 1. For instance, choose p0 = (r0, x0) = (0,−1).

Step 2. p0 is not a point at infinity.

Step 3. Consider g(r, x) = f(r + 0, x + (−1)) = g2(r, x) + g1(r, x), where

g2(r, x) = r2 + x2 and g1(r, x) = −2x.

Step 4. Return

φr(t0, t1) = −t0
g1(t0, t1)

g2(t0, t1)
+ 0,

φx(t0, t1) = −t1
g1(t0, t1)

g2(t0, t1)
+ (−1).

Step 5. Setting t0 = 1 we obtain

φr(t1) := φr(1, t1) = −g1(1, t1)

g2(1, t1)
=

2t1
t21 + 1

,

φx(t1) := φx(1, t1) = −t1
g1(1, t1)

g2(1, t1)
− 1 =

t21 − 1

t21 + 1
,

and φx(t1) provides a substitution that rationalizes
√

1− x2.

Example Let us proceed with a more involved example. Consider the square

root √
x4 + 4x2y2 + 4

4x2
.

The associated hypersurface is V = V(f) = V(x4 + 4x2y2 + 4− 4r2x2).
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Step 1. Because deg(V ) = 4, we need a point of multiplicity 3 to apply the

algorithm. Looking at the partial derivatives of f , we see that V does not have

such a point. There is, however, a point of multiplicity 3 at infinity as we can

see by considering the projective closure

V = V(x4 + 4x2y2 + 4z4 − 4r2x2).

This (d− 1)-point is given by p0 = [r0 : x0 : y0 : z0] = [1 : 0 : 1 : 0].

Step 2. Viewed from the affine chart V , p0 is at infinity. Therefore, we have to

consider a different affine chart V ′ of V for which p0 is not at infinity. In this

particular example, we have two choices: either we consider the chart in which

r = 1 or the chart in which y = 1. Let us choose the former, which corresponds

to a map

[r : x : y : z] 7→
(x
r
,
y

r
,
z

r

)
=: (x′, y′, z′) .

Under this mapping, p0 ∈ V is send to p′0 := (0, 1, 0) ∈ V ′. The affine hyper-

surface V ′ is given by V ′ = V((x′)4 + 4(x′)2(y′)2 + 4(z′)4 − 4(x′)2).

Step 3. Consider g(x′, y′, z′) = f(x′+0, y′+1, z′+0) = g4(x′, y′, z′)+g3(x′, y′, z′),

where g4(x′, y′, z′) = (x′)4 + 4(z′)4 + 4(x′)2(y′)2 and g3(x′, y′, z′) = 8(x′)2y′.

Step 4. Return

φx′(t0, t1, t2) = −t0
g3(t0, t1, t2)

g4(t0, t1, t2)
+ 0,

φy′(t0, t1, t2) = −t1
g3(t0, t1, t2)

g4(t0, t1, t2)
+ 1,

φz′(t0, t1, t2) = −t2
g3(t0, t1, t2)

g4(t0, t1, t2)
+ 0.
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Step 5. Setting t0 = 1 we obtain

φx′(t1, t2) := φx′(1, t1, t2) = −g3(1, t1, t2)

g4(1, t1, t2)
= − 8t1

4t42 + 4t21 + 1
,

φy′(t1, t2) := φy′(1, t1, t2) = −t1
g3(1, t1, t2)

g4(1, t1, t2)
+ 1 =

4t42 − 4t21 + 1

4t42 + 4t21 + 1
,

φz′(t1, t2) := φz′(1, t1, t2) = −t2
g3(1, t1, t2)

g4(1, t1, t2)
= − 8t1t2

4t42 + 4t21 + 1
.

Step 6. Finally, we use the parametrization for V ′ to construct a parametriza-

tion for V . More precisely, we solve

φx′ =
φx
φr
, φy′ =

φy
φr
, and φz′ =

φz
φr

for φr, φx, and φy while putting φz = 1. We find that the sought-after substi-

tutions are given by

φx(t1, t2) =
1

t2
,

φy(t1, t2) = −4t42 − 4t21 + 1

8t1t2
,

and can easily check that they rationalize our square root:√
(φx(t1, t2))4 + 4(φx(t1, t2))2(φy(t1, t2))2 + 4

4(φx(t1, t2))2
=

4t42 + 4t21 + 1

8t1t2
.

7.4. Simultaneous Rationalization of Multiple Square Roots

Now that we have seen how to rationalize individual square roots, let us demon-

strate how to find a variable change that rationalizes a whole set of square roots.

Consider the set

R =
{√

x+ 1,
√
x− 1,

√
y + 1,

√
x+ y + 1

}
whose rationalization is relevant in the computation of certain QCD corrections

[6]. In fact, this set is a rationalizable subset of the non-rationalizable set that

we have studied in Part 2.
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Our strategy will be to rationalize one square root at a time in an iterative

manner. More precisely, we first choose one of the square roots as our starting

point and apply our rationalization algorithm to this square root. While the

resulting substitution will rationalize this particular square root, it will not

rationalize the remaining ones. Instead, it will affect all of the other square root

arguments that depend on the variable that we have changed. This will leave us

with a new set of square roots with more complicated square root arguments.

In particular, these new arguments will, in general, be rational functions rather

than polynomials. Nevertheless, this new set of square roots will contain one

element less. Therefore, we may repeat this procedure until all square roots

are rationalized. Finally, the composition of all the variable changes that we

have found will give us a single variable change that rationalizes all of the given

square roots simultaneously.

To clarify this procedure, let us present the rationalization of R in detail.

Step 1: Rationalizing
√
x+ 1

The associated hypersurface of
√
x+ 1 is the conic plane curve V1 = V(r2

1−x−1)

Since deg(V1) = 2, any regular point p1 of V1 is a (d − 1)-point. For instance,

we apply the algorithm with the choice p1 = (0,−1), which yields the following

rational parametrization of V1:

(φr1(t1), φx(t1)) =

(
1

t1
,
1− t21
t21

)
.

Admittedly, this parametrization is more complicated than it needs to be since

the substitution x = t21 − 1 would also rationalize the square root. However,

this choice would lead to more complicated coefficients in a later step, which is

why we stick with the parametrization above.

Step 2: Rationalizing
√
x− 1

Next, we want to find a substitution which rationalizes
√
x− 1. At the same

time, we have to guarantee that this new substitution, which we denote by

ϕx(t2), also rationalizes the first square root
√
x+ 1. To achieve this, we first

substitute φx(t1) in the square root
√
x− 1:
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√
φx(t1)− 1 =

√
1− 2t21
t21

.

Since the denominator of the right-hand side is already a square, we just need

to rationalize the square root of the numerator. We should stress, though, that

excluding square factors from the analysis is not always beneficial. We will

discuss the role of squares in more detail in one of the upcoming chapters.

For now, notice that the associated hypersurface of our new square root
√

1− 2t21
is given by V2 = V(r2

2 + 2t21− 1). Again, since deg(V2) = 2, any regular point p2

of V2 is a (d− 1)-point. For instance, we may choose p2 = (1, 0). Applying the

algorithm with this choice yields the parametrization

(φr2(t2), φt1(t2)) =

(
1− 2t22

t22 + 2
,− 2t2

t22 + 2

)
.

We can now write down the expression for ϕx(t2) by composing the two substi-

tutions that rationalize the individual square roots:

ϕx(t2) := φx(φt1(t2)) =
t42 + 4

4t22
.

Indeed, we can check that plugging ϕx(t2) into
√
x+ 1 and

√
x− 1 yields ratio-

nal expressions:

√
ϕx(t2) + 1 =

t22 + 2

2t2
,√

ϕx(t2)− 1 =
t22 − 2

2t2
.

Step 3: Rationalizing
√
y + 1

In principle, we could rationalize
√
y + 1 similarly to

√
x+ 1, i.e., we could sim-

ply replace y by (1 − t23)/t23. However, this substitution would yield a rather

complicated hypersurface when we try to rationalize
√
x+ y + 1 in the upcom-

ing step. So in the case at hand, it is better to take the obvious choice

ϕy(t3) = t23 − 1.
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Step 4: Rationalizing
√
x+ y + 1

We have seen that the first three square roots of R can be rationalized with the

substitutions

ϕx(t2) =
t42 + 4

4t22
,

ϕy(t3) = t23 − 1.

Plugging these expressions into the remaining square root
√
x+ y + 1, we obtain√

t42 + 4t22t
2
3 + 4

4t22
.

The associated hypersurface is given by V4 = V(t42 + 4t22t
2
3 + 4− 4r2

4t
2
2). Notice

that this is precisely the hypersurface that we studied in the second example

of the previous section. A rational parametrization of V4 is, therefore, given by

the three rational functions

φr4(s1, s2) = −4s4
2 + 4s2

1 + 1

8s1s2

,

φt2(s1, s2) =
1

s2

,

φt3(s1, s2) = −4s4
2 − 4s2

1 + 1

8s1s2

.

Finally, composing these functions with the ones that rationalize the other

square roots, we obtain substitutions that rationalize all of the four square

roots in R simultaneously:

Φx(s1, s2) : = ϕx(φt2(s1, s2)),

Φy(s1, s2) : = ϕy(φt3(s1, s2)).
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Indeed, we find that

√
Φx(s1, s2) + 1 =

2s2
2 + 1

2s2

,√
Φx(s1, s2)− 1 =

2s2
2 − 1

2s2

,√
Φy(s1, s2) + 1 =

4s4
2 − 4s2

1 + 1

8s1s2

,√
Φx(s1, s2) + Φy(s1, s2) + 1 =

4s4
2 + 4s2

1 + 1

8s1s2

.





CHAPTER 8

The F-Decomposition Theorem

Now that we have a good understanding of the standard machinery, let us turn

to a more advanced technique. In the following chapter, we will present the F -

decomposition theorem, which was first proved by the author in the appendix

of [3] and turned out to be a useful tool in many applications. In fact, it often

allows for rationalizations that would otherwise be out of reach.

8.1. The Theorem

If k is a positive integer and f ∈ C[x1, . . . , xn] a polynomial of degree d with

d ≤ k, then the k-homogenization of f is a degree-k homogeneous polynomial

F (x1, . . . , xn, z) := zk · f (x1/z, . . . , xn/z) .

For example, the 4-homogenization of f(x, y) = xy is given by F (x, y, z) = xyz2.

The d-homogenization of a degree-d polynomial is the usual homogenization.

Theorem (F -Decomposition Theorem) If V = V(r2− f 2
d
2

+ 4f d
2

+1f d
2
−1) ⊂ Cn+1

denotes the hypersurface associated to√
f 2
d
2

− 4f d
2

+1f d
2
−1,

where each fk ∈ C[x1, . . . , xn] is a polynomial of degree deg(fk) ≤ k, then V

has a rational parametrization if and only if W = V(F d
2

+1 +F d
2

+F d
2
−1) ⊂ Cn+1

has a rational parametrization with Fk being the k-homogenization of fk using

the same homogenizing variable, say z, for each of the three homogenizations.

Proof If
(
φWx1 , . . . , φ

W
xn , φ

W
z

)
is a rational parametrization of W , then we obtain

a rational parametrization of V by defining

71
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φVr := 2 · φWz · f d
2

+1

(
φWx1/φ

W
z , . . . , φ

W
xn/φ

W
z

)
+ f d

2

(
φWx1/φ

W
z , . . . , φ

W
xn/φ

W
z

)
,

φVx1 :=
φWx1
φWz

,

...

φVxn :=
φWxn
φWz

.

For the converse direction, which we will not use in this thesis, we refer the

reader to the original paper [3]. �

8.2. Sample Application

To see how useful the F -decomposition theorem is in practice, let us discuss a

rationalization that uses all of the techniques discussed so far.

Consider the square root
√
x4 + y3. The associated affine hypersurface reads

V = V(f) = V(r2 − x4 − y3). Because V has degree 4, we need to find a

point p of multiplicity 3 to apply the rationalization algorithm. Computing the

partial derivatives of the homogenization of f , however, we see that V does not

have a point of multiplicity 3—not even at infinity. Let us, therefore, apply the

F -decomposition theorem:

First, we observe that

√
x4 + y3 =

√
f 2

2 − 4f3f1

with

f1(x, y) = −1

4
, f2(x, y) = x2, f3(x, y) = y3,

and corresponding k-homogenizations

F1(x, y, z) = −1

4
z, F2(x, y, z) = x2, F3(x, y, z) = y3.

According to the theorem, V has a rational parametrization if the hypersurface



8.2. SAMPLE APPLICATION 73

W = V(F1 + F2 + F3) = V(−z/4 + x2 + y3) ⊂ C3

has a rational parametrization. Thus, we try to apply the algorithm to W :

Step 1. Because deg(W ) = 3, we need to find a point of multiplicity 2. Looking

at the partial derivatives of F1 + F2 + F3, we see that W does not have such a

point. There is, however, a point of multiplicity 2 at infinity. We see this by

considering the projective closure

W = V(v2F1 + vF2 + F3) ⊂ P3.

This projective hypersurface has a single point of multiplicity 2, namely

p0 = [x0 : y0 : z0 : v0] = [0 : 0 : 1 : 0].

Step 2. Viewed from the affine chart W , p0 is at infinity because v0 is zero.

Therefore, we have to consider a different affine chart W ′ of W in which p0 is

not at infinity. In this particular example, we only have one choice, namely to

consider the chart where z = 1. Switching from W to W ′ corresponds to a map

[x : y : z : v] 7→ (x/z, y/z, v/z) =: (x′, y′, v′) .

Under this mapping, p0 ∈ W is send to p′0 := (0, 0, 0) ∈ W ′. The affine hyper-

surface W ′ is given by

W ′ = V
(
− (v′)

2
/4 + v′ (x′)

2
+ (y′)

3
)
⊂ C3.

Step 3. Consider

g(x′, y′, v′) = − (v′ + 0)
2
/4 + (v′ + 0) (x′ + 0)

2
+ (y′ + 0)

3

= g3(x′, y′, v′) + g2(x′, y′, v′),

where

g3(x′, y′, v′) = v′ (x′)
2

+ (y′)
3

and g2(x′, y′, v′) = − (v′)
2
/4.

Step 4. Return
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φx′(t0, t1, t2) = −t0
g2(t0, t1, t2)

g3(t0, t1, t2)
+ 0,

φy′(t0, t1, t2) = −t1
g2(t0, t1, t2)

g3(t0, t1, t2)
+ 0,

φv′(t0, t1, t2) = −t2
g2(t0, t1, t2)

g3(t0, t1, t2)
+ 0.

Step 5. Setting t0 = 1, we obtain

φx′(t1, t2) := φx′(1, t1, t2) = −g2(1, t1, t2)

g3(1, t1, t2)
=

t22
4(t31 + t2)

,

φy′(t1, t2) := φy′(1, t1, t2) = −t1
g2(1, t1, t2)

g3(1, t1, t2)
=

t1t
2
2

4(t31 + t2)
,

φv′(t1, t2) := φv′(1, t1, t2) = −t2
g3(1, t1, t2)

g4(1, t1, t2)
=

t32
4(t31 + t2)

.

Step 6. The next step is to translate the rational parametrization for W ′ into

a rational parametrization for W . To do this, we solve

φx′ =
φx
φz
, φy′ =

φy
φz
, and φv′ =

φv
φz

for φx, φy, and φz while putting φv = 1. In this way, we obtain a rational

parametrization of W as

φWx (t1, t2) =
1

t2
,

φWy (t1, t2) =
t1
t2
,

φWz (t1, t2) =
4(t31 + t2)

t32
.
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Finally, we use the F -decomposition theorem to obtain the change of variables

that rationalizes
√
x4 + y3:

φVx (t1, t2) =
φWx (t1, t2)

φWz (t1, t2)
=

t22
4(t31 + t2)

,

φVy (t1, t2) =
φWy (t1, t2)

φWz (t1, t2)
=

t1t
2
2

4(t31 + t2)
.

Indeed, we have √
(φVx (t1, t2))4 +

(
φVy (t1, t2)

)3
=
t32(2t31 + t2)

16(t31 + t2)2
.





CHAPTER 9

The RationalizeRoots Software

The RationalizeRoots software package implements all of the techniques that

we discussed in the two previous chapters and is the result of joint work with

Pascal Wasser and Stefan Weinzierl. The package comes in two versions: one

for Mathematica and one for Maple. In this thesis, we will focus on the

Mathematica version of the package. For the corresponding Maple commands,

we refer the reader to the original paper [1].

9.1. Setup and Documentation

In this first section, we will give a brief overview of the functions of the package

and their basic options.

The package is loaded with the command:

Get["RationalizeRoots.m"]

Once loaded, it provides the following routines:

• ParametrizePolynomial[poly, options]

– The input poly is a (multivariate) polynomial.

– The output is a list of rational parametrizations for the hypersur-

face defined by poly. Each rational parametrization is given as a

substitution list. By default, only one rational parametrization is

returned. If no rational parametrization is found, the empty list

is returned.

– Basic Options:

∗ Variables → {x1,x2,...}: Only the variables appearing

in the list are considered as variables of poly. In case this

77
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option is not specified, all variables appearing in poly are

taken into account.

∗ OutputVariables→ {y1,y2,...}: The variables appearing

in the list are used as new variables, i.e., as parameters of

the rational parametrization. By default, t[1], t[2], ...

are used as new variables.

∗ MultipleSolutions→ True / False: If true, a list of mul-

tiple rational parametrizations is returned. If false, the first

rational parametrization found is returned. The default value

is false.

∗ GeneralC→ True / False: If true, the rational parametri-

zation may depend on free parameters C[1], C[2], ... If

false, a default value is substituted for all occurring free pa-

rameters. The default value of the option is false.

∗ GeneralT → True / False: If true, the option skips step 5

of the rationalization algorithm and leaves it to the user to

set one of the new variables equal to one. The default value

is false.

∗ ForceFDecomposition → True / False: If true, the F -

decomposition theorem is applied before searching for (d−1)-

points on the original hypersurface. The default value is

false.

∗ FPolynomials → {f1,f2,f3}: Given the list {f1,f2,f3},
assume that poly is of the form r^2-f2^2+4f1f3 and use

these polynomials for the F -decomposition theorem. If this

option is not specified, a heuristic algorithm is used to find

an F -decomposition.

• RationalizeRoot[root, options]

– The input root is of the form R1

√
R2, where R1 and R2 are (mul-

tivariate) rational functions.

– The output is a list of variable changes that rationalize the given

square root. Each variable change is given as a substitution list.

By default, only one variable change is returned. If no variable

change is found, the empty list is returned.

– Basic Options:
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∗ Variables: As above.

∗ OutputVariables: As above.

∗ MultipleSolutions: As above.

∗ GeneralC: As above.

∗ GeneralT: As above.

∗ ForceFDecomposition: As above.

∗ FPolynomials: As above, but with the restriction that the

input is assumed to be a square root of a polynomial P ,

which can be written as
√
P =

√
f22 − 4f1f3.

9.2. Functions and Options

Let us now describe the functions and options of the package in more detail and

show how the user can apply them to concrete examples.

9.2.1. RationalizeRoot

When using the package for the first time, the RationalizeRoot function is an

excellent way to get started. Without requiring any prior knowledge about the

rationalization method, the user can provide a square root and obtain a variable

change that turns this square root into a rational function. For example, con-

sider the square root
√

1− x2 − y2. To find a rationalizing change of variables,

we can apply the package as follows:

RationalizeRoot[Sqrt[1-x^2-y^2]]

{{x→ 2t[1]
1+t[1]2+t[2]2

,y→ −1−t[1]2+t[2]2

1+t[1]2+t[2]2
}}

With this substitution, we have
√

1− x2 − y2 = 2t1t2/(t
2
1 + t22 + 1).

Although RationalizeRoot is already quite powerful, it is considered a pre-

liminary function. For example, RationalizeRoot will not rationalize nested

square roots. Using ParametrizePolynomial instead, the user has more con-

trol over the hypersurface associated to the square root, which also allows for

the rationalization of more general algebraic functions. Advanced users should,

therefore, work with the ParametrizePolynomial function.
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9.2.2. ParametrizePolynomial

As a first step, we demonstrate the basic usage of ParametrizePolynomial

using the square root
√

1− x2 − y2. Instead of the actual square root, we have

to provide the defining polynomial of the associated hypersurface as input for

the function:

ParametrizePolynomial[r^2+x^2+y^2-1]

{{r→ 2t[1]t[2]
1+t[1]2+t[2]2

,x→ 2t[1]
1+t[1]2+t[2]2

,y→ −1−t[1]2+t[2]2

1+t[1]2+t[2]2
}}

We see that, in addition to the change of variables, the output also contains the

expression of the rationalized square root up to sign. Now that we understand

the basic usage of ParametrizePoylnomial, let us go through the different

options of the function.

Variables

By default, ParametrizePolynomial performs the transformation in all vari-

ables of the input. Depending on the context, however, it can be advantageous

to transform only a subset of the variables. The Variables option allows the

user to specify which variables should be changed. For example, consider the

rationalization of
√
x+ y + 1. On the one hand, we can rationalize using:

ParametrizePolynomial[r^2-x-y-1]

{{r→ 1+t[1]
t[2]

,x→ 1+t[1]

t[2]2
,y→ −−t[1]2−t[1]+t[2]2

t[2]2
}}

On the other hand, we can use the Variables option to only change variables

in y:

ParametrizePolynomial[r^2-x-y-1,Variables→{r,y}]
{{r→ (1 + x)t[1],y→ −1− x + t[1]2 + 2xt[1]2 + x2t[1]2}}

As we will see later, this option is particularly powerful when it comes to the

simultaneous rationalization of multiple square roots. We want to point out

that, although the output obtained in this way is guaranteed to be rational in

the new variables (in this case t[1]), one might encounter new square roots
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that depend on the variables we viewed as parameters (in this case x). We will

provide a more detailed discussion of such an example in the last section.

OutputVariables

By default, the new variables of a transformation are called t[1],t[2], . . . , as

we have already seen. Using the option OutputVariables, however, the user

can specify the names of the new variables to be, for instance, v and w:

ParametrizePolynomial[r^2+x^2+y^2-1, OutputVariables→{v,w}]
{{r→ 2vw

1+v2+w2
,x→ 2v

1+v2+w2
,y→ −1−v2+w2

1+v2+w2
}}

This option is convenient when we apply the function iteratively to rationalize

multiple square roots simultaneously.

MultipleSolutions

Setting MultipleSolutions to True provides the user with multiple rational

parametrizations. These parametrizations are obtained by applying the algo-

rithm multiple times using all the different (d−1)-points across all affine charts

of the projective closure of the given hypersurface.

GeneralC

Some square roots have an associated hypersurface with infinitely many (d−1)-

points. Consider, for instance, the square root
√

1− x2, which is associated

to the unit circle. The unit circle is a hypersurface of degree 2. Therefore, a

(d − 1)-point is given by any regular point. The rational parametrization that

the algorithm produces is, however, not independent of the choice of the (d−1)-

point. In fact, what point we choose will have an impact on the coefficients that

we get in our variable change. To see this, we take (r0, x0) = (
√

3/2, 1/2) as

our (d− 1)-point, instead of our usual choice (r0, x0) = (−1, 0). This produces

rational parametrizations of the unit circle like

φr(t) =

√
3

2
−
√

3 + t

t2 + 1
, φx(t) =

1

2
− t(
√

3 + t)

t2 + 1
.

The GeneralC option encodes how the parametrization depends on the choice

of the (d − 1)-point—in case there are infinitely many of these points. More

precisely, if the option is enabled, the output will depend on free parameters
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C[1], C[2], etc. By substituting concrete values for these parameters, the user

is effectively fixing a (d− 1)-point, in retrospect, which allows the user to find

a change of variables that is most suitable in the given context. Applying the

GeneralC option to the unit circle, we get:

ParametrizePolynomial[r^2+x^2-1, GeneralC→True]

{{r→ −C[2]−2C[1]t[1]+C[2]t[1]2

C[1]−2C[2]t[1]+C[1]t[1]2
,x→ −

√
C[1]2−C[2]2−

√
C[1]2−C[2]2t[1]2

C[1]−2C[2]t[1]+C[1]t[1]2
}}

Notice that at least one of the free parameters has to be chosen different

from zero. In most cases, an integer choice of coordinates will produce the

parametrizations that are least cluttered. Therefore, whenever possible, the

package chooses integer coordinates if the GeneralC option is not specified.

GeneralT

The GeneralT option skips step 5 of the rationalization algorithm and leaves

it to the user to set one of the new variables ti equal to one in retrospect.

This has the advantage that one can spot what choice of ti = 1 produces the

variable change that is most suitable in the user’s context. As an example, let

us consider the hypersurface associated to
√
x3 + x2. Applying the GeneralT

option, we obtain:

ParametrizePolynomial[r^2-x^3-x^2, GeneralT→True]

{{r→ t[1](−t[0]+t[1])(t[0]+t[1])

t[0]3
,x→ (−t[0]+t[1])(t[0]+t[1])

t[0]2
}}

From this output, we see that we can simplify the variable change—in the

sense that we avoid rational expressions—by choosing t[0]=1 instead of t[1]=1.

Without setting GeneralT to True, the package would make a choice automat-

ically, which does not necessarily lead to the most suitable result.

ForceFDecomposition

Some square roots have the property that their associated hypersurface has a

(d−1)-point and is, also, F -decomposable. Consider, for instance, the following

square root:

√
(1− x1 − x2 − x3)2 − 4x1x2x3.
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The associated hypersurface has several (d − 1)-points, so the package will

easily find multiple parametrizations. In particular, it will not apply the F -

decomposition theorem to generate the output. We observe, however, that the

square root is F -decomposable. Thus, we can use the ForceFDecomposition

option to force an application of the F -decomposition theorem. This will give

us variable changes that are, in general, different from the ones we get when not

specifying the option. In this way, we are able to produce even more variable

changes for square roots of that type.

FPolynomials

Notice that, whenever we apply the F -decomposition theorem, we have a free-

dom in choosing f d
2
−1, f d

2
, and f d

2
+1. For the above square root, two appropriate

choices would be:

1. f1 = 1, f2 = 1− x1 − x2 − x3, f3 = x1x2x3,

2. f1 = x1, f2 = 1− x1 − x2 − x3, f3 = x2x3.

Making different choices for the fi’s will result in different parametrizations.

Therefore, it can be useful to try different choices of the fi’s to optimize the

final variable transformation. The user can specify a particular choice as follows:

if the input polynomial is of the form

f := r2 − f 2
d
2

+ 4f d
2
−1f d

2
+1,

then the user has to provide the list{
f d

2
−1, f d

2
, f d

2
+1

}
.

Notice that, in order to apply the F -decomposition with this particular choice

of fi’s, one has to set ForceFDecomposition to True in case V = V(f) has a

(d− 1)-point.

9.3. On the Role of Squares

It is now the right time to come back to the role of perfect squares in a rational-

ization procedure. We have seen that, especially in the process of rationalizing
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multiple square roots, one often encounters square roots whose arguments con-

tain factors that are perfect squares. Recall that a rationalization of the square

root without the perfect square factor already gives a rationalization of the

square root that includes the perfect square factor. For instance, consider the

square root
√
x3 + x2 =

√
(x+ 1)x2. Since one of the factors of the argument

is already a perfect square, it suffices to find a suitable variable change for the

simpler square root
√
x+ 1, e.g., x = t2 − 1, in order to rationalize

√
x3 + x2.

From the above example, one might be tempted to think that leaving out perfect

squares is always a good idea. This is, however, not always true. In fact, both

cases can occur:

1. Leaving out a perfect square can make the rationalization procedure

easier:

The reader is invited to check that the package does not find a rational

parametrization of V = V(r2x2 − x4 − x4y − xy2 − x2y2), which is

associated to the square root√
x4 + x4y + xy2 + x2y2

x2
.

If we, however, leave out the perfect square in the denominator and

instead consider

√
x4 + x4y + xy2 + x2y2

with the associated hypersurface W = V(r2 − x4 − x4y − xy2 − x2y2),

then the package will find a parametrization. This result can then, of

course, also be used to rationalize the square root we wanted to ratio-

nalize in the first place.

2. Leaving out a perfect square can make the rationalization procedure

harder:

Suppose we want to rationalize
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√
x4 + 4x2y2 + 4

4x2
.

The reader can check that leaving out the perfect square in the denom-

inator, i.e., considering

√
x4 + 4x2y2 + 4,

leads to an associated hypersurface V = V(r2− x4− 4x2y2− 4), which

does not have a single (d − 1)-point. The package will still find a ra-

tional parametrization, but only after employing the F -decomposition

theorem.

If we, however, try to rationalize the original square root by considering

W = V(4r2x2 − x4 − 4x2y2 − 4), we have already seen that W has a

(d−1)-point at infinity. Therefore, we can directly apply the algorithm

so that, in this particular case, it is advantageous to keep the perfect

square for the rationalization procedure.

From these two examples, we learn that it is a worthwhile exercise for the user

to factor the perfect squares of the argument of the square root and try to find

rationalizations while keeping and leaving out perfect squares as above. With

this strategy, one can produce different, possibly refined variable transforma-

tions, which sometimes even will allow for the rationalization of square roots

that were—on first sight—not rationalizable by our methods.

9.4. Rationalization via Variables Option

The purpose of this final section is to illustrate the usefulness of the Variables

option, which can be crucial in the simultaneous rationalization of multiple

square roots. Suppose we want to rationalize

{
√

1− x2,
√

1− x2 − y2}.
Starting with the rationalization of the second square root, we find:
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ParametrizePolynomial[r[1]^2+x^2+y^2-1,OutputVariables→{v,w}]
{{r[1]→ 2vw

1+v2+w2
,x→ 2v

1+v2+w2
,y→ 2v2

1+v2+w2
− 1}}

The next step is to substitute the above expression for x into
√

1− x2 and try

to rationalize the resulting square root. We observe, however, that the package

is not able to find a rationalization:

ParametrizePolynomial[r[2]^2(1+v^2+w^2)^2+4v^2-(1+v^2+w^2)^2]

{}

In such a case, the user might be tempted to think that the given set of square

roots cannot be rationalized with the package. There is, however, a way in

which we can still succeed, namely by using the Variables option. We start

again by rationalizing
√

1− x2 − y2, but this time we specify the Variables

option as follows:

ParametrizePolynomial[r[1]^2+x^2+y^2-1,Variables→{r[1],y},
OutputVariables→{w}]
{{r[1]→ 2w(x2−1)

(x2−1)w2−1,y→
√
1−x2((x2−1)w2+1)

(x2−1)w2−1 }}

We see that the transformation is rational in the new variable w, but contains

a square root in the variable x that we did not specify to be a variable of the

input polynomial. This square root in x is, however, the second square root

of our original set. Because the rationalization of
√

1− x2 − y2 happened only

via a change in y, the other original square root
√

1− x2 does not change under

this transformation. Thus, we can rationalize the remaining square root via

x = (v2 − 1)/(v2 + 1), as discussed previously. Substituting this expression for

x in the transformation of y yields:

x =
v2 − 1

v2 + 1
, y = − 2v(1 + v4 + v2(2− 4w2))

(1 + v2)(1 + v4 + v2(2 + 4w2))
.

Indeed, we can check that these substitutions turn the initial square roots into

rational functions of v and w:

√
1− x2 =

2v

v2 + 1
,
√

1− x2 − y2 =
8v2w

1 + v4 + v2(2 + 4w2)
.



Conclusions and Outlook

In this thesis, we studied the question of how to rationalize sets of square roots

that appear in the computation of Feynman integrals. We addressed the prob-

lem by relating it to one of the most fundamental questions in algebraic geom-

etry, namely the rationality problem for hypersurfaces.

On the one hand, we have seen that not all square roots are rationalizable. We

used several known results from the theory of curves and surfaces to establish

rigorous criteria for the non-rationalizability of a given set of square roots. We

clarified these techniques through examples of physical relevance.

On the other hand, we discussed an algorithm that yields a rationalization of

a given square root whenever the associated hypersurface has a point of multi-

plicity d − 1, where d is the degree of the hypersurface. This algorithm covers

many cases from high energy physics that admit a rational parametrization. In

addition, we presented the F -decomposition theorem, which enables the ratio-

nalization of many square roots that would otherwise not be rationalizable by

our methods.

Furthermore, we presented the RationalizeRoots software package that im-

plements our rationalization techniques in Mathematica. A detailed account on

the Maple version of the package can be found in [1].

The results of this thesis are broadly applicable in many Feynman integral com-

putations. For physics applications of the last two years, where the presented

techniques were of relevance, we refer the reader to [13]–[16], [87]–[103].

Finally, let us give some suggestions for future work: one possible future project

would be a further refinement of our non-rationalizability criteria. In this thesis,

87
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we mainly focused on the case of curves and double coverings of the projective

plane. One could, for example, collect special cases of hypersurfaces beyond two

dimensions that are associated to a square root and known to be not parametriz-

able by rational functions.

There may also be several ways to expand the current version of our rational-

ization algorithm. For example, one might be able to formulate other theorems

like the F -decomposition theorem that would allow to use parametrization by

lines for hypersurfaces that do not have a (d − 1)-point. Furthermore, the are

some univariate square roots that RationalizeRoots will not be able to ratio-

nalize. Although non of these cases is known to be of physical relevance, for the

sake of completeness, it would be good to add the parametrization by adjoints

technique [23] to the package. This would enable our software to rationalize all

rationalizable univariate square roots.

Finally, there is a Singular library, called classify2.lib, which can be used

to classify simple curve singularities. While we focused on Magma in this thesis,

it would be beneficial for the physics community to explain how to classify

singularities with this free, open source alternative.
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[42] R. Meyer, “Dimensional regularization”, 2010.

[43] P. Etingof, “Note on dimensional regularization”, 1999.

[44] A. V. Kotikov, “Differential equations method: New technique for massive

Feynman diagrams calculation”, Physics Letters, vol. B254, 1991.

[45] Z. Bern, L. J. Dixon, and D. A. Kosower, “Dimensionally regulated penta-

gon integrals”, Nuclear Physics, vol. B412, 1994. arXiv: hep-ph/9306240.

[46] E. Remiddi, “Differential equations for Feynman graph amplitudes”, Nuo-

vo Cimento, vol. A110, 1997. arXiv: hep-th/9711188.

[47] T. Gehrmann and E. Remiddi, “Differential equations for two loop four

point functions”, Nuclear Physics, vol. B580, 2000. arXiv: hep - ph /

9912329.

[48] R. N. Lee, “Presenting LiteRed: a tool for the Loop InTEgrals REDuc-

tion”, 2012. arXiv: 1212.2685.

[49] J. M. Henn, “Multiloop integrals in dimensional regularization made sim-

ple”, Physical Review Letters, vol. 110, 2013. arXiv: 1304.1806.

[50] A. V. Kotikov, “The Property of maximal transcendentality in the N=4

Supersymmetric Yang-Mills”, in Subtleties in quantum field theory: Lev

Lipatov Festschrift, 2010. arXiv: 1005.5029.

[51] C. Dlapa, J. Henn, and K. Yan, “Deriving canonical differential equations

for Feynman integrals from a single uniform weight integral”, 2020. arXiv:

2002.02340.

[52] https://github.com/marcobesier.

[53] G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to Singularities

and Deformations. Springer, 2007.

[54] V. Arnold, S. Gusein-Zade, and A. Varchenko, Singularities of Differen-

tiable Maps, Volume 1: Classification of Critical Points, Caustics and

Wave Fronts. Birkhäuser Boston, 2012.
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ser Boston, 2012.

[56] I. R. Shafarevich, Basic algebraic geometry. Springer, 2013.

[57] W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I.

The user language”, Journal of Symbolic Computation, vol. 24, 1997.

[58] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular”,

2019, http://www.singular.uni-kl.de.

[59] S. Laporta and E. Remiddi, “Analytic treatment of the two loop equal

mass sunrise graph”, Nuclear Physics, vol. B704, 2005. arXiv: hep-ph/

0406160.

[60] S. Müller-Stach, S. Weinzierl, and R. Zayadeh, “A Second-Order Differen-

tial Equation for the Two-Loop Sunrise Graph with Arbitrary Masses”,

Communications in Number Theory and Physics, vol. 6, 2012. arXiv:

1112.4360.

[61] L. Adams, C. Bogner, and S. Weinzierl, “The two-loop sunrise graph with

arbitrary masses”, Journal of Mathematical Physics, vol. 54, 2013. arXiv:

1302.7004.

[62] S. Bloch and P. Vanhove, “The elliptic dilogarithm for the sunset graph”,

Journal of Number Theory, vol. 148, 2015. arXiv: 1309.5865.

[63] L. Adams, C. Bogner, and S. Weinzierl, “The two-loop sunrise graph

in two space-time dimensions with arbitrary masses in terms of elliptic

dilogarithms”, Journal of Mathematical Physics, vol. 55, 2014. arXiv:

1405.5640.

[64] L. Adams, C. Bogner, and S. Weinzierl, “The two-loop sunrise integral

around four space-time dimensions and generalisations of the Clausen and

Glaisher functions towards the elliptic case”, Journal of Mathematical

Physics, vol. 56, 2015. arXiv: 1504.03255.

[65] L. Adams, C. Bogner, and S. Weinzierl, “The iterated structure of the all-

order result for the two-loop sunrise integral”, Journal of Mathematical

Physics, vol. 57, 2016. arXiv: 1512.05630.

[66] M. Søgaard and Y. Zhang, “Elliptic Functions and Maximal Unitarity”,

Physical Review, vol. D91, 2015. arXiv: 1412.5577.



94 BIBLIOGRAPHY

[67] S. Bloch, M. Kerr, and P. Vanhove, “Local mirror symmetry and the

sunset Feynman integral”, Advances in Theoretical and Mathematical

Physics, vol. 21, 2017. arXiv: 1601.08181.

[68] E. Remiddi and L. Tancredi, “Differential equations and dispersion re-

lations for Feynman amplitudes. The two-loop massive sunrise and the

kite integral”, Nuclear Physics, vol. B907, 2016. arXiv: 1602.01481.

[69] L. Adams, C. Bogner, A. Schweitzer, and S. Weinzierl, “The kite integral

to all orders in terms of elliptic polylogarithms”, Journal of Mathematical

Physics, vol. 57, 2016. arXiv: 1607.01571.

[70] R. Bonciani, V. Del Duca, H. Frellesvig, J. M. Henn, F. Moriello, and

V. A. Smirnov, “Two-loop planar master integrals for Higgs→ 3 partons

with full heavy-quark mass dependence”, Journal of High Energy Physics,

vol. 12, 2016. arXiv: 1609.06685.

[71] A. von Manteuffel and L. Tancredi, “A non-planar two-loop three-point

function beyond multiple polylogarithms”, Journal of High Energy Physics,

vol. 6, 2017. arXiv: 1701.05905.

[72] L. Adams and S. Weinzierl, “Feynman integrals and iterated integrals

of modular forms”, Communications in Number Theory and Physics,

vol. 12, 2018. arXiv: 1704.08895.

[73] C. Bogner, A. Schweitzer, and S. Weinzierl, “Analytic continuation and

numerical evaluation of the kite integral and the equal mass sunrise in-

tegral”, Nuclear Physics, vol. B922, 2017. arXiv: 1705.08952.
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