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Abstract. We report on the current status of the analytic evaluation of the two-loop corrections to the ue-
scattering in Quantum Electrodynamics, presenting state-of-the art techniques which have been developed to

address this challenging task.

1 Introduction

The elastic scattering of muons and electrons is one of
the simplest and cleanest processes in particle physics. In
spite of this simplicity, pe scattering measurements are
scarse. In the 60s, experiments at CERN and Brookhaven
measured this scattering cross section using accelerator-
produced muons [1-4]. At the same time, ue collisions
were measured by cosmic-ray experiments [5—8]. The
scattering of muons off polarized electrons was then pro-
posed as a polarimeter for high-energy muon beams in the
late 80s [9] and measured by the SMC collaboration at
CERN a few years later [10].

Recently, a new experiment, MUonE, has been pro-
posed at CERN to measure the differential cross section
of the elastic scattering of high-energy muons on atomic
electrons as a function of the spacelike (negative) squared
momentum transfer [11]. This measurement will provide
the running of the effective electromagnetic coupling in
the spacelike region and, as a result, a new and indepen-
dent determination of the leading hadronic contribution to
the muon ¢-2 [11, 12]. In order for this new determination
to be competitive with the present dispersive one, which
is obtained via timelike data, the ue differential cross sec-
tion must be measured with statistical and systematic un-
certainties of the order of 10ppm. This high experimental
precision demands an analogous accuracy in the theoreti-
cal prediction.

Until recently, the process ue — ue had received
little attention also on the theory side. The few exist-
ing theoretical studies mainly focused on its QED cor-
rections at next-to-leading order (NLO) [13-19] and tests
of the Standard Model (SM) [20-22]. The QED correc-
tions at next-to-next-to-leading order (NNLO), crucial to
interpret the high-precision data of future experiments like
MUonE, are not known, although some of the two-loop
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corrections which were computed for Bhabha scattering
in QED [23, 24], for the heavy-to-light quark decay [25-
29] and the #f production [30-33] in QCD can be applied
to elastic pe scattering as well.

In [34], we took a first step towards the calculation
of the full NNLO QED corrections to ue scattering. In
particular, we considered the evaluation of the master in-
tegrals (MIs) occurring in the decomposition of the gen-
uine two-loop 2 — 2 planar box-diagrams, namely all the
two-loop four-point topologies for ue scattering except for
the crossed double box diagram. Given the small value
of the electron mass m, when compared to the muon one
m, we worked in the approximation m, = 0. In this case,
integration-by-parts identities [35-37] yielded the identi-
fication of a set of 65 MIs, which we computed analyt-
ically by means of the differential equation method [38—
40]. Elaborating on recent ideas to simplify the system-
solving strategy [41, 42], we chose a set of MIs obeying a
system of first-order differential equations (DEQs) in the
kinematical variables s/m? and t/m?* which is linear in the
space-time dimension d, and, by means of Magnus expo-
nential matrix [42], we derived an equivalent system of
equations in canonical form [41], where the d-dependence
of the associated matrices is factorized from the kinemat-
ics. Let us emphasize that the use of Magnus exponen-
tial matrix to identify a canonical basis of master integrals
turned out to be very effective in the context of multi-loop
integrals involving several scales [42—45]. We found that
the matrices associated with the canonical systems admit a
logarithmic-differential (dlog) form, whose entries are ra-
tional functions of the kinematics; therefore, the canonical
MIs can be cast in a Taylor series around d = 4, with co-
efficients written as combinations of generalised polylog-
arithms (GPLs) [46—49]. The final determination of the
MIs was achieved after imposing the boundary conditions,
implemented by requiring the regularity of the solutions at
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special kinematics points, and by using simpler integrals
as independent input.

The analytic expressions of the MIs were numerically
evaluated with the help of GiNaC [50] and were success-
fully tested against the values provided by the computer
code SecDec [51]. The package Reduze [52] was used
throughout the calculations.

It is important to observe that the Mls of the QED cor-
rections to e — pe scattering are related by crossing to
the MIs of the QCD corrections to the t7-pair production
at hadron colliders. The analytic evaluation of the MIs
for the leading-color corrections to pp — tf, due to pla-
nar diagrams only, was already considered in refs. [30—
33]. They correspond to the MlIs appearing in the eval-
uation of the Feynman graphs associated to the topolo-
gies T; with i € {1,2,3,7,8,9, 10} in figure 1, which we
(re)computed in [34], independently. The MIs for the pla-
nar topology T4 and Ts, instead, would correspond to the
MlIs of subleading-color contributions to ##-pair produc-
tion, and were not considered previously.

For certain classes of MlIs, like the ones of the pro-
cesses ue — ue and pp — tf, the choice of the bound-
ary conditions may still constitute a challenging prob-
lem. In some cases considered in refs. [30-33], the di-
rect integration of the MIs in special kinematic configura-
tions was addressed by using techniques based on Mellin-
Barnes representations [53, 54]. Alternatively, our ap-
proach exploited either the regularity conditions at pseudo-
thresholds or the expression of the integrals at well-
behaved kinematic points. The latter were obtained by
solving simpler auxiliary systems of differential equations,
hence limiting the use of direct integration only to a sim-
ple set of input integrals. Our preliminary studies make us
believe that the strategy we adopted for the determination
of the considered integrals is not only limited to the pla-
nar contributions, but it can be applied to the non-planar
graphs as well. In particular, in [34], we showed its appli-
cation for the determination of the Mls for the non-planar
vertex graph [25-29]. Moreover, due to the similarity of
the cases, we are confident that it can be very helpful for
completing the analytic evaluation of the MIs needed for
the two-loop QCD corrections to pp — tf, which are cur-
rently known only numerically [55-59].

The evaluation of the MIs is only a first step towards
the complete evaluation of the two-loop amplitudes. By
means of the adaptive integrand decomposition [60-62]
and the integration-by-parts identities, we can decompose
the whole amplitude in terms of Mls. To achieve this
task, we have been developing a general framework for the
automatic evaluation of two-loop amplitudes, called Aipa
(Adaptive Integrand Decomposition Algorithm), and we
present its first application to the case of pe-scattering.

In the following, we report on our findings.

2 LO cross section and NLO QED
corrections

Let us consider the elastic scattering

K (p1) + e (p2) = e (p3) + 1 (pa), (1)

and define the Mandelstam variables

t=(p2—-py)*, u=(pi-p)i 2

satisfying s + ¢ + u = 2m?* + 2m?, with the physical re-
quirements s > (m, + m)*, —A(s,m>,m2)/s < t < 0, and
Ax,y,z7) = ¥ +y* + 22 — 2xy — 2xz — 2yz is the Kiillen
function.

The LO QED prediction for the differential cross sec-
tion of the scattering in (1) is

s = (p1+ p2),

doy i (m2 + mg)2 —su+1/2

dr a 22 (s, m?, m2)

where « is the fine-structure constant. The NLO QED

corrections to this cross section were computed long time

ago [13-18] and revisited more recently [19]. As a first

check, we recalculated these corrections and found perfect

agreement with ref. [19], both for the virtual corrections

and the soft photon emissions. We note that some of the

pioneering publications, like [14, 16], contain typos or er-
rors, so that they cannot be directly employed.

In the rest of this paper we will work in the approxi-
mation of vanishing electron mass, m, = 0, i.e. with the
kinematics specified by p? = p3 = m* and p3 = p3 = 0.
The master integrals will be conveniently evaluated in the
non-physical region s < 0, 7 < 0.

; 3)

3 Four-point topologies

We focus on the evaluation of the master integrals (Mls)
of the planar two-loop four-point functions contributing
to pe scattering, drawn in figure 1. For completeness, we
will discuss also the evaluation of the MIs of the one-loop
four-point function in figure 2.

We consider £-loop m-denominator Feynman integrals
in d = 4 — 2¢ dimensions of the type

4
— 1
f ddki 7 Tom °
LI D .. Dy

nez. @)

In our conventions, the integration measure is defined as
— Ak (iS.\ (m2\E
k== (1=5) (%) - 5)
2m)? \ 1672 2

with u being the ’t Hooft scale of dimensional regulariza-
tion and

S.=@nTd +e). (6)

We display the relevant planar four-point topologies at
one- and two-loop in families:

o the one-loop integral family, depicted in figure 2;

o the first two-loop integral family, which includes the
topologies T, T, T3, T7 and Ty of figure 1;

o the second two-loop family, which contains topologies
T4, Ts, Tg and T shown in figure 1;

For all families, k; and k, denote the loop momenta. In the
following sections, MIs will be represented by diagrams
where thick lines stand for massive particles (muon),
whereas thin lines stand for massless ones (electron, pho-
ton).
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Figure 1: Two-loop four-point topologies for ue scattering

4 System of differential equations

In order to determine all MIs appearing in the three inte-
gral families defined above, we initially derive their DEQs
in the dimensionless variables —s/m? and —t/m?. Upon
the change of variable,

s t_(-y?

m? y

, ) (N
the coefficients of the DEQs are rational functions of x and
y. According to our system solving strategy, by means of
integration-by-parts identities (IBPs), we identify an initial
set of MIs F that fulfills a system of DEQs

OF

F
x =Aye,x,yF,

=A(e, x,yF, o

(®)
where the matrices A,(e, x,y) and A, (€, x, y) are linear in
the dimensional regularization parameter € = (4 — d)/2,
being d the number of space-time dimensions. According
to the algorithm described in [42—45], by means of Mag-
nus exponential matrix, we identify a set of MIs I obeying
canonical systems of DEQs [41], where the dependence
on € is factorized from the kinematics,

ol

1 o
Fp =eA,(x,yl.

=eh,(x,pl,  — )
dy

After combining both systems of DEQs into a single total
differential, we arrive at the following canonical form

dl = edAl,  dA=Adx+Ady, (10)

where the generic form of the total differential matrix for
the considered MIs reads as,

9
di = " M;dlog(n), (11)

i=1

with M; being constant matrices. The arguments 7; of this
dlog-form, which contain all the dependence of the DEQ
on the kinematics, are referred to as the alphabet and they
consist in the following 9 letters:

nm=x, m=1+x,
m=1-x, =y,

ns=1+y, ne=1-y,, (12)
nmm=x+y, ng=1+xy,
w=1-y(d-x-y).

The MIs presented in this paper are computed in the kine-
matic region where all letters are real and positive,

x>0, O<y<l1, (13)
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which corresponds to the Euclidean region s < 0, ¢ < 0.
All MIs are chosen to be finite in the € — 0 limit, in such
a way that I(x, y) admits a Taylor expansion in €,

I(e, x,y) = I(O)(x, y) + el(l)(x, y) + 621(2)()6, w+...,
(14)

with the n-th order coefficient given by

100 p) = " A" (x, 1 x0, yo)l*(x0,90), (15)
i=0

where I (xy, yo) is a vector of boundary constants and A®
the weight-k operator

A(k)(x, y; Xo0,Yo) = | dA...dA, A(O)(x, Y; X0, Yo) = 1,

Y k times

(16)

which iterates k ordered integrations of the matrix-valued
1-form dA along a piecewise-smooth path y in the xy-
plane. Since the alphabet given in eq. (12) is rational and
has only algebraic roots, the iterated integrals (16) can be
directly expressed in terms of GPLs, which are defined as

. 1
G(W,; x) = G(wy, Wy—1; %) = f dt G(W,-1; 1),
o I—uw
(17
S 1
G@O,;x) = —'log"(x), (18)
n!

with @, being a vector of n arguments. The number 7 is
referred to as the weight of G(@,; x) and amounts to the
number of iterated integrations needed to define it. Equiv-
alently one has

0 0 1
—G(@y; %) = — G, Wy-15X) = ——G(@,-1; X).
Ox Ox X—w

19)
GPLs fulfill shuffle algebra relations of the form

G(im; x) G(it, x) = G(ii; x) LU G(it; x) = Z G(P; x),
PmLui
(20
where the shuffle product #LLI7Z denotes all possible
merges of 77 and # while preserving their respective or-
derings.
The analytic continuation of the MIs to the physical
region defined in sec. 2 can be obtained through by-now
standard techniques.

5 One-loop master integrals

In this section we briefly discuss the computation of the
master integrals of the one-loop four-point graph shown
in figure 2. We choose the following set of Mls, which
satisfy an e-linear DEQ),

Fi=€71,
F4:€27-4,

F,=€7>, F; =€73,
Fs =75, 1)

I p

Figure 2: One-loop four-point topology for ue scattering

where the 7; are depicted in figure 3. With the help of
the Magnus algorithm we can identify the corresponding
canonical basis

I =Fy, L =-sF,
I; = —1F5, Iy = A4 Fy, (22)
Is = (s — m*)Fs .

with 4, = V=1 Vdm? — t.

PzXn P2 P3 Pziipa Pz; :Pz P2 P3

P1 Pa pP1 Pa P1 Pa pP1 Pa P1 P4
T T2 Ts Ta Ts

Figure 3: One-loop MIs 7 s.

This set of MIs satisfies a canonical DEQ of the form
given in eq. (10). The integration of the DEQ in terms
of GPLs as well as the fixing of boundary constants is
straightforward. I, 3 are obtained by direct integration and,
by using the normalization of eq.(5), are given by

(1-y7?

—€

| (1-ae-2ae+0(e).
(23)

The boundary constants for I, Iy and Is can be fixed

by respectively demanding regularity at pseudothresholds

s > 0,atr —> 4m* and at s = —t — m2/2. The final
expression of the other MIs are,

Li(e) =1.I3(e, y) = (

2
e xy) = ) Iy +oE),  ©24)
k=0
with
1 (x) =0,
1V(x) = - G(-1;%),
IP(x) =2G(~1,-1;x) — G(0,~1; %), (25)
1) (y) =0,
1" (y) =0,

1P(y) = - 46 - G(0,0,y) +2G(0, L), (26)

oy = 2.
1(x,y) = - 2G(-1;x) + G(0; y) — 2G(1; ),
1P(x,y) = - 56 +2G(-1;x) 2G(1;y) - G(0; ) . (27)
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P1 P4 P1 P4 P1 P4 P1 P4 P1 Pa P4 P4
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P2 Uere)® 3 Pz: :Ps Pz:(‘fﬁm*Pz)z:Pa Pz: i :Ps
P1 Pa P1 Pa P1 Pa P1 Pa
T31 T32 Tas T34

Figure 4: Two-loop MIs 7

6 Two-loop master integrals

In this section we present the results for the planar two-
loop MIs contributing to the NNLO virtual QED correc-
tions to e scattering.

6.1 The first integral family

For the two-loop first integral family associated to the
topologies T, T», T3, T7 and Tg of figure 1, the follow-

34 for the first integral family.

.....

ing set of 34 MlIs fulfill an e-linear system of DEQs,

Fi=€T, F=€7, F; =€ 75,
Fi=€T1, Fs=¢€7s, Fo=€Ts,
Fr=€77, Fg=¢€Tg, Fo =€ Ty,
Fio=€710, Fi=€7u, Fo=€ T,
Fs=€713, Fu=€7u, Fis=€Tis,
Fie=€T16, Fir=€71, Fis=¢€7is,
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Fio = e T 19, Fa= 62(1 +2€)T20, Fo1 = e T>1, This set of MIs I satisfies a system of DEQ of the form
Fp =Ty, Fp=6eTn, Foy = € T, given in eq.(10), which can easily be integrated in terms
Fos =€ Tas, Fas=€(1-26)T2, Fy=€ Ty, of GPLs
Fas = €' Tog, Fag=€(1-26)T2, Fio=€ T, 6.2 The second integral family
Foi =€ 75, Fo=eTa, Fay = € 73, For the second two-loop integral family which groups the
F34 = e T34, (28) topologies Ty, Ts, Tg and T, of figure 1, we identify 42

where the 7; are depicted in figure 4.

Through the Magnus exponential, we rotate this set of

integrals to the canonical basis

L =F,

L =-sF,

Iy = —1F,

I =m?Fy,

Is = —sFs,

I = 2m2F5 + (m2 - s)Fs,
I = —F;,

Iy = s° Fg,

Iy = °Fy,

Lijp = —tFyo,

Iy = (m* - 5)Fyy,
Lz = 4 Fiz,

Ii3 = A4, Fus,

iy = 4, m*Fy,

I

3
5= (t - /ll) (EFIS + m2F14) - m2 tFlS ,

Lig = -t A4 Fie,

Ii7 = (m* - $)Fy7,
Lig = m*(m* - s)Fis,
Lig = 4, Fyg,

A —t
Iy = ZT (F12 — 4Fj9) — m*tFa,

- s-1)Fy,

Ly =(m
Ip = -m*tFy,

Iz = stFo3,

Loy = —m? tFa3 + (s —m*) m* t Fay,

s = —(m* — s)tFos,

Ig = A; Fa,

Ly = —(m* — 5)tFay,

I = (m* — 5) A, Fag,

Ly = =2t Fy) = (m* = $)(2(4; = NF2s — Fa),
I3g = —(m”* — $)*tFs,

I3 = (m* — 5)*F3,

Ly = (m* =) Fy,

Iz = -4, tF33,

134 = —l’l’l2 l‘2 F32 + t2 F34 . (29)

MIs obeying an e-linear system of DEQs:

Fi =7, F, =75,
Fy=€ Ty, Fs =75,
F, = €77, Fy = €Ty,
Fio=€ T, Fii =7,
Fi3=€ 713, Fis=€ T,
Fi6 =€ T, Fi7 =€ 71,
Fio =€ T, Foo =€ T,
F» =T, Fo3 =€ T3,
Fos = € Tos., F = (1 - 2€)€ T,
Fas = € Ts, Foo =€ T,
Fi=(1-20€ T3, Fn=¢€Txn,
F3y =€ T, Fis = € T3s,
Fy = €' T3, Fis = € T3,
Fy = €' Tu, Fy=€"Tu,

Fio =€ (Tas +Ta2)

F; =€ 73,
F@ = 62 Tﬁ .
F9 = 62 Tg .
Fo=€Tn,
Fis=¢€Tis,
Fis=¢€Tis,
Fy =€ Ta1,
Foy = € T4,
Fy =€ Ta7,
F3 =€ T,
Fy; =€ 733,

4
F36 = € 736,

4
F39 = € 739,

(30)

where the 7; are depicted in figure 5. Through the Mag-
nus exponential, we identify the corresponding canonical

basis:

I =Fy,

L =-tF,,
I; = AF3,
Iy = —tFy,

1
Is = 5(/1,—t)F4—/ltF5,

I¢ = —sFg,

I; = 2m* Fg + (m* — 5)F,
Iy = m*Fg,

Iy = m*Fy,

Lio = =sFio,

Ly = -t A4 Fn,

I = -tFp2,

Li; = —tm*Fy3,
3
Liy = —m*(, — 1) (EFIZ + F13) —m* A, Fig,

Iis = 4, Fs,

Lig = m* 4, Fg,
3
Liz = m*(t = A) (EFIS + Fl()) -m?tFyy,

Iig = A4, Fig,
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Lig = (m* - 5)Fyo,
Lo = m* (m* = 5)Fap,

Ly = (m* - s)Fyy,

3
I, = —ESF9 +(s* = m* Fa,
I3 = 4, Fa3,

1
by = 7 (4m2 —t+ a,) (Fy4 + 2Fs) + m*(4m* — 1) Fay

Is = A Fas,
Iyg = —1Fy,
Iy = stFyy,

L = —m* tFy; — m*(m* — )t Fag,,

Iy = =s A Fag,

Lo = m*A, Fag + m? (m* — 5) A, F39,

I3 = —(m* — 9)F3; — (m” — 5) (4m” — 1+ A) F3 ,

Iz = (m* — $)A,Fs,
2

Iz =(m —s—-0Fs3,
Iy = (m* = s) 4, Fa,

m*(m?* — 5)
Iis = 2———— F34 + m*> (m® — 5)Fss,
BE2E o Htm (m” = 5)F3s
I = A Fs6,

Ly = ~t (4m® = 1) F37,
Iig = —(m” — 5) 1 Fag,
Iig = —(m* — 5) 1F3,
Lyp = —(m* = 5)t 4, Fyp,
Iy = 1A, (Fy = Fa1)
L = (m* = 1 + )X

2F+1F+1F ltF +5F +5 ’F
33 44 25 ) 11 212 3”” 13

5 1
+§m2F14 + 2F36 — E(I’)’l2 + 5)F40 + lF41) +
2 2 3

(1.1 1 T
+m §F3 — —tFi1 + =Fip + =m“Fi3 + gm Fi4+

1 1
+5Fis - —F40) +

2 2

2 m*
—t -s)F -2 Fi5 + t Fpe+

(m” —s)Fpy A 26

m*(m?* — s)t+ A,) (2
+ =Fo9—Fs4|+

2mPs(t—2,) 4 4m2—s
——————"Fy+2tF353+ =t Fsz0—tFy,
32m2—t- A, » BT A+t 30 2
(31)

which satisfies a system of DEQs of the form in eq.(10).
We observe that 1} 67.8.10.15.16,17.27.28 correspond, respec-
tively, to 11 35642.13,14.152324 Of the first integral family,
previously discussed.

To determine the solution of the DEQ for the MIs of
both two-loop families, we choose proper boundary val-

ues for each master integral. The boundary fixing can be
achieved either by knowing the integral at some special
kinematic point or by demanding the absence of unphys-
ical thresholds that appear in the alphabet of the generic
solution, defined in eq. (12). For more details, we forward
the reader to Ref.[34].

All results have been numerically checked with the
help of the computer codes GiNaC and SecDec.

7 Towards the non-planar integrals

The complete computation of the NNLO virtual QED cor-
rections to pe scattering requires the evaluation of one
last missing four-point topology, which corresponds to the
non-planar diagram T of figure 1. We are confident that
the previously adopted strategy, based on differential equa-
tions, Magnus exponential and regularity conditions, can
be efficiently applied to compute the MIs of a simpler ver-
tex integral belonging to same family.

8 Adaptive Integrand Decomposition

The decomposition of multiloop scattering amplitudes in
terms of independent functions, together with the subse-
quent determination of the latter, is a viable alternative to
the direct integration which, for non-trivial processes, may
require the calculation of a prohibitively large number of
complicated Feynman integrals.

Decomposing multi-loop amplitudes in terms of inde-
pendent integrals can become problematic when the num-
ber of the scales of the diagrams increases, due to the ex-
change or to the production of massive particles, or when
a large number of external particles are scattered, or when
the morphology of the contributing diagrams becomes in-
volved. The integrand decomposition algorithm has the
advantage of treating scattering amplitudes involving mas-
sive particles at the same price of amplitudes for massless
scattering. The output of the reduction procedure is the
partial fractioning of the original integrand, namely the
determination of the remainders of the successive division
between the numerator and (the partitions of the product
of) the denominators. Upon integration, the partial frac-
tion formula correspond to rewrite the original amplitudes
as a combination of independent integrals. However, the
result of the integrand decomposition represents an inter-
mediate step towards the complete amplitude reduction.
In fact, additional relations among those integrals, like
integration-by-parts identities, can minimise the number
of independent master integrals (MIs) which can appear in
the final formulas.

The integrand decomposition algorithm [63-69]
played a key role for the automation of one-loop correc-
tions to high-multiplicity scattering processes. The exten-
sion of this approach at two-loop and beyond [70-73] has
been under intense investigation. The recent developments
on the integrand side have been accompanied by important
developments for novel derivation of the integral relations
needed to identify MIs [74—77], as well as by progress in
the ability of computing the latter analytically [41, 42, 78]
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as well as numerically [51, 79]. This vivid research has
been largely due to the deeper understanding of the proper-
ties of the integrands of Feynman graph, and of the refined
algebraic and differential calculus which control them.

In this section, we recall the main features of the
Adaptive Integrand Decomposition (AID) [60-62], imple-
mented in the package Aipa, and show its first applications
to the pe-scattering.

Witin AID, the space-time dimension, d = 4 — 2¢, are
decomposed diagram-by-diagram, as d = d + d,, into a
space spanned by the external momenta flowing in the leg
- with dimensions dj, - referred to as parallel (or longitudi-
nal) space, and a space spanned by the external momenta
flowing in the leg - with dimensions d, - referred to as or-
thogonal (or transverse) space. The latter is formed by the
union of the four-dimensional complement of the longitu-
dinal space, and of the extra dimensional —2e-space.

In the structure of the Feynman integrals,

L d
d'k;
I, N1 = f[l_[m

i=1

(32)
d-dimensional loop momenta are defined as
kY = ki + AT, (33)
with
dj
k‘(r, = Z le B
J=1
4
Af = Z xji € + 1
Jj=dj+1
4
/lij =4 /l.,' = Z Xii Xij + Hij - (34)
]=dH+1

In Eq. (33), ; is a vector of the dj-dimensional space
spanned by the external momenta, and A; belongs the d, -
dimensional orthogonal subspace. Moreover e;._ is a
4-dimensional basis, while us lie in the —2e-space. Within
this parametrisation, denominators appear to depend on
less variables than the numerators, yielding a simplifica-
tion of the decomposition procedure.

Let us indicate with z the full set of £(£+9)/2 variables

Z:{X”i»XJ.i’/lij}’ la.]z 1»"‘5» (35)

where x; (x, ;) are the components of the loop momenta
parallel (orthogonal) to the external kinematics, the de-
nominators are reduced to polynomials in the subset of
variables

T ={x),4;j}, Tz, (36)
so that the general r-point integrand has the form
/Vi ol (Ts XJ_)
Ii i T, = Lol . 37
i TX) = e D) S

Since numerator and denominators depend on different
variables, the adaptive integrand decomposition can pro-
ceed along the following algorithm:

L oadk: | Ny (ki)
T, = f{n n.d/2]m

1. Divide: we divide the numerator N;, ; (7,X,) mod-
ulo the Grobner basis G;,...;.(7) of the ideal ;,...;.(7)
generated by the set of denominators. The polyno-
mial division is performed by adopting the lexico-
graphic ordering 4;; < X,

Ni] oy (T7 Xl) =

Z Nisivtiari (T XD (T) + Ay (X, X0)
=)
(38)

The Grobner basis does not need to be explicitly
computed, since, with the choice of variables and
the ordering described here, the division is equiva-
lent to applying the set of linear relations described
above.

2. Integrate: Since denominators do not depend on

transverse variables, X, , we can integrate the residue
i\..i, over transverse directions. This integration is
carried out by expressing A;, ; in terms of Gegen-
bauer polynomials, i.e.,

>

AM (1) = f dYe A, (1,0, (39)

l|l

Where A:'l“l is a polynomial in T whose coefficients
depend on the space-time dimension d.

3. Divide: the structure of the integrated residue sug-
gests a second division. This can be seen from the
dependence A‘m has on the variables 7. In fact, af-
ter applying the d1v1510n similarly as in the first step
of this algorithm, we get

Al (1) = Z N i ODLE) + A (%)),
(40)

where the new residue AI'.1 ¥
X||.

(x)) can only depend on

At the end of the decomposition, the integrand is written
as

r N, L (kj)
L=y > D@Dy 4V

k=0 {iy-ix}

where the residue functions A’(k;) are polynomials in the
irreducible scalar products, whose coefficients may de-
pend on the external kinematics as well as on d (af-
ter the first division, the polynomial A(k;) have no d-
dependence).

This algorithm has been succesfully applied to a few
cases as shown in in [60], and also to the leading color
contribution to the two-loop all-plus five-gluon ampli-
tude [61, 62, 80].

The Mathematica package Aipa takes as input the inte-
grands of Feynman diagrams generated by FEYNARTs [81]
and FEynCaLc [82, 83] and applies the AID algorithm to
them. The output of Apa is the expression of the original
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amplitude, written as sum of Feynamn diagrams, in terms
of integrals, which can be further reduced in terms of MIs
by automatic software packages like REDUZE.

For the pe-scattering, we succesfully applied Ama to
the one-loop diagrams shown in fig.6 and to the two-loop
planar and non-planar diagrams in fig.7. We considered
also the automatic generation of the one-loop renormali-
sation countertem-diagrams, which can be processed to-
gether with the two-loop diagrams, to provide a result
where the one-loop UV (sub)divergencies have been re-
moved.

9 Conclusions

The scattering of high-energy muons on atomic electrons
has been recently proposed as an ideal framework to deter-
mine the leading hadronic contribution to the anomalous
magnetic moment of the muon. The ambitious experimen-
tal goal of measuring the differential cross section of the
pe — e process with an accuracy of 10ppm requires, on
the theoretical side, the knowledge of the QED corrections
at NNLO. In this proceedings, we reported our investiga-
tions on the feasibility of the evaluation of the corrections
at NNLO. In particular, we began by considering the two-
loop planar box-diagrams contributing to this process. We
employed the method of differential equations and of the
Magnus exponential series to identify a canonical set of
master integrals. Boundary conditions were derived from
the regularity requirements at pseudothresholds, or from
the knowledge of the integrals at special kinematic points,
evaluated by means of auxiliary, simpler systems of differ-
ential equations.

The considered master integrals were expressed as a
Taylor series around four space-time dimensions, whose
coefficients are written as a combination of generalised
polylogarithms. We worked in the massless electron ap-
proximation, while keeping full dependence on the muon
mass. Besides ue scattering, our results are relevant also
for crossing-related processes such as muon-pair produc-
tion at e*e”-colliders, as well as for the QCD corrections
to top-pair production at hadron colliders.

The evaluation of the missing contributions due to non-
planar box graphs will be the subject of a dedicated, future
work — we are confident that the techniques employed here
can be systematically applied for that case as well.

At the same time, we considered the generation of the
two-loop scattering amplitudes within the novel software
A1pa, implementing the adaptive integrand decomposition
algorithm, and the decomposition of its output in terms of
a minimal number of master integrals, by interfacing Aipa
to existing softwares carrying out the integration-by-parts
algebra.

Our preliminary studies show that the evaluation of the
virtual NNLO corrections are feasable. We shall report on
that in future communications.
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Figure 6: Feynman diagrams contributing to the one-loop ue-scattering amplitude.
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Figure 7: Feynman diagrams contributing to the two-loop ue-scattering amplitude.
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