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PREFACE TO VERSION 1 

The study of the strong interactions was transformed over twenty years 
ago with the advent of accelerators in the multi-GeV energy range. The fa- 
mous SLAC experiments of the nineteen sixties and seventies were the first 
to show the point-like substructure of hadcons. Before long, quantum chro- 
modynamics emerged as the favored candidate theory, apparently uniquely 
capable of describing a force that is at once weak at short distances and strong 
at large distances. By the early eighties, three-jet events in electron-positron 
annihilation experiments and high-m jet events at hadron colliders afforded 
remarkably tangible justification for a perturbative picture of short-distance 
cross sections. Many of us remember vividly the rapid transformation of 
Quantum Chromodynamics (QCD) from a promising but contcoversal can- 
didate theory to a full-fledged part of the standard model, taken perhaps too 
confidently for granted. (In this transformation, the achievements of lattice- 
based numerical studies also played an important role.) At LEP, SLC, HERA 
and the Tevatron, multi-jet events, the exotica of yesterday, have become to 
day’s backgound, as high-energy physics eagerly awaits the appearance of 
the top quark. 

Looking toward the superconducting supercollider, QCD will be tomor- 
row’s radiative correction to every cross section, be it heavy quark or Higgs 
production, the manifestations of possible (super)symmetries beyond the 
standard model, nonperturbative baryon number violation, or whatever un- 
expected phenomena may surprise us at forty TeV. 

There is much more to QCD at the SSC, and at the current highest ener- 
gies, than this, however. Unlike its older sibling, quantum electrodynamics, 
QCD has yet to undergo an unequivocal “g - 2” test, which validates its 
position as a fundamental law of nature beyond a reasonable doubt. (Note 
this is not the same as demonstrating that it is a self-consistent theory in 
the mathematical sense.) The rapid change of the QCD coupling between 
nucleon scales and high energy has much to do with this. The most natural 
description of QCD at short distances is perturbative, but this description 
fails for phenomena that are sensitive to the behavior of the theory at long 
times, long distances and low energies. A theoretical advance of the sev- 
enties and eighties, so far supported by experiment, was to recognize that 
many observable quantities are short-distance dominated, and are insensi- 
tive to the long-distance behavior that produces the physical hadcons. A 
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theoretical challenge for the nineties is to understand how nonperturbative, 
long-distance scales, where the strong interactions truly become strong, mesh 
with pertucbative behavior. The two coexist in every experimental quantity 
at every energy. Current experiments at LEP and the Tevatron show an ex- 
citing convergence toward quantitative perturbative predictions, in a range 
where nonperturbative corrections remain sensible. The SSC can confront 
these methods with experiment over an unprecedented range of scales. 

This work is meant to be a sourcebook on perturbative &CD, accessible 
and useful to experts and novices, experimentalists and theorists alike. In it, 
we have collected discussions of the basic ideas and applications of the theory. 
While we have no intention of replacing more scholarly presentations of field- 
theoretic techniques and experimental reviews, we have included in the first 
two sections and in the appendices considerable introductory material on the 
basic concepts of &CD, its perturbative treatment, and on the parton model, 
out of which it grew. In the third section, we summarize the basic theorems 
upon which the perturbative treatment rests. We hope that sophisticated 
readers will find useful the discussions, applications and experimental reviews 
of specific processes and techniques in the sections that follow. For the 
simplest processes, we have exhibited theoretical predictions explicitly. Given 
the complexity of many recent results, this is not always possible, and we 
have relied in this case on references to the literature and, as is increasingly 
becoming relevant, to specialized computer programs. 

This work is the product of the CTEQ collaboration as a whole, and 
we have not attempted to enforce on ourselves an artif?ciaJ uniformity of 
presentation and style. We hope and believe, however, that readers will find 
below a coordinated and fundamentally unified text. We would also like to 
think of this as an evolving document, communicable in electronic as well 
as “hard copy” forms. In this, initial version, only the most basic results 
and processes are treated in detail. Directions abound for expansion and 
emendation, particularly toward the pertucbative-nonperturbative junction: 
resummation techniques, “small-z” evolution, Monte Carlo simulations of 
event structure, QCD coherence, elastic scattering, and so on. Suggestions in 
this regard, and toward the improvement and, where necessary, correction, 
of the existing text, are solicited from our colleagues in the high energy 
community. 

We wish to thank the Texas National Research Laboratory Commission 
for support of the CTEQ Collaboration, and of the recent CTEQ Summer 
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School, which was held at Mackinac Island, Michigan, 27 May-3 June, 1992. 
This opportunity to interact with students and postdocs had a strong positive 
influence on the material presented here. This work was also supported in 
part by the National Science Foundation and by the Department of Energy. 
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1 Prerequisites 

This introductory section reviews a number of relevant facts about &CD, 
primarily its Lagrange density and Feynman rules, amplitudes and their 
renormalization, and the concepts of asymptotic freedom and infrared safety. 
We assume here a general familiarity with elementary methods in field theory. 
More detailed discussions of field theory topics may be found in textbooks. 
Asymptotic freedom, infrared safety and the renormalization group applied 
to QCD are also covered in a number of useful reviews 11.11. 

1.1 Lagrangian 

Quantum Chromodynamics is defined as a field theory by its Lagrange 
density, 

‘1)fcfD [~~‘~(‘),A(z),~(I),E(z); S’vmf] = &mar. + Lgauge + L&at, (1.1) 

which is a function of fields ($, (quark), A (gluon) and c (ghost)) and param- 
eters g and ml. f labels distinct quark fields. Liquor is the classical density, 
invariant under local SU(N,) gauge transformations, with N, = 3 for QCD. 
Li”“W is of the form that was originally written down by Yang and Mills [1.2] 

Linvar. = C ‘+Jf [i$’ [A] - VZ~] $r - aF2 [A] , 
f 

In the second expression, we have written out all indices explicitly, using the 
notations 

and 

Dp,ij[A] E ap6ij + igApcz(TacF))ij t (1.3) 

F,w,.[A] = a,Ava - &A,. - gC,d,dvc (1.4) 
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Let us describe what these formulas represent, working backwards from 
Eq. (1.4). 

F,,. is the nonabelian field strength defined in terms of the gluon vector 
field A:, with N,’ - 1 group components b. g is the QCD (“strong”) coupling 
and the Cokr a, b, c = 1.. . N,’ - 1, are real numbers, called the structure 
constants of SU(N,), which define its Lie algebra. As mentioned above, for 
QCD [1.3], N, = 3, but for many purposes it is useful to exhibit the N,- 
dependence explicitly. N, is often called the “number of colors”. 

The Lie algebra is defined by the commutation relations of the N,’ - 
1, N, x N, matrices (TatF’)ij that appear in the definition of D, w. (1.3), 

[T,(F),Tb(F)] = i&T,(F) (1.5) 

These commutation relations define the algebra. Here we have taken the 
T.cF) to be hermitian, which makes QCD look a lot like QED. Some useful 
facts about the algebra of generators are listed in Appendix A. 

D$(A] is the couariant derivative in the N,-dimensional representation of 
SU(NE), which acts on the spinoc quark fields in Eq. (1.2), with color indices 
i=l . . . N,. There are n, independent quark fields (n, = 6 in the standard 
model), labeled by J%XXJ~ f(= u, d, c, s, t, b). In &CD, they are distinguished 
only by their masses. 

The quark fields all transform as 

lcl;,ejtz) = uji(z)rLf,a.i(z) > (1.6) 

under local gauge transformations, where 

N:-I 
i C p.(Z)T,tF) 

a=l ji, (1.7) 

with p,(z) real. Defined this way, Uij(Z) for each 2 is an element of the group 
SU(N,), which is the local invariance that has been built into the theory. The 
corresponding transformation for the gluon field is best expressed in terms 
of an N, x N, matrix, A,(z), 

[Ar(Z)]ij E C Apa(Z)(Ta’F’)ij 7 (1.8) 
a=l 
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which is the form that occurs in the covariant derivative. The gluonic field 
is defined to transform as 

A;(x) = U(z)A,(z)U-‘(2) + $U(z)]U-l(z). 

With these transformation rules, the gauge invariance of Linvar is not difficult 
to check. 

The gauge invariance of Lin”ar actually makes it somewhat difficult to 
quantize. This problem is solved by adding to Lintmr gauge-Jiz2ng and ghost 
densities, LCgouge and Lg,,oat, as in Eq. (1.1). The former may be chosen almost 
freely; the two most common choices being 

L WEST = -;~&?FA:)2 l<X<co, 

L F-w = -;~&.A~)z X-w, 

where n@ is a fixed vector. The first defines the set of “covariant” gauges, 
the most familiar having X = 1, the Feynman gauge. The second defines the 
“axial’! or “physical” gauges [1.4], since taking A to infinity eliminates the 
need for ghost fields. Here, picking ns light-like, nz = 0, defines the light- 
cone gauge. For X + co, a nonzeco value of rr. A leads to infinite action, and 
for this reason the physical gauges are often called “rr . A = 0 gauges”. 

Finally, in the covariant gauges we must add a ghost Lagrangian [1.5] 

L ghmt = (@a,)(~&, - !J&fAt)Cd. (1.11) 

where c.(z) and E.(z) are scalar ghost and antighost fields. In the quantiza- 
tion procedure, ghost fields anticommute, despite their spin. In an SU(N,) 
theory, the ghost fields ensure that the gauge fixing does not spoil the uni- 
tarity of the S-matrix. 

1.2 Feynman Rules and Green Functions 

The perturbation theory (Feynman) rules for QCD are summarized in 
Fig. 1.1. With our choice of (hermitian) generators Z’.cF), the quark-gluon 
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coupling is just like the QED fermion-photon vertex, except for the extra ma- 
trix factor flaF). The remaining rules for vertices are not difficult to derive in 
detail, but their essential structure is already revealed by the correspondence 
(a&) + -iq,, where qp is the momentum flowing into the vertex at field 4. 

As for the propagators, we pause only to notice some special features of 
physical gauges. In the n. A = 0 gauge, we have, from the propagator in 
Fig. 1.1, 

k“GpY(k,n) = i (1.12) 

Note the lack of a pole at k2 = 0 on the right-hand side of this relation. 
This means that the unphysical gluon polarization that is proportional to 
its momentum does not propagate as a physical particle in these gauges. 
The lack of a pole for the gluon scalar polarization is the essential reason 
why ghosts are not necessary in physical gauges. This simplification also 
makes these gauges useful for many all-order arguments in pQCD. The price, 
however, is the unphysical poles at n. k = 0, which are usua.lly thought of as 
principal values, 

1 I 

‘(n. k)” E 5 (n . k: ie)- + (n. kl- ie)* 1 ’ 
(1.13) 

This definition, however, is awkward beyond tree level (when loops are 
present) [1.4], and it is perhaps best to back up results derived in physical 
gauges with calculations or arguments based on covariant gauge reasoning. 

The Feynman rules allow us to define Green functions in momentum 
space. These are the vacuum expectation values of time-ordered products of 
fields, 

(2~)46(~~ + . +P&&,...,~((PI, . . , Pn) = fJ / &zie-im=i 
i=l 

x (01 wa,, (4 ‘. 4% (41 IO) 1 (1.14) 

where the oi represent both space-time and group indices of the fields, col- 
lectively denoted by 4. At any fixed order in perturbation theory, G,,...,, is 
given by the sum of all diagrams constructed according to the rules of Fig. 1.1. 
Corresponding to ecmh of the fields in the matrix element, every diagram will 
have an external propagator carrying momentum pi into the diagram, with 
a free external index ai. Essentially all of the physical information of the 
theory is contained in its Green functions. 
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1.3 From Green Functions to Experiment 

The route from Feynman rules, through Green functions to experimen- 
tally observable quantities is straightforward, but involves a number of steps 
which it may be useful to outline. In what follows, we will briefly review the 
roles of the S-matrix, cross sections, renormalization schemes and regulaciza- 
tion. 

We do not address yet the issue of whether perturbation theory is of any 
use for reliable calculations of cross sections in &CD. 

1.3.1 The S-matrix and Cross Sections 

By themselves, Green functions are not always direct physical observables. 
For one thing, their external lines are not necessarily on-mass-shell, and, 
in a gauge theory, the Green functions are not even gauge invariant. The 
relation between Green functions and physical quantities like cross sections 
is, however, quite simple. Let us review the basic steps in a generic situation 
with fields &. 

First, a two-point Green function has a pole at p’ = m*. Near the pole, 
it has the form of a “free” propagator (Fig. 1.1) times a scalar constant R4, 

G+(p) + R+G,~(P)~‘~’ + finite (1.15) 

If the particles under discussion are hadrons, then R, and the physical mass 
M are not perturbatively calculable. If, instead, we discuss the perturbative 
S-matrix for quarks and gluons, then Rd and M can be computed as a power 
series in the coupling 

R+ = 1 +O(g*) 

M = m+O(g’). (1.16) 

The S-matriz is the amplitude for the scattering of momentum eigenstates 
into momentum eigenstates. In particle physics, the most important S-matrix 
elements describe the scattering of two particles into a set of outgoing pacti- 
cles. The S-matrix is derived from Green functions by “reduction formulas”, 
of the general form 

s((Pl~~l) + (P29sZ) + (P3rS3) + .. .(PntSn)) = fl$(Pi,si)q 
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G~~&i)‘ree 1 1 RI/2 %...A(P~A -p3r.. ,-pm) > (1.17) 
+ 

where now si represents the spin (and other quantum numbers) of particle i. 
Here @(pi, si)o; represents the wave function of external particle i, given by 

U(P9 5) for an incoming Dirac particle 

a(P, s) for an outgoing Dirac particle 

C(P7 s) for an incoming Dirac antiparticle 

V(P, 8) for an outgoing Dirac antiparticle 

dP, 8) for an incoming vector particle 

C’(P? s) for an outgoing vector particle . (1.18) 

Once again, G~i~i(pi)‘rcc is the free propagator, for field i, but with the 
correct physical mass of the corresponding particle. 

From the S-matrix, it is customary to define the tmnsition matriz T by 

S= I+iT, (1.19) 

with I the identity matrix in the space of states. For momentum eigenstates, 
T contains an explicit momentum-conservation delta function, which it is 
convenient to separate explicitly, 

~T((PI,sI) + (~2,s~) + (~3, ~3) + . (P”, 4) = 

(2*)464(P1 + P2 - P3 - . . - P”) 

XW(Pl, 4 + h, s2) - (P3,33) + . (P,, 4) . 

(1.20) 

It is M-matrix elements that are used to derive cross sections, by integrating 
the general infinitesimal cross section, 

d~((pl,sl)+(pz,~z)-‘(~3,~3)+...(~”,sn)) 
1 

= 4Jm 
dPS, 

x IM ((PI,SI) + (PZ, ~2) -+ (~3, ~3) + . (pm s,))l* , 

(1.21) 
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over n-particle phase space, 

dPSn = v (2$:)3) Ni(2r)464(Pl + PZ - 5 pj) . 
j=3 

(1.22) 

Here Ni = 1 for vector and scalar particles, as well as for Dirac particles 
when we normalize their wave functions according to E(p, s)u(p, s) = 2m. 
For the other common choice, a(p,s)u(p,s) = 1, we have Ni = 2m for 
Dirac fermions. If one integrates a differential cross section over the phase 
space for n identical particles, then one should include an additional factor of 
S, = l/n! that compensates for counting the same physical result n! times. 
When discussing the perturbative expansion of a cross section, it is often 
useful to work directly with diagrams for jM12. The rules for this expansion 
are almost the same as for the S-matrix, and are summarized in Appendix 
B. 

1.3.2 UV Divergences, Renormalization and Schemes 

Green functions, and consequently cross sections, calculated according to 
the unmodified Feynman rules described above suffer a severe problem when 
we include diagrams with loops. These are the ultraviolet (UV) divergences, 
associated with infinite loop momenta. We may think of these divergences as 
due to virtual states in which energy conservation is violated by an arbitrarily 
large amount. Let us see how these problems come about, and review how 
they are usually solved in perturbative calculations. 

A typical one-loop integral UV divergence is illustrated by the diagram 
with scalar lines in Fig. 1.2. 

For scalar lines the diagram is given, before renormalization, by 

1 
r("")(p) = j$$4(k2 _ m2)((p - k'2; &) 

1 d4k 
= / J dx 0 (2~)~ (k2 - 22p . k + x9 - m2)’ 1 
= J / dx 

d4k’ 1 
0 ( 2n)4 (kQ + I( 1 - x)p2 - m2)* ’ 

(1.23) 

In the second equality, we have combined the two denominators into one by 
a trick known as Feynman pommeterization. In the third, we have completed 
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the square in the denominator by the change of variable k’ = k - sp. Of 
course, all this is purely formal, since the integral as it stands is divergent for 
k + co, that is, in the ultraviolet. Nevertheless, let us consider a one loop 
integral of the generic form, 

1 
p)(P) = / 6 (k2 _ ,$42(p))2 ’ (1.24) 

which is undefined because of a logarithmic divergence at infinity. We let 
M*(p) denote the dependence on external momentum(a) of the diagram (and 
“Feynman parameters” like x above). In QCD there is also momentum de- 
pendence through Dirac traces and vector indices in the numerator, but they 
won’t affect the point we are trying to make right now. 

The purpose of renormalization is to replace divergent integrals like the 
one above by finite expressions, in a systematic fashion. For the logarithmi- 
cally divergent integrals at hand, renormalization consists of the replacement 
(suppressing the z integral) 

(1.25) 

where /J is a new mass, not included as a parameter in the original Lagrangian 
of the theory. Note that we can check Eq. (1.25) by differentiating Eq. (1.24) 
with respect to M2, doing the (now convergent) k integral, and then inte- 
grating the result with respect to M* to get Eq. (1.25) up to a constant. To 
begin with, p is completely arbitrary, and may differ from integral to integral. 
It is necessary to specify a set of rules to determine the value of p for each 
divergent diagram. Such a set of rules is called a renormalization scheme. 

There are two basic kinds of schemes currently in wide use. 

(i) In a momentum subtraction scheme we choose 

P = M(Po) + r=“(Po) = 0, (1.26) 

with ps some fixed set of external momenta, and f’ a particular diver- 
gent vertex function. This is what is done in quantum electrodynamics, 
for instance, when we renormalize so that all the one (and higher) loop 
corrections to the photon-electron vertex vanish at zero momentum 
transfer. (In this case po is any point where the photon momentum is 
zero, and the electrons are on-shell so that pf = mz.) 
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(ii) In the second generic renormalization scheme, p is chosen the same 
for every divergent integral, and appears as a free parameter in renor- 
malized Green functions. This defines a minimal subtraction scheme 
Because of its underlying simplicity, minimal subtraction is favored 
for many practical pQCD calculations. (See Appendix C). The pre- 
cise scheme for minimal subtraction that is usually used is called the 
“modified minimal subtraction” or MS scheme. 

Clearly, what we have said so far is highly simplified. It can he shown that 
these renormalization schemes are flexible enough to handle not only logarith- 
mically, but also quadratically divergent integrals, and apply to multi-loop as 
well as one-loop integrals. Suffice it to say that these issues may be handled, 
and the substitution we have just described captures the heart of the issue 
11.61. 

1.3.3 The Renormalization Scale and Experiment 

The question now naturally arises, what can we do with a theory that 
has an arbitrary parameter p in it? The procedure for getting unique exper- 
imental predictions is this. For simplicity, let us assume we have a massless 
theory with only a single coupling constant g. We now compute a cross sec- 
tion - any cross section - which we will call u(p, p), with p denoting the 
momenta of the particles involved. The perturbation theory for o will always 
have some UV divergent integrals in it, so its (renormalized) perturbation 
series will look like 

4P, p) = 2 %(P, 11)!? 9 
“=I 

(1.27) 

where A is the highest order which we have had the strength to compute, 
and the a, are coefficients that are the results of the computation. Now firsts 
we go out and measure u(p, n) for some particular momenta ji. Next we fix 
p to be whatever we like. Then we can solve Eq. (1.27) for g, with a result 
that we denote g(p). (g(p) is implicitly also a function of p, and also of A.) 
This may not seem to accomplish much, until we realize that we can now 
compute D for any value of p. Thus, at the price of doing one experiment, 
we have predictions for a whole set of experiments. Not only that, but if 
g really is the only parameter in the theory, we have unique predictions for 
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every single cross section in the theory for which we are willing to compute 
a perturbative series. 

Now, because o(p, p) is a physical quantity it must be independent of our 
choice of p, which leads us to the equation 

w$(P? /J) = 0 1 

where we must remember to keep the p dependence in g(p). This equation 
holds exactly if we have the exact solution of the theory. If we apply it to the 
finite order approximation Eq. (1.27), then there will be errors of the order 
of the first uncomputed term in the perturbation expansion. This will be 
a useful approximation if the coupling is small, which leads us to our next 
topic, asymptotic freedom. 

1.4 Asymptotic Freedom 

The successes of QCD in describing the strong interactions are summa- 
rized by two terms: asymptotic freedom Il.71 and confinement. To understand 
the importance of these two attributes we should recall some facts about the 
strong interactions. Hadron spectra are very well described by the quark 
model, but quarks have never been seen in isolation. Any effort to produce 
single quarks in scattering experiments leads only to the production of the fa- 
miliar mesons and baryons. Evidently, the forces between quarks are strong. 
Paradoxically, however, certain high energy cross sections are quite success- 
fully described by a model in which the quarks do not interact at all. This 
is the parton model that we will describe in Section 2. Asymptotic freedom 
refers to the weakness of the short-distance interaction, while the confinement 
of quarks follows from its strength at long distances. 

An extraordinary feature of QCD is its ability to accommodate both 
kinds of behavior. It does this by making the forces between quarks a rather 
complicated function of distance. Qualitatively, when two quarks are close 
together, the force is relatively weak (this is asymptotic freedom), but when 
they move farther apart the force becomes stronger (confinement). At some 
distance, it becomes easier to make new quarks and antiquarks, which com- 
bine to form hadrons, than to keep pulling against the ever-increasing force. 
The realization that a single theory might describe such a complicated be- 
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havior is commonplace nowadays, but it required a major reorientation in 
our way of thinking about fundamental forces. 

The detailed evidence for the coexistence of asymptotic freedom and con- 
finement in QCD is a complicated web of analytic and numerical results and 
inferences. In this handbook, we will be concerned mainly with the exper- 
imental consequences of asymptotic freedom. Nevertheless, in the following 
we will try and give the reader an idea of the origin of these properties of 
&CD, as they are embodied in the Feynman rules that we have just outlined. 

1.4.1 Forces in QCD and QED 

A reasonably direct approach to asymptotic freedom and confinement is 
through a discussion of the effective forces that are implicit in the Feynman 
rules of the theory. To see what’s involved, we can consider the more familiar 
case of quantum electrodynamics (QED), where we know quite well the basic 
force, the Coulomb force, derived from the potential between two particles 
at rest, 

V(Ql,QZ,r) = L!@&. 
4~ I4 

(1.29) 

Qr and Qz represent the sizes of two charges, separated by r. The charges 
are measured in a system of units in which the permittivity of the vacuum 
(ee in mks units) is unity. (This is the usual system of units for quantum 
field theory.) Let us see how this potential comes about in QED, which is 
the abelian version of the gauge theory with Lagrange density, Eq. (1.2). 

The Coulomb potential may be derived by considering the scattering of 
two very heavy charged particles. If the particles are sufficiently heavy, we 
can ignore energy transfer compared to momentum transfer, and use a non- 
relativistic approximation @*/2M < M). If we wanted to go into detail, we 
would compute the nonrelativistic scattered wave functions as functions of 
momentum transfer, from which we could infer a spatial potential. We will 
short-circuit this reasoning and just give the rule: the potential is the spa- 
tial Fourier transform of the gauge field propagator, considered as a function 
of three-momentum (lkl) only, multiplied by the coupling constants at the 
vertices and divided by 4. For equal charges, Qi = e, this is 

1 
V(r) = -e’/ &e-ik.rs 
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(1.30) 

where the second equality comes from the angular integrals. That this is the 
Coulomb potential for unit charges follows from the integral formula, 

/ 

mdssin(z) ?r - = -. 
0 z 2 

(1.31) 

The purpose of this simple exercise is to show how close the Feynman rules 
are to our ideas of potential and force. What we have verified so far is that 
the potential can be found from the lowest order diagram shown in Fig. 1.3. 

Beyond lowest order in perturbation theory the potential will still be the 
Fourier transform of the scattering amplitude, 

d3k V(r) = / (21,)3e -ik.‘A(@ , 

with A(k’) given at lowest order by single-photon exchange as above. 
Let’s pursue our picture of the nonrelativistic scattering of heavy particles 

in perturbation theory a bit further, and discuss the effect of some of the 
perturbative corrections to Fig. 1.3, shown in Fig. 1.4. 

These graphs describe O(e4) contributions to the potential, whose mo- 
mentum dependence may be different from the lowest order. We may think 
of the fermion loop in the first diagram as virtual “light” fermions, of a mass 
m < M. To define the potential at this order, we actually need to introduce 
an infrared cutoff, or to sum over soft photon emission, and to carry out 
renormalization. All this will not affect the main point we want to make 
here, however, and we shall assume that this has been done, without going 
into details. Rather, we shall concentrate on the physical picture. 

Our basic problem is that we cannot separate experimentally the contri- 
butions of the various diagrams of Fig. 1.4, or those from yet higher orders, 
from the lowest order amplitude. As we shall see, the higher-order correc- 
tions modify the momentum dependence, and therefore the potential. How 
then, do we ever manage to determine the electromagnetic coupling? We do 
it by defining the amplitude at some fixed momentum transfer -k2 = to to 
be 

18 



where the fine structure constant cx is 

e2 
O=471. 

(1.34) 

Notice that this form says nothing yet about the momentum dependence of 
A(t), only about what it is at a specific value of its argument. Since we define 
this to be the coupling divided by to, the value of the coupling that we find 
depends upon the ts that we choose. 

The qualitative effects of the corrections in Fig. 1.4 to e2(to) are easily 
understood without explicit calculations. The main contribution is from the 
first diagram, in which the two incoming charges are linked by a virtual pho- 
ton that includes a “self-energy” diagram consisting of a fermion-antifermion 
pair. The net charge of such pairs is zero, and they act to “screen” each 
charge, ss seen by the other charge. We may think of each heavy charge as 
being surrounded by a cloud of charged pairs. If the incoming charges are 
far apart, each sees a very large cloud which serves to decrease the effec- 
tive charge of the other. As to increases, however, the charges come closer 
together (by the uncertainty principle), get inside the clouds, and the screen- 
ing becomes less effective. This we can summarize by 

-+e2(t0) > 0, 
0 

at least for contributions from the first diagram. Actually, the next two 
diagrams, in which virtual photons are emitted and reabsorbed by one of the 
charges, do not change this result, because at this order, the emission of an 
extra virtual photon does not change the charge distribution at all. Explicit 
calculations show that Eq. (1.35) holds quite generally. It states that as the 
momentum transfer increases, the observed charge also increases. We will see 
how to make this observation quantitative in the next subsection. Clearly, 
this is a problem at extremely high energies. For QED, however, the charge, 
as observed in Coulomb scattering (to = 0) is so small, that e*(to) does not 
become large until truly astronomical energies. 

Now let us see what happens in &CD, where we define an effective charge 
g*(to) by direct analogy to Eq. (1.33). We also define an effective fine struc- 
ture ‘constant’ for QCD by 



The corrections of Fig. 1.4 are all present in &CD, with photons replaced 
by gluons. In addition, at the same order, we also have to include diagrams 
with three-gluon couplings, as in Fig. 1.5. 

As in QED, the effect of virtual corrections is to surround our heavy 
(nonabelian) charged particles by clouds of charge. There is a very important 
difference, however. In the nonabelian case the emission of a gluon does not 
leave the nonabelian charge of the heavy particle unchanged. Although the 
total charge is conserved, it “leaks away” into the cloud of virtual particles. 
Thus, for small to, when the two heavy particles stay far apart, they are 
actually more likely to see each other’s true charge. As to increases, they 
penetrate further and further into each other’s charge clouds, and are less 
and less likely to measure the true charge. For this (only heuristic!) reason, 
we may expect “antiscreening” for the nonabelian theory, just the opposite 
of QED, 

&Go) < 0. 
0 

(1.37) 

This means that as to increases, the observed coupling decreases. This is 
what we mean by asymptotic freedom. At the same time, as to decreases, 
the coupling increases. Again, explicit calculation verifies this behavior. Of 
course, it is easier to go to small energy than large, and we shall see that at 
low energies the effective coupling deduced from perturbation theory actually 
diverges. This shows that perturbation theory will not be applicable at low 
energies where, apparently, the interactions become very strong. In this 
fashion, a perturbative description at short distances and high energies is 
compatible with confinement at long distances and low energies. 

Let us now go on to make these observations more quantitative, by in- 
troducing an explicit equation for the effective coupling. This discussion will 
also serve to introduce a very important concept for &CD, the renormaliza- 
tion group. 

1.4.2 The Renormalization Group and the Effective Coupling 

Let’s see what the two-particle scattering amplitude looks like for momen- 
tum transfers not equal to to. As we have seen, it is necessary to introduce 
a unit of mass, p, called the renormalization scale. In the case at hand, for 
heavy-particle scattering with momentum transfer to, we may choose p as 

p* = -to. (1.38) 
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This notation is a generalization of the specific choice, Eq. (1.33), that we 
have made to define the amplitude. In fact, the latter is a special case of a 
“momentum subtraction scheme”, as introduced in Section 1.3.2. To define 
A(to) in perturbation theory, it is necessary to introduce a renormalization 
mass, and Eq. (1.33) is one way to do this. 

In terms of c&*), the amplitude is of the form 

A(k2) = C&U*& + azi~&*)~“(~~*) + arr&(p’) + ... (1.39) 

with azr a number and ass a possibly complicated function of the masses and 
the infrared cutoff. Now here is the fundamental observation, upon which 
the renormalization group is based. The group consists of simply the set of 
all resealings of ,u. The amplitude A(k2) is a physical quantity, that can, 
in principle, be measured by experiment. As such, it cannot depend on our 
choice ofp*. This is equivalent to Eq. (1.28), or in this case, 

(1.40) 

Then, from Eq. (1.39), 

dab2) 
’ dp 

= -a21az(p2) +. . . . 

Thus, we have derived an equation for the effective coupling, which deter- 
mines its p dependence, so long as the coupling remains small enough that 
higher-order terms remain small. The solution to this equation is known as 
the effective or running coupling. According to our observations above, we 
will find that (121 > 0, so that the coupling decreases as ~1 increases. Thus, 
asymptotic freedom is a quantifiable concept. 

The conventional way of expressing asymptotic freedom is through the 
dependence of the linear coupling g(p) = dm, 

(1.42) 

where the beta function is a power series in g beginning at 0(g3), 



/3r can be found directly from asi calculated ss above, or from any other 
physical quantity that depends on ~1 in perturbation theory. It is, as expected, 
positive for &CD, 

p1 = 11 - 2n,/3 = (llN, - 2n,)/3 , (1.44) 

where nf is the number of flavors of quarks and N, the number of colors. 
The positive contribution, 11, comes mainly from the nonabelian diagrams, 
Fig. 1.5. The negative contribution, 2nf/3, which weakens asymptotic free- 
dom, comes from the the fermion loop diagram in Fig. 1.4. In these terms, 
the solution to the lowest order approximation to Eq. (1.42) can be written 
in terms of o, as 

(lowest order), (1.45) 

where the value of od(&) gives the boundary condition for the solution of the 
differential equation. In this form, the running coupling seems to depend on 
both a.(&) and &, but in fact it has to be independent of where we start. 
Therefore, it is often convenient to write a&*) in terms of a single variable, 

%(P2) = pJn&*?) (lowest order), (1.46) 

where 
* = poe-2e%“.‘b:)) (lowest order), (1.47) 

sets the scale for the running coupling. This scale is the famous Aqcn which 
is the subject of much measurement. 

A more accurate solution for cy,(fi’) is obtained by using the first two 
terms in the beta function. One conventionally writes cr6(p2) in an expan- 
sion in powers of l/ln(p*/A*), where the coefficient of [1/ln(~2/A2)]” is a 
polynomial in ln(ln(J/A*)). Keeping p r and ps allows us to determine the 
coefficients of [l/ ln(~*/A*)]*, 

4P2) 1 Pd41nb2/A2)) 
- = Piln(p2/A2) - p$n2(p2/A2) 4s + ’ ( ln3&2,) ’ (1’48) 

where ps = 102 - 38n,/3. Notice that there is no contribution of the form 
c/ ln*(p*/A*). Such a contribution can be absorbed into a redefinition of A. 
One defines A by the condition that c = 0. - 

If, as is conventional, renormalization is carried out according to the MS 
scheme, then A here is Am. 
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1.5 Quark Masses 

Having discussed the QCD coupling, we now turn to the other physi- 
cal parameters in the Lagrange density, Eq. (l.l), the quark masses. When 
we compute higher order loop graphs in the theory, the corrections to the 
masses are divergent (infinite but temporarily controlled by some regulariza- 
tion process) and the masses themselves must be renormalized. The simplest 
renormalization scheme,“MS” involves the continuation of the theory into a 
dimension different from four (Appendix C). Let us illustrate this feature 
in QED, in the MS scheme. When we compute the one-loop change in the 
mass, we find, in 4 - 2e dimensions, 

m. = m{l+ $5 + O(e4)}, (1.49) 

where mo is the mass parameter in the Lagrangian in the absence of inter- 
actions (e = 0), and m is the parameter that we use in the interacting case. 
Note that both masses are still mathematical parameters. As expected, as 
e + O(n + 4) the difference between the two is infinite, corresponding to an 
infinite shift in the mass due to the interaction of the electron with its own 
electromagnetic field. This is not as bad as it sounds, since ms, in particular, 
is not observable. The advantage of using this particular renormalization 
scheme is that m and ms are related by a simple formula which involves an 
expansion in pole terms with residues which are powers in the renormalized 
coupling constant. 

Note that neither m nor mo is the physical mass of the electron. We must 
define the physical mass of the electron, me, as the position of the pole in 
the renormalized electron two-point Green function. An examination of the 
corrections to this propagator in perturbation theory yields the finite relation 

m, = m{l+ $(2 - i In $) + O(e4)} (1.50) 

where ,U is an arbitrary mass scale. We thus know the identification between 
the mathematical parameter in the renormalized Lagrangian and the quantity 
which is measured in the laboratory. 

For QCD this last step does not work. Color confinement is postulated 
to explain the absence in Nature of free quarks and therefore the physical 
mass is unobservable. In perturbation theory there is a parameter me and 
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a renormalized parameter m, which is treated in the renormalization group 
equation in the same way as the coupling constant. If we choose the mass 
independent renormalization scheme given above then the solution of the 
renormalization group equation follows from the introduction of a running 
coupling constant g(p) for the quark-gluon interaction and also a running 
mass m(p) for every quark flavor (up,down,strange,etc). In the theoretical 
analysis of deep inelastic scattering from “light-mass” quarks the only true 
scale is the quantity &on. The running masses decrease as the scale in- 
creases so ratios such as m,/Aocn, are small for the up, down and strange 
quarks. Therefore we are justified in treating these quarks as massless. The 
running mass is evaluated at a scale where it is small, and therefore plays no 
role in the analysis of data. 

In the case of the heavier quarks, such as charm, bottom and top the 
masses from spectroscopy are large AQCD < m, < mb < mt, so there are 
new scales in the theory. First we observe that when we choose the renor- 
malization scale close to the mass rnq of the heavy quark, the pole of the 
heavy quark propagator is close to p* = rn$ (with order a.,(me) correc- 
tions). At scales of virtuality well below the quark mass, the only effects 
of heavy-quark propagators are in loop corrections and of a form that they 
can be cancelled by adjustment of renormalization counterterms. This is the 
decoupling theorem of Appelquist, Carrazone and Symanzik [1.8]. When we 
work with virtualities well above the heavy quark mass, it is the mass that 
can be neglected: we treat the quark on the same footing as the light quark 
and the renormalization scale p is of order the large scale. Clearly we have 
two regimes: when p > mq, the heavy quark participates fully, and when 
p < mg, we should omit the heavy quark. Matching conditions are neces- 
sary. As Collins, Wilczek and ‘Zee [I.91 h s owed, this can be done by a suitable - 
choice of renormalization scheme. They use MS for everything when ,a > mq, 
but they use zero-momentum subtraction for loops with heavy quarks when - 
p < mg, and MS for everything else. This method gives automatic decou- 
pling of heavy quarks when it is applicable, and allows calculations at scales 
of order rnq with all mass effects taken into account. At the break point 
p = rnq the number of active quark flavors in the beta function is changed 
by exactly one, and the coupling is made continuous there. It can be shown 
by explicit calculation that, at the one-loop approximation, this break point 
is at p/rnq = 1 and not at some other ratio, provided that MS renormaliza- 
tion is used. If desired, higher order corrections to this matching condition 
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can be calculated. It is not yet known how to make an accurate direct ex- 
perimental measurement of a running quark mass, so we simply adjust mq 
to fit a physical quantity such as the production cross section. Therefore one 
should not be surprised when these masses do not exactly agree with the 
naive expectation of one-half the energy of the threshold for “open” heavy 
quark production. 

1.6 Infrared Safety 

With our solution for the running coupling, we now have an idea of how 
asymptotic freedom can help in a practical case. Let U(pi’pj/p*, rny/p2, g(p)) 
represent some physical quantity that we can compute in perturbation theory, 

#-$ $9(p)) = “coa”(“;;‘? ;; 0, t 2) “(p) ) (1.51) 

where the pi denote external momenta and mi the internal (quark) masses 
ml and any external invariants that are also small. It is quite common that 
the coefficients ai are large, regardless of the value of o,(p). In fact, almost 
all cross sections in perturbative QCD are infrared (IR) divergent, because of 
the vanishing gluon mass (see Section 4). That is, they are not even defined 
in the renormalized theory. Nevertheless, we will find that there is a large 
class of quantities which are injmred safe [l.lO]. Infrared safe quantities are 
those which do not depend on the long-distance behavior of the theory. For 
such quantities, the a, are infrared finite, and also possess a finite limit for 
vanishing mi, so that 

u($,$g(p)) = uc$0,4+)(1+ 0 ($)} ’ (1.52) 

where Q2 is a scale characteristic of the large invariants among the pi pj. 
(When there is more than one such scale, the situation becomes more com- 
plicated, but can remain within the realm of pQCD.) 

For an infrared safe quantity, Rq. (1.28) has the solution 

u($.O,s(d) = 4,'AdQ)) 1 (1.53) 
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in which all momentum dependence has been put in the couplings. When Q 
is large, the coupling decreases, and the perturbation series becomes better 
and better. 

A major goal of perturbative QCD is to identify and analyze experimen- 
tal quantities to which asymptotic freedom may be applied consistently. We 
will often find it necessary to reorganize the perturbation series to identify 
and compute infrared safe quantities. Typical of the results are the factor- 
ization theorems to be discussed in Section 3. Before reorganization, the 
coefficients in the perturbation series are so large that it is of no practical 
value to use them. After reorganization, we isolate factors for which low 
order perturbation theory is useful in practical applications. 
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Figure 1.1. Perturbation theory rules for QCD, 
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Figure 1.2. An ultraviolet divergent one-loop scalar diagram. 

Figure 1.3. The lowest-order potential in QED. 
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Figure 1.4. Field theory corrections to the potential in QED. 

Figure 1.5. Nonabelian correction to the QCD potential. 
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2 The Parton Model: Fundamental Cross 
Sections 

2.1 Overview. 

The parton model is applicable, with varying degrees of success, to any 
hsdronic cross section involving a large momentum transfer. The parton 
model is, in essence, a generalization of the impulse approximation. We 
assume that any physically observed hadron, of momentum fl is made up 
of constituent particles, its “partons”, which we will identify with quarks 
and gluons. At high energy, we neglect the masses of hadrons and partons 
compared to the scale Q of the hard scattering. Furthermore, we assume 
that every relevant parton entering the hard scattering from an initial state 
hsdron has momentum zfl, with 0 5 I I 1; here pJ’ is the momentum of 
the parent hadron and tithin the hard scatteting we make the approximation 
p2 = 0. 

Parton model cross sections are calculated from the tree graphs (no loops) 
for partonic scattering, by combining them with probability densities, as fol- 
lows. Consider collisions of hadrons A and B to make some suitable final 
state, e.g., one containing a dimuon pair of large invariant mass. (This par- 
ticular case is the Drell-Yan process.) Then the parton model cross section 
for this process has the schematic form, 

’ dsds’ eij(xPcp,z’P’) h/A(Z) dj/B(Z’) ( (2.1) 

where &ij is the corresponding Born approximation cross section for the scat- 
tering of partons i and j to produce the chosen final state, and &*(z) is the 
probability density for finding parton i in the h&on h, carrying momentum 
zp, 0 5 I < 1. di/A is called the distribution of parton i in hadron A. 

Similarly, for a final-state hadron C, with momentum !, we relate hadronic 
to partonic cross sections by 

dw(e) = c I1 dt d&(e/z) h/t(r) , 
parrma k ’ 

(2.2) 
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where now Do/k(Z) is the fmgmentation finction that describes the proba- 
bility for parton k, with momentum P/z to produce a hadron C(P) in the 
final state. A general parton model cross section will involve both initial- 
and final-state hadrons of definite momentum. 

2.1.1 Heuristic justification 

The physical insights behind the parton model are most easily seen in 
deeply inelastic lepton-ha&on scattering. Fig. 2.1 gives a schematic picture 
of this process in the spirit of the parton model. Fig. 2.la shows the system 
before the scattering, as seen in the center-of-mass frame. The hadron, say 
a nucleon, consists of a set of partons (denoted by X’S), in some virtual 
state of definite fractional momenta <ip. The central observation is that this 
virtual state is characterized by a lifetime r in the nucleon rest frame. The 
precise value of r depends on the details of nucleon structure. Let us suppose, 
however, that there is an effective lower bound, r > 70, so that the nucleon is 
made up primarily of virtual states of non-zero lifetime in its own rest frame. 

In the center-of-mass system, the nucleon suffers both Lorentz contrac- 
tion and time dilation. Thus, in this frame, the lifetime of our virtual state 
is r( 1 - r~*~/c+)-l’~ > r, with u* the velocity. Combined with Lorentz con- 
traction (indicated in the figure by a disc shape), this means that the time it 
takes the electron to cross the nucleon vanishes as the center-of-mass energy 
goes to infinity. 

Therefore, at the time of collision, Fig. 2.lb, the electron sees a collection 
of partons that are effectively “frozen” during its transit. To exchange a large 
momentum fl with one of the partons, the electron must come as close to 
it as 0(1/Q) in the transverse direction, by the uncertainty principle. The 
details of the exchange depend on the underlying electron-parton interaction, 
such as QED. 

Most importantly, if we assume that the partons are more-or-less ran- 
domly spread out over the disc, the probability of finding an additional par- 
ton near enough to take part in the hard scattering is suppressed by the 
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geometrical factor 

with R,, the radius of the nucleon. Such an estimate makes sense to the extent 
that the partons are effectively “frozen” during the short time it takes the 
electron to pass by. Then the cross section may be written as the probabili@ 
of finding a parton with given momentum fraction, times the cross section 
for the interaction. 

After the collision, Fig. 2.lc, anything may happen, and as the scattered 
electron recedes, the fragments of the nucleon interact, create quark pairs 
and eventually respect confinement. All this is assumed to take place on 
time scales that are also long compared with the electron’s collision with the 
nucleon. Then the process of “hadronization”, by which quarks and gluons 
coalesce into the observed particles, happens too late to influence the hard 
scattering itself. This assumption underlies the idea of treating the parton- 
electron scattering in the elastic Born approximation. We do not assume 
that the scattered quark is really on-shell, only that it is much closer to the 
mass shell than Q2, and lives a much longer time than l/Q, as Q --t 00. 

In summary, the parton model rests upon two physical concepts: the 
Lorentz contraction and time dilation of internal states of the nucleon, and 
the long-time nature of hadronization. The “initial-state” interactions be- 
tween partons happen too early to affect the basic scattering, and hence the 
inclusive cross section, while the “final-state” interactions between fragments 
happen too late. Up to kinematic factors, then, the scattering is directly pro- 
portional to the density of partons, which is frozen over the short scattering 
time scale. 

To apply the parton model formulas, Eqs. (2.1) and (2.2), we need to 
calculate elastic scattering processes for these partons in the Born appros- 
imation. Of course, we don’t get something for nothing, and it will also 
be necessary to incorporate information on the structure of hadrons via the 
functions &i/,,(z). The magic of the parton model is that it is not necessq 
to solve the problem of hadron binding completely. Instead, the required 
information will be available from experiment. To see how, we study cross 
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sections for the scattering of hadrons and leptons. Such cross sections will 
begin at order 02, with (Y = e2/4?r the electromagnetic (or more generally 
electroweak) fine structure constant. 

2.2 Lepton-Hadron Cross Sections 

There are three standard lepton-hadron parton model cross sections, cor- 
responding to the following underlying partonic reactions: lepton-parton elas- 
tic scattering, lepton pair annihilation into parton pairs, and parton pair an- 
nihilation into lepton pairs. They correspond, respectively, to deeply inelastic 
scattering, e+e- annihilation and the Drell- Yan process. At the (observable) 
hadronic level, these cross sections are all inclusive for hadrons in the final 
state. In this subsection we treat deeply inelastic scattering. 

2.2.1 Deeply inelastic scattering kinematics. 

A deeply inelastic scattering (DE) p recess is generically of the form 

l(k) + h(p) + P(k’) + x , (2.4) 

where e(k) represents a lepton of momentum JP, h(p) a hadron of momentum 
JP, and X an arbitrary hadronic state. Normally, h(p) will be a nucleon or 
nucleus. The process, illustrated in Fig. 2.2, is initiated by the exchange 
of vector boson V. The classic DIS experiment is totally inclusive in the 
hadronic final state, so that it is necessary only to observe the outgoing 
lepton, of momentum k’“. The discussion of DIS, more than any other cross 
section, is couched in a rather specialized kinematic notation, which we will 
now briefly review. It should be kept in mind that the kinematics are much 
more general than the parton model, and even than pQCD. 

In DE, the momentum transfer between lepton and hadron, q, is space- 
like, 

,f = k” - k” , 

mq2 = Q2. (2.5) 
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In addition, as the term implies, in DIS the hadronic final state X has an 
invariant mass much larger than that of the nucleon. This is normally pa- 
rameterized in terms of the Bjorken scaling variable, z, 

(2.6) 

where v is the energy transferred from the lepton to the ha&on in the hadron 
(target) rest frame, 

u=p.q/mj,=&-,?&. (2.7) 

v is naturally related to the dimensionless variable y, 

P'Q &-& 
?4=p= 

Ek 
(2.8) 

that measures the ratio of the energy transferred to the hsdronic system to 
the total leptonic energy available in the target rest frame. 

For a nucleus with atomic number A, it is usually convenient to rescale 
z by A, so that the denominator in Eq. (2.6) is still the mass of a nucleon. 
For fixed 2, the mass of the hadronic final state is given by 

Thus, for I fixed and Q* large, the mass of the hadronic final state is also 
large. 

The incoming lepton may be an electron, a muon or an (anti)neutrino 
[2.1], and the exchanged vector boson a photon, W*, or 2. At lowest order 
in electroweak interactions, the cross section may be split into leptonic and 
hadronic parts, 

do = d3k’ C”v 
2slk’14a2(q2 _ m;)2GWd~,%v4 1 (2.10) 

where V labels the exchanged vector boson, of mass mv, and where 

= e, 



for reasons which will become clear in a moment. (Note that each weak 
interaction coupling involves g = e/sin&). In this equation, we assume 
the form -g,p/(q2 - m$) for the vector boson propagator, neglecting gauge- 
and mass-dependent terms proportional to qaqp. Corrections to this ap 
proximation vanish for V = 7, and are suppressed by the ratio ml/my for 
v= w*,z. 

The leptonic tensors can be evaluated explicitly (with a conventional but 
arbitrary normalization) from 

G(kd = +‘W;,(Y-d)r;ll, (2.12) 

where rv~ is the perturbative vertex coupling lepton P to vector V and the 
(unique) outgoing lepton P, but with the factor 2” removed. The factor l/2 
is for the spin average for unpolarized electrons: it should be removed for 
neutrino scattering. To be specific, we may take 

r!$* = 7” , (2.13) 

r&J+, = Y’O - 75) 9 (2.14) 

rb-, = -fyi +-d (2.15) 

The hadronic tensor, on the other hand, is defined to all orders in the 
strong interaction in terms of the matrix elements 

W,!?)bt 4) = i& c c (‘6 4l?‘~(ONX) (X]j”,(O)]h(p> u)) 0 x 
x (27r)464(P + P - PX) . (2.16) 

Here, j,“(r) is the appropriate operator electroweak current, labeled by the 
corresponding vector boson, and divided by the appropriate cy Eq. (2.11). 
(This procedure does not result in unit coupling for quarks; see Section 2.2.2). 
When appropriate, we average over the nucleon spin, (T, which simplifies 
our analysis (spin-dependence has lately emerged as a topic of interest and 
controversy [2.2], [2.3].) W h e ave e p rf ormed this average in Eq. (2.16), and 
the normalization factor includes a factor l/2 for this average. 
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Symmetry properties give important restrictions on the form WjL”) may 
take. These restrictions may be summarized by expanding the tensor in 
terms of scalar structure functions WjVh). The general expansion may be 
expressed as 

Wj;“’ = - (gpv - 7) W:vh’(z,Q2) 

+(Pp-q+) (Pd$?$Wivh)(~,Q2) 

-ir,,~,p*qO-$W~Vh)(~, Q2) . (2.17) 

Note that there are a variety of conventions in the literature about the def- 
initions of Wi, and of the variable V. This variation is less pronounced for 
the scaling structure functions Fi to be defined below. Our conventions for 
the Fi’s are consistent with those in the 1992 Review of Particle Properties 
12.41 (taking into account the Erratum r to Ref. [2.4]!), and with the detailed 
derivation found in Chapter 6 of Ref. (2.51 (although our Wi differ from those 
of the latter). 

The structure functions are generally parameterized in terms of z and QZ. 
At this stage, there is no relation between the W,!““) for different bosons V, 
although parity invariance of the strong interactions implies that 

Wph)(z, Q’) = 0 (for photon exchange only) (2.18) 

The functions Wt of Eq. (2.17) are usually replaced, for the purposes of 
exhibiting data, by alternate, but equivalent, structure functions Fi, which 
will turn out to be particularly simple in the parton model, 

W,Q2) = Ws,Q2) , 
F2k Q2) = 3’2(5, Q2) , 

h(x, &‘I = &W&. Q2) (2.19) 

‘The erratum refeti to the expression for FS on page III.52 in (2.41; it does not apply 
to the Poriicle Pmperties Data Booklet. 
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Yet another equivalent basis for the structure functions is inspired by assign- 
ing polarizations to the vector boson V, in the target rest frame: 

CR(q) = -&t 1, -i,o) , 

d7) = $0; I,(O) ( 

%&I) = $@?G:o,o,u). (2.20) 

These correspond to helicities of +l, -1 and to longitudinal (sometimes 
called “scalar”) polarization for the exchanged particle, respectively. Up to 
corrections of order m~/Q’, H$“) has the expansion, 

w&c”’ = c G(q)pa(qL FYh)(x, 9’) , (2.21) 
A 

where X = L, R, long labels the helicity. In this approximation, the “helicity” 
structure functions are related to the structure functions of Eq. (2.19) by the 
simple relations 

FL,R = Fl f F3 , F,,,, = - - ;; Fl (2.22) 

The structure functions can be found directly from experiments in which 
only the outgoing lepton’s momentum is measured. For instance, the dif- 
ferential cross section in terms of the dimensionless variables z and y may 
be written in terms of incoming and outgoing lepton energies and scattering 
angle in the target rest frame as 

&,(‘h) 
-= 
dxdy 

NW’) [2w,(“h) (2, q*) sin*(O/2) + W~Vh)(x,q2)c0s2(O/2) 

f W(Vh)(x,q2)EzhE’ sin2(O/2)] , (2.23) 

where the f corresponds to V = W*, and where 

N(f*7) = &&mhE 
Q4 ’ 

Nb’w+) = N(“w-) = TO2 mhE 
2sin4(&)(Q2 + A!$,)2 . 

(2.24) 
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Here 6’~ is the weak mixing angle, and 7rcr2/(2A4$ sin4(6’w)) = GF/rr, with 
GF the Fermi constant. 

Other useful expressions for this cross section are given directly in terms 

of Y, 

da(“) 
-= 
dxdy 

Nf” Y2 
I 
1 2xF,vh) + (1 - y - F)Fivh) 

+ 6,(y - $ zFiVh) 1 , (2.25) 

where 6” is +l for V = W+ (neutrino beam),-1 for V = W- (antineutrino 
beam) and zero for the photon. mh is the target mass. 

2.2.2 Cross Sections and Parton Distributions 

Now let us see what the parton model has to say about DIS. As em- 
phasized above, in the parton model the scattering of the nucleon is due 
entirely to the scattering of its individual constituents. If these constituents 
are quarks and gluons, then only quarks will couple to electroweak currents 
in the Born approximation. The DIS cross section is then given by the prob 
ability, C$flh(<), of finding a quark of flavor f and fractional momentum < in 
hadron h, times the cross section for the elastic scattering of that parton. 

A typical parton model DIS cross section is therefore given by 

du(fh) dEssd&.p (p, 4 = 7 1’ de d;y;p (h 4 4~/&) . (2.26) 

The distribution 4fflh is at this point undetermined. The perturbative equiv- 
alent of the parton model picture of DIS is illustrated, in “cut diagram” 
notation (Appendix B), in Fig. 2.3a. 

We note the absence of diagrams such as Fig. 2.3b, in which the scattering 
of quark f with fraction t interferes with the scattering of a quark of fraction 
<‘, the momentum being made up by an extra gluon. This feature is referred 
to as the “incoherence” of the parton model. 

39 



From Eqs. (2.10), (2.17) and (2.19) we derive relations for the structure 
functions Fi in the parton model, 

F;““)(x) = 7 L’ 7 F:“‘+/E) '#'f/h(t) (a = 1,3), (2.27) 

F:Vh)(x) = F 1’ d< F’““W) dy/dt) . (2.28) 

Here the F!“‘) are the structure functions at the parton level; they can be 
calculated from the Born diagram of Fig. 2.4. The factor of l/t in Eq. (2.27) 
arises from the normalization of the parton states as compared with the 
hadron states and from the factors of p in the definitions of the structure 
functions from W,, - the vector p+ must be changed to .$Y for scattering 
off a parton. 

For example, with electromagnetic scattering, we have 

Pjd)) 
1 d3p’ Born = - / 8~ (2~)32+ 

Q: ‘Wr,h’+ d~vdl (2~)~6~)(~ -P - d , 

(2.29) 
where e&f is the electric charge of the quark of flavor f. A factor e has been 
absorbed into c, in Eq. (2.11). This gives 

2F,(7’)(x) = Fpf)(x) = Q;6(1 -I) (2.30) 

Substituting these functions into Eqs. (2.27) and (2.28), we find the electro- 
magnetic structure functions in terms of quark distributions, 

2xF~)(cr) = F?“‘(x) = c &+#Jf,h(z) . (2.31) 
f 

Two important aspects of these expressions are: 

(i) the structure functions depend on the Bjorken scaling variable 2 only, 
and not on the momentum transfer directly; 

(ii) the two functions satisfy the relation 2xFl = Fz. 
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The first result is known as scaling [2.6]. Its observation 12.11 was the inspi- 
ration for the parton model. The second, known as the Callan-Gmss relation 
[2.7] follows from the specifics of the Born diagram, Fig. 2.4, and as such is 
evidence for the spin-l/2 nature of charged partons (the quarks). 

Evidently, measuring Fl or FZ immediately gives an experimental deter- 
mination of the combination of distributions, Cf Q@,,h(x) for h a proton 
or a neutron. Now isospin invariance implies that 

‘ha/p = dd/dln , ‘$d/p = $k,/, , (2.32) 

with u the up and d the down quark. In the approximation that the proton 
and neutron contain u and d quarks only, a measurement of F2 for p and n, 
combined with Eq. (2.32), determines the distributions &/A and &+. These 
distributions can then be used to predict other DIE cross sections, such as 
neutrino scattering, to the same approximation. 

Of course, in real life things are not so simple. Quantum mechanics tells 
us that virtual states will include quark-antiquark pairs of every flavor. The 
sum in Eq. (2.31) will therefore include the strange, charm, and even the 
bottom and top quarks, in addition to all the antiquarks. Although we may 
expect that the admixture of very heavy quark pairs in a nucleon is relatively 
small, we clearly need more information than is supplied by electromagnetic 
scattering alone, even to determine the distributions of light antiquarks, for 
instance. For this purpose, we will find neutrino and antineutrino scattering 
ideal. 

The parton model cross sections for charged weak currents are almost as 
easy to compute as for the electromagnetic current, and the answers are just 
as satisfyingly simple. Quarks of definite mass - that is, the quarks of the 
strong interaction Lagrangian - are not eigenstates of the weak interaction 
Lagrangian. As a result, the basic vertex for u + W- + d is almost like the 
vertex for V. + W- -$ e-, i.e., (1/2&)gy“(l - 7,s) with g = (e/sinew), 
but not quite. Instead, g is replaced by g&d, where VUd is an element in a 
three-by-three unitary matrix called the Cabibba-Kobayashi-Maskawa mixing 
matrix. As a result of the mixing, the absorption of a W- can change an 
up quark, not only into a down quark, with coupling gv,d but also into a 
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strange quark, with coupling gV,,, or a bottom quark, with coupling gb’“,,. 
The three mixing matrix elements I$, Vu, and VU,, form a row of the unitary 
matrix V, and hence satisfy 

Ivudl’ + I&I2 + l&b12 = 1 . 

In practice, Vd is relatively small, and 

(2.33) 

vd N c06ec, V,, - sinOc , (2.34) 

where Era is the same Cabibbo angle that was first introduced to relate 
strangeness changing to strangeness preserving weak decays. 

We are now ready to compute the parton model hadronic tensor for 
charged weak currents acting on the up quark, through the exchange of a W- 
from an incoming antiquark (of any flavor). We find (compare Eq. (2.29)) 

w$y&, = 
x (2r)464(P’ - P - 9) I (2.35) 

where we have used Eq. (2.33), and have, as usual, neglected the masses 
of the outgoing quarks. The factors of IVuj12 have summed to unity in the 
inclusive cross section, while the overall factors cw are absorbed into the 
normalization of the cross section as in Eq. (2.11). 

Computing the F’s for individual quarks and antiquarks, and hence for 
hadrons, is now a straightforward matter of taking traces. We won’t give the 
details here, only quote the results. The relation to parton distributions is 
simplified for some purposes in terms of the sums and differences of neutrino 
and antineutrino structure functions, 

(2.36) 

We now introduce the notation Lib(r) for the parton distribution for quark 
U of charge 2/3 (up, charm, top) in hadron h, and D,,(x) for quark D of 
charge -l/3 (down, strange, bottom). Also, it is convenient to define valence 
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distributions for the U and D quarks by 

u,(x) = uh(z) - uh(x) , 

D;(x) = D,,(x) - &(X) . 

(2.37) 

The motivation underlying these definitions is that for every extra antiquark 
produced in a virtual state there is also an extra quark. The valence distri- 
butions are what is left when the influence of these “extra” quarks (usually 
called sea quarks) is removed. (However, note that sea quarks and antiquarks 
need not necessarily have the same distribution in x.) 

In these terms, the parton model results for charged weak interactions are 
remarkably informative. First of all, we find that the relation characteristic 
of spin-one half partons still holds, 

2xF1* 
P’h) = F2’y’ (2.38) 

The explicit results for the sums of structure functions are 

Fz’+Wh’ = xT[ Dh(x) + bh(l) ] + $[ uh(x) + uh(x) ] , 

FcWh) = T D;(x) + F u;(x) , 3+ (2.39) 

while for the differences we get 

F(Wh) 2 = x 5 D;(x) - xc U;(x) , 

F(yh) = F[ Dh(x) + dh;) ] - F[ uh(X) + uh(z) ] 3 (2.40) 

If we measure all four of these distributions, for both p and n, and assume 
isospin invariance and an isospin-symmetric sea (i.e., E(X) = d(r) = S(Z), 
with c(x) = b(x) = t(x) = 0), the full set of cross sections becomes overde- 
termined, and the self-consistency of the parton model may be tested. The 
sole one of these assumptions that is dangerous in QCD is the assumption of 
isospin-symmetry of the sea quarks. 
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For completeness, let us give the same results as above, in terms of neu- 
trino (W+) and antineutrino (W-) structure functions directly, 

Fz (W+h) = 2.4 T k(z) + T ~I&.) ) , (2.41) 

F(W-h) =2X( T&,(a) .,,(LZ,), 2 (2.42) 

and 

F(W+h) = 2( TD&) - T;:&(Z)), 3 

F(W-h) = 2( -~b,(l) +Fuh(Z)). 3 

(2.43) 

(2.44) 

2.3 e+e- Annihilation 

Another fundamental cross section is the annihilation of lepton pairs into 
hadrons, e+e- -+ hadrons. There are three variations on this theme for 
which we can derive predictions in the parton model: the total cross section, 
single-hadron inclusive cross sections and jet cross sections. 

2.3.1 Total cross section 

The total cross section for e+e- annihilation into hadrons falls immedi- 
ately into the parton model framework, because it is completely inclusive in 
the hadronic final state. At the same time, there are no hadrons in the initial 
state, so the parton-model cross section is given immediately in terms of the 
lowest-order electromagnetic elastic cross section for e+e- + qq. This cross 
section is given by the “annihilation” Feynman diagrams, shown in Fig. 2.5, 
in which the lepton pair annihilates into a virtual photon or 2 vector boson, 
which subsequently decays into the quark pair. The fermion-vector vert,ices 
are given by (compare Eq. (2.15)) eQ;yfl for the photon, with Qi the frac- 
tional electric charge of fermion i, and for the 2, 

eP = s,n ew:os ew Y” (vi - 475) 
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Here Ai and vi characterize the vector and axial vector couplings, and are 
given by 

A; = t3 - 2Q;sin’Bw , 

t$ = t3, (2.46) 

with ts the weak isospin of (the left-handed component) of fermion i (t3 = 
+1/2 for neutrinos and up quarks, -l/2 for negatively charged leptons and 
down quarks). 

At energies much less than the 2 mass, only the virtual photon is impor- 
tant, and we easily derive the cross section from the electromagnetic vertex 
alone, 

4s) tot = (2.47) 

where N, is the number of colors, s is the squared center-of-mass energy, 
o (= e2/4?r) is the usual electromagnetic fine structure constant, and the 
sum is over all quarks with masses small enough to be produced at s. Q, is 
the fractional electric charge of flavor f. In computing Eq (2.47), we have 
neglected quark masses compared to &. Note that, because glOl is directly 
proportional to N,, its measurement is a direct observation of the number of 
colors, N, = 3, jointly with the fractional charge content of each flavor. 

At very high energies, like those available at SLC and LEP, the 2 becomes 
important, and gives the full parton model annihilation cross section, 

4s)tot = 4N;y2 7 Q; (I- 2xV; + [V,’ + A;]*$) , (2.48) 

where the sum is over the final-state quarks and leptons and where 

‘= (siMJ (4cost9~sinBiy) 
(2.49) 

2.3.2 Single-hadron inclusive annihilation 

A stronger use of parton model methods is found in single-ha&on inch- 

sive (1PI) cross sections, for instance e+e- + h(p) + X, in which all events 
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with a hadron of momentum p are included. The corresponding amplitudes, 
illustrated in Fig. 2.6, are the “crossed” versions of deeply inelastic scatter- 
ing amplitudes for the hadronic antiparticle il. The latter process is found 
from 1PI annihilation by transferring h from final to initial state, where it 
is identified with h, and the positron from initial to final state, where it is 
identified as an electron. 

The kinematics for 1PI annihilation processes are developed in an analo- 
gous manner to deeply inelastic scattering. The basic scale is set by the total 
momentum, 

q = e, + e2 

q2 = Q’>O, (2.50) 

with .!I the incoming electron momentum. Two natural dimensionless vari- 
ables, defined in terms of invariants, measure the energy and direction (rel- 
ative to the electron momentum) of the produced particle in the center of 
mass system, q = 0, 

2P ’ Q I = -, 

y = $$~(l-cos8p~,). (2.51) 

These variables are the analogues of, but not identical to, the z and y defined 
in Eqs. (2.6) and (2.8). 

For simplicity, we will specialize to 1PI through a photon, as is appropri- 
ate for energies well below the 2 mass. In this case we have, analogous to 
Eq. (2.10) for DIS, 

dd’+e- = L L:;(t#‘~)(p, q) dsdy , 
0 92 

(2.52) 

with L’” a leptonic tensor, given at order e2, and w,, the hadronic tensor 
(compare Eq. (2.16)), defined by 

@$?(P? 44 = & c NJl7~@)lx? h(P> flN(X, h(P, ~w”(o)lo) 
0,X 
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x (27r)464(P + P - Px) 

= 457,” - $$)Fp(x, q2) 

+(p, -q&t= q2 )(Pv-Q” ‘$)-$ph)(x, q2) . (2.53) 

The E’s are 1PI structure functions, in terms of which the cross section is 
given by 

do:+,-(2, iv, q2) = Nc47m2 3 
dxdy 4 3q2 PPh) 

- 3y( 1 - y)Fi’h)) (2.54) 

The factor NC is, as usual, the number of colors, included so that we do not 
have to sum explicitly over the colors of partons below. Note, as in Eq. (2.25), 
the explicit nature of the y (angular) dependence. 

The application of the parton model to 1PI cross sections is very straight- 
forward. Prom Eq. (2.2) we have 

dd+c-(xv Y, 4’) = T/,,dy dd+e- b’, Y> ‘J*) ( h) 

dxdy dx’dy 
D; (z)6(z’ - Z/Z) , (2.55) 

where the sum is over quark flavors f (not including antiquarks), since in the 
Born approximation only quark pairs, and not gluons, are produced in the 
annihilation process. D?(z) is the fragmentation function for quark f into 
hadron h, with the latter carrying fraction z of the momentum of the former. 
It now requires a very straightforward calculation, involving a single fermion 
trace, to derive the 1PI structure functions in the parton model, 

I@?)(X) = @&p(x) , (2.56) 

or, in terms of the cross section, 

dd’+,-(x,~,q~) = N m2 
dxdy +Q; ( 1 + COS2hp) D/z/f(x) , (2.57) 

where, as above, the angle is measured in the overall center-of-mass frame. 

47 



2.3.3 Jet Cross Sections 

From Eq. (2.57), we see that in the parton model the angular dependence 
of hadrons in the final state directly follows that of the underlying quarks. 
The 1 +co$6 dependence is characteristic of spin-l/2 particles (scalar quarks 
would have given sin’8, for instance). This feature ranks with the Ca,llan- 
Gross relation and the normalization of the total annihilation cross sect.ion, 
as fundamental evidence for quarks. 

There is even more to it than that, however. If we really take Eq. (2.57) 
seriously, we may conclude that each and every hadron appears in the final 
state in the same direction as the virtual quark whose fragmentation product 
it is. This would mean that in any given event, every hadron with a nonzero 
fraction of the total energy would move either in the direction of the virtual 
quark or of the virtual antiquark. In such a final state, all hadrons would al,- 
pear as part of one of two jets of parallel-moving particles. Indeed, from this 
point of view, we can compute a jet cwss section, which in the parton model 
is identical with the differential Born cross section for e+e- annihilation into 
quark pairs, 

dot:;1 (cos 0, q2) = 
dxdy (1 +cos’@) > (2.58) 

where now B is the angle between either of the jets and the incoming elect,ron 
in the overall center-of-mass frame. The factor of 2 relative to Eq. (2.57) 
comes from counting both jets equally. The integral of this cross section over 
6’ from zero to ?r is the total cross section, (2.48). 

Notice that this conclusion is not forced upon us by the parton model 
arguments of Section 2.1. There we only claimed that the cross section for 
a single hadron is closely related to the underlying partonic direction. It 
is clear that the extension to jet cross sections is approximate at best. As 
we shall see, however, this approximation becomes better and better as the 
energy increases. In fact, we will be able to reinterpret the underlying Born 
cross section in any inclusive parton model cross section as a cross sectiou 
for jets, emerging in the directions of, and with the energies of, the outgoing 
partons. In this, lowest-order approximation, the jets are “ideal”, and consist 
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of a set of exactly parallel-moving hadrons. In realistic cross sections it will 
be necessary to define what we mean by jets more carefully. 

2.4 Drell-Yan Production 

The production in hadronic collisions of a lepton pair with large invariant 
mass (e+e-, p+p-, p +ql, p-$9 etc.) yields complementary information 
to that revealed in deeply inelastic collisions and electron-positron collisions. 

Since the theoretical framework for the analysis of these processes was 
originally proposed by Drell and Yan [2.8] , [2.9] these reactions are commonly 
referred to as hadronic Drell-Yan (DY) production. 

The study of massive lepton pair production started witch the Columbia- 
BNL experiment on proton-nucleus collisions [2.10]. Reviews of the early 
work can be found in 12.111. Since the lepton pairs have no direct inter- 
actions with hadrons they are really the manifestation of the production of 
virtual gauge particles, y , IV*, Z, which couple to lepton pairs through elec- 
tromagnetic or weak interactions. As the virtual gauge bosons are timelike, 
any on-mass-shell vector meson resonances which couple to virtual phot,ons, 
such as the J/$ [2.12] and the T (2.131, are produced. The intermediate 
bosons W* and 2 can also be produced as physical particles when the cen- 
ter of mass energy is large enough. In the case of the intermediate bosons, 
the DY cross sections are largest when the particles are actually produced 
on-mass-shell. Given their well-known branching ratios into leptonic chan- 
nels, the detection of single leptons at large p, is the characteristic signal for 
the production of W* [2.14] and Z [2.15]. 

Let us consider first the basic electromagnetic reaction written as the 
production of a virtual photon followed by its decay into a lepton pair 

4~) + %‘) + Y’(Q) + x 

+ O(k) 4 4(k’) + x , (2.59) 

where X labels all the undetected hadrons in the final state so that the 
process is inclusive. The notation is the same as in the previous sections. 
Since the virtual photon is timelike, p = k + k’ satisfies q2 = Q2 > 0. One of 
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the easiest variables to measure experimentally is q’, the invariant mass of 
the pair. It is convenient to introduce the DY scaling variable 

7 = qz Js, (2.60) 

where the total center of mass energy of the hadronic collision is determined 
from s = (p + p’)‘. 

The parton-model interpretation of the DY process is that in the hadronic 
collision two partons, say a quark-antiquark pair, annihilate to produce the 
virtual photon. In this case we write the hadronic DY cross section as a 
product of the partonic DY cross section for the reaction q(<p) + n(<p’) -+ 
f(k) + P(k’), times two parton distribution functions 

d~EF(P?P’, 9) 
W 

= 71’ d[d[‘&,A([) duyr+$“p”q’ c,+f,&‘). (2.61) 

The distributions 4(t) and 4([‘) are assumed to be the same “universal” 
functions as measured in deeply inelastic scattering. The hard scattering 
is the Born approximation for quark-antiquark annihilation into a virtual 
photon, averaged over the color degrees of freedom of the initial quark and 
antiquark. The resulting differential cross section is 

do’% E’P’ n) ff ’ ’ 
W = Qf3Ncq2 

2+%(q2 - ([p + <‘p’)2). (2.62) 

Substituting this result and the definition of T into Eq. (2.61) we find for the 
photon 

d&i&, P’, 4) 
dqZ 

= $$ C Q;ll dtdt’ 4j/A(t) acr - ct’) &,dt’). (2.63) 
f 

The general inclusive DY cross section is of the form, 

dg(“) 
-Ai? = u~(q2)w,v,(T), 
dq2 

with V = y, W*, Z. The factor 00” contains the overall dimensions, while the 
dimensionless function Wls is defined as the integral over the appropriate 
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product of distribution functions times couplings (in units of e), which we 
denote by PD:,, 

W,“,(T) = Jo’ dti’ d<‘6(T - WPD:,(E,t’) (2.65) 

In the electromagnetic case we have 

(2.66) 

while WJa is computed with 

PDi,(LE’) = c Q;{v%/aW~/s(t’) + ‘#$/A(t)+q/B(<‘)} . (2.67) 
‘I 

For intermediate boson production, we only have to change 00” and PDZ,. 
In the case of Z, we have 

m* 1 + [l - 4sinO~]* 

“O” = r192N,sin41?~cos48W (q2 - Mi)2 + Mzr% 
(2.68) 

for the reaction qQ + he-, where rs is the total width of the Z boson, 

rz = ~Mz 
sin’ [l - 24 6’~ cos2 0~ 4 sin2 8~ + 8 sin4 19~1 . (2.69) 

The relevant product of distributions is 

P%B(<, E’) = 7 C~{~~/A(O&/B(C) + &/A(O&/B(F’)) (2.70) 

for production in the qg channel, where C, = 1 + { 1 - 4]Qn] sin* 6’W}2. 
The total Z production rate is found by integrating over q2, in the “narrow 

width approximation” rs < Mz, 

CT;;> = 
lr*as 

bv,(T = 
MZ 

12 sin’ 0~ cos* 19~ s 
-+,q”=M;). (2.71) 

The corresponding results for V = W- are 

m* 1 

Uw = r12N,sin4 Bw (92 - M&)2 + M&r’& ’ 
(2.72) 
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PD&(t,C’) = Cm2 k{h(E)dB(c’) + CA(&‘B(t’)} , 

+ sin* &{~A(tbB(t’) + tA(t)dB(t’)} 

+(A ++ B), (2.73) 

rw = ~Mw 
12sin’Bw ’ 

(2.74) 

where aa m &la, etc. As usual, Ow and 0~ are the weak mixing and Cabibbo 
mixing angles respectively. Then the total W- production rate is 

w _ I&~ bv,(T = M* 
utot - 3 sin2 0~ cos* 0~ s 

-f,q*= M$). (2.75) 

2.5 O(aa,) Processes 

The next level in complexity for parton model cross sections are those for 
which the partonic scattering involves the inelastic emission or absorption of 
a photon. The Born cross section will then be of order CY(Y,, instead of (Y*, as 
above. These processes are photoproduction and direct photon production 
processes, respectively [2.16]. 

Once again, the cross section at the hadron level is given in terms of a 
convolution of parton distribution functions, the hard scattering parton-level 
subprocess cross sections, and the appropriate fragmentation functions. The 
inclusive invariant cross section of the type A + B + C + X is given by 

Ec$(AB + c + X) = c /dz,dsbdz,4,,n(a.)aa,B(rb) old 
x&$(ab -+ cd)Dc,Jz,)6(i + i+ ii), 

c 
(2.76) 

where in our case a.. d label partons and/or the photon. Hatted variables, 
(s^) etc., refer to invariants of the partonic subprocess. As is conventional, we 
have explicitly exhibited the 6 function in partonic cross section appearing 
in Eq. (2.76), associated with the phase space for the two-body scattering of 
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massless particles. The other kinematic factor, (S/z,‘rr), is associated with 
the difference between the hsdronic differential Ecd/dp$, and the partonic 
differential (d/dt^). 

Now consider the process of direct photon production in h&on-hadron 
collisions. The term “direct photon” refers to those photons which are pro- 
duced in the hard-scattering subprocess and are not decay products of some 
particle. There are two two-body subprocesses which can produce direct 
photons: the QCD Compton subprocess SQ -+ yq and the annihilation sub- 
process q?j + yg. The cross sections for these are 

$(gq + yq) = -y$(; + ;, , 

$qq + yg) = T+.$ + I), 
?I 

where es is the fractional electric charge of the quark q. Note that the run- 
ning coupling, cy,, is a function of the renormalization scale p. For transverse 
momenta of the order of &, these two subprocesses provide the dominant 
contribution to direct photon production. In other kinematic regions, it may 
be necessary to incorporate bremsstrahlung effects, which are QED correc- 
tions to purely hadronic two-body scattering. We shall discuss this issue in a 
later section. Here, we only note that we must also construct fragmentation 
functions of photons in partons, like D,,&z). 

The case of photoproduction is quite similar, since at the parton level one 
is just the time reversed version of the other. Accordingly, the subproccss 
expressions differ only by color factors associated with the interchange of 
the initial and final states. The two basic subprocesses are QCD Compton 
scattering and photon-gluon fusion, the cross sections for which are given by 

and 

$(yq + gq) = -YY(f + -!), 

$(yg -+ qij) = y.?;(; + -$. 

(2.79) 
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These subprocess expressions may be used in Eq.(2.76) without fragmenta- 
tion functions, in which case one obtains the cross section for jet production. 
On the other hand, inserting the appropriate hadronic fragmentation func- 
tion enables one to calculate the cross section for the photoproduction of 
that type of hadron. 

2.6 The Parton Model and Experiment 

Historically, the parton model, or more traditionally, the Qua,rk-Pa,rton 
Model (QPM), was motivated by high energy experimental results of the late 
1960’s, especially the famous deep inelastic scattering experiment at, SLAC 
[2.17][2.18]. The subsequent success of this picture in providing a unified 
description of a wide variety of high energy processes gave strong impetus 
to the search for a theoretical foundation for its validity, resulting in the 
discovery of asymptotic freedom and the formulation of perturbative QCD 
as the basic framework for describing all high energy physics processes. In 
this section, we summarize the main features of the QPM which have been 
successfully compared with experiments. It is useful to keep in mind that, 
the significance of QPM stems not from any specific triumph, but from the 
coherent framework it provides to correlate a wide range of processes. To 
review, in the QPM large classes of (physically measurable) high energy cross- 
sections are related to the corresponding (theoretically calculable) paltonic 
cross-sections through a set of universal parton distribution functions. 

2.6.1 Deep Inelastic Scattering 

There are a number of reviews of DIS experiments and comparisons of the 
measured structure functions Ff(z, Q’) (where d = p(e), Y, U and i = 1,2,3 
(or L, for longitudinal)) with the QPM and QCD [2.19]. We shall only de- 
scribe briefly the main features of this rather extensive area of experimental 
and phenomenological work. The expressions for @(z, Q’) in terms of the 
universal parton distribution functions &,a(~, Q*), where (a, A) label t,he 
parton and hadron (mostly nucleon) respectively, are given in many t,ext- 
books [2.20], review articles [2.21] and in Section 2.2.3 above. 
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Scaling: The most striking feature of the first SLAC DIS data [2.17](2.18] 
was scaling: the approximate independence of the measured structure func- 
tions Fi(z, Q2) of Q* - an indication of scattering from point-like constituents 
analogous to the classic Rutherford experiment on atomic structure. The ba- 
sic idea of the QPM originated from this observed fact, which has since been 
corroborated by similar observations in all high energy hard processes. 

Quarks as Partons: The identification of the “partons” with the previ- 
ously known quarks (from hadron spectroscopy, which concerns physics at, 
an altogether different energy scale) was cemented by a series of seminal 
experiments and phenomenological analyses: (i) the near vanishing of the 
longitudinal structure function in eN scattering suggested that the spin of 
the parton is l/2 - the Callan-Gross relation (Eq. (2.31)); (ii) the measured 
value of the ratio of total cross-sections for neutrino to antineutrino scattering 
on isoscalar nuclei (i.e., nuclei with equal numbers of protons and neutrons, 
and hence of a and d quarks) is about 3. This result can be derived by inte- 
grating the differential cross sections Eq. (2.25), using the QPM expressions 
Eq. (2.42) and Eq. (2.44) for the structure functions with all antiquark dis- 
tributions set to zero. (The corresponding cross section ratio for scattering 
of neutrinos and antineutrinos from atomic electrons is also about 3 [2.22]). 
This striking fact strongly suggests that the nucleon consists primarily of 
spin l/2 partons, rather then anti-partons, which couple to the intermediate 
vector bosons the same way as the leptons; (iii) the subsequent detailed mea- 
surements of the differential cross-section #e/dzdy, Eq. (2.25), and hence of 
the full structure functions F,!eh) (z, Q*), have consistently confirmed this in- 
terpretation and yielded a wealth of information on the distribution of these 
partons inside the nucleon. 

The charge ratio: The structure function Fi(r, Q’) measured in neutral- 
current (virtual) y exchange processes (e = e,~) and in charged current 
W* exchange processes (e = V, 0) are in principle different. In the QPM, 
they are related to the same set of parton distribution functions - in fact, 
as a simple sum of the latter, each multiplied by an appropriate coupling 
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constant (the squared charge for y’ and an appropriate weak isospin matrix 
element for I+‘* exchange). After summing over parton flavors, one expects 
FY)(~, Q~)/@A+"A' (2, Q2) = 5/18 for scattering off an iso-scalar target, A. 
This “charge ratio”, valid for all (I, QZ) where QPM applies, has been verified 
to a great degree of accuracy in the very high statistics DIS experiments, for 
example BCDMS and CCFR after appropriate small corrections [2.23]. 

Quark number sum rules: The “valence quark” distributions of the pro- 
ton satisfy the obvious quark number sum rules: 

N,, = s’dr (U(Z) - 21(r)) = 2; 
I 

N,, = J e’dl: (d(z) -d(r)) = 1 

In the QPM, linear combinations of these integrals are related to various 
integrals of measurable structure functions, e.g. 

J o1 2 [Fr - Flp] = N, - Nd = 1 (Adler Sum Rule) 

J o1 & [+‘” - zF;*] = Nu+Nd = 3 (Gross - Llewellyn Smith Sum Rule) 

These sum rules have been extensively checked by all relevant deep inelas- 
tic scattering experiments. Within the experimental accuracy (and, by now, 
known QCD corrections to the latter), they are verified - the measured in- 
tegral for the Adler sum rule is [2.24] 1.01 & 0.20; and for the GLS sum rule 
it is [2.23] 2.50 % 0.08. (There is an expected QCD correction to the naive 
QPM value for the GLS sum rule of approximately -0.34.) 

2.6.2 Electron-positron Annihilation into Hadrons 

Total cross-section and scaling The total cross-section for hadron fi- 
nal states in e+e- annihilation normalized to the point-like cross-section for 
e+e- -+ p + - p behaves roughly as step-functions in the center-of-mass en- 
ergy, [2.25] staying constant (see Eq. (2.47)) over certain ranges (now known 
to correspond to regions between heavy quark flavor thresholds). This is the 
analogue of scaling behavior for DIS, and suggests that the underlying inter- 
action mechanism is e+e- -+ parton-anti-parton pair. The absolute value of 
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this ratio is proportional to the sum of the squared charges of the partons. 
The overall constant is 1 for spin l/2 partons and l/4 for spin 0 partons. 
The measured values agree well with the assumption that partons are quarks 
with the usual assigned charges. 

Two-jet final states as evidence for underlying partons The most 
direct evidence for the existence of partons perhaps come from the clear 
emergence of jet-like hadronic final states in experiments done at the PETR.4 
and PEP e+e- colliders [2.25]. The dominance of these events gave the 
first visual evidence for the underlying parton-anti-parton pair final state 
previously inferred indirectly from the total cross-section measurements and 
from DIS. 

Angular distribution and spin of the parton If we assume that the 
underlying parton picture, the angular distribution of the two-jet final states 
gives direct evidence on the angular distribution of the created parton pair, 
which is sensitive to the spin of the parton and its coupling to the virtual 
photon. The measured distribution agrees very well with the canonical (1 + 
COS?~‘) distribution for spin l/2 partons, Eq. (2.58) and Ref. [2.25]. 

2.6.3 Lepton-pair Production (Drell-Yan Process) 

The most convincing evidence that the QPM provides the correct framc- 
work for high energy processes in general came (historically) from its success 
in accounting for features of the measured lepton-pair production (A+ B - 
I!+!- +X) cross-sections, using the same simple parton picture and the sa,me 
parton distributions determined from deep inelastic scattering. 

In the QPM, lepton-pair production proceeds through the basic quark 
anti-quark annihilation qfj -+ !+F, the Drell-Yan process. The QPM cross- 
section at fixed center-of-mass pair rapidity, 31 = (1/2)ln(r1/z2), is given 

by 

Q4 d” - i4y2 

WQ’ ---1221 ~e;(~q,Ah)‘&,B(~2) + @q/A(+$B(~d), 
P 
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where zr,z = (Q/&e*‘” are scaling variables. The main features of this 
formula are: 

Scaling: The fact that the right-hand side is independent of any energy 
scale (say, Q) - i.e. the dimensionless cross-section satisfies scaEing - is again 
evidence for the underlying point-like interaction [2.26][2.27]. This feature 
allows one to predict the cross-section at higher energies from low energy 
measurements. We must re-emphasize that scaling is exactly true in the 
QPM, and that it is somewhat violated in QCD. 

Color factor: The overall factor in this formula contains a “color factor” 
3 in the denominator which played an important role in determining Qunn- 
turn Chromodynamics to be the underlying fundamental theory for stroug 
interactions when parton distribution functions measured in deep inelastic 
scattering experiments were used in the above formula to test against lcpton- 
pair cross-sections. To get quantative agreement with experiment, the higher 
order corrections in o*(Q) predicted by QCD are essential. 

Cross-section ratios: The above QPM formula for lepton-pair production 
leads to many simple predictions on cross-section ratios which agree well with 
experiment and were instrumental in establishing the credibility of the QPM 
during its infancy. For instance: 

0(7r+N --+ p+p-) Q2 1 
O(T-N -+ p+/.L-) - e, = 4 ( > -as r-1, 

where N denotes an “isoscalar” target. This is indeed found to be true. This 
is the region where the “valence quark” is presumed to dominate. In contmst 
the ratio rises toward 1 for T + 0, where ?y* contain equal amounts of G and 
d quarks [2.28]. 

Angular distribution of the leptons: Since the underlying fundamental 
process for lepton-pair production, QQ -+ e+e-, is very similar to e+e- -i 
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p+p-, the angular distribution of the outgoing leptons in their center-of- 
mass frame is expected to be N (1 + cos%‘) -just like for the latter - if the 
QPM is correct. Experiments amply confirm this fact [2.26], [2.27], [2.28]. 

2.6.4 Other Hard Processes 

The basic features of QPM are also observed in other high energy “hard 
processes”, e.g. production of high transverse momentum direct photons and 
production of high transverse momentum jets. Although the three processes 
described in previous sections played a more crucial role in est,ablishing the 
QPM picture historically, all the hard processes are highly relevant in current, 
studies of the QCD-improved parton model, which provides the foundation 
for the quantitative formulation of high energy processes in the Standard 
Model and beyond. 
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Figure 2.1. Schematic parton model picture for DIS. 
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Figure 2.2. Deeply Inelastic Scattering 

Figure 2.3. (a) Parton model scattering. (b) Interference graph. 
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Figure 2.4. Born diagram. 

a 

Figure 2.5. Born diagrams for e+e- annihilation. 

7 
Figure 2.6. Inclusive single hadron production in e+e- annihilation. 
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3 Perturbative QCD: Fundamental Theorems 

The first goal of perturbative QCD is to find a justification of the parton 
model in field theory, and to identify systematic procedures for improving 
upon parton model predictions. This program is conveniently summarized 
in terms of a series of fundamental theorems, which we describe below. We 
will motivate each of these basic results from the parton model cross sections 
of the previous section. It should be kept in mind, however, that the methods 
developed below allow us to address a wider range of problems than can be 
systematically treated in the parton model, and, although perturbative QCD 
is in some sense a descendent of the parton model, it has a life of its own. 
Moreover, many of the results of perturbative QCD have been derived from 
the fundamental Langrangian of &CD. Thus they must be regarded as real 
predictions of the theory, and not just as a model. 

3.1 Infrared Safety in e+e- Annihilation 

The first set of theorems that we will discuss apply to e+e- annihilation. 
Here the results are simplified by the lack of hadrons in the initial state. We 
shall treat the perturbative QCD generalizations of parton model expressions 
for the total and jet cross sections. 

3.1.1 Total Cross Section 

The simplest of the parton model cross sections is the total cross sec- 
tion for e+e- annihilation into hadrons, Eq. (2.47). In this case, no phe- 
nomenologically determined parton distribution or fragmentation funct,ions 
are necessary. Instead we have an absolute prediction which is in quite good 
agreement with experiment. Yet, Eq. (2.47) is the Born cross section for 
the production of a quark pair, not of physical hadrons, and it is hadrons 
that we observe in experiment, not free quarks. The success of this predic- 
tion is understandable because the total cross section is infrared safe in the 
sense described in Section 1.6 above. Recall that an infrared safe quantit,y 
becomes independent of the masses of light partons (gluons and light quarks) 
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in the high-energy limit, and is dominated by highly off-shell virtual states 
in perturbation theory. In configuration space, an infrared safe quantity is 
correspondingly dependent only on the short-distance behavior of QCD, not 
on the long-distance dynamics that produce confinement and the details of 
the hrulronic spectrum. Such a quantity possesses a perturbative expansion 
in the running coupling that is free of logarithms or other sensitive functions 
which depend on large ratios, such as Q/m, with m a parton mass and Q 
the overall momentum scale. 

Thus, our first theorem of perturbative QCD is that the total e+e- anni- 
hilation cross section is infrared safe, 

~or(Q’, ~1~3 m’/$, 4~)) = $W/P~>O, d/))( l+0(?n2/Q2) } / (3.1) 

where m labels the fixed mass scales in the theory, p is the renormalization 
scale (Section 1.3.2), and where we have factored out an overall factor Q-*, 
leaving behind dependence on dimensionless variables in the function II. An 
important result is that, because of its IR safety, the total cross section may 
be computed in massless QCD, up to corrections that vanish as a power of 
the energy as far as the light quarks are concerned. 

Now otot is a physical quantity, and is consequently independent of t.he 
renormalization scale p. In particular, we have 

~(Q’/P’> 4~‘)) = WL 4Q2)) , (3.2) 

where we have suppressed the mass argument, since we are working in mass- 
less perturbation theory. Technically speaking, the cross section satisfies the 
renormalization group equation, 

P$ + B(s)& TQ’/H’, 4~)) = 0 > 

but the content of this equation is the same as Eq. (3.2). 
When the perturbative total cross section is exhibited, it is usually the 

right-hand side of Eq. (3.2) that is given as a power series in a,(Q), in which 
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the coefficients are pure numbers, since all energy dependence is absorbed 
into the running coupling, 

R(1, cr,(Q*)) = A’cT (3.4) 

Here we have factored out the parton model result, Eq. (2.47), so that the 
first term in the series is 

sg = 1. (3.5) 

We will discuss the calculation of higher terms in Section 4 below. 
For large Q the running coupling, Eq. (1.48), 

4Q) 1 PZ lnln(Q2/A2) 
- = PI ln(Q*/A*) - /3? ln2(QZ/Az) 4s +o (ln3;*,*‘) * .(3X) 

falls off, and remaining terms in the series are small corrections. Here is the 
reason that the parton model result works so well. 

The formal proof of the infrared safety of II(Q’/p2) follows from the fa- 
mous theorem of Kinoshita and Lee and Nauenberg [3.1], that fully inclusive 
transition probabilities are finite in the zero-mass limit. Actually, the argu- 
ments of Ref. [3.1] require one to sum over all degenerate initial as well as 
final states, but in this case, because there are no hadrons in the initial state, 
a simple sum over final states will do. The extension of these results to QCD 
was discussed in [3.2]. 

The relevant physical observation that justifies infrared safety is that 
the creation of a quark pair is a short-distance phenomenon, and is not 
expected to interfere quantum mechanically with the long-distance processes 
that produce hadrons from quarks. Consequently, the cross section can be 
thought of as a product of probabilities, one for quark pair creation [Born 
diagram plus calculable corrections), the other for the evolution of qua,& 
to hadrons. In the fully inclusive cross section, we sum over all final states. 
Then, because of the absence of interference between short- and long-distance 
effects, the probabilities for hadrons to be produced from quarks sum to 
unity, since, without further electroweak corrections, off-shell quarks nlzunys 
produce on-shell hadrons. This will happen in perturbation theory (where 
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the role of hadrons is played by on-shell quarks and gluons), as well as in 
the real world (where hadrons are the physically observed particles). Thus, 
any infrared senstitivity which may be present in perturbation theory should 
cancel after the sum over final states, leaving only the short-distance cross 
section for producing the pair in the first place. 

3.1.2 Other infrared safe quantities in e+e- annihilation 

The infrared safety of ot,,t can be extended to a large class of cross sections 
that can be measured in e+e- annihilation. To understand what quantities 
are infrared safe and why, one should consider a perturbative calculation in 
which the quarks as well as the gluons are massless. Then any sensitivity to 
long distance effects will show up as an infrared divergence in the calculabion. 

How would such a divergence arise? A detailed analysis given in Ref. 
[3.3] yields a simple answer: the potential divergences are related to soft 
or collinear momentum configurations. First, a massless on-shell particle 
with momentum @‘ can emit a massless particle with momentum (I” = 0 
and remain on-shell. Integration over momenta qp near to 4“ = 0 produces 
soft divergences in cross sections. Second, a massless on-shell part.icle with 
momentum fl can emit a massless particle with momentum qfi’ = zp” ad 
remain on-shell. Integration over momenta qp near to q’ = z@’ produces 
collinear divergences in cross sections. 

When the total cross section for e+e- annihilation is calculated pert,ur- 
batively, individual terms are infinite, but the infinities cancel for reasons 
based on unitarity, as discussed in the previous subsection. There are ot,her 
quantities for which a similar cancellation occurs. Consider a quantity Z that 
is defined in the style of [3.4] in terms of parton cross sections and functions 

& by 

1 
J 

W4 
’ = 3 dR2 d& - S&1;?&) 

+; /dWGd% 
d431 

dR dE dR ~3(pc;>&~Pc 
2 3 3 

+$, Jdc1zdE3dnadE~dct, W41 
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+ . . . (3.7) 

The functions S,, specify the measurement to be made. An example of Z is 
the total cross section, for which all of the S, equal 1. Another example is 
the thrust distribution du/dT where, for an event containing n particles, the 
thrust T is [3.5] 

ln(g ,..., &)=mC~C,?=l’p’,‘C’. 
CL IFiI 

(3.8) 

Here the C is a unit vector defining the “thrust axis,” which is chosen to 
maximize the thrust. To calculate do/dT, one uses eq. (3.7) with 

S,(~,...,~)=6(T-7,(~,...,~)) . (3.9) 

Perhaps the most important examples of Z are the various jet cross sections, 
to be discussed in Sects. 4 and 7. 

Under what conditions will the cancellation of infrared infinities that 
occurred for the total cross section also occur for the quantity I? Without 
loss of generality, we may assume that the S,, are invariant under interchange 
of their n arguments &. Then the discussion above of collinear and soft 
divergences should make it clear that one needs 

sn+l(PY>“‘,(1- xht>G3 =s”(~,...,~) (3.10) 

for 0 5 X 5 1. That is to say, the measurement should not distinguish 
between a final state in which two particles are collinear and the final state 
in which these two particles are replaced by one particle carrying the sum of 
the momenta of these collinear particles. Similarly, the measurement should 
not distinguish between a final state in which one particle has zero momentum 
and the final state in which this particle is omitted entirely. 

The argument that a cross section specified by functions S with this prop 
erty does not have infrared divergences may be understood as an extension 
of the KLN theorem [3.1]. The heuristic arguments given above for the tot,al 
cross section apply in this case as well. We need only observe that long- 
distance interactions (and hence infrared sensitivity) arise from interactions 
that occur over a long time period. These are just the interactions involving 
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parallel-moving particles or very low momentum particles. As long as the 
measured quantity is not sensitive to whether such a long-time interaction 
has occurred, one can still cancel the divergences in perturbation theory us- 
ing unitarity: the sum of the probabilities that the interaction does or does 
not occur is unity. 

On the level of QCD calculations, infrared safety means that the quantity 
can be calculated in perturbation theory without obtaining infinity. Since the 
infrared infinities come from long distance physics, the physical interpretation 
is that infrared safe quantities are insensitive to long distance physics. 

3.2 Factorization Theorems in Deeply Inelastic Scat- 
tering 

In this subsection, we introduce two of the basic ideas of perturbative 
QCD, factorization, which enables us to derive and generalize the parton 
model, and evolution, which enables us to compute scale-breaking effects 
systematically. 

3.2.1 Factorization for structure functions 

Theorem. The field theory realization of the parton model is the theorem 
of factorization of long-distance from short-distance dependence for deeply 
inelastic scattering [3.6]. This theorem states that the sum of all the dia- 
grammatic contributions to the structure functions is a direct generalization 
of the parton model results, Eq. (2.27) and Eq. (2.28), given by 

fY% Q2) = C J’ 3 cL”i)w~ Q*/$, P:/$, 0.~2)) 
i=f,f,G a E 

x~i/h(&&,P2) > (a = 1,3) (3.11) 

FFh)(x, Q*) = c i’ dE @‘)(x/t, Q2/p2, P:/$, os($)) 
i=f,f,G 

x4ijh(trpfrfi2) (3.12) 

Here i denotes a sum over all partons: quarks, antiquarks and gluons, 
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We note, compared to the parton model formula, dependence on two 
mass scales, p and ~1,. The former is the renormalization scale, which is 
necessary in any perturbative computation. The latter, however, is specific 
to factorization calculations, and is called the factorization scale. It serves to 
define the separation of short-distance from long-distance effects. Roughly 
speaking, any propagator that is off-shell by ,u; or more will contribute to 
CL”‘). Below this scale, it will be grouped into 4i/h. The precise definition of 
,u, is made when we give a formal definition of the parton distributions. It 
appears in the definition of the parton distributions in a fashion very similar 
to the way the renormalization scale p appears in renormalization. 

Often, it will be convenient to choose the two scales p and ;L, to be equal, 
but this need not be done in general. 

The substance of factorization is contained in the following properties of 
the functions CLvi) and 4i/h. 

i. Each hard-scattering function 

@i)(4& Q’/P’, P;//J*, &*h n = 1,2,3, (3.13) 

is infrared safe, calculable in perturbation theory. It depends on the 
label a, on the electroweak vector boson V, on the parton i, and on 
the renormalization and factorization scales, but it is independent of 
long-distance effects. In particular it is independent of the identity of 
hadron h. For example, it is the same in the DIS of a proton and a 
neutron and, for that matter, in the DIS of a pion or kaon. It is a 
generalization of the Born elastic scattering cross section in the parton 
model formula, Eq. (2.30). 

ii. The parton distribution, 4i/h([, p, ,LL~, CY~($)), on the other hand, con- 
tains all the infrared sensitivity of the original cross section. It, is spe- 
cific to the hadron h, and depends on p,. On the other hand it is 
universcal, that is, it is independent of the particulrn hard scattering 
process that we treat: it is the same for the different structure func- 
tions Fi and Fz, for example, and it depends on neither a nor V, nor 
even Q*, unless we pick $ = Q’. It is a direct generalization of the 
parton model quark distribution. 
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Use and interpretation. The use of factorization is also a generalization 
of the parton model. The C’s are to be computed in perturbation theory, 
and the @s are to be measured by comparing Eq. (3.11) and Eq. (3.12) to 
experiment, given explicit expressions for the C’s. Once enough informa,tion 
is amassed to determine the parton distributions from some standard set 
of cross sections, we can use factorization to provide predictions for other 
factorizable cross sections, and for the same process at other Q*. 

The essential question is therefore to give a method of computation for 
the hard scattering functions C, (“*). To do so, we use the fact that the 
C’s are independent of the external hadron. We c&n therefore calculate 
them in perturbation theory, with the external hadron replaced by a parton. 
This will require us to consider the distribution of a parton in a part,on: 
~i,j, where we have a parton label instead of a hadron label. Then we will 
need a prescription for computing the cross sections or structure functions 
with a parton target and separating out the hard scattering from the parton 
distributions &j. 

Such a prescription obviously involves a degree of choice. A set of rules 
that makes the choices is often called a “factorization scheme”, by analogy 
to renormalization scheme. Such a scheme defines at the same time the 
hard scattering functions and the parton distributions. Once this has been 
done, we can discard the perturbative parton distributions, which have no 
particular meaning since they are dominated by infrared effects and thus by 
infrared parameters that we cannot measure. Nevertheless, the factorizat,ion 
theorem insures that the hard scattering functions determined in this calcu- 
lation are insensitive to infrared scales and parameters, and are applicable 
to cross sections computed with phenomenologically determined hadronic 
parton distributions. 

Explicit results for hard-scattering functions may be found in Section 5, 
along with a discussion of the mechanics of their calculat,ion for t,he archet,yp- 
ical factorized cross section: the electromagnetic DIS structure functions of 
a quark, Fpf). 

Generalizations. So far, we have discussed factorization for the fully inclu- 
sive structure functions. Essentially the same factorization theorem applies, 
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however, to any DIS cross section defined by a sum over hadronic final states 
that satisfies the same condition Eq. (3.10) that implies infrared safety in 
e+e- annihilation [3.7]. Other generalizations apply to non-scaling, “higher- 
twist” contributions which fall off as powers of Q* [3.8] and to spin-dependent 
distributions [3.9]. 

3.2.2 Factorization Schemes 

Even before we discuss how to define the distribution c#~r/r perturbatively, 
it is clear that in the absence of interactions, it should enable the factorization 
formula to reproduce the Born cross section. We must therefore have 

dJ:o:,(O = 6(1 - 0 
(Here and below, we use a notation fci) to denote the ith order in the pertur- 
bation expansion of a quantity f, which in the above equation is 4.) Then 
we find by direct substitution in Eq. (3.11) and Eq. (3.12) that, for a = 1,2, 

F,(7f)(“)(,) = Q;6(1 - x) = C$f)(o)(,) , (3.15) 

just as in Eq. (2.30). 
Beyond lowest order in perturbation theory there is considerable ambi- 

guity in separating the hard scattering functions from their corresponding 
parton distributions. In general, any choice for the parton distributions that 
satisfies Eq. (3.14) at lowest order, and that absorbs all long-distance effects 
at higher order, is acceptable. Short-distance “finite parts” at higher orders 
may be apportioned arbitrarily between the C’s and #s. A prescription that 
eliminates this ambiguity is what we mean by a factorization scheme. The 
choice of scheme is a matter of taste and convenience, but it is absolutely 
crucial to use schemes consistently, and to know in which scheme any given 
calculation, or comparison to data, is carried out. The two most commonly - 
used schemes, called DIS and MS reflect two different uses to which the 
freedom in factorization may be put. 

The DIS scheme is appealing for its close correspondence to experiment 
[3.10]. In this scheme, we demand that, order-by-order in perturbation the- 
ory, all corrections to the structure functions F$Vh) be absorbed into the 
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distributions of the quarks and antiquarks. This means that at p = p, = Q, 
the hard scattering functions are exactly equal to their parton-model values: 

C$“‘)(x) = Q;6(1 - z) , 

C;“‘)(x) = &;a(1 - z) , 

c$Vg)(x) = 0 , (3.16) 

to all orders of perturbation theory. Of course, it is possible to do this for 
only one of the structure functions. The other structure functions will receive 
corrections at order o, and beyond. Note that this definition does not fix 
the gluon distribution. - 

The MS scheme, on the other hand, is appealing for its theoretical ele- 
gance and calculational simplicity. In this scheme the parton distributions are 
defined directly in terms of hadronic matrix elements [3.11]. In their simplest 
form, these matrix elements may be given in terms of operators bi(zp, kT) 
and bf(sp, kr), which annihilate and create parton i, with longitudinal mo- 
mentum xp and transverse momentum kT, in hadron h of momentum p, 

(h(p)1 btbpcp, b) h@P:p, kT) /h(p)) (3.17) 

The first (rightmost) operator absorbs the parton from the ha,dronic st,ate, 
and the second emits it again. This parton distribution is, in essence, the 
expectation value of a number operator in the hadronic state. A litt,le so- 
phisticated footwork reexpresses the matrix element in Eq. (3.17) in terms - 
of the quantum field corresponding to parton i. Thus, for instance, the MS 
distribution for a quark of flavor f is given by 

-izp+“-(h(p)l &,-, o+, oT)y+ 

x VW, o+, OT) Ih(P)) 1 (3.18) 

where an average over the spin of h(p) is understood. Similar explicit ex- 
pressions can be give for the antiquark (in which the roles of II, and ?1; 
are exchanged) a,nd for the gluon, for which the relevant field is PT 3 
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(l/fi)(FoT + F3r) where T labels the transverse components relative to the 
momentum p. (There are some complications due to gauge invariance that 
we have ignored in definition (3.18). See Section 3.4) 

More insight into these two “canonical” ways of defining parton distri- 
butions can be gained from the explicit one-loop calculations described in 
Section 5.4 below 

3.2.3 Evolution 

Everything in the process just described was carried out for fixed Q*, But 
even a single DIS experiment supplies data over a range of momentum trans- 
fers. A remarkable consequence of factorization is that measuring parton 
distributions for one scale n allows their prediction for any other scale /I,‘, as 
long as both p and p’ are large enough that both o,(p) and a,($) are small. 
This result, called the en&&ion of structure functions, increases the power of 
pQCD enormously. Thus, for instance, measuring Fi’“)(z, Q*) is enough to 
predict, not only F,(rh) (z, Q2), but also F/@)(r, Q’*) and F2(7hl(~, Q”) for all 
large Q’*. We have skipped over the point that to make precise predictions, 
we need analogous information from neutrino scattering to perform the flavor 
separation of the parton densities. 

The evolution of the parton distributions is most often, and most conve- 
niently, described in terms of integro-differential equations, 

P$#%/h(zt P> P’) = cm l1 $Ej (i> a8(I”2)) 4j/h(ti I”) P*) (3.19) 
i=f,f,G 

We have chosen p = pf. This equation is known as the Gribov-Lipatov- 
Altarelli-Parisi evolution equation [3.12] [3.13]. The evolution liernels pij(z) 
are given by perturbative expansions, beginning with O(cys). Their explicit 
forms will be discussed in Section 5 below. The one-loop terms in the kernels 
are independent of the scheme used to define the parton distributions. 

Note that the integral on the right-hand side of Eq. (3.19) begins at z. 
Thus, it is only necessary to know c$,,,([,Qi) for [ > z at some starting 
value of the scale n = Qs, in order to derive &,h(z,p*) at a higher value 

75 



n = Q. This is a great simplification, since data at small z are hard to come 
by at moderate energies. 

Without going into the details of the evolution kernels, we can get some 
insight into their use by applying Eq. (3.19) to a parton state h = j and 
expanding to first order in (Y,, using Eq. (3.14), 

&#$I(~> f4 f4 = c Jycj”(2) 
j=f,i,G 

(3.20) 

From this relation, we already see that the evolution kernels show up as 
the coefficients of the logarithmic factorization-scale dependence in one-loop 
calculations. 

The evolution equations control the dependence of parton distribut,ions 
on the factorization scale. If we choose ,Y = pf = Q, the momentum transfer 
in DIS, then there are no large ratios in the arguments of the hard-scattering 
functions C, in the factorization theorem. Under these circumstances, we 
expect the perturbative series for the C’s to be well under control, with no 
large coefficients of cy, at first order and beyond, at the same time that 01, 
itself is relatively small. Of course, this means that most of the information 
on Q*-dependence has simply been shuffled into the parton distributions. 
The beauty of the evolution equations is that they tell us how to compute 
this dependence, given only that we have measured the parton distributions 
at one scale Qs. In the language of the parton model, the evolution equat,ion 
enables us to compute the Qz-dependence of the parton distributions, and 
hence the “scale-breaking” of the structure functions themselves. 

It is relatively easy to derive the evolution equations (3.19) directly from 
the factorization theorem, Eq. (3.11) and Eq. (3.12). This inst,ructive deriva- 
tion also enables us to introduce the famous analysis of scale breaking in DIS 
in terms of moments of structure functions. 

Evolution is directly related to our freedom in choosing the renormal- 
ization and factorization scales. We notice first that the value of n, in the 
factorization theorem Eq. (3.11) and Eq. (3.12) is free. A natural choice for 
DIS is pf = p = Q, SO that the Civi), as well as the ~i,hr are functions of 
o.(Q2). With this choice, the evolution of parton distributions is sufficient 
to evolve the complete structure functions. 
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The derivation of evolution is simplified in so-called nonsinylet structure 
functions, the simplest of which are 

FP’NS) = ~TO’P) _ FG’“) a - a -2 1 (3.21) 

where p is the proton and n the neutron. For the following discussion, we 
suppress the label V, and choose pf = p. F,(NS), for instance, satisfies the 
factorization theorem, 

FjNS’(z,Q2) = /ol $ CiNS) ;,$,a,(/i*)) 

x #NS(&%(~2)) , (3.22) 

where &s is a “valence” quark distribution. More properly it is the difference 
between p and n quark distributions, 

d’dZ, f12) = 7 Q’r [&f/&, p2) - ~J/,(z, p*)] , (3.23) 

where we have absorbed the quark charges into its definition, which makes 
the short-distance function independent of f. 

The term “valence” refers to our expectation that the distributions of 
gluons, and of “sea” quarks, produced in pairs by gluons, should be the same 
in the proton as in the neutron. These contributions, which are singlets under 
the isospin group SU(2), cancel in the difference in Eq. (3.21). Note that, this 
result holds exactly only for electromagnetic structure functions, since the 
electromagnetic interactions respect charge conjugation, which exchanges the 
roles of quarks and antiquarks. What remains is’almost entirely due to the 
difference in the “valence” u and d quark content of the proton a,nd neutron. 
The simplification in Eq. (3.21) relative to Eq. (3.11) and Eq. (3.12) is that 
the result is a single convolution, rather than a sum of convolutions. 

Now both the functions on the right of Eq. (3.22) are functions of Is, but 
the physical quantity FiNS) on the left is not, 
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Thus, the p-dependence in CjNS) must compensate that of&s. The informa- 
tion contained in this observation may be brought out clearly by introducing 
moments of the structure functions, 

i$NS)(n, Q*) z i’ dx .n-lF,(NS)(z, Q’) 

= GINS) % $.(fi2) 
> 

Q;NS(n,P,P*) , (3.25) 

where CcNS) and &s are 

cjNS)(n) 3 /ol dq nn%iNS)(n) , 

$NS(n) = j)E ‘?4NS(t) 

Now, applying moments to Eq. (3.22), we find that 

/1$ln6NS(ntfbP2) = -%$Ns’(%(P2)) 

(3.26) 

(3.27) 

where ~~Ns)(o.($)) is a function of o, only, since this is the only variable 
that 4~s and CcNSl have in common. (Note that the ratio Q/p, in C, for 
instance, is independent of the nf-dependence in 4, because the latter would 
occur in ratios like p/X, with X an infrared cutoff.) yiNs) is known as an 
anomalous dimension, since it acts like a factor p-7” in the (dimensionless!) 
function ln &s(n, a,($)). 

The anomalous dimensions 7” can be constructed directly from the one- 
loop value of the parton distribution. (At one loop 4,,, and &s are the 
same for an external quark.) Although 4flr is certainly not IR safe, */ANs) 
is, because it is also a derivative of C(NS)(n). The derivative of @y;, is 
particularly simple, however, 

^I, (NS) = P$ h 6Ndnr f& %(P*)) 

= -- “,” /ol dz P-‘P;;)(z) + O(o;) , 
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with P;:)(Z) found from Eq. (3.20). To give substance to these rather ab- 
strsct considerations, let us exhibit the explicit integral from which we find 
ycNS), which may be found directly from the explicit form for P&x), given 
in Section 5, 

+/‘S = -~c*(F)~1ds{(1+2:~~1-2 

_ Zn-13 $(l - xl} , 

4-$-n(n2+1)+1 . 
m=2 m 

(3.29) 

We note an important subsidiary result 

(N-Y _ 71 -0, (3.30) 

which states that the integral of the NS distribution, 

M, E J o’ dt 4NS(tr P*rP*) 1 (3.31) 

is independent of the factorization scale. This is gratifying, since MI mea- 
sures the number of valence quarks. For n > 1, the ^/n’s are all positive and 
increase in size with n. This means that higher moments, which test the size 
of &s(Z) near z = 1, vanish more rapidly than lower moments as Q* -+ 03. 
Along with yiNS) = 0, this implies a “softening” of 4~s with Q*, in which 
the average x decreases as Q2 increases. This behavior is characteristic of all 
parton distributions. 

The formal solution to the evolution equation Eq. (3.27) gives the behav- 
ior of &(n,Q2) as a function of Q* and hence of j$NS)(n, Q*), 

$NS(T &*I = $NS(T~LO, 4QFJ) 

dt m(4QW) 

p!NS)(n, Q*) = C$NS’(n,a,(Q2)) &s(n, Qi) 

1 I+ 
xexp -- 1 J 2 o o dt rn(4Q%*)) 
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The Q2 behavior thus determined depends on whether oc not our theory is 
asymptotically free. Writing 

(N.v = LT.! (1) -Y” T^in 9 (3.33) 

and using Eq. (1.46) for the one-loop cunning coupling in QCD, we find 

kT,(NS)(% Q2) - 

ln Q2,n2 -2fPm 

[ 1 In &2,*2 
0 

(3.34) 

This is a relatively mild logarithmic Q2-dependence, which is consistent with 
an approximate scaling over the limited range of Q2 in early experiments 
[3.14]. It is to be contrasted with the behavior in a hypot,hetical “fixcd- 
point” theory, in which 

4P2)---&“0 ) (3.35) 

with (~0 # 0. In the latter case we would have a povter scale-breaking 
m 

F,(NS)(n,Q2) N 
-&!1’ 

. (3.36) 

The evolution result, Eq. (3.32) was known for some time [3.15] before asymp- 
totic freedom was discovered [3.16]. The inconsistency of expecimentally- 
observed scaling behavior with strong scale breaking like Eq. (3.36) seemed 
to make the application of field theory to the strong interactions problem 
atic. The derivation of approximate scaling from asymptotic freedom was 
therefore a very important result [3.17]. 

Physical Content of Evolution. In the pacton model, &J,(Z) has bhe direct 
interpretation of the density of pactons of type i and fractional momentum 
z in hadcon h. In pQCD, 4i/h(Z, fi’) has essentially the same interpretation, 
but with the added restriction that the pacton be off-shell by approximately 
no more than the scale p2. Beyond this limit, a pacton would be incorporated 
into the hard-scattering functions Ci) in Eq. (3.11) and Eq. (3.12). 

Now $&CD had a natural matimum off-shellness Qi for its victual par- 
tons, then we would have 

@i/h(Z, Q2) = #G/~(X) QZ) (3.37) 
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for all Q2 > Qi, and the theory would exhibit true scaling behavior. Note 
the close correspondence of this assumption to the assumption T > 70 for the 
lifetimes of victual states in our heuristic justification of the pacton model in 
Section 2.1.1. In a cenocmalizable theory, however, this never happens: there 
ace always states of arbitrarily short lifetimes, and lines that ace arbitrarily 
far off-shell. That is the reason the theory must be cenocmalized to begin 
with. The evolution of 4i/h(2, Q*), therefore, measures the distribution of off- 
shell pactons. The rather weak evolution of an asymptotically free theory, 
Eq. (3.34), shows that production of these pactons is not strong. 

3.3 Other Factorization Theorems 

3.3.1 Drell-Yan 

The factorization theorem for the Dcell-Yan process is typical of factociza- 
tion theorems for more general hard scattering processes, and it, is formulated 
as follows. 

The process is the inclusive production of a lepton pair of high invaciaut, 
mass via an electcoweak particle in hadcon-hadcon collisions. The classical 
case is a high-mass victual photon: A + B + y* + anything, with y’ + e+e- 
or y’ -+ p+p-. Here A and B ace two incoming hadcons. Essentially identical 
theorems apply to the production of W or Z bosons. 

We let s be the square of the total center-of-mass energy and 4” be t,he 
momentum of the y’. The kinematic region to which the t,heorem applies 
is where fi and Q large, with Q*/s fixed. (Q is @.) The transverse 
momentum ql of the y’ is either of order Q or is integrated over. 

In the case that CJ~ is integrated over, the factorization theorem for the 
unpolarized Dcell-Yan cross section reads: 

du 
dQ2dydR = 5 ll @A 1: d&s ~A(<A 9 P2) 

X Hab - ;;,;I --,e, 4, Q; $9 h(P) @b/B(h?, p*) 

+ remainder , (3.38) 
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where y is the rapidity of the victual photon in the overall center-of-mass 
frame and dR is the element of solid angle for the lepton pair: the polar 
and azimuthal angles for this decay ace 0 and 4 respectively relative to some 
chosen axes. The remainder is suppressed by Qm2 compared to the term 
shown. The sums over a and b ace over pacton species, and we write 

(3.39) 

The function H,,b is the ultraviolet-dominated hard scattering cross section, 
computable in perturbation theory. It plays the role of a pacton level cross 
section and is often written as 

(3.40) 

The pacton distribution functions, 4, ace the same as in deeply inelastic 
scattering. Fig. 3.1 illustrates the factorization theorem. 

As in DIS, extensions to more specific final states ace possible. For in- 
stance, jet cross sections, defined by analogy to e+e- annihilat,ion, obey fac- 
torization formulas of the same form as Eq. (3.38) [3.7]. Other ext,ensions, 
to first nonleading power in Q2 [3.18], and to polarized scattering [3.19] ace 
also possible. 

3.3.2 Single-Particle Inclusive Cross Sections 

We consider high pi inclusive single particle production in hadron-hadcon 
collisions A+ B + C+X. This is the most complicated of the single-particle 
inclusive cross sections. Applications to e+e- annihilation and to DIS ace 
straightforward variations on this theme. Let the initial-state hadcons have 
momenta pA and ps, and let the observed hadcon have momentum pc, The 
factorization theorem reads 

du 
Ec d3pC - = s/d& & : da,A@Arp) @b,B(tB>P) 

(Pcl4,P) &T,c(~,P2), (3.41) 
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which is illustrated in Fig. 3.2. ( The sum is over the various flavors of pactons 
(quacks, antiquarks and gluons) that can participate in the hard scattering 
process, while +$,,A and &,/s ace the pacton densities for the initial hadcons, 
and DC,&) is the fragmentation function. The hard scattering function 
]z]d6/d3k, is for the scattering a+b + c+X at the pacton level; it is a purely 
ultraviolet function, free of all mass singularities, so that it can be calculated 
pectucbatively. The variable z represents the fractional moment,um of the 
measured hadcon relative to its parent quack, so that we set & = .@o, 
when we use the center-of-mass frame of the hard scattering. For DIS t,he 
corresponding theorem has only a single pacton distribution, while for e+e- 
there ace none. 

It can be checked that with the normalizations indicated, the fcagmenta- 
tion function can be interpreted by saying that zDo,Jz) dt is the number of 
hadcons of type C in a parton of type c that have fractional momentum z 
to z + dr. Because of the factor t, it is common to define the fcagmentation 
function to be do,,(z) sz t&/J ) z , rather than D. However, the behavior of 
D under Locentz transformations is simpler, and this is important, since we 
can define a function for the fragmentation into two observed hadrons, for 
example. 

It might appear that we have neglected the possibility that the hadcon C 
has transverse momentum relative to the pacton c. However, this is not so. 
In accordance with the derivation of Eq. (3.41), we have actually integrated 
over all small values of this transverse momentum, while realizing that the 
dependence of the hard scattering on small changes in the transverse mo- 
mentum vanishes as Q + 03. Large values of this transverse momentum ace 
correctly taken care of by the higher order corrections to the hard scattering 
function. 

Like pacton distributions 4(zc, p*), the fragmentation functions D(z, $) 
evolve in p, according to equations very similar to Eq. (3.19) [3.20]. The 
evolution kernels are closely related to, but not identical with, those for the 
pacton distributions. 
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3.4 Operator Definitions of Parton Distribution and 
Fragmentation Functions 

In this section, we collect together the operator definitions of the pacton 
distribution and fragmentation functions for reference. These include the 
spin dependent cases. All the definitions have ultraviolet divergences, and 
these must be cenocmalized away to define finite pacton distributions and 
fragmentation functions to be used in the factorization formulas. Although 
these definitions ace not necessary for all phenomenological uses, they ace 
needed to make precise the rules for Feynman graph calculations, for example. 

3.4.1 Quark Distribution Functions 

The distribution function for a quack of flavor i in a hadcon h with mo- 
mentum p,, in the plus direction is 

#i,h(<) e / !weicp+r (PI&O, y-, O,)$pe-igj~- dy’- A~(O,Y’-,O)~.~~(O)I~)). 

(3.42) 
The path ordered exponential of the gluon field is needed to make the defini- 
tion gauge invariant. Here and below, t, denotes the generator Tip). We see 
that the simplified distributions of Eq. (3.18) ace exact only in the A+ = 0 
gauge. 

In the case that the hadcon can have polarization, the helicity asymmetry 
of a quack in a hadcon is defined by 

AA,&/,(<) m J ~e’bi’-(pl~i(O,y-,O1)~ 

x pe-“gJ:- dy’- At(O,y’-,O)t. 
@i(O)lP), (3.43) 

where X is the helicity of the hadcon, normalized so that X = fl corresponds 
to a fully polarized nucleon. 

A hadcon may also have a component of spin transverse to the collision 
axis. we define a tcansversity asymmetry, Ar4i/h, of the quack by 

spa&+ GE J geicp’u- 
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xpe-‘g.r dy’- A:(O,y’-,O)L. 
!w)lP), (3.44) 

where sy is the transverse part of the hadron’s Pauli-Lubanski spin vector, 
normalized so that 100% transverse polarization corresponds to sysl,, = - 1. 

3.4.2 Gluon Distribution Functions 

Operator definitions for the distribution of gluons in a hadron are made 
in an analogous fashion to those for quarks: 

$g/h(t) = j$ J $$e iCp+v-(plG+j(O, y-,OJPG+j(O)lp), 

~,p4dg/h(t) = jJ$l P&’ / &eicp’ye(pIG+j(O, y-, o,)PG+j’(o)lp), 

sgp,lAT.fglh(S) = ja$, P$t J $&pi~p+ym 
x(plG+j(O,y-,Ol)PG+j’(O)lp), (3.45) 

where G,, is the gluon field strength tensor and P denotes the path-ordered 
exponential of the gluon field along the light-cone that makes the operators 
gauge-invariant, in exact analogy to Eq. (3.42) 

P z Pexp ‘- dy’- A,+(O, y’-,OL)Ta 1 , (3.46) 

where T. = TiA) are the generating matrices for the adjoint representation 
of color SU(N,). The j index runs over the two transverse dimensions, and 
the spin projection operators are defined by 

p;;“’ G p;; = 0 
p$’ s -p&l = i 

Pact ~ njnj~ - 6jj, 12. 
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By angular momentum conservation, the linear polarization of a gluon is 
zero in a spin-i hadron [3.21]. (Th e reason is that the linear polarization is 
measured by an operator that flips helicity by two units. Since no helicity is 
absorbed by the space-time part of the definition of the parton densities (the 
integrals are azimuthally symmetric), the helicity flip in the operator must 
correspond to a helicity flip term in the density matrix for the hadron. 

3.4.3 Fragmentation Fhctions 

The unpolarized fragmentation function to find a hadron h in the decay 
products of a quark of flavor c is 

dy- Q+(Z) = F J Ge ik+y- Tky+(O~~(O,y-, y,)IhX)(hXI$(O)jO). (3.48) 

We have ignored here the path-ordered exponential of the gluon field that is 
needed to make this a gauge invariant definition. The sum is over all final 
states containing the chosen hadron. 
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Figure 3.1. Factorization theorem for Drell-Yan cross section. 

- 

B 

I 
Figure 3.2. Factorization theorem for single particle production in 

hadron-hadron collisions. 
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4 e+e- Annihilation 

Among the most basic of the concepts of perturbative QCD is infrared 
safety. As discussed in Section 3, total and jet cross sections in e+e- an- 
nihilation are themselves infrared safe, without factorization into long- and 
short-distance components. In this section, we review explicit low-order re- 
sults for these IR safe quantities. 

4.1 Total Cross Section 

The basic squared amplitudes for the total cross section in e+e- annihi- 
lation are illustrated in Fig. 4.1 at one loop, in the cut diagram notation of 
Appendix B. 

At this level, the ultraviolet (UV) divergences in the self-energies cancel 
those in the vertex corrections. This cancellation is related to the manner in 
which quantum electrodynamics is renormalized: at zero photon momentum, 
all radiative corrections to the charge must vanish. That QCD respects the 
renormalization conditions of QED was a necessary condition for it to be 
a viable theory of the strong interactions. At a technical level, the result 
follows from [7&n, 01 = 0, with ‘H QC~ the Hamiltonian and 0 the operator 
for electromagnetic charge. 

Because of this cancellation the one-loop cross section is independent, of 
the scheme that we specify to renormalize QCD, and the result is identi- 
cal in all schemes. Beyond one loop, however, it is necessary to specify a 
renormalization scheme, and results will, in general, differ from scheme to 
scheme. 

The total cross section for e+e- annihilation at center-of-mass energy Q 
(in the one-photon approximation) has now been computed up to three loops - 
with massless quarks in an MS renormalization scheme [4.1]. Here is what it 
looks like. 
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4Q2) = 00 1 +4Q*) 
4a(3CF) 

+C;&-127- 572((3)+880((5)) 

+C;Tn,(-29+304[(3)-320((i)) 

-C.d -$Z’A - tTni)* 
( 

(C,&,, D 176 

+WC,Q;)16 3 
(- - lW)] } 

(4.1) 

In this expression, ~0 is the parton model total cross section, Eq. (2.47), 

nf 1s the number of quark flavors and N is the number of colors. The 
group invariants, C$, COCA, et c., give structure to the otherwise unremitting 
sequence of integers, fractions and “zeta functions” in the three-loop result. 
For simplicity, we have written, CF = C*(F), etc., and from Appendix A, we 
have CF =4/3, CA=& T = i, D =40/3 in QCD. C(m) is the Riemann zeta 
function, beloved of mathematicians, 

(4.3) 



whose specific values encountered above are 

4-(3) = 1.2020569 

C(5) = 1.0369278. (4.4) 

Using these values, the numerical coefficients for SU(3) with five quark flavors 
are 

(r(Q*) = oo(Q2)(1 +: + 1.409 (:)‘- 12.805 (:)“) (4.5) 

We note that the coefficient -12.805 represents a second try; previously 
published results gave an uncomfortably large incorrect value of about 60. 
These results are for electron-positron annihilation via a virtual photon. In 
the LEP experiments, a virtual 2 is involved and modifications in the formula 
are required. Most of the pieces of the modified formula are known, but some 
order o: terms involving heavy quark loops remain uncalculated. 

4.2 e+e- Total Cross Section at One Loop 

The explicit calculations that lead to the O((Y~) results are, like the results 
themselves, extremely complicated, and can be carried out only with the aid 
of computers. The O(o*) corrections, however, already exhibit some of the 
basic problems of pQCD, and their resolution through infrared safety. 

At lowest order, the total cross section is given by the Born diagram, 
zeroth order in a,. The diagrams that contribute to the total cross section 
at O((Y~) are of two kinds, those in which a gluon appears in the final state 
(Fig. 4.la), and those which are the interference between an amplitude with 
an O(o,) virtual loop correction and the zeroth order (Fig. 4.lb). The lep- 
tonic and hadronic parts of these diagrams are connected by only a single 
photon (which we may take in Feynman gauge, with propagator -gao/Q2), 
and it is consequently natural to write the cross section as a product of 
leptonic L““(kr, kz), and hadronic, HP”(q) tensors, 

cttot = LP”@l, b)ql”(P) . (4.6) 
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Here Icr and k2 are the leptons’ momenta and Q = iEr + k2, q“q,, = Q*. 
We define L to absorb the photon propagator, and the overall kinematic 
normalization of the cross section, l/8&*, where we neglect the lepton mass 
and average over spins. Similarly we absorb the integral over final-state phase 
space into H. The leptonic part is then given by the Dirac trace 

L”“(kl, k2) = 

= &(‘:k; + k;k;l - (Q*/2)g”“) (4.7) 

The calculation of gLof is simplified by employing conservation of the 
electromagnetic current, which, as we mentioned above, is respected by QCD, 

d‘&(q) = H,wq” = 0 (4.8) 

Now, because H is a symmetric tensor that can only depend on the total 
momentum q, we find that it has the form 

HP = (qpqv - Q*g,v)H(Q*) , 
with H(Q*) a scalar function that can be found by 

H(Q*) = &f’yH,,v). 

Combining these results, it is easy to show that 

0~ = &(-g”“)H,,(Q) 

(4.9) 

(4.10) 

(4.11) 

Thus, it is only necessary to compute the contraction of the hadronic tensor 
with gPy to compute the total cross section. 

To compute the hadronic tensor, we write it as the integral over three- 
particle phase space of the squared matrix element for gluon emission, 

-P’H,,(Q) 
1 =- 

4(2~)~ J $$f 6([q -PI - kl*)l M(h-,p,) 1: (4.12) 
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Here pi is the quark’s, k the gluon’s, and q - pi - k the antiquark’s mo- 
mentum, while 1 M(k,pl) 1: represents the contribution of Fig 4.la to the 
squared matrix element.The subscript T denotes that this contribution is 
real as apposed to those from Fig 4.lb,d which involve virtual loops and are 
therefore complex. In this (spin-averaged) case, [MI: is independent of the 
direction of pi and of the azimuthal angle k about pr. We may then evaluate 
these angular integrals to give 

-d‘YfUQ) 
= &~00dm~9dkk [,du 

X h(Q2 - 2Q. (PI + k) + 2lp,llkj(l - %))I M(k,pl)(: ,(4.13) 

where u is the cosine of the angle between pr and k and Q = 0, 
Next let’s have a look at the hadronic tensor corresponding to Fig. 4.la. 

Because the fermions are now quarks, it includes the product of a Dirac trace 
times a color trace, given by 

IM(PI, k)l? = m [ T,(~)T;~)] g2e2 C Q; 
f 

x[(2pl ,k~(2p2.k)Tr[y,ljly.(ljl + II)?'d2%('+ - IJ)] 

+ (2p,1. k)2nhP(dl + !h”(dd%(?jl + hb%,h,]] (4.14) 
It is at this point that we see the kind of problems one encounters in a 
perturbative calculation. They are exactly of the sort anticipated in Section 
3.1.1. 

There are two denominator factors, corresponding to the propagators for 
the two virtual fermions in each diagram. Consider, for instance, 

PI . k = Ipl(lkJ(l - u) 

This factor vanishes at two generic points in phase space 

(4.15) 

k = 0 ++ k” soft , 

u = 1 w k collinear to p, (4.16) 
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It is easy to check that the integral over phase space is divergent in both of 
these limits: the soft limit, where the gluon momentum vanishes, and the 
collinear limit, where it becomes parallel to the quark’s momentum. In these 
two limits, the k and u integrals become, respectively, 

J 2 CI kfi soft , 
ok 

/ 
1 du 

- c) k collinear to pi 
1-U 

(4.17) 

Not surprisingly, there is yet another region where the integral diverges, for 
k collinear to ps, 

pz. k = ]ps]]k](l + u) + O((l+ u)‘) . (4.18) 

Thus, soft and collinear divergences are already present at one loop in mass- 
less &CD. 

In Section 3.1.1 we argued that infrared sensitivity cancels between differ- 
ent final states. At this order, there are only two final states to choose from, 
the quark-antiquark state, and the quark-antiquark-gluon state. It is possible 
to show that if the integrands for these contributions to oLot are combined, 
all sources of divergence cancel, before any integrals are done [4.2]. For many 
purposes, however, it is useful to do the integrals in an infrared regularized 
theory, in which the soft and collinear divergences have been rendered fi- 
nite by some modification of the theory, in much the same spirit as for UV 
divergences. It is important to realize that an infrared regulated theory is 
not the same as the original theory, because infrared regulation changes the 
long-distance behavior. But, in the limit that the regulator is taken away, 
the infrared-regulated theory should give the same predictions as the real 
theory for infrared safe quantities, which don’t depend on the long-distance 
behavior anyway. 

Actually, it is not so easy to find a completely satisfactory infrared reg- 
ulator for &CD, one that doesn’t affect the short distance behavior at some 
high order. Interestingly enough, dimensional regularization (Appendix C) 
provides such a regulator. In this case, we (formally) carry out all integrals in 
4 - 2~ dimensions. Divergences appear as poles at vanishing regulator scale E 

95 



(i.e. at four dimensions). There are some subtle points here, especially since 
the same method is also used to regulate UV divergences. Nevertheless, one 
may apply it consistently. Another method, that works well at least to one 
loop, is to assign a small mass, ms, to the gluon (in Feynman gauge, for 
simplicity). Here infrared and collinear divergences appear as logarithms of 
mg. This method may be dangerous beyond one loop, because a gluon mass 
breaks gauge invariance, but it works well enough at this level. 

Let us quote the results for the two-particle and three-particle cross sec- 
tions represented by Fig. 4.1. For the two-particle final state, the cross 
sections are, at one loop 

for gluon-mass and dimensional regularization, respectively. Notice that, 
although the two expressions share some features, they are vastly different, 
and each depends upon one of the unphysical parameters, mg or E. This is a, 
sign that the long-distance behaviors of the regulated theories are different. 

The three-particle final state gives these results at one loop: 

03 
Cm.) = uocF + z - $ 

I 
, 

up = UOCF 

(4.20) 

Comparing the two- and three-particle results for each choice of regular- 
ization, we find that most of their respective terms cancel, leaving behind 
exactly the simple O(od) correction of Eq. (4.1). This demonstrates explic- 
itly that the total cross section is independent of long distance behavior, at 
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least to this approximation. The explicit calculations of Ref. [4.1] show that 
it is possible to verify this result much more dramatically. 

4.3 Energy-Energy Correlation 

The total cross section for e+e- annihilation, being an infrared safe quan- 
tity, see Section 3.1, can be used to study the short distance behavior of the 
Standard Model without complications from long-distance physics. However, 
it is by no means the only such quantity. By looking at infrared safe quan- 
tities that probe the hadronic final states produced in e+e- annihilation, we 
can learn about the structure of the interaction Lagrangian that controls the 
short distance physics. 

We have discussed in Section 4.1 how certain measurements can involve 
the final state in such a way that the measured quantity is not sensitive to 
collinear parton branching or the emission of soft partons (see Eqs. (3.7), 
(3.10)). There we used as an example the thrust distribution du/dl defined 
in Eqs. (3.8), (3.9). Another frequently used quantity is the energy-energy 
correlation function [4.3], 

1 dC 
igd’ 

(4.21) 

A convenient way to express the definition of C is to use the general equation 
(3.7). If we let Z in (3.7) be dC/dcosx then the functions S, that define the 
contribution from an n particle final state are 

(4.22) 

where xij is the angle between particles i and j. Recall that the normalization 
of the S, is such that S, = 1 for all n gives the total cross section. Then 
since Ci Ei = &, the normalization for C is 

- u; _:dcosx J dC 1 
iGiy=. 

(4.23) 

The energy-energy correlation function is infrared safe. To verify that the 
required condition (3.10) is satisfied, consider S,+l(fl;, , (1 - X)9;, Xvm). 
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We have 

s”+lM,~~ , (1 - ~)dt,b!3 

= g2 4+cosx - cosxij) 

i=l j=l 

+2 n2 Ei [XE* + (I- AK1 6(cos x _ cos x, ) I” 
i=l 

+ PEn + (l - A)~J*d(cos x _ COS x”n) 
s 

=s”(PT,...,di). (4.24) 

There are other distributions besides the thrust distribution and the 
energy-energy correlation that probe the shape of the hadronic energy distri- 
bution. Jet cross sections, to which we now turn, fall into this class. Concise 
descriptions of other, related quantities, with calculations and references, 
may be found in ref. [4.4]. 

4.4 Jets 

In a typical electron-positron annihilation event at LEP or SLC, two, or 
sometimes three or more, sprays of particles are produced. The more ener- 
getic of the particles within each spray are typically confined to an angular 
range of a few tenths of a radian. These sprays of particles are called jets, and 
various measurable cross sections to produce jets are studied [4.5], [4.6]. For 
instance, one can measure the inclusive cross section to make two jets with 
given energies and angles, plus anything else. Most commonly, one measures 
the cross section for the final state to contain exactly 2,3,4 . jets. 

One thinks of a jet as consisting of the decay products of a single off- 
shell parton, a quark or gluon, that was produced in the annihilation by 
a short-distance process. It is not, however, completely straightforward to 
define precisely how many jets are present in a given final state and what 
their momenta and energies are. The physical problem is that the decay 
products from an energetic parton are not infinitely well collimated, and, 
in particular, will generally include the remnants of some rather soft gluons 
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that are emitted at large angles. Worse, because partons can join as well as 
divide, and because of quantum interference, a given hadron can be a “decay 
product” of more than one hard parton at once. Thus a jet cross section is 
to some extent an artifact. 

If a jet cross section is an artifact, so be it. One must simply give a 
careful definition how the jet content of the final state is to be measured. 
Then, one must calculate (perturbatively) the cross section to make jets in 
a given configuration according to this definition. In order that the cross 
section reflect short distance physics, one must arrange t,he jet definition so 
that the corresponding jet cross sections are infrared safe in the sense of 
Eq. (3.10). 

The possibility of calculating and measuring infrared safe jet cross scc- 
tions was first explored in Ref. [4.6]. The definition given there involved 
cones, something like the cones often used to define jets in hadron-hadron col- 
lisions, as described in Section 7. The definitions used nowadays for electrou- 
positron collisions involve an algorithm for successively combining hadrons 
into jets, using some function of momenta as a measure of “jettiness”. (In 
the corresponding calculation, one uses the same algorithm to successively 
combine partons into jets.) Here, we shall describe the original example of 
this class, the so-called JADE algorithm [4.7]. There are several variations 
that are used, of which we may mention particularly the Durham algorithm 
(4.81. A summary may be found in [4.9]. 

The successive combination algorithms are iterative. At each stage, two 
jets from a list of jets are combined into one. One begins with a list of 
jets that are just the observed particles. At each stage of the iteration, one 
considers two jets i and j as candidates for combination into a single jet 
according to the value of a dimensionless “jettiness” variable yij. Pairs with 
small yij are considered to be the most jetlike. For the JADE algorithm, 

Yij = 
2E,Ej(l - cosBij) 

s 
(4.25) 

The pair i,j with the smallest value of yij is combined first. When two 
jets are combined the four-momentum p” of the new jet is determined by a 
combination formula. For the JADE algorithm, the combination formula is 
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simply 

p”=d+$. (4.26) 

After this joining, there is a new list ofjets. The process continues until every 
remaining yij is larger than a preset cutoff, ycut. In this way, each event is 
classified as containing two, three, four, etc. jets, where the number of jets 
depends on the cutoff ycUt chosen. 

Notice that this algorithm is infrared safe, because it satisfies Eq. (3.10). 
A particle that has only an infinitesimal energy will not affect the final num- 
ber of jets, or their four-momenta, since it will contribute only an infinitesimal 
amount to the final four-momentum of the jet in which it is included. Simi- 
larly, if two particles are nearly collinear, with &’ z X@’ and p,” x (1 - X)p”, 
then the first step of the algorithm is to combine them into one jet with 
momentum close to fl. 

4.5 Calculations 

One can categorize the possible infrared safe quantities in electron-positron 
annihilation ss “N-jet like” by considering the functions S,, eq. (3.7), that 
define the measurement. If Ss # 0, we say that the quantity is “two-jet like.” 
If Ss = 0 but Ss # 0, we say that the quantity is “three-jet like.” With this 
nomenclature, the total annihilation cross section is two-jet like. Quant,ities 
such as the cross section to make exactly three jets (for a given ycUt) or the 
energy-energy correlation function away from x = 0, x are “three jet-like”. 

As we have seen in Section 4.1, the total cross section has been calculated 
to order oz. Since this is three orders beyond the Born approximation, the 
comparison of the prediction to data can provide an extraordinarily stringent 
test of the Standard Model. However, there is an experimental limitation of 
the usefulness of a two-jet like quantity like the total cross section as a way to 
measure (Y, or to provide a test of the QCD part of the Standard Model. The 
limitation is that the Born approximation to such a quantity is independent, 
of o,; QCD enters only in the higher order corrections. Thus extraordinary 
experimental accuracy is required in order to measure the QCD contribution 
precisely. 

100 



With three-jet like quantities, one is measuring something that, in the 
Born approximation, is proportional to CL,. Thus the experimental demands 
are less stringent. However, the theoretical difficulties are greater. Non- 
perturbative effects are estimated to play a larger role than in the completely 
inclusive total cross section. (See, for example, ref. [4.9].) More importantly, 
the perturbative calculations are more complicated. The calculation depends 
on realizing cancellations of collinear and soft divergences between contribu- 
tions from four parton final states and from three parton final states with 
virtual loop corrections. (The results for the virtual loop graphs are generally 
taken from the work of Ellis, Ross, and Terrano [4.10].) There are calculations 
of individual three-jet like quantities at order c$ in the literature. References 
may be found in [4.4]. There is now also a computer program by Kunszt sun1 
Nason [4.4] that can calculate any infrared finite three-jet quantity at order 
oz. Basically, one has only to supply suitable computer code for the functions 
Ss and Ss that specify the measurement. 
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Figure 4.1. One-loop corrections to the e+e- annihilation cross section. 
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5 Deeply Inelastic Scattering 

5.1 Use of Perturbative Corrections in DIS 

The use of parton distributions in pQCD is similar to their use in the 
parton model. The basic facts are still: (i) that the IR safe short-distance 
functions Ci”‘) are independent of the external ha&on h and (ii) that the 
distributions 4i/h are “universal”, for instance, the same for Fr as for Fs. For 
convenience, we reproduce here the DIS factorization theorems, Eq. (3.11) 
and Eq. (3.12), 

F;Vh’(z,QZ) = c j1 3 C~“‘)(z/(, Q*/p*, a,(/~~)) 
i=f,f,G O t 

X4%/d<, L4 , (u = 1,3) 

@‘-(GQ*) = c i’ dt @“(z/E, Q2/p2, 4~~)) 
i=f,f,G 

x+i/h(tt fi2) (5.1) 

(where we have set the factorization scale equal to the renormalization scale 
p), and the evolution equation Eq. (3.19), 

/J$4i/b(5,/L,as(ILZ)) = C /2l TEj (FtQ.i(P2)) @j/h(E~fi~,~s(P~)) 

j=f,f,G 

(5.2) 
With these results in hand, we can make predictions by combining pertur- 
bative calculations with experimental input. In this section, we discuss how 
this works in low order corrections. 

Unlike an infrared safe total cross section, the hard-scattering coefficient 
functions of DIS factorization are not simple finite functions of 0,. Instead, 
they must be defined as infrared safe “distributions”, generalized functions 
which give finite answers when convoluted with smooth functions. The most 
familiar example of a distribution is a delta function. Here, we introduce the 
“plus” distribution, denoted 

[ 1 9(2) 
1-a: +’ (5.3) 
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whose integral with a smooth function f(r) is defined by 

~ldsf(r)[~]+=~lds(f(S)T!~))g(:r)-f(l)~*d~~. (5.4) 

A plus distribution corresponds to a divergent integral that is regularized by 
a divergent subtraction, in this case f(1) t’ rmes the integral from 0 to 1. (Note 
that the second term on the right vanishes when z = 0.) Plus distributions 
are ubiquitous in both hard-scattering functions and parton distributions, 
for all nontrivial factorization theorems in &CD. The mamrer in which they 
arise in one-loop corrections is discussed in Section 5.4 below. 

The three basic quantities in the factorization and evolution theorems 
above are: the coefficient functions C, (Ti), the evolution kernels F’ij, and t,he 
parton distributions 4i/h. Of these, the first two are computable as power 
series in LY, as realistic, infrared-safe quantities. The distributions, on the 
other hand, are directly computable only for ~i,j, with both i and j part,ons, 
and then only in an infrared-regulated version of the theory. Such unphysical 
parton distributions, however, enable us to isolate the physical coefficient 
functions and evolution kernels. Let us review how this works. 

Combining Theory and Experiment. As an example, consider the relation 
between the structure functions Fj’*), V = y, W*, and the physical parton 
distributions $i/h(r, $). The procedure can be summarized as: 

(a) Compute the regulated distributions &8 and oiis to some order in 
perturbation theory. 

(b) Compute Fi”j), with j = q, g to the same order. 

(c) Combine the results of (a) and (b) to derive Ci”j) to this order. 

(d) Combine Ci”j) with experimentally determined Fir’*) to derive the non- 
perturbative @j/J, to the same order in perturbation theory by applying 
the factorization theorem. 

These distributions, in turn, can be combined with hard scattering functions 
from other processes to derive predictions from the theory. Note that the 
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parton distributions and coefficient functions are factorization-scheme de- 
pendent, in the sense described in Section 3.2. The evolution kernels, Pij, 
however, are scheme-independent in the one-loop approximation. 

At O(ob) the procedure we have just described is particularly straight,- 
forward. For instance, in the electromagnetic case Eq. (3.11) and Eq. (3.12) 
yield, 

@‘f)(l)@, Q*) = #,(x, p*) + @‘f)(‘) (X’~.ffdPi) . (5.5) 

Here and below, we suppress an overall factor QT (the fractional charge of 
the quark) in F, for electromagnetic scattering. 

5.2 One-Loop Corrections in DIS 
- 
MS scheme. In the MS scheme, the distributions are defined by matrix 

elements as in Section 3.4, and are simple at one loop in perturbation theory, 
although the resulting coefficient functions tend to be a bit complicated. 
They are also convention dependent. To compare the following results with 
the literature it is necessary to check not only the definitions of the F, Eq. 
(2.15) but also the explicit factorization formulas (5.1). For instance the 
results below for Cz differ from those quoted in [5.2] by a factor m. 

From the procedure just described, the explicit nonzero one-loop coef- 
ficient functions for DIS are given in the MS factorization scheme by [5.2] 

15.31 

C?‘)(l) = C*(F); g 
[ ( 

ln (1;5) -g +;(9+5x)]+ , 

C(“‘K’) _ 1 - &p)(l) - c*(F)+ 1 

c(“d(‘) - 1cwl)U) _ C*oq(1 +x) 3 - 
x * 

@g)(l) = T(F) nfx 
1 
(x2 + (1 - x)‘) In l-s 

( > x 
- 1 + 85( 1 - x) 1 , cwm _ 1 - &““)il) - T(F) nf [4x@ - 211 > (5.6) 
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where nf is the number of quark flavors, C*(F) = 4/3 for N, = 3 and 
T(F) = l/2 (see Appendix A). Similarly, the one-loop kernels are given by 
(o,/27r)P$‘, with [5.4] 

P,‘:‘(x) = C*(F) [ (1 +x*1(&)+ + $1 -xl] , 

P;;‘(x) = 2T(F) [ (1 - x)2 + x2 ] , 

P,‘:‘(x) = C*(F) Q - “,‘? + l ) 

P,‘;‘(x) = 2&(A) (1 _” ) + e 
[ X+ 

+X(1-x) 1 
11 2 

+CTC2(A) - f(F) nf)6(1 - x), (5.7) 

- 
where &(A) = 3 and T(F) = l/2 in QCD (Appendix A). Finally, the MS 
distributions for partons in partons are (with E = 2 - n/2) 

h/j(X, E) = -iz ($>' j?y '(2)) (5.8) 

where we conventionally choose 

~2 = p2ew-ln4r 
(5.9) 

with YE Euler’s constant. This choice corresponds to a natural definition for 
the renormalized matrix elements that define the distributions (see Section 
3.4). 

DIS scheme. The DIS scheme is defined to uEl orders in perturbation 
theory by Eq. (3.16), 

p)(x) = 6(1 - Z) , 

C$yz) = 6(1 - x) , 

gqx) = 0 (5.10) 

That is we renormalize the parton densities so that the parton model is 
exact at p = Q. This gives somewhat more complicat,ed results for one-loop 
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distributions of partons in partons [5.l], which however, are determined in - 
terms of the MS distribution to one loop by 

(5.11) 
where @ represents the convolution in Eq. (5.1). Here the effect of the gluon 
distribution in F2 is shared evenly by the n, quark flavors (the same number 
as is used in the beta function at this momentum scale, see Section 1.5). 
Similarly, a frequently-used (but nonunique) definition for the DIS gluon - 
distribution in terms of the MS distributions at order o, is 

4g,h(x, $)(D’S) = [l - o,(&“s)(~‘)] @ +;F - cr.(p) c @p)(m) @ 4;7 
0 

(5.12) 
These relations holds to order cr. for h a parton or a physical hadron. 

Because of the relation Eq. (5.5), the remaining coefficient functions in - 
the DIS scheme are trivially found from those in the MS scheme. The reward 
for the somewhat complicated partonic distributions in the DIS scheme (re- 
member, they are unphysical anyway), is much simpler one-loop coefficient 
functions; in addition to the defining equations, Eq. (5.10) we find (see, for 
instance, Ref. [5.4]), 

cjvq)(‘)(x) = -;C2(F) x, (5.13) 

C1(v’)(‘)(x) = -T(F)n, 4x( 1 - x) , (5.14) 

Cp)(‘)(x) = -C*(F) (1 + z) (5.15) 

5.3 Two-Loop Corrections 
- 

Recently, DIS coefficient functions have been calculated in DIS and MS 
schemes by van Neerven and coworkers [5.3]. This, of course, requires the 
determination of perturbative parton distributions and evolution functions at 
two loops as well. The full expressions are bulky, and we shall not reproduce 
them here. To give the flavor of the results, however, it may be useful to give 
the two-loop evolution kernel for the nonsinglet distributions (Section 3.2.3), 
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Piy-(Z), 15.41: 

Pq;“(x, 0,) = $F(%)+ + (2)‘{C$[ - 2(g) Inxln(1 -x) 

-5(1 -x) - (A +2x)lnx-~(l+x)ln’x] 

+&*C.4[(~)(lnZx-~ln~+~-~) 

61 215 
+2(1+x)Inx+~---xl 

+$ZFT[(g) (In5 - $) + i + :x1}+ 

+W - x) i1 dxQq,-(x, a.) + @a:) , (5.16) 

Qqg(x,~a) = (~)2(C+~)C~[2(1+x)lnx+4(1-x) 

4inxln(l+x)-4Lis(-x)-G)]. 

(5.17) 

5.4 Computation of One-Loop DIS Correction 

Typical (cut) Feynman diagrams that contribute to W’,$/) are shown in 
Fig. 5.1. At lowest order, they involve either gluon emission, or one-loop 
radiative corrections. Here we will give just enough detail on the gluon 
emission process to illustrate the physical content of factorization. For more 
details, see [5.5]. 

Since we are interested in structure functions, it is convenient to use the 
contractions 

-g’YW$f)(l) = iF2hf)(l) _ 3 F(‘f)(l) 

g (@f)(l) 

2( * 
- 2xp(l)) , 

- 2&f)(‘)) (5.18) 
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Of these, the first is by far the more demanding to calculate, because the 
Dirac equation may be used to eliminate all but one of the diagrams shown 
in Fig. 5.1 for p+“W,,. (We should note that when these calculations are 
carried out using the method of dimensional regularization these identities 
become somewhat more complicated. See Appendix C.) 

Let’s have a look at the real-gluon contribution to -g~UW,,y. It can be 
computed as if the diagrams described the Born approximation for the two- 
to-two process y’ + f -+ f + g, with g a gluon, 

_ g”“~~fKl) = /,, (I M(7f)(S,t, q2) I’)(‘) > (5.19) 

where M is the squared matrix element for this process, normalized according 
to Eq. (2.16), and averaged over the spin of the initial-state quark. JPs 
denotes the integral over two-particle phase space. The matrix element, is 
described in terms of the usual kinematic variables, 

s=(p+q)‘, t=(p-k)‘, u=(q-k)‘, s+t+u=-Q2, (5.20) 

in terms of which it is given explicitly by (recall, we are suppressing Q,) 

(I M(-“)(s,t,q*) I’);;;, = 4~2,; 3 + ; - y) (5.21) 

The phase space integral is particularly simple in the center of mass frame, 
where it reduces to an integral over E = cos0, with 0 the angle between p 
and k. In this frame, t, n and s are given by 

t = -Q’(l - 5) ‘II = -Q2(1 + 0 s = QV -xl 
2x 2x x 

(5.22) 

As usual, x = Q2/2p. Q. Collecting these expressions in Eq. (5.19), we have 

J ( _:dt “:-$+ l-t + 2x(1+t) ) 
2(1 -r) (1 -x)(1 - <) 

(5.23) 
As it stands this expression has problems of two kinds, closely related to 
those found at one loop in e+e- annihilation. 
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First, the unmodified integral diverges at t = 1, that is, when the gluon 
is parallel to the initial-state quark. This is the familiar collinear divergence, 
associated with the degeneracy of on-shell single-quark and parallel-moving 
quark-gluon states. It is just the sort of contribution that corresponds to 
the evolution of an isolated quark long before the interaction takes place, 
and should be absorbed into the distribution 4,/f. In a careful calculation, 
we would regularize the collinear divergence dimensionally, or by giving the 
quark a mass. We can even cut off the angular integral at some minimum 
angle: each of these choices will only show up in the precise definition of the 
infrared sensitive part of 4f/f, which we are going to discard anyway. We will 
therefore assume that regularization has been carried out, and not modify 
the explicit expressions below. Thus we may assume that the expression for 
W(r) is well-defined for all x # 1. 

The divergences as x + 1 are our second problem. Given that s = 
Q2(1 - X)/X, they are evidently associated with a vanishing mass for the 
final state, which happens if the emitted gluon has either zero momentum 
(soft divergence), or is collinear to the outgoing quark. Divergences of this 
sort are not candidates for absorption into the parton distribution, because 
they depend on details of the momentum transfer and the final state. On the 
other hand, an unmitigated divergence of this kind camrot be pushed into the 
hard-scattering functions C(z) either, because a pole at z = 1 in C(z) would 
lead to a singularity in the basic factorization integral, Eq. (5.1), whenever 
z = t. If factorization is going to work, the x = 1 poles must be canceled. 

As in e+e- annihilation, we look to virtual processes to cancel divergences 
associated with real-gluon emission. There is an important difference, how- 
ever, in the kinematics of DIS and the annihilation processes. The virtual 
diagrams of Fig. 5.1 can only contribute at x = 1 precisely; in fact, they 
are proportional to a factor 6( 1 - zr), which comes from the mass-shell delta 
function S([p + q12). Thus, as anticipated above, the complet,e answer will be 
infrared finite as a distribution, rather than as a function. 

Let’s now skip to the answer. It will consist of plus distributions in X, in 
addition to finite terms. Collinear-divergent integrals will remain, which will 
have to be absorbed in the parton distributions. To compare real and virtual- 
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gluon corrections, we will change variables from the cosine [ to the transverse 
momentum of the gluon, kr, relative to the direction of the incoming quark. 
In the center of mass frame, the relation between the two variables is 

k; = Q2@(1 - t2) . 

Leaving the divergent k$ integral explicit, the one-loop electromagnetic struc- 
ture functions are 

F,(“)(l)(X) = ;{ 1” 2 ([El + + $1 - x)) 

+Cz(F) g 
1 ( 

ln(1 i x, -i 
> 

+:(9+5x) 1 } , + 
2x+f)(i) _ - F,(“)(l) - C2(F)Z2x (5.25) 

In the expression for Fz, [9 + 5x]+ is defined by direct analogy to Eq. (5.4). 
We see explicitly the collinear divergent kr integral, which will be absorbed 
into 4?), according to Eq. (5.5), and the evolution kernel 

1 + x2 [ 1 1-2 +g-X)EPp(pl)(X), 
+ 

(5.26) 

which is of central importance in determining the Q2 dependence of the DIS 
cross section (Section 3.2.3). 

As promised, all x + 1 divergences have canceled in Eq. (5.25), a nec- 
essary condition for factorization. Also, we note that Fz and Pi differ by 
an infrared safe function. This means that the same parton distribution 
4fl, will absorb the infrared sensitivity of both structure functions. This is 
another prerequisite for factorization. Thus the calculation of DIS structure 
functions at one loop gives us two highly nontrivial checks of the factorization 
formulas, Eq. (5.1). 

The explicit forms of one-loop corrections suggest the two standard choices 
of parton distributions, discussed in Section 5.2 above, 

a,(Q2) &),(x:, Q2)m = 2?r J ~6 dk; --pw(x) > 
$:;:(x, Q2),,ls = F”‘U”1&Q2)) . 

(5.27) 

(5.28) 
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- 
The first, “MS”, distribution, (Eq. (5.27)), b a sor b s as little as possible into 4, 
that is, only the collinear divergent term, leaving the remainder to t,he C,‘s. 
It is particularly simple in dimensional regularization, where the divergent 
term may be identified as the coefficient of a pole like l/(n - 4), with n 
the “number” of dimensions. Alternately, in the second, “DIS” distribution, 
(Eq. (5.28)), we absorb as much as we can in the parton distribution, t,he 
standard choice being all of Fpf) (x, Qi), at the momentum scale QjJ = $. 

5.5 Review of DIS Experiments 

5.5.1 Historical perspective 

Early work on electron-nuclei scattering led to the discovery of the scaling 
property of the structure functions [5.6]. This scaling property demonstrated 
the existence of point-like constituents-partons-within the proton; these 

partons are now identified as the quarks and gluons. In a sense, DIS cx- 
periments of the 1960% established the sub-structure of the proton in the 
same manner that the Rutherford scattering experiments established the 
sub-structure of the atom in 1911. 

DIS experiments provided the experimental foundation for the parton 
model, Section 2, which, for the case of lepton-hadron scattering, can be 
summarized by the following formula: u(!h + [‘X) = &,, @ c?(Pn --t C’X), 
where &/h is the parton distribution function (PDF), c?(ea -+ (‘X) is the 
hard scattering cross section, and @ represents convolution in momentum 
fraction. The implicit assumption in the parton model is that the lepton 
scatters incohemntZy from the parton constituents. The principal achieve- 
ment of the parton model is that we have taken a physical cross section 
which is difficult to calculate directly, and divided it into a term that we can 
calculate in perturbation theory, +(&I + [‘X), and a term that, we extract 
from experiment, &jh. 

Obviously, the utility of the parton model relies on our ability to de- 
termine &/h, or equivalently,2 the structure functions, Fi. The basic pro- 

2Note, to leading order, the structure functions are simply related to the parton distri- 
butions. However, beyond leading-order, the relations are nuxe complex. 
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cedure used is to compute 6(&z -+ f!‘X) in perturbation theory, measure 
u(& -+ FX) experimentally, and thereby extract I&,,. Unfortunately, this 
is easier said than done, as we must unfold the convolution to find &lh. 

Presently, the data from DIS experiments provide the most precise deter- 
mination of the functions &,/a. The advantage of the DIS process is apparent 
when contrasted with a h&on-hadron scattering process where the parton 
model formula would read 0 = 4 @ 5 @I 4, and we would have to unfold tvro 
convolutions to extract 4. 

Although an important goal of DIS experiments is the extraction of 
PDF’s, these experiments cover a wide range of topics, including the preci- 
sion measurements of sin 6’w, Cabibbo-Kobayashi-Makawa matrix elements, 
quark masses, and branching ratios. We will limit the scope of our discussion, 
however, primarily to the extraction of PDF’s 

The generic DIS scattering experiment consists of a lepton beam (e, p, 
or u) incident on a nucleon target. In the simplest version of this experiment 
(totally inclusive DIS), only the final state lepton is observed, and the hadron 
remnants are ignored. For example, the SLAC-MIT group [5.7] scattered an 
electron beam of energy 7 GeV to 17 GeV from a hydrogen target. The energy 
of the outgoing electron was measured using a large magnetic spectrometer 
for scattering angles 6’ = 6” and 10”. 

In the QCD parton model, we assume that the DIS process occurs via 
the exchange of a virtual boson (W* for charged current reactions, y or Z” 
in neutral current events) with momentum qf‘ = ks -k’s, The momentum of 
the exchanged boson defines the energy scale, and the momentum fraction is 
given by Bjorken scaling variable 5: 

Q2 = -qz = 4EkEkg sin*(8/2) 

z Q2 
=2q= 

2EkEe sin’(0/2) 

mh(& - 4~) 

(5.29) 

Therefore, by measuring only the final state lepton energy (Ekt) and angle 
(0) in the target rest frame, we can determine QZ and zr’, and thereby extract 
the structure functions. 

The surprising discovery by the SLAC-MIT group was that the struct,ure 
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functions were insensitive to Q*, and only depended on the scaling variable 
z. In the context of &CD, we now know that there is a logarithmic QZ 
dependence which spoils the exact scaling. Therefore, the goal of modern 
experiments is to measure the structure functions in terms of both Q2 and 
2. 

5.5.2 The Experiments 

We shall present a selective survey of the DIS experiments [5.8]. The DIS 
experiments can be divided into two categories: charged (e,~) and neutral 
(Ye, v,,) lepton beams. 

We will consider four neutrino-induced DIS experiments. At CERN, 
both CDHS (CERN, Dortmund, Heidelberg, and Saclay) [CERN-WA-0011 
and CHARM (CERN, Hamburg, Amsterdam, Rome, Moscow) [CERN-I+!\- 
0181 used a v,,/P,, beam with an energy < 260 GeV. These experiments 
were completed in 1984. At Fermilab, CCFR (Chicago, Columbia, Fermilab, 
Rochester) [FNAL-7701 used a vs/D,, beam with an energy < 600 GeV, and 
was completed in 1988. FMMF (Fermilab, Michigan State, MIT, and Uni- 
versity of Florida) [FNAL-7331 h d a a u,,/P,, beam with an energy 5 500 GeV, 
and was completed in 1988. CDHS and CCFR used massive (about 7g/cc) Fe 
calorimeters which yielded a larger statistical sample. CHARM and FMMF 
used lighter (about 2g/cc) “fine-grained” calorimeters which yielded good 
pattern recognition, but lower statistics. 

The major charged-lepton-induced DIS experiments include the following. 
EMC (European Muon Collaboration) [CERN-NA-0281 used a ~1 beam with 
an energy 5 325 GeV, and was completed in 1983. NMC (New Muon Col- 
laboration) [CERN-NA-0371 used the EMC detector to extend the kinemat,ic 
range to x = [0.005,0.75] and Q* = [l, 2001 GeV*, and was completed in 1989. 
SMC (Spin Muon Collaboration) [CERN-NA-0471 is a third reincarnation of 
the EMC detector designed to measure the spin-dependent asymmetries of 
longitudinally polarized muons scattering from polarized targets. SMC be- 
gan operation in 1991. BCDMS (Bologna, CERN, Dubna, Munich, Saclay) 
[CERN-NA-0041 used a @ beam with an energy 100 GeV 5 E,, 5 280 GeV, 
and was completed in 1985. 
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Finally, there is a new class of experiments which has only become reality 
in the past year: lepton-hadron colliders. The HERA collider at DESY began 
taking data in 1992, colliding 26.7 GeV electrons on 820 GeV protons for a 
fi = 296 GeV. With two experiments called Hl and ZEUS this facility 
will be capable of measuring structure functions in the range z 2 10m5 and 
Q2 5 30,000 Gev. 

5.5.3 Outstanding Issues in DIS 

The DIS process is by far the most accurate experiment for measuring the 
quark distributions; however, since there is no direct lepton-gluon coupling, 
the DIS process is only sensitive to the gluon distributions at next-to-leading- 
order. Given the significant role that the gluons play in the QCD parton 
model, it is important to obtain their PDF in a separate process, such as 
direct-photon production. 

DIS experiments are performed with a variety of nuclear targets; however, 
to compare structure functions among experiments, we prefer to convert the 
nuclear structure functions to isoscalar structure functions. This necessary 
conversion is non-trivial, and can introduce significant uncertainties. 

We have sketched the process for extracting the structure functions summed 
over parton flavors; however, the extraction of the PDF’s is more complicated. 
In principle we can use proton and neutron scattering data to separately ex- 
tract the up and down distributions, but this is not straightforward. 

A further complication arises when we try to determine the sea-quark 
distributions. For example, the s-quark distribution is determined using the 
sub-process s + W + c with the final state c-quark observed. Unfortunately, 
this process is sensitive to threshold effects arising from the charm quark 
mass, as well as large non-leading order contributions arising from the mixing 
of the gluon and strange quark distributions. 

New high precision DIS data, as well as improved higher-order theoretical 
calculations, force us to go beyond leading-order perturbation theory. When 
we carry our calculations and data analysis beyond the leading-order of per- 
turbation theory, all the subtleties of the renormalization scheme and scale 
dependence arise. 
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5.6 Experimental Status of Parton Distributions 

In this section we review some properties of parton distribution functions 
(PDE’s) as currently determined from experiment. We begin with overall 
features, and go on to discuss the experimental status of scaling violation, 
evolution and the determination of &co. 

5.6.1 General Features 

In neutrino scattering the built-in flavor selection, as described for the parton 
model in Section 2, provides a powerful means of extracting PDF’s Never- 
theless, neutrino experiments on light targets (H or D) suffer in stat,istical 
precision. In the following, we briefly review the results of neutrino exper- 
iments on hydrogen, and dwell primarily upon the precision measurements 
from neutrino scattering off isoscalar targets. 

(1) Quark Densities from v-H Scattering 

Neutrino measurements of quark densities from a hydrogen target are 
in agreement between the two experiments, CDHS [5.9] and WA21 
(BEBC) [5.10], at about the 15% level. Figure 5.2 shows the ratio of 
quark and antiquark components as measured by the two groups. (It 
should be noted that the CDHS data have been adjusted in overall 
normalization to reflect this group’s recent cross section measurement 
[5.11].) 

(2) Valence Quark Densities in the Proton 

The present status of separate valence quark components, ZUV(X) a,nd 
z&(z), is summarized in Fig. 5.3.a and Fig. 5.3.b. As noted in [5.12], 
while there is general agreement on zru~(z) between the muon exper- 
iment (EMC) and neutrino experiments (WA21, WA25, and CDHS), 
there is a distinct discrepancy in the shape of z&(z). The precise rea- 
son for the discrepancy is not known. It is hoped that the recent muon 
experiment data by the BCDMS and NMC collaborations on hydrogen 
and deuterium might resolve this experimental conflict. 
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(3) Valence Quark Densities in an Isoscalar Target 

The valence quark density for an isoscalar target (i.e., the average 
of neutron and proton), which is the non-singlet structure function 
z&(2, Q’), is much more accurately determined in high statistics neu- 
trino experiments. The CCFR collaboration [5.13] has presented new 
measurements on zF3(z,Q2). These are compared with the CDHSW 
data [5.14] in Fig. 5.4. The Qz-averaged ratio of the CDHSW to the 
CCFR values of zF3 are plotted as a function of z. The figure il- 
lustrates that within the systematic error of the overall normaliza,tion 
(GZ 2.5% - 3%) the two measurements of x& are in agreement. There 
are, however, differences in the Q2-dependence at a given zr between the 
two data sets. This has important ramifications for the test of scaling 
violation in zF3(5, Q*) as discussed below. 

(4) Antiquark Densities in an Isoscalar Target 

The antiquark densities as measured in light targets by three differ- 
ent groups, WA21, WA25, and CDHS, are in agreement. as shown in 
Fig. 5.5.a (for details see [5.12]). Th e new high statistics measurement 
of zp(z, Q2) measured in the Fe target by the CCFR collaboration [5.13] 
is shown in Fig. 5.5.b. The data show that zq(z) # 0 up to z 5 0.40. 

(5) Strange Quark Content of an Isoscalar Nucleon Sea 

Neutrino-induced opposite sign dimuons, p-p+, offer the most promis- 
ing measurement of the strange quark content s(z) [S(X)] of the nucleon 
sea. In addition, these events permit determination of the electroweak 
parameters Vd (the Kobayashi-Maskawa matrix element: this is the 
only direct determination of this parameter), and m, (the mass pa- 
rameter of the charm quark: this is precisely the parameter which at 
present limits the precision of sin20 w determination in v-N scatter- 
ing). The CDHS [5.15] and CCFR [5.16] [5.17] leading order analyses 
agree in their determination of the fractional strangeness content of the - 
nucleon sea (K = 2s/(‘ii + ~2)); the average of the two measurements is: 

n: = 0.52 f 0.07 (5.30) 

118 



A noteworthy feature of the CCFR data (see [5.17]) is that the mea- 
sured s(z) [X(X)] is somewhat softer than the non-strange sea (obtained 
from the single muon CC events). This is illustrated in Fig. 5.6. Two 
new developments are underway: (a) CCFR has quadrupled its sam- 
ple of @p- events by including data from two separate runs (FNAL 
E744 and E770), and by imposing a softer muon momentum cut on 
the second muon (E,, > 4GeV); (b) It has been shown that, within the 
perturbative QCD framework, it is necessary to perform the analysis 
at least to order (Y, to achieve consistency [5.18]. It is hoped that these 
developments may help answer the question: is the strange sea &flerent 
from the non-strange sea? 

5.6.2 Evolution 

Within the framework of DIS scattering described in Section 4 there are ele- 
gant and unambiguous QCD predictions that can be verified experimentally. 
In DIS there is no fragmentation uncertainty since one deals with inclusive 
final state hadrons; the scale, which is the four-momentum transfer Q2, is 
well defined; the higher order corrections are small and the scaling violations 
are well described by the evolution equations [5.19]. Also the measurements 
yield structure functions at different values of z and Q2, and thus afford a 
system of tests of evolution (Section 3.2.3). 

Among the elegant predictions of perturbative QCD are slopes of struc- 
ture functions with respect to Q2 as a function of z and the absolute magni- 
tude and dependence of R(z, Q2) = @L / 0~ on 2 and Q2. Below we examine 
the status of these tests. 

(1) Measurements of R(z, Q2) versus QCD 

The R parameter of deep inelastic scattering is defined as the ratio of 
the absorption cross section of the longitudinally to transversely polar- 
ized virtual boson, R(z, Q2) = UL/UT, and is related to the structure 
functions F.2, and F~ as: 

R = 2 = “,z” G -& 
1 1 

(5.31) 
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where FL is the longitudinal structure function, and the other symbols 
have their usual meaning [5.12]. Perturbative QCD predicts the mag- 
nitude of R and its dependence on z and QZ (due to gluon radiation 
and quark pair production) to be [5.20]: 

R(x, Q’) = as(Q2) X2 
/’ dt [%(z.QZ) + 4f(l - ;)rG(z, Q2)] , 

27r 22Fi(2,Q2) z 23 3 
(5.32) 

where f is the number of flavors if the incident lepton is a neutrino, 
and the sum of the squares of quark charges if the incident lepton is a 
muon or an electron; G(z, Q2) is the gluon structure function. Numer- 
ous experiments have measured R(z, Q2) and claimed consistency wit,h 
the theoretical prediction. Nevertheless, from recent measurements at 
SLAC [5.21] and a simple model for higher twist effects, it is argued 
in Ref. (5.221 that the present cumulative deep inelastic scattering 
data are consistent with but do not demonstrate R = RQ~D. Precise 
measurements of R(x,Q’) at sufficiently high Q2 (e.g. Q2 > 10 - 15 
(GeV/c)‘) in next generation deep inelastic experiments [5.23] [5.24] 
will provide a compelling test of perturbative QCD. 

(2) Evolution of Non-singlet Structure Function 

In the DIS scheme, we can combine Eqs. (5.1), (5.2) and Eq. (5.10) to 
find evolution equations for the singlet and nonsinglet functions F.” 
and FiNSI, 

dFiNSkQ2) = 
dlnQ2 I 

' pnn(%, +?2'Ns'(? QZ) & 

z 2’ 
(5.33) 

Pq,(z> +‘is’(;, Q2) + pqc(z, +$g,~(;> Q’)] dz 

(5.34) 

where the Pii are the usual evolution kernels, given at one loop Eq. (5.7). 
Thus in the DIS scheme, the non-singlet (NS) evolution of F2 involves 
only the structure function itself, the known splitting functiou, and o,. 
The singlet (S) equation is coupled with that of the gluons and is hence 
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less directly related to experiment. An analysis of the kernels shows, 
however, that the slope of Fis' is expected (at leading order) to pass 
through zero at about z = 0.1, as shown in Fig. 5.7.a. 

In a manner similar to F$", the evolution equation for zFs can be 
written in the form 

d 1n;;;;;Q2) = a.(Q2)$(x,Q2). (5.35) 

The term $J(x, Q2) involves an integral of xFa(z, Q2) for z > 2; the 
integral is evaluated using the known splitting function P,, (which has 
been calculated to next-to-leading order). Thus, the only unknown 
on the right hand side of the above equation is the strong coupling 
constant: the logarithmic slope of zF3 is proportional to (Y, at each .z’. 

Neutrino experiments on heavy targets can perform this test with the 
non-singlet structure function, 2Fs. The high statistics CDHSW data 
[5.14] do not agree well with the predicted dependence of the scaling 
violations on x, although the authors state that the discrepancies are 
within their systematic errors. Previous CCFR data lacked the statisti- 
cal power to offer a conclusive test [5.25]. The recent CCFR non-singlet 
data show an evolution consistent with the pQCD prediction, and pro- 
vides an accurate determination of o, [5.26]. 

Measurements of the scaling violations are sensitive to miscalibrations 
of either the hadron or muon energies. For example, a 1% miscali- 
bration can cause a 50 MeV mismeasurement of I&D, but hadron 
and muon errors enter with opposite signs. Thus if both hadron and 
muon energies were in error by the same amount, the error in &co 
would be small. Therefore, while it is important that the hadron and 
muon energy calibrations and resolution functions be well known, it is 
crucial that the energy scales be cross-calibrated to minimize energy 
uncertainty as a source of error. 

The Figure 5.7.b shows that the CCFR data have an evolut.ion of zF3 
consistent with the pQCD prediction. The pQCD prediction is a next- 
to-leading order (NLO) calculation in the modified minimal subtraction 
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- 
(MS) scheme. A Q2 > 15 (GeV/c)* cut was applied to eliminate the 
non-perturbative region, and another x < 0.7 cut to remove the highest 
x bin (where resolution corrections are sensitive to Fermi motion). The 
best QCD fits to the data were obtained as illustrated in the figure. 

(3) Determination of &co 

A good visual representation of structure function evolution compares 
the magnitude of the Q2-dependence of the data in each x-bin with 
the dependence predicted by the fit. This is shown by plotting the 
“slopes” (= dlnxFs/dlnQ2) as a function of x. Figure 5.7.~. shows 
the CCFR data along with the curve through the points predicted by 
the theory. More specifically the values shown in Fig. 5.7.~ result from 
power law fits to both data and theory over the Q* range of the data. 
The logarithmic slopes of the data agree well with the QCD prediction 
throughout the entire x-range. This observation is independent of cali- 
bration adjustments within reasonable limits. At low-x values the data 
agree well with predictions independent of the value of AQco. 

The value of I&O resulting from the fit to xFs data is 179 f 36 MeV, 
with a x2 of 53.5 for 53 degrees of freedom (x2=53.5/53). Varying the 
Q2 cuts does not significantly change &co; for Q2 > 10 (GeV/c)2, the 
best fit gives Agco = 171 f 32 MeV (x2=66.4/63); and for QZ > 5 
(GeV/c)2, &CD = 170 f 31 MeV (x2=83.8/80). 

More precise determinations of A gcn from the non-singlet evolution is 
obtained by substituting Fz for x F3 at large values of x. The evolution 
of Fs should conform to that of a non-singlet structure function in a 
regron, x > xCculr so long as x,,* is large enough that the effects of an- 
tiquarks, gluons, and the longitudinal structure function are negligible 
on its Q2 evolution. The “best” value of Aocn from non-singlet evo- 
lution is obtained by substituting F2 for x F3 for x > 0.5. (The slopes 
for F2 in this region are also shown in Fig. 5.8.c.) This non-singlet fit 
yields: 

AQCO = 210 f 28 MeV for Q2 > 15(GeV/c)2. (5.36) 
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Varying the xcut from 0.5 to 0.4 does not significantly change AQC~; 
the above substitution yields, Agco = 216 f 25 MeV with good fit. 
Using 2zFl instead of Fs in this fit changes AQC~ by +l MeV. 

(4) Evolution of Singlet Structure Function 

We note (for details see Ref. [5.12]) that there were some experimen- 
tal conflicts in Fs-evolution: whereas the BCDMS data showed lovely 
agreement with the theory (see Fig. 5.8.a and Fig. 5.8.b), the EMC 
and the CDHSW data on Fs-slopes were steeper than the prediction 
(Fig. 5.8.~ and Fig. 5.8.d). The CCFR data on F2 show an evolution 
consistent with the pQCD. Figures 5.8.e and 5.8.f illustrate this con 
sistency. It should be noted, however, that for the F;? evolution the 
functional form of the x-dependence of the gluons must be assumed, 
and its coefficient must be determined from the data. 

We point out that, assuming the QCD evolution is unequivocally veri- 
fied in the non-singlet evolution, the singlet evolution permits the ex- 
traction of the gluon structure function. In neutrino experiments, tire 
simultaneous evolution of Fg and xF3 permits a very powerful con- 
straint on the gluon degrees of freedom [5.25]. 

5.7 Status of DIS Sum Rules 

5.7.1 Introduction 

The invariant structure functions which parameterize the deep inelastic scat- 
tering cross section are related to the densities of quarks constituting the nu- 
cleon by the Quark Parton Model (QPM)(Section 2). Quark Parton Model 
sum rules are thus consistency conditions that relate appropriate integrals of 
measured quark densities to the total number and charges of the constituent 
quarks. In the following, we review from a phenomenological perspective the 
sum rules and the experimental challenges and tests of certain important 
sum rules in DIS experiments [5.27] [5.12]. S urn rules establish relationships 
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among the total integrated quark and antiquark densities. For simplicity, we 
consider the contributions of the first generation quark densities. (Higher 
generation quark densities generally cancel in the sum rules.) If we denote 
the total u-quark and d-quark densities by: 

J 
1 up = 0 4x)& 

/ 
’ Dp = 

II 
d( x)dx , (5.37) 

it follows from the isospin invariance that the total density of the u-quark in 
the proton must be equal to the total density of the d-quark in the neutron: 

U = Up= D, 

D = D, = U,, 

TJ = v&, = 6, 

D = lip =Dn. (5.38) 

The above simple relationships follow directly from the assigned baryon and 
isospin quantum numbers of the nucleon, and no violation of these relations 
have been reported to date. 

The experimental challenges in precision tests of QPM sum rule predic- 
tions spring from two sources: 

(1) Low-z Region: The experiments measure momentum densities of the 
partons, i.e., x4(x); the sum rules involve integration over the number 
of quarks. The sums are thus obtained by integrating over the mea- 
sured momentum densities divided by x, which weights the low-z region 
heavily. A good experimental resolution and a good understanding of 
the resolution functions of the measured quantities in the low-x region 
are necessary for accurate tests. 

(2) Relative Normalization: Sum rules involve differences of structure func- 
tions or cross-sections. The relative normalization between relevant 
cross-sections, therefore, must be accurately measured. Furthermore, 
as can be seen below, differences often must vanish at z = 0, or the 
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sum rule will become divergent. This imposes an additional emphasis 
upon measuring the relative normalization well. 

5.7.2 Gross-Llewellyn Smith Sum Rule 

The Gross-Llewellyn Smith (GLS) sum rule is the most accurately tested of 
sum rules. The GLS sum rule predicts that the number of valence quarks in 
a nucleon, up to finite Q2 corrections, is three [5.29]. It involves an integra- 
tion over the non-singlet neutrino structure function, xF3(x, Q2)/z, which 
is obtained by subtracting the antineutrino differential cross section on an 
isoscalar target from the corresponding neutrino cross section. In the QPM, 
the GLS sum rule is: 

S GLS = 
I 
ol~dx=(U-V)+(i+~. (5.39) 

To verify this result, see Eq. (2.44), recall that F(“h) = Few+“) for h = p, n 
and use isospin invariance, Eq. (5.38). The integrand of the sum rule is the 
coefficient of 1 - (1 -Y)~ in the difference of the two differential cross sections. 

The effects of scaling violations modify this sum rule. Perturbative QCD 
predicts a calculable deviation of the GLS sum rule from 3. In next-to-leading 
order, Sons is given by: 

S GLS = I-%!$)+$+O(Q-‘) (5.40) 

The QPM relates the parity violating structure function, 2 F3, to the valence 
quark density of the nucleon, and the sum rule follows. The second term in 
the equation corresponds to the known perturbative QCD correction, while 
the third term corresponds to an estimate of power suppressed (twist-4) con- 
tribution to the sum rule [5.30]. Using perturbative QCD with .hQc~ = 200 
MeV the sum rule therefore predicts Sot,, = 2.66 at Q2 = 3 (GeV/c)2. The 
order (Y, result may be derived from Cp) m Eq. (5.6). This computat,ion 
is greatly simplified by using the fact that the integral from 0 to 1 of a plus 
distribution vanishes. 
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Due to the l/z weighting in the integrand, the small z region (z < 0.1) is 
particularly important; 90% of the integral comes from the region 5 5 0.1. It 
follows that the most important issues to assure small systematic errors are 
(a) accurate determination of the muon direction; and (b) accurate determi- 
nation of the relative v/v flux. Since zFs is obtained from the difference of 
v and v cross-sections, small relative normalization errors can become mag- 
nified by the weighting in the integral. The absolute normalization uses an 
average of v-N cross-section measurements. 

As an example, in the CCFR measurement of S&s, the values of zFs are 
interpolated or extrapolated to Qi = 3 (GeV/c)*, which is approximately t,he 
mean Q2 of the data in the z-bin which contributes most heavily to the inte- 
gral. The resulting x F3 is then fit to a function of the form f(z) = Az6(1 -z)~ 
(b > 0). The integral of the fit weighted by l/x gives Sons. The estimated 
systematic error due to fitting on Sam is f0.040. The dominant systematic 
error of the measurement comes from the uncertainty in determining the ab- 
solute level of the flux, 2.2%. The other two systematic errors are 1.5% from 
uncertainties in relative i? to v flux measurement and 1% from uucertainties 
in muon energy calibration. The reported CCFR value for Sons is [5.28]: 

S GLS = J 
1 xFiN 

z Tdx = 2.50 f 0.018( stat.) f 0.078( syst.) (5.41) 

The theoretical prediction of S ohs, for the measured A = 213 f 50 MeV from 
the evolution of the non-singlet structure function, is 2.66 f 0.04 (see Eq.( 
5.40)). The prediction, assuming negligible contributions from higher twist 
effects, target mass corrections, [5.32] and higher order QCD corrections, is 
within 1.8 standard deviations of the measurement. The current stat.us of 
Sons measurements is shown in Fig. 5.9. 

The 3% accuracy of the GLS sum rule at Q* = 3 GeV2 raises theoretical 
concerns on nonleading contributions, which are discussed in [5.30] and [5.31]. 

5.7.3 Adler Sum Rule 

The Adler sum rule predicts the integrated difference between neutrino- 
neutron and neutrino-proton structure functions. Unlike the GLS sum rule. 
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this sum rule is exact, and is expected to be valid to all orders of perturbation 
theory. It states 15.331 

s, = J 1 (F2” - F,“p) dx = 1 
II 2x 

(5.42) 

As for the one-loop correction to S ens, the vanishing of the one-loop correc- 
tion to S* follows immediately from the fact that C~‘(X)/X in Eq. (5.6) 
is a plus distribution. In terms of the total number of u- and d-quarks, the 
sum rule implies (see Eq. (2.42)): 

s, = 
/ ,)A(4 + K(x) - d&l - qa(x)] dr 

= D,,+~,,-Dp-~p 

= (U-u)-(D-D) (5.43) 

The prediction follows from the last equation. 
The WA25 (BEBC) collaboration [5.34] has used neutrino data on a 

light target to obtain this sum rule. Their measurement, averaged over 
1 < Q2 < 40 (GeV/c)* and assuming the Callan-Gross relation, yields: 

SA = 1.01 f 0.08 (stat.) f 0.18 (syst.), (5.44) 

which is consistent with the prediction at the 20% precision. Figure 5.10 
presents the WA25 measurement of S, at various Q2 cuts. It shoulcl be 
pointed out however that the WA25 collaboration used a value for the to- 
tal VN cross section which is lower than the current consistent value (see 
Refs. [5.35], [5.36].) The central value of the sum rule, therefore, should be 
adjusted: 5’~ = 1.08 f 0.08 & 0.18. 

The Adler sum rule is particularly difficult to test accurately. Obta,ining 
statistically accurate neutrino data on a light target would require a very 
intense neutrino beam; good low-z resolution, and accurat,e relative normal- 
ization between proton and neutron (deuterium) targets impose additiomd 
constraints. No new effort is in view to improve upon the present 20% mea- 
surement of S,. 
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5.7.4 Gottfried Sum Rule 

The Gottfried sum rule is the “Adler sum rule analogue” for charged lepton 
probes. The sum rule involves the difference of F2 measured in proton and 
neutron targets using a muon beam [5.37]: 

s = l(%P-T) 
G 

/ 0 x 
dx=;. 

As in the case of the Adler sum rule, it is instructive to express this sum 
rule in terms of contributions (integrals) from individual quark densities (see 
Eq. (2.31)): 

‘G = ~[4(u,+~~)+(D,+~*)-4(Li,+~“)-(D,+~”)] 

u+D)-(D+B)]. 

If one assumes [5.12] that the total number of anti-up and anti-down quarks 
inside a proton is the same, i.e. i-j = B, then the sum rule predicts a value 
of (l/3). Analogous to the Adler sum rule, the Gottfried sum rule is exact: 
the expected QCD correction to So is very small. This has been shown in 
Ref. [5.38]. 

It is the assumption v = D inside the proton that is seriously impugned 
by the recent NMC measurement of So [5.40]. Before discussing the experi- 
ment, let us analyze the of contribution of various quark species to So. 

When written in terms of u- and d-quark contributions, this is the first 
sum rule where the contributions of quark and anti-quark of the same type 
add - for all other sum rules, Gross-Llewellyn Smith, Adler, Bjorken, the 
contribution of say u-quark and antiquark subtract. 

There is no a priori reason to believe that the total number of ii be the 
same as a inside a proton. That the proton has 2 valence u-quarks, and 1 
valence d-quark implies that the number of u-ii pairs will be less than the 
corresponding number of d-d pairs in the nucleon sea - the suppression 
of u-quarks in the sea will be due to the exclusion principle [5.39]. Isospin 
symmetry does not predict equality. Exploiting the Adler sum rule (5.43), 
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however So can be cast in the form: 

$2 = ;[(U-u)-(D-n)]+@-D)] 

= ;+gu-D)]. (5.47) 

If?? < i?, then it follows that So < (l/3). This was found by the NMC [5.40]. 
Prior to these data, earlier measurement lacked precision in the critical low-z 
region to provide a conclusive test of the sum rule. The So measurements 
by SLAC [5.41], EMC [5.42], and BCDMS [5.43] groups were all consistent 
with the naive prediction of (l/3) within their large errors (typically 20%). 
The earlier measurements, however, did show consistently a central value 
of So that was lower than the prediction. The NMC experiment had the 
commensurate statistics and resolution in the low-z region enabling them 
to measure well q/l$ ratio down to small values of z [5.44]. Using this 
measured ratio, and the world-average of Fs(Deuterium), they obtained I$- 
5: 

I$ - E = 2Fs(Deuterium) x 1--5/G 
1+WG 

(5.48) 

The NMC measurement of (I$ - I$) dark-symbols (right-scale), and that 
of the corresponding integral, J(F$ - c)d z, as open-symbols (left-scale) are 
shown in Fig. 5.11. as a function of 2. The “circles” and “triangles” are two 
distinct methods of obtaining these data; their agreement reveals consistency. 
The lowest measured z-bin was 0.004; and over the measured z-region, they 
reported: 

s = l(JY-r) 
G / dx = 0.227f0.007f0.014 for 0.004 

0 2 
5 z 5 0.8. (5.49) 

The measured z-dependence, just like the xF3 in the GLS measurement, is 
consistent with a power-law fit in 2. This fit could be extrapolated to the 
unmeasured region in z below 0.004. The corrected sum rule is: 

SG = 0.2403~ 0.016 for 0 5 5 5 1. (5.50) 
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This precise measurement of So is more than five-standard deviations higher 
than the naive prediction of l/3. 

The discrepancy has engendered a lot of interest. Some authors have pos- 
tulated large asymmetry in the nucleon sea [5.45]; others have attributed the 
cause of disgreement to extrapolation to the unmeasured region in x [5.46]. 
Eichten et al. [5.47] have interpreted this discrepancy to be an interesting 
property of the nucleon. That there is an asymmetry in u- versus d-sea in 
the proton is not surprising; perhaps the startling feature is the possible 
magnitude of the asymmetry. 

5.7.5 Bjorken Sum Rule 

Polarized hard scattering is a rich subject, with many recent developments 
[5.48]. Here we discuss the extra structure functions that exist in polarized 
deep inelastic scattering. For a spin half target, there are two polarized struc- 
ture functions, gr and gs. QCD predicts that ga is higher twist and therefore 
gives a small contribution to the cross section. The only measurements to 
date are of gr: for polarized protons at SLAC [5.49] and by EMC [5.50], and 
recently for polarized deuterium by SMC [5.51]. 

Consider the scattering of polarized muons (or electrons) off a polarized 
nucleon, with the axis of the polarization being the collision axis. We let 
o(TT) (a(tl)) be the cross section when the target polarization is parallel 
(antiparallel) to the beam polarization. Then 

d*Htt) - 4tl)l 
dxdy = &Cl - y/%l(x, Q), (5.51) 

where we have dropped terms that are suppressed by a power of Q2 in the 
Bjorken limit. The perturbative QCD prediction for gr is 

a@, Q) = i x$(4; - 4:) + O(G), 
f 

where the O((Y*) corrections are known [5.52]. Here, $J (4;) represents the 
number density of partons of flavor f that are polarized parallel (antiparallel) 
to the initial hadron. 
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The Bjorken sum rule [5.53] relates the difference between gr for the 
proton and neutron to the nucleon vector and axialvector couplings gv and 

gA 

Ssj E l-‘y - I?; = o1 [d(x) - g;(x)] dr J 

where rr denotes the first moment of gr. The sum rule arises because the 
first moment of a polarized quark density plus the antiquark density is the 
expectation value of an axial current operator: 

AS = ilP: - 4; + 4; - 4)ldl= (Nl~rr+rs~flN)/(2p+). (5.54) 

The Bjorken sum rule is a firm prediction of QCD, since it rests on estab- 
lished perturbative methods and on isospin invariance. It has recently been 
tested at low accuracy by the SMC [5.51]. With the aid of the EMC result 
[5.50] 

l?y(EMC) = 0.114 f O.O12(stat.) f O.O26(syst.), 

the SMC deuterium data give 

(5.55) 

r;(SMC) = -0.08 f O.O4(stat.) f O.O4(syst.), (5.56) 

so that 
Ssj(SMC) = 0.20 f O.O5(stat.) f O.O5(syst.), (5.57) 

in agreement with the theoretical prediction Eq. (5.53) 
Ellis and Jaffe [5.54] derived sum rules for d and g; separately. Their 

critical assumption was that the strange quarks in the nucleon are unpolar- 
ized, so that in the notation of (5.54) As = 0. This hypothesis is plausible 
but it is by no means a prediction of QCD. In addition, the derivation used 
flavor SU(3) symmetry to relate the nonsinglet matrix elements in the oper- 
ator product expansion to semi-leptonic decay rates of strange baryons; this 
is less accurate than isospin invariance. Modern values then predict [5.50] 

l?:(EJ) = 0.189 f 0.005, l?;(EJ) = -0.002 f 0.005. (5.58) 
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The EMC and SMC results violate the Ellis-Jaffe sum rules. The EMC 
result, plus weak interaction measurements and SU(3) invariance, imply that 

Au = 0.74f0.10, Ad = -0.54f0.10, As = -0.20z!z0.11. (5.59) 

Taken at face value, these numbers imply that the strange sea quarks have 
substantial polarization and that the quarks carry little of the spin of the 
proton (since Au + Ad + As = 0.01 f 0.29). 

It is possible to evade this conclusion: for example, one may question the 
direct identification of the Af’s in Eq. (5.59) with spin fractions carried by 
quarks in a quark model wave function [5.55]. Then there could be a large 
spin asymmetry in the gluons. In any event, if the violation of the Ellis- 
Jaffe sum rule is confirmed, then it implies some surprising features of the 
nucleon wave function and of the associated nonperturbative physics. There 
is interesting work still to be done [5.48], particularly in a flavor separation 
of the spin dependent parton densities. 
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Figure 5.1. Low order diagrams for DIS. 
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6 Hadron-Hadron Cross Sections 

The factorization program is fully realized in hadron-hadron cross sec- 
tions. The underlying hard scattering may be initiated by electroweak inter- 
actions, as in Drell-Yan or direct photon production, or may be pure QCD 
processes, as in jet and heavy-quark production. In this section, we discuss 
hard scattering corrections in the simplest electroweak processes. 

6.1 Hard-Scattering Corrections in the Drell-Yan Cross 
Section 

The Drell-Yan process was introduced in Section 2.4. We will present the 
one-loop correction, noting that the inclusive Drell-Yan cross section is prob- 
ably the only realistic hadronic cross section that is simple enough to present 
in detail. For definiteness, we limit ourselves to the purely electromagnetic 
process. 

The basic factorization theorem for the unpolarized cross section was 
introduced in Section 3.3.1 and illustrated in Fig.3.1. Since the electromag- 
netic production of lepton pairs by a virtual photon only involves lowest order 
QED, the angular dependence in 0 and 4 can be calculated later. Although 
Eq. (3.38) holds for the double differential cross section, the generalization 
is straightforward, and here we only consider the corrections to the single 
differential cross section du/dQ’ written in the form 

MT, Q2) 
= 5 i’ +a /ol he 1’ dz ~(T/VA~B - 2) 

dQ2 1 

x~,/A(l?a,~)H,b(2,(Y,(~))~*,B(7)B,II), (6.1) 

where the parton-parton cross section Ha* is evaluated at the scaled variable 
z = Q2/q~qes, with 6 is the center of mass energy of the hadron-hadron 
system . The theoretical justification for this result is analyzed in [6.1]. 

The hard scattering cross section Hob has a perturbative expansion in cy, 
of the form 

Ha6 = q,( Hi;) + z Hi;) + . .) , (f3.2) 
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where os contains the overall dimensions. In lowest order of perturbation 
theory, the only channel allowed is Q + q -+ y’, where Q labels a quark with 
charge Q9 and the photon is virtual. H co) is therefore given by the parton- 
model (Born) cross section. At higher order we proceed as in Section 5.1 for 
DIS. The hard-scattering cross section is independent of the nature of the 
external hadrons, so we can compute it from Eq. (6.1) by considering a par- 
ticular case: namely we apply Eq. (6.1) to the parton-parton reaction. Then 
the functions 4(v) measure the parton content of the external partons. In 
this case, the quantity on the left-hand-side is an n-dimensional scattering 
cross section which contains poles as e + 0. As in DIS, perturbative ex- 
pansions for the distributions di/j enable us to solve for the hard scattering 
functions H. 

In 0(a,) we have to consider both the virtual corrections to this basic 
vertex diagram and the gluon bremsstrahlung reaction p + q + y* + g. In 
addition there are new channels p + g --t q+y* and q+g + Q+r*. The latter 
reactions are very interesting from the experimental point of view, because 
they make the cross section sensitive to the gluon density in the hadron. 

6.1.1 O((Y~) Corrections to the Drell-Yan Reaction 

The calculation of one-loop corrections proceeds much as for DIS. The 
cut graphs are shown in Fig. 6.1. We recognize that they are the crossed 
versions of the diagrams for deeply inelastic scattering. 

If we regularize the ultraviolet and infrared divergences by working in 
n-dimensions, then all pole terms cancel, apart from the collinear poles due 
to gluon radiation parallel to the directions of the incoming quark and anti- 
quark. As in the DIS cross section, Section 5.4, this is the cancellation of final 
state interactions, which is necessary for the factorization theorem Eq. (6.1) 
to hold. The remaining collinear divergences can be absorbed into the per- 
turbative parton distributions, leaving behind the hard-scattering function. 
To make this explicit, we expand (6.1) with external partons a and b, t,o 
order o,, using @$(z) = biia(l -x) (Eq. (3.14)). We find 
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-$T,Q~.~) + %$,Q’,~) = 
(I 

H$)(T, Q*, E) + “H:;)(r, Q*, E) 

-: F J,: dwi&ha. W::)(~, Q2, 4 

-: T l:, dm&h W:o,)(7, Q*, 6). (6.3) 

Thus, to extract the one-loop hard scattering, we need the (regulated) one- 
loop cross section and the (regulated) one-loop parton distributions, given in - 
Section 5.2 for the MS and DIS schemes. Actually, because H$) is nonzero 
only for quark-antiquark scattering, with (see Eq. (2.62)) 

(6.4) 

we only need ~$r,,‘ib = (r) &,@ and I$$: = c$$:$ at this level. For simplicity we use 
N for the number of colors. 

The explicit quark-antiquark cross section at one loop is given by 

(~>Q*,c) = Q; 

X{-(f-~E)p~~‘+~~t’(~)}, (6.5) 

where 

u&(z) = 6(1 - z)C,[25(2) - 41 

+ C~[4231(s) - 2(1 +z)ln(l -r) - (~~~~) Inz] (6.6) 

and where PJi) is the one-loop evolution kernel (splitting function) given in 
Eq. (5.7), and where we define 

(6.7) 
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Note that we take E s 2 - n/2. Other conventions, of course, change the 
formulas somewhat. 

The other partonic reaction q+g + y+q, which starts at O(a,), is where 

(.T>Q*,~ = Q’/ 

with 

x{ -~(~-,,)p~~‘+wbld(x)}, (6.8) 

d)(x) = C,V[(~ - 2x + 22‘7 In 
(1 -x)2 

49 x + i(3 + 2x - 3X2)] , (6.9) 

where again Pi:) is the one-loop splitting function. 
The determination of the one-loop hard scattering functions is now a - 

simple matter. For “MS” distributions (Eqs. (5.8) and (5.9), for instance), 
we use 

h/b@, c) = &ba(l - 2) - $$$(~) + o(C$), (6.10) 

in which the residues of the pole terms are the splitting functions. Substitut- 
ing Eq. (6.10) into the general expanded formula Eq. (6.3), and comparing 
the results with Eqs. (6.5) and (6.8), we find simply, 

HF(” _ (1) - W*q > 
j+ = &I) 

(6.11) 

99 (6.12) 

For the DIS scheme, the parton distributions, Eqs. (5.11) and (5.12), are 
a bit more complicated, because they have picked up various infrared safe 
corrections from the one-loop deeply inelastic scattering cross section. The 
principles are the same, however, and we find in this scheme [6.2], 

HD"(') 99 = &{(l + z*)&(z) + 300 + ($ + 1)6(1 - z) - 6 - 42) , 

Hz(') = a{ (2" + (1 - z)*)ln(z - z) + iz* - 5% + i} (6.13) 

Both Eqs. (6.12) and (6.13) provide absolute predictions for the Drcll- 
Yan cross section, when combined with parton distributions in Eq. (6.1). It 
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is important, of course, to use distributions that have been determined in the 
corresponding scheme, usually from deeply inelastic scattering (see Section 
2). As a practical matter, the hard scattering corrections at one loop turn 
out to be substantial; sometimes as large as the zeroth order (parton model) 
cross section. This is the theoretical side of the “K-factor” problem for Drell- 
Yan (see below). In Section 6.3 we shall see that the experimental situation is 
consistent with large perturbative corrections relative to the parton model. 
Considerable progress has been made in understanding the origin of large 
corrections for values of 7 = Q*/s not too small [6.3] [6.4], but it is fair to 
say that the problem is not yet solved 

6.2 Drell-Yan at Two Loops 

Along with DIS, the inclusive Drell-Yan cross section has been fully ana- 
lyzed at two loops in a series of papers by van Neerven and his collaborators, - 
in both the DIS scheme and the MS scheme [6.5] [6.6] [6.7] [6.8] [6.9] [6.10] 
[6.11]. The full results for the hard-scattering functions at two loops are 
quite lengthy; but it is perhaps useful to exhibit here the full plus and delta- 
function distributions, as they occur in the quark-antiquark two-loop hard 
scattering function: 

H(!)~S+V(z) = (2)‘6(1 - 2) 99 

x( C,,&[ [y-24[(3)]ln JX -llln* 
(Id*) (is) 

+(2)* + y”r(2) + 28<(3) - e 

+ [ 24[(2) + 176C(3) - 931 1 n 

+n,CF[21n2(~)-~ln($)+8C(3)-~<(2)+~]} 

- +bO(%) In* + [(y - 16<(2))Do(z) 
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-yD1(z)] In 
( ) 

$ - y’&(t) + [ y - 32[(2)] 2)1(z) + [ 56C(3) 

+3(p) - x$ ] Ddz)] + &‘* [ [ 64Dr(z) + 48270(z) ] In* 

+ [ 192D2(r) + 96’Dl(z) - (128 + 64C(2))Da(r)] In ($) 

+128Ds(%) - (128(‘(2) + 256)Dr(%) + 256<(3)‘Do(%)] 

+nfcF !jDO(%) In2 
[ 

($) + [ %&(z) - +0(2)] In ($) 

+9*(%) - $QD,(%) + ($ - ~C(2))DO(%)] . (6.14) 

To these results are added various smooth functions of the variable %. We 
may note that it is only in quark-antiquark scattering that distributions that 
are singular at % = 1 occur. Note that there are plus distributions up to 

‘D3(2). 

6.3 Drell-Yan Cross Sections: Experimental Review 

The production of dileptons in high energy collisions has been a staple of 
all hadron machines in the world for more than two decades. Lepton pairs in 
hadronic collisions were first observed at Brookhaven by Lederman and his 
group (see [6.12] and [6.13]). See Fig. 6.2 for the invariant mass spectrum of 
this original experiment. This early experiment was conceived as a scheme 
for searching for the carrier of the charged weak process, the intermediate 
vector boson (IVB). This technique has contributed greatly to the high energy 
physics landscape, including: the discovery of two new quarks (more below), 
as a source of information on parton distributions of the nucleon, as the 
essentially sole arbiter of parton distributions of mesons, and as a benchmark 
for a host of naive parton model predictions as well as sophisticated QCD 
calculations. 
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6.3.1 Massive Photon Production 

The parton-model picture of the Drell Yan reaction has been described 
above in Section 2.4. In the collision of, say, two protons, a quark from one 
proton seeks out and annihilates with an antiquark from the other proton 
to form a single, off-shell photon which subsequently converts into the ob- 
servable lepton pairs. The term “Drell-Yan” has been extended to include 
the production of any spin-l virtual particle produced by electroweak inter- 
actions. 

General experimental techniques. The choice of experimental technique 
depends on the physics and the beam configuration. Because of the low 
cross section, and of the desirability for high rate studies of a continuum 
cross section, fixed target experiments at the highest available energies or 
colliding beam experiments utilizing the highest possible luminosities are 
advantageous. At Brookhaven, the original fixed target experiment with 
incident nucleon and pion beams was utilized to produce dimuon pairs. At 
Fermilab, Brookhaven, and CERN, such experiments were carried out for 
many years, only recently culminating with E605 at Fermilab. It was with 
electron pairs, however, that the Brookhaven experiment discovered the J/$ 
in a follow-up to the original dimuon approach. Electrons were used with this 
double-arm spectrometer because of better mass resolution (a few percent). 
For a review of this experiment, see Ref. [6.14]. 

Simultaneous with the early fixed target experiments, the CERN ISR 
mounted experiments using the collision of two proton beams in the center 
of mass. Presently, the tradition of high energy colliding hadron beams is 
active with the final analysis of the CERN SPS facility and with the on- 
going Fermilab Tevatron program, both proton-antiproton colliding beam 
machines. This tradition should be continued into the anticipated SSC and 
LHC, proton colliding beam facilities. 

Because of the high intensities necessary, most fixed target experiment,s 
have concentrated on muon final states. This is because the production 
of background leptons from decays and of the “punchthrough” of intersc- 
tion and bean-related particles can be suppressed through the utilization of 
heavy hadron absorbers directly downstream from the target. Muons tra- 
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verse such dumps with ease and may be momentum analyzed in a magnetic 
spectrometer, while electrons would be totally invisible. The negative feature 
of such an approach is that the momentum resolution for muons is degraded 
through multiple scattering (by about 15%). Large air-core, rather than iron, 
magnets have been used to suppress this degradation. Colliding beam exper- 
iments are much cleaner in this regard and have concentrated on the better 
resolution obtainable with electromagnetic calorimetry. Consequently, the 
IVB-production, and the early ISR experiments were able to concentrate on 
electron final states, and key universality tests were performed in the early 
days. At the highest energies, and in the forward direction, where back- 
grounds from decays are severe, electron measurements are still superior, as 
generally iron toroids are utilized for muon analysis in those regions. In either 
approach, mass resolution is important in order to distinguish the continuum 
from the resonant dilepton states or, as is the case with the IVB experiments, 
to precisely measure the mass of the decaying particle. 

Sign$icant results. Among the notable achievements utilizing this tech- 
nique of looking at dilepton final states are the discovery of new quark species, 
determination of parton distributions, and the measurement of the normal- 
ization of the cross section. 

Nevl quarks. Production of dileptons have served well as the indicator for 
the qq resonant states - the ‘onia’ of charm and beauty, in particular. Most 
recently, the technique was extended to the highest energies and resulted 
in the discovery of the bottom quark resonant state, T. Of course, the 
original discovery, at both SPEAR and Brookhaven, of the J/$ was nearly 
scooped by the original Drell-Yan Brookhaven experiment which missed the 
interpretation of a shoulder in the invariant mass spectrum (Fig. 6.2). This 
story is one of the famous tales of high energy physics. 

Parton distributions. The earliest utility of continuum dilepton produc- 
tion was as an important test of the parton model and, with the acceptance 
of the parton model, determination of the momentum distributions of the 
partons participating in the collision, especially the quark “sea”. 

Nucleon distributions. With incident proton beams, the parton distribu- 
tions of the proton can be extracted in a manner not dissimilar from the 
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procedure in deeply inelastic scattering. Through the comparison of incident 
proton and antiproton beams, NA3 at CERN was able to extract both the 
valence and sea quark momentum content. 

By parameterizing a scaling set of valence and sea distributions by shape 
parameters, 

u(x) = Az”(1 - 2)” 

d(z) = 0.5721(Z) 

S(z) = C(1 - LX)@’ 

NA3 found (see [6.15]) the results in table 6.1. For comparison, the CDHS 
results from neutrino scattering are also shown as are the results of E288 
from Fermilab, which made DIS-inspired parameterizations of the valence 
distributions. 

CDHS NA3 E288 
a 0.51f0.07 0.60f0.08 
p. 2.38f0.09 3.59f0.14 
P8 8.0f0.7 9.03f0.30 7.62f0.08 

Table 6.1. Representative shape parameters for parton distributions [6.16]. 

Pion distributions. With incident pion beams and assumptions about the 
nucleon parton distributions, NA3 also fit for the parton distributions of 
quarks inside a pion. Again, they parameterized the distributions with a 
form 

V(x) = A&(1 - z)” 

S(z) = As(l - z)” 

They found o =0.41&0.04 and /3=0.95&0.05. More up-to-date fits to parton 
distributions also employ Drell-Yan data (see Section 8). 

Scaling. The parton model suggests that the cross section for lepton pairs 
of invariant mass Q should scale as a function of the variable, fi = Q/,/Z. 
Fig. 6.3 shows a variety of data, over a moderate range of 6. The scaling 
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behavior is reasonably demonstrated. The cross section below the Z mass at 
fi = 630 GeV is determined to be (I = 405f51&84 pb by UA2 [6.17]. This 
is in rough agreement with O(ai) calculations. CDF has also measured the 
integral cross section for electron pairs below the 2 mass (see [6.18]). 

The K-factor. The fact that the normalization of the cross section in the 
parton model is off by large factors is consistent with theoretical results (see 
Section 6.1.1). Table 6.2 shows a variety of experiments and their measured 
“K-factor” - the correction required of the naive theory to match the data. 

Group 
E288 
E439 
CHFMNP 
AABCSY 
NA3 
E537 
NA3 
NA3 

Beam/target 
p/Ft 
P/W 
PIP 
P/P 

p/Ft 
antip/W 

E326 
NAlO 
Goliath 
Omega 

Pi/W 

Pi/W 
pi/Be 
Pi/W 

cm Energy K 
27.4 1.7 
27.4 1.6hO.3 

44,63 1.6f0.2 
44,63 1.7 
27.4 3.1f0.5f0.3 
15.3 2.45f0.12f0.20 
16.8 2.31kO.4 
16.8 2.49dzo.37 
22.9 2.22k0.33 
20.6 2.70fO.OSf0.40 
19.1 2.8fO.l 

16.8,lS.l 2.5 
8.7 2.6f0.5 

Table 6.2. K Factors for dilepton experiments (Ref. [6.15]). 

As can be seen, the discrepancy is large, a factor of 2 or more. Calculat,ions 
beyond the leading log at order o, were performed and the result was that the 
correction to the leading order was disturbingly large, I< = 1 + 2n(u,/3 N 1.6 
for (Y, N 0.3, appropriate for pair masses of a few GeV. Clearly, concerns 
about the convergence of the perturbation series were very real, until it was 
discovered that, for the dominant vertex corrections, the series exponentiates 
for all orders. The series is then expressible as K + e2*ns/3 = 1.8 [6.2] 
[6.4]. That the major part of the discrepancy is explained in this fashion 
is comforting, but the problem is not fully solved [6.3]. Other sources of 
the discrepancy have also been proposed. The contributions of very low z 
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regions, below the accessible data used for the parameterizations, could be 
important since much of the cross section could still be “hidden” in that 
region. Also, corrections for Fermi motion in the heavy targets and the pion 
parton distribution shapes can be invoked. Most important, probably, is the 
uncertainty in the normalization of the data, which could be in the tens of 
percent. 

6.3.2 W and Z Production 

While one of the original motivations for using dilepton final states was 
a search for the intermediate vector boson (IVB) of the conventional weak 
interaction, it was many years before that was realized. Now, the production 
of both W and Z bosons forms an important part of the experimental program 
of all of the highest-energy colliders. The language used is that of the original 
Drell-Yan prescription, with only electroweak modifications. 

The importance of W and Z production is many-faceted. Primarily, the 
precise determination the W mass is of utmost importance in the program 
of global electroweak parameter determination. The production of IVB plus 
hadronic jets serves as an important laboratory for QCD measurements. The 
analysis of the V-A asymmetry in W decays is a sensitive measure of parton 
density functions. Finally, the observation of W’s is among the clues for the 
uncovering of the still elusive top quark. 

General expetimental techniques. The three major detectors which have 
or will have impact on the physics issues listed above are UA2 at CERN, CDF 
and DO at Fermilab. The UA2 and DO detectors feature precision calorime- 
try and no magnetic field measurement capability, save for muons. CDF, on 
the other hand, has a central superconducting solenoidal field which aids in 
electron identification (by comparing the calorimeter and momentum deter- 
mination for the same presumed electrons) and allows for muon momentum 
analysis without iron, except as a filter. 

In most cases, precision mass determination experiments are done in the 
electron channel. Only CDF, with its solenoidal field momentum determina- 
tion for muons, is able to perform a precise mass measurement, using muons 
uncompromised by multiple scattering errors inherent in iron toroids. For 
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UA2 and DO, only precision electromagnetic calorimetry is available. 
UA2 has completed its runs, while CDF and DO are just starting a long 

period of experimentation at the Tevatron. The total data accumulated to 
date by UA2 are 13pb-’ and CDF, about 5pb-‘. The results from those two 
experiments are impressive, with the W mass being the centerpiece of their 
efforts in this context. While, clearly a major part of the initial IVB discovery, 
UAl did not have a significant role in the precision mass determinations. 
DO is, of course, just beginning and has no published data. However, at 
this writing (Fall, 1992), the Tevatron is running and both CDF and DO 
have accumulated roughly lOOnb-’ with a hundred or so W’s on tape. The 
Tevatron era is really just beginning, with lOOpb-’ expected in this first run 
during 1992-3. 

The sizes of the existing data sets from CDF and UA2 are (in number of 
events) 

CDF 

UA2 

W+e 1130 
W-+P 592 
z + ee 65 
z -+ PP 123 

W+e 2065 
Z -+ ee 156 

Recent determinations from the two experiments yield [6.19] [6.20] [6.21] 

[6.221, 
CDF mw(e) = 79.91 f 0.35 f 0.24 f 0.19GeV 

mw(p) = 79.90 f 0.53 f 0.32 f 0.08GeV 

UA2 mw(e) = 80.35 310.33 f 0.17 f 0.81GeV 
Here, the first error is statistical, the second is systematic, and the third is 
the energy scale uncertainty. For UA2, the quantity measured is the ra.tio of 
the W mass to that of the Z mass, thereby cancelling the scale uncertainly. 
They find m(W)/m(Z) = 0.8813 f 0.00336 f 0.0019. They extract m,(W) by 
scaling with the LEP value of m(Z) = 91.175 f 0.021 GeV. The systematic 
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errors for both experiments are really statistically limited by the paucity of 
Z events. 

Running of a,. The UA2 collaboration has expended considerable effort in 
a determination of the strong coupling, a,. They determine, in a COI parison 
of W + 1 jet to W + 2 jet events, a, = 0.123 f 0.018 f 0.017 
(16.23) 16.241). Here, the first error is statistical, the second is experimental 
systematic (including parton distributions). This result is very dependent 
on Monte Carlo simulation and an independent determination of the parton 
densities required by the Monte Carlo. To date, CDF has not published 
a similar analysis. The relatively small value of Q, observed at these high 
momentum scales is evidence that the coupling is indeed asymptotically free 
(Section 1.4.2). 

6.4 Direct Photons: Theory 

In this section an overview of some of the relevant theoretical issues for 
direct photon production will be presented. A more detailed review can be 
found in [6.25]. As noted previously, a calculation of direct photon production 
starts with the two O(aa.) subprocesses gq + rg (Compton) and qg -) 7g 
(annihilation). For large values of zr, these two subprocesses provide the 
dominant contribution to direct photon production. The interplay between 
the two contributions can be studied by comparing cross sections obtained 
with particle and antiparticle beams. For example, the Compton subprocess 
dominates in pp collisions for large zr, since the antiquark distributions are 
small in this region. However, the annihilation term can be significant in pj? 
collisions, since the 17 and a distributions in the antiproton are the same as 
the u and d distributions in the proton. Both of these subprocesses result 
in final states which consist of a high-a photon balanced approximately by 
a recoiling jet on the opposite side of the event. There will be vary little 
hadronic activity in the immediate region of the photon. 

For typicsl fixed target experiments 2~ is in the range of 0.2 to 0.6 and 
the above two subprocesses provide the dominant mechanism for direct pho- 
ton production. However, in colliding beam experiments it is possible to get 
to smaller values of zr. For example, at 4 = 1800 GeV, pr = 18 GeV 
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corresponds to zr = 0.02. Here one can encounter sizable contributions from 
bcemsstrahlung processes. In this class of processes, a quack or gluon initi- 
ated jet in the final state radiates a photon in the process of hadronization. 
This gives rise to events with substantial hadconic activity in the general 
region of the produced photon. In the framework under discussion here, one 
can take this contribution into account by using photon fragmentation func- 
tions. These give the probability density for a quack or gluon to produce a 
photon which takes a fraction t of the parent parton’s momentum. The sim- 
plest form for these functions follows from a simple QED crdculation which 
yields 

tD,/,(z, @) = eiz(l+ (1 - z)‘] ln(QZ/A2), (6.15) 

and 

~D,/,(G Q2) = 0. (6.16) 

Here Q represents a scale which is characteristic of the transverse momen- 
tum of the photon with respect to the parent quark, which will typically be 
on the order of pr. The quantity A serves as an infrared cutoff - in typical 
leading-logarithm calculations it is usually set equal to the value chosen for 
the QCD scale parameter hgco which appears in (Y, and in the scale vio- 
lating distribution functions. It is possible to calculate QCD corrections to 
the fragmentation functions in Eqs. (6.15) and (6.16) that result from gluon 
radiation by quarks and gluons and from the production of @ pairs from 
gluons. These may be calculated using modified forms of the evolution equa- 
tions for the scale dependence of the parton distribution functions. A more 
detailed discussion of this procedure, together with pacameterizations of the 
resulting functions, can be found in Ref. [6.25]. In addition to these calcula- 
ble pacts, there is also the possibility of nonperturbative contributions to the 
photon fragmentation functions. Generally, this type of term is thought to 
give rise to relatively soft photons, since their production would occur late in 
the parton shower and would represent a long distance effect. Vector meson 
dominance is often used to model this component. 

The bremsstcahlung contribution can be calculated using the general 
factorized cross section Eq. (2.76) with all possible two-body quark-quark, 
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quack-gluon, and gluon-gluon subprocesses convoluted with the appropri- 
ate distribution and fragmentation functions. Notice that the fragmentation 
function in Eq. (6.15) increases logarithmically with the scale Q. This fea- 
ture remains true also for the QCD corrected functions, as well. Thus, the 
fragmentation functions are formally of order (Y/(Y*. When convoluted with 
subprocess cross sections which are of order crz (such as qq + qq, etc.,) one 
obtains a result which is of order (YCY.. 

The bcemsstrahlung contribution falls off more rapidly in IT than do the 
other lowest order contributions. Pact of this is due to the extra convolution 
in z and part is due to what is called the trigger bias e&ct. The distribution 
functions tend to fall off faster with increasing momentum fraction than do 
the fragmentation functions. Thus, the most efficient way of getting a high-p* 
photon is to shift towards lower x in the distribution functions and higher z 
in the fragmentation function. This tends to force the photon to have 2 near 
one where the fragmentation function is smaller relative to its value in the 
low-z region. Hence, the bremsstcahlung contribution is largest in the region 
of small ZT values typically explored at colliders. Often this contribution 
is suppressed by the use of isolation cuts, which ace required as part of the 
trigger in order to efficiently identify photons. The effects of such cuts can 
be modeled by modifying the fragmentation functions. When higher order 
effects ace included in the calculation some care must be used to define the 
isolation cuts in a way which can be simulated in the theoretical calculation. 
These points ace discussed, for example, in [6.26] and [6.27]. 

Two calculations of O((Y(Y~) have been presented in the literature and cor- 
responding computer programs have been widely distributed. In 16.281 the 
inclusive invariant cross section was calculated and the integrations over the 
unobserved pactons were done analytically. This results in a relatively fast 
program, but one which can only calculate a small number of observables. In 
[6.26] a Monte Carlo algorithm was used for the required integrations, result- 
ing in a program which could be used for a greater number of observables, 
but at the cost of a larger amount of computer time. 

One of the reasons for the high degree of interest in direct photon pco- 
duction is that the gluon distribution enters it in lowest order. In deeply 
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inelastic scattering the gluon distribution contributes to the structure func- 
tions only in the next-toleading order and to the slope of the Q2 dependence 
in leading order. Accordingly, deeply inelastic data are sensitive to the gluon 
distribution only in the region of relatively small values of zr, where the gluon 
contribution is comparable to that from the quarks. However, the direct pho- 
ton data are sensitive to the gluon distribution at larger values of x and the 
inclusion of such data into global fits can provide complementary information 
[6.29]. Such fits have been done by a number of groups [6.30], [6.31], and 
[6.32]. The resulting gluon distributions are thus constrained both at low 
and high values of z. 

A closely related process to single photon production is the production 
of photon pairs. This is a highly topical process since it forms a background 
to a possible Higgs boson signal in the intermediate mass range which covets 
masses from about 80 to 160 GeV. A next-to-leading order Monte Carlo 
based program has been presented in [6.33] and the program has been made 
available. The Monte Carlo nature of the program enables one to simulate the 
effects of various cuts. Thus, predictions can be compared to current, dat,a and 
one can also study strategies for Higgs searches and detector optimiz;ltion. 
See [6.34] for an example and additional details. Additional discussion and 
references to earlier work are contained in [6.25] and [6.33] 

6.5 Direct Photon Production: Experiment 

Direct photon production provides an excellent arena both for pcccision 
tests of QCD and for measurements of gluon distribution functions. In this 
section, we concentrate on the backgrounds to direct photon production and 
the experimental techniques used to extract the signal. There are several 
reviews to which the reader is referred that examine these subjects in more 
detail [6.35]. 

The 4-vector of a photon can, in general, be reconstructed wit,11 grea,ter 
precision than the 4-vector of a jet. The direct photon is one particle whose 
position and energy can be well measured in an electromagnetic calorimeter, 
while a jet consists of a number of particles spread out over a fairly wide area 
of phase space. Energy is deposited in both electromagnetic and hadconic 
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calorimeters. In addition, there is an ambiguity at some level as to which 
particles belong to the jet and which particles belong to the underlying event. 

On the other hand, the rate for direct photon production is greatly ce- 
duced from that for jet production, because to lowest order direct photon 
production is proportional to aa, while jet production is proportional to ~3. 
As a result, the T/jet ratio is typically on the order of a few times 10m4. 

Direct photon measurements suffer from potentially large backgrounds, 
primarily from those race jets in which a large fraction of the momentum of 
the jet is carried by a single so, and one of the two photons of the no decay 
is not detected. Since the y/jet ratio is on the order of 10e4, and the jet rate 
is suppressed by a factor of several hundred if the requirement is made t,hat 
a so take 80% or more of the jet’s momentum, the y/?r” ratio is typically on 
the order of a few percent or a few tens of percent. The value of this ratio 
depends on the kinematic region and, as will be seen later, it also depends 
crucially on the imposition of an isolation cut. The y/a0 ratio is the most 
critical number in a direct photon measurement. If this ratio is too small, 
then a measurement will not be possible, or at least will be very difficult. 
(Backgrounds can come from other sources such as 7 4 yy, w + soy, etc. 
decays, but the bulk (typically >80%) of the background originates from 
2TO’s.) 

There are a number of measurement strategies that are possible, each 
designed to minimize the backgrounds from these meson decays. 

Reconstrcrction. This technique involves simply measuring the positions 
and energies of the two photons and requiring the resultant mass to be con- 
sistent with that of the so or 11 within experimental resolution. In practice, 
this technique is applicable mainly for fixed target experiments, due to the re- 
quirements of a large separation from the interaction point to the calorimeter 
and/or fine lateral sampling. Losses are inevitable, even if the reconstruction 
technique is possible. Consider the energy asymmetry distribution for the 
two photons from a so from Fermilab experiment E706 shown in Fig. 6.4 
[6.36]. For perfect detection, this distribution would be flat from 0 to 1. 
(A = /3 ( cos6” ] where 6” is the decay angle in the so rest frame; since the 
so has spin 0, the decay distribution should be flat in COST’.) Expecimen 
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tal measurements show a L‘rolloff’ of this distribution at high asymmetry, 
either because the soft photon is outside the acceptance of the calorimeter 
or because its energy is too soft to be measured. There can also be a similar 
“colloff’ at low asymmetry due to the coalescence of the two photons in the 
calorimeter, which is not present in this plot. These losses of so’s and 7’s can 
cause a significant background to direct photons; however, this background 
can be reliably calculated, given the experimental knowledge of the so 
cross sections and asymmetry distributions. In Fig. 6.5 is shown the y/.ir” 
ratio measured in Experiment E706 at Fermilab, along with the calculated 
background. The background-subtracted y/a0 ratio is seen to be in excellent 
agreement with the leading log QCD prediction. Note the rise in the y/a0 
ratio as transverse momentum increases. This is due to the running of (Y, 
and the effect of the so fragmentation function. 

Conversion. The percentage of electromagnetic showers (due to direct 
photon candidates) that convect in the material between the interaction point 
and the calorimeter (typically l-2 radiation lengths) is measured. Showers 
originating from so or r) decays will have a conversion fraction larger than 
that of showers from direct photons. A calculation of the amount of mate- 
rial traversed by the photons and the observed conversion percentage allows 
an extraction of the direct photon fraction in the data sample. This tech- 
nique works best if the direct photon fraction of the sample is at least of the 
same order as the so background. Fig. 6.6 shows the measured conversion 
probability, in a preshower detector, for isolated direct photon candidates in 
UA2 [6.37]. Also shown are the expected conversion rates if the data sample 
consisted solely of so’s or solely of direct photons. Note that the data are 
closer to the photon expectation than to the so expectation, indicat,ing that 
the y/a0 ratio is larger than 1. 

Profiles. Even if the two photons cannot be resolved, a measurement of 
the lateral and/or longitudinal profile of the electromagnetic shower may 
allow a discrimination between direct photons and so’s, Showers originating 
from so’s appear broader due to the opening angle of t,he two photons. This 
technique loses effectiveness as the so energy increases, since the opening 
angle decreases as l/E:. The longitudinal development of direct photon and 
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?y” showers will also differ as the average energy of a no photon is half that of 
the direct photon. Since the longitudinal development of an electromagnetic 
shower varies only logarithmically with the photon energy, the differences 
may be subtle. As for conversion, this technique works best if the y/a0 ratio 
is fairly large. 

Isolation. This technique requires that the photon candidate be “unac- 
companied” inside a cone of a certain radius R(R = dm); typi- 
cally R = 0.5 - 1.0) centered on the photon direction, with rl the pseudora- 
pidity and 4 the azimuthal angle. Unaccompanied means that the amount 
of additional energy inside the cone is less than a certain fraction of the 
photon’s energy or less than some fixed scale. The application of isolation 
discriminates strongly against ?y” events, since a r” is usually accompanied 
by additional particles from the fragmentation of the jet. Direct photons 
from the leading order processes are unaffected, since the photon is isolated. 
Photons originating from bremsstrahlung processes are also strongly discrim- 
inated against, again because of the presence of a nearby jet. The effect of 
an isolation cut on the direct photon signal can be calculated in a nonlead- 
ing order calculation, of the type described in Section 6.5 above. Isolation 
cuts are used for all collider direct photon measurements. Application of an 
isolation cut at the colliders can increase the y/?r” ratio from the order of a 
few percent to on the order of 1 or greater. A leading log prediction for the 
y/a0 ratio for the UA2 kinematic region is shown in Fig. F.7 [6.38]. Note 
that the inclusive y/so ratio is very small (a few percent at low transverse 
momentum) but the imposition of an isolation cut dramatically increases this 
ratio. 

A large amount of data has been taken by many experiments using all 
of the techniques discussed above [6.35]. Good agreement is found with 
the predictions of perturbative QCD, with the possible exception of the low 
rt(= pr/fi) data of CDF and UA2. Some of this direct photon data has been 
utilized in parton distribution fits [6.39] to measure, or at least constrain, 
the gluon distribution function in both protons and pions. The fixed target 
data are sensitive to gluon momenta fractions between 0.2 and 0.6, while the 
collider inclusive photon data probe the region from approximately 0.01-0.25. 
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More information about the direct photon event is possible if the jet 
opposite to the direct photon is also measured. The cos0’ distribution for 
y+ jet events from CDF is shown in Fig. 6.8. The angular distribution is 
flatter than the distribution for two jet production, due to the absence of 
t-channel gluon exchange diagrams at leading order. Measurement of both 
the photon and the jet completely determines the kinematics of the events, 
in particular the momentum fractions of the incoming partons. This should 
be useful for parton distribution fits, especially for determining the gluon 
distribution at very small x N (10m3 - 10m4) at CDF and DO. 
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Figure 6.1. Cut diagrams for O(CI.) corrections to the Drell-Yan cross 
section. 
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7 QCD-induced Hard Hadron-Hadron Cross 
Sections 

7.1 Jet Production in Hadron Collisions 

In this section, we combine ideas developed in previous sections. First, in 
Section 6.1, we learned that the cross section to make muon pairs in hadron 
collisions is determined by both short-distance physics and long-distance 
physics, but that the long-distance effects can be isolated in factors that 
tell the probabilities to find partons in each of the two incoming hadrons. 
The remaining factor, H in Eq. (6.1), contains only short distance physics. 
One can interpret H as the cross section for the incoming partons to make a 
muon pair plus anything else. The “anything else” here is important: we sum 
over all final states of the hadronic system. Second, in Section 3.1, we saw 
that in electron-positron annihilation it is possible to define cross sections in 
which certain characteristics of the hadronic final state are specified wit,hout 
thereby introducing new sensitivity to long-distance physics. In particular, 
we could define infrared finite jet cross sections. 

Combining these ideas, we expect that one can specify jet cross sections 
in hadron collisions such that the theoretical formula for the cross section is 
factored into parton distribution functions that contain long distance physics 
associated with the initial states and a hard scattering cross section that 
contains only short-distance physics. The general form of such a cross section, 
analogous to Eq. (3.7) for electron-positron annihilation, can be written in 
the style of [7.1] as 

1 = 5 jd+b Cf.,a(~~,~)fb/~(~~r~) 
n=2 ab 

(7.1) 

x I dndpl... dll,dp, J 
dc[n] 

dn dpl . . . dvn dpn 
S”(PY,...,P3 

(7.2) 

Here &, & are the momentum fractions of the incoming partons and Q is 
the rapidity of outgoing parton i, while pi is its transverse momentum. The 
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parton cross sections d+[n]/dl)r dpi . . . dam dp,, contain delta functions for 
overall four-momentum conservation. The effect of these delta functions is 
that the total transverse momentum of the outgoing partons vanishes, while 
& and [s are determined by conservation of longitudinal momentum and 
energy. The “hat” on d&[n] indicates that infrared sensitivity arising from 
the initial state is factored into the parton distributions, as in the Drell-Yan 
cross section, Eq. (6.1). 

The functions S, specify the measurement to be made on the hadronic 
final state. In order that this measurement not introduce any sensitivity 
to long-distance physics (in addition to the initial-state infrared sensitivity 
contained in the parton distribution functions), the measurement functious 
should be “infrared-safe.” That is, they should satisfy equations analogous 
to (3.10), 

and 

S,+1(p(;, . .,(I - ~ht, wt) = S&Y>. At) 7 (7.3) 

sn+lM>...,z4i,wi~ =s”+l(PY,...,ti,h?k,) =sn(b;,“‘>ti)> (7.4) 

for 0 5 X < 1. The first equation says that two collinear partons can be 
replaced by a single parton and that a zero-momentum parton can simply 
be eliminated without affecting the measurement. The second equation says 
that partons that are collinear with one of the beam momenta do not affect 
the measurement. 

7.1.1 Cone definition 

Measurements of jet cross sections in hadron collisions in recent years 
have concentrated on a cone definition of jets (following the spirit of the 
original jet paper [7.2] and of the early calculations of jet cross sections for 
hadron physics [7.3]). The main features of the algorithm are specified in 
an agreement reached at the 1990 Snowmsss Workshop [7.4]. The idea was 
that this definition could provide a standard jet cross section for the purpose 
of comparing results between different experiments - without restricting the 
development of improved definitions in the future. 
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In the definition, one wants to maintain the invariance appropriate for 
hadron colliders under azimuthal rotations and longitudinal Lorentz boosts. 
Thus one describes the particles i using the absolute values pr,i of their 
transverse momenta, their azimuthal angles 4i, and their rapidities vi. (We 
treat all particles as being massless, so that the rapidities and the pseudo- 
rapidities are not distinguished). 

The main feature of the cone definition is that a jet consists of particles 
whose momentum vectors lie in an II, &cone. The cone consists of the interior 
of a circle of radius R in the (q, 4) pl ane, centered on a cone axis (no,&). 
Thus particle i is in the jet if 

(vi - w)* + (4i - 4~)’ < RZ. (7.5) 

A standard value for the cone radius is R = 0.7. Next, one defines the total 
transverse energy ET of the jet and a jet axis (VJ, 4~) according to 

ET = c PT,i, 
&cone 

1)J = & ic~n:ne~.i~i > 

4J = & iGgnne~,i d’i (7.6) 

Finally, the jet axis must coincide with the cone axis. If it does not on a first 
attempt, one simply iterates until stability is achieved. 

This definition is quite simple and natural. However it can happen that 
two jet cones produced by the definition overlap. Thus a further specification 
(which is not contained in the Snowmass agreement) is needed. Typically, 
one merges jets with a very large overlap and splits particles between jets 
that have a smaller overlap. The reader is referred to the experimental papers 
for the details. 

7.1.2 Calculations 

As with electron-positron collisions, one can characterize an infrared safe 
cross section as “N-jet like” if the functions S, are zero for n < N and non- 
zero for n 2 N. Cross sections that are 2-jet like in this sense can currently 
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be calculated at the one loop level using a computer program described in 
Refs. [7.5] and [7.1]. The program takes account of the cancellations of soft 
and collinear singularities between graphs with three parton final states and 
graphs with two parton final states but a virtual loop. The virtual loop 
graphs are taken from the calculation of R. K. Ellis and Sexton [7.6]. An 
independent program that can calculate some 2-jet like cross sections at one 
loop order is described in Ref. [7.7]. 

The extension of the above ideas to include W or Z plus n jets was initi- 
ated by [7.8]. At present the tree amplitudes for the reaction p+p -+ W, Z + 11 
jets, where n 2 4 are available in the program VECBOS. However the jets 
are massless partons, which are not allowed to be soft or collinear. Using 
sophisticated techniques from string theory [7.9] the one-loop corrections to 
W or Z plus one jet production have recently been calculated [7.10]. This 
program is important because the present limit on the mass of the t-quark 
satisfies mt > Mw so the top quark (hadron) probably decays into a W plus 
lighter mass quarks. The background for detecting the t-quark therefore in 
valves knowledge of the reaction p + ~3 -+ W, Z + n jets. Without a one-loop 
calculation, the scales in these cross sections are not well determined. 

7.2 Jets in Hadron-hadron Collisons: Experiment 

Experimental evidence for the existence of jets at hadron colliders was first 
observed by using a single high-P, particle to both trigger on and identify 
jets. This, however, results in a very biased experimental sample, and it was 
first realized at the ISR at fi = 62.3 GeV [7.11] that one has to trigger in 
a more inclusive way, i.e. on the total amount of energy in a certain region 
of the detector. Cross sections were measured with an inclusive trigger, and 
two-jet back-to-back structure (in the transverse plane to the beam) was 
observed [7.12]. In addition, it was shown that the transverse momentum of 
particles relative to the jet axis is limited to about 500 MeV/c, independent 
of the momentum parallel to the jet axis. The first studies with a cone-based 
algorithm concluded that an opening angle of 40 degrees=0.7 rad includes 
nearly 100% of the jet energy, a value which is identical to currently used 
values at much higher energies. With the increase in the center of mass energy 
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at the CERN SppS collider to 540 GeV, the UAl and UA2 experiments 
showed unambiguously the existence of jets in hadron-hadron collisions [7.13]. 
They also enabled the measurement of the jet cross section over a large region 
of transverse energy, out to 170 GeV [7.14]. Fig. 7.1 shows the UAl and ISR 
jet cross section as measured initially in the central rapidity region (y < 1.0). 

In Fig. 7.1, the experimental points are compared to (at that time) known 
parton distributions. The rather good agreement between theory and experi- 
ment, in a quantity that varies over five orders of magnitude, was considered 
a major success for the predictive power of QCD. Note that the error on 
the experimental cross sections is of order 100% and that the experiments 
defined jets in different ways: at the ISR a cone size of 30 degrees was used, 
whereas UAl was the first to propose and use a fixed cone size algorithm, 
with a cone size of R = 0.7. This value of the cone size has now become the 
default value, a specific example of a definition of jets as described in the 
“Snowmass agreement” [7.4]. Over the years, the accuracy of collider exper- 
iments has improved and now the most accurate cross sections are available 
from UA2 (4 = 630 GeV) and CDF (4 = 1800 GeV) at Fermilab. Both 
experiments use only calorimetric energy measurements to measure jets, use 
a fixed cone size algorithm to define jets, and compute El of the jet as the 
sum xi Et,i where i runs over all calorimeter cells inside the jet cone. We 
will discuss the experiments separately. 

The final UA2 jet inclusive cross section [7.15], measured with an up- 
graded detector with extended rapidity coverage, is shown in Fig. 7.2. Here 
the jet was defined by using a fixed cone algorithm and a cone size R = 1.3. 
The basic assumption is that this cone size is large enough so that a final 
state parton, including all its radiation and fragmentation, is described and 
its energy contained within the cone. 

Corrections for energy flowing out of the cone and entering the cone from 
the underlying event (= remnants due to the fragmentation of the incom- 
ing hadrons and to color conservation) are estimated using the simubrtion 
program HERWIG. The experimental errors obtained have several sources. 
The overall scale error on the cross section is 32%, in addition to the sta- 
tistical accuracy of each data point. The overall scale error of 32% includes 
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the uncertainties due to absolute energy scale (ll%), luminosity (5%), model 
dependence of acceptance corrections (25%), analysis parameters and jet al- 
gorithm (15%). The underlying event creates an uncertainty of 0.9 GeV on 
the Et scale, resulting in an additional error of typically 10% at 60 GeV and 
5% at 130 GeV in the cross section. The obtained experimental cross sections 
are compared to LO predictions based on EHLQ [7.16] parton distributions 
and both are shown in Fig. 7.3. The agreement between theory and experi- 
ment is very good in the central rapidity region. To illustrate this in Fig. 7.4 
the ratio of experiment to theory is given for the central rapidity region, and 
indeed, for several different recent parton distributions the agreement is re- 
markable. The only discrepancy is in the y > 1.0 region where the rrgreement 
becomes worse as rapidity increases. It should be noted that these are t,he 
only high precision, published data available to date in this rapidity region. 
This discrepancy should be investigated further. The UA2 collaboration also 
chose to do a LO comparison only and their results have not been compared 
to a NLO prediction. In fact, it would not be a trivial task to compare these 
experimental results to NLO predictions. In order to do so, one would want 
to reanalyze the data without the corrections for energy flowing into/out of 
the cone and use a smaller cone size. 

The CDF experiment has measured the jet cross section at the Tevatron 
proton- antiproton collider at fi = 1800 GeV. In contrast to UA2, the CDF 
cross section has been treated much more like a NLO quantity and has been 
measured as a function of the jet cone size. To define a jet, a fixed cone size 
algorithm (R = 0.7) was used, along with other details of the “Snowmass 
agreement” [7.4], and Eq. (7.6) was used to derive the jet quantities Et, 1)~ 
and 4~. The only deviation from the prescriptions of Ref. [7.4] is that El 
was calculated by adding the energy of calorimeter cells in the cone and 
then converting to Et by using the rapidity of the jet, instead of using the 
scalar sum of the Et of each cell. The data include a correction for the 
energy inside the jet cone due to the underlying event, but no corrections 
for energy flowing in or out of the cone. The underlying event transverse 
energy correction is 1.2 f 0.3 GeV per unit area in n, 4 space. Jets which 
are close in direction have to be merged and large transverse size jets have 
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to be split according to some algorithm. The algorithm used is similar to 
the one used at the parton level in the NLO calculation of the cross section. 
For a more detailed discussion of the criteria used we refer to [7.17]. The 
experimental data [7.18] are shown in Fig. 7.4, and they cover the rapidity 
region 0.1 < nJ < 0.7. No published data for larger rapidities are available at 
this time. The overall systematic uncertainty in the measured cross section 
is: 60% (mainly due to energy resolution and unsmearing uncertainties) for 
Et < 80 GeV and 22% (dominated by knowledge of absolute energy scale) 
for E, > 80 GeV. Also shown in Fig. 7.4 is the absolute NLO theoretical 
prediction for the same cone size using HMRSB [7.19] parton distributions. 
The agreement between theory and experiment is remarkably good. Fig. 7.5 
shows the ratio of the measured cross section and theory prediction (NLO) 
for different parton distributions. All parton distributions (HMRSBMT- 
B and MT-S) agree very well with the data, except for HMRSE, which is 
inconsistent with the shape of the measured cross section. CDF has also 
measured the dependence of the cross section on the jet cone size used. This 
dependence is predicted in the NLO parton level calculation of the cross 
section and it is informative to compare the parton level prediction with the 
measured behavior at the calorimeter jet level. In Fig. 7.6 the experimental 
cross section at Et=100 GeV is determined for cone sizes 0.4, 0.7 and 1.0 and 
compared to the theoretical prediction for different choices of the scale used. 
Although there is some scale dependence in the theoretical prediction, the 
parton level prediction and calorimetric jet level measurement qualitatively 
show the same cone size dependence for the jet cross section. 

The Future: (1) Given the disagreement of the measured UA2 jet cross 
section in the rapidity regions ( > 1.) with the theoretical prediction, it will 
be interesting to perform this measurement at the Tevatron collider. This can 
be done up to n = 3.0 with both the CDF and DO detectors. If disagreement 
persists, the discrepancy can be used as a measure of parton distributions in 
regions not accessible by other experiments. (2) The cone size dependence 
of the jet cross section should be extended to more transverse energy poims 
and more cone sizes. Another interesting measurement along this line is the 
transverse energy flow within the jet as a function of the jet cone size used. 
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Early results along these lines have been presented by CDF [7.20] and again 
show rather good agreement between parton level and particle level for the 
jet. This should be extended to the calorimeter level and be done for differ- 
ent transverse energies. (3) Up to now only one definition of jets has been 
used in hadron-hadron collisions. Other experiments have used different jet 
algorithms (of the successive combination type; see Section 4.4) and these 
algorithms should be tried in hadron collider experiments, because they have 
different systematic errors. This would enable a comparison between jets 
produced in electron-positron collisions and jets produced in hadron colli- 
sions. 

7.3 QCD Corrections: Heavy Quarks 

Another important area of research in pQCD is the study of heavy-quark 
production. Precisely what is understood by the term heavy quark depends 
on the circumstances. However there is general agreement that 21, d and s are 
light-mass quarks while c, b and the yet to be discovered t are heavy-mass 
quarks. The obvious evidence for heavy (confined) quarks is the existence 
of colorless spin-l vector meson states such as the J/T) and Y, which are 
produced copiously in electron-positron collisions. These physical particles 
contain charmed and bottom quarks and have well-defined masses and life- 
times. Within the context of pQCD there must be quantities which we can 
designate as heavy quark masses mp with values approximately one-half those 
of the vector meson masses. Then m, x 1.5 GeV/cs and mb N 4.75 GeV/c’ 
have a phenomenological significance even though they cannot be identified 
as on-mass-shell objects like electrons or hadrons. When mass effects are 
important, for example just above the “threshold” for pair production, we 
cannot ignore terms of order m/G in a partonic reaction. Quark masses 
have already been discussed in Section 1.5. 

The heavy quarks referred to above carry color and do not have the proper 
quantum numbers to make colorless hadrons. When they are produced in 
partonic collisions vacuum perturbations produce light quark-antiquark pairs 
over the time scale AEAt z h. The heavy quark then combines with a light 
quark to form a physical hadron with well defined mass, which subsequently 
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decays into a multitude of final states with well defined branching rat,ios. 
The production of the heavy quark is only the first stage of a complicated 
process, which involves both pQCD and confinement. 

The theoretical description of heavy quark production and decay is usu- 
ally split into several parts. One first calculates the heavy quark production 
cross section in the parton model at a scale set approximately by the heavy 
quark mass, including higher order corrections if possible. Then the heavy 
quark becomes an on-mass-shell meson or baryon by the non-perturbative 
process of finding the appropriate light quark in the sea of quark-antiquark 
pairs in the vacuum. There is a phenomenological description of this part 
(fragmentation function). The heavy hadron then decays into light-mass 
hadrons (on their mass shells) and the branching ratios can be measured 
experimentally. The final decay involves the transition of the heavy quark 
into a light quark according to weak or electromagnetic interactions. The 
strong corrections to the last process can again be calculated by pQCD pro- 
viding there is a heavy scale to make the running coupling constant small. 
If we limit ourselves here to a discussion of the production of heavy quarks 
then there should be a kinematical region where the mass m and the other 
invariants, such as 6, pi, etc., are roughly of the same magnitude and sig- 
nificantly larger than &oh. Under such circumstances the scale parameter 
is the heavy quark mass, so we measure a cross section at a coupling con- 
stant whose scale is m, using light-mass partonic structure functions at a 
scale m. Differential distributions are calculable when pf z m and scale 
M = (pf + m*)l/*. Outside these ranges there will be large logarithms in 
ratios of invariants which can be controlled by an analysis of the renormal- 
ization group equation. The real proof of these claims is the comparison 
between the theoretical predictions and the experimental results. 

Here we assume that the heavy quarks are detected (via their decays). 
At higher values of fi where m/G < 1, the heavy quarks become effec- 
tively massless, and must be incorporated into the parton distributions. The 
transition between these regions is still under investigation. 

Heavy flavour production has been experimentally studied at electron- 
positron [7.23], hadron-hadron [7.24] and lepton-hadron [7.25] facilities. For 
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review articles we refer to [7.26], [7.27]. W e h ave included an extensive list 
of references to original papers in the bibliography. 

We will now write down some Born reactions and discuss the general 
properties of the heavy-quark cross sections. For this we need the lowest 
order matrix elements for heavy quark production in the reactions 17 + q + 
Q + Q , y + g -+ Q + & , g + g + Q + Q. The differential and total cross 
sections for the reaction e+ + e- + p+ + p-, when mediated by a single 
virtual photon, were given previously. One can use the QCD Lagrangian to 
show that the corresponding results for the reaction Q + 4 + Q + & where 
Q(Q) are light (massless) quarks and Q(Q) are heavy quarks with mass m are 

and 

(7.7) 

u(s, m2) = g$s + 24P. 

We use the notation tr = t - m*, u1 = u - m* where s,t and u are the 
standard invariants, ,!3 = (1 - 4m*/s)‘/* and (Y, = g2/(4T). The results 
include a summation over final spins and colors and an average over init,ial 
spins and colors. Next consider the reaction y + g -+ Q + Q, then the 
differential cross section is 

where 

d2u 
s*- = aaema3e$Bq&(s + tl + 211) , 

dtrdur 

BQt.u=:+z+ $$yl- g,, (7.10) 

is the same factor that appears in the QED result (i.e., in the square of the 
amplitude for the reaction y + y -+ /A+ + II-). Note that we have summed 
over final spins and colors and averaged over initial polarizations and colors. 
The total cross section is 

u(s,,*) = 2?Tcydh 2 s eH{ (I+?-%) In (z)-(l+F)P}. (7.11) 
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Now consider the reaction 9 + 9 -+ Q + Q. In this case the color structure is 
more complicated and the differential scattering amplitude takes the form 

s2* 

dtidui 
(7.12) 

again summed and averaged over initial polarizations and colors. Finally the 
total cross section is 

u(s, 72) = 2 ‘{(l+F+$)ln(s)-(7+y)z}. (7.13) 

The above results should be folded with the appropriate distribution func- 
tions to calculate physical cross sections and inclusive distributions in the 
Born approximation. 

The evaluation of higher order corrections in pQCD is an involved issue 
which has been the subject of much theoretical investigation. All the theoret-, 
ical inputs, such as the running coupling constant, the reduced cross section 
6ij(s,m2,Q2) and the parton distribution functions F/‘(x,Q2) are scheme 
dependent. 

First we have to choose the renormalization scheme. Since the cross 
section is a renormalization group invariant we can limit ourselves to mass 
and coupling constant renormalization. Usually mass renormalization is per- 
formed in the on-mass-shell renormalization scheme. 

Let us discuss the influence of heavy quarks on the running coupling cy,. 
For instance the running coupling constant should be continuous across heavy 
quark production thresholds, so it depends on n,. If we define the two-loop 
corrected cy, in the MS scheme then 

dQ*> 9) = bf ,4&2,*2) 
l [l- 

b> In ln(Q2/A2) 

bf ln(QZlA2) It (7.14) 

where b/ and b> are given by (see Eq. (1.48)) 

br = 
33 - 2nf 153 - 197if 

12x ’ b ; = 21r(33 - 2nf) 
(7.15) 
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is valid for top-quark production with A = As and n, = 5. For bottom and 
charm production we need (Y, for four and three flavors respectively. So that 
there is continuity across the b and c thresholds we define 

q(Q*) = o,(Q*,5) 

a,:(Q*) = o;1(Q2,4)+o;1(m;,5) -(~;~(&4) 

q:(Q’, = a,‘(Q2,3) + a,‘(m:,4) + a;‘(&5) 

-c&n;, 4) - a;‘(m~, 3) (7.16) 

so that 

4Q2) = G,s(Q*)@(Q~ - m;) + q(Q*)O(m; - Q*)O(Q* - m:) 

+a,a(Q2)~(Q2 - m;) (7.17) 

This result is also used in the calculation of the lowest order Born approxi- 
mation even though it is not imperative to do so. 

The best data for a test of pQCD heavy quark production are on b- 
production in pfi collisions. c-production is not so clean because it,s mass is 
not heavy enough and oJ(mz) is large. Data from the Sp$S and Fermilab 
Tevatron on inclusive &quark production are shown in Fig. 7.7 together with 
the results of a pQCD calculation through order crz, (provided by R. Meng 
using the O(az) exact calculations in [7.44]). The lower energy data are fit 
quite well. The higher energy data are above the theoretical predictions so 
we probably need to include some part of the O((Y~) contribution. 
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Figure 7.1. The jet cross section measured at the ISR and the CERN SPS 
by UAl at rapidity = 0. The dashed curve represents the original prediction 
as given in [7.21] and the solid curves indicate the range of predictions. 
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8 Global Analysis of Parton Distributions 

Factorization theorems in perturbative QCD give a justification for and 
improvement of parton model predictions. In the “&CD improved” parton 
model, physically observed cross sections involving hadrons can be written 
as convolutions of perturbatively calculable partonic hard parts and parton 
distributions, which summarize uncalculable non-perturbative effects [8.1] 
(see Section 3 above). 

8.1 Evolution of Parton Distributions 

The parton distributions are often presented as functions of z and PDF; and 
are customly interpreted as the probability densities to find a parton within a 
hadron with its momentum fraction between z and 5 + dx. Below we denote 
the factorization scale by PDF. Although perturbative QCD cannot predict 
the absolute normalization of these parton distributions, their evolution with 
the factorization scale can be calculated (Section 3.2.3). More precisely, the 
scale dependence is governed by a set of coupled integro-differential evolution 
equations, valid to all orders in (Y, [8.2] 

d&(x, clr) 
dt 4%(x, PLY) 
dt 

where t = ln($/A2), and the subscript p denotes quark flavors. The kernels, 
Pi?(Z), have the physical interpretation as probability densities for obtaining 
a parton of type i from one of type j with a fraction z of the parent, par- 
ton’s momentum. At the leading order (LO), the Pij are given in Eq. (5.7) 
above. The Next-to-leading-order (NLO) (or 2-100~) expressions for Pij(~) 
were calculated by several groups [8.3]. Up until recently, there had been an 
unresolved minor discrepancy for Pgg(z) between results obtained in different 
gauges. This has now been clarified [8.4]. 

This set of equations can be solved exactly in moment space [8.5], once 
a set of input distributions is specified at an initial value ~0. One can then 
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invert the moments to get the x and PI-dependent parton distributions. 
However, this method requires the knowledge of initial parton distributions 
at all values of x from 0 to 1, and no experimental measurements at fixed 
pf can reach all the way to x = 0. In current global analysis of parton 
distributions, one directly solves this set of equations numerically. Note that 
one needs input distributions only for x greater than or equal to the smallest 
momentum fraction at which parton distributions are desired. 

8.2 Global Analysis 

The global analysis of parton distributions involves making use of ex- 
perimental data from many physical processes, and the use of the parton 
evolution equations to extract a set of universal parton distributions which 
best fit the existing data. These distributions can then be used in predict- 
ing all other physical observables at energy scales far beyond that presently 
achievable. Herein lies the wide-ranging usefulness of the QCD improved 
parton model. 

A typical procedure for the global analysis involves following necessary 
steps: 

1. Develop a program to numerically solve the evolution equations - a 
set of coupled integro-differential equations; 

2. Make a choice on experimental data sets, such that the data can give 
the best constraints on the parton distributions; 

- 
3. Select the factorization scheme - the “DE or the “MS’ scheme, 

and make a consistent set of choices on factorization scale for all the 
processes; 

4. Choose the parametric form for the input parton distributions at pe, 
and then evolve the distributions to any other values of /of; 

5. Use the evolved distributions to calculate x2 between theory and data, 
and choose an algorithm to minimize the x2 by adjusting the parametriza- 
tions of the input distributions; 
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6. Parametrize the final parton distributions at discrete values of x and 
pf by some analytical functions. 

In all high energy data, deeply inelastic scattering of leptons on nucleon 
and nuclear targets remains the primary source of information on parton dis- 
tributions, because of its high-statistics. Such data is known to be mostly 
sensitive to certain combinations of quark distributions. Drell-Yan lepton- 
pair production, and direct photons at large transverse momenta provide im- 
portant complementary information on anti-quark and gluon distributions. 
Most data used in obtaining recent parton distributions are at fixed target 
energies. Collider results have not reached the accuracy necessary to be 
included into global fits. But, they will eventually offer a significant oppor- 
tunity to probe the small-2 region (say x 5 10m3). 

Parton distributions defined in different factorization schemes are differ- 
ent. Commonly used factorization schemes in the literature are “DIS” and - 
“MS” schemes. In principle, parton distributions obtained in one scheme can 
be directly transformed into the other scheme. However, the transformation 
is not reliable in certain kinematic regions where the perturbation series ex- 
pansion has abnormal behavior [8.1]. It is preferable to perform independent 
analyses in these schemes. 

The truncation of the perturbation series invariably leads to renormaliza- 
tion and factorization scale dependence for QCD predictions. Consequently, 
parton distributions obtained from the global analysis will depend on the 
choice of the scales. If significant scale dependence is found to exist in a 
particular kinematic region for some processes, then the usefulness of such 
data is limited, until new theoretical techniques are developed to reduce that 
dependence. 

There is considerable freedom in choosing the parametric form of the 
input parton distributions at scale pa. The parametrization must be general 
enough to accommodate all the possible z and quark-flavor dependence; but 
it should not contain so many parameters that the fitting procedure becomes 
very much under-determined. In practice, for each flavor it is common to use 
a functional form 

4(x,& = AOxA1(l - x)~‘P(x) (8.2) 
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where P(x) is a smooth function. In above expression, rA1 dominates the 
small x feature and (1 - x)‘, determines the large x behavior. 

When calculating the x2, both statistical and systematic errors should be 
taken into account. The most expedient, hence most often used, method is 
to combine these errors in quadrature [8.6]. H owever, real systematic errors 
are correlated; they must eventually be incorporated in that way when the 
analysis reaches a truly quantitative stage. 

After minimizing the x2 (e.g., using the MINUIT package of CERN li- 
brary), the resultant parton distributions can be presented in two ways. One 
way is just to give the relevant QCD parameters and the parametrization of 
input parton distributions at scale ~0. The user can then produce the parton 
distributions at another value of p, by using this information as input to a 
reliable QCD evolution program. The other, the commonly used one, is to 
approximate the outcome of a global fit over (x, cl,) by a set of parametrized 
functions. Such parametrization varies widely between the available distri- 
butions sets, ranging from a simple interpolation formula over a large three- 
dimensional array (z,P~, and flavor), to Chebeschev polynomial expansions, 
to simple pf-dependent parametrizations of the form of the above equation 
with an appropriately chosen smooth function P(r). It was found that a 
logarithmic factor of the form logA”(l/x) is particularly effective in render- 
ing the pf-dependence of the coefficient functions Ai smooth for the QCD 
evolved distributions. 

Although, in principle, the form of the parametrization is arbitary so long 
as the approximated distributions still fit the data, extrapolation of the dis- 
tributions out of the fitting region (e.g., into the small z region) will give 
very different predictions. It has been demonstrated that good fits to data 
can be obtained with the coefficient Al (which controls the small x behav- 
ior) varying, say, from -0.5 to 0.2. Such uncertainty should be regarded as 
evidence of our lack of knowledge of the uncharted region. It is not meaning- 
ful to take the extrapolation of any particular set of parton distributions as 
“predictions”. This uncertainty can be reduced either by new experimental 
measurements or by theoretical advances which allow true predictions ex- 
tending to small x along the same way the usual evolution equation does for 

213 



the p, variable. 

8.3 Survey of Recent Parton Distributions 

The first generation parton distribution sets, based on leading order evo- 
lution and data of the early 1980’s, have been widely used in calcuhttions 
of high energy processes [8.7]. However, since then experimental data have 
been drastically improved (and substantially changed, in some cases), and 
these distributions are no longer able to fit the new data. 

The second generation global analyses, based on next-to-leading order 
evolution and more recent data, have been carried out by several groups in 
recent years. Some of the groups perform specialized analyses focusing on 
some specific issue or process (such as the gluon distributions and direct 
photon production [8.8], neutrino scattering [8.9] etc.,); and others study a 
wide range of processes (8.61 [8.10]. Th ese analyses differ considerably on 
various issues, such as the range of data used, the way experimental errors 
are treated, the choice of schemes, assumptions on the input distributions, 
and so on. 

A compilation of currently available parton distribution sets, both old 
and new, have been made at CERN and it has been distributed as a program 
package PDFLIB [8.11]. Because most of the older distributions are seriously 
inconsistent with current data, and because of the differences mentioned 
above, indiscriminant use of all the distributions in this collection can lead 
to rather meaningless results. 

For example, it is important to only compare correct corresponding ob- - 
jects. Thus, the LO, NLO-DIS, and NLO-MS distributions are different 
objects, and should not be compared or mixed. When calculating physi- 
cal quantities (such as cross sections or structure functions), LO, NLO-DIS, - 
and NLO-MS distributions must be convoluted with the corresponding LO, - 
NLO-DIS, and NLO-MS hard scattering parts in order to yield meaningful 
predictions. 

We are about to enter yet another era of precision in QCD global analysis. 
Recently released NMC data[8.12] on F,“/F,P, F2p - F;, and FJld using a 
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muon beam and CCFR data[8.13] on F[,j using (anti-) neutrinos should 
have a significant impact on QCD global analyses because of their extended 
kinematic coverage (particularly at small x), their high statistics and minimal 
systematic errors. The precision of the current generation of DIS experiments 
(including the previously published SLAC, BCDMS, and CDHSW data) now 
far exceeds the size of next-to-leading order QCD contributions to these 
processes; thus they probe the full complexity of QCD mixing effects between 
quarks and gluons in a properly conducted QCD analysis. At the same time, 
data being accumulated at the Fermilab Tevatron on many hadron collider 
processes (such as W-, Z-production, lepton pair production, direct-photon 
production, jet production, and heavy flavor production) are beginning to be 
quantitative enough to provide complementary information and constraints 
on parton distributions. Finally, the HERA electron-proton collider will soon 
provide direct measurements of structure functions at very small x. 

The new DIS data have been incorporated in two recent global analysis 
efforts [8.14], [8.15]. The most notable result from each of the new global 
analyses is the apparent extraordinary quantitative agreement of the NLO- 
QCD parton framework with the very high statistics DIS experiments over 
the entire kinematic range covered and the consistency of this framework 
with all available experiments on lepton pair and direct photon production 
as well. The parton distributions are determined with much more precision 
than before. 

On the other hand, these analyses also are calling into question, for t,he 
first time, the ultimate consistency of the existing theoretical framework with 
all existing experimental measurements! (This can be regarded as testimony 
to the progress made in both theory and experiment - considering the fact, 
that contradictions come with precision, and they are a necessary condition 
for discovering overlooked shortcomings and/or harbingers of new physics.) 
When all available total inclusive DIS data and their associated errors are 
taken seriously in the latest analysis, the CTEQ Collaboration [8.15] found a 
good global fit only if the strange quark has a much softer distribution than 
the non-strange ones and rises above the latter in the small x region below 
x = 0.1. This result is unexpected, and it also appears to be in conflict wit,h 
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the dedicated measurement of s(x) done with dimuon final states in neutrino 
scattering [8.16]. (The latter is not included in any of the existing global 
analyses.) Thus, either there are unknown theoretical flaws in the next-to- 
leading order QCD analysis or some of the experimental data sets need to 
be re-examined both in their measured values and in the assessed systematic 
errors. In the MRS analysis [8.14], the strange quark content of the nucleon is 
assumed to be consistent with the dimuon result; reasonable fits are obtained 
only by letting the normalization of the data sets vary freely, unconstrained 
by the stated experimental errors plus some other added uncertainties, 

The emergence of the apparent contradictions has already spurred vigor- 
ous efforts by both theorists and experimentalists to rigorously examine the 
existing assumptions and to institute new improvements in their respective 
analyes. These efforts, added by anticipated data from the hadron collider 
experiments and from HERA, will undoubtedly contribute significantly to 
further progress in directions not necessarily clear at present. That is, of 
course, the fun of physics! 
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A Color Matrix Identities and Invariants 

Only a few identities are necessary for the calculations described in the 
text. In general, for representation R, SU(N) generators can be picked to 
satisfy 

Tr [ T,(R)T,(R)] = T(R)& , (A.11 
with T(R) a number characteristic of the representation. Also of special 
interest is the representation-dependent invariant, Cz(R), defined by 

N2-1 

c (TiR’)2 = &(R)I, 64.2) 
a=1 

with I the identity matrix. 
We encounter only two representations here, the N-dimensional “defin- 

ing” representation, F, and the N* - l-dimensional adjoint representation, A. 
The generators TiF) are a complete set of N x N traceless hermitian matri- 
ces, while the generators Z’iA) are defined by the SU(N) structure constants 

‘2, (Eq. (1.5)) a.+ 
(TCA)), = -ic,, (1 (A.3) 

For these two representations, the relevant constants are 

T(F) = ; C2(F) = qj+ 

T(A) = N &(A) = N . (A.4) 

Another useful identity, special to the defining representation, enables us 
to work with simple products of the generators, 

T(F)T,(F) = ;[ic&T,‘F’ + d,k]T,‘F’ + &I ) (I (.4.5) 

with I the 3x3 identity, and the d ok real. Unlike the previous equations, 
this and the following equation apply only to SU(3). A numerical value 
that occurs in the three-loop correction to the total e+e- annihilation cross 
section is 

D=xdz,=40/3. (A.61 
obc 
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B Cut Diagram Notation 

A convenient technique for organizing calculations of [Ml2 in cross sec- 
tions is through cut diagrams, which combine contributions to M and M’ 
into a single diagram for 1 M I2 with slightly modified Feynman rules. 

The form of cut diagrams is derived in Fig. B.l, for the annihilation of a 
fermion pair of momenta Icr and kz into a set of n final state lines, of which 
only a fermion with momentum pr and an antifermion of momentum p, are 
exhibited. 

The underlying identity for these manipulations is 

[fi(yP1y’z.. . (y-P.. . y”^is.. .)&I* 

= a’(. . . yy5.. . (p’p . . . y’2yP’)w ( (B.1) 

where w and W’ are any two Dirac spinors. 
Fig. B.la shows a typical fermion propagator and vertex in M and M’. 

Fig. B.lb shows the application of Eq. (B.l) to Fig. B.la. The diagram in 
M’ has been flipped over, all arrows on fermion lines have been reversed, 
and all momenta have been reversed in sign, This leaves the sign of moment,a 
in fermion propagators the same, as shown. Color sums can be reversed in 
the same manner as spinor sums, because the color generators are hermitian. 

Fig. B.lc exhibits the cut diagram notation, in which the contribution of 
any final state is a modified forward scattering diagram. The final-state lines 
are indicated by a vertical line (the “cut”). Cut lines are represented in the 
integral corresponding to the cut diagram by factors 

(pi + mi)(2a)d+(Pf - mf) I (B.2) 

for fermions or antifermions, after a spin sum. For polarized fermions or for 
vectors, the usual spin projections replace (k + mi). The Feynman rules for 
M are the normal ones, and those for 5 differ only in the sign of explicit fac- 
tors of i at vertices and in propagators. The three-gluon vertex also changes 
sign in M, because of the reversal of momenta. 
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(a) 

(b) 

- 
Ui 

(c> 

Figure B.l. Cut diagram identities. 
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C Dimensional Regularization 

In Section 1, our description of renormalization was a bit abstract, de- 
pending as it does on the substitution, Eq. (1.25). For many purposes, it 
is useful to introduce an intermediate step in this replacement, in which the 
divergent integral is regulated, that is, modified to become a finite integral. 
This will involve the introduction of a new, unphysical, parameter. The re- 
placement in Eq. (1.25) will then appear as a “subtraction”, in which the 
regulated integral is combined with a term that cancels its dependence on 
the regularization parameter. At present, far and away the most popular 
regularization scheme is dimensional regularitation, primarily because of its 
calculational simplicity. It is difficult to follow much of the theoretical lit- 
erature of pQCD without at least a passing acquaintance with dimensional 
regularization. 

Most of the essential features are contained in the scalar one-loop self- 
energy, Fig. 1.2, 

@$, n) = $-“/2 
J 

d”k 1 - 
(27r)n (k2 - 79 + ie) ((p - k)Z - 7722 + i6) ’ (C.1) 

where n is the number of dimensions, initially taken as an integer, n = 
1,2,. For n 2 4, the integral is UV divergent as k -+ co. The factor p4--n, 
with p an arbitrary mass is included to give keep G(*) dimensionless for all 
n. To simplify further, let us do the integral in “Euclidean” space, where 
k2 = ki+k2. The process of relating Euclidean to Minkowski integrals (Wick 
rotation) is independent of the regularization process, and for our purposes 
consists of multiplying by a factor i. 

For n 2 4, G@)(p,n) is ill-defined, but for n < 4 it is finite. The idea of 
dimensional regularization is to extend G to an analytic function of n for all 
Re(n) < 4, and then to use analytic continuation to extend it to the rest of 
the complex n plane. When we recall that analytic continuation is a unique 
process, we begin to see the power of the method. 

So, how are we to extend G to noninteger, let alone complex, values of 
n? Actually, it is quite a simple process: more general integrals require more 
care, but the basic steps are the same for every Feynman diagram. 
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(i) First comes a technical step, called Feynman parameterization, which is 
a trick to rewrite the product of denominators as a single denominator, 

Gc2)(p, n) = ip4-” dz[k2-2~~~~++~2-mZ]-2. (C.2) 

(ii) Next, we complete the square in the single denominator, I! = k - zn, 
to get 

Gc2)(p, n) = ip4-” / fj$ 6’ dz [ e2 + r( 1 - z)$ - m2 1-e (c.3) 

Notice that the shift of integration variable is perfectly permissible for 
n < 4, where the integral is convergent. 

(iii) In this form, we can trivially change variables to polar coordinates, and 
do the (trivial) angular integrals 

G”‘(p, n) = ilr4-“~ J1 & J== de&=-’ 

?T” 0 0 [P + 5(1 - “)p* - m21* (c.4) 

(iv) At this stage, the n-dependence is segregated into the angular volume, 
O(n), while the divergence at n = 4 is entirely in the radird ! integral. 
These two quantities are quite easy to promote from integer to complex 
11. 

So, we are left with two integrals to extend to the complex “n-plane”. 
Consider first the angular integral. We are already familiar with one- and 
two-dimensional angular integrals, 

R(2) = jozrdOr 

= 27r, 

R(3) = l d&sin(&) R(2). 

= 4s. 

(C.5) 

(C.6) 
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For integer n dimensions we easily find the following recursion relation: 

(C.7) 

n(m) = 1 dBsinm-2(0,)fl(m - l), 

= v/2)~((~ - wn(, _ 1) 
r(G) 

where I(Z) is the Euler Gamma function defined by the integral represent,a- 
tion 

l?(r) z lrn drr*-‘e-* , CC.81 

for Rez > 0. 
The recursion relation Eq. (C.7) is trivially solved by use of Eq. (C.5) as 

an initial condition. We find 

cc.91 

We can use this result to give a meaning to the integral Eq. (C.4) for all 
values of n, and not just positive integers. But let us first list a few basic 
properties of the Gamma function, which appears in the results of typical 
integrals like Eq. (C.4). It is defined by Eq. (C.8) for Rez > 0, and by 
analytic continuation for all other values of Z. A little algebra shows that for 
integer z 1 1 

r(z) = cz - 1)~ (C.10) 

The Gamma function obeys the recursion relation 

xyZ - 1) = r(z) 
(% - 1) 

(C.11) 

Since l?(z) is analytic for all z with positive real parts, it is easy to deduce 
that it is analytic for all Z, except at negative integers, where it has simple 
poles. It is precisely this last property that makes dimensional regularization 
such a convenient technique. 

Now let us return to our basic one-loop integral, Eq. (C.3). The remain- 
ing, radial integral in Eq. (C.4) can be analytically continued from a finite 
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integral for n real and less than 4, to a complex integral by using yet another 
integral representation involving gamma functions, 

J 
om dyy”-‘(y + ,)--* = r,iw,)$ (C.12) 

(This combination of Gamma functions is often called a “beta function”, 
not be be confused with the beta function introduced in connection with 
renormalization.) Combining these results, we find 

(C.13) 

In this way, the superficially divergent integral becomes the sum of a momentum 
independent pole term, plus momentum-dependent finite parts. Minimal 
subtraction (MS) schemes consist of subtracting the pole terms only in di- 
mensional regularization. The renormalization scale enters automatically by 
modifying the Lagrange density, as described below. 

DimensionaEly continvedfield theory. Let us now discuss how dimensional 
regularization is introduced in &CD. As its name implies, dimensional reg- 
ularization involves treating the number of spacetime dimensions as a pa- 
rameter, n. The unregulated theory, of course, is defined at n = 4. It is 
often convenient to parameterize the regularization in terms of the “small” 
quantity 

e = 2 - n/2. (C.14) 

The rules that we will need to implement dimensional regularization may be 
summarized as 

(i) For QCD, the regulated theory is defined by a Lagrangian of the form 
Eq. (1.2), but with all couplings, 9, replaced as 

9 + 94 1 (C.15) 

with E given by Eq. (2.15), and with p an arbitrary mass scale, which 
we will refer to as the renomdization scale. 
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(ii) Vector indices run from 1,. n and we make the replacements 

(C.16) 

in all momentum integrals (loop and phase space). We will see below 
what we mean explicitly by d”lc. 

(iii) There are n Dirac matrices yp, p = 1,. n, and the standard anticom- 
mutation relations 

{y”, y”}+ = 2gp’“, p = 1,. . n, (C.17) 

are satisfied by all n of them. Fortunately, however, it is not necessary 
to make the number of spinor components n-dependent. Thus we may 
retain Dirac trace identities such as 

%/dd31j41 = 4[ bl ‘PZh’3 ‘P4) + (PI ‘P4)bZ ‘P3) - (Pl ‘P3)bZ ‘P4) 1, 

(C.18) 
which depend on the yJ’ being 4 x 4 matrices. We should emphasize 
that Eq. (C.18) may be taken as a rule, because the true e-dependence 
due to the trace will not affect physical answers at n = 4, not because 
Eq. (C.18) is really correct in n dimensions. On the other hand, the 
anticommutation relations, along with g“,, = n lead to the following 
easy-to-prove, n-dependent identities for Dirac matrices, 

Y,#Y” = (2 - n)d 

Y,$d2,r” = 4Pl . Pz - 2cI/,2jldz 

rPdlip,lj,Yp = -w3d*dl + %wd3. (C.19) 

The basic one-loop integrals may now be evaluated in terms of Eqs. (C.9) 
and (C.12) straightforwardly. For instance, consider the Minkowski space 
integral 

18(n) = J [p -:f+ i+ t 
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-+2 
where P = !02- e . Wick rotation, & -+ it,,, gives 

an) = (-1~ J ljEzd:;;: i+, 
= (-l)~i+ Jm dW(e2,)“‘2-1 

0 [!E’ + M2 - i+ 

= (-l)“i*“/2 (M* _ qw ‘(yyz) , 
(C.21) 

where we have used Eqs. (C.9) and (C.12). Similarly, we have 

Iy(n) = jd”e epeu 

[P - M* + i+ 

= ~(-~)“-l~~“/zr(s ;(f,- ‘$W’(Mz _ if):-“+‘. 
(C.22) 

These forms are all that is necessary to derive the results of in Eqs. (4.19) 
and (4.20). 
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D Kinematics and Cross Sections 

In this appendix3 we discuss the kinematics and formulas in frequently- 
encountered cross sections. In this discussion upper case letters will be used 
to designate incoming and outgoing hadrons, h, as A + B -+ C +X , etc. 
Lower case letters will be used when referring to the hadron constituents 
which are undergoing the hard scattering. 

The cross sections below are described for the most part in the lan- 
guage of the parton model, Section 2, with hard scattering functions Hnb 
(see Eq. (3.38)) approximated by Born cross sections. They serve as well, 
however, for leading-power pQCD, when factorization scale despendence is 
introduced into the distributions and fragmentation functions. At lowest 
order (LO), the hard scattering function reduces to the Born cross section, 
using o,(Q’), with Q* an appropriate momentum transfer squared. 

Let A and B be initial state hadrons and C an observed final state hadron, 
with four vectors pi , pe , and pc, respectively. For these momenta, Man- 
delstam variables are defined as 

s=(PA+PB)‘, t=(pA-pc)‘, and~=(p~--pC)~. CD.11 

With this definition, 

CD.3 

The variable s is the squared center-of-mass energy while t and u are the 
squares of the four-momentum transfers from particles A and B to particle 
C. A similar set of variables describes the partonic scattering, a + b + c + d, 
identified by ‘hats’, as i. Thus, by Eq. (D.2), the Mandelstam variables for 
massless two-body elastic scattering satisfy the constraint .G + i + 6 = 0. 

A number of additional variables will be encountered in discussions of 
large transverse momentum processes. These describe momentum compo- 
nents which are transverse or longitudinal with respect to the beam direc- 
tion. These are denoted by pi and pe, respectively. Reference will be made 

3This appendix closely follows a similar discussion in ID.11 
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to the their scaled counterparts 

XT = %Tjfi, ZF = 2pP/&‘. (D.3) 

With these definitions the kinematically allowed ranges of xr and zF are (0,l) 
and (-l,l), respectively, if the masses of the hadrons are neglected. Another 
useful variable which is often used is the rapidity, y, which is defined as 

y+ E . ( > E -PP 
(D.4) 

This expression, when evaluated for a massless particle, has a much simpler 
form. In this case, 

y=lncot! 
2’ (D.5) 

where 0 is the center-of-mass scattering angle. This form, called the pseu- 
dorapidity when applied to physical particles, is convenient experimentally, 
since one needs to know only 0. For many high energy processes the de- 
pendence on the particle masses is negligible and therefore the rapidity and 
pseudorapidity become equivalent. 

In the derivations which follow it will often be necessary to work directly 
with the four-vectors of the interacting partons. Suppose that parton a car- 
ries a fraction z, of hadron A’s longitudinal momentum and that a similar 
definition for x6 exists for parton b. Then in the overall hadron-hadron 
center-of-mass system the four-vectors for a and b can, assuming massless 
partons and neglecting any parton transverse momenta, be written as 

Pt= q(l,o,o,l) and pt = y (1,0,0,-l), w.3) 

where the positive z axis is taken to be along the direction of the incident 
hadron A. If the scattered parton c has transverse momentum pr and rapidity 
yr, then its four-vector is just 

b: = pdcosh~~, LO,sinh~d. 07) 

With these results it is easy to evaluate the Mandelstam variables at the 
parton level: 

s^ = X,QS, i = -x,prfie-v’, and C = -xbprfiP . P.8) 
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For the case of two-body scattering, the partonic Mandelstam variables can 
also be written in terms of the four-vector of the recoiling parton d, in the 
event that correlations are being studied. Let 

$ = pT(coshyz, -l,O,sinhyz). 

Then t^ and C may also be written as 

CD.91 

t^ = -xbp&e* and & = -&,pTfie-y? . (D.lO) 

Starting with two-body scattering at the parton level the partial cross 
section for the inclusive production of two partons can be written as (Section 

2.1), 

WAB -+ 4 = ; g ~,,a(x,)dx,~b,8(xb)dxb c jM(ab + cd)12 

3 3 

(2a)464(pa + Pb - PC - Pd+2;l&,, c2;j&d 

(D.ll) 

Note that unpolarized parton distributions, as defined in Section 3.4, say, 
include a sum over colors and spins. These quantum numbers are therefore 
averaged in the intial state of the partonic cross section, and these averages 
are implicit in Cab in Eq. (D.ll). At the level of two-body scattering one 
associates a jet with each of the outgoing partons (Section 2.3.3). How- 
ever, when more complicated final states are taken into account, e.g., 2 + 3 
processes, the jet must be carefully defined using energy and angular size 
resolutions, or a ‘Jade’ algorithm, etc. (Sections 4.4 and 7.2). 

In order to convert Eq. (D.ll) into the invariant cross section for inclusive 
single jet production it is easiest to use 

d3Pd 
- = d4Pd ,%P$), 
2&i 

(D.12) 

to integrate over pd using the four-dimensional delta function. In addition, 
with massless partons it is convenient to make the replacement 

6(pZ) + S(i + i + ?i) (massless partons) (D.13) 
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This results in 

E $(AB -+ jet +X) = c ldx,dx~~.,~(x.)~~,~(x~) 
abed 

x$(ab+ cd)6(i +i+C), (D.14) 

where the differential cross section for the two-body parton scattering sub- 
processes is denoted by 

$(ab + cd) = $&c IM(ab + cd)12 (D.15) 

The argument of the delta function in Eq. (D.14) can be expressed in terms 
of za and 56 using the results given above. The zb integration may then be 
done, giving the final result 

Eg(.AB -+ jet + A’) = 1 fn ~w++,~~(x.)&qdx.6) 
abed a 

2 
x- a2Joz~x~Teu$(nb -+ cd), (D.lG) 

where 

and 

xaxTeey 
xb = 

22. - XT@ ’ 
(D.17) 

(D.18) 

Eq. (D.16) is also applicable for the calculation of the direct phot,on ill- 
elusive invariant cross section resulting from the subprocesses qq + ~9 and 

9Q -+ YQ. 
Next, in order to calculate single particle inclusive invarknt cross scc- 

tions, the fragmentation function Dclc(ze) (Section 2.3.2) must be incl~~tletl. 
This function, when multiplied by dz, gives the probability for obtaining a 
hadron C from parton c with the hadron carrying a fraction zc of t,hc partoll’s 

momentum. Vsing d3p/E = zz(d3pc/Ec) the resulting expression is 

Ed3u 
d3p(AB + C+ W = c Jdx,,drbdz,~~,a(x,)cia,o(rh)Dc,,i~,) 

abed 
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x-&$(ab4)6(8+i+fi). (D.19) 
e 

As in the previous case, the argument of the delta function may be expressed 
in terms of the parton kinematic variables and the z, integration may then 
be done. The final form for the cross section is 

Eg(AB + h + x, = c J’ dx. /.l;. d~b~~,/a(~,)~b/~(~b)Dh,e(Zc) 
abe* =LY 6 

1 do 
x--$ab + cd), 

c 
(D.20) 

where now 

2, = 

xycn = x,xTt?-y 
22. - xTey ’ 

xmin = XTI? 
a 2 - XTe- 

(D.21) 

Eq. (D.20) is also applicable for the calculation of the single photon inclusive 
invariant cross section (Sections 2.5 and 6.4), when the photon results from 
the fragmentation from one of the scattered partons. In this case one must 
replace Dhlc by D.,ic. 

The above equations for the invariant cross sections include a summation 
over all of the possible two-body parton scattering subprocesses. In addition, 
the summation implies a symmetrization under t^ and n interchange, i.e., 
interchange of the beam and target. Note that for the case of three quark 
flavors there are 127 terms contributing to the inclusive single particle cross 
section. 

The partial cross section in Eq. (D.ll) can also be used as a starting point 
for a two-jet inclusive cross section. At lowest order, the transverse momen- 
tum components of the delta function insure that the jets arc produced with 
equal and opposite transverse momenta. The dijet cross section can then be 
written in terms of the rapidities of the two jets and the transverse momen- 
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turn, pr, possessed by each: 

dy,iidpF CAB + +ietl + jet2 + X) 

= g/ 
dxodXb9a,A(:C.)Ob!D(xb)~~(ab -+ 12) 

4 fi 
X6(X,,yj- + “61 - PT cash yr - pr cosh& 

X6(X.$ - x6$ - pT sinh yr - pr sinh yzXD.22) 

The two delta functions in this expression are the energy and longitudinal 
parts of the original four-dimensional delta function appearing in Eq. (D.11). 

Together, they allow the integrations on both 5. and zb to be carried out. 
The resulting two jet cross section is 

dyl~~dp+ CAB + jet1 +jetZ +x) = c X.6,lA(X.)~b~b,A(Xb)~(Ub --t 12) , 
ob 

(D.23) 
where 

x0 = =(eyl + em), 
4 

56 = E(e-Yl + e-w). 
G 

(D.24) 

Another variable which is often used in studies of jet production is the 
dijet invariant mass, M,‘j. This is easily shown to be given by 

Mfj = 2~; [l + cosh(yl - J/Z)] , (D.25) 

if the masses of the individual jets are neglected. The mass distribution is 
then given by 

du Mjj du 
dyrdyzdM,j = 1+ cosh(yl - YZ) dyldyi?d& 

(D.26) 

The dijet cross section in Eq. (D.23) has no integrations remaining to 
be done. That is, knowledge of the four-vectors of the two jets has com- 
pletely determined the kinematics of the parton scattering process. Thus, it 
is possible to use Eq. (D.23), or an equivalent expression, to determine the 
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parton-parton scattering angular distribution, averaged over all of the partic- 
ipating subprocesses. Let 0’ be the parton-parton center- of-mass scattering 
angle. Then, Eq. (D.23) can be rewritten as 

do 
dxadxbd cos 8* = y T h+h+#‘b,~(~b)~(~b * 1.4, (D.27) 

where x, and xb have the values given in Eq. (D.26). 
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