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ABSTRACT

Physics defined on real manifolds and equipped with locality has achieved many successes
theoretically as well as in describing our universe. Nevertheless, from a mathematical point
of view, it is not as privileged. This thesis explores the possibility of non-Archimedean and
non-local physics by studying a range of discrete and continuous models. We begin by dis-
cussing how continuous dimensions with different topologies emerge from a sparse cou-
pling lattice model inspired by a recent cold atom experiment proposal. A field theory with
both non-Archimedean and Archimedean dimensions is then studied. The propagator of
the theory possesses oscillatory behavior. We work out the renormalization and compare
the theory with the quantum Dyson’s hierarchical model at the criticality. We then proceed
to study two non-local field theories: the non-local non-linear sigma model and the non-
local quantum electrodynamics. Non-locality altered the behavior of NLSM profoundly by
eliminating the Ricci flow and demanding higher-order covariant corrections in the target
space. At the same time, the interplay between non-locality and gauge symmetry generates
unique RG flows in the non-local QED and makes the theory more controllable. We con-
clude by introducing a monodromy defect defined in O(N') symmetric conformal theories,
which by definition, supports a non-local CFT on the defect. Throughout the journey, we
want to convey the idea that non-Archimedean physics and non-local physics exhibits rich
and unique phenomena yet are not disconnected from the more ordinary physics.
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Introduction

0.1 AN INVITATION

Developments in modern physics have deepened our comprehension of space-time and
matter. The usual concept of the space-time continuum is based on the real number field
and its extensions, like the complex number field. Physics theories defined with real or com-

plex manifolds have been studied extensively. Among them are the Standard Model and



String Theory, representing our most advanced knowledge of the four fundamental inter-
actions and all the fundamental particles in nature to date. Rich topological and analytical
structures of the Pseudo-Riemannian or Riemannian manifold have been enlightening us
in our understanding of nature and serving our pure theoretical interests in some other
time.

Continuum is not always given. Sometimes continuous physics emerges from physics
on the discrete, lattice models. From the famous Ising model to lattice gauge theories to
topological matters in modern condensed matter theory, lattice models have taught us so
much that would be difficult to grab merely from the angle of the continuum. Although
often well-motivated by itself, like in cold atom physics or condensed matter physics, lattice
models are also important because of their connection with the continuous theory. We can
look at scalar quantum field theories, for instance. A fundamental field can usually be un-
derstood as a map from the base space to a value space, which is always built upon real num-
bers. Because of the continuous base space, we can move fields to arbitrarily short distances
or arbitrarily high energy. In many theories, this operation causes arbitrarily large quantum
fluctuation. The shorter the distance, the more significant the fluctuation, hence the term
ultra-violet divergences. Renormalization and regularization are needed to deal with diver-
gences properly while allowing that arbitrariness or absolute continuum, or equivalently,

without requiring the UV details, by studying the change of fields in response to the change



of scales. High energy details, or a UV completion of the theory, can be a lattice theory.
More generally speaking, a lattice theory does not need to be the UV completion to share
the same IR physics with a continuous theory. The connection between critical Ising mod-
els and critical ¢* theories is a good example. One important motivation of this thesis is to
explore the possibility of non-Archimedean and non-local continuous theories as primar-
ily inspired by the lattice way of thinking. We will explain the main ideas and the relevant

definitions in the rest of this introduction.

0.2 COUPLING PATTERN TOPOLOGY

When we take a discrete set of points as the base space, some usual concepts about space-
time are altered. For example, the number of dimensions is determined by the number of
neighbors in nearest-neighbor models. Moreover, the metric is necessarily discrete and is
less important if the coupling pattern is not specified. In short, because infinite countable
(discrete uncountable sets are not considered here) sets can be one-to-one mapped to each
other, it does not matter how the lattices look geometrically. What defines the theory is
how the physics fields on every site interact with each other. Put in other words, we seem

to have more freedom when defining a theory on the lattice. In this thesis, the coupling pat-

tern that we restrict ourselves to is defined by the quadratic coupling term in the statistical
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Figure 1: A 1D Ising spin chain.

Hamiltonian:

Hy = Z Jij0i9; (1)
i,J

where J;; is real and represents the coupling between site ¢ and j, and ¢; is the field living
on the site ¢. A familiar example is the Ising model, where J;; is constant if 7 and j are the
nearest neighbors and J;; = 0if they are not. Figure 1 shows the one-dimensional Ising
spin chain, where all couplings are illustrated by black arcs, and we highlight the nearest-
neighbor coupling of one site.

A clear one-dimensional topology is derived from the number of nearest neighbors being
two and the lattice translational invariance. In higher dimensions, the number of nearest
neighbors and the number of discrete symmetries increase. Lattice models with locally de-
fined site-to-site couplings represent a variety of discrete counterparts of various usual field
theories with local quadratic kinetic terms. Let us abstract the metric-like coupling J;; to
a rule for the neighborhood for now. We define sites that directly couple to each other to
be in the same neighborhood. We can generate the neighborhood topology for the one-
dimensional Ising model, as in figure 2 (only drawing neighborhoods defined by the cou-
pling while others are added according to the axioms of the neighborhood).

Translational ¢ — 7 £ 1 invariance is a stringent constraint, and we can find interest-
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Figure 2: Topology from neighborhoods: Ising model

ing generalizations by rearranging neighborhoods. We first remove some neighborhoods.
Of course, breaking all of them would generate a set of independent sites decoupled with
each other, and that is boring. We can try to keep only “half” of them, as depicted by blue
ellipses in figure 3. That alone merely gives decoupled pairs of sites that are not interesting.
Now the original translational invariance is downgraded to ani — ¢ £ 2 invarjance. We
then add back couplings to pairs of pairs, and then pairs of pairs of pairs (black and gray el-
lipses in figure 3), which breaks translational invariance more and more (to ¢ — ¢ & 4 and
to 7 — 4 & 8). For an infinite lattice, we keep doing this so a hierarchical structure is formed
and no translational invariance is left in the end. One obvious difference with the Ising is
that this is an all-to-all coupling pattern. This hierarchical coupling is also less “connected”,
as the intersection of two neighborhoods at the same level is always empty. This means that
we can easily break the space into infinitely many disjoint sets by ignoring couplings higher
than a certain level. This is Dyson’s hierarchical model . Freeman Dyson introduced this
model in 1968 and showed that this “one-dimensional” model could have phase transitions.
Lattice models with this topology are known to have rich physics. "

Now that we obtain an all-to-all coupling, it is tempting to go back to the metric form

Ji;. The question is how to express the coupling as J (7 — j) because the translational invari-



Figure 3: Topology from neighborhoods: Dyson'’s hierarchical model

ance is totally broken in the infinite lattice. Nonetheless, for a finite lattice, equivalently for
a finite set of integers, one can always assign it a distance function such that J;; = J(i — j).
If we want J to be a function of the absolute value |7 — 7|, then the form of the function
must be increasingly complicated as the lattice size increases. If we want a simple form of
J, we need a distance function that describes the hierarchy. We have relabeled the sites in
figure 3, which is free because of the finite lattice (note that for a lattice of different size, the
relabeling is also different). In such alabel, ¢ — j has the same power of 2 for any ¢ and j
having the same hierarchical distance, which is the size of the smallest neighbor that con-
tains both ¢ and j. This is a primary version of the p-adic norm |¢ — j|, with p, a prime
number, being 2. The p-adic norm is one of the main topics in the next chapter. We will see
that p-adic norm is non-Archimedean, as opposed to the Archimedean real norm.

All-to-all non-local couplings that have real translational symmetry are more familiar.
One famous example is the long-range Ising model ** where J;; o< |i — j|*. We are used to
the fact that the continuum limits of these real translational invariant lattices are described

by field theories defined on the real number field. If we naively take the infinite size limit



and zero spacing limit of a lattice, then we get the rational numbers Q which can be one-
to-one mapped to the integers. Rational numbers are often not good enough to support

a field theory. One needs the completion of the rationals to enjoy better analytic proper-
ties. Real numbers are the completion of the rationals with respect to the real norm. The
completion of the rational number field with respect to the p-adic norm is called the p-adic
number field, which is to be introduced more carefully in the next sections. Thus, it is also
natural to consider field theories defined over the p-adic numbers. Note that the real num-
bers are also algebraically closed. The completion of the algebraic closure of p-adic numbers
is, instead, very complicated and will not be discussed in this thesis.

Note that the translational invariance is restored in the continuum limit of the hierarchi-
cal model with the p-adic norm. This is not a contradiction, as the continuum limit, the p-
adic numbers, is a very different number field from the real numbers. We could phrase it as
the real translational symmetry versus the p-adic translational symmetry. We have discussed
various possibilities of the continuum as inspired by the lattice. In chapter 2, we compute
the Green’s functions of a one-parameter family of lattice models to study the base space
topology in the continuous limit." We compute the Green’s function and its Holder conti-

nuity to study a transition from the “real smoothness” to the “p-adic smoothness”.

*Similar philosophy is also seen in the continuum. For example, the authors™ consider a (non-
Riemannian) metric on space-time that arises from the two-point function of a scalar field theory.



0.3 THE p-ADIC NUMBER FIELD

Ordinary integers Z is a natural extension to the concept of natural numbers. The ring of
ordinary integers is an algebraic structure on the set Z equipped with addition, subtrac-
tion, and multiplication. If one also demands division, then we have the field of Q, rational
numbers. Any rational number can be expressed as §, wherep,q € Z,q # 0. As sets,
both are countable and have cardinality Ry, but as topological spaces, they have very difter-
ent topologies. As a metric space, rational numbers @ are not complete, meaning that not
every converging sequence in Q converges to an element that belongs to Q itself. Adding
these missing limits to the field is called completion. For example, the construction of real
numbers R is the completion of Q with the metric as the absolute value of the difference. A
different metric could give a different completion of Q.

For any positive integer 2, picking a prime number p, we can easily write down the fol-

lowing expansion

N
2= p" Y anp" = pP(ao + arp + anp + . + anp®), ()
n=0

and we know this expansion is unique. It is called a “p-adic expansion””. Any finite ordi-
nary integer will be a finite sequence under this expansion, and we can see higher power

terms are bigger in the sense of absolute value. In such a case, extending IV to infinity is



meaning]ess, and all that will become just a formal notion of infinity co. A sensible infinite
expansion in real numbers extends the sequence to —oo power, and that resembles our fa-
miliar decimal or binary representation. However, are there other notions of norms where
higher power terms in (2) contribute less to the norm? The answer is yes, and such a norm
is called the p-adic norm. It is defined for a positive integer p”a, where a € Z is co-prime to

p,and hence v € Z is the largest power that p¥ divide this number, as

Ip”al, =p~", (3)

and |0], = 0.If pis nota prime number, then the axiom |z|,|y|, = |2y, can notbe
guaranteed. p-adic norm satisfies the norm axioms, but in fact, it satisfies a stronger version

of the triangle inequality

|+ ylp < max{|z[p, [y],}- (4)

which is called the ultra-metric property. This breaks the Archimedean property (if 0 <
|a|oo < |b|oo, then for somen € Z we have |nals > |b|s) and such norms are called
non-Archimedean or ultra-metric norms: when you add up quantities, you only obtain
quantities with equal or smaller norms. It can be proved that the non-Archimedean prop-
erty is, in fact, equivalent to the ultra-metric property for a norm, so that we will use these

two notions interchangeably from now on. We also want to point out Ostrowski’s theo-



rem: every non-trivial norm on the rational numbers Q is equivalent to either the usual real

norm or a p-adic norm.

Now we can formally extend NV in (2) to infinity and because higher terms is smaller in

this p-adic norm, we could obtain a converging sequence in such manner(and p-adic metric

is defined as the p-adic norm of the difference). Then we can figure out p-adic expansions

for every rational number through algebraic equations. We give some examples for p =

17,

+ —lastherootof x + 1 = 0, then

—1=) 16x17"=16+16 x 17+ 16 x 17> + 16 x 17+ ... (s)

n=0

. % as the root of 22 = 1, then

1 o0
5=9+Z8><17”:9+8><17+8><172+8><173+... (6)
n=0

* v can be extended to negative integers, for example

23

g —1
== 17 (6+1x17) (7)

and | 2|, = (17)"CY =17.

Rational numbers are not complete under the p-adic metric as partially shown by the

infinite series. The completion of QQ under p-adic metric gives p-adic numbers Q,,. Unfortu-

"Year 2021 happens to be the emerging year of the 17-year periodical cicadas. This kind of cicadas follow

the period of a large prime number to avoid cycles of natural predators.

I0



nately, Q,, is not algebraically closed. Not like in real numbers, to get a complete algebraic
closure, one should deal with infinite extensions of (Q,,, and the final object is called {2 or
C,. Most of the p-adic physics literature only deals with Q, and its finite extension.

p-adic number Q,, has the same cardinality 2 as real numbers, but they have very dif-
ferent topologies. In fact, as a topological space, Q,, is totally disconnected, like Q. This
is saying that for any two numbers 2,y € Q,, there exists open sets S and S5 such that
r € S,y € 52,5 NSy = 0and S; U Sy = Q,. Thisis not true in real numbers.
This difference can be roughly represented as following: in R, one can typically approach
a number using sequences converging from above or below, for example representing 1 as
0.99999... and 1.00000...; while for Q,,, this is not possible as the converging sequences all
have the same p-adic norm. This difference in topology is an important reason why p-adic
physics usually have different features from “real physics”.

Now we can think about the hierarchical model or the 2-adic lattice in the last section.
We can take the infinite limit by keeping doubling the number of sites and relabeling the
sites such that the coupling can always be described by a power of | — j|2. The same process
can be realized for any prime number p. The infinite set we obtain is called Z,, the ring
of integer of Q,,. Z,, is an infinite subset of Q,, consisting of all the p-adic numbers that
have p-adic norm equal or smaller than one. The ordinary fine graining process, where one

just adds numbers to the ends, gives us the integer(or QQ as for a continuous topology) line.

II



Both Z and 7Z,, enjoy ring structures, but from this, we could see that Z,, has the special tree-
like topology while Z has the ordinary discrete topology(or Q has an ordinary continuous
topology). This difference in topology almost guarantees different physical properties when
we consider lattice models on a “p-adic” lattice rather than a regular lattice. In fact, not like
Z or Q, Zy, has cardinality 2% and is uncountable. Even more differently, Z,, is itself dense
and complete.

Arithmetics is defined as usual on p-adic numbers. Integrals can be defined with a similar

change of variable rule as real integrals.

/dle, /dx: /d(cx): /dm |, (8)

Zy U c1U c1U
Fourier transforms can be defined when introducing character function x(z) = e?milz})
where {x} is the fractional part of 2. And the integral of the character function is

(

p(1—ph if v>0

/ dyx(y) = ¢ —1 it v=-1 (9)
p'Up

0 if v<-—1

In particular, the integral of x over QQ,, is zero and thus we can define the Fourier transform

12



of the character itself to be the distribution in analogue of Dirac Delta in the reals:

/ dr x(k1x)x(kex) = d(k1 + k2) (10)

P

Similarly, Mellin transform can be defined. Gelfan-Graev gamma functions can be defined

as the Mellin transform of the character functions:

du
Iy(s) = [ —x(u)lul;. (11)
|u|p
With local zeta functions defined as
1
s = T ()

it is not hard to check that

Ly(s) = Cj}l,—(s—)s)' (13)

Adelic product relation can be constructed, relating real special functions with p-adic spe-

cial functions. Moreover, as an analog of Cauchy’s integral formula, Vladimirov derivatives

13



can be defined over p-adic numbers:

In particular, we can see that

Dyx(ky) = |klyx(ky). (15)

As one can observe, the techniques needed to study p-adic field theories are of a similar
form with the real bi-local field theories, essentially due to the similar definition of frac-
tional derivatives. We will discuss some of these analytic tools in the next section.

In fact, field theories over the p-adic numbers have been studied extensively, starting with
Dyson’s hierarchical model”® and continuing with the rigorous results of *, with the field
theory perspective emerging clearly in“*. In particular, the point that p-adic field theories
can be obtained as continuum limits of hierarchical models was first made in“”. The re-
views“>“»** provide useful points of entry into the large literature on p-adic field theory

and related topics.

14



0.4 NON-LOCAL FIELD THEORIES

0.4.1 FOURIER TRANSFORMS

In loop calculations we will often need to go back and forth between momentum space

expressions and their real space counterparts, using the Fourier transforms

o(x) = / A"k 2™ 7 g (k) o(k) = / A"z e 2RI (1) (16)
v v
The relevant results are fairly similar between real and p-adic cases, so we present them to-
gether. When V' = RR", the definitions (16) are entirely standard, and k - = can be under-
stood as the ordinary dot product. Likewise, in this case, |z| is understood as the standard
L? norm on R". We will use real and Archimedean interchangeably from now on.
The simplest n-dimensional p-adic construction is based on letting V' = Q,» be the

(unique) unramified n-dimensional extension of @,. Let N and Tt be the field norm and

field trace with respect to the extension Q,n /Q,. Then we define |z| = | N(z)| 4

" where | -
|,» is the usual p-adic norm. We will refer to the p-adic case as ultrametric or non-Archimedean.
Next we define k - x = % Tr(kx). Note that k - © € Q,, so to give meaning to 2Tk e

now only need to define e*™ for £ € Q,. To this end we find the unique p-adic integer

|€] suchthaté — [€] € [0,1) N Q, and we understand that by e*™* we really mean

p2mi(E-1€)).

I5



We are particularly interested in the Fourier transform of powers of |k|:

: r
/ d"k ™| k|s = Li—s) + (contact terms) . (17)
14 [+

Here I'y (s) is a meromorphic function of s which can be evaluated as

Py(s) = % (18)

where we set v = 00 in the Archimedean case and v = p in the ultrametric case, with

Coo(s) = 7r_8/2]-—‘}3',uler(5/2) Cp(s) = —. <I9)

Intuitively, I'y is a variant of the Euler gamma, specific to the choice of V, and constructed
so as to be the coefficient of the 1/|x|"** term in (17). In the remainder of our discussion,
integrals are over V' unless otherwise indicated.

The contact terms in (17) are somewhat delicate and dependent on detail. When —n <
s < 0, the integral in (17) is convergent, and no contact terms are needed. One can easily
check that 'y (n 4+ s) — Oass — 0, so when s = 0 the power law term goes away and we

recover the obvious result

/dnk e27rik-x — 571(1.) ) (2,0)

16



For s > 0, the integral in (17) diverges, and we need a more careful approach. A good first

step is to understand (17) in terms of its action on a test function ¢: V' — R:

/ A"k ™ | kP d(k) = D*¢(x) (21)

where D? is some linear map on functions ¢(x). A suitable class of test functions is the
so-called Schwartz-Bruhat functions. When ¢: Q,» — R, we require that ¢ is locally con-
stant with compact support. For example, the characteristic function of the p-adic integers
is a Schwartz-Bruhat function on Q,. When ¢: R™ — R, the test functions are more ap-
propriately called Schwartz functions, and their defining property is that they go to 0 faster
than any power of |z, as do all their derivatives. An example is a Gaussian. Both in the real
and ultrametric cases, the Fourier transform ng(k) of a Schwartz-Bruhat function is again a

Schwartz-Bruhat function.

0.4.2 FRACTIONAL DERIVATIVES IN POSITION SPACE

With (21) taken as the definition of D?, our task is to find a representation of D? entirely in

position space. In the ultrametric case for arbitrarily positive s, one finds

P(y) — ¢(x) ' (22)

|z — y|ts

D*oa) =Tv(n-+) [ 'y

17



This is the Vladimirov derivative. In the Archimedean case, the same expression (22) is
validfor0 < s < 2. There is one more easy case to dispose of: even positive integer s
for Archimedean V. ThenI'y (n + s) = 0, which makes sense in (17) because the right
hand should be purely distributional, on account of |k|* = (k?)*/? being analytic in k2.

Explicitly,

1
(27)°

Dé¢(z) = (=0)*%¢(x) for positive even s, (23)

where (0 = >"" | 92

We are left with the task of defining D? for Archimedean V and for s > 2 butnot
an even integer. Heuristically, the contact terms in (17) are a sum of terms of the form
070" (x), where 0 < 7 < s/2, with divergent coefficients. To state this more precisely,

we write

o(y) — o(x)

, (24)
|z — y|mts

D*¢(x) =Ty(n+s) // d"y

where a regulated integral

= ()

x — y[rte
is rendered finite (if possible) by allowing the subtraction from G(z, y) of a finite sum of
smooth functions of either of the following types:

I. Pure powers: more precisely, any function whose i dependence comes solely through
afactor |z — y|* where o is a real number. This is meant to include, through the case

a = 0, functions which have no y dependence.
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II. Higher partial waves: more precisely, any function of the form Y(y—2)g(lz —y|)

where Y(2) is a spherical harmonic on S"~! other than the s-wave.

Type I functions are never integrable, whereas type II functions may or may not be; so
at best there is a unique choice of type I functions that will work, whereas many choices of
type II functions are possible. An alternative approach, generalizing the principle value pre-
scription, is to eschew modifications of the integrand and instead carry out y integration in
polar coordinates centered around , as follows. One first performs the angular integrals.
Then the radial integral is restricted to run from [ to L. One next allows the subtraction
of an arbitrary finite sum of negative powers of [ and/or positive powers of L, chosen (if
possible) so that the limits/ — 0and L — 00, taken independently, lead to a finite re-
sult. Doing the angular integration first obviates the need for type II functions, while the
ultraviolet and infrared cutoffs, [ and L, obviate the need for type L*

While the subtractions described can in principle cure either ultraviolet (UV) or infrared
(IR) divergences, we will be interested only in applications where UV divergences matter:
that is, divergences arising when |2 — y| — 0 (with 2 held fixed). Type II subtractions are
relatively innocuous because they follow automatically from performing angular integra-

tions first; therefore we will use the notation [ d"y . .. to indicate a y integration with type

¥The alert reader may notice that the alternative approach using cutoffs is not quite equivalent to adjust-
ing G(z, y) by pure powers of |z — y|: For example, if s is a positive even integer and G(z,y) = |z — y|*,
then we get a logarithmic divergence that would obviously be canceled using an appropriate type I function
but cannot be cured using powers of [ and/or L after a cutoff integration. Because we avoid even integer S as
well as functions G(z, y) which grow as positive powers of large separation |« — y|, we do not need to specify
a resolution to this inequivalence.
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IT subtractions which we usually omit to write explicitly.
Although we have stated our integration prescriptions in the abstract, it is easy to see
how to apply them to (24) when ¢ is a Schwartz function. Consider the case 2 < s < 3,

and set z = 0 for simplicity. Then (24) becomes

[ ~6(0) ~ 5D10(0) — 2 D100

(26)

\y|”+5 \y|”+5

The extra terms in square brackets on the right hand side of (26) evidently render the inte-
gral convergent near y = 0 for 2 < s < 3. The term linear in y is clearly a type II function,
and the term quadratic in ¥ is a sum of a type II function proportional to y;, ¥, — %(2”«2 (a
d-wave term) and a type I function proportional to y*. If 3 < s < 4, then we would need
one additional term in the Taylor series expansion of ¢ around y = 0, and this additional

term is a type II function. In summary, for 2 < s < 4, and omitting type II subtractions,

y2

90~ 60) - 2-06(0 @)

d™y
‘y’nJrs

D?¢(0) =

Evidently, if 0 < s < 2, a simpler subtraction scheme would work, resulting in (27) with

the laplacian term omitted, in agreement with (22).
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For general s > 0 (other than positive even integers) and Archimedean V,

dny ls/2]
D?*p(0) =Ty (n+ s)/ == o(y) — Z y*"b,0"¢(0) (28)
r=0

where

I_‘}Euler ( g )
22 Digter (7 + 2) D ter (1 + 1)

b, = (29)

In principle, one may derive (28) by subtracting an appropriate number of terms in the
Taylor series expansion of ¢(y) and then finding appropriate type II subtractions to bring
the result into the form (2.8).

A more efficient way to determine the coefficients b, is to start from (28) and Fourier

transform:

/dnx efQﬂik-xDs¢(x)

Ls/2]

= Ty(n+s) / & 2k / % o) — 3 (& — )b ()

r=0

[s/2]
QFV n—i— S o dy T . n—2 7 27i|k|g cos 6 277,21 ~2r
= =) / 5“/0 df (sin 0)"2p(k) | e*ilklzeost _ E_ b, (2m1)" k™"

00 ls/2]
=T'y(n+ 8)(27T)§+5|]g|5¢(k‘)/ dp |p~ = Ja_1(p) — Z a,p?r !
0 r=0
(30)

In the second equality of (30), we have partially carried out the y integral in polar coordi-
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nates around the pointy = z, introducing a radial variable g = |2 — y|. In the third
equality, we have carried out the angular ¢ integral and introduced a new radial variable,

p = 2m|k|y. The p integral in the last line of (30) converges, provided s is positive but not
an even integer, and provided the coefficients a, are coefficients in the Taylor series expan-
sion of the Bessel function around p = 0. These coeflicients a,. are well known, and from

them one can recover the expression (29) for the b;.

0.4.3 BI-LOCAL INTEGRALS

We are particularly interested in double integrals of the form

d"zd"
1%

xV |$_y

where s > 0and G(z,y) is piecewise constant if V' is ultrametric and smooth if V' is
Archimedean. Unless otherwise noted, all double integrals over « and y will by taken over

all of V' x V. In the ultrametric case, for any s > 0, following (22) we define

"odradty mxd™y
el _ 2
Gl = [ (6() - Ga.a) (32)
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In the Archimedean case, we define

"odrad™y
|z — gy

G(z,y) (33)

by performing the y integration first and allowing the subtraction of type I and type II
functions to G(z,y) in order to achieve a finite result (if possible). As in the previous sec-
tion, type II subtractions are deemed relatively inconsequential, so even unprimed integra-
tion over x and y means to perform the y integration first, allowing the subtraction of type
II functions in order to achieve a finite result (if possible). Explicitly, for s not a positive

even integer,

T rLle .’,U, - T i< QZ‘, - T .T, - )
o — gt T s [T T Y

(34)

where the coefficients b, are as given in (29). We avoid positive even integer s when V is
Archimedean because in this case we expect that our constructions will lead instead to
purely local theories; also, precisely in this case, the subtleties pointed out in footnote §
regarding logarithmic divergences come into play.

Our computational strategy will turn on converting bi-local position space integrals into
Fourier space integrals. Let’s start with the simplest example of that calculation, valid for

ultrametric V and any s > 0, and also for Archimedean V and0 < s < 2. Let¢: V' — R
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be a Schwartz-Bruhat function. Then

00— o)) = [ T ([0(e) = o)l + 0t = o))
=2 [ rwote) [ ol - o(0)
2 n s _ 2 ny. 1 s 7
_ _m/d zd(x)D°p(x) = Totn s /d ko(—k)[k[*o(k) .

(35)

The first step is actually the trickiest, because it is not clear from the rules of integration
set forth following (33) that we are allowed to add a function like ¢(x)? — ¢(y)? to the

integrand. To justify this step, we denote f(z) = ¢(x)?, and we argue that

nxdn 2 2 _; o DS Fg) —
/|x y|n+s o(y)* — o(x)?] _Fv(n+s)/d D*f(z) =0. (36)

The second integral in (36) is the & = 0 component of the Fourier transform of D* f(x).
But this Fourier transform is |k|* f (k), and since s > Othek = 0 component indeed
vanishes.

Let’s now pursue the same computation for the Archimedean case with 2 < s < 4. On
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one hand, using (34),

’ dngjd”y B > dnl'dny N - (y—;p)Q ) ;
ot - o)t = [ (10t - ot - ot ?)
= M ) — 2 (y—x)2 9d(x . 2
- [ (w )— o) — U= [20()00(0) + D )]) |

(37)

On the other hand, using (27),

2 "k p(— sp(k) = — "z ¢(x L T+ 2)— oz
‘rv<n+s>/d RO = =2 [ @ o) [T ota+2) o)
L (260 000 - o] + L s()0000))

In order to conclude

"odredty 2 2
[Fr= [P(x) — d(y)]” = Ty(n+s)

/ &k (k) KDY, (39)

we must therefore argue that the final integrals in (37) and (38) agree. Subtracting (38) from

(37) and simplifying slightly with the definition f(z) = ¢(x)?, we arrive at

d"zd"y ~ _(y_];)z 2| = L "y DS (1) =
P {f(y) f(x) 5, S >1 Fv(n—i-s)/d Dijta)

(40)

The first equality in (40) follows from (27), and the second is by the same argument used
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following (36). To summarize, for Archimedean V and for 2 < s < 4,

[ (W= oy ) - )

|z —y|*e n

2

~ s | ORIk,

Iy(n+s) > 0for2 < s < 4,and so without the (0¢)? on the left hand side of (41) we
would have a sign problem. The equality (39) can be checked in a similar manner for s > 4.

A key relation is

O (d(z) — d(y)?| = —2¢(z)0"¢(z) + O"¢(2)? . (42)

Two take-away lessons are:

* When we write simple |k|* kinetic terms in momentum space, in position space we
are combining non-local position space terms and local terms involving derivatives in

a precisely tuned ratio.

* There is some freedom in the precise structure of the position space form, as exempli-
fied by the equality of the last integrals in (37) and (38) due to a manipulation which

is the non-local version of integration by parts.

0.4.4 NON-RENORMALIZATION THEOREM

S = %/Vd”ké(—k)ykré(k)+/vd"xU(¢(:c)), (43)
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We exhibit the simplest manifestation of the non-renormalization theorem of the non-local

quadratic kinetic term in the action (3.2), where V' = R" or Q,», with

U(g) = %¢3. (44)

The purely cubic theory is unstable, but it serves our purpose because we are only inter-
ested in analyzing the behavior of the one-loop correction to the propagator. We obtain the
one-loop contribution to the quadratic part of the one-particle irreducible (1PI) effective

action:

2

art

We continue the convention of integrating over all of V' except as otherwise indicated. Let’s
assume 1 > 2s, so [ is UV divergent (and IR convergent). To regulate the divergence, we
introduce a hard cutoff: [¢/| < A.IfV = R", then A can be any positive real number. If
V' = Qpn, then we will require that A is an integer power of p.

The ultrametric case is easy to analyze, because when |¢| > |k| we have || = |k — (] ex-
actly. So, except in the compact region where || < |k|, the integrand has no k dependence

atall. Therefore, any UV divergences are entirely independent of %, and to evaluate them
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we can set k = 0:

dme d™e
I(A :/ —:/ 2 L (UV finite)
W= L T =~ Jyen 1P

_ G(n — 2s)

A0 A™%% 4+ (UV finite) .

The last equality comes from splitting the integration region into shells with fixed |¢[;
then the integral becomes a geometric sum. Because the divergent part of 1(A) has no k-
dependence, the counterterm required to cancel it is proportional to [ d"k q%(—k)gz@(k;) =
J d™z (). In other words, it is a mass term. This argument is easy to generalize to the
statement that only purely local terms (powers of ¢(z)) can be radiatively generated start-
ing from the action (3.2) over V' = Qp». An essentially equivalent argument was made in a
Wilsonian picture in“*.

The Archimedean case is more subtle because of the possibility of subleading diver-

gences. A straightforward approach is to expand

A —s/2
d™t d™t 2k -0 k?
]A:/ —:/ L L (47)
W= J e TR =1 MKAMP8< 7 ﬁ)

in powers of k. Terms with an odd number of powers of k vanish by parity, leaving only
terms analytic in k2. Of these, only terms proportional to k%" withr < 5 — sare UV diver-

gent. In short, the divergent part of I(A) is a polynomial in k&2 whose order is Lg — SJ A
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divergent term proportional to k%" requires a counterterm proportional to [ d"z ¢(x)0" ¢(x).
These again are local terms and leave the non-local kinetic term unchanged.

We should note a troublesome feature of the hard momentum cutoff for Archimedean
theories: The coefficients one finds for sub-leading divergences depend on how one im-
plements the cutoft. For example, it is easy to check that the coefficient of the k? term in
I(A) changes if instead of requiring [¢| < A we impose the more democratic condition
’E — g ‘ < A. However, the feature that we care about, namely the fact that the divergent
terms have only polynomial dependence on k2, doesn’t depend on the details of the cutoft.

It is perhaps instructive to consider one other alternative, namely dimensional regulariza-

tion, in which one first computes

(48)

by continuing to a domain of 7 in which the integral is convergent. (In the current exam-

ple,s < n < 2sissuchadomain.) The only divergences one then tracks are poles of

n—2s
2

the right hand side of (48) as a function of n. These occur precisely when is a non-
negative integer. It is characteristic of dimensional regularization that there is (at most) one

divergent term for a given n, corresponding to a logarithmic divergence in the original inte-

gral.
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Figure 4: The boundary of a tree graph.

0.5 ON THE BOUNDARY

In figure 1, where we draw all the couplings of the Ising model, a clear real one dimension
emerges and represents the topology as depicted by neighborhoods in figure 2. One may
worry that illustrating all coupling links in a graph for an all-to-all coupling pattern is not
informative. It turns out for a hierarchical model like in figure 3, the coupling strength can
be conveniently described by a not-so-complicated graph, a tree graph (see figure 4). The
red path represents the only non-backtracking path connecting two sites belonging to the
smallest neighborhood. The blue one connects the next nearest, and the green connects the
next next nearest in the hierarchical sense. Note that for any two sites on the boundary of
the tree, there is a unique non-backtracking path connecting them. And given the number
of links connecting i and j being n, then 2"/2/8 = |i — jlo. The tree graph perfectly cap-
tures the p-adic metric on this finite lattice on the boundary. For a general prime number p,

the coordination number of the treeis p + 1.
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If we take the above tree structure and extend the bulk tree infinitely in both directions,
we will obtain the @, line (more rigorously, a projective space P*(Q,)) on the boundary.
Interestingly, this limiting process also uniquely generates the p-adic number field. After
taking the infinite limit on the tree, the boundary is automatically completed by the p-adic
norm. This is not true for real numbers as there is no obvious lattice to the knowledge of
the author that uniquely generates the real number field when taken the infinite limit. One
always has to complete the field by hand. This is a subtle difference between real type lattice
models and p-adic type lattice models. Since the p-adic numbers are inevitably the bound-
ary of a tree, theories on the p-adics must be related to theories on the tree graph. This par-
ticular infinite tree, called the Bruhat-Tits tree, has negative constant graph curvature and
is a graph analog of the AdS space. In recent years there are works on p-adic AdS/CFT %,
where by considering nearest-neighbor scalar models on the tree graph and p-adic scalar
field theories on the boundary, these authors study the bulk boundary correspondence and
find results that can be compared to the real Ads/CFT through adelic formulas. Fermions
in the bulk, however, need the line graph of a Bruhat-Tits tree ™.

The boundary of a lattice model that shows real topology is not as restrained and is less
clear as there are infinitely many paths that connect two sites on the boundary. For exam-
ple, we picture a nearest-neighbor square lattice model and all its coupling links in figure s.

It is free to conclude that the boundary theory becomes an all-to-all coupling model as for

31



!

—e
—e
—e
—® \ 4 \ 4 4 4 4 4 \ 4 \ 4
_T

1T

Figure 5: The boundary of a square lattice.

any given two sites on the boundary, there are always paths connecting them through the
bulk. What really remains unclear is the coupling .J;; as a function of real distance |i — j.
We are only able to make a reasonable guess. Suppose we are away from the criticality, then
each link contributes a damping factor A. The contribution to JJ(1) of the red path is then
A" while the contribution to J(2) of the blue path is A\'*. However, .J should decrease

less than the exponential law because there are certain paths that do not have a shorter dis-
tance counterpart when the distance is large, like the green path. A naive guess then is the
power law. We think that to determine J(|i — j|) completely, one needs to sum all the
self-avoiding random walks that begin and end on the boundary. In fact, in the continuum
limit, the counterpart of this problem is rather easy to address: dimension reduction of

R x R* to R generates non-local power-law propagators of the free fields, as will be treated
in details in later chapters. In chapter 4, we study a non-local version of QED, which is

equivalent to coupling bulk photons to boundary fermions. In chapter s, we briefly discuss
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a codimension two monodromy defect defined in O(/N') symmetric theories where interac-

tion will be turned on throughout the bulk and the boundary.
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Sparse coupling pattern

The sparse coupling pattern that we want to study eliminates couplings between spins ¢

and j unless |i — j| or 2 — |i — j| is a power of 2. It can be written as

i

TP = TN 2% (8 + Gpyan — 263) . (11)

3
Il
o
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So for the case N = 3 shown in figure 4, we drop the coupling between spins 0 and 3,
and between 0 and 5, and between all translated copies of these pairs, for example, the pairs
(1,4) and (1, 6). For this small value of N, the “sparse” coupling pattern is still nearly all-
to-all. But for large N, the number of spins coupling to one spin increases linearly with

N instead of as 2VV. This sparseness reduces the decoherence cost by site-to-site couplings,
making it more experimentally accessible while still keeps important features of quantum
many-body systems, like chaos and fast scrambling. Similar ideas have been considered by
cold atom physicists. In this paper™”, the authors proposed the cold atom realization of this
sparse coupling pattern and studied the system from a quantum many-body point of view
by simulation.

If the spectral exponent s is large and negative, intuitively, we expect to recover the
nearest-neighbor coupling as only the first term (n = 0) matters in that limit. Meanwhile,
as we will see, when the spectral parameter s is made large and positive, there is strong evi-
dence that we recover 2-adic couplings. In the former case, the two-point Green’s function
of the nearest neighbor model with oN spins is then well-approximated at large /V by a
continuum Green’s function that we can extract from field theory over R. This Green’s
function is smooth in an Archimedean sense, except at zero separation. In fact, if we are
considering the model with pure nearest-neighbor interactions, the Green’s function away

from zero separation is C'*°. The smoothness of the continuum limit of Green’s function is
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a good way to understand how continuous quantities emerge from a discrete lattice descrip-
tion, as we have mentioned in the introduction.

The smoothness of p-adic functions may be less familiar to the reader. For a function
that maps Q,, to R, the derivative is neither real nor p-adic and hence tricky to define. We
have demonstrated that Green’s function realizes that map through the p-adic norm func-
tion, which is to say, G(x) is only a function of |z |,. Because the values of p-adic norm
belong to a countable set, the norm function is locally constant (given z, there exists § > 0
such thatevery y with | — y|, < dhas f(x) = f(y)), so is the p-adic Green’s function.
Green’s functions in models with perfectly p-adic coupling are also locally constant (piece-
wise constant for a discrete base space) except at zero separation, as we will see in examples
soon. In fact, the accepted analog of a C*° condition is to require that a map G from Q,
to R is locally constant. Note that a function from @Q,, to R which is everywhere locally
constant need not be globally constant (as it would for a function from R to R). A more
complete introduction to smooth test functions over the p-adic numbers than we will pro-
vide can be found, for example, in"°. When we turn to sparse coupling patterns, we will
recognize that we are recovering 2-adic continuity precisely when the two-point Green’s
function is well approximated by a locally constant function. This is exactly what happens
in the limit of large positive s for the 2-adic statistical mechanical models that we will study

explicitly.
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In short, as the spectral exponent s ranges from large negative to large positive values, the
Green’s functions we study the transition from showing emergent Archimedean continuity
to showing emergent p-adic continuity. How this transition occurs is slightly subtle, but
we will combine some numerical results with analytical reasoning to characterize it both in

momentum space and position space.

1.1  LATTICE GREEN’S FUNCTIONS

Consider therefore the following Hamiltonian for a lattice with L sites:

= —% Z Jijpij — Z hio; (12)
2,7 J

where the ¢; are commuting real numbers. We assume J;; only depends on |i — j|, where
arithmetic operations like ¢ — j are carried out modulo L. Field h is useful in computing

two-point Green’s functions later. Define L-dimensional vectors @, by

Le%mﬂﬂ for k=0,1,2,...,L—1. (13)

Uy j =
)] \/Z

The discrete Fourier transform is defined as

N
L

Xj = kUk,j - (14)
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An easy calculation shows that

JG, =VLJ,0,, (rs)

where J without indices means the symmetric matrix .J;;, and Jj, is the Fourier transform

of the coupling strengths J,. Using (1.4)~(1.5), we have immediately

L— L-1
- —g Z n@gm - Z iL—figEn : (1'6)
k=0 k=0

We now make two assumptions:

. jo = 0. This is saying ) _. J;; = 0. We understand this as a consequence of assum-

ing the existence of a symmetry where all the ¢; are shifted by a common value.

« J. < Oforall K # 0. This amounts to saying that the interactions among the ¢; are

ferromagnetic.

It is useful to note that the second assumption follows from the first together with the
requirement that all J;, > 0 for h # 0, with not all of them equal to zero.

It is slightly tricky to extract the Green’s function from the naively defined partition func-
tion because 1/ j() diverges. In order to make the statistical mechanics well-defined, we in-

sert a factor of §(¢y) into the partition function:
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We are interested in the two-point function

Gy = (6i05) — 1 0°Z[h]

AN (1.8)

h=0

From J;; = J;_; it follows that G;; = G;_;. A short calculation starting with (1.8) leads to

1 1
_ = 2mikh/L
Gn = —6L3/2 Z 7 e . (19)
k=1 “F

The factor of §(¢) in the partition function is to say 3, ¢; = 0. This corresponds to
something more familiar in field theory techniques: regularization of independent infini-
ties by discarding global integrals or discarding boundary terms. It may seem undesirable,
though, from the point of view of constructing Hamiltonians with only sparse couplings
among the spins, because 3(¢g) can be viewed as the K — 00 limit of e~ 93, and this
amounts to a strong all-to-all coupling among spins (though of a very particular form).
In fact, we could achieve essentially the same results by omitting the factor of ¢ (¢ho) while
sending Jy — Jo — p where p is small and positive. Then Jo o —p1, while the other J,,
would scarcely be affected since they are finite and negative already at O(p:"). Use of (1.8)
would then lead to the same G}, as in (1.9), up to an overall constant proportional to 1/
Discarding this uninteresting constant and then taking the limit 4 — 0 would lead to pre-

cisely the result given in (1.9). In other words, we can recover (1.9) by starting with a massive
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theory with truly sparse couplings and taking the massless limit.

Even with (1.9), exact analytic treatment of the sparse coupling model is too difficult.
We will first apply the analysis leading to (1.9) to the Archimedean and p-adic statistical
models as best as we can and then numerically study the sparse coupling model letting it
interpolates between the two as the spectral parameter ranges from negative to positive

values.

1..I ARCHIMEDEAN COUPLING

As an extremal case of an Archimedean statistical model, we consider the model with nearest-

neighbor coupling specified by

IN = T, (6pg1 + Opo1 — 263), (1.10)

which leads to

1 k= p2mirh/L

GYN = ) .
h 45.J, L — sin? = (1)

TR

. , NN
If L is large, then we can approximate sin %% ~ =

and extend the sum to infinity:

L 0 e2m’/{h/L L
NN o —
G~ BJ, Z Am2k2 B, G(h/L), (112)
K=—00, k#0
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where the continuum two-point function G/(x) takes the form

G(z) = % (3’5 - 1) L for xz € [0,1]. (.13)

Properly speaking, G () is defined on a circle with z ~ 2 + 1, with periodic boundary
conditions, and it satisfies
d*G

—— = —§(z)+1 and /1 dxG(xz) =0. (r.14)
0

dx?

If instead of nearest neighbor coupling we have some generic finite-range .J, satisfying

Jp=J_, >0forh # 0and jo = 0, then we get essentially the same result:

~ A2 K2 K
JH =~ —WJ* for ‘z‘oo <1 (LIS)
for some positive constant .J,, and so for large L,
G, ~ L G(h/L) (1.16)
BJ.

with the same continuum function G(x) given in (r.13). This suggests it has the same con-
tinuum limit as the nearest neighbor coupling, which makes sense due to the finite range

being negligible compared to L sent to infinity.
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It is worth noting that if we focus on small |1/ L|, then we are mostly insensitive to the
fact that the system is at finite volume, and we find G(z) ~ G(0) — || /2, which is the
right power-law behavior for a local scalar in one dimension.

To compare to the sparse coupling, we want to generalize the nearest neighbor model
to include a spectral parameter. As described in the introduction, we can also define non-
local power law models. The exact Green’s would be difficult to compute that way. We can

reverse engineer it by first defining

~ J. TR\~
power _ : o .

S = L [sm < 7 )] (r.17)
so that

~ 25 TR\ 1S

GV = [sin <—>} : (1.18)

BJNL L

For s = —2, this model reduces to the nearest neighbor coupling model. In general for s <

1, one can approximate the Fourier series of (1.17) with an integral in the limit /L — 0 to

find that

S T'(1 = s)sin(ms/2)0'(h + 3/2)‘

T T(1+h—s/2) (t19)

J}};)OWQI“ ~

By additionally invoking Sterling’s formula, it becomes apparent that in the regime 1 <

h < L, the model we are considering does indeed couple the spins according to a power
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law:

JPONE ~ L ['(1— s)sin (7s/2) R (1.20)
m

For s < —1, the large L limit of the position space Green’s function asymptotes to

S-S
Gpower _ 2 ™
h

= Zrp [Li_, (e27"/5) 4+ Li_, (e~2m*/1)] | (1.21)
where Li,, () denotes the polylogarithm function.
LL2 P-ADIC COUPLING

Choose a prime number p and a positive integer /V, and assume

L=p". (122)
Then an all-to-all coupling of spins can be defined based on the p-adic norm:

Johst iR #0
— (1.23)

. Gp(—s) Fh =
A B

p—adic
‘]h
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Here we have used the local zeta function

: (124)

so named because the usual Riemann zeta function is ((s) = [, (»(s) where the product
is over all prime numbers.
To analyze (1.23), it is useful first to work out the Fourier transform of the following

function:

Jn=AlR[;*7H(1 = 6,) + B+ C6 . (125)

A tedious but straightforward calculation suffices to show that

fo = AlR|5(1 — 6,) + B+ C6, (1.26)

where
A = 5+%—Cp(_8) D — i _ s+%Cp(_3) 5 ( G(—s)
A=t G(1 +S)A b= VL L (1) A C=VL(B+ & (1)
(1.27)

With the help of (1.27) one can see immediately that .J§ ~adi¢ yas chosen in (1.23) precisely so
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as to have J2 % = 0. Indeed,

M J— 1.2
DRI

jg—adlc - J \/_ |:
Gp

(—l—s‘L

While J g_adic < Ofork # Oforany s € R, we are mostly interested in the regime s > 0,
in which case the absolute value of the first term in square brackets in (1.28) is larger than

the absolute value of the second. Thus we may expand

~yp—adic __ 1 . _ /CP < gp 1+5 —ns(1 _
e = ) = ~SERE S (S ) ).

(129)

The expansion is useful because it allows us to apply the Fourier transform (1.25)-(1.27) and

obtain

p—adic __ /Cp Cp +3
Gh = BL2J, Z (1)

Gl=ns+1) e _ Gp(=ns+1) -
( Gy 0 ) (1=0)

. Glens+1) 5
G(1)G(N(ns — 1)) ‘

(130)
The result (1.30) may seem complicated, but note that its leading term is G2~ >4 = A|h| s

B + Cy, for some constants A, B, and C depending on s and proportional to This

BL2J
is perhaps not too surprising when compared with power-law interactions in real field the-

ories. Indeed, a power law 1/|z|%, in the action leads to a power law 1/|z|%, in the Green’s
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functions, where & + o = 2d and d is the dimension of the field theory. The current setup
is essentially the same, except that the ordinary absolute value has been replaced by the p-
adic norm. Also, if we hold L2 J, fixed, then exceptat i = 0 there is no L dependence at
all in szadic; the only thing that changes is the range of allowed h. Taking L large means
that the range of i becomes p-adically dense in the p-adic integers Z,, defined as the subset
of Q, consisting of elements whose norm is no greater than 1. Z,, can be understood as the
p-adic analog of the interval [—1, 1] C R. Because G],'fadic is a function of h only through
its p-adic norm | h|,, we see that its continuum limit is locally constant everywhere on Z,,

exceptat i = 0.

.13 THE SPARSE COUPLING
Now let

L=2" (1.31)
for some positive integer /V. Then we can consider a sparse coupling of the form

N-1

szarse — J, Z 2ns(5h72n + Opion — 2(5h) . (132)

n=0

By sparse, we mean that out of L independent values of .J;, only O(log L) are non-vanishing.

Of course, we could generalize from p = 2 to other values of p, but some unobvious com-
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plications arise in doing so, which we prefer to postpone.
sparse

The main qualitative features of G}, are:

+ For sufficiently negative s, G;7*"* closely approximates GEN. ‘This makes sense be-

cause when s is large and negative, only the first few terms in the sum matter.

+ For sufficiently positive s, G}7*"° closely approximates Gifadlc. This is less obvious

and will be investigated further in the next section.

* As s crosses from negative to positive values, G}>* undergoes a transition from be-
ing closer to a smooth function in an Archimedean sense to being closer to a smooth

function in a 2-adic sense.

To visualize the behavior of Gzparse, we have found it helpful to mention again the dis-
crete version of the Monna map, introduced for p = 2 already in the introduction. For
completeness, we record here its definition for any p. Letany h € {0,1,2,...,L — 1} be

expressed as
N-1
h = Z h,p" whereeach h,, € {0,1,2,...,p— 1} . (1.33)
n=0
Then the image of /1 under the Monna map is
N-1
M(h) =D hy_1—ap”. (134)
n=0

In figure r.1 we show G5°*"* and G4, the former as a function of both % and log, M (h),

for various values of s, to confirm the qualitative features listed above.
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Figure 1.1: Left: G
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and Gzowcr versus h. Right: Gzparsc
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1.2 HOLDER CONTINUITY BOUNDS

Having observed an apparent change from Archimedean to 2-adic continuity in the dis-
crete models of section 1.1.3, we are now ready to discuss the continuum limit. In general,
smoothness based on derivatives is hard to define for p-adic like theories. The best we can
hope for is some kind of continuity bound, in our case, the Holder continuity bound or the
Haolder conditions. Before getting into the main field theory calculations, let’s review what
Holder conditions are in general. Let F' be either Q,, or R, and denote the norm on F as |- |.
Let f be amap from some subset D C F'to R. Usually, if ' = IR, then for us D will be
an open interval, while if F' = Q,,, then D will be an affine copy of Z,,. Let O be any subset
of D. Then f satisfies a Holder condition over O with positive real exponent « iff there is

some positive real constant K such that

(1) = fl@2)|oo < K1 — xo|” (1.35)

forall 2y and 29 in O. If O = D, then we would say that f is globally a-Hélder continu-
ous. We say that f is locally a-H6lder continuous at @ iff there exists some open set I con-
taining « such that f is a-Hélder continuous on I. And we describe f as a whole as locally
a-Hoélder continuous if it is locally a-Hélder continuous at every point in its domain (as-

sumed to be an open set). A Holder continuous function with any positive exponent a is
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continuous in the usual sense. The bigger the « is, the smoother the function is. However,
when the base space is real, then v cannot be bigger than 1 generically, unless df /dz = 0
in an open region. Butif /' = Q,, then it is possible to have non-constant functions with
arbitrarily positive Holder continuity exponent. This is another feature indicating that tra-
ditional derivatives of p-adic functions must be absent. *

The distinction between global and local a-Hélder continuity is important to us because
the continuum limit of the two-point function G}’ is, in some cases, globally Holder
continuous with one exponent (as hinted by the field theory analysis) and locally Holder
continuous away from the origin with a larger exponent (mostly numerical evidence). We
will only present numerical evidences in this thesis. For rigorous field theory results with

sparse couplings, we suggest readers to the reference

1.2.I1 2-ADIC APPROXIMATION OF SPARSE COUPLING RESULTS

Ratios between Green’s functions derived from the sparse coupling and from the 2-adic

coupling should be bounded above and below when s is positive:

K, < ézparse/é«i—adic < K, (1.36)

* A useful example of an a-Hélder continuous function f(2) is a linear combination of functions
|z — x;|® where the z; are constants. |[z1 — 2o|* — |22 — 20|% e < |21 — %2|® canbe derived
based on a fun fact that for three points in a space with non-Archimedean metric (which is automatically an
ultrametric), two distances must be equal and the third must be less or equal to the other two.
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Figure 1.2: Left: Optimal values of the constants /1 and K5 appearing in (1.36) as functions of s for fixed V.
Right: Optimal values of the constants &1 and K5 as function of [N for fixed s.

for some positive constants K and Ky which may depend on 5. When the normalization
is taken care of (as we did), the ratio should asymptotically approach unity. Numerical sup-
port for this conclusion is shown in figure 1.2, where we show optimal values of K and K
as functions of s for various V. As s — 0, K seems to diverge as N increases.

Away from small positive s, G2 =~ G2~2d¢ is evidently an excellent approxima-
tion. Based on empirically examining the curves on the left side of figure 1.2, we find K; ~
1 4 272%5¢;(s) where the functions 5¢;(s) vary relatively slowly with s, possibly as a nega-
tive power of s, or possibly as a small positive power of 27°. The right plot shows that K
and K, goes to constants at sufficiently large IV, for a given positive s not too small. In or-
der to obtain K and K3 numerically as functions of NV and s, the actual procedure was as
follows:

1. For fixed N and s, compute @Zparse numerically using the methods of section 1.1, and
adjust the overall coupling strength J, so that G;** = 1 when h = 0. (In other

words, the normalization condition is implemented in position space.)

SI
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2. Likewise compute Gi_adic with Ggfadw =1.

3. Compute K and K as

ésparse ésparse
K, = min u = min ==
Kk#0

¥2—adi ¥2—adi
Gn adic G,{ adic ( )
I.
ésparse ésparse 37
Ky = max | == = max —— )
2—adi 2—adi
Gn adic K#£0 GN adic

We also want to quantify how ragged the Green’s functions become in momentum space
in regimes where one couldn’t derive any continuity bound (by methods developed in the
current work). The Holder bounds, as derived in field theory in section 1.2, are approxi-

mately as follows:

o |GEPre (k) — G (kg )| o, < K |ky — kig|3 when s > 0. More precisely, GP**()

as a map from Q5 to R is locally s-Hélder continuous away from k = 0.

o |G (k) — GRS ()| oo < K |Ky — ko| 2 when —1 < s < 0. More precisely,
GParse () as a map from R to R is locally —s-Hélder continuous away from k = 0

when —1 < s < 0, andlocally 1-Hélder continuous away from & = 0 when

—2<s<—1.

1.2.2 LocaL HOLDER CONDITION IN MOMENTUM SPACE

Next we would like to understand how well the local Holder continuity bounds in momen-
tum space are reflected in the numerics. To test the Holder bound on the p-adic side, we

first adjust the overall coupling strength .J, so that G’ = 1, and likewise Ggfadic =1.
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Then we define

~ ~sparse
B ) (Gsparse Gn-{—L 5
A?diC(N 6) = log, max | =5—— — — / , (1.38)
x odd GQ—adlc GQ*adIC
K Kk+L/2 |5

where on the right hand side we understand that G5P*¢ and G272 are computed using
the same values of N and s. Two points with the separation L /2 has the smallest p-adic

distance. We find numerically that A2~2%¢( N s) is linear in V:

AN 5) 2 —s(N — 1) + log, K2724¢(s) (139)

where K?724¢(s) is N-independent. These linear trajectories persist even at negative s,
after 2-adic continuity is lost. See figure 1.3. To make the connection to Hélder continuity
bounds more transparent, we note that (1.38)-(1.39) are equivalent to

~ sSparse ~ sparse
GP G

“o—adic  (12—adic
Gm G,~€2

< 2A2*adiC(N,s) s KZ—adic(S) |,€1 — Ko ; (1.40)

[e.e]

for all odd x4 and kg with k9 — k1 = L /2. The inequality (1.40) is clearly a close relative of
the local s-Hélder continuity condition on G/(k). Numerically including more separations
does not affect the final result. So, GSP2™¢ satisfies a local 2-adic Holder condition whose

most positive exponent is approximately @2 *4(N, 5) = — A272die( N 5) + A2-2dic( NV —
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Figure 1.3: Left: 2-adic continuity in momentum space. The dots are evaluations of AZ_adiC (N7 s) in (1.38), and the
lines are plots of the linear trajectories indicated in (1.39), with K(s) chosen so that the line goes through the last data
point.

Right: Archimedean continuity in momentum space. The dots are evaluations of Apower (N, s)in(1.41),and the lines
are plots of the linear trajectories indicated in (1.42), with K(s) chosen so that the line goes through the last data
point.

1,s) ~s.
On the Archimedean side, in order to pursue a similar strategy, we need some standard

of comparison analogous to G2~24i°, We define

ésparse ésparse

i 1

APY(N | s) = log, max |—=> bt : (1.41)
L 37 power power
= <k< =2 G,.; G
4= 4 rk+1 0o

where GPOV" is given in (1.18) as usual. We can adjust J, so that GP** = 1 when h = Oin
position space.

Because GPOV" is O™ away from x = 0, forming the ratio Gisparse | GPover Joesn’t affect
the local smoothness properties of égowef. However, this ratio does cancel out part of the

overall trend whereby Gisparse gets biggernear k = Oand Kk = L. Asaresult, studying
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GEParse /| GPOV rather than GSP*™° by itself makes it easier to accurately pick out the local
smoothness properties from a finite sampling of points. As on the 2-adic side, the numeri-

cal data approximately follow exponential trajectories:

APower(N’ 8) ~ S(N _ 1) + 1og2 Kpower(8> , (1.42)

where K (s) is N-independent. These trajectories persist even at positive s, after Archimedean

continuity is lost. So we can usefully define

dpower(N, S) = _Apower(N’ S) + Apower(N o 1’ S) ’ (1.43)

and then &P (N, s) ~ —s forlarge NV is our numerical estimate of the most positive

exponent appearing in a local Archimedean Hélder condition for G5,

1.2.3 LocaL HOLDER CONDITION IN POSITION SPACE

Position space smoothness can be studied using quantities analogous to the ones used in

section 1.2.2 for momentum space. Specifically, we define

sparse Gsparse

_adi h+L/2
A?diC(N g) = log, max 2h T /
h odd G —adic G27ad1c

h h+L/2

& (1.44)
C(Zfadic(]\/*7 S) = _AQfadic(N’ S) + AQfadic(N _ 1’ 5) ,
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Figure 1.4: v versus s and (¢ versus s in the 2-adic and Archimedean settings. Field theory bounds derived in”* are
shown in dashed black and dashed blue. Dotted black and dotted blue show the naive extrapolations of these bounds
to negative cv and ¢v. Red and green dots are numerical evaluations of cv and (v as defined in sections 1.2.3 and 1.2.2,
respectively, with N = 20. Solid red and green lines show the obvious piecewise linear trends which approximately
match the numerical evaluations. Open circles denote evaluations in which we restricted % <h< %; otherwise
we use half the available points as explained in the main text. For s < —2, convergence of the sparse model to the
nearest neighbor model implies that &« = & = 1, but our numerical scheme for picking out v and & becomes less

reliable in this region due to difficulty normalizing G5P2™S¢ and GP°V®" in a mutually consistent way.

and then, assuming o?~*4¢( N, s) is nearly constant for large N, its large N limit is our
numerical estimate of the best possible local Holder exponent for G;7*"* in a 2-adic setting.

Likewise, we define

Gsparse Gsparse

power — h _ T htl
A (Na S) — 10g2 Lma’}%L Gpower Gpower
T<h< [V h+1

o0 (1.45)
apower<N, 8) = _Apower(N7 S) + Apower(N _ 1’ S) .

The large N limit of o (N, s) (assuming it exists) is our numerical estimate of the most
SParSe

positive local Holder exponent for G, in an Archimedean setting.

We find good evidence that o> ~24¢( N, s) and aP*""( N, s) have finite large IV limits.

56



Our numerical results are well described by piecewise linear dependence of o on s, and in

particular by

aPomr = —2(s 4+ 1/2) for —1<s<0
(1.46)
o?ie — 9(s — 1/2) for 0<s<l.

See figure 1.4. Note the difference between position space bounds and momentum space
bounds in general. When |s| > 1, it becomes harder to get good numerical results, particu-
larly on the Archimedean side, because the functions under consideration are quite smooth,
and we have to compute very small differences accurately. Even apart from issues of numer-
ical accuracy, it becomes challenging on the Archimedean side to distinguish between rapid
but smooth variation and the slightly non-smooth behavior that determines the Hoélder

exponent.

1.2.4 TRANSITION BETWEEN ARCHIMEDEAN AND NON-ARCHIMEDEAN CONTINUITY

The most interesting regime in position spaceis —1 < s < 1, where we are losing
Archimedean continuity and gaining 2-adic continuity. We focus in this section entirely
on this regime, and we present the simplest account of the transition from Archimedean
to non-Archimedean continuity, which is consistent with our numerics. Due to finite nu-
merical resolution, we cannot rigorously determine the measure-theoretic behavior of the

position space Green’s functions in regions where the Green’s functions are very ragged. We
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attempt to qualify our claims below with the appropriate level of confidence.

In momentum space, our numerics are consistent with there being a single exponent on
the 2-adic side, a2~241¢ = s, which describes both the global Hélder continuity condition
over all k and the local continuity at each possible value of k. In other words, as far as we
can tell, the function G/(k) is equally ragged everywhere. A similarly uniform story applies
on the Archimedean side, with &*°"*" = —s. Numerical results are fully in accord with
expectations from field theory. The upshot is that the transition from Archimedean to non-
Archimedean continuity happens rather simply, with ordinary continuity failing just as
2-adic continuity emerges: i.e. &P°"" becomes negative just as a22di hecomes positive, at
s=0.

The field theory estimates of the Holder exponents for the position-space Green’s func-
tion were s — 1 on the 2-adic side and —s — 1 on the Archimedean side. We believe this
characterizes the behavior of G(z) close to # = 0: Thatis, G(x) ~ |z|3~" on the 2-adic
side, while G(x) = |z|.°~* on the Archimedean side. The surprise we get from numer-
ics is that away from = 0, a more complicated dependence of Hélder smoothness on
s emerges, with local Holder exponents ov somewhat more positive than the field theory
bounds: That is, G(x) seems to be somewhat smoother away from the origin than its be-
havior right near z = 0. Our numerical results are consistent with there being a piecewise

linear dependence of & on s, as summarized in particular by (1.46). These results (1.46) indi-
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Figure 1.5 Plots of GP™*° /G ~24i¢ and GsParse /G2 ~adic over the Monna map of the odd integers. As s becomes
more positive, the numerical data is closer to a 2-adically continuous curve when IV is large. Blue points are for N =
6, while the red curves are for N = 10.

cate that Archimedean Hélder continuity of G;7*™ is lost at s = —1/2, but 2-adic Hélder
continuity doesn’t emerge until s = 1/2. So, what happens for —1/2 < s < 1/2, when
both aP°"" and a? =4 are negative?

To better understand the region of transition between the Archimedean and 2-adic
smoothness, it is instructive to inspect overlaid plots of the Green’s function for different
system sizes, see figures 1.5 and 1.6. Based on these figures and related studies, the scenario

we regard as most likely is that for —1/2 < s < 0, the continuum limit of G5 defines
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an absolutely continuous measure, G'(x)dz, with respect to ordinary Lebesgue measure
dx,but for s > 0 any such continuum limit would necessarily have a singular term in its
Radon-Nikodym (Lebesgue) decomposition. Similarly, we suggest that for0 < s < 1/2,
the continuum limit of Gifadic defines an absolutely continuous measure with respect

to the standard Haar measure on Q, while for s < 0 any such continuum limit would
have a singular term (with respect to the Haar measure on Q) in its Radon-Nikodym
decomposition. We find support for the claim of absolutely continuous measures in the
above-mentioned regimes when we study the scaling of the height of the spikes in figures
1.5 and 1.6 as a function of N: the weight of each spike (meaning the integral over a small
region including the spike) distinctly appears to tend to zero with increasing /N. When sin-
gular terms in Radon-Nikodym decompositions do exist, we conjecture that they have as
their support sets which are dense in position space.

One way in which singular terms in Radon-Nikodym decompositions could arise is for
the continuum limit G(z) to include delta functions. Inspection of figure 1.5 is consistent
with there being a dense set of delta function spikes in G () as a function of 2-adic  when
s = —0.3,but none when s = 0.3. Similarly, figure 1.6 is consistent with there being
a dense set of delta function spikes in G(z) as a function of real x when s = 0.3, but
none with s = —0.3. The discerning reader may note, however, that the spikes on the

Archimedean side are stronger at s = 0.3 than the ones on the 2-adicsideat s = —0.3.
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This asymmetry manifests itself in the scaling of the height of these spikes with /V, for the
weight of each spike grows with NV on the Archimedean side for s = 0.3, but may be trend-
ing very slowly toward 0 on the 2-adic sideat s = —0.3. A related effect appears in fig-
ure 1.4: 27 ~ —1 for s < 0, while aP°"*" ~ —1 — sfor s > 0.

Inspection of figures 1.5 and 1.6 reveals some self-similarity in the Green’s functions both
before and after the Monna map is applied. We have not investigated this fractal behavior
in detail; however, we note that similar behavior has been found independently in band

structure calculations in connection with cold atom experiments

1.3 CONJECTURE ABOUT THE INTERACTING THEORY

For decades, p-adic numbers have been considered as an alternative to real numbers as a no-
tion of the continuum which could underlie fundamental physics at a microscopic scale;
see for example**. The current study shows how the large system size limit of an under-
lying discrete system naturally interpolates between a one-dimensional Archimedean con-
tinuum and a 2-adic continuum as we vary a spectral exponent. By focusing on a free field
example, we are able to solve the model through essentially trivial Fourier space manipula-
tions. The correlators of the theories we study are all determined in terms of the two-point
function through the application of Wick’s theorem. The two-point function is smooth

in an Archimedean sense when s is sufficiently negative and in a 2-adic sense when s is suf-
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ficiently positive. The transition from these two incompatible notions of continuity can
be precisely characterized in terms of Holder exponents characterizing the smoothness of
the two-point function. We have found the dependence of these exponents on s through
numerics on finite but large systems.

All the examples above remain within the paradigm of free field theory. Still easy to
formulate but obviously much harder to solve are interacting theories with sparse cou-
plings. For example, we could start with any of the models introduced in section 1.r and
addaterm ), V(¢;) to the Hamiltonian describing arbitrary on-site interactions. To get
some first hints of what to expect these interactions to do, recall in 2-adic field theory that
G(x) ~ |2|3"" at small . Comparing this to the standard expectation G(z) ~ |:13]§A¢, we
arrive at A, = (1 — 5)/2 as the ultraviolet dimension of ¢. When describing perturbations
of the Gaussian theory, we can use normal UV power counting: [¢"] = nAy. Thus ¢"
isrelevant when s > 1 — 2/n. If we impose Zs symmetry, ¢ — —¢, then in the region
s < 1/2, the Gaussian theory has no relevant local perturbations, but as s increases from
1/2 to 1, first ¢* and then higher powers of ¢? become relevant. It is reasonable to expect
some analog of Wilson-Fisher fixed points to appear. Possibly as s — 1, these fixed points
extrapolate to analogs of minimal models. An analogous story presumably applies on the

Archimedean side to power-law field theories controlled by s in the range (—1, 0), with

G(z) ~ |z|2 ! and therefore Ay = (1 + s)/2. See figure 1.7.
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Figure 1.7: Conjectured pattern of fixed points of the renormalization group for interacting field theories of a single
bosonic scalar field with ¢ — —¢@ symmetry.

The sparse coupling theories are sufficiently similar to 2-adic field theories for s > 0
and to power-law field theories for s < 0 that it is reasonable to conjecture that the same
pattern of renormalization group fixed points arises. This line of reasoning leaves out a lot,
though: In particular, we have no deep understanding of how the improved local Hélder
smoothness arises, nor how it might affect renormalization group flows. A Monte Carlo
study of the phases of the sparsely coupling Ising model might help refine our understand-
ing of the renormalization group flows available to interacting models, particularly in the
range —2/3 < s < 2/3 where no powers of ¢ higher than ¢* are relevant—according at

least to naive power counting as presented here.
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p-adic, but real-ly mixed

2.1 MIXED FIELD THEORY

Field theory has been a reliable tool for studying critical phenomena. Various techniques
of renormalization group flow make it possible to classify continuous phase transitions
in different statistical models. A frequently mentioned example is the ¢* theory, which

is a scalar field theory equipped with a quartic interaction term. Below its upper critical
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dimension D = 4 and above its lower critical dimension D = 2, ¢ theory exhibits a
Wilson-Fisher fixed point™**. Values of anomalous dimension and scaling exponent of the
two-point function at the fixed point are “critical,” and they are universal quantities within
the same universality class. For example, Wilson-Fisher fixed point of ¢* theory and the
critical Ising model in three dimensions are in the same universality class. The e-expansion
inD = 4 — eof ¢* theory with e = 1 gives critical exponents that agree with results
obtained on the lattice with high precision

Having understood that Dyson’s hierarchical model corresponds to the pure p-adic field
theory**, we would like to consider a quantum generalization of it: a one-dimensional spin

chain with p-adic coupling and transverse magnetic field

H=-Jg» &5,—J) |m—nl'6,6%, (2.1)

where | - |, is the standard p-adic norm, oy, is a quantum Ising operator, m and n take val-
uesin {0,1,2,...,p" — 1} and £ is some positive integer. There are four motivations for
this kind of Hamiltonian. First, we are interested in extending p-adic AdS/CFT beyond the
domain of Euclidean statistical mechanical models as studied in*, to a quantum mechan-
ical setting. The independent work®” did consider quantum mechanical aspects, but time
evolution was left implicit. Second, we are aware of developing experimental setups which

can realize an approximation of p-adic couplings in a cold atom system . Third, p-adic
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extra-dimensions are interesting to think of and have been considered, for example, in these
works®"**. Forth, the original classical version of this model, where there is no transverse
field, and 0, is a classical spin variable taking values of 41 and —1, has been studied well,
and it guarantees some interesting features. This s exponent also serves as an RG variable,
and one can get a continuum set of Wilson-Fisher fixed points parametrized by s. Models
of this kind show interesting criticalities, which are first solved by Bleher*. p-adic field the-
ory computations' > agrees with Bleher’s results. s exponent plays essentially the same role
in the quantum model, and there are guaranteed criticalities found by Monthus

We want to present a field theory as a candidate for the continuum limit of this quantum
model. A rough analog is the map between a d-dimensional quantum Isingand ad + 1-
dimensional classical Ising model, the extra dimension being generated by the transverse
field. Field theories describing non-local quantum lattice models are usually inevitably
faced with a strong anisotropy, as the “quantum dimension” is always local. We will not
provide a rigorous map between the quantum Dyson’s model and a field theory. Also, field
theories defined on two different number fields are not well studied. Here we propose the

¢* “mixed field theory” with one direction being the usual real number field and the other
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direction being the p-adic number field. The action we consider is:

/dw/ dk (—w, —k) (w® + |k[2* + 1) d(w, k) + 4‘/d7/ dz ¢(1,z)*.

(2.2)

where 1 serves as a dial for g in the quantum lattice model. For simplicity, we choose to
forbid the ratio between real and p-adic terms to change. With the definition of Vladimirov

derivative D27, we could see that the above action is equivalent to the following

/dT/ dmngx(_) D2Z+r>¢m 4'/d7/ dz ¢(7, )"

(23)

up to some regulating terms.

Power counting in ultrametric theories is well understood: See for example ™. The key
point is that when we scale K — pk, the norm and the integration measure scale oppositely:
|kl, — %\k| panddk — %dk’. We regard this scaling as a step toward the infrared. We

see from the kinetic term of (2.2) that we must accompany £ — pk withw — ]%w and

r — p%z r. In general, we associate to a quantity X an engineering dimension [X| if upon

ascalingk — pk wehave X — p~ XX Then the natural assignments that make S
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dimensionless consistent with (2.2) are

X |k |k, di = |z|, dz w dw S ¢ ¢ A

Xj{-1 1 1 1 -1 -1 =z =2 0 L=z -3 9, 3, 1
(2.4)

We refer to these assignments as engineering dimensions because they describe scalings of
the classical action without reference to loop corrections. We see in particular that A has a
positive dimension, meaning that ¢* is a relevant perturbation of the Gaussian fixed point
theory, precisely when z > 1/3—whereas r is always relevant in the same sense since we
require z > 0.

As compared to ordinary ¢ theory on R% we see from the assignments (2.4) that in-
creasing 2 is like decreasing d; that 2 = 1/3 is like the upper critical dimensiond = 4,
where ¢* becomes marginal; and that 2 = 1 is like the lower critical dimension, where the
dimension of ¢ goes to 0. Thus, at least naively, we are expecting critical points as indicated
in figure 2.1. We added in a conjectured branch of multi-critical points based on the fact
that for z > 1/2, both ¢* and ¢° are relevant deformations of the Gaussian fixed point.
For0 < z < 1/3, our expectation based on power counting is that the Gaussian critical

point is the only one available.
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Figure 2.1: Conjectured pattern of critical points of (2.2).

2.2 TREE-LEVEL RESULTS

In a free massless(r = 0, A = 0) theory, the mixed field theory is diagonalized in momen-

tum space, and the Green’s function is just

~ 1
G(w, k) = m . (2.5)
p

Now we want to study the position space Green’s function by Fourier transforming the real

and p-adic components(we here assume that Fubini’s theorem still applies) :

—27rzw7' (]{3.1’)

.6
W+ k2 (26)

G(t,z) = (¢(7,2)¢(0,0)) /dw/ ] p—— S

In a real theory, we can determine the scaling behavior of Green’s function in a conformal
theory just by changing variables and make the integral above dimensionless. Here the

same is not expected because of a mixing of real and p-adic term in the denominator. In
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fact, there are oscillatory corrections to the power-law relation G(7,0) o |7|*~1/%, One
hint comes from the fact that |/{;|§Z can only take discrete values p~2*" where v € Z. Itis
not hard to see by changing variable that G(7,0) = const|7|*~1/ only if 7 takes value in
p*“. This means our theory only enjoys a discrete scaling symmetry under 7 — p“*7 where
v € Z.

We can obtain approximations of the position space Green’s function where the oscilla-
tory terms are more explicit. To carry out the w integral first and then the £ integral in (2.6)
is a lot easier than the other way around. To perform the k integral, we use the standard

result in p-adic Fourier analysis that we introduce in the introduction:

.

piv/Cp(l) if v>0

/ dyx(y) =14 -1 if v=-—1 (2.7)
vap

0 if v<-—1

We consider two special cases 7 = O and z = 0:

c7=0

G(0,z) = / dk ”Téff) _ ’px(‘ll: ?) (2.8)
Qp p p

This is the same as a Green’s function in a purely p-adic field theory.
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cx=20

=231 I g
Gr.0) = [ dk Frm = (1=p7) 3 e ()
P V=—00
Qp
2 1—7;71 00 2 ~ 1 -log(27|7]) ~
_ ) F(ﬂ+——1)e2’”liiwv
2(,(1)logp . zlogp =z

where Poisson summation formula has been used and the Fourier transform of a
double exponential is a Gamma function. We can see that in addition to the |7|*~* o
scaling, there are oscillatory terms that are periodic in log |7|. Gamma function de-
cays quickly along the imaginary direction, so in most of the cases the non-oscillatory
term dominates. Note that we can only carry the calculationin0 < z < 1, but
then G(7,0) in (2.9) can be analytically continued to z > 1 as well. No matter
what region of z we are considering, for the mixed field theory with large enough p,
we would face situations where oscillatory terms dominate. In such case the scaling
behaviour of 7 in Green’s function could be totally ruined, but it will always be posi-
tive(because it is a sum of positive numbers) even when the leading oscillatory terms

fluctuate around zero.

Loor DIAGRAMS AND RENORMALIZATION

From now on, we will consider O(N') symmetric mixed vector model in Euclidean signa-

ture with a coupling term like 2 (¢2)? because essentially all the computations in a scalar ¢*
pling a1 y p

mixed theory generalize without subtlety. The dimension of couplingis [\| = 3 — 1/z.

Soatz = 1/3, the ¢* operator becomes marginal, and the theory is renormalizable. We

will perturb the free massless mixed field theory with a mass term r¢? and % (¢?)? interac-
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tion term at 2 = 1/3 and follow the MS scheme and renormalize the theory with a ultra-
violet cut-oft A. Then we perturb the exponent. Wilson-Fisher fixed point exists, and we
obtained the anomalous mass dimension at the WF fixed point, which can be compared
with lattice model results in

In this low dimension theory, w integrals over the real numbers are always performed
exactly without any UV cut-off. So there could be symmetry issues when we put UV cut-
off only in the ultrametric dimension. This is usually not a big problem in a theory with
highly anisotropic terms, see for example’>" where different UV cut-offs are applied to time
and space integrals in the renormalization of Lifshitz scalar theory. Note also that from
time to time, we will introduce infra-red cut-off A when performing p-adic momentum
integrals. This is one way of regularizing p-adic integrals, and no term depending on A will
emerge from this treatment. So in an MS scheme, this will not change the behavior of this

theory under renormalization.

2.3.1 ONE-LOOP RENORMALIZATION OF THE MIXED FIELD THEORY

Consider now the bubble diagram,

= _(_)\)_52‘3‘]2(1) : (2.10)
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where the loop integral is given by

= dw/ dk /dk
/R , w2—|—|k|p o |k|2/3—|—r (2.11)

This plus a counterterm is the only one-loop correction to the propagator in our theory. At

this point, we impose the UV cut-oft A and an IR cut-off A(they both have mass dimension
3[r]) and complete the p-adic integral. We are perturbing the massless theory with a mass
term so that we can expand the integrand near = 0, and the linear term corresponds to
the insertion of a mass operator with no momentum flowing in or out.

ro? (2.12)

Linear term = °

And the result is

_log A

log p
/ dk T — Z (p_%v — f) + finite terms
ASI’”PSA A/ |k;|112)/3 _|_ r Cp(1) o= log A 2

— logp

(2.13)

o <A2/3p2/3 rlog A

G

T — 210gp) + finite terms

T oy, 2 TlogA
= — = AS —_ =
(G - 5

) + finite terms .

There is no external momentum dependence, so the anomalous dimension of the field is

zero at one-loop order. Consider this diagram as the one-particle-irreducible diagram at the
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one-loop level. Then the insertion will shift the mass parameter r in the propagator. The
mass acquires an anomalous dimension vy, during the RG, and by dimensional analysis,
we know that this must cancel the shift by the r log A term. The net effect is changing r
to 7127 where 7y is the anomalous mass dimension. We expand it in 7, and identify the

rlog r2: term with minus the r log A piece of the bubble diagram, and we find that the

anomalous mass dimension is given by

_2+N T A

LT G(1) logp (14)

We comment that this log A term here comes from the term — 7 in (2.13) where the p de-
pendence cancels. By power counting, we could see that this happens exactly at z = 1/3.
This story is very similar to the real scalar theory case, while the connection seems somehow

miraculous because, in real and mixed cases, the integrals are carried out very differently.

In order to see a Wilson-Fisher fixed point, we should compute the one-loop correction
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to the vertex. We need to consider the sum of three Feynman diagrams:

xxiiﬂ

1
- 5(_)\) 9 {I4(CU1 + (A)Q, kl + k2) (N + 4>61122623’L4 + 26112352214 + 26112452223:|

+ Iy(wy + ws, k1 + k3) {(N + 4)04i50inig + 204145 0igis + 251'12‘452‘21’3]

—I— I4((U1 + Wy, kl —f— k’4) |:(N ‘l— 4)51‘11‘4(51‘11'2 ‘I’ 252‘11'2(31'31'4 + 251‘”'352'21‘4] }
(2.15)

where the loop integral is given by

1
(w, k) /dwo/ dko ) (2.16)
wo+|ko|p r (wo — w)2 + ko — k3> +

We can set them to zero to simplify the computation because the leading piece that we are
interested in is independent of w and r. We perform the real integral first and then com-

plete the p-adic integral:

31 log A?/3

Liw, k) = 4¢,(1) logp

+ finite terms . (2.17)

Similar log A term appears as in the real ¢* theory, for the reason that we comment before.
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The Callan-Symanzik equation of the four-point function is

0 (2.18)

B i+@£+ﬁg 1 )\_2N+83 m  logA
AN dAON  dAOr 2 9 2¢,(1) logp )

The leading order beta function is solved to be

- @_ QL—N+8 2.1
p _AdA =A (1) 12logp (z19)

We now consider the beta function slightly above the critical z. Then the beta-function
picks up a contribution due to the mass dimension of the coupling, [\] = 3z — 1, as
by redefining the coupling \as A~ we can make the coupling constant dimensionless
again. Now we will abuse the notation and use A for the new dimensionless coupling, but

still use [A] as the dimension before the redefinition.

T N+8

B =~ A ToTog

O(INP). (220)

We see that the beta function admits a Wilson-Fisher fixed point at

@M [\ (2.21)

Ay =
™ N+8

Here the exponent s = 22 serves as a dial of the dimension. In contrast to real scalar ¢ the-
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ory, here we can maintain integer dimensions while probing the WF fixed point. Plugging

(2.21) into (2.14), we find the anomalous mass dimension at the Wilson-Fisher fixed point:

_N+2[A
TTNT8 2

(2.22)

This is the same as the anomalous mass dimension of a real O (V') symmetric vector model
equipped with a (¢2)? term. At a conformal (here just scale invariance) fixed point, the
correlation length diverges. We can compute the p-adic correlation length exponent v near
a fixed point of the N = 1 scalar theory in this long-ranged regime (where 22 < 2)asa

rescale of the real correlation length exponent:

1
VvV = m . (2"2’3)

Forz = 1/2,[A\]/# = 1, and we compute the correlation length exponent v to be

6/5 = 1.2, which is quite different from Monthus’s result v = 1.482"°%, where they con-
sider the quantum Dyson’s hierarchical model which we think should be the lattice version
of a mixed field theory. Equivalently, they were looking at each time slice of the theory(a
quantum mechanic model), so in our theory, the scaling behavior along the Q,, line can be
compared with their result. This discrepancy cannot be fully explained now. Note that in

the supposed mean-field regime(0 < z < 1/30r0 < o < 2/3in"**), the exponents Mon-
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thus got is not perfectly 1 /0 or equivalently 1/(2z), the long-ranged mean-field value(note
that v — 1/0 is roughly constant for the values they computed). This could be related to
the approximation they use in the real space RG process, or the lattice quantum Dyson
model and the mixed field theory are not in the same universality class at all. This should be

studied further in future work.

2.3.2 TWO-LOOP RENORMALIZATION OF THE PROPAGATOR

The first momentum-dependent correction to the propagator is from a two-loop diagram
called the melon(or sunrise, or underground) diagram. So, normally one expects to have the
leading field renormalization at this order. In order to investigate this, it is enough for us to

consider the melon diagram at z = 1/3 in a massless theory:

. o1 3N +6
1@; = (N 0, I8 (w, k). (2.24)

where the loop integral is given by

O(w+ 320 wi) Ok + 0 K
I (w, k) = / dwy dws dws / dky dky ks — ( - /321—12 ) p(2 3 E;—l ) T
R : (w? + [ lp"™) (w8 + [Raly") (w5 + [Rsls)

(2:25)

Before proceeding to compute this diagram, let us first look at an old argument: field

strength in a p-adic field theory does not get renormalized **. This is explained by Lerner
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and Missarov in?” that the self-similar Hamiltonian contains a counterterm that has the
form of a single-particle Hamiltonian and a single particle in a box is always finite. To
briefly illustrate this, we adapt the Wilson exact RG equation and imagine defining our
theory within a ball in the Q,, or its finite extension. In a normal scalar theory in real space-
time, self-similar conditions in the ball usually introduce higher momentum dependence
outside the ball. Thus to achieve a self-similar theory over the whole momentum space(the
fixed point), one has to “re-normalize” the theory as it can not be normalized in the ball
properly. While for the p-adic case, because of the ultrametricity, the momentum terms
inside the ball can not generate higher momentum terms outside the ball, and this term
could be properly normalized, or say, it is in any case, finite. In the end, this “breakdown”
of Wilsonian RG comes from the totally disconnected topology of Q,,. In our mixed field
theory, however, the real momentum term gets renormalized while the p-adic momentum
term receives no renormalization. The net effect is a shift of the exponent z. Itis tempting

to say that we are renormalizing the dimension!

IN THE ULTRA-VIOLET REGION—A MOMENTUM SPACE COMPUTATION

Now we are going to manipulate the integral of (2.25) to find the divergent pieces that we
want. Integrals over p-adic momentums are always split into regions where the norm is
constant, and the remaining task is to complete the summations of powers of p. Only ratio-
nal functions of the momentum can be summed easily. Also, the sum of series of rational
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functions is usually another rational function, so we can complete the integrals sequentially
for each momentum. Thus our task now is to manipulate the integral till we have rational
functions. First, using Schwinger parametrization and the w; integrals are over the Gaus-
sian functions and can be done straightforwardly. Then we change the variable to Feynman

parameters(or symmetric dimensionless parameters):

1 51— Y, Op (k — i ki
[2(2) (w7 k) _ 7T/’ dkldedk3/ dl‘ldede ( sz ) p( Zl ) 2
@ 0 \/331352373 >/ (ﬁ +> xi’kiﬁ)/g)
Z (2.26)

This integral has mass dimension 2 and so its superficial UV divergences is of A2/3.So we
anticipate following terms in the integral:

(2) — o A2/3 2100 M7 2 i (227)
1,7 (w, k) = c2A™" + cow® log —5 + bow” + (other finite terms) 7
w

for some dimensionless constants ¢z, ¢y, and by. We do not include the divergent term with
. . 2/3 .

p-adic momentum dependence like || 2/%10g A2/3 because the ultra-metric momentum

does not get renormalized (an explicit computation confirms its absence). To fully track

the |k|, term in the integral is difficult and in general one has to consider special quadrilat-

eral structure of momentum conservation, where each triangle in it is either tall isosceles or
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equilateral:

Ky
ks (2.28)
ks

Loosely we can say in the ultra-violet limit where |k; |, becomes large, we have [k — k; —
ka|, = |k1 + k2|, due to the ultrametricity and the integral is independent of |k|,, in the
UV region. Then the delicate cancellation k;+ko+k3 = k can be splitinto hard and soft(as
soft as k) parts: ki, + kop + ks, = ko and kis + kos + kss = Ky where [Kin|p, > |Kis|p
and k, + ky, = k. Due to ultrametricity, k; has to be soft and then consequently &, is
soft. Now in the ultra-violet region where one only deal with hard momentums k;,, we
can really forget about k and change the momentum conservation to a loose constrain that
k1p, 4 kop + ks, has to be soft. In such regime we definitely expect no ]k‘ﬁg/ 3 log A?/3 like
term.

Now let’s focus on the real momentum dependent divergence. In order to investigate the

cow? log ﬁ term, we consider the derivative

81(2) k A2/3
230(:;)’ ) = ¢y log — - co + bo + (other finite terms)

! O(L—> o, (k= . k;
= —27T/ dkldkzdkg/ dzrydrodrs -2 p (k=2 ki) .
Hilr=h ‘ mwawy (3, 1/@:)° (fo/xi + > inkilz/g)
(2.29)

As argued above, there is no k dependence in any divergent term, so we can safely focus

82



onthe k = 0 case while preserving the RG behaviour. Also, we know ¢ is a constant
independent of w, so we can setw = 0, as well. And as always, we have to introduce a IR
cut-off sup |£;|, > 1 by hand to regularize this p-adic integral from below. This is believed
to have no effect on ¢j. Using the identity

0(1—>; i) 1 _ /2
\/xlexg (>, 1/z)° i)’ Vaaeas(yar +y/az + \/az)?

(2.30)

1
/ dridredrs
0

for positive ay, as, and as, we simplify (2.29) to

190 k Op (2 i
Oy k) _ / dkydksdks p2ib)
Oow 1<sup |ki|p<A |k‘1]€2]€3’1/3 <ZZ ‘k1|117/3>

+ (finite terms) .

(2.31)
Momentum conservation now possesses a simple triangle structure. Due to ultrametricity,
this triangle is either tall isosceles or equilateral. And thanks to this totally disconnected
topology, we can perform the integrals in disjoint regions and then add them up. For the

equilateral contribution, we have

1<kt |p=Ikz|p=Iks|p <A ey oy [1/3 <2i|k,~|§/3)3 18¢,(1) logp p

(2.32)
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For the tall isosceles contribution, we have

) k. 1 A2/3 0 —2v/3
1< kalp<A dkrdhzdks o s\° 163C ?f)Qlo pl —v/3)?
Ik Ip <Ikalp= k3 |p |k1koks| /3 (Zi|ki|p/3> P 8P = (14 5p7v/3)
(233)

There is no one-loop contribution, so we want the coefficient of w?log w? term in the
counterterm to be the inverse of the coefficient of w? log A%/® term from the melon dia-
gram. This is the correction that w? receives in the effective action. Expanding w?(1=%w2),

identifying the coefficient, and we have the final result

N + 2 7T2 p— 2 o 721)/3 :|
b2 = —A\2 . 2.
! 36 logp [9p (1) 8Cp )? ; 1+ 3p=/3)3 (>34)

The same result is obtained in” by a position space computation. There we Fourier trans-
form the integral, manipulate the integral in position space, and then Fourier transform
back to momentum space. No UV cut-off needs to be introduced, but we use the differen-
tial regularization instead, where we drop all the divergent terms when transforming back

to momentum Space.
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WAVEFUNCTION RENORMALIZATION AT THE WF FIXED POINT

Plugging (2.21) into (2.34) we find

[N24logp N+2 [p—2 9= p /3
2= — D4+=y —— | .
wa Z2 9 (N + 8)2 9p CP( ) _'_ 8 Z (2‘ 35)

Now we really see that for different prime numbers p, this mixed field theory falls into dif-

ferent universality classes. Respectively we have

Y = 0. (2“36)

The net effect of this anisotropic renormalization is a rescaling of z to z(1 — 7,2).

We find no known result in the literature to compare with (2.35) as usually, people study
the criticality of a quantum Dyson’s hierarchical model via real-space RG where the time
direction is equivalently unscaled. 7,2 is of order coupling square, so the correction to, for
example, anomalous mass dimension is not significant and cannot be used as a check, either.
The equation 7, = 0, or the non-renormalization property, though, agrees with***, where
they find the correlation exponent 7 to be the long-ranged mean-field value 2 — o evenin a
non-mean-field region. Actually, in condense matter literature, it is known for long-ranged

isotropic models that their correlation exponent remains the long-ranged mean-field value
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during RG flow > From a field theory perspective, we say that field strength in a purely
p-adic theory is not renormalized **. Here, however, the connection lies between mixed field

theories and long-ranged quantum models.

2.4 DISCUSSION AND FUTURE DIRECTIONS

With the help of p-adic number, we can construct non-local field theories with diagonalized
Lagrangian in momentum space and do perturbative loop calculations just like in a local
quantum field theory with a normal kinetic term. In this work, we perturb the free mixed
theory by a (¢2)2 term and find a Wilson Fisher fixed point of the RG flow when spectral
exponent z is above the critical value 1/3. Because of symmetries, we expect that this theory
at the WF fixed point should be in the same universality class of a quantum Dyson’s hier-
archical model. The correlation length exponent ¥ we compute is slightly smaller than the
result in"** but still close. Note that quantum Dyson’s hierarchical model can be partially
realized in a cold atom setup . In the future, we hope to see works that could carry the RG
to higher loop orders, where we expect an anomalous mass dimension close to what will be
found in these cold atom experiments. Note that extra care should be taken of this scaling
of z in higher loops.

Understanding this non-renormalization or “mixed renormalization” in the mixed field

theory remains to be improved. As mentioned at the end of the last section, z tends to be-
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come bigger at the fixed point. We hope to see future works that explore this interesting
feature.

Historically, p-adic and fundamental physics get connected by the p-adic string theory,
where the world sheet is taken to be p-adic, and the target space is kept real *>*>*>**, From
a different philosophy, the mixed field theory applications to fundamental physics could
be possible as with a compact dimension, the awkward ultrametricity is hidden, and the-
ories are then consistent with our normal space-time, which is Archimedean. Interesting
constructions of field theories could be made by considering a p-adic internal space. In the
future, we want to further study mixed field theories with compact ultra-metric dimen-
sions. We expect to find a consistent truncation story here due to the ultrametricity: soft
modes only multiply to give soft modes. For example, one can consider Fourier expanding
the field by momentum along the compact dimension and plugging it in the equation of
motion with any non-linear term. A consistent truncation sets all hard momentum modes
to zero and gets equations of motion consistent with the original equation of motion. For
soft mode equations of motion, setting hard modes to be zero will give us a finite set of
equations with only soft modes. For hard mode equations of motion in a real scalar the-
ory, there are terms made of only soft modes, so setting hard modes to be zero will give us
an infinite set of equations of the soft modes. There is no guarantee that this infinite set

of equations will give solutions that are consistent. While in the p-adic case, thank to the
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ultrametricity, there is no term in the hard equations of motion that are made only of soft
modes. So setting hard modes to be zero gives us no new equation of the soft, and we get

a finite set of soft equations in the end. This is really a detailed way of saying the fact that,
at tree level, in a p-adic momentum preserving particle production process, a hard mode
cannot decay to or be generated from pure soft modes because a sum of soft momentums
will always be soft. We hope to see an exact dimensional reduction that can generate this
consistent truncation in the future. With a reduced action, we can study loop effects of the
consistent truncation relatively easily in the p-adic setting, which is regarded as a difficult

subject in the consistent truncation of Archimedean theories, like supergravity.
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Non-local field theory I: non-local

non-linear sigma model

Scalar field theories over the reals with bi-local kinetic terms were introduced in*°, and
the recent work“” provides a useful point of entry into the extensive literature. Similar

field theories over the p-adic numbers were considered in* as a continuum description of
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Dyson’s hierarchical model . A unifying point of view on the bi-local O (V') vector model
was provided in**, showing that the standard large IV development can be framed in terms
that are largely independent of whether the theory is formulated over the reals or the p-
adics. The present work extends the study of bi-local theories to bi-local non-linear sigma

models, starting with the action

gt /V T2dY o2, b)), (3.0)

27 xV ‘x_y‘n_‘—s

where |z —y| is the distance function on the n-dimensional base space V and d(¢(z), ¢(v))
is the distance function on the target manifold. In the limit s — n, where the theory (3.1)
becomes classically scale-invariant, we find logarithmic divergences in one-loop diagrams,
which can be canceled by counterterms that can be expressed in terms of the target space
laplacian of the square of the distance function, together with field redefinitions.”

Ricci flatness suppresses the one-loop divergences that we encounter, so in a sense (and
with significant caveats), we may claim that we are deriving the vacuum Einstein equations
from conformal invariance, as in*’. Our work was partly motivated by the more recent re-
sults of *, which were derived for the nearest neighbor arc length model on the Bruhat-Tits

tree—in other words, on the other side of the p-adic AdS/CFT duality *>*” from our results

*An exception, as we will see, is when s is an even integer and the base space V' = ™. Through a proce-
dure we will omit here, one recovers, in this case, a local non-linear sigma model, and at least for s = 2, we can
use our results to check the standard analysis* of the one-loop beta function.
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for field theories over the p-adic numbers. However, the particular structure of countert-
erm we find suggests that renormalization of our theories have less to do with renormaliza-
tion of the local metric as normally understood (i.e. Ricci flow) than with an augmentation
of the action (3.1) to include the target space laplacian of d(¢(z), ¢(y))>.

A conservative expectation is that once non-local terms are allowed in a field theory, they
proliferate, and the theory becomes non-renormalizable. Theories with purely quadratic
bi-local kinetic terms, as studied in *>** (as well as many subsequent works) avoid such prob-

lems through a non-renormalization theorem: If we write

1 my 10 s "o T 2
5 =3 | @RA=DIkFAER) + [ EoUw), 62)

then the claim is that the quadratic bi-local term is never renormalized (at least pertur-
batively), though the purely local term U (¢(z)) certainly is—and depending on details,
derivative terms might be radiatively generated. Non-local interaction terms vitiate this
non-renormalization theorem, and one’s suspicions could be renewed that there is no sen-
sible theory. We will not be able in this work entirely to allay such concerns because we do
not give a demonstration parallel to the one in*’ that Ward identities based on diffeomor-
phism invariance guarantee that loop divergences can only modify the original form of the
action. Indeed, the counterterms we generate at one loop do modify the bi-local action in

an unexpected way, but one which appears to be controlled in a derivative expansion so
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that higher derivative terms can be radiatively generated at each new order without spoiling
results from lower orders.

The organization of the rest of this chapter is as follows. In section 0.4.1 we present the
main results in Fourier analysis that we need, both over the reals and the p-adics. In sec-
tion 0.4.3 we explain how double integrals such as the one in (3.1) can be regulated if diver-
gences arise as | — y| — 0. In section 3.1 we introduce the classical action for the bi-local
non-linear sigma model. In section o0.4.4 we discuss loop divergences in general terms, in-
cluding an introductory account of the non-renormalization property of the kinetic term in
(3.2). In sections 3.2.1-3.2.4 we investigate the simplest one-loop divergences of the bi-local
non-linear sigma model, and then in section 3.2.5 we argue that all these divergences can be
canceled by a laplacian counterterm in place of renormalization of the local metric, together

with field redefinitions.

3.1 THE BI-LOCAL NON-LINEAR SIGMA MODEL

Let M be a smooth D-dimensional manifold with a Riemannian metric g4, whose Rie-

mann and Ricci tensors are

Rabcd = aarlc)d - abrgd + FZe zd - ge Zd Rac = gbdRabcd . (33)
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Given any two points X and Y on M, let

Q(X,Y) =d(X,Y)? (3.4)

be the square of the shortest distance between X and Y. Clearly, Q(X, Y) is a smooth
function of X and Y, provided X and Y are not too far apart. For smooth functions

¢: V' — M whose range is sufficiently localized, we consider the action functional

n—s ' dred
=3 / Q). 6)). (53)

where [ "indicates a regulated double integral of the type discussed around (32)-(34)." Note
that this discussion requires us to avoid positive even integer s. When s > 2, there are
derivative terms like (9¢)? implicitly built into (3.5), with coefficients tuned so as to en-
sure convergence of the integral. The parameter 1 has dimensions of energy so that we

can regard ¢ and Q(¢(z), #(y)) as dimensionless. The factor y is a loop-counting parame-
ter: Classical effects are O(y~!), one-loop amplitudes are O(+), two-loop amplitudes are

O(7), and so forth. In other words, 7y plays the role of A.

TOne may wonder whether the primed integral, as defined following (33), spoils coordinate invariance
of the integrand. For instance, if s is sufficiently large we may, in light of (34), be required to include a [, Q)
term to the integrand, which if written only in terms of partial derivatives does not appear to be coordinate
invariant. In fact, it is easy to convince oneself that, e.g., [, () can be constructed from covariant quantities:

_ _9%°Q 89" 8¢’ | 8Q _0%¢" _ 0Q ) 0¢' 8¢7 | 9Q 9¢7 9’
Oy 0y Q = 567047 Oy oyb | 097 dyrogt Vi 967 ) Dy7 oy T 97 ay" Vi oy
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A close cousin of the action (3.5) was considered in

S = de(x),6(y))’ (3.6)

where now x and y are vertices of a graph, and the sum is over undirected edges. The for-
mula actually appears earlier in **, though it was intended there to be considered on a square
lattice, as a regulator for the local non-linear sigma model, rather than on the Bruhat-Tits
tree as in

We require the range of the maps ¢ to be sufficiently localized in order to ensure that
we do not encounter any failures of smoothness in (X, Y'), and in order to ensure that
we can use a single system of Riemann normal coordinates for ¢ throughout. One can
now solve the geodesic equation perturbatively in the curvature and use that to expand
Q(X,Y). We observe that the action (3.5) consists of a non-local kinetic term (quadratic
term in the expansion of () and non-local interaction terms (higher-order terms in that ex-
pansion) where the combination of Riemann tensors play the role of coupling constants.
Once the loop integrals are studied systematically and independent of the metric tensor, the
task becomes to study the contractions of Riemann tensors according to the rules defined
by those loop integrals.

Before presenting the result of expanding (), we find it convenient to introduce some
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abbreviated notation, based on the following equivalences:

v(alv@) X a1 x a2

(3.7)

standard
abbreviated

a1a2
a2

(ab + ba). We employ obvious extensions of (3.7) to larger index sets,

a
.

1
Here (ab) = 3
e.g. X123 means X X2 X%,

We will often need to simplify expressions involving the curvature tensor and its covari-

ant derivatives. A primary tool is the Bianchi identities, which we may write using our ab-

breviated notation as

Ra1234 + Ra1423 + Ra1342 = O

V1145R041234 + val Ra2534 _'_ anRa5134 = O :

A contracted form of the second Bianchi identity,

vab(hz:s = VazRalg - vagRalg (3.9)

shows that any three-index contraction of V,, R meaning any contraction leaving

1234 (

three indices free) can be expressed as linear combinations of re-indexed versions of the

tensor Vg, Ry,,; in this sense V,, R,,, by itself is a basis for all the three-index contractions
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of V4, Ry, This observation will be useful to us when we consider the possible Wick
contractions of the five-point interaction vertex in the bi-local non-linear sigma model.

Acting on the contracted second Bianchi identity (3.9) with V, gives

b
vbleR 2CL123 = V51€12R1113 - vblaSRGIQ

1 1
+ [Vblv V0L2]Rt113 - §[Vb17 VCLS]Ralz - §[vb17 vb2]Rb2a123 :

(3.10)

N | —

We describe the terms in the second line of (3.10) as commutator terms. Evidently, they
can be written as curvature bilinears, meaning contractions of two factors of the Riemann
and/or Ricci tensors, with no covariant derivatives. Acting on the uncontracted second

Bianchi identity (the second line of (3.8)) with V5 gives

V2Ra 00 = Vars Rass + Vs Rars — Vars Rags — Vags Ray, + (commutators),  (3.11)

where V2 = VV,, and the commutator terms are similar to the ones occurring in (3.10):
In particular, they are curvature bilinears. The results (3.10) and (3.11) show that all four-
index contractions of V, Rq,,,, can be expressed in terms of linear combinations of re-
indexed versions of the tensor V,,, R,,,, together with curvature bilinears.

So far, all formulas in this section have been entirely independent of the choice of coordi-

nate system. We now pass to Riemann normal coordinates in order to study the square of
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the arclength, Q(X,Y) = d(X,Y)? between two points X and Y. We have from7*

Q<X7 Y) = ga12(Xa1 - Yal)(XGQ - Y@) + ZQT<X7 Y)

r>3

1
Q4<X7 Y) = _§Ra1234Xa13Ya24

1
Q5<X7 Y> = _EvasRamazxXalgya% (X% + Y%)
(3.12)

Qs(X,Y) = QYVE(X,Y) + Q¥R (X,Y)

1
6VVR<X, Y) — _@VangalggA (X01356Ya24 + X @13y 02456 + Xa135ya246)

1
é%R<X, Y) — ERbamsta%e <4Xa125ya346 — X M245)a36 _ Xa25Ya1346)

Here ¢4,,, Rq,55,, and its derivatives are all evaluated at the origin of Riemann normal coor-

dinates, which is the origin in terms of the coordinates X* and Y* used in (3.12).

3.1.1 LoOP INTEGRALS IN MOMENTUM SPACE

The loop is a single propagator starting and ending at the same vertex. This matters because
there is then only one internal momentum ¢, and imposing the hard cutoff |[¢| < Aisa

privileged choice because it corresponds to integrating £ over an O(n)-invariant region. An

*Note however that the results leading to Q£ in"7 contain errors. In particular, 44 should have been 4 in
the first line of (11.24). We believe the error appears earlier in equation (11.18), among the Riemann-Riemann
terms. The correct expression has many equivalent forms, one of them is 24 R% gy Rgefa — 24 R pge Rgcfa —

8RabgcRgefd-
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example is the diagram proportional to

e

= [ —, (3.3)
Lk

Iy

assuming that whatever vertex factor is needed to fully evaluate the diagram doesn’t depend
on /. We also assume . > s so that I is UV divergent but IR convergent. We straightfor-

wardly find
2 AT

= s (3-14)

Iy

There are obviously no subleading divergences in /.

For convenience we introduce € = n — s. We are interested in divergences proportional
to log A that arise when € = n — s = 0. Asa technical trick to isolate these divergences,
we make € small and positive, and we look for divergences of the form A€/e, which in the
¢ — 07 limit give rise to log A terms. To characterize this limit precisely, given 7y > 0 and
A € R,wesetn = ng + Aeands = ng + (A — 1)e and then take thee — 07 limit
with ng and A held fixed. (Clearly then we are allowing non-integer n, in the spirit of **.)
For the most part, our final results are independent of A\. When ¢ is sufficiently small, we

may replace (3.14) with

Iy = iO? where ip = o) + O(e). (3.15)
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The important point is that in the limit e — 07, I includes a logarithmic term ¢ log A,
and isolating this term is our stated objective.

We will encounter one other loop integral:

_ n |k,_€|s I
Iz(k)—/d ( o (3.16)

It comes from graphs similar to the one in (3.13), but with a vertex prefactor |k — ¢|°. Using
the same reasoning that led to (46), we see that when a hard cutoff |¢| < A is imposed, one

obtains, if 7 is positive but not an even integer,

/2] n—2r
L(k)y="Y" cer’"n —5; + (UV finite) (3.17)
r=0

for some coefhicients ¢,. If we choose ng positive but not an even integer and fix any finite
value of A, then for sufficiently small €, (3.17) applies, and the least singular power of A ap-
pearing in it is AP2/2] Ase — 07, this power remains positive and finite, tending

to A"0~2170/2] Sq there is no log A behavior, even in the e — 07 limit. If instead we
make 7 a positive even integer, then by choosing the very particular value A = 1, so that
s = ny exactly, we find (for sufficiently small € > 0) that the least singular term in (3.17)

is €2 ]k]sg, which does contribute a ¢|,, /2| |k|* log A divergence in the e — 0 limit;
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moreover, in this case, by calculation, ¢|,, /2] = 19 + O(€).
We can summarize the situation by stating that for e = n — s positive but sufficiently

small, then subject to the restriction that n cannot be a positive even integer,

Ae
I5(k) = (higher powers of A) + 49| k|*— + (UV finite), (3.18)
€
where
io + O(e) s is a positive even integer
iy = (3.19)
0 otherwise .

The higher powers of A in (3.18) are accompanied by non-negative integer powers of k2,
and they correspond to operators which remain relevant in the e — 07 limit. The only
log A behavior arising from I5(k), in the e — 07 limits described above, is the i5|k|* log A
term coming from the i5|k|*£" term shown in (3.18). We are not concerned about O(e)
terms to ¢ and 5 because they drop out of the log A behavior in the € — 07 limit. In the
following sections, therefore, we will drop O(€) terms from (3.15) and (3.19), and we will

evaluate 3¢ and 75 in terms of n rather than ny.

SAlthough we have argued that the hard cutoff prescription |[¢| < A is the natural one to use, it is interest-
ing to note that if instead we impose [k — £| < A, thensstill ¢|,, /2] = 0 + O(€) when s = 2[n/2] and €is
sufficiently small.
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3.2 RENORMALIZATION AT ONE-LOOP

As we have said, computing loop diagrams amounts to setting rules for vertices contrac-
tions. Now we are ready to approach the main body of this chapter: having fun with Rie-
mann tensors. The way we present these results will not be altered significantly from the
original paper“”, especially the part where we use color-coding. Readers may also find it
helpful when deriving or checking these results on Riemann tensors using tensor computa-

tion packages, like Cadabra (python) or xAct (Wolfram).

3.2.1 THE PROPAGATOR

To derive the tree-level propagator, we use an obvious generalization of (39) to multi-component

scalar fields to rewrite the free action in momentum space:

€

Sy = %gab/dnwa(—k)mrqéb(k), (3.20)
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where we recall that e = n — s, and for notational convenience we have introduced?

r
5= OO<7;+8)7. (3.21)

We immediately extract from (3.20) the propagator

2, Hab
éab k) = 79
0= el
» (322
G®(x) = 'y (€) vy + (contact terms)
T (ul))e

We are primarily interested in € small so that G*°(x) is nearly logarithmic.

We can understand the one-loop correction to the propagator as a contribution to the
1PI effective action coming from all possible Wick contractions of the two of the four fac-
tors of @ in Siy,. The calculation is done most straightforwardly in momentum space,

where we can express

= 1l;_vR d"k (76°) (k) [kl (6P9) (k)
(3.23)
= %Rabcd / A"k 8" (0 ki) 0 (k)@ (Ka) 6° (k) % (o) [k + kea®,

9 A point worthy of remark is that while 4 and y have the same sign for 0 < s < 2,for2 < s < 4 they
have the opposite sign. The integral in (3.20) is well-defined and positive, so to make our theory sensible we
should always choose ¥ > 0. This means thaty < Ofor2 < s < 4. Asexplained in (41) for a single real
scalar, the regulated position space integral used to define the action (3.5) includes a (9¢)? term that enters

with the opposite sign of the non-local [¢(x) — d(y)]? term, so positivity conditions are difficult to judge in
position space.
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where d*"k = H?Zl d"k;. Symbolically, the Wick-contracted quartic action is

. 1€ 2 ; 7 ’
Gwick _ mRabcd/d%k 5n (Z?:lki) O (k1)@ (ko) o® (kg (Ky) | kg + ke
(3-24)

+ (¢%¢? contraction) .

We understand ¢°(ks)$°(ks) to mean a replacement of 0P (ko) e (k) by G (ky) 6" (ko +
k3). We omit the $°¢" and ¢°¢? contractions from (3.24) because of the antisymmetry of
R,peq in ab and cd. We omit the ngﬁangSC and ngqu contractions because they include a factor
|k1 + k3|*6" (k1 + k3), which vanishes when s > 0. After some straightforward algebra, we

obtain from (3.24) the form

Sick — —éRab / A"k ¢ (—k) L (k)" (k) , (3.25)

where I5(k) is given in (3.16).

As discussed below (3.16), for suitably small positive e = n — s, I(k) includes a term
i9 ]k!sg iff s is a positive even integer. This is the case which leads to local non-linear sigma
models. Otherwise the divergent terms in /5(k) are proportional to |k|*" A" 2" for non-
negative powers 7. — 27 which remain finite as e — 07. Therefore, apart from the case of
local non-linear sigma models, the effects of the ultraviolet divergences in (3.25) are limited

to generating relevant, local interactions. We assume that relevant terms of this type can be
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R VR
(2) (b)

Figure 3.1: (a) The one-loop contribution to the propagator. (b) The one-loop contribution to the 1Pl three-point ver-
tex.

tuned away.

It would be tempting at this point to conclude that the non-local action (3.5) is non-
renormalized, as in the case (3.2). The reality is more subtle: We will see in section 3.2.4
that higher point diagrams generate one-loop divergences that require non-local countert-

erms; however, they are not quite of the form (3.5), involving the target space laplacian of

Q(X,Y) instead.

3.2.2 THREE-POINT VERTICES

There are no three-point vertices at tree-level provided we employ Riemann normal coordi-
nates. As we will explain in this section, three-point vertices appear to be generated at the
one-loop level, by the diagram in figure 3.1b; however, they can be absorbed through non-
linear field redefinition.

As for our discussion in section 3.2.1 of the one-loop corrections to the propagator, the

one-loop contribution to the three-point function can be obtained efficiently through
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Wick contractions in the momentum space of the quintic term in the action:

1 [ dad™y
2vJ) e =yl

1 " n
B %V%Ramrﬁ/ [Hd (b ]5 (Zz lk) |k24|

55 = Q5(¢($),¢(y))

(3.26)

High-dimensional Fourier integrals of the type seen in the second line of (3.26) are common

in our calculations, so we have found it useful to introduce some shorthand notation:

&% (k1) 9% (k)

A2y 5™ (k1o) 125 ¢“12 (k1)

0" (ky + k) | [k + kol

(3-27)

standard d"k1d ko
abbreviated

with obvious extensions to larger index sets. If A is any ordered set of indices, like 123, and

| A| is the number of indices in the set, then the integrals we see most often are of the form

1€EA

Ton, la E/ [Hdnk ¢ (k ]5n (Xicaki) a(ka)
— / A4 kg 67 (ka) 9™ (ka)q(Ka)

where ¢(k4) is any function of the k;, and the third expression is just a rewriting of the sec-
ond using the shorthand notation introduced in (3.277). Evidently, the [J; integrals are con-
vergent for reasonable integrands ¢, like powers of norms of sums of momenta, provided

the ¢® are Schwartz-Bruhat functions. When there is no risk of confusion, we will omit the
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subscripted k4 and just write 7 4? 4. We can now rewrite (3.26) as

I 70
55 = EvasRamszx 12345“]'{"24' ] (3'2'9)

As in section 3.2.1, a Wick contraction amounts to a replacement

~

% (k)% (k;) — G (k)0 (kyj) = %gaijfsn(lﬁijﬂkﬂ_s- (3:30)

It is helpful to note the following examples of Wick contraction:

T[] = / AR 67 (g ) 37 (y ) 32 (o) 324 (o) oro*

=3 g / A E 4 57 () 3% () / 21y 6 (Fga) oo~ o] = 0
FhEea[| o] = Lgon / A 7 () 674 () / Py 67 (k) o
g2 704 (koo = T8 kol

jﬁﬁi?“’ﬁds] :lj m/d|Alnk 5"(kA)¢aA(’fA)/d2nkl2 6" (k1) k| ~*[kic|®

9" Tgn (ko)) -
(3.31)

Here A and C are collections of indices, neither including 1 or 2, with C' C A, and we
assume s > 0 in order to obtain the vanishing of the first integral. Recall from section 0.4.4

that [ diverges as A°/e when € = n — s is sufficiently small and positive, giving rise to log A
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behavior in the limite — 0.

There are (g) = 10 possible single Wick contractions of S5, but the (12) contraction
(meaning the contraction of a; and as) vanishes because g*12V,, R,,,,, = 0; likewise the
(34) contraction vanishes. Meanwhile the (14) and (23) contractions are equal because
both V. Ry, 4, and |ko4|® are symmetrical under the simultaneous exchange of 1 <+ 3
and 2 <> 4. For the same reason, the (15) and (35) contractions are equal, and so are the

(25) and (45) contractions. Finally, the (24) contraction vanishes because of the first line of

(3.31). We are left with

ick ick ic ick ic
Sk = SYik) + 28Yik) + 28V k) + 2575k, (3.32)
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where

i 1/ dlazasas g 1 7aa
S8y = G, Ry T ) = 5 B T
_ = Ju2s
- 24va3Ra12 Hk ’ ]
X € /A 1 1
S8y = B0, Ry T ] = — 0 Ry T ()
1
T R T (k)]

Schk :u/’yv R 1023405 k 1 V.. R -V, R a234 k
5,(15) — a1234\7 H 4” ( az+lazq ag a23) H 24”

51 24
_ 2_14(va3Rm — Ve Ragy ) T8 ks ] Lo

sy 1 /WV Ra1234jalam5[|k24|s] = —2—14(Va3Ra14 — Vay Rayy ) T3 [ To(Fa)]
_ 2_14<va33m V Run) T k)]

(3.33)

A few comments are in order:

. Wick ‘Wick : :
Because S 5.(14) and Ss, (55 Are proportional to the I5 loop integral, they do not con-
tribute logarithmic divergences in the e — 0 limits described in section 0.4.4,
except when sisa positive even integer. In a position space account, these non-

logarithmic terms correspond to contractions of ¢(z) with ¢(y).

* We are mostly interested in SW‘§3) and SW‘Ck because Iy does produce a logarithmic
divergence in thee — 07 limit. Note that in these terms, the vertex factor |ky3/®
involves only external momenta. This is the crucial feature, which allows non-local
counterterms to arise. In position space, the logarithmic terms correspond to con-

tractions of ¢(y) with itself.
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In summary,

. 1 o
SngCk = ﬂ /dsnk123 5n(k123)¢a123 (k123> |:12(k3)(2va3Ra12 - 4va1 Ragg)
(334)
+ [0‘k3‘8(3va3Ra12 - 2va1Ra23):| :
The minimal counterterm needed to cancel the A /e divergences in (3.34) is
A€ ~
S§t = E / d3”k5123 5n(k123)¢a123(k123)|k3|8 [KlvasRam + KQV(MR@)%] (3'35)
where
K, = St 2e K, 02 (3.36)
12 6

and 7y and 75 are as defined in (3.15) and (3.19). We use the notation S§' to denote a countert-
erm that is cubic in the fields. Our primary interest is in cases where i = 0—namely, cases
in which s is not a positive even integer. However, tracking /o, I5(k), i, and i3 throughout
our computations is useful as a bookkeeping device in order to simultaneously treat the lo-
cal and bi-local theories, in the ¢ — 07 limit, with i3 entering in only to describe the local

theories.
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3.2.3 RENORMALIZATION THROUGH CUBIC ORDER IN THE FIELDS

Before entering into the more complicated story of quartic terms in the action, let’s preview
the endgame of our analysis. We produce a bare action that incorporates the renormalized
action plus the counterterms in a form we can express entirely in terms of arc length.

First, let’s rephrase the Wick-contracted quartic action (3.25) as

: 1 0
SZVICk = _6 / d2nk,12 5n(k12)¢a12(k12)12(k2)Ra12 ) (3'37)

from which we conclude that we need a counterterm quadratic in the fields of the form

€

A .
> = 5 / 02" kiyz 6" (K12) ™2 (Kvo) kol Ko R, (338)

where

Ko = ‘ (3:39)

12
3
The results (3.38) and (3.35) together put some constraints on the renormalization proce-

dure, but as we will see they do not completely determine it.

The question of renormalizability is whether we can reorganize the renormalized action
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plus counterterms into a bare action whose form is the same that we started with:

S[o] + S<[¢] = S®[¢s] - (3.40)

where

S[g] =S¢ (3.41)

r>1

is the sum of all counterterms, S|¢] is as given in (3.5), and

Sl = 2 /V ALY (), () (42)

27 xV |x_y|n+s

where Q®(X3,Y3) = d®(X5, Ys)?. The bare arc length d, derived from a bare metric
tensor gb,, may differ from the renormalized arc length d, and the bare coordinates ¢ may
likewise differ from the renormalized coordinates ¢*. We require however that the points
¢ = O0and ¢ = 0 coincide. At tree level, where we ignore all counterterms, we have the

relations

A €
(E) (0n) = 9us(0) s (.43

and our key task is to find perturbative corrections to these relations that render (3.40) cor-
rect.

To begin, let’s examine the quadratic terms in (3.40), using the counterterm S5° from

III



(3-38):

~

. A€ .
[ )i it an + 1 (3) KoRtn] + 0%+ 06)

A\ .
— (—) /danlg 5n(k12) a12
%

(3-44)
512 (ko) kol gn,, »

where for simplicity we multiplied through by 2%/ u°. We surmise from (3.44) that correc-

tions to (3.43) can be expressed as a power series in the dimensionless quantity
(3.45)
Thatis,

P5(x) = ¢"(x) + 7 [U%"(x) + V5, 0" (x) + W,0,¢" % (2)] + O(¢") + O(7?),

(3.46)
where V%, , and W%, ,, are fully symmetric in their lower indices, and U, V, and W are all

independent of ¢ (and ¢3). In other words, (3.46) is a Taylor expansion of ¢ in the coordi-
nates ¢*. Also,

AN 4 ~ 2

m Jar(P8) = Gar(®) + VTap(9) + O(Y7)

(3.47)
for some tensor T}, (). As our notation indicates, 77,,(¢) does depend on ¢. As with other

tensors, if we omit the argument, we mean that 7y is evaluated at ¢ = 0. Using (3.46) and
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(3.47), we see that (3.44) is satisfied provided

Jare + VKo Rary = (802 + AU 0) (022 + AU 03) (e +7Th2) + O(37), (3:48)

1 2

or in other words, provided

Ta12 + 2Ua(12) = KORa12 9 (349)
where
b 1
Ua12 =U azJarb Ua(12) = §(Ua12 + Uagl) . (3-50)

It should be kept in mind that 7,, is the ¢ = 0 value of a tensor field 7},, (¢) defined over

the whole of M, whereas U, ,,, is defined only at ¢ = 0. Let’s assume that

(12)

Ta12 (¢) = tORalz (¢) Ua(12) = UORa12 . (351)

(Atermin T, ,(¢) proportional to R(¢)ga,,(¢) is also possible, but the divergences we

will encounter do not require it.) Then (3.49) reduces to

to+ 2ug = Ko . (3-52)
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As previously noted, based on the treatment of quadratic terms alone, we cannot distin-
guish between metric renormalization (related to the coefficient ¢() and field redefinition
(related to the coefficient uy).

In order to proceed to higher orders, we require the squared arc length formula for bare

quantities:

Q™ (X5, Va) = gb, (Xg' — Vi) (X2 — Vi) + ) QN Xa, Ya) . (3.53)

r>2

We do not require ¢ to be Riemann normal coordinates for d®, so there are contributions

to Q® at cubic order:

(X, Vi) = T2, (X2 — Vi) (X — Vo) (Xe + vy, (sd)
where I8, = ¢B I'* and '3 is the Christoffel connection for g,. From (3.47) we have
immediately

AN 5 ~ 1 ~2
; F(Z312 =7 v(a1Ta2)a3 - §VG3TG12 + O(’}/ ) ) (3'55)
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From ()% we obtain a cubic term in the bare action:

yl"“

3 / Q3 ¢B( ) ¢B(y)) jauSHk | ] as12
2vJ e - (3:56)

1
_vaBTam + O(:)/) :

A al S
= 2_6j¢ 23[|k3| ] {V(MT&Q)GS - 9

Another term cubic in ¢ arises in the bare action from plugging the non-linear field redefi-
nition (3.46) into the quadratic term S3. To work this out, it helps first to note that passing

(3.46) through a Fourier transform yields

da(k) = ¢°(k) + 769" (k) + O(3%) (3-57)

where

36 (k) = U@ (k) + V%, (8" 5 7) (k) + W0 (87 67 % ¢%) (k) + O(¢")
(3.58)

and * denotes convolution. It follows immediately that

Tou [[Ra|*] = T3 [[Ra|*] + 2’7/d2nk12 0" (k12)80™ (k1) (ko) [ka|* + O(¢°) + O(3)
- ‘7;12[|k2|8] +27 [U( k2€[|k2| ] + V(alblzjai)zbflfzu 2|S]

Jkal123

W T )] + O(8°) + O(3%),
(3.59)
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and so

Ae
2y

A€ A€ f s
Sg = jagm[’kZ’s]gglg = 52 + 2_€k7q?12[‘k2‘8] [TIIIQ + 2Ua12] + ?jq?md[’]%’ ]‘/21312

A€ -
+ ?‘7;1234[|k4|8]wa4123 + O(¢5) + O(V) )
(3.60)

where we are lowering indices on V' and W with the renormalized metric g4p. The T, +

2U,,, term in (3.60) is the same combination we saw in (3.49), with the symmetrization

Usy — U,

a(12)

implied because we multiply by J**[| k2|*], which is symmetric. The
next term in (3.60) is the interesting one for us. The only constraint on V,,, is symme-
try in the 12 indices. This is the same symmetry that 7, d? 123[| k3 ®] possesses. Therefore
T 5% [|k3|*] Vag,, is the most general linear combination of terms coming from J5***[|k3|°]
integrals. Likewise, the only constraint on W,,,,, is symmetry in 123, so the last term
shown explicitly in (3.60) is the most general linear combination of terms coming from
J41%[|ka|*] integrals.

We now have all the ingredients needed to calculate the O(¢?) correction to (3.44). Specif-

ically, we expand (3.40) to cubic order in the renormalized fields, using the expression (3.35)

for S, as well as SE from (3.56) and the O(¢?*) term from (3.60). The result is

j£123[|k3|8] [Klvag;RalQ + KZV(mRag)ag]
1 (3.61)
— j;u:a“kg‘s] V(alTU,Q)(ZS - §Va3Ta12 + 2Va312
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(a) (b) (<)

Figure 3.2: One-loop contributions to the 1Pl four-point vertex: (a) Single Wick contractions of the V'V R six-point
vertices; (b) Single Wick contractions of R six-point vertices; (c) Diagrams involving only four-point vertices.

Evidently, we may set

Vs = 1V Rapy + UQV(alRQQ)ag) , (3.62)

where

1
—§t0 + 2?}1 = Kl to + 21}2 = K2 . (363)

The larger message is that V,, , is sufficiently unconstrained that we could use it to absorb
any counterterm proportional to J;"**[|k3|°]. By the same token, when we get to quartic
order, the field redefinition coefficients W/, ,, can be used to absorb any terms propor-

tional to J§***[|ky|*]. Therefore, when we do proceed to quartic order, we may simplify
our work by systematically dropping all such terms. We will see in section 3.2.4 that other
terms emerge, proportional to J***[|ka4|*]. These are the ones that cannot be absorbed

into field redefinitions.
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3.2.4 QUARTIC COUNTERTERMS

Four-point vertices are present at tree-level, and they are also generated by three different
types of one-loop diagrams, as shown in figure 3.2. Our goal in this section is to evaluate
one-loop divergences proportional to V,,, R, (and re-indexings of it). The claim is that
only the diagram in figure 3.2a can contribute. Tracking only target space indices, the ver-

tex factor in this diagram is V

R,,,,,, and the internal propagator can tie any two of the
six indices together. So the diagram as a whole must be proportional to four-index contrac-

R

ase

tions of V R

a1034- As explained in section 3.1, re-indexed versions of V,,, R,,,, together
with curvature bilinears, provide a basis for such contractions. The diagrams in figure 3.2b
and 3.2c are manifestly proportional to curvature bilinears, so they cannot contribute terms
proportional to V,,, [R4,,. (One immediate way to see this is that the Riemann tensor
could vanish at ¢ = 0 without its derivatives vanishing.) In the explicit calculations below,
we will encounter and discard many curvature bilinear terms, which we generically write as
O(RR), meaning some contraction of Ry, ,s, Rassrs-

We claim that the counterterms needed to cancel the divergences from the diagram in

figure 3.2a proportional to V,, [24,, (and re-indexings of it) are

€

ct A a1234 s
6,VVR — Z j¢ ’ Hk24| ] <K3v(112RH/34 + K4v(11:3R(12~1) (3.64)
3.64

TR (57,0 B+ KoV )]
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where

K; = % K, = _W
, , , , (3.65)
K5:ZO+322 K(),:_M'
30 60

Color-coding in (3.64) is to help track to which term in (3.64) each of the many terms in

later equations contribute. The remainder of this section is devoted to deriving (3.65).

To derive the sixth-order vertex used in figure 3.2a, we start from the Qg ¥ 7 term in (3.12)
and extract the following six-order terms in the action:
"ad" _araty S gyvr 44 343
S6,vvRr = / [z — gt 8 (6(2), 9(y)) = Ssovr + Ssovr (3.66)
where
4+2 P
S(;%VR = 120;)/va56Ra1234 aleSSHk ’ ]

(3.67)

3 Farzus
Sg—%gVR 240,? VassRa1234 12845 GHk 46| ]

Our task is to compute the counterterms for all the single Wick contractions of Sé“gv rand

343
56 VVR:

For Sngv > relations among Wick contractions that are obvious from symmetries plus

the first line of (3.31) are as follows:

(12)=0 (34)=0 (24)=0
(3.68)
(14) = (23)  (15) = (35) = (16) = (36)  (25) = (45) = (26) = (46)..
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Thus, of fifteen single Wick contractions of Sg}zv > there are actually only five that deter-

mine the full answer:

442, Wick _ o4+42,Wick 442, Wick 442 Wick 442 Wick 442, Wick
SevvR = Ssvvr3) T 29 vvr 14 T 45 vvr 15 T 456 vvr,25) T S6.vvR,56) -

(3.69)

If we write the counterterm for an expression ) as {Q }«., then the rules of computation we

need are a trivial adaptation of (3.31):

i 1 5 )
{J;mnkcm} ={ng2“[|km|ﬂ} I

g (3.70)
{jglazaAHle‘s}} _ —’?gamj;AHkCls]iz‘

ct

The counterterms that we need to cancel divergences coming from the single Wick contrac-

tions of Sé"J%QVR, as shown in (3.69), are

€
+2,ct —+2,ct +2,ct —+2,ct +2,ct —+2,ct
442 A 442 [4 2 [4 2 [4 2 I4 2

6.VVRE = 150¢ | 6.VVR(13) T 2l gopae T Hevvras) T Hevvres) T Llovvr o)

(3.71)
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where

C 1 aiazasa S a
1 6am = Vs { TP ]| = o RT3 T

= _vawRaz.l a1234[|k 4| ]

44-2,ct 1 a1a23a4056 s CL2356
I6,VVR,(14) = %V%s a1234 J [|k24| ] = va56R023 Hk: | ]

ct

= vru_»]‘)rm a1234Hk ‘ ]

442 ct a1a234a506 b a
13600 = Vs { Tl | = Vo B T3 T
= (_va63Ra24 + V1164Ra23) a2346 [|k24| ]ZO + O(RR)
- (val‘zRa:m - V(IISR(121) a1234[|k24| ]QO + O(RR>

442, ct 1 a1a2a34a50a6 s b a1346
Iﬁ VVR,(25) — §VQ56RCL1234 j [|k24’ ] = _vbasRm a34 Hk ’ ]

ct

= (VaegRam - V064Ral3) a1346 “k4| ]22 + O(RR)
= (T(lu ]?”‘H - V(134Rl112) a1234 “k4| ]22 + O<RR)
ct ]- a 405Q a1234
6 = Vs { T ]| = =V o T il

= (_2va13Raz4 + 2va12Ra34) a1234[‘k24’ ]7’0 + O(RR)
(3.72)

where the color coding is to show which terms in (3.72) contribute to which terms of (3.64).
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Let us briefly summarize the analogous steps for Sg’@gv - Obvious relations are

(12)=0  (34)=0  (13)=(24)

(3.73)
(14) = (23)  (15) =(35) = (26) = (46)  (16) = (36) = (25) = (45),
from which it follows that the desired counterterms are
AE
3+3,ct 3+3,ct 3+3,ct 3+3,ct 3+3,ct 3+3,ct
SevvR = 210¢ 25 gvr s T s voran T Hsvvras) T Hevvr, s T [6,VVR,(56)] :
(3.74)
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By direct computation using the rules (3.70),

,C 1 ala2a3a. S (l
Ig-gi’)v;%( 13) — %vase 1234 {\7 He 456[|k246| ]} = — Ve Rap T, 2456[|k246| ]

ct

= —Va34Ra12 a1254“k ‘ ]

34+3,ct 1 1102304056 S a2356
16 VVR,(14) — %vdsﬁ a1234 \7 Hk246’ ] = Va56Ra23 Hk%’ ]

ct

- V(L12R1134 01234[|k 4| ]

3+3,ct 1 (102340506 s b (2346 s,
I§ 9w R 15) = §VG5GR(11234 Ty k2asl”] ¢ = = Vbag R a5, T2 [| 16| "Jio

ct

= (Tﬂu[{rl:u - va34Ra12) a1234[|k4| ]ZO + O(RR)

3+3,ct 1 1020340506 S b a1346
]6 ,VVR,(25) = %V‘loﬁ 1234 \7 “k246| ] = _VbasRal a34 [|k46| ]

ct

= (va12Ra:34 - vamRazl) a1234[|k24‘ ]22 + O(RR)

(L

1

3+3,¢ a asa s a

IGJ%V;E( 56) — §Va56 1234 {j o 6[’k246| ]} - _v2R01234 1234[“" ‘ ]
ct

( 2V(JLSRGZ4 + 2v01zRﬂs4) a1234[|k24| ]22 + O(RR)
(3.75)

123



Putting (3.71)-(3.72) and (3.74)-(3.75) together and comparing with (3.64), we arrive at

Ky = it 2y 2ty b i 4 2
37600 T 600 T 120”120 T 120"

1. 4 2. 4 2
4= 7=t — 25t — £ T TRl T oA
60 60 60 120 120 (3.76)
Ks = —is + iz + =t
7607607 120"
4 2 4
Ko = ——1ly — —~ig — 7500 s

60 120 120

which agrees with (3.65).

3.2.§ RENORMALIZATION THROUGH QUARTIC ORDER IN THE FIELDS

To renormalize at quartic order, we first inquire whether the counterterms (3.64) can be
organized into the bare arc length action (3.42), using the field redefinition (3.46) and the
relationship (3.47) between the bare and renormalized metric. For the non-local model, we
will find that this is impossible! So we will turn to a generalized form of the bare action that
includes a term proportional to the target space laplacian of the square of the arc length.

To get started, we need the bare arc length formula to quartic order in the bare fields:
That is, we need one more term in the series (3.53) than we computed in section 3.2.3. The
computation of arc length is less simple than for the renormalized metric because the ¢5 are
not Riemann normal coordinates for g5, —due to effects at O(7), in particular a connec-

tion I} ~ O(7). As a technical device, we therefore introduce a third set of coordinates,
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—a . . . . . . .
¢ , which are Riemann normal coordinates for the bare metric, which in barred coordi-

— T —a .
nates takes the form G, (¢). We can express ¢ in terms of ¢ as

—Ta

¢ = ¢+ [Ll%u @y + Mu,05%] + O(¢3) + O(3%), (3:77)

and we can write g%, (¢g) in terms of G, (¢) as

_ aaal 85@

Ba(98) = 90 @) 5 o (:78)

. _ - .. —a .
Note that, by assumption, g% , = g,,, at ¢5 = ¢ = 0. The condition that ¢ are Riemann

normal coordinates allows us to conclude

ng a 1 a g a 1 a a a
'VL b2 — §F212 7M b2z — 6 <WF£23) + Fg(b1 Flgé):s)) ) (3~79)
Pp
see for example for a derivation. The I'®I™® term in the expression (3.79) for M?,,, is
optional because it is O(%?), but it arises naturally in the derivation of """, so we include

it.

The bare arc length coincides between ¢ and ¢y coordinate systems because these are just
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different coordinate systems for the same metric, as per (3.78). Explicitly,

1

QX3 Y) = QX Y) =7, (X" ~V)(E" -7 5

Rape XY™ 4 0(8),
(3.80)
where in the second equality we used the fact that ¢" are Riemann normal coordinates. The
notation O(¢°) in (3.80) is short for all terms involving five or more powers of X and Y’
combined; similar notation is used below. Using the first equation in (3.77) to eliminate X

and Y in favor of X5 and Y3, we arrive at

Q% (Xp,Ys) = g5, (Xg' — V5" ) (X352 — YV5?)
+ 25/ [La312 (‘X][}l12 - }/15(112)()(][313 - }/BGS) + Ma4123 (X](SLHS - }/Baug)(‘xlgl4 - }/BM)]

1
— =R XpRYE + O(gp) + O(F7)

3 1234

(3.81)

where L,,, = gggbLba12 and M,,,,, = gg4bea123. Note that the cubic terms in (3.81)
agree with (3.54), and recall from the subsequent analysis that the corresponding cubic term
S% does not need to match S3 + S, because of the additional term cubic in ¢ in (3.60) aris-
ing from the O(¥) difference between ¢y and ¢. Likewise, the term in (3.81) proportional
t0 Ma,,,, gives rise to a term proportional to Jy,[|k4|®] in the action, but we do not need

to track it explicitly because the quartic term in (3.60) shows that it is precisely the sort of
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term that we can absorb into the field redefinition coefficient W, .. Thus we may write

st=o [ P QR n(o), a(0) = e T k| R, + (eld rede)
(3.82)
where (field redef) indicates field redefinition terms as discussed above.
Next we express S} in terms of renormalized quantities in order to compare to (3.64).
Starting from (3.47), we obtain
() R = s + 1 (Voo = Vo Toy = Vi Tos + Vo To)

a1234 2
a (3.83)

+O(RR) + O(7?).

Thus we find

Szlf = Sy + a1234[|k24| ] [t0v012R(134 - tOle:;R(124]

(3-84)
+ (field redef) + O(RR) + O(7) .

O(RR) terms arise in (3.84) not just from those in (3.83), but also from expressing J*** [| ko4 ]
in terms of the renormalized field ¢.! We have color-coded terms in (3.84) to match the way
we did in (3.64). Comparing the two equations, we can see that S} accommodates the coun-

terterms Sg.yyp iff K3 = — K. Based on (3.65), this happens ift i = 42, which means iff s

I.5% does not contribute terms quartic in ¢ that we need to track because it starts at O(5°), so quartic
terms coming from expressing J;'** | k3| °] in terms of the renormalized ¢ enter at O(7).
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is a positive even integer. This corresponds to the case of local non-linear sigma models.
Let us pursue further here what happens for the non-local case. Because i, = 0, we

have K; /Ky = —6/7, there is no hope of rendering the theory renormalizable with

just the arc length action we have been using so far. Some generalization of the arc length

action is needed. Whatever modification we make should involve two target space deriva-

tives relative to the original action, so as to absorb counterterms that appear with two extra

derivatives—like the V,,, Ry, structure in S§'yy i as compared to Ry,,,, in Sy. Luckily,

there is a new term with the right properties which we can add to S B,

"rd™y
27/ |z — y’n—i-sQ (¢8(), P8(y)) (3.85)

where we define

Q™ (X5, Ys) = (V% + V2)Q%(Xs, V) . (3.86)
By explicit calculation (as sketched below (3.94)),

5SB:K/B A

6V: RP TVE RP
R +7V

ai2” "as4 ais a24)

/m"l‘d" 63 (@) = 5 W] 65 (1) — G w)] - G¥7)

y|n+s

+ (field redef) + O(¢3) + O(RR),
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Passing to momentum space, we find

(SSB = Kp AA
60y

(_6v212 R234 + 7v2,13 R224 )ja];1234 [|k24 | S}

+ (field redef) + O(¢3) + O(RR) .

Note that —6/7 ratio! Combining (3.84) and (3.88) and comparing with (3.64), we see that
Kp = — % %0 Strikingly, we are forced also to choose ty = 0: That is, the metric is not
renormalized!
Having allowed the two-derivative term (3.85) in S®, we should allow addition of a simi-
lar term to the renormalized action:
pe [ dxdty

05 = %g m@ (¢(2), o(y)) - (3.89)

We restrict # to be an O(+y) quantity, which makes sense because then the overall scaling
with v of (3.89) is O(7°), and this aligns with the invariance of Q" (X, Y") under overall
rescaling of the target manifold. The additional term (3.89) changes all the one-loop ampli-
tudes, but only by O(7) quantities, relative to the O(1") scaling of one-loop amplitudes
and counterterms that we obtained in previous sections. In short, the only effect of allow-

ing non-zero k in our counterterm analysis is to lead to a direct tree-level contribution to
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Kp, SO that in total,

A\ ‘
" 2

To rephrase this result in terms of the renormalization group, we can rewrite (3.90) as
7 o
A€ (/{B + =) =urK, (3.91)
€
and then since the right hand side is independent of A, we arrive at

d/{B R i() (
—_— = — _ —_ . 3‘9?‘)
A A €Kg — 5

The first term on the right hand side of (3.92) is the tree-level term coming from the engi-
neering dimension factor of (A/ )€ in (3.90). The one-loop effects are responsible for the

second term in (3.92). If we now take € — 0 1in (3.92), we see that kg runs logarithmically:

A

i (3.93)

.o
Fp =75 log

where Ag is a dynamically generated scale. Note that 4 and i are positive, so k3 is positive

at scales A below A and negative above A.

130



To see that (3.87) is correct, let’s work on the renormalized side and note that

62 1 82Xa1356
b VVR __ a24 b
T T R ) OF
1
= _%(ValgRam + 4VQ1bRba234 + VQRGHM)X&IBYGM T
1
_ —%(6%”3 Ra24 _ 6va12Ra34 + Va24Ra13)Xa13Ya24 4+ ....

(3.94)

The expression (3.94) is part of V4 Q(X,Y), and it is easy to see that it is the only part

contributing terms of the form (VVR) X XYY Therefore

Q”(X> Y) = _6va12Ra34 + 7va13Ra24)(Xa13Ya24 + Xa24Ya13>

_%<
+0(¢°) + O(RR) + ... .

(3.95)

The ellipses in (3.94) and (3.95) indicate terms that are not quadratic in both X and Y, for

example terms schematically of the form (VVR)XYYY or (VVR)YYYY as well as

lower order terms which are either independent of X or Y, or linear in X or Y. Plugging
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(3.95) into (3.89), we find

€

1

0S = _K6O'y

(_6va12Ra34 + 7va13Ra24)

< [ (6 @) ) + 6 )67 )

+ (field redef) + O(¢°) + O(RR)

) (3.96)
- K/GO"}/ (_6va1zRa34 + 7v‘113Ra24)
"odrad™y a1s(,\ _ a1 424 () _ H24
Yl ) - 6 ) 6 0) - 6 0)

+ (field redef) + O(¢°) + O(RR) .

The contributions labeled (field redef) in (3.96) are linear in ¢ () or ¢(y). To see that
(3.96) is correct, we have only to understand why we can freely add or drop from the in-
tegrand smooth functions which depend only on z or only on y, such as the direct terms
¢™M234 (x) 4+ ¢™234(y) which are present in the last expression in (3.96) but not the mid-
dle expression. As in section 0.4.3, this follows from careful use of the regulated integral

prescription:

/ dnxdn nl’dn |.5/2J
|z — y[r+s y|”+8 / |x y|nts [ ) - Z b, f(a)(y — )™
r=0

- —Fv(n—i- y /d"xDsf(x) =0

(3.97)
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for smooth functions f () with suitable falloff conditions at large 2. The integral [ ' % (x)

vanishes more trivially by subtraction of the r = 0 term in the sum appearing in square

brackets in (3.97).

3.3 LARGEN

Let’s start with a recapitulation of the main points of our analysis. The starting point action
is

s:ﬁf@wmww, (3.98)

where Q(X,Y) = d(X,Y)?is the square of the shortest distance between points X and

Y on the target manifold, and we understand that

/ (2, y) /|x y|n+s (z,y) (3.99)

is defined with a suitable regulation prescription, as in section 0.4.3. Recall thate = n — s.
Focusing on the limite — 0", withmn and s converging to some positive 19 which is not an
even integer, we find that we are obliged to generalize the action (3.98) to

€
1

_ﬁang@“%WWW+“quxmwn, (3.100)
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where Q"(X,Y) = (Vi + V})Q(X,Y),and k ~ O(y). With this improved ac-
tion, one-loop amplitudes at O () have a divergence structure which, as far as we have
taken the computations, can be absorbed entirely through field redefinitions and addi-
tive renormalization of , as given in the form of a renormalization group equation for the
bare version of x in (3.92). No metric renormalization arises in the non-local model (at one
loop). This is in contrast with the local non-linear sigma model, where no improvement
terms are needed, and we cancel one-loop divergences instead through field redefinitions
and renormalization of the metric. We know that the O(V) symmetric local non-linear
sigma model has the same large N limit like the O(N) (¢?)? theory at the IR fixed point.
One could hope that the large target space dimension /N limit of the non-local non-linear
sigma model recover its renormalizability, but we will later see that this is not the case, at
least in the spherical target spaces. We will comment on the reason for this robust non-
renormalizability of the unimproved Q)* action.

The general covariance of our arc length action makes it possible to study the theory
with any given metric conveniently. We can just plug in the tensor values at the very end
in loops and counterterms. (Otherwise, if no covariance, the loops or counterterms may
not be universal, and one has to work from the beginning for each different metric.) In odd
critical dimensions, our theory has the property that the metric is not renormalized, with

the covariance as constraints. We can quickly check this using a sphere metric. Plugging in
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Rabed = k(acGvd — Jaagne) for a sphere, the counterterms (in NV target space dimensions)

are
26 16 4 2
k- —NEO)XXYY, 4 (——k 4+ = NEH X, XYY .
(5~ V) TSI b (101)
In the original arc length action, we have simply
1 avb 1 a b
gkX XY, Y, — gk X, XYY (3.102)

To make it renormalizable, we want the coefficients in the counter-terms to have the same
ratio as in the action, because we only have one RG parameter k. Solving it we find that
onlyin N = 1 (one dimension) is the theory renormalizable, which is the free theory.

Tracking all the quartic terms in the V2d? counter-terms gives

8 8 26 16

—4—5k2XaX“Xbe + 4—5Nk2XaX“X”Yb + EkQX“X”YaYb — 4—5Nk:2X“X”YaYb

—ik?XaX“Ybe + ENk:QXaX“Ybe - §k2xayanyb + ENkQX“YaY})Y”
15 45 45 45

2 2
Z Y, Y, Y? — —NE2Y, YV, Y?
T T b
(3.103)

Solving the over-constrained equations (XXYY terms having the correct ratio and all other
terms vanishing) also gives NV = 1.

We could also ask what happens exactly in the large N limit. The numerator of the regu-
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lated d? Lagrangian in Riemann normal coordinates up to sixth order is

1 1 1 4
—2XY, + =9 XXy, — =9 X, XY, Y + Eg2XaXaXbXCY,,Yc — 4—5g2X“XbXCYaYbYC

1 4 1 1

—— XXX XYY+ — X XX YYC + — P XX, Y.YC — — P X XY Y'YV
45 45 45 45( )
3.104

where g is the scalar metric. We want to see whether the large N limit renders this ¢ plus
¢ theory renormalizable. We will now first reproduce the 1-loop computation as a counter-

part of the covariant case. The propagator of the theory is

i) = 00
G (k:)_0|k|s (3.105)

In odd dimension there is no one loop correction to the propagator due to the fact that
there is usually no sub-leading divergency and thus many diagrams do not contribute to the
log divergency. One loop correction to the four point vertex comes from the fish diagram
and the jellyfish digram with four legs. The fish digram consists of two four point vertices
and is of order g2, while the jellyfish diagram consists of one six point vertices and is also of
order ¢g*. The fish diagram can be represented by the following contraction:
%g(gacgbd G 9ed) X XY Y U2 (Gt — Gased) X2 XYY

3 (3.106)

4 4
§g2(1 — N)X°X X, Y, + §g2(1 — N)Y Y'Y, X,
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The jellyfish diagram can be represented by the following contraction:

1 4 1 4
£g2XaXaXchn)/c o £g2XaXchY(1}/Z)Y;_ 4_592XaXaXbXb}/cyc_’_ EngaXaXb)/bKYc

1 1
+— X XYV V.Y — —? X XV, Y'Y Ve —
45 45
2
4—5g2[(2N — XX X, Y, + (2N = 2)YYPY, X} + (—2N — 3) XX, Y'Y, + (N + 4) XX Y, V)]
(3.107)

The total contribution to the vertex is then (note that the integral part is universal for all

these terms and we omit it for now)

2
4—592[(—8N +8)X X X, Y, + (=8N + 8)Y*Y Y, X} + (—2N — 3) XX, Y'Y, + (N + 4) XX Y, V)]

(3.108)
Compare it to the original four point vertex:
1 avyvb 1 a b
I XXV, = 2o X XY (3.109)

One has to add counterterms that cannot be realized by rescaling the coupling g or shifting

the field, thus the theory is not renormalizable in odd dimensions. The extra counterterms
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needed are

E
E92[(81\1 —8) XX X, Y, + (8N — 8)YY Y, X}, + (2N — 12) XX, Y"Y; + (—16N + 26) X* XY, V)]
(3.110)

where F is a constant. Under this, the “renormalization” of the theory is

X% 5 X+ A% X + BY X X 4 C% g XP XX (3.111)
g— g+ Dg (3.112)
where
Aab = O
(3.113)
Bl =0

and then we have a set of equations for C', D and E:

1 E 21,
—gD + —¢*(—16N +26) + —¢*(N +4) =0
39 +459( + )+459( +4)
1 E 21,

——gD + —¢*(2N —12) + —=2¢*(=2N —3) =0 (3.114)
39 +459( )+459( )

E 21,
—2C + —¢*(8N — “Z¢*(—8N —
C+w%g(8 8y+45g( 8N +8)=0
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Solving the equations we have

AN — 4
C%ea = — 71 156"
2N + 2
p—-22*2, (3.115)
7
E :__]2
7

As expected, we need E the extra counterterm to make the constraints solvable. A remark-
able feature is that £ is independent of the target space dimension /N. This is consistent
with the covariant picture. So naively speaking, large IV is not rendering the theory renor-
malizable. This non-renormalizability is closely related to the fact that non-local actions
allow more possible tensor structures. For example, X, X, »Y Y and X, XY, Y? would
be indistinguishable for its local counterpart X, X; X*X b Note that the conclusion is only
for the order studied in this work now. It is thrilling to look for higher improvement terms
and to discover what they lead us to. Here RG flow leads the target space geometric flow,
but not in the usual way of Ricci flow. We would like to know what the geodesic arc length

flows to and why.
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Non-local field theory II: non-local

quantum electrodynamics

We have seen the non-renormalization of the non-local kinetic terms. While the anomalous
dimension of these fields is zero, classically marginal coupling constants of these theories

are not necessarily protected and may or may not run under renormalization group (RG)
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flow. In some cases, a combination of the non-renormalization property described above
together with additional constraints of the action may protect the dimension of a classically
marginal coupling so that it becomes exactly marginal. In other instances, renormalization
group flow may generate local kinetic terms, which, if relevant, may dominate the infrared
physics. In this chapter, we present an example where both can happen, depending on the
non-local spectral exponent and the dimensions.

The Euclidean action of a non-local version of quantum electrodynamics (QED), where

the kinetic term for the photons is non-local, and the fermions are local, is given by

Ny
1 1 o i
S = / ddx ZFMVDS‘QF“” + %(%A“)DS‘?(@A") + ;:1 V(i — ed) ¥

(4.1)

where the non-local derivative D* is defined through
[dtaprowet = kpam) [ dsotet = ). (+2)
Our conventions for the Gamma matrices are

{7}17 ’YV} - _25/u/ (43)

which coincide with those of 7. We have derived in the introduction the real space expres-
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sion for the kinetic term (and gauge fixing term) of the photon in (4.1):

dlap (dis y 15/2]
Do) = ny ™ L) [ S 0] )
r(-3) lyl gt

with

(4-5)

T

_ L (
© o2 (r + g
with I the Euler Gamma function, and s a real number greater than —d which is not a non-
negative even integer. Here we adapt a slightly different convention for the Fourier trans-
form from some previous chapters to simplify the notation, and hence the factor of (27)°.
Note that when s is not too negative, the summation in (4.4) is set to zero; that is to say,
there is no subtraction on the right-hand side. We choose N in (4.1) such that there is no
parity anomaly.

As mentioned earlier, actions of the type (4.1) appear throughout the literature. When s
is an odd integer these actions are identical to the effective action obtained by considering
free photons coupled to fermions on lower-dimensional branes””"*' (see also**). The case of
d = 3and s = 1 has recently received special attention ****>* partly due to its relation to
the physics of graphene“*"** and its possible connection to the infrared fixed point of three-
dimensional QED»>">*>*** ' In"* the authors attempt to relate non-local Abelian gauge

theories to strange metals. A study of the unitary and causal properties of (4.1) has been car-
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ried out in>”*. More recently, the authors of "’ studied entanglement entropy properties
of non-local theories of the type described in this work. In the context of AdS/CFT %>,
the works of “>*>**>** provided holographic descriptions of large N'QED3 and related
vector models, where the infinite N boundary theory has an effective non-local propagator.
The classical scaling dimensions of the photon, fermion and electric charge in (4.1) are

given by

implying that the electric charge is classically marginal for d = s+ 2, and that a canonical ki-
netic term for the photon is classically relevant whenever s > 2. We study the beta function
for the electric charge associated with (4.1). Some of our findings are as follows:

* We find thatthed = s + 2 theory is exactly marginal as long as d is not an even
integer. As mentioned in“”"* and explained in appendix B the d = s + 2 theory with
d > 3 odd is the effective boundary theory for

1 ad
S = /ddeZFMV (Vg)d—4 FHv 4 ;/ddmbi (Za _ €A> @DZ (4.7)

with Neumann boundary conditions for the gauge field. Marginality of the d = 3
theory was discussed in "> and a check of marginality of the d = 5 theory at one

loop was carried outin** (see also™).

* Working in an € expansion around d = 4 we find that, as opposed to classical expec-

tations, a canonical kinetic term for the photon becomes relevant for s > d — 2.
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In other words, when 2 < d < 4 and the electric charge is relevant, non-local

QED flows to the same infrared fixed point as local QED. When the electric charge is
irrelevant non-local QED flows to a Gaussian theory. See figure 4.1. This infrared be-
havior is reminiscent of that of the long-range Ising model, though there, apart from
the Gaussian theory, there are two possible infrared fixed points. See**"*7>7»%%" for

details.

* For even values of d, the electric charge is no longer exactly marginal. We argue that
ford = 4 and s bigger than 2, the theory is asymptotically free but will generate

canonical kinetic terms in the infrared, serving as a UV completion of local four-

dimensional QED.

* Treating the non-local kinetic term as the deformation of a local theory, we find that

local three-dimensional QED possesses an exactly marginal non-local deformation
F,,D tFr.

We argue that the scale invariant d = s + 2 theory is also conformally invariant. In doing
so, we provide a method for coupling the metric to a non-local derivative. Unitarity of these

non-local theories are discussed in section 4.4.

4.1 NON-RENORMALIZATION OF THE NON-LOCAL PHOTON

Action (4.1) falls in the category of non-local quadratic (photon kinetic term) theories
perturbed by local interactions (gauge coupling term), so a non-renormalization theorem
should apply. We will carefully examine the non-renormalization of the photon wave func-
tion to all orders in perturbation theory in this section as a warm-up for the RG analysis of

the full theory.
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Canonical kinetic term relevant
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Figure 4.1: Classical (left) and quantum corrected (right) scaling properties of the canonical kinetic term and electric

charge for various values of s and d as computed in the main text using an epsilon expansion and extrapolated to large

€. The white circle signifies that the d = 3, s = 1 theory is exactly marginal, as are all theories withd = s — 2 when

dis not an even integer.

Let us denote the bare action associated with (4.1) by

Sp = / dlx iZgFWDS‘QF“’HL f—g(f)‘uz‘l“) D72 (9,A")

+iZy ) P - Zyeopz D AP | (48)

where bare fields are given by

§p = Ze& (4.9)



and

1 1
7y = 227,73

Zy = Zy, Zy = Zy, Zy = ZAZgl . (4.10)
Gauge invariance dictates that
Zy=Uy. (4.11)
The beta function for the normalized square of the electric charge,
2

a e

()~ {myn (40)

is given by
Oa
@IZ/L<5—) —€ea+ 204, (4.13)

K/ B

where the subscript B implies that we keep bare quantities fixed while taking the derivative,

and we have defined

e=s+2-d, (4.14)
and
1 0
=_—u—1In2z )
74 =5 Gun A (4.15)

and used (4.11). Now we will argue for the non-renormalization of the photon wave func-
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tion based on the work of 7. Alternate derivations of finiteness of the photon propagator for
d = 3 and s = 1 can be found in*>%*.

Wz#(éw—(l—f)%) —=—#5” >/v:eou2(2+ Doyp§is

Figure 4.2: Feynman rules for the action (4.1).

First, it is straightforward to compute loop corrections to the photon propagator at one-
loop, given the Feynman rules as shown in figure 4.2. The one-loop result is from a fermion

loop and is insensitive to the non-local nature of the photon:

v ) dip vy (p — k)
My (k) = —eor Ny Tr/ (2m)® p*(p — k)?
20 r(2-9r (9’ (4.16)
— _Euef(coNf 2 2 kd_4 (k25;w —]C'LL/{ZV)

[ (d)

where f(d) is the dimension of the v matrices (f(4) = 4). Thus, if d is odd the one-loop
correction to the photon propagator is finite and we find Z4 = 1 + O(a?). One can also
compute the two-loop diagrams to explicitly show their finiteness for odd d but we skip
them as we will soon prove the non-renomalization to all loop orders. For details of the
two-loop results, one may consult the original paper® and the textbook””.

We claim that non-local QED diagrams for the photon propagator are finite by arguing
that diagrams with a negative degree of divergence and whose subdivergences have been reg-

ulated are finite. A similar statement regarding the renormalizability of local QED can be

147



found in". Indeed, our argument is a special case of a more general theorem due to Wein-
berg*® which states that if a Feynman diagram has negative superficial degree of divergence
and its subdivergences have been subtracted, then it is finite. While Weinberg’s theorem
was proven for local theories, a careful analysis of the proof shows that it only relies on the
propagator being proportional to a negative power of the momentum. Therefore, it imme-
diately generalizes to non-local theories of the type studied in this work.

Given Weinberg’s theorem, and that taking derivatives and adding counterterms com-
mute in a minimal subtraction prescription (see, e.g.,”"), we can argue for finiteness of the
photon correlator at any loop order. The superficial degree of divergence of a diagram with

ep external photon lines, no external fermions, and ¢ loops is

D=2+4+s—e,+(d—2-9), (4.17)

So, the superficial degree of divergence for the photon two-point function fore = 0is

D = s. We can now take D + 1 derivative of any given diagram H’(l on together with its
associated counterterms with respect to the external momenta £* to obtain an expression
whose superficial degree of divergence is negative. Thus, any divergences of H’&) , must be
associated with integration constants which vanish when taking sufficiently many 0/0k*
derivatives of it. Since H&) , 1s a scalar, all these divergences must be analytic in k2. So it has

to have an even power of k. If s (and therefore d) is odd we conclude that HI(Le) , together

148



with its associated counterterms is finite. Gauge invariance, kuﬂ? g; = 0, then implies that
Hé‘ é; will be finite as well whenever d is odd. This proves the non-renormalization property
of non-local QED for € = 0 and d odd advocated at the beginning of this section.

We note that an argument similar to the one presented above has been used to show that
there is no wavefunction renormalization in the continuum limit of the long-range Ising
model”. Indeed, for generic values of s and d, the superficial degree of divergence of the
photon two-point function, D, will not be an even integer, which implies that there is
no wavefunction renormalization of the photon in such cases as well. More precisely, at

¢ loops, we have

D=(d-2{—s({—1). (4.18)

In order for the diagram to be divergent, it must be the case that D = 2n withn > 0Oan
integer. Thus, whenever
14 2n

s=——(d—2)—

/—1 E——l ) (4.19)

with £ > 1 the photon two-point function will have a logarithmically divergent contri-
bution. For all other values of s there won’t be any wave function renormalization of the

photon.
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42 RGFLOW

We have seen thatford = s + 2 and d odd, the electric charge is exactly marginal. When
d — (s 4+ 2) < 0, the electric charge is relevant, and the theory may flow to a non-trivial
fixed point in the infrared. For example, three-dimensional QED (d = 3and s = 2)
seems to behave in such a way, at least when Ny islarge”. If d = 3and1 < s < 2(so
that a local kinetic term is classically irrelevant), one might expect the infrared fixed point
to be a non-local version of the fixed point of three-dimensional local QED, much like the
relation between the fixed point of the long-range Ising model and the short-range Ising
model studied in*>"*". When s > 2, alocal kinetic term becomes a relevant operator,
and the expectation is that the theory will flow to a local one in the infrared. However, in
what follows, we will find that the interplay between the generation of local kinetic terms
and the non-renormalization of the non-local kinetic term is subtle, and the naive classical
expectation breaks down, leading to interesting physical effects.

In four dimensions, renormalization of the one-loop correction to the photon propaga-
tor (given in (4.16)) requires us to introduce a local kinetic term for the photon. In order
to understand whether such a term is relevant in an RG sense, we follow the standard prac-

tice of adding it to the action and studying the resulting beta function associated with it.



Working in d = 4 — € dimensions, our action takes the form

1 Z
S = /ddx <1be,u2_sF,st_2F“” + ZgFWF‘“’ + (gauge fixing terms)

+ 12y Z WPy + ZIGOPJ%/ Z QWAW) . (420)

With some prescience (and similar to what was done in**"*) we have rescaled the gauge field
(and electric charge) so that the local kinetic term is canonically normalized at tree level.
Rescaling the gauge field (and electric charge) back so that the tree level non-local kinetic
term is canonically normalized is a simple algebraic exercise which we will carry out towards

the end of this subsection. The bare coupling associated with (4.20) are given by
by =b0Z,Z5 1>, ep=eiu Zg" (4.21)

Slightly generalizing the arguments that lead to the non-renormalization theorem of the

previous section suggests that for generic values of s,” Z;, = 1 leading to

5a(a7 b) = (_6/ + 2%4(0" b))
(4.22)
Be(a, b) =b((s — 2) + 27a(a, b))

*Non-generic values of s are determined by (4.19) and either satisfy s = d — 2 with d evenor s < d —2in
which case the electric charge is irrelevant and the theory flows to the Gaussian one in the infrared.
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where (3, and 4 were defined in (4.13) and (4.15) respectively, and 8, = p© (0b/0p) .
Unless s — 2 = —¢’ (a special case we will discuss shortly), a non-trivial fixed point will exist

only if b = 0 and 2y4(a., 0) = €. This fixed point is IR-stable whenever

OBy OafBy
B(a,b) = = 0. (4.23)

abﬁoz aaﬂa oljzg*

Equation (4.23) reduces to
0
s>d—2, ay—ya(a,0) > 0. (4.24)
Oav,

The first inequality implies that we must be in the region where the electric charge is rele-
vant. The second equality needs to be checked explicitly. In perturbation theory we find,

using (4.16) and setting d = 4 and s = 2 that

N
(e, 0) = 22 1 0(?), (425)

for small €.
Note that the first inequality in (4.24) implies that the b = 0 fixed point is stable as long
as s > d — 2, as opposed to the classical s > 2. Put differently, we find that the local kinetic

term is relevant whenever s > d — 2 instead of s > 2 as implied by a naive power counting
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argument, at least as far as the epsilon expansion can be relied on. See figure 4.1.

Going back to (4.22),if d = 3and s = 1 (s—2 = —¢’), there is a one-dimensional family
of solutions to 3, = 3 = 0. This exactly marginal direction contains the b = 0, o = av,
theory which is the non-trivial infrared fixed point of QE/D?).T In other words, FagD_lFaﬁ
is an exactly marginal deformation of QEDj3. This is perhaps not surprising. Recall that the
d = 3,s = 1 theory is equivalent to the theory which captures the boundary dynamics
of a four-dimensional bulk photon coupled to N boundary fermions. Thus, the non-local
deformation of the QEDj fixed point is equivalent to coupling QEDj3 to an additional
bulk photon in 4 dimensions. Such a coupling is exactly marginal.

Finally, let us rescale the gauge field in (4.20) by 1/ \/b,uT_S . In these variables the action
(4.20) may be thought of as a deformation of a non-local theory with charge &, = eo/v/b

by alocal operator byt ~2F? with b = 1/b. Now

bp =bu*Zy, & =éu T, (4.26)

so i

so that

ﬁ&: —d(S—Q—l—EI)
(4.27)

By =—b((s =2) +27a) -

Based on an € expansion analysis, we are assuming that 4 (v, 0) is not a local minimum or maximum
of 74. If it is then there are no other solutions to (4.22) around b = 0.
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Thus,ifd = 4and s > 2, a theory with small bis asymptotically free and can serve as a
UV completion of QED, sidestepping the infamous Landau pole of the local theory; in the
infrared, a (relevant) local kinetic term will be generated and dominate the dynamics.

The analysis we have carried out so far may be generalized to an epsilon expansion around

d = 2n — € dimensions. For n > 2, the action

1 4
S = /ddiL’ (ZbMQ"(SJFQ)ZbFWDSQFW + ZSFH,,D%ALFW + (gauge fixing terms)

+ 123 Z PP + Zyeon® Z WAW) (4.28)
J J
generalizes (4.20), the bare coupling,
by = bZyZy 't (429)

generalizes (4.21), and the beta functions (4.22) now read

6&(047 b) = (_6, + 2’714(04’ b))
(430)

Bp(a, b)) =b((s+2—2n) + 2y4(a, b)) .

As was the case for n = 2, unless —¢’ = s+ 2 — 2n, the only non-trivial fixed pointis b = 0
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and (o, 0) = € whose stability is given by (4.24) except that now

2Nyaf(d)(n—1)
4ny/7D (n+ 1)

(e, 0) = (=1) +0(a”). (4.31)

For n even, the fixed point is perturbatively stable but for n 0dd the fixed point is perturba-
tively unstable, at least for real values of v. A similar observation was made for then = 3

casein’.

4.3 CONFORMAL INVARIANCE AND NON-LOCAL CURRENTS

Theories with d = s + 2 and s odd are scale invariant for all values of the electric charge.
It is then natural to inquire whether they are also conformally invariant. For local, unitary
theories with d = 2, it is known that scale invariance implies conformal invariance ",
but in higher dimensions it is already possible to find simple counterexamples. One such
example is free d = 3 Maxwell theory’>”, in which the two-point function of the field
strength F),,, exhibits scale invariance but does not possess the correct tensor structure for
full conformal invariance. We can also compute two-point functions in the non-local free
Maxwell theory to find necessary conditions of conformal invariance. Using our rules for

the Fourier transform, the correlator in position space in our gauge is

(Au() A, (0)) = F((_) oo G



The correlation function (4.32) is not gauge invariant. The gauge invariant operator we will
constrain is F},, = 9, A, — 0, A, which we assume to be a primary. The simplest 2-point

function we can write down is:
<FNV(x)FpU(O)> = <8uAu(x)8pAa(O)> - <0MA,,(:U)8UA,)(0)> —(p e v). (4.33)

To evaluate this, we use the standard technique of inserting the second operator at a point
y”, then differentiating and settingy = 0 at the end. Doing this and summing over the
terms gives:

Lulp

(Fun)En(0) = Ca 2 (1) = 5 =52

12

— (e v). (434)

where

(4.35)

By construction, this 2-point function comes from a scale invariant theory and is scale co-
variant. However, as we discussed in the introduction of this section, conformal covariance
is a nontrivial requirement. Since F},, is primary, conformal covariance dictates that the

tensorial dependence of the field strength correlation function should appear only through

156

) (fote) = 5052

)



I,,,(x) defined in (4.35)"” We see from (4.34) that correlation functions of F" are confor-
mally covariant only for d = s + 2, or in other words, the scaling dimension of F is exactly
2. One can also see that in the local limit of d = 3, s = 2, we match the conclusion of
that the theory is scale but not conformally invariant. What is free next is that at odd s, the
non-renormalization theorem keeps the scaling dimension fixed, and that is evidence of
conformal invariance even in the interacting theory.

Since studies of scale invariance versus conformal invariance often rely on the properties
of the trace of a local stress tensor (see, e.g.,"””>*>*"»*** and references therein), one may
worry that a non-local field theory will not possess such an operator rendering such an anal-
ysis mute. While a non-local field theory is not expected to support a local stress tensor, it is
possible that it allows for a non-local one. In fact, given a Lagrangian description of the the-
ory, one expects to be able to obtain a stress tensor via a Noether procedure or by coupling
the fields to an external metric. Indeed, if it is possible to couple the theory to a background
metric such that the resulting action transforms as a scalar under general coordinate trans-
formations, then we are guaranteed that the resulting energy momentum tensor, local or
not, will be conserved. Such an energy momentum tensor will generate translations in the
usual sense. Furthermore, standard arguments show that this stress tensor will be traceless
(up to improvement terms) if and only if the theory is conformally invariant.

To warm up and introduce the notion of non-local current in this chapter, we first dis-
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cuss simple U (1) currents in non-local scalar theories. Then we will use the Caffarelli-
Silvestre extension theorem™ to couple the non-local Laplacian D*® to an external metric

in a general coordinate covariant way. With such an expression in hand, we can couple the
action 4.1 to a metric and, from it, compute a (non-local) energy momentum tensor, 7.
We also show that 7", = 0 up to improvement terms. An alternate method for computing

the stress tensor in non-local theories can be found in™*

431 EXAMPLES OF NON-LOCAL CURRENTS

We present two examples in this subsection. We first derive the U (1) current of the one-
dimensional free complex scalar to give the readers a hint of what is a non-local conserved
current mathematically. Then we proceed to look at the U (1) current of the non-local dual
photon in three dimensions, which is a non-local compact scalar, to explain its physical
relevance.

Writing D as (02, where [J is the usual local laplacian, the action is
5= [ awépie+s0is (436)

The idea is to express the fractional laplacian as a series of powers of usual laplacians:

o) n—1
E . s 1 5 _nn S i
0z =lim(M +b)2 = EO LA 11(5 i) (437)



Starting with 02 ¢ for example, we deform the field by a space-time dependent phase

—ta(x) 12 oz —ia(x) 1 - 1 S—n S . n( ta(x
e DGO (e Wg) = Wy b [[ (5 — )" g)
[ee] 1 n—1 " 2n 2 = (438)
—ta(x) 1 S—n S . n n—m ( _ia(z m
=gy i 1G-S () @ rienhon
n=0 i=0 m=0

m # 2nandn # 0 terms are the variation of the Lagrangian. Keeping only linear terms in

a, the derivative of the phase becomes i (9% ™a/(z))e’®). Thus, the variation becomes

o0 n—1 2n—1
g3 i TIG -0 3 (2 e maga)eeome)

=1 =0 =0
" ’ " (4-39)

i3 2o TIG -0 X () @ora )

n=1 1=0 m=0

‘oolé_nfls -2n71 m o Lo
DIETERD ) (D Dl () [V e

n=1 n' i=0 2 m=0 m
00 n—1 2n—1 2n—m—1
_ 1 s, s 2n o 2n—m—1 T nom—l—
iy TG -0 X (M) en S ()T @t
n=1 i=0 m=0 =0

(4.40)
We then need two steps to make progress. First, we notice that the absolute value of the

coefficient of 9'¢0**~=1¢ should only depend on n. This inspires us to find such an iden-
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tity:

T e

m=0
A proof of it makes use of the Gauss’s hypergeometric theorem.¥ One can check instead this

equivalent identity:

a 1 1 !
_1 —m—1 — _1 N4+1 . .
m;( ) ml(N—m)IN+1+1—m (=1) CETES
with N = 2n — [ — 1. From the definition we have
XN:(—DT” ok Nzl —y F{(=N, =N =1+ 1;—N —1—2;1)
o m(N—m)!N+Il+1—m > 7 ’ ’
(4.44)
Then Gauss’s hypergeometric theorem says
I'(c)'(c—a—0b
2F1(a, b;61) = (L ) (4.45)

I(c—a)l'(c—10)

Then we notice that there are negative integer poles in the gamma function. We can switch

*While in deriving higher dimensional currents, similar observation lets us conjecture another identity:

on (%] n n—1 (5] 1IN /11—t
- m—2l/_1\m—1 § - -4 r—2t _ _1\r+n
m=2 =1 t=r—I+1

where [z] is the integer part of . But it is beyond our current scope to prove this equation. Direct numerical
tests for n not too large find no counterexample.
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N N 1 1
> 1 =Yy
— (N — m)'N+l+1— — mi(N —m)Im+1+1
()
P (=N 104 2: 1)
AN L 2 ) 5
(4.46)

Then the theorem tells us that

LI+2)(N+1) ([ +1UN)!
DN +1+2) (N+1+1)!

o P (=N, I+ 1514 2;1) = (4-47)

And then

(D) DL

= —_— .48
(N+1+1)! 1+1 NI (N+1+1) (4-48)

The identity is proven.

The next step is to introduce linear differential operators that only acts on ¢ or its conju-
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gate, similar to those used in higher spin currents. The current is in good shape now:

n=1 i=0 m=0 =0
= i lb% n ﬁ(f _ Z) 2”21 6l¢62n_1_l¢< 1)l
n! L1%9
n=1 i=0 1=0
=3 Ly G -0 S vy
n=1 n! i=0 2 1=0
i ((b + X2 (b+ Y2)5> )
- — (60
(4-49)
where X only acts on ¢ and Y only acts on ¢. That is to say
X"Y"(pg) = 0" pd" ¢ (4.50)
Then the b — 0 limit can be taken smoothly and we have the current
i((xF -3
—2 (o) (4.51)

X+Y

The extra factor of 2 comes from the complex conjugation. Annihilation by X + Y under
the equation of motion should be understood as the conservation condition. One can also

set s to be even integers to recover local or higher derivative currents.
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The second example, a three-dimensional free compact scalar,

S = / dz*¢0z ¢ (4.52)

has the ¢ — ¢ + a symmetry. The non-local current associated with this symmetry can be

derived similarly:

AL =(¢+ )O3 (¢ 4 ) — ¢3¢

e’} 1 n—1 s (453)
=lim . b g(§ —i)(ad"¢ + ¢0")

After an integration by parts, the coefficients of the 0" o term are taken as the current:

1 S—n S n—1
lim —2 2 b 11(5 — )09,
200 = (b4 0)2) (4.54)
= T
= —2002719,¢
Now we have the current and the charge operator
o029, Qo / 02719, n"dS (4.55)
o

where Y is a orientable closed two-dimensional surface and 7 is the normal vector of the
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surface. We want to show that the monopole operator M = €%? is charged under this ()

operator. That amounts to ask what is [Q), M]:

(@, M(0)] [/E 03719,6(x) n"dS, e'19)] = / 02719,[p(x), €] ntdS  (4.56)

by

With [¢(z), ¢(0)] = Gr(x), we can obtain

n=0 (4.57)

Thus, the charge operator acts on M as

Q. M(0)] o igM / 0319, (2) ndS (4:53)
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Using the Stokes theorem and the equation of motion, the integral becomes

/ 05710,Gp(x) ntdS = / 05 19,Gp(x)dV
b 14

1, ifoeV (4.59)
oc/é(f)dV:
14

0, otherwise

where V' is the volume that is wrapped by the closed surface ¥. Note that the final result

becomes

gM, if M isinside 2
[@Q, M] (4.60)

0, otherwise

In this sense, the non-local current we obtained has the same physical meaning as its local

counterparts.

4.3.2 NON-LOCAL STRESS ENERGY TENSOR

If a theory is local and translation invariant, one can couple the theory to a metric in a co-
ordinate invariant way by adding a Christoffel connection to the derivative operator 0,,,

generating a covariant derivative D, which is general coordinate covariant, viz.,

(D# + (SSD#) (fl/1~--l/n + £§f1/1..-vn) = D;wa...vn + ££ (Duful...un) + O(£2) . (4-61)
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Here £ represents a Lie derivative associated with an infinitesimal coordinate transforma-
tionx — x + & and d¢ D), represents the infinitesimal transformation of the covariant
derivative under such a coordinate transformation.

To construct a covariant non-local derivative, D?, we take a somewhat different route
and turn our attention to the Caffarelli-Silvestre extension theorem.*”” The CS theorem
allows one to relate the fractional derivative to a local operator in a higher dimension; Let

u(z", y) be a solution to
2, 1—s 2
Vi + Tay +9, Ju=0, (4.622)

where V2 is the Laplacian on R? (spanned by the Cartesian coordinates 2#), y € [0, 00),

and 0 < s < 2, supplemented with the boundary conditions
u(z,0) = f(x) u(z,00) =0. (4.62b)
The CS extension theorem states that

lim y'~*dyu = CD* f (), (4.63)
Yy—

$The CS theorem was proven for 0 < s < 2 but the end result we obtain for the covariant derivative can
be analytically extended to other values of s.
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where

(4.64)

A detailed proof of the CS extension theorem can be found in*. Put briefly, consider the

ordinary differential equation

We can construct a solution of the Fourier transform of u, @(k, y), from w via

-~

ak,y) = f(k)a(|kly).

Then

~

Ly 0y = [k|° f (k) Lim(|kly)" "o ([K]y)

y—0

~

= ClkPf (k)
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with

C = lim 2' %0/ (2). (4.69)

z—0

Since (4.65) is a Bessel equation, it is straightforward to compute (4.69) explicitly and ob-
tain (4.64).

Using the CS extension theorem, it is possible to construct a fractional derivative D#
which transforms covariantly under a general coordinate transformation, and reduces to D?

when the background metric is flat. To start, let us replace (4.62a) with
2 L—s 2
Vi + Tay +9, |u=0, (4.70)

with the same boundary conditions as in (4.62b) but where now %326 = ¢g"'V,V, with
g"” anon-trivial metric associated with the space spanned by the 2# coordinates and V , its
associated covariant derivative.

By construction, equation (4.70) transforms covariantly under coordinate transforma-
tions in the 2* directions implying that the associated D# will transform covariantly under

general coordinate transformations. To see this explicitly, let 7" denote a coordinate trans-

formation, x — 2'(z) = T'(z), such that T'(f(z)) = f(T(2)), T (u(z,y)) = uw(T(x),y)
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and T(VZu(z,y)) = Vi u(T(),y)). Then

~ 1—s ~ 1—s
T((V§+ - ay+a§) u(x,w) _ (V%W - ay+a§) W(T(@),y) s (470

with

We denote u as the solution of

~ 1 —
(vi, = °a, +a§> u(z,y) =0

or equivalently

~ 1-s
(V%(x) + Tay + 85) w(T(x),y) =0

At the same time, u' represents the solution of

1—s

(6%@) + Oy + 85) uw'(z,y) =0

If we now define

Cﬁsf(x) = ?lgr(l) y' T O,u(z,y)
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(4.73)

(4.74)

(4.75)



then, T(D?) is defined as

CT(D*)f(x) = limy' Oy (z,), (477)

In the end, we show

as required.

While it is difficult to obtain an explicit expression for 55, it is straightforward to do so
to linear order in metric perturbations around a flat background. Let us expand the metric
9uv = Nuw + Ay The linearized expression for the covariant derivative %i acting on a rank

two antisymmetric tensor is given by

V2F,5 = V2Fos + V2[h] Fop + O(h?) (4.79)
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where

1
VilhFag = = 00,0, Fup + 50,107 Fag = 0,Fa”0sh" s — 0, Faq®h” + 0, Fu" ohs”

1 1 1
+ 0, Fs0,0"7 + 0, F3,0"hy” + EFBU(‘?”@ahW — §Fa,,8,,85h”" + §Fﬁ"&,8”hw

1 1 1
— §Fa"&,8”h50 — iFg"a”&,hw + §Fa"8”8ah51, — ayh”"&,Faﬁ — 8”Fg"&,ha,, ,

(4.80)
with h = n*"h,, and indices are raised and lowered with the Minkowski metric, e.g.,
h# = nHnPh,s. To compute the associated linear correction to D?,

D* = D* + Di[h] + O(h?), (4.81)

we must solve (4.70) perturbatively in . We will do so using Green’s functions.
Let us expand the solution to (4.70) in powers of h, replacing u with a rank two antisym-

metric tensor @og,

¢oz,3 = ¢g¢,8 + ¢(1x,8[h] + O(h2) ) (4-82')
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such that

1—
(Vi+ y58y+8§> 05 =0

1—
(Vi + Tsay + a;) Pas = —Valhldag
etc. The boundary conditions associated with (4.83) are

35($,0):fa5($), 925(11,6’(]"70):07

and so on.

(4.83a)

(4.83b)

After Fourier transforming in the x directions, the two linearly independent solutions to

the scalar version of (4.83a) are given by

Ly =y2Ks(lkly) Lo =y2I5(|kly)
where K s and / s are modified Bessel functions. Note that
Ly (0) = [H 75D (5) 287 + O(y) L-(0) = O(y")
Li(o00)=0 L_(o0) =00
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Thus,

I .
o K (|kly) fas(k) (4.88)
af B ) af ’ 4
r(3)
and
) 2170 (1 - %)
lim y' =0, 055 = |k fap(R) - (4-89)
y ! r'(3)

inline with (4.69).

To solve for ¢y, 5 we look for the Greens function satisfying

1 _
(—!k|2+ ; 85y+5§) Gly.y)=0y—y). (4.90)

Using standard techniques, G/(y, ') can be constructed from the two solutions to the ho-

mogeneous equation, L. We find

I (|kly ) K (lkly) y >y

Gly,y) =—y2(y)' 2 . (4.91)
Ks([kly)Is(|kly) v <y

Thus,

Yy
o / ()5 1 (Ko ) S (k, o)y
0

Kly) / ()5 K (k1) Sap (. )/
Y
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with

Sap(k,y') = =V2[h]gos(z,y) . (4.93)
Thus,
1. .
Dﬂh]faﬁ(kl) = 5}!11}(1) yl ay%lﬁ(kl)
e R R AT E
L'(1-3)Jo ’

d?kd%k, (k3 — k3) 1~ ~ -
— - / “amyt Ok ke ) x| s (8 + 2K5k,) Fu? = 1 (B + 2857) Jo )
lA A AN\ Fop A A or _1 v T
+ 50 (Ko (Y +2k27) fof + (K + k™) ko fap TR kuh fos (< B) |,

(4.94)

where we have omitted the explicit dependence of ]/”;5 on ky and of Eag on k for brevity,

i.e., one should make the replacements

~ -~

fas = fap(k2),  has = has(k), (4.95)

in (4.94).

Using this method, we may couple the non-local derivative in

S— / Fe D6+ V(16P). (4.96)
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to an external Abelian connection and use this to compute the associated conserved U (1)

current immediately,

s oy [ adie (Slal* +ael®) (¢ (@2)d d(a) — ¢ (¢2)d(a)
o=~ [T al — [P Okt tas).

(4.97)
which matches the one-dimensional example. It clear that this method is more powerful in
higher dimensions, as the derivation is much simpler.

We can now linearly couple the action (4.1) to an external metric using the covariant

derivative D* = D* + D3 + O(h?). Varying the Maxwell term,

1
SMaxwell - Z / ddx FaﬂDS_2FaB ’ (498)
with respect to the metric we find
o 2(2m) o
TMaxwell ( —k ) = Maxwell

VI Sy ()
B _1/ Ay d%ko0(k + Ky + k)
K (m) (k7 — 3)

(Faﬂ(kl)Faﬁ(k2)Tgy<kl> k2) + Fa“(kl)FaV(kQ)T(k’l, kz)
+ FPRy ) Fg” (ko) o (K1, ko) — FPH(ky) F5® (ko) 7" (K1, k2)>

(4.99)
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with

= B R+ RS e ) — (B 5 k)
- _2k;72 (kZ + 2% - kl) _ (kl RN k2) (4-100)

o = 2k5 2k (K — k) + (ky & ko) .

It is straightforward to compute

A,LLV ddkldde s—2 ’\Ba -
kT axwen (—K) = W’ﬁ FP (k1) Fg" (k2)k1a0(k + k1 + k2)  (4.101)

which vanishes once the equations of motion are satisfied. In obtaining (4.101) we used the

Bianchi identity in the form
. . 1~ .
FO(ky) Fg” (ko)ky, = §F5V(k1)Fﬁ”(k;2)k? (4.102)

and symmetry properties of ﬁg,,(k;l)ﬁﬂ”(k:g) and F\Ba(l{?l)ﬁgl/(lfg) under exchange of k;

and ks, under the integral.



The trace of the energy momentum tensor is given by

~ d%k,d%k
nuvaAaxweu(_k) = / Wé(k + k1 + ko)

|k1|s—2 - |k2|s—2
ki — k3

~ ~ 1 ~ ~ _
k“Fau(kﬂFay(kz)kV - ZFaﬁ(kl)FQﬁ(%)T(kl, k2)>

(4.103)

where
N (d—4) (k57%k - ki — ki7%k - ko) + 2(ky2 — k57%) (2K% — Ky - ko)
7(ky, ko) = 3 :
ki — k3
(4.104)
Scale invariance of the Maxwell action will follow if
/nHVdewaell<x>ddx =0 (4105)
under the equations of motion. Expanding 7 at small k and using k| = —k* — kb, we find

1
F(—k — ko, ko) = (s +2 — d)k5 2 + 5(s —2)(s+2—d)ki k- ky + O(K?).

(4.106)
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Thus,

S i [ d% PPN -
quTﬁaxweu(O) = _5/ (27?)261(8 +2- d)kQ 2k2 Aﬁ(_kz)Faﬁ(/@) =0 (4.107)

under the equations of motion, implying that the Maxwell action is scale invariant for any

value of s, as expected for a free theory.

‘k+k2‘572_‘k2|572

In the special case of d = s+2 the leading terms in (4.106) vanishes. Since (212

and 7 are finite at small &, we write

EN d?k,dk
n#VTf/Il;xwell(_k) = k'E” / #6“{: + kl + k2)

(2m)
[t |72 — [Ra* ™2 Sa N 7 Sap g T (1, k)
(e ) uth) = 22 B P T
(4.108)

implying that the real space expression for 7, Th;. . is a double derivative and that the
free Maxwell theory is conformally invariant.

Equation (4.106) establishes that the free Maxwell theory stress tensor is traceless upon
adding an appropriate improvement term. Thus, the Gaussian theory described by (4.1)
withe = 0 is conformally invariant; one can use the traceless stress tensor to construct
currents associated with scale invariance and special conformal transformations which will

be conserved. In the interacting theory, e # 0, but the trace of the stress tensor will likely
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receive contributions which can be repackaged in terms of a beta of function, 3(e) (see,
e.g., %), which we know vanishes. Thus, the interacting theory is also expected to be

conformally invariant.

4.4 UNITARITY AND THE NON-LOCAL OPTICAL THEOREM

It is challenging to determine whether time evolution is unitary in non-local field theories.
We’ve shown that the d = s + 2 theories with d odd are conformally invariant. Since the
field strength has dimension 1 (d — s + 2), it violates the unitarity bound § (d — s + 2) >
max(2,d — 2)"°>°* whenever d > 4. Thus, atleast ford = s 4+ 2and d > 5, we expect
that time evolution is not unitary. For other values of d and s unitarity is more difficult to
address.

In what follows, we will study the unitarity of a local photon on R*! x R coupled
to charged fermions on the R*! boundary. The effective action for obtaining S-matrix ele-
ments of boundary states can be obtained from a non-local action of the type given in (4.1)
withd = 3and s = 1. An earlier exploration of unitarity in non-local field theories using
the optical theorem can be found in

The theory defined on R*! x R, is clearly unitary, and all S-matrix elements are ex-
pected to satisfy the optical theorem. Indeed, as we will show by an explicit example below,

the optical theorem is satisfied due to the possibility of boundary to bulk scattering pro-
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cesses. A non-local theory that reproduces only boundary to boundary S-matrix elements
does not allow for such processes.

Consider the Lorentzian action

§=—7 / 0 ™ + / P (i — e ) ¢, (4.109)

where now we use the conventions of ™ for the signature of the metric and for solutions to
the Dirac equation (adopted to 2 + 1 dimensions). We use lower case roman indices m, n
to denote bulk quantities and greek indices, p, v to denote boundary ones.

An explicit expression for the photon propagator, G, (z*, %), can be obtained using
the method of images. For Neumann boundary conditions, the Greens function will be a
sum of Greens functions for photons on R*! with equal mirror charges. Near the bound-

ary, we have

d4k _2ann —ikHJJH
(2m)* kyp k™ + i€ ’

(4.110)

Gon(2t, 2° = 0) = /

where the factor of 2 is a result of the image charge necessary to generate Neumann bound-
ary conditions. Since all the vertices are on the boundary it is convenient to integrate over

the bulk momenta. We find

. _ m
Bk inpe” ke

Gn(2", 2° = 0) = / ) \/m (4.111)
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The resulting Feynman rules for computing S-matrix elements for boundary incoming and

outgoing particles can be found in figure 4.3.

_ My — ik — _jonb
AN oy Rk Tie >f\f ey

Figure 4.3: Feynman rules for the action (4.109).

The optical theorem in the presence of a boundary is almost identical to the one in its
absence. Decomposing the S-matrix into S = 1 + 47, unitarity of time evolution implies
that —i(T — TT) = TTT. The Feynman rules (4.3) imply that momentum is conserved
in directions parallel to the boundary so that we can write (p,|iT|p;) = (2m)35® (p, —
pi)iM(p; = p,) with p, and p; the outgoing and incoming momenta. Likewise, we find
that (p|iT|p) = (27)20®) (p — pi)iM(p; — p) where p; is the incoming momenta of a
particle located at the boundary and p the momentum of an outgoing bulk particle. Note
that the momentum-conserving delta function is insensitive to the bulk component of the
momenta of the outgoing particles. That is, since the interaction term has support only at

the boundary, momentum is not conserved in the direction transverse to it. Thus, we have

2Am M= ) = 3 [ dIM (30— 2) M (5 = 5) 205 (50— p) ()

where the sum on the right-hand side is over all appropriately normalized momenta and

internal degrees of freedom of intermediate particles.
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Let us focus our attention on the tree level electron-positron (Bhabha) t-channel scatter-

ing amplitude depicted in the left panel of figure 4.4. The optical theorem (4.112) implies

k k, €’
b - q 4! —_—
" N
Figure 4.4: Feynman diagrams. (Left) Tree level amplitude for t-channel electron positron scattering. (Right) decay of
charged fermions into a (bulk) photon with polarization vector €”.

[y

that

dk 2 .
2ImM ¢ (p1, p2 = @1, ¢2) = Zﬁpa/@T):n—EkM;W (q1, @2 — k) Mgw (p1, p2 — k)
p, o

x (2m)°6%) (p1 + po — k), (4113)
where E? = ]E | and we remind the reader that the momentum conserving delta function
has support on the three boundary spacetime directions while the integral is over the three

bulk spatial directions. The unusual factor of 2 in the integration measure comes about due

to the unconventional factor of 2 in the photon propagator.
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Using the Feynman rules from figure 4.3, we find

. — V= inlﬂ/
My (P1s P2 = @1, @2) = —6216(])1)7”@(}?2)@((]1)7 U(Q2)——a
R PR
z'./\/lgw (p1, p2 — k) = —ieu(p)y"v(p2) el (k) -
(4.114)

A straightforward computation yields

dk 2 ok 35(3
;npg/mmmm (a1, 02— K ME_(p1, po = K) (205 (o1 + 2 — )

dk
— —@/E—kd(p?erg— \/ K2 + k2 + k2)(py + py — k1) (P} + p3 — ko)

20 2
- + >0
_ Vkak ke—pg 43 (pl p2)
0 (p1 + p2)* <0
(4.115)
where we have defined
® = *u(p1)y"o(p2)v(qn)y w(g2) - (4.116)

Equation (4.113) now follows. We get a hint why the optical theorem could hold in a bulk-
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boundary picture: at the first glance, it is a bit of tautology

dp* dp*
If  2ImM=|M|*  then / L oolmM = / LM (4.117)
2w 27

If the optical theorem holds for a bulk theory, it holds for the boundary theory because
that amounts to integrating out the perpendicular momentum on both sides. One could
have worked with the full propagator and integrate p® in the very last step as above. If the
bulk theory is still unitary with a mass (the mass being (p?)?) and if this integration and the
theorem commute, then we will always get the optical theorem on the boundary. Adding a
mass term usually does not ruin the unitarity. The real question is that whether the optical
theorems survive the integration of the perpendicular momentum. We can give another
example involving loops. But currently, a comprehensive proof is still lacking.

We consider the diagram representing the one-loop correction to the fermion propagator.
The inner product of cut diagrams is (k = (£, 0,0, ...)) (using p3 to denote the photon

momentum; pg to denote the perpendicular momentum component; p, to denote the
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fermion momentum) (3, €7 u(pa)u(ps)y”’e = =V"payu = (d — 2)pu)

d+1 d
(i) [ et [ P amd)andsh) 3 () Em) S s+ 1~

spins

ddp_é dd_lp_:l 1 dgd—1¢,=/ - 0
~ ] eni ] CnitaEE, (d — 2)pa(2m) 6 (p3' + pa)o(Es + Ey — K°)

& _é ! AV d\2 =/\2 0
:/ (2:)d 4y (932 4+ (p9)2/ (p3)? 27T(g(\/m +4/(P3)* — k >(d —2)h

(4.118)

where ps is the bulk photon momentum, p; is the boundary fermion momentum and p3’ is

the spatial components of photon momentum that are one the boundary. Now we can see

that the integral will be zero if \/(p3')2 + (p)2 + v/ (p3')2 — k° cannot be zero for real pd,

that is
(V (P3)2 = k%) = /()2 = (k%) = 2k°4/ (p3)? < O (4.119)

So, when the integral is not zero, we have k° > 24/(p3")2 and therefore

47 1 VO 50 o
/(27r)d 4\/(]7_;3/)2—1— <p§l)2\/(p—é/)22 e (Ip5] — a)( 2)p
/ d*'p’ 1 2% — /(53)?)

(2m)* 4(k° — \/(pg,)Q)\/(PEI)Z \/(;{;0 _ \/W)Q _ (p—é/)z

d—1

(2m)4= 2p/(KO)

(d = 2)ps

(4.120)

To do this integral, let’s restrict to d = 3 and see that the spatial parts give zero. The time
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part is then

= Tor (4.121)

~° /°°d p -
S p P
T Jo (k92 — 2k0p 127

In order to evaluate this divergent integral, we used the dimensional regularization.

pt? VRSN (k) (3 - d) T(d - 1)
47T \/W /2 (4.122)

2

k
:E Whend — 3

If the external momentum F is space-like, we can choose k& = (0, k*, 0, ...) and show that
|M|? = 0 because of kinematic reasons.
Computing the imaginary part of the loop: treating (p?)? like a mass term and integrat-

ing it out later. In such case, we can do Wick rotations.

/ / ’M ]6 o (4.123)
2 4 e p pd2 + 1€

If doing the dp integral first, we would get the non-local photon propagator. Here we will
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perform the d?p integral first and integrate p? out at an appropriate time.

o
/ / /0 (p? — ka:(p ;j;)giﬁ__(ié)_ )2 (4.124)

A o] b

We have changed the variable p = [ + xk. Now we can Wick rotate [ and obtain this

standard integral. Note that —z(1 — 2)k* + (1 — m)de > 0.

M= [ [ o | G

i(l1 —x) 2—d)kf(2—g) 9 2.d_o
_z/ / ST F (el = ok (1 )(2 |
4.125

We see that this expression is completely real if k* < 0. So 2ImM = 0 = | M|?. What’s
less non-trivial is the case when k is time-like. Because k? > 0, —z(1 — z)k* + (1 — x)pd2
can be negative. We still say that the dl integral in (4.125) gives the same result even when

—2(1 —2)k? + (1 — 2)p?® < 0, as the result of analytic continuation. Now M has a finite

187



imaginary part: (using dimregd = 3 + €)

(=22 I - g) 2 2.d_o
M = / / 47T d/2 T(2) (—x(1—2)k* 4+ (1 — :)Z)pd )5

—/0 dz(l1—2)2 = d)f
! —eAr— 5Lk (1 — 1) 2 a2 (cot (Z) +i
:/0 dm(l—x)kQ k(lr(£)+1) ( t(2)+

(4.126)

The real part is divergent and we drop that. The imaginary part is finite and we can set € =

0 here:

1
1
I = dx(l — S ——
mM /o x( :1:),%167T T

_k

2471

(4.127)

Now we can see this is exactly a half of (4.121). Therefore, the optical theorem holds and
reads:

£ k2>

1277

2ImM = = |M|? (4.128)
0, k*<0

We have also checked that this same mechanism applies to the effective description of the
long-range Ising model which may be captured by an action describing a free bulk scalar

field with a ¢* interaction on the boundary. We have the boundary propagator being

/°° dk? i 1 ( )
- — J2
Lo 2T k2 — kd? e 2VK2 + e +129
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For a3 to 3 tree level scattering, the LHS is

1 1 z k>0
2ImM = 2Im~(—i)? ———= =
[ 2Vk? + ie
0, k2<0

The RHS is
dd+ 1 p

(i) (i) / a2 S (= k)
[ & ke @m)a(lpt — k%) =L, k>0

0, k? <0

The optical theorem holds.
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A glimpse of the monodromy defect

We have seen the connection between non-local theories and boundary (codimension one)
theories in the introduction chapter and in the previous chapter. In general, one could con-
sider more than one perpendicular momentum, or higher codimensional defects. Confor-
mal defects have gained more attention recently'*#*»#>>7%9%9657 " A conformal defect of

codimension ¢ in a d-dimensional space is a (d — ¢)-dimensional flat or spherical subspace
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that preserves a SO(q) x SO(d — g + 1, 1) subgroup of the original SO(d + 1, 1) symme-
try group. In this chapter, we provide a quick introduction to the ¢ = 2 defect defined by a

monodromy

¢(r, 0 + 2m, ) = ¢*(r,6,9) (s-1)

where y are the coordinates on the defect, 7 and 6 are the perpendicular coordinates, and g
is an element in a global group G acting on the fundamental field ¢ in the theory. For a free
scalar field and 3d Ising model, G = Z5. Such a monodromy defect in the 3d Ising model
(where it is a line defect) was introduced in™>*, and further studied in""

A codimension two defect may also be studied by mapping the problem to a hyperbolic
cylinder, S* x H?! (for previous examples of conformal mapping to H™ x S™ spaces
to describe conformal defects, see e.g.*>***>"). A flat defect in flat space can be related by a

Weyl transformation to .S L H1 35 follows

dy)* + dr*
dséd = 7”‘2 (—( y) 7’:— ! + d92> = 7’2d5§1XHd—1 (52,)
with 77 and r being the Poincaré coordinates on H%~! and 6 being the coordinate on S.
The monodromy defect is then simply described by imposing twisted periodicity condi-
tions (5.1) along S in the path integral for the theory on S* x H¢~! (for instance, in the

Z case, this just means taking the scalar to be antiperiodic on .S ). The defect is located at
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r = 0, which is the boundary of the hyperbolic space. The hyperbolic cylinder setup that
we use here is similar to that used in"**>** to study Renyi entropies for a spherical entan-
gling region.” Starting with the theory on § L' x H%1 one can then perform a Kaluza-Klein
reduction on S* to obtain a tower of massive fields on H%~! with the defect theory on its
boundary. Standard techniques from the AdS/CFT literature may then be used to obtain
results for the defect CFT data. For example, the scaling dimensions of the defect operators
can be related to the masses on H%~!. Other examples of defect CFT data may also be ex-
tracted conveniently from the hyperbolic space setup, and we will discuss a few explicit such
calculations below. Similar ideas have been used in the literature for boundaries in confor-
mal field theory in'**»°“*>*? and for higher codimension defects in'”". Field theory on a
hyperbolic cylinder was also studied in”

A monodromy defect with spherical geometry may be described in the same way by sim-
ply using, instead of the Poincaré metric in (s.2), the hyperbolic ball metric for =150
that the boundary is the sphere S92, For a spherical defect, it is natural to define its expec-
tation value (D). In the hyperbolic space setup, this expectation value can be obtained in

terms of the free energy of the twisted theory on S* x H4! as

- 10g<D> - Ewisted - Funtwisted (53)

*In that case, rather than a twisted periodicity condition, one lets the inverse temperature, i.c., the length
of S, be 2mq to describe the gth Renyi entropy. This setup can also be thought of in terms of defect CFT, as
discussed in”".
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where Fiyised a0d Finewisted are the free energies on L H% lin the presence and absence
of a monodromy defect respectively. The subtraction of the untwisted theory free energy
corresponds to normalizing (D) by the partition function of the theory without defect.

In this chapter, we consider more generally conformal field theories consisting of N
scalars that preserve an O (V) symmetry, so G = O(N). We discuss both free and inter-
acting O(N') model, using the large N and € expansions. Already in the free theory, the

structure is richer compared to the case of a single free scalar.

5.1 MONODROMY DEFECTS IN FREE THEORY

Consider an O(N) symmetric theory of IV free scalars in flat space. The most general mon-

odromy defect that we can define imposes that the scalars satisfy

¢'(r,0 + 21, 4) = G"¢’(r,0,5), G' € O(N). (5-4)
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The most general O(N') matrix G, can always, by a change of basis, be brought to the

following form

R(h)

Glj(ﬁ) — R<19k)

+1

+1

cost¥ —sind

: R(9) =

sin? cos?d

(s-5)

So there are k pair of scalars that mix into each other and the rest either remain unchanged

or pick up a minus sign as they go around the defect. We can then combine each pair into a

complex combination ® = ¢! 4 i¢? and the monodromy can be represented as

9 ~ 9+ 2m. (5.6)

Hence ¥ = 0 describes the trivial defect while 9 = 7 describes the special case when the

two fields change a sign as they go around the defect. So in the rest of this section, we will

consider a single complex scalar with the monodromy defined in (5.6). Ithasa U (1) ~
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SO(2) internal symmetry T which is enhanced to O(2) for 9 = 0and 7 (® — ®, which
is a part of O(2) but not SO(2), is also a symmetry for these values of ). One may com-
bine these complex scalars with different 9)’s to obtain results for free O(/N') model with a
general monodromy defect (for each minus sign in the monodromy matrix (s.5), one can
simply set ¥ = 7 in the result for a complex scalar below, and include an extra factor of
1/2 to describe a real component instead of a complex one). To make the expressions less
cluttered, we define v = /27 and use either v or ¥, whichever is convenient. There is a
periodicity in v which implies that everything should be invariant under v — v + 1, but
for many calculations, we will fix the range of v tobe 0 < v < 1. We will write expressions
specializing to this range of v, so they may not look periodic in v.

In a conformal field theory with a defect, in addition to the usual short distance OPE in
the bulk, a bulk operator can also be expanded in terms of operators living on the defect.

For the complex scalar with monodromy given by (5.6), it takes the following form™

ispl

- € -
O(r,0,5) = > CgmBAo (r,8,)0(y), so € L+v. (5.7)
o

As we mentioned in the introduction, SO(2) symmetry of rotations around the defect acts

as a global symmetry on the defect. s¢ is the charge of the operator O under this global

TNot to be confused with the group of rotations around the defect, which is a spacetime symmetry in the

bulk and is also SO(2).
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symmetry and we will call it transverse spin or just spin. There is also a longitudinal spin [,
which is the charge under rotations along the defect, but we will only consider [ = 0 defect
operators in this paper. The remaining conformal invariance fixes the bulk-defect two point

function

B Cg)CAoewso
- rfemRo(r2 4 (gg)?) A0

(®(21)0(%2)) (5-8)

where O is a defect operator that has spin —s¢ and dimension Ao. Consistency of (5.7)

and (5.8) fixes the form of the function B;(r, 5y)

(1) (G
ml22m (Ao +2— %)

BAO (Tv 5@/) = Z

m=0

(5-9)

This is similar to what was done for BCFT in*”. In general, there could be several defect

operators of a given spin. But since ® is a free field, it satisfies the bulk equation of motion

V2® = 0, which implies

”? 10 1 02 0? ~
(s o + ) 010 =0 -

d
— AO:A¢i|SO|:§—1ﬂ:|So|.

The unitarity bound for the CFT on the defect requires the dimensions of the defect opera-

tor to satisfy

Ap > max <C§l — 2, 0) . (5.11)
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This is always satisfied for the positive sign above (as long as d > 2) and we defer the discus-
sion of negative sign until next section. So for every spin, there is a single operator on the
defect with dimension Ay = d/2 — 1 + |s|. Hence, the bulk-defect OPE of the fundamen-

tal fields may be written as a sum over spins

150

O, 0,5) = D CF B, (r, ) 0.(7)

SEL+v
—is6 (S'IZ)
_ 5 . € 2=
o(r,0,9) = > (C7) mBs(ﬂ 0y) W (7).
sEZ+v

In terms of original real scalar fields, ¥, = ! + ith? while U, = ! — in)? = 1 —ip?
where 1’ appear in the bulk-defect OPE of the real scalars ¢'.
In the presence of a defect, the two-point function of bulk scalars is fixed up to a func-

tion of cross-ratios'”

Y 2
‘F(9127 6) 012 _ 61 . 02’ § _ (yl ?JQ) + (7"1 T?)

(7“17"2)’_1 driry

((21)D(22)) =

. (s13)

Corresponding to the two OPE limits (i.e. the bulk OPE and the bulk-defect OPE), the

function F can be expanded into bulk and defect channel conformal blocks

F(012,¢) chbcp C 9ro,0(012,€) = Z| ‘on,so(el%g) (5.14)
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where g and f are the bulk channel and defect channel conformal blocks respectively. The
sum on the left runs over the bulk operators that get a non-zero one-point function, and
the coefhicient is the product of the usual bulk OPE coefficient times the one-point func-
tion coefhicient of the bulk operator. The sum on the right runs over the defect operators
that appear in the bulk-defect OPE of ®.

As we determined above, the operators appearing in the defect channel have spin s and
dimension Ay = d/2 — 1 + |s|. The defect channel blocks are known in general **.
For the case of a codimension two defect, they simplify and the resulting expression for the

two-point function can be written as a sum over defect operators

= Z F(AS) 61‘5012 2F1 (ASJAS+3%d;2AS+3_d;_%)
(@(21)P(12)) = Ggo(w1,72) = a
seZtuv 2(ryra) 2 Tt 2T (A + 2 — §)(48) 2

(5.15)

The sum can be explicitly performed in d = 4 to get

62'5912

Z 8r2riray/E(L + (VI FE + VE)ar2

(601 +€) 7 e O e S O/ S
21719 —1 + eir2 (25 +2 f(l T 5) + 1) —eibiz 4 26 4+ 2 f(l + 5) +1

(5.16)

Note that we are using a normalization, such that in the bulk OPE limit, when 1 — 2,
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the correlator goes like

d
I'(¢-1) 1
2md/2 |$1 — Ig‘d_z'

(P(21)D(22)) ~ (5.17)

We normalize defect operators such that C¥ = 1 in the free theory. The two-point func-

tion of the defect operators is then given by

551,820A51 r (ASI)

SR, Ca, = .
(722)% B2l (A +2-9)

<\Ijsl (gl)ﬁlsz (g2)> = (5.18)

In the bulk channel conformal block decomposition, the operators that appear are the
bulk scalar @ and the conserved currents of all spins, which can be schematically written
as ®(9),,)7 ®. To extract the bulk expansion coefficients, one may use the inversion formula
of”*. Here, we restrict to calculating the one-point function of the first few operators of
low spin. The one-point function of the operator O ® can be extracted from the short dis-

tance limit of the correlator (5.15)

NI

P
— _ C]

(@0(x)) = -1, (=L (5 —v) T (5~ 1+v)sin(wm) I

T3HD(d)(2 — d)

)

P
Cy" =

(5-19)

The conserved currents, which are spinning operators, also get one-point functions. The
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spin one current, which corresponds to the global U (1) symmetry of the theory, is given by

J, =1 (@auq) — Cbau@) ) (5.20)

The one-point function of a parity odd spin one operator in the presence of a defect is fixed

by conformal symmetry

Jo nd
:C’le”n

rd

(J;) , (J.) =0, n; = ;7. (5.21)

We parametrize the coordinates as & = (2, 2*) = with ¢, j now being Cartesian transverse
coordinates, a, b being directions along the defect and ¢;; is the antisymmetric tensor in

transverse directions. We can calculate this one point function by calculating derivatives of
(5.15), and then taking the short distance limit. Since it is fixed up to a constant, it is enough

to do the calculation just for one component. We do it for the # component,

o 22=dp =TT (354) 22 (k4 o)T (& — 1+ |k + o)

Jo) = — = i(PDp® — ©Iy®P) =
(Jo) rd—2 1(20 h®) rd—2 Z F'(2—2+k+v])

k=—0o0
_(d=2)(2v-1)CPF*
d—1 rd=2"

(5-22)

Atv = 1/2, we expect the internal U (1) symmetry to be enhanced to full O(2) symmetry
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which includes ® — ®, under which .J w — —J,.. So we expect the correlators containing
odd powers of J,, to vanishat v = 1/2, and indeed the one-point function vanishes at
v=1/2.

Next let’s discuss the stress tensor, which is a spin two conserved current. Conformal
invariance, tracelessness and conservation fix the form of its one-point function up to a

constant '™

ﬂ 5ab

o rd’

, (Tup)ra = (Thi)ra = 0. (5.23)

In analogy with the scaling dimensions of local operators, A is referred to as the conformal
weight of the defect”7*7. It can be determined by doing an explicit calculation of any com-
ponent of the stress tensor, and we choose Tpg. The canonical stress energy tensor for a free
complex scalar in flat space is

(d—2)

_ 1 _
T, = 0,88,® — =g, 0P - O — ———
w = 0,80,% — 59,00 -0 =)

(auau - g,ul/a2) ’(I)P (5-24)

This gives
(Too) = <a@<1>209<1>> - Q(dr_ 3 ((0,20,) + (0,03,®)) — %@33@ _ QEZ = 3
(5-25)
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Using the two-point function in (5.15) and taking appropriate derivatives, we get

(Thg) = [ (%59 (1 - o fesem (5 —v) —esem (5 +0)) 1 _ (d=2)p(1 —v) cpe
d(4m) =T 2-9—v)T(1-4¢+v) rd—2 p prEch

(5.26)

Comparing with (5.23), it is easy to see that

o _nl (59 (1 d—lv)v (esem (£ —v) —csem (4 +v)).

v
- 2 rd-2 d4m) =z T (2—¢—v)P(1-4%+4v)

(5-27)

We checked numerically that this conformal weight / is always positive for d > 2. This is
consistent with the conjecture proposed in” which says that & > 0 in unitary defect CFTs
*. We can follow this logic and calculate the one-point function of any higher spin current.
We just do it for one more case here, namely the spin 3 symmetric current. The current is
given by (explicit expression in d = 4 can be found in, for example,”)

3(d+2)

d—2

Jup = 6i ((ID&M&,@pfb - —

0,90,0,)® + ig(wmcpavap)@) +ec (5.28)

where () in the subscript means that the indices are symmetrized. Its one-point function
is also fixed by conformal symmetry up to a number, so we only look at one of its compo-

nents with all indices equal to . We act with these derivatives on (5.15) and expand them in

In?", stress tensor one-point function was written in terms of ar which is related to h by h = —2mar/d,
so they conjectured that ar < 0.
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the bulk limit £ — 0 to get

6(1 — 2v) (3d% — 2d(2(v — 1)v +5) + 4(v — 1)v + 8) CP®

(Jooo) = 11 sy (5-29)

5.1 MapPING TO S x H!

As explained in the introduction, the monodromy defect may also be studied on a hyper-

bolic cylinder by a Weyl transformation as in (5.2). The operators also get rescaled under

this Weyl transformation. The scalars, for instance, transform as Og1 a1 = 720 Opa.
In order to describe a spherical defect, one may use the hyperbolic ball coordinates on

H? 1 obtained from the Poincaré coordinates by the following coordinate transformation

1 Qui1sinhn (530)
r= , 0w = - )
coshn — Qysinhn Ya = osh n — Qysinhn 39
where (€1, ..., Q1) are the coordinates on a d — 2 dimensional sphere with [(2,]* = 1
and 0 < 1 < oo. The metric in these coordinates takes the following simple form
ds%y gar = dO* + dn® + sinh® n ds%,_. (531)

Note that the defect is compact and is located at the boundary of the hyperbolic ball, n —

00, which is a d — 2 dimensional sphere, S d=2
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The complex scalar on S 1w H% 1 is described by the action

2

:%/¢%¢JECWQQQ®—(M;mQ—mﬁmW>

Szl/ﬁm@@w¢ﬁ@@®+Cﬁi%R+mﬁNW)

(5-32)

with the field ® obeying twisted boundary conditions along S*, ®(r, 77, 0+27) = e ®(r, 7, 0).
We will be interested in the conformally coupled case with m? = 0. An equivalent de-
scription of the system can be written in terms of untwisted field ¥ defined by ®(z) =

e™9W (). U has the usual periodic boundary conditions W(r, 7,0 + 27) = W(r, 7, 0).

The action in terms of W can be written as

2
_(d-2)7
+ g% 0, V05 — ( 1 ) !‘W) (5.33)

S = % d?z\/g(z) (‘ (Og + iv) ¥

where o, 3 are the coordinates on H%~!. This shows that having a monodromy defect is
equivalent to having a constant background gauge field in the ¢ direction. Taking deriva-

tives with v is equivalent to inserting the # component of the U (1) current

2

_“ﬁz:i/ﬁ%¢REWM@—@%®>=é/ﬂmmwxﬁ> (5:34)

where Z is the partition function in presence of the defect.
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We then perform a Kaluza-Klein (KK) reduction on S* to get a tower of massive scalar
fields on H%~1. The bulk field can be expanded into KK modes as ®(r, 7, 0) = > e*/®(r, )
where s € Z + v and modes @, (r, %) have mass s — (d — 2)? /4. Since the defect is located
on the boundary of H d=1"we can use the standard AdS/CFT dictionary to calculate the

dimensions of the defect operators of spin s induced by ®
2 2 d
Aj(Ay—d+2)=5"—(d—2) /4:AS:§—11|3]. (5-35)

As before, we leave the discussion of the — sign until the next section. The two-point func-
tion on ST x H? ! can then be written as a sum over KK modes with the two-point func-

tion of each KK mode being just the usual bulk-bulk propagator on H d=1 This gives

. _ 2€i5912
(@(G1,71,00)P(G2, 72, 02)) = Gag(T1,79) = Z o G,

SEZ+v
2 (A,) €02 o Fy (A, A + 355424, 43 - d; — 1)
ATPT (A, + 2 — £)(48)4

-3

SEL+v

(5.36)

This is related by a Weyl transformation to the two-point function in flat space (s.15).
A quantity of interest is the free energy on the hyperbolic space since this is related to the

expectation value of the spherical monodromy defect. In the free theory, it is given by the
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following determinant

(537)

2_(d—42)2)_

Fisea(¥) = trlog (—V2 +

The eigenfunctions of the Laplacian on S* x H%~! may be written as ® a1 (¢, r)e'’

with ® a1 being the eigenfunction on the d — 1 dimensional hyperbolic space. The corre-

sponding eigenvalues are A + (d — 2)? /4 + s* with a degeneracy given by >

Vol(Hd ) TEVA+ S22 da

Ddr = An) TS DV VA (53%)

Using this, we can compute the twisted free energy on the hyperbolic space as

Fryisea(¥) = / dAD(A) ) log (A+m® + )
0

SEZ+v
_ Vol(Hd Y /°° T(iv + 452)?
CUm) T S D (iv)[?

(5-39)

Z log (v + s* + m?) .

o0 s€EZ+v

This can be used to calculate the expectation value of the defect, and it is natural to normal-

ize it by the partition function of the untwisted theory. In the conformally coupled case, it
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gives

- 1Og<D> = Rwisted — I untwisted

- Vol(H™) IJM og (v + n?
_(47T)d21F(ﬂ)/_ood D ()2 (Z Z)lg +

2 neZ+v nez
Vol(F-1) [ [Tliv+ S22 (1
= OdE1 ) / dum log (—cschz(wy) (cosh(27mv) — cos(27rv))> :
(4m) = T(51) oo T(iv)] 2
(5-40)
To derive the above formula, we had to use the sum
Z log ((k + @)® + a®) = log (2 cosh(2ma) — 2 cos(27a)) . (5.41)

keZ

When d is even, the analytic form is easy to obtain by doing the integral over v first in the

second line of (5.40) and regularizing the sum by a Zeta function regularization

Vol(Hd D) /OO V|P(w+%)|2 1
nET(G) S @) )|
a—0

log(D ( > Z) -

neZ+v nez

(5-42)
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It gives

—1log(D)4—s = Vol(H") (C —Lv)+((-1,1—v)+ é) = v(1 — v)Vol(H")

—60¢ (—=3,v) —60¢ (=3,1 —v) +1 v (1 —v)?
—log(D)4—4 = Vol(H?) ’ — Vol(H?
08(D)a=1 = Vol( ( 360 > 125 Vol(E)
C 51} +C 571_1)) C(_3>U)+<(_371_U) 1
—log(D)y_g = Vol(H?) -
08(D)a=s = Vol ( 6072 3672 T Tos0m
—v)}(=3 —v(1 —v)) 5
_ ).
1807r2 Vol(H)
(5-43)

Note that the factors of the hyperbolic space volume here are logarithmically divergent™*,

see eq. (5.46). The quantity D defined by
~ . (7m(d—
D = sin (%) log(D) (5-44)

is however finite and it is proportional to the quantities multiplying the volume factors
above. Indeed using the above result (s5.40), D can be seen to be a smooth and finite func-
tion of d. We plotitfor2 < d < 6 and in the special case of Z; monodromy, v = 1/2,
in figure s.1. For future reference, let us also list some explicit values of D in various d for

v = 1/2 which can be directly obtained using (s.40)

- log2 7¢(3 T
Blas = 2210 = T
8w 192° (5-45)
Blos = log2  5¢(3) 31((5) Blus — 137
=57 764 19272 12874 4=6 793040
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Figure 5.1: A plot of Dfora single free complex scalar between dimensions 2 < d < 6whenv = 1/2.
To do the above calculation and obtain the plot, we had to use the regularized volume of

the hyperbolic space ™

5.L.2 ONE-POINT FUNCTIONS

One-point functions of bulk operators can also be readily obtained in the hyperbolic space.

For the scalar ®®, it is a constant given by

: 1 OFuyiea(¥)
P twisted
O = N om? (5-47)

m2=0
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The mass derivative of the free energy can be calculated as follows

0F1twisted<19) o i VOI(Hd 1) /oo dv @1/ + u (
om? ‘ (4m)T F(d L) J- T (iv |2

[e.o]

k+v +m2)
_ Vol(H=1)T (39) (- 1+

g (i)
(4m)= kzoor<2-+\/—k+v)

~ Vol(HHT (334) I'(Ay)
N (4m) 5 ;P(3—d+As)'

(5-48)

To perform the integral, we had to close the contour in the v plane and sum over residues**.

The arc at infinity can only be dropped for d < 3, but the final result can be analytically

continued in dimensional regularization. One of the Gamma function introduces poles at
= i(d/2 — 1 + 2k) for integer k, which all lie in the upper half plane for d > 2 and need

to be summed to get the final result. For m — 0, we get

Prnd)| VO (54 D1 )
Om - lmeo (4m= TR+ IR+
(d— 1)V01(Hd_1)F (2 v) T (4 =14 v)sin (vm)

) (4m)7 (2 — d)T (%5L) (5-49)

(d—1)r(g—v)F(5—1+U)Sin(v7T)F(%)_

— O = -
T5T(d) (2 — d)
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This of course agrees with the flat space result (5.19). For the spin one U(1) current, using
its general form in (5.21), it is easy to see that the one-point function of its # component is a
constant on hyperbolic cylinder. It may be calculated as in (5.34), by taking the derivative of

free energy with v

=L OFiwed (V) o= 22475 /oo Dl + 22 kv
VT AVol(EY) v A T(RY) ) T (iv)[? V2 + (k +v)°

_gred - 3—d\ = (k+v)(4—-1+k+v])

B ! 2 Z ['(2-4+k+v])

k=—00 2
_@=2)(2v—-1) 50
- d—1 Cl )
(550)

which again agrees with the flat space resultin (5.22).

Similarly, for the stress tensor, the general form (s.23) tells us that Ty should have a
constant one-point function on the hyperbolic cylinder. There is a simpler way to calcu-
late it on the hyperbolic cylinder»**. We start by keeping the length of S* to be a variable
f3 instead of fixing it to 2. This is equivalent to rescaling the metric component ggg by
(8/2m)?. So if we compute the free energy for arbitrary 3 and then take a derivative with

respect to (3, this is the same as inserting Tjg in the path integral

2 (55 1 8Rwisted(197 /8)
- N [ 1 = —
g g Too) st Vol(He-1) B

B=27
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In practice, we can calculate the free energy for a general /3 by rescaling n by 27/ 3

. o Vol(HTY e D + 5P (2 47T2n2)
Ewmmdw’m_<4w>d?r(d1>/_de X il G

2 neZ+uv
(5-52)
We can use this to calculate the stress-tensor one-point function
o 1 < Tiv+SH?  (k+v)
ng 1 d—1 = 7 / v ; 2

Too)stc k:Z_oo 7r(47r)d2 I' (%) J- T(iw)]2 024 (k4 v)?
_ (Y iF(%l—1+|k+vl)(/~€+v)2 (553
rm)5 =, T@—4+k+0]) >

_ I'(32) (1 —v)v (esem (& —v) —cser (£ +0))
d(4m) 5T (2 -2 - )T (1 - ¢ +0)

which is consistent with what we got above by a direct calculation in flat space in (5.26).
This hyperbolic space technique will be useful below, when we try to calculate the confor-

mal weight in the interacting theory.

5-2 MONODROMY DEFECTS AT LARGE [V

In this section, we study the monodromy defect in the interacting O(2N') model (it will

soon be clear why we choose 21V instead of N here) at large N. The S* x H?! setup
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provides a convenient way to study the problem. The action may be written as §

v A A _9)\2
S — | d%r /g(:n_) (g” &ﬁé 0, ¢ o (d 82) ¢A¢A + 2(¢A¢A)2> (5.54)

where A now goes from 1 to 2/N. We again consider monodromy defect defined as in (5.4).
We want to do a large IV analysis, and to accomplish that, we want to preserve a large sym-
metry group. The simplest such case is when we fix the matrix G*Z in (5.5) to consist of N
identical 2 x 2 blocks, so thatall ); = 9. This is the only case we consider in this paper.
Then, as before, it is convenient to package these 2.V real scalars into /N complex scalars as
P! = ¢! + il where I goes from 1 to N and all N complex scalars have the same
monodromy as in (5.6). The original theory has O(2/N') symmetry, and the defect breaks
itdown to U(N). However for ¥ = 0and 7 which correspond to a trivial defect and Z5
monodromy defect respectively, the symmetry is enhanced and the defect preserves full

O(2N) symmetry. The action in terms of complex variables is

wo,®:0,00  (d—2)%. Ao
S = [ dz\/g() (g “21 _ 2 ) c1>1<1>f+1(c1>1c1>1)2>. (5.55)

SWe assume that the mass terms have been tuned away so that the bulk is always critical.
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Atlarge N, we can use the well-known Hubbard-Stratonovich transformation to write this

in terms of auxiliary field o ()

o, 00,07 (d—2)%- 1 -
S = [ d+\/g(x) (g “21 _{ 2 ) ;07 + 5a<1>,<1>f) . (5.56)

We dropped a 02 /4 term above, which can be consistently done in the critical limit (see
for example *°, for a review). We can then integrate out the fields ®' since the action is

quadratic in d! 1o get

7 = exp|— Fiyisted) = /[da] exp [—Ntrlog <—V2 +o0— (d _42) )} (5.57)

Atlarge N, we can use a saddle point approximation to do the integral over o and look for
a saddle with a constant value for the field o (). This constant is the one-point function
of o(x) which is a constant on the hyperbolic cylinder 9. So at leading order at large N, the
field o(z) only contributes through its one-point function and acts as a mass term for ®”.
Similar to the case of free theory (5.39), the free energy in the interacting theory at leading

order at large N may then be written as

NVol(H*1) [ |D(iv + 42)?
Fyiseed(V) = = / _— log (V> +n*+0). (558)
el = Gy LT 2 |
91n the flat space, this one-point function is (o'(z)) = ‘;—; with 0™ being the constant one-point function

on the hyperbolic cylinder
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The value of 0 at the large N fixed point, 0* can be obtained by solving the saddle point

equation, which says that the following derivative should vanish

OF iseed (V) NVol(H* 1) /°° dV\F(z'qu%)P Z 1
1y J- L' (iv)|? e v24+n?+o*
d_ 14 /g 2
_ V(T (5§ (g ey ene)
= d—1
(4m) =2 k—ooF(Q—;—i—Q— /0*+(/€+v)2>
~ NVol(H* T (359)

I'(As)
(47)T 2 T(3—d+A,)

SE€EL+v

(5-59)

where the integral over v is similar to the one in (5.48) and can be performed with similar
techniques. In the last line, we used the usual AdS/CFT dictionary to write the expression

in terms of the dimensions of defect operators

— 92)2
Ay(Ay—d+2)=8"+0" — (d 1 ) = Af:g—li\/a*qu?. (5.60)

Note that we used A solution to write the above expression of 0F/Jo in (5.59). This
is because the spectral representation of the free energy is only valid for Ay > d/2 — 1.
However, written in terms of A, the expression in (5.59) can be analytically continued

and also used for the case when we impose A~ boundary condition on one or more of the
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operators. We also want the dimensions of all the defect operators to be real which requires
o* > max (—v®, —(1 —v)?). (5.61)

Another equivalent way to derive this large [V saddle point equation is to look at the
two-point function of ® in the bulk OPE limit. As we discussed above (5.36), the two-point

function on the hyperbolic cylinder is given by the sum over bulk-bulk propagators

(A e, Fy (A Ay + 5420, 43— d; -1
212D (A, + 2 — $)(4€)2s

r
(@ (@) (22)) = 3 o,

SEZ+v
(5.62)

and here A, is given by (5.60). In the bulk OPE limit, the two point function behaves as

Y R ) NCON
(@7 (21)®(22)) = S [ pr= 1+0E)+ ¢ B-d+A,) (14 0(8))

(5.63)

The constant  independent piece in the second term represents the presence of operator
®!®; of dimension d — 2 in the bulk OPE. Recall that in the large N critical U (N') model,
this operator is replaced by the operator o of dimension 2. This should still be true in the
presence of the defect, and demanding that this term vanishes is equivalent to the saddle
point equation written in (5.59).

When we impose AT boundary condition on all the operators, o* can be determined by
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solving the following equation from (s.59)

Vol(HA-1)T (352) &2 F(§—1+\/a*+(k;+v)2)

2

T Y FRPEN e

Itis hard to perform this sum analytically as a function of d. To proceed, we separate out

=0. (5-64)

the sum into a divergent piece at large k and a finite piece. The divergent piece of the sum
can be performed by dimensional regularization and analytically continued in d. For the
finite piece, it is harder to perform the sum as a function of d. Howeverind = 4 — €, we
can first do a series expansion in € and then it can be performed up to first two orders in €.
Hence, the saddle point equation can be solved order by order in € and it gives

3v(v—1)+1

* 1
ocf=vv—1)e+ 5

e+ O(€). (5-65)

Notice that the order €? term does not vanish at v = 0 and 1. But the defect becomes
trivial atv = 0 and 1, so all one-point functions, including the one-point function of &
should vanish at these values of v. This problem arises because we are doing an expansion
in €, and we expect this problem to be resolved by higher order terms in €. Indeed when
we calculate 0™ numerically in d = 3.9 below, we will see that it vanishesatv = 0and 1.

One possibility is that the higher order terms in € are singular at v = 0 and 1. For example,

217



consider the € expansion of the following simple function

=ev——+—+0(c"). (5.66)

The function vanishes at v = 0 for any fixed €, but when we expand at small ¢, the limit
v — 0 becomes problematic. This is similar to what we see here.
Plugging this 0™ into (5.60), we get the dimension of defect operators at large NV and

leading orders in €

SR NFSEIESI ST TS

2 3
— . (5.6
2|S| 4‘S| € 8|S|3 € +O(€ ) (S 7)

We can also calculate the twisted free energy at the large IV fixed point

7 OF,
twisted
Ewisted = Ewisted + / do
o=0 0

_ oo
3 o*
= Ewisted + M/ dU <—g + v (1) — 1)) (568)
o=0 4m 0 €
NVol(H3)v? (v — 1)
= N+ AR D
T

where we used the fact that Fiyiwea(0 = 0) is the same as twisted free energy in the free
theory.

Away from d = 4, the finite piece of the sum in (5.64) can be performed numerically, for
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-0.020} AN /
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Figure 5.2: Saddle point value of o* ind = 3.9 critical theory with At boundary condition at leading order in large
N. Dashed line represents smooth interpolation of the numerical result. For comparison, we also plot the analytic
resultind =4 — eate = 0.1.

agiven d, o* and v. We start with d = 3.9, so that we can compare it with the prediction
ind = 4 — e. We evaluate the sum for a range of values of ¢ and v, and then find the root
of the equation on the real ¢ axis for different values of v. We then interpolate in v and plot
the value of 0* in figure 5.2. We also compare the result with the resultin d = 4 — € in (5.65)
ate = 0.1.

A similar method also works in d = 3 to solve the saddle point equation in (5.64) numer-
ically. We plot the solution in figure 5.3. Once we know o*, we can calculate the dimensions
of defect operators using (5.60). We also plot the dimensions of three low-lying defect op-

erators in figure 5.3. Forv = 1/2, corresponding to Z; monodromy on all scalars, we get

Oy = —0168, A1/2 = 0786, Ag/g = 1.943 (569)

to leading order at large IN. We are doing a large IV analysis, but it is interesting to compare
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Figure 5.3: Saddle point value of o™ and the dimensions of defect operators in three dimensional critical theory at
large IN. The solid lines are smooth interpolation of the numerical results. Note that the defect is one-dimensional,
therefore the unitarity bound just requires the defect dimensions to be positive.

the result with the Monte Carlo results for monodromy defectin d = 3 Ising model in".
They found A2 = 0.918 and A3/, = 1.99.

Using 0*, we can also calculate the expectation value of the defect with spherical geom-
etry. Itis defined in the same way as the free theory (5.40), as the negative of the difference
between the twisted and the untwisted free energy. However, recall that in the untwisted
theory, the one-point functions vanish, so 0* = 0. This implies that the corrections due
to the interactions for the untwisted free energy start at order 1/N. So at leading order, we
can just use the untwisted free energy of the free theory and the interacting corrections to

the defect expectation value are due to the corrections in the twisted free energy

- F, iste
—log(D) = — N log(D)f + /0 da%. (5.70)

The first term above is the free theory result we have from (5.40). We can numerically in-
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Figure 5.4: Defect expectationvalueind = 3 critical theory at leading order in large IN. Solid line interpolates the
numerical results.

tegrate (5.59) using the numerical results for o* to evaluate the second term. We plot the
result in figure 5.4 for the case of d = 3, corresponding to a circular defect. We used the
standard regularized volume of H?, Vol(H?) = —2, that can be obtained in (5.46).
We can also calculate the conformal weight of the defect in the interacting theory. It is
related to Thg (5.27), which in the hyperbolic cylinder approach is given by (s.51). So we
need to know the dependence of the twisted free energy on 5. Similar to the case of free

theory, when we change the length of S* to 3, the expression for the free energy changes to

NVol(H™) >~ |T(iv + 432
Rwisted(§a5> = é 3) / W |F w |2 Z log ( 6 ) .

(47) = F(% neZ+4v

(5-71)

If we impose AT boundary condition on all the operators, then the large NV saddle point
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equation is

OFwisea|  _ NVoI(H* T (259) f: P14+ +o) =0
N (4m) 5 [— (2— +\/ (k+v)? >_

(5.72)

Proceeding in the same way as 8 = 27, we first expand the sum in general d in large £ and
isolate the pieces that diverge as k — o0o. The divergent piece of the sum can be performed
in dimensional regularization and analytically continued in d. And for the finite piece, we

have to either expand in € or turn to numerical methods. Ind = 4 — ¢, the solution to the

saddle point equation to leading order in € is

o — (2W2(6(U3—521)U + 1) . é) €+ 0(6)2 (5.73)

Correction to the twisted free energy, to leading order in € and NV is

tw1sted (19 5 ) tw1sted (19 ﬂ

RWlStC
+ N / OF wisea

8% — 4m2(6(v — 1)v +1))°

Vol H¥)N ¢
+ Vol(H7) 5767233

== twisted(ﬁa ﬁ) €+ 0(6)2

o=0

(5-74)
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Using (s.51) and (5.27), we get the conformal weight in terms of the free energy

h . ]- 27T athwisted ( )
T VOl HIY (A1) 98 |y >75

This gives the conformal weight in the interacting theory to leading order in €

b _ Nﬂf(l?d)(l—v) (CSCW(%—’U)—CSCTF(%+U))+N(1—U>U(9(1—U)U—2)6

d4m) 7T 24— )T (1= §+0) 7o
— 512; v)° + 6N(114_4;’) (—6H”1 — 6¢(v — 1) + 37 + 6log(r) — ﬁ)
(5.76)

where 1 is the Polygamma function and H™ is the n'" harmonic number. We used the free
theory result for conformal weight (s.27) ind = 4 — e.

Away from d = 4, we can still work numerically. For a given d, we now have three vari-
ables in the sum (5.72), namely 3, v and 0. We are interested in calculating a derivative with
[ at 8 = 27. So we choose three values of § near 2w as § = {27 — 0.01, 27, 27 + 0.01}
and then calculate the sum in (5.72) over a range of values of o and v. We do an interpo-
lation in ¢ and find the root for several values of v and all three values of 3. So we have
an analogue of figure 5.3 but for three different values of 3. We then use this saddle point

solution for 0™ to calculate the integral for free energy in (5.74). We finally calculate the
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Figure 5.5: Numerical result and a smooth interpolation for conformal weightind = 3.

conformal weight using (s.75) where for the derivative, we use the numerical analogue

1 27 Flised(2m + 0.01) — Fiyigea(2m — 0.01)
h=— ) : (5.77)
Vol(H41) (d —1) 0.02
We plot the resultin d = 3 in figure s.5. Itis positive in accordance with the conjecture
made in”".
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