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Abstract

Physics defined on real manifolds and equipped with locality has achieved many successes
theoretically as well as in describing our universe. Nevertheless, from a mathematical point
of view, it is not as privileged. This thesis explores the possibility of non-Archimedean and
non-local physics by studying a range of discrete and continuous models. We begin by dis-
cussing how continuous dimensions with different topologies emerge from a sparse cou-
pling lattice model inspired by a recent cold atom experiment proposal. A field theory with
both non-Archimedean and Archimedean dimensions is then studied. The propagator of
the theory possesses oscillatory behavior. We work out the renormalization and compare
the theory with the quantum Dyson’s hierarchical model at the criticality. We then proceed
to study two non-local field theories: the non-local non-linear sigma model and the non-
local quantum electrodynamics. Non-locality altered the behavior of NLSM profoundly by
eliminating the Ricci flow and demanding higher-order covariant corrections in the target
space. At the same time, the interplay between non-locality and gauge symmetry generates
unique RG flows in the non-local QED and makes the theory more controllable. We con-
clude by introducing a monodromy defect defined inO(N) symmetric conformal theories,
which by definition, supports a non-local CFT on the defect. Throughout the journey, we
want to convey the idea that non-Archimedean physics and non-local physics exhibits rich
and unique phenomena yet are not disconnected from the more ordinary physics.
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0
Introduction

0.1 An invitation

Developments in modern physics have deepened our comprehension of space-time and

matter. The usual concept of the space-time continuum is based on the real number field

and its extensions, like the complex number field. Physics theories defined with real or com-

plex manifolds have been studied extensively. Among them are the Standard Model and
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String Theory, representing our most advanced knowledge of the four fundamental inter-

actions and all the fundamental particles in nature to date. Rich topological and analytical

structures of the Pseudo-Riemannian or Riemannian manifold have been enlightening us

in our understanding of nature and serving our pure theoretical interests in some other

time.

Continuum is not always given. Sometimes continuous physics emerges from physics

on the discrete, lattice models. From the famous Ising model to lattice gauge theories to

topological matters in modern condensed matter theory, lattice models have taught us so

much that would be difficult to grab merely from the angle of the continuum. Although

often well-motivated by itself, like in cold atom physics or condensed matter physics, lattice

models are also important because of their connection with the continuous theory. We can

look at scalar quantum field theories, for instance. A fundamental field can usually be un-

derstood as a map from the base space to a value space, which is always built upon real num-

bers. Because of the continuous base space, we can move fields to arbitrarily short distances

or arbitrarily high energy. In many theories, this operation causes arbitrarily large quantum

fluctuation. The shorter the distance, the more significant the fluctuation, hence the term

ultra-violet divergences. Renormalization and regularization are needed to deal with diver-

gences properly while allowing that arbitrariness or absolute continuum, or equivalently,

without requiring the UV details, by studying the change of fields in response to the change
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of scales. High energy details, or a UV completion of the theory, can be a lattice theory.

More generally speaking, a lattice theory does not need to be the UV completion to share

the same IR physics with a continuous theory. The connection between critical Ising mod-

els and critical ϕ4 theories is a good example. One important motivation of this thesis is to

explore the possibility of non-Archimedean and non-local continuous theories as primar-

ily inspired by the lattice way of thinking. We will explain the main ideas and the relevant

definitions in the rest of this introduction.

0.2 Coupling pattern topology

When we take a discrete set of points as the base space, some usual concepts about space-

time are altered. For example, the number of dimensions is determined by the number of

neighbors in nearest-neighbor models. Moreover, the metric is necessarily discrete and is

less important if the coupling pattern is not specified. In short, because infinite countable

(discrete uncountable sets are not considered here) sets can be one-to-one mapped to each

other, it does not matter how the lattices look geometrically. What defines the theory is

how the physics fields on every site interact with each other. Put in other words, we seem

to have more freedom when defining a theory on the lattice. In this thesis, the coupling pat-

tern that we restrict ourselves to is defined by the quadratic coupling term in the statistical
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Figure 1: A 1D Ising spin chain.

Hamiltonian:

H0 ≡
∑
i,j

Jijϕiϕj , (1)

where Jij is real and represents the coupling between site i and j, and ϕi is the field living

on the site i. A familiar example is the Ising model, where Jij is constant if i and j are the

nearest neighbors and Jij = 0 if they are not. Figure 1 shows the one-dimensional Ising

spin chain, where all couplings are illustrated by black arcs, and we highlight the nearest-

neighbor coupling of one site.

A clear one-dimensional topology is derived from the number of nearest neighbors being

two and the lattice translational invariance. In higher dimensions, the number of nearest

neighbors and the number of discrete symmetries increase. Lattice models with locally de-

fined site-to-site couplings represent a variety of discrete counterparts of various usual field

theories with local quadratic kinetic terms. Let us abstract the metric-like coupling Jij to

a rule for the neighborhood for now. We define sites that directly couple to each other to

be in the same neighborhood. We can generate the neighborhood topology for the one-

dimensional Ising model, as in figure 2 (only drawing neighborhoods defined by the cou-

pling while others are added according to the axioms of the neighborhood).

Translational i → i ± 1 invariance is a stringent constraint, and we can find interest-

4



Figure 2: Topology from neighborhoods: Isingmodel

ing generalizations by rearranging neighborhoods. We first remove some neighborhoods.

Of course, breaking all of them would generate a set of independent sites decoupled with

each other, and that is boring. We can try to keep only “half” of them, as depicted by blue

ellipses in figure 3. That alone merely gives decoupled pairs of sites that are not interesting.

Now the original translational invariance is downgraded to an i → i ± 2 invariance. We

then add back couplings to pairs of pairs, and then pairs of pairs of pairs (black and gray el-

lipses in figure 3), which breaks translational invariance more and more (to i → i ± 4 and

to i→ i± 8). For an infinite lattice, we keep doing this so a hierarchical structure is formed

and no translational invariance is left in the end. One obvious difference with the Ising is

that this is an all-to-all coupling pattern. This hierarchical coupling is also less “connected”,

as the intersection of two neighborhoods at the same level is always empty. This means that

we can easily break the space into infinitely many disjoint sets by ignoring couplings higher

than a certain level. This is Dyson’s hierarchical model 36. Freeman Dyson introduced this

model in 1968 and showed that this “one-dimensional” model could have phase transitions.

Lattice models with this topology are known to have rich physics. 14,104

Now that we obtain an all-to-all coupling, it is tempting to go back to the metric form

Jij . The question is how to express the coupling as J(i−j) because the translational invari-
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Figure 3: Topology from neighborhoods: Dyson’s hierarchical model

ance is totally broken in the infinite lattice. Nonetheless, for a finite lattice, equivalently for

a finite set of integers, one can always assign it a distance function such that Jij = J(i− j).

If we want J to be a function of the absolute value |i − j|, then the form of the function

must be increasingly complicated as the lattice size increases. If we want a simple form of

J , we need a distance function that describes the hierarchy. We have relabeled the sites in

figure 3, which is free because of the finite lattice (note that for a lattice of different size, the

relabeling is also different). In such a label, i − j has the same power of 2 for any i and j

having the same hierarchical distance, which is the size of the smallest neighbor that con-

tains both i and j. This is a primary version of the p-adic norm |i − j|p with p, a prime

number, being 2. The p-adic norm is one of the main topics in the next chapter. We will see

that p-adic norm is non-Archimedean, as opposed to the Archimedean real norm.

All-to-all non-local couplings that have real translational symmetry are more familiar.

One famous example is the long-range Ising model40 where Jij ∝ |i − j|α. We are used to

the fact that the continuum limits of these real translational invariant lattices are described

by field theories defined on the real number field. If we naively take the infinite size limit
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and zero spacing limit of a lattice, then we get the rational numbersQwhich can be one-

to-one mapped to the integers. Rational numbers are often not good enough to support

a field theory. One needs the completion of the rationals to enjoy better analytic proper-

ties. Real numbers are the completion of the rationals with respect to the real norm. The

completion of the rational number field with respect to the p-adic norm is called the p-adic

number field, which is to be introduced more carefully in the next sections. Thus, it is also

natural to consider field theories defined over the p-adic numbers. Note that the real num-

bers are also algebraically closed. The completion of the algebraic closure of p-adic numbers

is, instead, very complicated and will not be discussed in this thesis.

Note that the translational invariance is restored in the continuum limit of the hierarchi-

cal model with the p-adic norm. This is not a contradiction, as the continuum limit, the p-

adic numbers, is a very different number field from the real numbers. We could phrase it as

the real translational symmetry versus the p-adic translational symmetry. We have discussed

various possibilities of the continuum as inspired by the lattice. In chapter 2, we compute

the Green’s functions of a one-parameter family of lattice models to study the base space

topology in the continuous limit.* We compute the Green’s function and its Hölder conti-

nuity to study a transition from the “real smoothness” to the “p-adic smoothness”.

*Similar philosophy is also seen in the continuum. For example, the authors 81 consider a (non-
Riemannian) metric on space-time that arises from the two-point function of a scalar field theory.
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0.3 The p-adic number field

Ordinary integers Z is a natural extension to the concept of natural numbers. The ring of

ordinary integers is an algebraic structure on the setZ equipped with addition, subtrac-

tion, and multiplication. If one also demands division, then we have the field ofQ, rational

numbers. Any rational number can be expressed as p
q
, where p, q ∈ Z, q ̸= 0. As sets,

both are countable and have cardinality ℵ0, but as topological spaces, they have very differ-

ent topologies. As a metric space, rational numbersQ are not complete, meaning that not

every converging sequence inQ converges to an element that belongs toQ itself. Adding

these missing limits to the field is called completion. For example, the construction of real

numbersR is the completion ofQwith the metric as the absolute value of the difference. A

different metric could give a different completion ofQ.

For any positive integer z, picking a prime number p, we can easily write down the fol-

lowing expansion

z = pv
N∑
n=0

anp
n = pv(a0 + a1p+ a2p

2 + ...+ aNp
N), (2)

and we know this expansion is unique. It is called a “p-adic expansion” 85. Any finite ordi-

nary integer will be a finite sequence under this expansion, and we can see higher power

terms are bigger in the sense of absolute value. In such a case, extendingN to infinity is
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meaningless, and all that will become just a formal notion of infinity∞. A sensible infinite

expansion in real numbers extends the sequence to−∞ power, and that resembles our fa-

miliar decimal or binary representation. However, are there other notions of norms where

higher power terms in (2) contribute less to the norm? The answer is yes, and such a norm

is called the p-adic norm. It is defined for a positive integer pva, where a ∈ Z is co-prime to

p, and hence v ∈ Z is the largest power that pv divide this number, as

|pva|p = p−v, (3)

and |0|p = 0. If p is not a prime number, then the axiom |x|p|y|p = |xy|p can not be

guaranteed. p-adic norm satisfies the norm axioms, but in fact, it satisfies a stronger version

of the triangle inequality

|x+ y|p ≤ max{|x|p, |y|p}. (4)

which is called the ultra-metric property. This breaks the Archimedean property (if 0 <

|a|∞ < |b|∞, then for some n ∈ Zwe have |na|∞ > |b|∞) and such norms are called

non-Archimedean or ultra-metric norms: when you add up quantities, you only obtain

quantities with equal or smaller norms. It can be proved that the non-Archimedean prop-

erty is, in fact, equivalent to the ultra-metric property for a norm, so that we will use these

two notions interchangeably from now on. We also want to point out Ostrowski’s theo-
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rem: every non-trivial norm on the rational numbersQ is equivalent to either the usual real

norm or a p-adic norm.

Now we can formally extendN in (2) to infinity and because higher terms is smaller in

this p-adic norm, we could obtain a converging sequence in such manner(and p-adic metric

is defined as the p-adic norm of the difference). Then we can figure out p-adic expansions

for every rational number through algebraic equations. We give some examples for p =

17†,

• −1 as the root of x+ 1 = 0, then

−1 =
∞∑
n=0

16× 17n = 16 + 16× 17 + 16× 172 + 16× 173 + ... (5)

• 1
2
as the root of 2x = 1, then

1

2
= 9 +

∞∑
n=0

8× 17n = 9 + 8× 17 + 8× 172 + 8× 173 + ... (6)

• v can be extended to negative integers, for example

23

17
= 17−1(6 + 1× 17) (7)

and |23
17
|17 = (17)−(−1) = 17.

Rational numbers are not complete under the p-adic metric as partially shown by the

infinite series. The completion ofQ under p-adic metric gives p-adic numbersQp. Unfortu-
†Year 2021 happens to be the emerging year of the 17-year periodical cicadas. This kind of cicadas follow

the period of a large prime number to avoid cycles of natural predators.
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nately,Qp is not algebraically closed. Not like in real numbers, to get a complete algebraic

closure, one should deal with infinite extensions ofQp, and the final object is calledΩ or

Cp. Most of the p-adic physics literature only deals withQp and its finite extension.

p-adic numberQp has the same cardinality 2ℵ0 as real numbers, but they have very dif-

ferent topologies. In fact, as a topological space,Qp is totally disconnected, likeQ. This

is saying that for any two numbers x, y ∈ Qp, there exists open sets S1 and S2 such that

x ∈ S1, y ∈ S2, S1 ∩ S2 = ∅ and S1 ∪ S2 = Qp. This is not true in real numbers.

This difference can be roughly represented as following: inR, one can typically approach

a number using sequences converging from above or below, for example representing 1 as

0.99999... and 1.00000...; while forQp, this is not possible as the converging sequences all

have the same p-adic norm. This difference in topology is an important reason why p-adic

physics usually have different features from “real physics”.

Now we can think about the hierarchical model or the 2-adic lattice in the last section.

We can take the infinite limit by keeping doubling the number of sites and relabeling the

sites such that the coupling can always be described by a power of |i−j|2. The same process

can be realized for any prime number p. The infinite set we obtain is called Zp, the ring

of integer ofQp. Zp is an infinite subset ofQp consisting of all the p-adic numbers that

have p-adic norm equal or smaller than one. The ordinary fine graining process, where one

just adds numbers to the ends, gives us the integer(orQ as for a continuous topology) line.
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Both Z and Zp enjoy ring structures, but from this, we could see thatZp has the special tree-

like topology whileZ has the ordinary discrete topology(orQ has an ordinary continuous

topology). This difference in topology almost guarantees different physical properties when

we consider lattice models on a “p-adic” lattice rather than a regular lattice. In fact, not like

Z orQ,Zp has cardinality 2ℵ0 and is uncountable. Even more differently,Zp is itself dense

and complete.

Arithmetics is defined as usual on p-adic numbers. Integrals can be defined with a similar

change of variable rule as real integrals.

∫
Zp

dx = 1,

∫
U

dx =

∫
c−1U

d(cx) =

∫
c−1U

dx |c|p (8)

Fourier transforms can be defined when introducing character function χ(x) = e2πi{x},

where {x} is the fractional part of x. And the integral of the character function is

∫
pvUp

dy χ(y) =



p−v(1− p−1) if v ≥ 0

−1 if v = −1

0 if v < −1

(9)

In particular, the integral of χ overQp is zero and thus we can define the Fourier transform
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of the character itself to be the distribution in analogue of Dirac Delta in the reals:

∫
Qp

dx χ(k1x)χ(k2x) = δ(k1 + k2) (10)

Similarly, Mellin transform can be defined. Gelfan-Graev gamma functions can be defined

as the Mellin transform of the character functions:

Γp(s) ≡
∫
Qp

du

|u|p
χ(u)|u|sp. (11)

With local zeta functions defined as

ζp(s) ≡
1

1− p−s
, (12)

it is not hard to check that

Γp(s) =
ζp(s)

ζp(1− s)
. (13)

Adelic product relation can be constructed, relating real special functions with p-adic spe-

cial functions. Moreover, as an analog of Cauchy’s integral formula, Vladimirov derivatives
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can be defined over p-adic numbers:

Ds
yf(y) ≡

1

Γp(−s)

∫
Qp

dx
f(x)

|x− y|1+sp

. (14)

In particular, we can see that

Ds
yχ(ky) = |k|spχ(ky). (15)

As one can observe, the techniques needed to study p-adic field theories are of a similar

form with the real bi-local field theories, essentially due to the similar definition of frac-

tional derivatives. We will discuss some of these analytic tools in the next section.

In fact, field theories over the p-adic numbers have been studied extensively, starting with

Dyson’s hierarchical model 36 and continuing with the rigorous results of 14, with the field

theory perspective emerging clearly in92. In particular, the point that p-adic field theories

can be obtained as continuum limits of hierarchical models was first made in92. The re-

views 15,101,103,124 provide useful points of entry into the large literature on p-adic field theory

and related topics.
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0.4 Non-local field theories

0.4.1 Fourier transforms

In loop calculations we will often need to go back and forth between momentum space

expressions and their real space counterparts, using the Fourier transforms

ϕ(x) =

∫
V

dnk e2πik·xϕ̂(k) ϕ̂(k) =

∫
V

dnx e−2πik·xϕ(x) . (16)

The relevant results are fairly similar between real and p-adic cases, so we present them to-

gether. When V = Rn, the definitions (16) are entirely standard, and k · x can be under-

stood as the ordinary dot product. Likewise, in this case, |x| is understood as the standard

L2 norm onRn. We will use real and Archimedean interchangeably from now on.

The simplest n-dimensional p-adic construction is based on letting V = Qpn be the

(unique) unramified n-dimensional extension ofQp. LetN andTr be the field norm and

field trace with respect to the extensionQpn/Qp. Then we define |x| = |N(x)|1/np where | ·

|p is the usual p-adic norm. We will refer to the p-adic case as ultrametric or non-Archimedean.

Next we define k · x = 1
n
Tr(kx). Note that k · x ∈ Qp, so to give meaning to e2πik·x we

now only need to define e2πiξ for ξ ∈ Qp. To this end we find the unique p-adic integer

⌊ξ⌋ such that ξ − ⌊ξ⌋ ∈ [0, 1) ∩ Q, and we understand that by e2πiξ we really mean

e2πi(ξ−⌊ξ⌋).
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We are particularly interested in the Fourier transform of powers of |k|:

∫
V

dnk e2πik·x|k|s = ΓV (n+ s)

|x|n+s
+ (contact terms) . (17)

Here ΓV (s) is a meromorphic function of swhich can be evaluated as

ΓV (s) =
ζv(s)

ζv(n− s)
(18)

where we set v = ∞ in the Archimedean case and v = p in the ultrametric case, with

ζ∞(s) ≡ π−s/2ΓEuler(s/2) ζp(s) ≡
1

1− p−s
. (19)

Intuitively, ΓV is a variant of the Euler gamma, specific to the choice of V , and constructed

so as to be the coefficient of the 1/|x|n+s term in (17). In the remainder of our discussion,

integrals are over V unless otherwise indicated.

The contact terms in (17) are somewhat delicate and dependent on detail. When−n <

s < 0, the integral in (17) is convergent, and no contact terms are needed. One can easily

check that ΓV (n+ s) → 0 as s → 0, so when s = 0 the power law term goes away and we

recover the obvious result ∫
dnk e2πik·x = δn(x) . (20)
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For s > 0, the integral in (17) diverges, and we need a more careful approach. A good first

step is to understand (17) in terms of its action on a test function ϕ : V → R:

∫
dnk e2πik·x|k|sϕ̂(k) = Dsϕ(x) , (21)

whereDs is some linear map on functions ϕ(x). A suitable class of test functions is the

so-called Schwartz-Bruhat functions. When ϕ : Qpn → R, we require that ϕ is locally con-

stant with compact support. For example, the characteristic function of the p-adic integers

is a Schwartz-Bruhat function onQp. When ϕ : Rn → R, the test functions are more ap-

propriately called Schwartz functions, and their defining property is that they go to 0 faster

than any power of |x|, as do all their derivatives. An example is a Gaussian. Both in the real

and ultrametric cases, the Fourier transform ϕ̂(k) of a Schwartz-Bruhat function is again a

Schwartz-Bruhat function.

0.4.2 Fractional derivatives in position space

With (21) taken as the definition ofDs, our task is to find a representation ofDs entirely in

position space. In the ultrametric case for arbitrarily positive s, one finds

Dsϕ(x) = ΓV (n+ s)

∫
dny

ϕ(y)− ϕ(x)

|x− y|n+s
. (22)
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This is the Vladimirov derivative. In the Archimedean case, the same expression (22) is

valid for 0 < s < 2. There is one more easy case to dispose of: even positive integer s

for Archimedean V . Then ΓV (n + s) = 0, which makes sense in (17) because the right

hand should be purely distributional, on account of |k|s = (k2)s/2 being analytic in k2.

Explicitly,

Dsϕ(x) =
1

(2π)s
(−�)s/2ϕ(x) for positive even s , (23)

where� =
∑n

i=1 ∂
2
xi .

We are left with the task of definingDs for Archimedean V and for s > 2 but not

an even integer. Heuristically, the contact terms in (17) are a sum of terms of the form

�rδn(x), where 0 ≤ r < s/2, with divergent coefficients. To state this more precisely,

we write

Dsϕ(x) = ΓV (n+ s)

∫ ′
dny

ϕ(y)− ϕ(x)

|x− y|n+s
, (24)

where a regulated integral ∫ ′
dny

G(x, y)

|x− y|n+s
(25)

is rendered finite (if possible) by allowing the subtraction fromG(x, y) of a finite sum of

smooth functions of either of the following types:

I. Pure powers: more precisely, any function whose y dependence comes solely through
a factor |x− y|α where α is a real number. This is meant to include, through the case
α = 0, functions which have no y dependence.
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II. Higher partial waves: more precisely, any function of the form Y (ŷ − x)g(|x − y|)
where Y (ẑ) is a spherical harmonic on Sn−1 other than the s-wave.

Type I functions are never integrable, whereas type II functions may or may not be; so

at best there is a unique choice of type I functions that will work, whereas many choices of

type II functions are possible. An alternative approach, generalizing the principle value pre-

scription, is to eschew modifications of the integrand and instead carry out y integration in

polar coordinates centered around x, as follows. One first performs the angular integrals.

Then the radial integral is restricted to run from l to L. One next allows the subtraction

of an arbitrary finite sum of negative powers of l and/or positive powers of L, chosen (if

possible) so that the limits l → 0 and L → ∞, taken independently, lead to a finite re-

sult. Doing the angular integration first obviates the need for type II functions, while the

ultraviolet and infrared cutoffs, l and L, obviate the need for type I.‡

While the subtractions described can in principle cure either ultraviolet (UV) or infrared

(IR) divergences, we will be interested only in applications where UV divergences matter:

that is, divergences arising when |x − y| → 0 (with x held fixed). Type II subtractions are

relatively innocuous because they follow automatically from performing angular integra-

tions first; therefore we will use the notation
∫
dny . . . to indicate a y integration with type

‡The alert reader may notice that the alternative approach using cutoffs is not quite equivalent to adjust-
ingG(x, y) by pure powers of |x − y|: For example, if s is a positive even integer andG(x, y) = |x − y|s,
then we get a logarithmic divergence that would obviously be canceled using an appropriate type I function
but cannot be cured using powers of l and/orL after a cutoff integration. Because we avoid even integer s as
well as functionsG(x, y)which grow as positive powers of large separation |x− y|, we do not need to specify
a resolution to this inequivalence.
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II subtractions which we usually omit to write explicitly.

Although we have stated our integration prescriptions in the abstract, it is easy to see

how to apply them to (24) when ϕ is a Schwartz function. Consider the case 2 < s < 3,

and set x = 0 for simplicity. Then (24) becomes

∫ ′ dny

|y|n+s
[ϕ(y)− ϕ(0)] =

∫
dny

|y|n+s

[
ϕ(y)− ϕ(0)− yi∂iϕ(0)−

1

2
yi1yi2∂i1∂i2ϕ(0)

]
.

(26)

The extra terms in square brackets on the right hand side of (26) evidently render the inte-

gral convergent near y = 0 for 2 < s < 3. The term linear in y is clearly a type II function,

and the term quadratic in y is a sum of a type II function proportional to yi1yi2 − y2

n
δi1i2 (a

d-wave term) and a type I function proportional to y2. If 3 ≤ s < 4, then we would need

one additional term in the Taylor series expansion of ϕ around y = 0, and this additional

term is a type II function. In summary, for 2 < s < 4, and omitting type II subtractions,

Dsϕ(0) =

∫
dny

|y|n+s

[
ϕ(y)− ϕ(0)− y2

2n
�ϕ(0)

]
. (27)

Evidently, if 0 < s < 2, a simpler subtraction scheme would work, resulting in (27) with

the laplacian term omitted, in agreement with (22).
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For general s > 0 (other than positive even integers) and Archimedean V ,

Dsϕ(0) = ΓV (n+ s)

∫
dny

|y|n+s

ϕ(y)− ⌊s/2⌋∑
r=0

y2rbr�rϕ(0)

 (28)

where

br =
ΓEuler(

n
2
)

22rΓEuler(r +
n
2
)ΓEuler(r + 1)

. (29)

In principle, one may derive (28) by subtracting an appropriate number of terms in the

Taylor series expansion of ϕ(y) and then finding appropriate type II subtractions to bring

the result into the form (28).

A more efficient way to determine the coefficients br is to start from (28) and Fourier

transform:

∫
dnx e−2πik·xDsϕ(x)

= ΓV (n+ s)

∫
dnx e−2πik·x

∫
dny

|x− y|n+s

ϕ(y)− ⌊s/2⌋∑
r=0

(x− y)2rbr�rϕ(x)


=

2ΓV (n+ s)

ζ∞(n− 1)

∫ ∞

0

dỹ

ỹs+1

∫ π

0

dθ (sin θ)n−2ϕ̂(k)

e2πi|k|ỹ cos θ − ⌊s/2⌋∑
r=0

br(2πi)
2rk2rỹ2r


= ΓV (n+ s)(2π)

n
2
+s|k|sϕ̂(k)

∫ ∞

0

dρ

ρ−n
2
−sJn

2
−1(ρ)−

⌊s/2⌋∑
r=0

arρ
2r−s−1


(30)

In the second equality of (30), we have partially carried out the y integral in polar coordi-
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nates around the point y = x, introducing a radial variable ỹ = |x − y|. In the third

equality, we have carried out the angular θ integral and introduced a new radial variable,

ρ = 2π|k|ỹ. The ρ integral in the last line of (30) converges, provided s is positive but not

an even integer, and provided the coefficients ar are coefficients in the Taylor series expan-

sion of the Bessel function around ρ = 0. These coefficients ar are well known, and from

them one can recover the expression (29) for the br.

0.4.3 Bi-local integrals

We are particularly interested in double integrals of the form

∫
V×V

dnxdny

|x− y|n+s
G(x, y) (31)

where s > 0 andG(x, y) is piecewise constant if V is ultrametric and smooth if V is

Archimedean. Unless otherwise noted, all double integrals over x and y will by taken over

all of V × V . In the ultrametric case, for any s > 0, following (22) we define

∫ ′ dnxdny

|x− y|n+s
G(x, y) ≡

∫
dnxdny

|x− y|n+s
[G(x, y)−G(x, x)] . (32)
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In the Archimedean case, we define

∫ ′ dnxdny

|x− y|n+s
G(x, y) (33)

by performing the y integration first and allowing the subtraction of type I and type II

functions toG(x, y) in order to achieve a finite result (if possible). As in the previous sec-

tion, type II subtractions are deemed relatively inconsequential, so even unprimed integra-

tion over x and y means to perform the y integration first, allowing the subtraction of type

II functions in order to achieve a finite result (if possible). Explicitly, for s not a positive

even integer,

∫ ′ dnxdny

|x− y|n+s
G(x, y) =

∫
dnxdny

|x− y|n+s

[
G(x, y)−

⌊s/2⌋∑
r=0

br�r
yG(x, y)

∣∣∣
y=x

(y − x)2r

]
,

(34)

where the coefficients br are as given in (29). We avoid positive even integer swhen V is

Archimedean because in this case we expect that our constructions will lead instead to

purely local theories; also, precisely in this case, the subtleties pointed out in footnote ‡

regarding logarithmic divergences come into play.

Our computational strategy will turn on converting bi-local position space integrals into

Fourier space integrals. Let’s start with the simplest example of that calculation, valid for

ultrametric V and any s > 0, and also for Archimedean V and 0 < s < 2. Let ϕ : V → R
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be a Schwartz-Bruhat function. Then

∫
dnxdny

|x− y|n+s
[ϕ(x)− ϕ(y)]2 =

∫
dnxdny

|x− y|n+s
(
[ϕ(x)− ϕ(y)]2 + ϕ(x)2 − ϕ(y)2

)
= −2

∫
dnxϕ(x)

∫
dny

|x− y|n+s
[ϕ(y)− ϕ(x)]

= − 2

ΓV (n+ s)

∫
dnxϕ(x)Dsϕ(x) = − 2

ΓV (n+ s)

∫
dnk ϕ̂(−k)|k|sϕ̂(k) .

(35)

The first step is actually the trickiest, because it is not clear from the rules of integration

set forth following (33) that we are allowed to add a function like ϕ(x)2 − ϕ(y)2 to the

integrand. To justify this step, we denote f(x) = ϕ(x)2, and we argue that

∫
dnxdny

|x− y|n+s
[
ϕ(y)2 − ϕ(x)2

]
=

1

ΓV (n+ s)

∫
dnxDsf(x) = 0 . (36)

The second integral in (36) is the k = 0 component of the Fourier transform ofDsf(x).

But this Fourier transform is |k|sf̂(k), and since s > 0 the k = 0 component indeed

vanishes.

Let’s now pursue the same computation for the Archimedean case with 2 < s < 4. On
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one hand, using (34),

∫ ′ dnxdny

|x− y|n+s
[ϕ(x)− ϕ(y)]2 =

∫
dnxdny

|x− y|n+s

(
[ϕ(x)− ϕ(y)]2 − (y − x)2

n
(∂ϕ(x))2

)
=

∫
dnxdny

|x− y|n+s

(
[ϕ(x)− ϕ(y)]2 − (y − x)2

2n

[
−2ϕ(x)�ϕ(x) +�ϕ(x)2

])
.

(37)

On the other hand, using (27),

− 2

ΓV (n+ s)

∫
dnk ϕ̂(−k)|k|sϕ̂(k) = −2

∫
dnxϕ(x)

∫ ′ dnz

|z|n+s
[ϕ(x+ z)− ϕ(x)]

=

∫
dnxdny

|x− y|n+s

(
2ϕ(x) [ϕ(x)− ϕ(y)] +

(y − x)2

n
ϕ(x)�ϕ(x)

)
.

(38)

In order to conclude

∫ ′ dnxdny

|x− y|n+s
[ϕ(x)− ϕ(y)]2 = − 2

ΓV (n+ s)

∫
dnk ϕ̂(−k)|k|sϕ̂(k) , (39)

we must therefore argue that the final integrals in (37) and (38) agree. Subtracting (38) from

(37) and simplifying slightly with the definition f(x) = ϕ(x)2, we arrive at

∫
dnxdny

|x− y|n+s

[
f(y)− f(x)− (y − x)2

2n
�f(x)

]
=

1

ΓV (n+ s)

∫
dnxDsf(x) = 0 .

(40)

The first equality in (40) follows from (27), and the second is by the same argument used
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following (36). To summarize, for Archimedean V and for 2 < s < 4,

∫
dnxdny

|x− y|n+s

(
(y − x)2

n
(∂ϕ(x))2 − [ϕ(x)− ϕ(y)]2

)
=

2

ΓV (n+ s)

∫
dnk ϕ(−k)|k|sϕ(k) .

(41)

ΓV (n + s) > 0 for 2 < s < 4, and so without the (∂ϕ)2 on the left hand side of (41) we

would have a sign problem. The equality (39) can be checked in a similar manner for s > 4.

A key relation is

�m
y (ϕ(x)− ϕ(y))2

∣∣∣
x=y

= −2ϕ(x)�mϕ(x) +�mϕ(x)2 . (42)

Two take-away lessons are:

• When we write simple |k|s kinetic terms in momentum space, in position space we
are combining non-local position space terms and local terms involving derivatives in
a precisely tuned ratio.

• There is some freedom in the precise structure of the position space form, as exempli-
fied by the equality of the last integrals in (37) and (38) due to a manipulation which
is the non-local version of integration by parts.

0.4.4 Non-renormalization theorem

S =
1

2

∫
V

dnk ϕ̂(−k)|k|sϕ̂(k) +
∫
V

dnxU(ϕ(x)) , (43)
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We exhibit the simplest manifestation of the non-renormalization theorem of the non-local

quadratic kinetic term in the action (3.2), where V = Rn orQpn , with

U(ϕ) =
g

3!
ϕ3 . (44)

The purely cubic theory is unstable, but it serves our purpose because we are only inter-

ested in analyzing the behavior of the one-loop correction to the propagator. We obtain the

one-loop contribution to the quadratic part of the one-particle irreducible (1PI) effective

action:

δΓ2(k) = −g
2

2
I where I =

∫
dnℓ

|ℓ|s|k − ℓ|s
. (45)

We continue the convention of integrating over all of V except as otherwise indicated. Let’s

assume n > 2s, so I is UV divergent (and IR convergent). To regulate the divergence, we

introduce a hard cutoff: |ℓ| ≤ Λ. If V = Rn, thenΛ can be any positive real number. If

V = Qpn , then we will require thatΛ is an integer power of p.

The ultrametric case is easy to analyze, because when |ℓ| > |k|we have |ℓ| = |k − ℓ| ex-

actly. So, except in the compact region where |ℓ| ≤ |k|, the integrand has no k dependence

at all. Therefore, any UV divergences are entirely independent of k, and to evaluate them
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we can set k = 0:

I(Λ) =

∫
|ℓ|≤Λ

dnℓ

|ℓ|s|k − ℓ|s
=

∫
|ℓ|≤Λ

dnℓ

|ℓ|2s
+ (UV finite)

=
ζp(n− 2s)

ζp(n)
Λn−2s + (UV finite) .

(46)

The last equality comes from splitting the integration region into shells with fixed |ℓ|;

then the integral becomes a geometric sum. Because the divergent part of I(Λ) has no k-

dependence, the counterterm required to cancel it is proportional to
∫
dnk ϕ̂(−k)ϕ̂(k) =∫

dnxϕ(x)2. In other words, it is a mass term. This argument is easy to generalize to the

statement that only purely local terms (powers of ϕ(x)) can be radiatively generated start-

ing from the action (3.2) over V = Qpn . An essentially equivalent argument was made in a

Wilsonian picture in92.

The Archimedean case is more subtle because of the possibility of subleading diver-

gences. A straightforward approach is to expand

I(Λ) =

∫
|ℓ|≤Λ

dnℓ

|ℓ|s|k − ℓ|s
=

∫
|ℓ|≤Λ

dnℓ

|ℓ|2s

(
1− 2k · ℓ̂

|ℓ|
+
k2

ℓ2

)−s/2

(47)

in powers of k. Terms with an odd number of powers of k vanish by parity, leaving only

terms analytic in k2. Of these, only terms proportional to k2r with r ≤ n
2
− s are UV diver-

gent. In short, the divergent part of I(Λ) is a polynomial in k2 whose order is
⌊
n
2
− s
⌋
. A
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divergent term proportional to k2r requires a counterterm proportional to
∫
dnxϕ(x)�rϕ(x).

These again are local terms and leave the non-local kinetic term unchanged.

We should note a troublesome feature of the hard momentum cutoff for Archimedean

theories: The coefficients one finds for sub-leading divergences depend on how one im-

plements the cutoff. For example, it is easy to check that the coefficient of the k2 term in

I(Λ) changes if instead of requiring |ℓ| ≤ Λwe impose the more democratic condition∣∣ℓ− k
2

∣∣ ≤ Λ. However, the feature that we care about, namely the fact that the divergent

terms have only polynomial dependence on k2, doesn’t depend on the details of the cutoff.

It is perhaps instructive to consider one other alternative, namely dimensional regulariza-

tion, in which one first computes

I =
Γ∞(2s− n)

Γ∞(s)2
(k2)

n−2s
2 (48)

by continuing to a domain of n in which the integral is convergent. (In the current exam-

ple, s < n < 2s is such a domain.) The only divergences one then tracks are poles of

the right hand side of (48) as a function of n. These occur precisely when n−2s
2

is a non-

negative integer. It is characteristic of dimensional regularization that there is (at most) one

divergent term for a given n, corresponding to a logarithmic divergence in the original inte-

gral.
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Figure 4: The boundary of a tree graph.

0.5 On the boundary

In figure 1, where we draw all the couplings of the Ising model, a clear real one dimension

emerges and represents the topology as depicted by neighborhoods in figure 2. One may

worry that illustrating all coupling links in a graph for an all-to-all coupling pattern is not

informative. It turns out for a hierarchical model like in figure 3, the coupling strength can

be conveniently described by a not-so-complicated graph, a tree graph (see figure 4). The

red path represents the only non-backtracking path connecting two sites belonging to the

smallest neighborhood. The blue one connects the next nearest, and the green connects the

next next nearest in the hierarchical sense. Note that for any two sites on the boundary of

the tree, there is a unique non-backtracking path connecting them. And given the number

of links connecting i and j being n, then 2n/2/8 = |i − j|2. The tree graph perfectly cap-

tures the p-adic metric on this finite lattice on the boundary. For a general prime number p,

the coordination number of the tree is p+ 1.
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If we take the above tree structure and extend the bulk tree infinitely in both directions,

we will obtain theQp line (more rigorously, a projective space P1(Qp)) on the boundary.

Interestingly, this limiting process also uniquely generates the p-adic number field. After

taking the infinite limit on the tree, the boundary is automatically completed by the p-adic

norm. This is not true for real numbers as there is no obvious lattice to the knowledge of

the author that uniquely generates the real number field when taken the infinite limit. One

always has to complete the field by hand. This is a subtle difference between real type lattice

models and p-adic type lattice models. Since the p-adic numbers are inevitably the bound-

ary of a tree, theories on the p-adics must be related to theories on the tree graph. This par-

ticular infinite tree, called the Bruhat-Tits tree, has negative constant graph curvature and

is a graph analog of the AdS space. In recent years there are works on p-adic AdS/CFT62,69,

where by considering nearest-neighbor scalar models on the tree graph and p-adic scalar

field theories on the boundary, these authors study the bulk boundary correspondence and

find results that can be compared to the real Ads/CFT through adelic formulas. Fermions

in the bulk, however, need the line graph of a Bruhat-Tits tree 59.

The boundary of a lattice model that shows real topology is not as restrained and is less

clear as there are infinitely many paths that connect two sites on the boundary. For exam-

ple, we picture a nearest-neighbor square lattice model and all its coupling links in figure 5.

It is free to conclude that the boundary theory becomes an all-to-all coupling model as for
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Figure 5: The boundary of a square lattice.

any given two sites on the boundary, there are always paths connecting them through the

bulk. What really remains unclear is the coupling Jij as a function of real distance |i − j|.

We are only able to make a reasonable guess. Suppose we are away from the criticality, then

each link contributes a damping factor λ. The contribution to J(1) of the red path is then

λ7 while the contribution to J(2) of the blue path is λ14. However, J should decrease

less than the exponential law because there are certain paths that do not have a shorter dis-

tance counterpart when the distance is large, like the green path. A naive guess then is the

power law. We think that to determine J(|i − j|) completely, one needs to sum all the

self-avoiding random walks that begin and end on the boundary. In fact, in the continuum

limit, the counterpart of this problem is rather easy to address: dimension reduction of

R× R+ toR generates non-local power-law propagators of the free fields, as will be treated

in details in later chapters. In chapter 4, we study a non-local version of QED, which is

equivalent to coupling bulk photons to boundary fermions. In chapter 5, we briefly discuss
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a codimension two monodromy defect defined inO(N) symmetric theories where interac-

tion will be turned on throughout the bulk and the boundary.
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1
Sparse coupling pattern

The sparse coupling pattern that we want to study eliminates couplings between spins i

and j unless |i− j| or 2N − |i− j| is a power of 2. It can be written as

J
sparse
h = J∗

N−1∑
n=0

2ns(δh−2n + δh+2n − 2δh) . (1.1)
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So for the caseN = 3 shown in figure 4, we drop the coupling between spins 0 and 3,

and between 0 and 5, and between all translated copies of these pairs, for example, the pairs

(1, 4) and (1, 6). For this small value ofN , the “sparse” coupling pattern is still nearly all-

to-all. But for largeN , the number of spins coupling to one spin increases linearly with

N instead of as 2N . This sparseness reduces the decoherence cost by site-to-site couplings,

making it more experimentally accessible while still keeps important features of quantum

many-body systems, like chaos and fast scrambling. Similar ideas have been considered by

cold atom physicists. In this paper 10, the authors proposed the cold atom realization of this

sparse coupling pattern and studied the system from a quantum many-body point of view

by simulation.

If the spectral exponent s is large and negative, intuitively, we expect to recover the

nearest-neighbor coupling as only the first term (n = 0) matters in that limit. Meanwhile,

as we will see, when the spectral parameter s is made large and positive, there is strong evi-

dence that we recover 2-adic couplings. In the former case, the two-point Green’s function

of the nearest neighbor model with 2N spins is then well-approximated at largeN by a

continuum Green’s function that we can extract from field theory overR. This Green’s

function is smooth in an Archimedean sense, except at zero separation. In fact, if we are

considering the model with pure nearest-neighbor interactions, the Green’s function away

from zero separation isC∞. The smoothness of the continuum limit of Green’s function is
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a good way to understand how continuous quantities emerge from a discrete lattice descrip-

tion, as we have mentioned in the introduction.

The smoothness of p-adic functions may be less familiar to the reader. For a function

that mapsQp toR, the derivative is neither real nor p-adic and hence tricky to define. We

have demonstrated that Green’s function realizes that map through the p-adic norm func-

tion, which is to say,G(x) is only a function of |x|p. Because the values of p-adic norm

belong to a countable set, the norm function is locally constant (given x, there exists δ > 0

such that every y with |x − y|p < δ has f(x) = f(y)), so is the p-adic Green’s function.

Green’s functions in models with perfectly p-adic coupling are also locally constant (piece-

wise constant for a discrete base space) except at zero separation, as we will see in examples

soon. In fact, the accepted analog of aC∞ condition is to require that a mapG fromQp

toR is locally constant. Note that a function fromQp toRwhich is everywhere locally

constant need not be globally constant (as it would for a function fromR toR). A more

complete introduction to smooth test functions over the p-adic numbers than we will pro-

vide can be found, for example, in 116. When we turn to sparse coupling patterns, we will

recognize that we are recovering 2-adic continuity precisely when the two-point Green’s

function is well approximated by a locally constant function. This is exactly what happens

in the limit of large positive s for the 2-adic statistical mechanical models that we will study

explicitly.
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In short, as the spectral exponent s ranges from large negative to large positive values, the

Green’s functions we study the transition from showing emergent Archimedean continuity

to showing emergent p-adic continuity. How this transition occurs is slightly subtle, but

we will combine some numerical results with analytical reasoning to characterize it both in

momentum space and position space.

1.1 Lattice Green’s functions

Consider therefore the following Hamiltonian for a lattice with L sites:

H ≡ −1

2

∑
i,j

Jijϕiϕj −
∑
j

hjϕj , (1.2)

where the ϕi are commuting real numbers. We assume Jij only depends on |i − j|, where

arithmetic operations like i − j are carried out modulo L. Field h is useful in computing

two-point Green’s functions later. DefineL-dimensional vectors v⃗κ by

vκ,j ≡
1√
L
e2πiκj/L for κ = 0, 1, 2, . . . , L− 1 . (1.3)

The discrete Fourier transform is defined as

Xj =
L−1∑
κ=0

X̃κvκ,j . (1.4)
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An easy calculation shows that

Jv⃗κ =
√
LJ̃κv⃗κ , (1.5)

where Jwithout indices means the symmetric matrix Jij , and J̃κ is the Fourier transform

of the coupling strengths Jh. Using (1.4)-(1.5), we have immediately

H = −
√
L

2

L−1∑
κ=0

J̃κϕ̃−κϕ̃κ −
L−1∑
κ=0

h̃−κϕ̃κ . (1.6)

We now make two assumptions:

• J̃0 = 0. This is saying
∑

i Jij = 0. We understand this as a consequence of assum-
ing the existence of a symmetry where all the ϕi are shifted by a common value.

• J̃κ < 0 for all κ ̸= 0. This amounts to saying that the interactions among the ϕi are
ferromagnetic.

It is useful to note that the second assumption follows from the first together with the

requirement that all Jh ≥ 0 for h ̸= 0, with not all of them equal to zero.

It is slightly tricky to extract the Green’s function from the naively defined partition func-

tion because 1/J̃0 diverges. In order to make the statistical mechanics well-defined, we in-

sert a factor of δ(ϕ̃0) into the partition function:

Z[h] ≡

(
L−1∏
j=0

∫ ∞

−∞
dϕj

)
δ(ϕ̃0)e

−βH = Z[0] exp

{
− β

2
√
L

L−1∑
κ=1

1

J̃κ
h̃−κh̃κ

}
. (1.7)
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We are interested in the two-point function

Gij = ⟨ϕiϕj⟩ =
1

β2Z[0]

∂2Z[h]

∂hi∂hj

∣∣∣∣
h=0

. (1.8)

From Jij = Ji−j it follows thatGij = Gi−j . A short calculation starting with (1.8) leads to

Gh = − 1

βL3/2

L−1∑
κ=1

1

J̃κ
e2πiκh/L . (1.9)

The factor of δ(ϕ̃0) in the partition function is to say
∑

i ϕi = 0. This corresponds to

something more familiar in field theory techniques: regularization of independent infini-

ties by discarding global integrals or discarding boundary terms. It may seem undesirable,

though, from the point of view of constructing Hamiltonians with only sparse couplings

among the spins, because δ(ϕ̃0) can be viewed as theK → ∞ limit of e−Kϕ̃20 , and this

amounts to a strong all-to-all coupling among spins (though of a very particular form).

In fact, we could achieve essentially the same results by omitting the factor of δ(ϕ̃0)while

sending J0 → J0 − µwhere µ is small and positive. Then J̃0 ∝ −µ, while the other J̃κ

would scarcely be affected since they are finite and negative already atO(µ0). Use of (1.8)

would then lead to the sameGh as in (1.9), up to an overall constant proportional to 1/µ.

Discarding this uninteresting constant and then taking the limit µ → 0would lead to pre-

cisely the result given in (1.9). In other words, we can recover (1.9) by starting with a massive
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theory with truly sparse couplings and taking the massless limit.

Even with (1.9), exact analytic treatment of the sparse coupling model is too difficult.

We will first apply the analysis leading to (1.9) to the Archimedean and p-adic statistical

models as best as we can and then numerically study the sparse coupling model letting it

interpolates between the two as the spectral parameter ranges from negative to positive

values.

1.1.1 Archimedean coupling

As an extremal case of an Archimedean statistical model, we consider the model with nearest-

neighbor coupling specified by

JNN
h = J∗(δh+1 + δh−1 − 2δh) , (1.10)

which leads to

GNN
h =

1

4βJ∗L

L−1∑
κ=1

e2πiκh/L

sin2 πκ
L

. (1.11)

If L is large, then we can approximate sin πκ
L

≈ πκ
L

and extend the sum to infinity:

GNN
h ≈ L

βJ∗

∞∑
κ=−∞, κ ̸=0

e2πiκh/L

4π2κ2
=

L

βJ∗
G(h/L) , (1.12)
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where the continuum two-point functionG(x) takes the form

G(x) =
1

2

(
x− 1

2

)2

− 1

24
for x ∈ [0, 1] . (1.13)

Properly speaking,G(x) is defined on a circle with x ∼ x + 1, with periodic boundary

conditions, and it satisfies

d2G

dx2
= −δ(x) + 1 and

∫ 1

0

dxG(x) = 0 . (1.14)

If instead of nearest neighbor coupling we have some generic finite-range Jh satisfying

Jh = J−h > 0 for h ̸= 0 and J̃0 = 0, then we get essentially the same result:

J̃κ ≈ −4π2κ2

L5/2
J∗ for

∣∣∣κ
L

∣∣∣
∞

≪ 1 (1.15)

for some positive constant J∗, and so for large L,

Gh ≈
L

βJ∗
G(h/L) (1.16)

with the same continuum functionG(x) given in (1.13). This suggests it has the same con-

tinuum limit as the nearest neighbor coupling, which makes sense due to the finite range

being negligible compared to L sent to infinity.
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It is worth noting that if we focus on small |h/L|∞, then we are mostly insensitive to the

fact that the system is at finite volume, and we findG(x) ≈ G(0) − |x|∞/2, which is the

right power-law behavior for a local scalar in one dimension.

To compare to the sparse coupling, we want to generalize the nearest neighbor model

to include a spectral parameter. As described in the introduction, we can also define non-

local power law models. The exact Green’s would be difficult to compute that way. We can

reverse engineer it by first defining

J̃power
κ ≡ − J∗

2s
√
L

[
sin
(πκ
L

)]−s
(1.17)

so that

G̃power
κ =

2s

βJ∗
√
L

[
sin
(πκ
L

)]s
. (1.18)

For s = −2, this model reduces to the nearest neighbor coupling model. In general for s <

1, one can approximate the Fourier series of (1.17) with an integral in the limit h/L → 0 to

find that

Jpower
h ∼ −J∗

π

Γ(1− s) sin(πs/2)Γ(h+ s/2)

Γ(1 + h− s/2)
. (1.19)

By additionally invoking Sterling’s formula, it becomes apparent that in the regime 1 ≪

h ≪ L, the model we are considering does indeed couple the spins according to a power
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law:

Jpower
h ∼ −J∗

π
Γ(1− s) sin (πs/2)hs−1. (1.20)

For s < −1, the large L limit of the position space Green’s function asymptotes to

Gpower
h =

2sπs

βJ∗L1+s

[
Li−s(e2πih/L) + Li−s(e−2πih/L)

]
, (1.21)

where Lin(x) denotes the polylogarithm function.

1.1.2 p-adic coupling

Choose a prime number p and a positive integerN , and assume

L = pN . (1.22)

Then an all-to-all coupling of spins can be defined based on the p-adic norm:

Jp−adic
h =


J∗|h|−s−1

p if h ̸= 0

−J∗L
ζp(−s)

ζp(1)ζp(−Ns)
if h = 0 .

(1.23)
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Here we have used the local zeta function

ζp(s) ≡
1

1− p−s
, (1.24)

so named because the usual Riemann zeta function is ζ(s) =
∏

p ζp(s)where the product

is over all prime numbers.

To analyze (1.23), it is useful first to work out the Fourier transform of the following

function:

fh = A|h|−s−1
p (1− δh) +B + Cδh . (1.25)

A tedious but straightforward calculation suffices to show that

f̃κ = Ã|κ|sp(1− δκ) + B̃ + C̃δκ (1.26)

where

Ã = Ls+
1
2
ζp(−s)
ζp(1 + s)

A B̃ =
C√
L
− Ls+

1
2
ζp(−s)
ζp(1)

A C̃ =
√
L

(
B +

ζp(−s)
ζp(1)

A

)
.

(1.27)

With the help of (1.27) one can see immediately that Jp−adic
0 was chosen in (1.23) precisely so
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as to have J̃p−adic
0 = 0. Indeed,

J̃p−adic
κ = J∗

√
L

[
ζp(−s)
ζp(1 + s)

∣∣∣κ
L

∣∣∣s
p
− ζp(−s)

ζp(1)

]
(1− δκ) . (1.28)

While J̃p−adic
κ < 0 for κ ̸= 0 for any s ∈ R, we are mostly interested in the regime s > 0,

in which case the absolute value of the first term in square brackets in (1.28) is larger than

the absolute value of the second. Thus we may expand

G̃p−adic
κ = − 1

βLJ̃κ
(1− δκ) = −ζp(1)/ζp(−s)

βL3/2J∗

∞∑
n=1

(
ζp(1 + s)

ζp(1)
L−s

)n
|κ|−nsp (1− δκ) .

(1.29)

The expansion is useful because it allows us to apply the Fourier transform (1.25)-(1.27) and

obtain

Gp−adic
h = −ζp(1)/ζp(−s)

βL2J∗

∞∑
n=1

ζp(1 + s)n

ζp(1)n

[(
ζp(−ns+ 1)

ζp(ns)
|h|ns−1

p − ζp(−ns+ 1)

ζp(1)

)
(1− δh)

− ζp(−ns+ 1)

ζp(1)ζp(N(ns− 1))
δh

]
.

(1.30)

The result (1.30) may seem complicated, but note that its leading term isGp−adic
h = A|h|s−1

p +

B + Cδh for some constantsA,B, andC depending on s and proportional to 1
βL2J∗

. This

is perhaps not too surprising when compared with power-law interactions in real field the-

ories. Indeed, a power law 1/|x|α∞ in the action leads to a power law 1/|x|α̃∞ in the Green’s
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functions, where α̃ + α = 2d and d is the dimension of the field theory. The current setup

is essentially the same, except that the ordinary absolute value has been replaced by the p-

adic norm. Also, if we hold L2J∗ fixed, then except at h = 0 there is no L dependence at

all inGp−adic
h ; the only thing that changes is the range of allowed h. TakingL large means

that the range of h becomes p-adically dense in the p-adic integers Zp, defined as the subset

ofQp consisting of elements whose norm is no greater than 1. Zp can be understood as the

p-adic analog of the interval [−1, 1] ⊂ R. BecauseGp−adic
h is a function of h only through

its p-adic norm |h|p, we see that its continuum limit is locally constant everywhere onZp,

except at h = 0.

1.1.3 The sparse coupling

Now let

L = 2N (1.31)

for some positive integerN . Then we can consider a sparse coupling of the form

J sparse
h = J∗

N−1∑
n=0

2ns(δh−2n + δh+2n − 2δh) . (1.32)

By sparse, we mean that out of L independent values of Jh, onlyO(logL) are non-vanishing.

Of course, we could generalize from p = 2 to other values of p, but some unobvious com-
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plications arise in doing so, which we prefer to postpone.

The main qualitative features ofGsparse
h are:

• For sufficiently negative s,Gsparse
h closely approximatesGNN

h . This makes sense be-
cause when s is large and negative, only the first few terms in the sum matter.

• For sufficiently positive s,Gsparse
h closely approximatesG2−adic

h . This is less obvious
and will be investigated further in the next section.

• As s crosses from negative to positive values,Gsparse
h undergoes a transition from be-

ing closer to a smooth function in an Archimedean sense to being closer to a smooth
function in a 2-adic sense.

To visualize the behavior ofGsparse
h , we have found it helpful to mention again the dis-

crete version of the Monna map, introduced for p = 2 already in the introduction. For

completeness, we record here its definition for any p. Let any h ∈ {0, 1, 2, . . . , L − 1} be

expressed as

h =
N−1∑
n=0

hnp
n where each hn ∈ {0, 1, 2, . . . , p− 1} . (1.33)

Then the image of h under the Monna map is

M(h) ≡
N−1∑
n=0

hN−1−np
n . (1.34)

In figure 1.1 we showGsparse
h andG2−adic

h , the former as a function of both h and log2M(h),

for various values of s, to confirm the qualitative features listed above.
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Figure 1.1: Left:Gsparse
h andGpower
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h andG2−adic

h versus log2 M(h).
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1.2 Hölder Continuity bounds

Having observed an apparent change from Archimedean to 2-adic continuity in the dis-

crete models of section 1.1.3, we are now ready to discuss the continuum limit. In general,

smoothness based on derivatives is hard to define for p-adic like theories. The best we can

hope for is some kind of continuity bound, in our case, the Hölder continuity bound or the

Hölder conditions. Before getting into the main field theory calculations, let’s review what

Hölder conditions are in general. Let F be eitherQp orR, and denote the norm on F as | · |.

Let f be a map from some subsetD ⊂ F toR. Usually, if F = R, then for usD will be

an open interval, while if F = Qp, thenD will be an affine copy ofZp. LetO be any subset

ofD. Then f satisfies a Hölder condition overO with positive real exponent α iff there is

some positive real constantK such that

|f(x1)− f(x2)|∞ < K|x1 − x2|α (1.35)

for all x1 and x2 inO. IfO = D, then we would say that f is globally α-Hölder continu-

ous. We say that f is locally α-Hölder continuous at x iff there exists some open set I con-

taining x such that f is α-Hölder continuous on I . And we describe f as a whole as locally

α-Hölder continuous if it is locally α-Hölder continuous at every point in its domain (as-

sumed to be an open set). A Hölder continuous function with any positive exponent α is
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continuous in the usual sense. The bigger the α is, the smoother the function is. However,

when the base space is real, then α cannot be bigger than 1 generically, unless df/dx = 0

in an open region. But if F = Qp, then it is possible to have non-constant functions with

arbitrarily positive Hölder continuity exponent. This is another feature indicating that tra-

ditional derivatives of p-adic functions must be absent. *

The distinction between global and local α-Hölder continuity is important to us because

the continuum limit of the two-point functionGsparse
h is, in some cases, globally Hölder

continuous with one exponent (as hinted by the field theory analysis) and locally Hölder

continuous away from the origin with a larger exponent (mostly numerical evidence). We

will only present numerical evidences in this thesis. For rigorous field theory results with

sparse couplings, we suggest readers to the reference 54.

1.2.1 2-adic approximation of sparse coupling results

Ratios between Green’s functions derived from the sparse coupling and from the 2-adic

coupling should be bounded above and below when s is positive:

K1 < G̃sparse
κ /G̃2−adic

κ < K2
(1.36)

*A useful example of an α-Hölder continuous function f(x) is a linear combination of functions
|x − xi|α where the xi are constants. ||x1 − x0|α − |x2 − x0|α|∞ < |x1 − x2|α can be derived
based on a fun fact that for three points in a space with non-Archimedean metric (which is automatically an
ultrametric), two distances must be equal and the third must be less or equal to the other two.
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Figure 1.2: Left: Optimal values of the constantsK1 andK2 appearing in (1.36) as functions of s for fixedN .

Right: Optimal values of the constantsK1 andK2 as function ofN for fixed s.

for some positive constantsK1 andK2 which may depend on s. When the normalization

is taken care of (as we did), the ratio should asymptotically approach unity. Numerical sup-

port for this conclusion is shown in figure 1.2, where we show optimal values ofK1 andK2

as functions of s for variousN . As s→ 0,K2 seems to diverge asN increases.

Away from small positive s, G̃sparse
κ ≈ G̃2−adic

κ is evidently an excellent approxima-

tion. Based on empirically examining the curves on the left side of figure 1.2, we findKi ≈

1 + 2−2sκi(s)where the functionsκi(s) vary relatively slowly with s, possibly as a nega-

tive power of s, or possibly as a small positive power of 2−s. The right plot shows thatK1

andK2 goes to constants at sufficiently largeN , for a given positive s not too small. In or-

der to obtainK1 andK2 numerically as functions ofN and s, the actual procedure was as

follows:

1. For fixedN and s, compute G̃sparse
κ numerically using the methods of section 1.1, and

adjust the overall coupling strength J∗ so thatGsparse
h = 1when h = 0. (In other

words, the normalization condition is implemented in position space.)
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2. Likewise compute G̃2−adic
κ withG2−adic

0 = 1.

3. ComputeK1 andK2 as

K1 = min

(
G̃sparse
κ

G̃2−adic
κ

)
≡ min

κ̸=0

G̃sparse
κ

G̃2−adic
κ

K2 = max

(
G̃sparse
κ

G̃2−adic
κ

)
≡ max

κ̸=0

G̃sparse
κ

G̃2−adic
κ

.

(1.37)

We also want to quantify how ragged the Green’s functions become in momentum space

in regimes where one couldn’t derive any continuity bound (by methods developed in the

current work). The Hölder bounds, as derived in field theory in section 1.2, are approxi-

mately as follows:

• |G̃sparse(k1)−G̃sparse(k2)|∞ < K|k1−k2|s2 when s > 0. More precisely, G̃sparse(k)

as a map fromQ2 toR is locally s-Hölder continuous away from k = 0.

• |G̃sparse(k1) − G̃sparse(k2)|∞ < K|k1 − k2|−s∞ when−1 < s < 0. More precisely,
G̃sparse(k) as a map fromR toR is locally−s-Hölder continuous away from k = 0

when−1 < s < 0, and locally 1-Hölder continuous away from k = 0when
−2 < s < −1.

1.2.2 Local Hölder condition in momentum space

Next we would like to understand how well the local Hölder continuity bounds in momen-

tum space are reflected in the numerics. To test the Hölder bound on the p-adic side, we

first adjust the overall coupling strength J∗ so thatGsparse
0 = 1, and likewiseG2−adic

0 = 1.
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Then we define

Ã2−adic(N, s) ≡ log2max
κ odd

∣∣∣∣∣ G̃sparse
κ

G̃2−adic
κ

−
G̃sparse
κ+L/2

G̃2−adic
κ+L/2

∣∣∣∣∣
∞

, (1.38)

where on the right hand side we understand that G̃sparse
κ and G̃2−adic

κ are computed using

the same values ofN and s. Two points with the separation L/2 has the smallest p-adic

distance. We find numerically that Ã2−adic(N, s) is linear inN :

Ã2−adic(N, s) ≈ −s(N − 1) + log2 K̃
2−adic(s) , (1.39)

where K̃2−adic(s) isN -independent. These linear trajectories persist even at negative s,

after 2-adic continuity is lost. See figure 1.3. To make the connection to Hölder continuity

bounds more transparent, we note that (1.38)-(1.39) are equivalent to

∣∣∣∣∣ G̃sparse
κ1

G̃2−adic
κ1

−
G̃sparse
κ2

G̃2−adic
κ2

∣∣∣∣∣
∞

≤ 2Ã
2−adic(N,s) ≈ K̃2−adic(s) |κ1 − κ2|s2 (1.40)

for all odd κ1 and κ2 with κ2 − κ1 = L/2. The inequality (1.40) is clearly a close relative of

the local s-Hölder continuity condition on G̃(k). Numerically including more separations

does not affect the final result. So, G̃sparse
κ satisfies a local 2-adic Hölder condition whose

most positive exponent is approximately α̃2−adic(N, s) ≡ −Ã2−adic(N, s) + Ã2−adic(N −
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Figure 1.3: Left: 2-adic continuity in momentum space. The dots are evaluations of Ã2−adic(N, s) in (1.38), and the
lines are plots of the linear trajectories indicated in (1.39), withK(s) chosen so that the line goes through the last data
point.

Right: Archimedean continuity in momentum space. The dots are evaluations of Ãpower(N, s) in (1.41), and the lines
are plots of the linear trajectories indicated in (1.42), withK(s) chosen so that the line goes through the last data
point.

1, s) ≈ s.

On the Archimedean side, in order to pursue a similar strategy, we need some standard

of comparison analogous to G̃2−adic
κ . We define

Ãpower(N, s) ≡ log2 max
L
4
≤κ< 3L

4

∣∣∣∣∣G̃sparse
κ

G̃power
κ

−
G̃sparse
κ+1

G̃power
κ+1

∣∣∣∣∣
∞

, (1.41)

where G̃power
κ is given in (1.18) as usual. We can adjust J∗ so thatGpower

h = 1when h = 0 in

position space.

Because G̃power isC∞ away from κ = 0, forming the ratio G̃sparse
κ /G̃power

κ doesn’t affect

the local smoothness properties of G̃power
κ . However, this ratio does cancel out part of the

overall trend whereby G̃sparse
κ gets bigger near κ = 0 and κ = L. As a result, studying
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G̃sparse
κ /G̃power

κ rather than G̃sparse
κ by itself makes it easier to accurately pick out the local

smoothness properties from a finite sampling of points. As on the 2-adic side, the numeri-

cal data approximately follow exponential trajectories:

Ãpower(N, s) ≈ s(N − 1) + log2K
power(s) , (1.42)

whereK(s) isN -independent. These trajectories persist even at positive s, after Archimedean

continuity is lost. So we can usefully define

α̃power(N, s) ≡ −Ãpower(N, s) + Ãpower(N − 1, s) , (1.43)

and then α̃power(N, s) ≈ −s for largeN is our numerical estimate of the most positive

exponent appearing in a local Archimedean Hölder condition for G̃sparse
κ .

1.2.3 Local Hölder condition in position space

Position space smoothness can be studied using quantities analogous to the ones used in

section 1.2.2 for momentum space. Specifically, we define

A2−adic(N, s) ≡ log2max
h odd

∣∣∣∣∣ Gsparse
h

G2−adic
h

−
Gsparse
h+L/2

G2−adic
h+L/2

∣∣∣∣∣
∞

α2−adic(N, s) ≡ −A2−adic(N, s) + A2−adic(N − 1, s) ,

(1.44)
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we use half the available points as explained in themain text. For s ≤ −2, convergence of the sparsemodel to the

nearest neighbormodel implies thatα = α̃ = 1, but our numerical scheme for picking outα and α̃ becomes less

reliable in this region due to difficulty normalizingGsparse andGpower in a mutually consistent way.

and then, assuming α2−adic(N, s) is nearly constant for largeN , its largeN limit is our

numerical estimate of the best possible local Hölder exponent forGsparse
h in a 2-adic setting.

Likewise, we define

Apower(N, s) ≡ log2 max
L
4
≤h< 3L

4

∣∣∣∣Gsparse
h

Gpower
h

−
Gsparse
h+1

Gpower
h+1

∣∣∣∣
∞

αpower(N, s) ≡ −Apower(N, s) + Apower(N − 1, s) .

(1.45)

The largeN limit of αpower(N, s) (assuming it exists) is our numerical estimate of the most

positive local Hölder exponent forGsparse
h in an Archimedean setting.

We find good evidence that α2−adic(N, s) and αpower(N, s) have finite largeN limits.
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Our numerical results are well described by piecewise linear dependence of α on s, and in

particular by

αpower = −2(s+ 1/2) for −1 < s < 0

α2−adic = 2(s− 1/2) for 0 < s < 1 .

(1.46)

See figure 1.4. Note the difference between position space bounds and momentum space

bounds in general. When |s| > 1, it becomes harder to get good numerical results, particu-

larly on the Archimedean side, because the functions under consideration are quite smooth,

and we have to compute very small differences accurately. Even apart from issues of numer-

ical accuracy, it becomes challenging on the Archimedean side to distinguish between rapid

but smooth variation and the slightly non-smooth behavior that determines the Hölder

exponent.

1.2.4 Transition between Archimedean and non-Archimedean continuity

The most interesting regime in position space is−1 < s < 1, where we are losing

Archimedean continuity and gaining 2-adic continuity. We focus in this section entirely

on this regime, and we present the simplest account of the transition from Archimedean

to non-Archimedean continuity, which is consistent with our numerics. Due to finite nu-

merical resolution, we cannot rigorously determine the measure-theoretic behavior of the

position space Green’s functions in regions where the Green’s functions are very ragged. We
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attempt to qualify our claims below with the appropriate level of confidence.

In momentum space, our numerics are consistent with there being a single exponent on

the 2-adic side, α̃2−adic = s, which describes both the global Hölder continuity condition

over all k and the local continuity at each possible value of k. In other words, as far as we

can tell, the function G̃(k) is equally ragged everywhere. A similarly uniform story applies

on the Archimedean side, with α̃power = −s. Numerical results are fully in accord with

expectations from field theory. The upshot is that the transition from Archimedean to non-

Archimedean continuity happens rather simply, with ordinary continuity failing just as

2-adic continuity emerges: i.e. α̃power becomes negative just as α̃2−adic becomes positive, at

s = 0.

The field theory estimates of the Hölder exponents for the position-space Green’s func-

tion were s − 1 on the 2-adic side and−s − 1 on the Archimedean side. We believe this

characterizes the behavior ofG(x) close to x = 0: That is,G(x) ≈ |x|s−1
2 on the 2-adic

side, whileG(x) ≈ |x|−s−1
∞ on the Archimedean side. The surprise we get from numer-

ics is that away from x = 0, a more complicated dependence of Hölder smoothness on

s emerges, with local Hölder exponents α somewhat more positive than the field theory

bounds: That is,G(x) seems to be somewhat smoother away from the origin than its be-

havior right near x = 0. Our numerical results are consistent with there being a piecewise

linear dependence of α on s, as summarized in particular by (1.46). These results (1.46) indi-
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Figure 1.5: Plots ofGsparse
h /G2−adic

h and G̃sparse
κ /G̃2−adic

κ over theMonnamap of the odd integers. As s becomes

more positive, the numerical data is closer to a 2-adically continuous curve whenN is large. Blue points are forN =
6, while the red curves are forN = 10.

cate that Archimedean Hölder continuity ofGsparse
h is lost at s = −1/2, but 2-adic Hölder

continuity doesn’t emerge until s = 1/2. So, what happens for−1/2 < s < 1/2, when

both αpower and α2−adic are negative?

To better understand the region of transition between the Archimedean and 2-adic

smoothness, it is instructive to inspect overlaid plots of the Green’s function for different

system sizes, see figures 1.5 and 1.6. Based on these figures and related studies, the scenario

we regard as most likely is that for−1/2 < s < 0, the continuum limit ofGpower
h defines
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an absolutely continuous measure,G(x)dx, with respect to ordinary Lebesgue measure

dx, but for s > 0 any such continuum limit would necessarily have a singular term in its

Radon-Nikodym (Lebesgue) decomposition. Similarly, we suggest that for 0 < s < 1/2,

the continuum limit ofG2−adic
h defines an absolutely continuous measure with respect

to the standard Haar measure onQ2 while for s < 0 any such continuum limit would

have a singular term (with respect to the Haar measure onQ2) in its Radon-Nikodym

decomposition. We find support for the claim of absolutely continuous measures in the

above-mentioned regimes when we study the scaling of the height of the spikes in figures

1.5 and 1.6 as a function ofN : the weight of each spike (meaning the integral over a small

region including the spike) distinctly appears to tend to zero with increasingN . When sin-

gular terms in Radon-Nikodym decompositions do exist, we conjecture that they have as

their support sets which are dense in position space.

One way in which singular terms in Radon-Nikodym decompositions could arise is for

the continuum limitG(x) to include delta functions. Inspection of figure 1.5 is consistent

with there being a dense set of delta function spikes inG(x) as a function of 2-adic xwhen

s = −0.3, but none when s = 0.3. Similarly, figure 1.6 is consistent with there being

a dense set of delta function spikes inG(x) as a function of real xwhen s = 0.3, but

none with s = −0.3. The discerning reader may note, however, that the spikes on the

Archimedean side are stronger at s = 0.3 than the ones on the 2-adic side at s = −0.3.
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This asymmetry manifests itself in the scaling of the height of these spikes withN , for the

weight of each spike grows withN on the Archimedean side for s = 0.3, but may be trend-

ing very slowly toward 0 on the 2-adic side at s = −0.3. A related effect appears in fig-

ure 1.4: α2−adic ≈ −1 for s < 0, while αpower ≈ −1− s for s > 0.

Inspection of figures 1.5 and 1.6 reveals some self-similarity in the Green’s functions both

before and after the Monna map is applied. We have not investigated this fractal behavior

in detail; however, we note that similar behavior has been found independently in band

structure calculations in connection with cold atom experiments 10.

1.3 Conjecture about the interacting theory

For decades, p-adic numbers have been considered as an alternative to real numbers as a no-

tion of the continuum which could underlie fundamental physics at a microscopic scale;

see for example 124. The current study shows how the large system size limit of an under-

lying discrete system naturally interpolates between a one-dimensional Archimedean con-

tinuum and a 2-adic continuum as we vary a spectral exponent. By focusing on a free field

example, we are able to solve the model through essentially trivial Fourier space manipula-

tions. The correlators of the theories we study are all determined in terms of the two-point

function through the application of Wick’s theorem. The two-point function is smooth

in an Archimedean sense when s is sufficiently negative and in a 2-adic sense when s is suf-
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ficiently positive. The transition from these two incompatible notions of continuity can

be precisely characterized in terms of Hölder exponents characterizing the smoothness of

the two-point function. We have found the dependence of these exponents on s through

numerics on finite but large systems.

All the examples above remain within the paradigm of free field theory. Still easy to

formulate but obviously much harder to solve are interacting theories with sparse cou-

plings. For example, we could start with any of the models introduced in section 1.1 and

add a term
∑

i V (ϕi) to the Hamiltonian describing arbitrary on-site interactions. To get

some first hints of what to expect these interactions to do, recall in 2-adic field theory that

G(x) ≈ |x|s−1
2 at small x. Comparing this to the standard expectationG(x) ≈ |x|2∆ϕ

2 , we

arrive at∆ϕ = (1− s)/2 as the ultraviolet dimension of ϕ. When describing perturbations

of the Gaussian theory, we can use normal UV power counting: [ϕn] = n∆ϕ. Thus ϕn

is relevant when s > 1 − 2/n. If we impose Z2 symmetry, ϕ → −ϕ, then in the region

s < 1/2, the Gaussian theory has no relevant local perturbations, but as s increases from

1/2 to 1, first ϕ4 and then higher powers of ϕ2 become relevant. It is reasonable to expect

some analog of Wilson-Fisher fixed points to appear. Possibly as s → 1, these fixed points

extrapolate to analogs of minimal models. An analogous story presumably applies on the

Archimedean side to power-law field theories controlled by s in the range (−1, 0), with

G(x) ≈ |x|−s−1
∞ and therefore∆ϕ = (1 + s)/2. See figure 1.7.
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Figure 1.7: Conjectured pattern of fixed points of the renormalization group for interacting field theories of a single

bosonic scalar field withϕ → −ϕ symmetry.

The sparse coupling theories are sufficiently similar to 2-adic field theories for s > 0

and to power-law field theories for s < 0 that it is reasonable to conjecture that the same

pattern of renormalization group fixed points arises. This line of reasoning leaves out a lot,

though: In particular, we have no deep understanding of how the improved local Hölder

smoothness arises, nor how it might affect renormalization group flows. A Monte Carlo

study of the phases of the sparsely coupling Ising model might help refine our understand-

ing of the renormalization group flows available to interacting models, particularly in the

range−2/3 < s < 2/3where no powers of ϕ higher than ϕ4 are relevant—according at

least to naive power counting as presented here.
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2
p-adic, but real-ly mixed

2.1 Mixed field theory

Field theory has been a reliable tool for studying critical phenomena. Various techniques

of renormalization group flow make it possible to classify continuous phase transitions

in different statistical models. A frequently mentioned example is the ϕ4 theory, which

is a scalar field theory equipped with a quartic interaction term. Below its upper critical

65



dimensionD = 4 and above its lower critical dimensionD = 2, ϕ4 theory exhibits a

Wilson-Fisher fixed point 128. Values of anomalous dimension and scaling exponent of the

two-point function at the fixed point are “critical,” and they are universal quantities within

the same universality class. For example, Wilson-Fisher fixed point of ϕ4 theory and the

critical Ising model in three dimensions are in the same universality class. The ϵ-expansion

inD = 4 − ϵ of ϕ4 theory with ϵ = 1 gives critical exponents that agree with results

obtained on the lattice with high precision 110.

Having understood that Dyson’s hierarchical model corresponds to the pure p-adic field

theory92, we would like to consider a quantum generalization of it: a one-dimensional spin

chain with p-adic coupling and transverse magnetic field

H = −Jg
∑
m

σ̂xm − J
∑
m,n

|m− n|s−1
p σ̂zmσ̂

z
n , (2.1)

where | · |p is the standard p-adic norm, σm is a quantum Ising operator,m and n take val-

ues in {0, 1, 2, . . . , pℓ − 1} and ℓ is some positive integer. There are four motivations for

this kind of Hamiltonian. First, we are interested in extending p-adic AdS/CFT beyond the

domain of Euclidean statistical mechanical models as studied in62, to a quantum mechan-

ical setting. The independent work69 did consider quantum mechanical aspects, but time

evolution was left implicit. Second, we are aware of developing experimental setups which

can realize an approximation of p-adic couplings in a cold atom system 10. Third, p-adic
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extra-dimensions are interesting to think of and have been considered, for example, in these

works4,124. Forth, the original classical version of this model, where there is no transverse

field, and σm is a classical spin variable taking values of+1 and−1, has been studied well,

and it guarantees some interesting features. This s exponent also serves as an RG variable,

and one can get a continuum set of Wilson-Fisher fixed points parametrized by s. Models

of this kind show interesting criticalities, which are first solved by Bleher 14. p-adic field the-

ory computations 103,57 agrees with Bleher’s results. s exponent plays essentially the same role

in the quantum model, and there are guaranteed criticalities found by Monthus 104.

We want to present a field theory as a candidate for the continuum limit of this quantum

model. A rough analog is the map between a d-dimensional quantum Ising and a d + 1-

dimensional classical Ising model, the extra dimension being generated by the transverse

field. Field theories describing non-local quantum lattice models are usually inevitably

faced with a strong anisotropy, as the “quantum dimension” is always local. We will not

provide a rigorous map between the quantum Dyson’s model and a field theory. Also, field

theories defined on two different number fields are not well studied. Here we propose the

ϕ4 “mixed field theory” with one direction being the usual real number field and the other

67



direction being the p-adic number field. The action we consider is:

S =
1

2

∫
R
dω

∫
Qp

dk ϕ̃(−ω,−k)
(
ω2 + |k|2zp + r

)
ϕ̃(ω, k) +

λ

4!

∫
R
dτ

∫
Qp

dxϕ(τ, x)4.

(2.2)

where r serves as a dial for g in the quantum lattice model. For simplicity, we choose to

forbid the ratio between real and p-adic terms to change. With the definition of Vladimirov

derivativeD2z
x , we could see that the above action is equivalent to the following

S =
1

2

∫
R
dτ

∫
Qp

dxϕ(τ, x)

(
−∂2t
(2π)2

+D2z
x + r

)
ϕ(τ, x) +

λ

4!

∫
R
dτ

∫
Qp

dxϕ(τ, x)4

(2.3)

up to some regulating terms.

Power counting in ultrametric theories is well understood: See for example 58. The key

point is that when we scale k → pk, the norm and the integration measure scale oppositely:

|k|p → 1
p
|k|p and dk → 1

p
dk. We regard this scaling as a step toward the infrared. We

see from the kinetic term of (2.2) that we must accompany k → pk with ω → 1
pz
ω and

r → 1
p2z
r. In general, we associate to a quantityX an engineering dimension [X] if upon

a scaling k → pk we haveX → p−[X]X . Then the natural assignments that make S
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dimensionless consistent with (2.2) are

X k |k|p dk x |x|p dx ω dω S ϕ ϕ̃ r λ

[X] −1 1 1 1 −1 −1 z z 0 1−z
2

−3z+1
2

2z 3z − 1

(2.4)

We refer to these assignments as engineering dimensions because they describe scalings of

the classical action without reference to loop corrections. We see in particular that λ has a

positive dimension, meaning that ϕ4 is a relevant perturbation of the Gaussian fixed point

theory, precisely when z > 1/3—whereas r is always relevant in the same sense since we

require z > 0.

As compared to ordinary ϕ4 theory onRd, we see from the assignments (2.4) that in-

creasing z is like decreasing d; that z = 1/3 is like the upper critical dimension d = 4,

where ϕ4 becomes marginal; and that z = 1 is like the lower critical dimension, where the

dimension of ϕ goes to 0. Thus, at least naively, we are expecting critical points as indicated

in figure 2.1. We added in a conjectured branch of multi-critical points based on the fact

that for z > 1/2, both ϕ4 and ϕ6 are relevant deformations of the Gaussian fixed point.

For 0 < z < 1/3, our expectation based on power counting is that the Gaussian critical

point is the only one available.
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2.2 Tree-level results

In a free massless(r = 0, λ = 0) theory, the mixed field theory is diagonalized in momen-

tum space, and the Green’s function is just

G̃(ω, k) =
1

ω2 + |k|2zp
. (2.5)

Now we want to study the position space Green’s function by Fourier transforming the real

and p-adic components(we here assume that Fubini’s theorem still applies) :

G(τ, x) ≡ ⟨ϕ(τ, x)ϕ(0, 0)⟩ =
∫
R
dω

∫
Qp

dk
e−2πiωτχ(kx)

ω2 + |k|2zp
. (2.6)

In a real theory, we can determine the scaling behavior of Green’s function in a conformal

theory just by changing variables and make the integral above dimensionless. Here the

same is not expected because of a mixing of real and p-adic term in the denominator. In

70



fact, there are oscillatory corrections to the power-law relationG(τ, 0) ∝ |τ |(z−1)/z . One

hint comes from the fact that |k|2zp can only take discrete values p−2zv where v ∈ Z. It is

not hard to see by changing variable thatG(τ, 0) = const|τ |(z−1)/z only if τ takes value in

pzZ. This means our theory only enjoys a discrete scaling symmetry under τ → pvzτ where

v ∈ Z.

We can obtain approximations of the position space Green’s function where the oscilla-

tory terms are more explicit. To carry out the ω integral first and then the k integral in (2.6)

is a lot easier than the other way around. To perform the k integral, we use the standard

result in p-adic Fourier analysis that we introduce in the introduction:

∫
pvUp

dy χ(y) =



p−v/ζp(1) if v ≥ 0

−1 if v = −1

0 if v < −1

(2.7)

We consider two special cases τ = 0 and x = 0:

• τ = 0

G(0, x) =

∫
Qp

dk
πχ(kx)

|k|zp
=
πΓp(1− z)

|x|1−zp

(2.8)

This is the same as a Green’s function in a purely p-adic field theory.
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• x = 0

G(τ, 0) =

∫
Qp

dk
πe−2|k|zpπ|τ |

|k|zp
= (1− p−1)

∞∑
v=−∞

πpv(z−1)e−2π|τ |p−vz

=
π(2π|τ |)1−z−1

zζp(1) log p

∞∑
ṽ=−∞

Γ

(
2iπṽ

z log p
+

1

z
− 1

)
e−2πi

log(2π|τ |)
z log p

ṽ

(2.9)

where Poisson summation formula has been used and the Fourier transform of a
double exponential is a Gamma function. We can see that in addition to the |τ |1−z−1

scaling, there are oscillatory terms that are periodic in log |τ |. Gamma function de-
cays quickly along the imaginary direction, so in most of the cases the non-oscillatory
term dominates. Note that we can only carry the calculation in 0 < z < 1, but
thenG(τ, 0) in (2.9) can be analytically continued to z > 1 as well. No matter
what region of z we are considering, for the mixed field theory with large enough p,
we would face situations where oscillatory terms dominate. In such case the scaling
behaviour of τ in Green’s function could be totally ruined, but it will always be posi-
tive(because it is a sum of positive numbers) even when the leading oscillatory terms
fluctuate around zero.

2.3 Loop diagrams and Renormalization

From now on, we will considerO(N) symmetric mixed vector model in Euclidean signa-

ture with a coupling term like λ
4!
(ϕ⃗ 2)2 because essentially all the computations in a scalar ϕ4

mixed theory generalize without subtlety. The dimension of coupling is [λ] = 3 − 1/z.

So at z = 1/3, the ϕ4 operator becomes marginal, and the theory is renormalizable. We

will perturb the free massless mixed field theory with a mass term rϕ⃗ 2 and λ
4!
(ϕ⃗ 2)2 interac-
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tion term at z = 1/3 and follow the MS scheme and renormalize the theory with a ultra-

violet cut-offΛ. Then we perturb the exponent. Wilson-Fisher fixed point exists, and we

obtained the anomalous mass dimension at the WF fixed point, which can be compared

with lattice model results in 104.

In this low dimension theory, ω integrals over the real numbers are always performed

exactly without any UV cut-off. So there could be symmetry issues when we put UV cut-

off only in the ultrametric dimension. This is usually not a big problem in a theory with

highly anisotropic terms, see for example75,38 where different UV cut-offs are applied to time

and space integrals in the renormalization of Lifshitz scalar theory. Note also that from

time to time, we will introduce infra-red cut-off λwhen performing p-adic momentum

integrals. This is one way of regularizing p-adic integrals, and no term depending onΛwill

emerge from this treatment. So in an MS scheme, this will not change the behavior of this

theory under renormalization.

2.3.1 One-loop renormalization of the mixed field theory

Consider now the bubble diagram,

i j =
1

2
(−λ)2 +N

3
δijI

(1)
2 , (2.10)
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where the loop integral is given by

I
(1)
2 =

∫
R
dω

∫
Qp

dk
1

ω2 + |k|2/3p + r
=

∫
Qp

dk
π√

|k|2/3p + r

. (2.11)

This plus a counterterm is the only one-loop correction to the propagator in our theory. At

this point, we impose the UV cut-offΛ and an IR cut-off λ(they both have mass dimension

3
2
[r]) and complete the p-adic integral. We are perturbing the massless theory with a mass

term so that we can expand the integrand near r = 0, and the linear term corresponds to

the insertion of a mass operator with no momentum flowing in or out.

Linear term =
rϕ⃗ 2

(2.12)

And the result is

∫
λ≤|k|p≤Λ

dk
π√

|k|2/3p + r

=
π

ζp(1)

− log λ
log p∑

v=− log Λ
log p

(
p−

2v
3 − r

2

)
+ finite terms

=
π

ζp(1)

(
Λ2/3p2/3

p2/3 − 1
− r log Λ

2 log p

)
+ finite terms

=
π

ζp(1)

(
ζp(

2
3
)Λ

2
3 − r

2

log Λ

log p

)
+ finite terms .

(2.13)

There is no external momentum dependence, so the anomalous dimension of the field is

zero at one-loop order. Consider this diagram as the one-particle-irreducible diagram at the
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one-loop level. Then the insertion will shift the mass parameter r in the propagator. The

mass acquires an anomalous dimension γr during the RG, and by dimensional analysis,

we know that this must cancel the shift by the r log Λ term. The net effect is changing r

to r1+ 1
2
γr where γr is the anomalous mass dimension. We expand it in γr and identify the

r log r
1
2z term with minus the r log Λ piece of the bubble diagram, and we find that the

anomalous mass dimension is given by

γr =
2 +N

12z

π

ζp(1)

λ

log p
. (2.14)

We comment that this log Λ term here comes from the term− r
2
in (2.13) where the p de-

pendence cancels. By power counting, we could see that this happens exactly at z = 1/3.

This story is very similar to the real scalar theory case, while the connection seems somehow

miraculous because, in real and mixed cases, the integrals are carried out very differently.

In order to see a Wilson-Fisher fixed point, we should compute the one-loop correction
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to the vertex. We need to consider the sum of three Feynman diagrams:

+ +

=
1

2
(−λ)21

9

{
I4(ω1 + ω2, k1 + k2)

[
(N + 4)δi1i2δi3i4 + 2δi1i3δi2i4 + 2δi1i4δi2i3

]
+ I4(ω1 + ω3, k1 + k3)

[
(N + 4)δi1i3δi2i4 + 2δi1i2δi3i4 + 2δi1i4δi2i3

]
+ I4(ω1 + ω4, k1 + k4)

[
(N + 4)δi1i4δi1i2 + 2δi1i2δi3i4 + 2δi1i3δi2i4

]}
(2.15)

where the loop integral is given by

I4(ω, k) =

∫
R
dω0

∫
Qp

dk0
1

ω2
0 + |k0|2/3p + r

1

(ω0 − ω)2 + |k0 − k|2/3p + r
. (2.16)

We can set them to zero to simplify the computation because the leading piece that we are

interested in is independent of ω and r. We perform the real integral first and then com-

plete the p-adic integral:

I4(ω, k) =
3π

4ζp(1)

log Λ2/3

log p
+ finite terms . (2.17)

Similar log Λ term appears as in the real ϕ4 theory, for the reason that we comment before.
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The Callan-Symanzik equation of the four-point function is

0 =

[
∂

∂Λ
+
dλ

dΛ

∂

∂λ
+
dr

dΛ

∂

∂r

](
− λ+

λ2

2

N + 8

9
3

π

2ζp(1)

log Λ

log p

)
. (2.18)

The leading order beta function is solved to be

β(λ) = Λ
dλ

dΛ
= λ2

π

ζp(1)

N + 8

12 log p
. (2.19)

We now consider the beta function slightly above the critical z. Then the beta-function

picks up a contribution due to the mass dimension of the coupling, [λ] = 3z − 1, as

by redefining the coupling λ̃ as λΛ−[λ], we can make the coupling constant dimensionless

again. Now we will abuse the notation and use λ for the new dimensionless coupling, but

still use [λ] as the dimension before the redefinition.

β(λ) = −[λ]λ+ λ2
π

ζp(1)

N + 8

12 log p
+ O([λ]2) . (2.20)

We see that the beta function admits a Wilson-Fisher fixed point at

λ∗ =
ζp(1)

π

12 log p

N + 8
[λ] . (2.21)

Here the exponent s = 2z serves as a dial of the dimension. In contrast to real scalar ϕ4 the-
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ory, here we can maintain integer dimensions while probing the WF fixed point. Plugging

(2.21) into (2.14), we find the anomalous mass dimension at the Wilson-Fisher fixed point:

γr =
N + 2

N + 8

[λ]

z
. (2.22)

This is the same as the anomalous mass dimension of a realO(N) symmetric vector model

equipped with a (ϕ⃗ 2)2 term. At a conformal (here just scale invariance) fixed point, the

correlation length diverges. We can compute the p-adic correlation length exponent ν near

a fixed point of theN = 1 scalar theory in this long-ranged regime (where 2z < 2) as a

rescale of the real correlation length exponent:

ν =
1

(2− γr)z
. (2.23)

For z = 1/2, [λ]/z = 1, and we compute the correlation length exponent ν to be

6/5 = 1.2, which is quite different from Monthus’s result ν = 1.482 104, where they con-

sider the quantum Dyson’s hierarchical model which we think should be the lattice version

of a mixed field theory. Equivalently, they were looking at each time slice of the theory(a

quantum mechanic model), so in our theory, the scaling behavior along theQp line can be

compared with their result. This discrepancy cannot be fully explained now. Note that in

the supposed mean-field regime(0 < z < 1/3 or 0 < σ < 2/3 in 104), the exponents Mon-
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thus got is not perfectly 1/σ or equivalently 1/(2z), the long-ranged mean-field value(note

that ν − 1/σ is roughly constant for the values they computed). This could be related to

the approximation they use in the real space RG process, or the lattice quantum Dyson

model and the mixed field theory are not in the same universality class at all. This should be

studied further in future work.

2.3.2 Two-loop renormalization of the propagator

The first momentum-dependent correction to the propagator is from a two-loop diagram

called the melon(or sunrise, or underground) diagram. So, normally one expects to have the

leading field renormalization at this order. In order to investigate this, it is enough for us to

consider the melon diagram at z = 1/3 in a massless theory:

i j =
1

6
(−λ)23N + 6

9
δijI

(2)
2 (ω, k) . (2.24)

where the loop integral is given by

I
(2)
2 (ω, k) =

∫
R
dω1 dω2 dω3

∫
Qp

dk1 dk2 dk3
δ(ω +

∑3
i=1 ωi) δp(k +

∑3
i=1 ki)(

ω2
1 + |k1|2/3p

)(
ω2
2 + |k2|2/3p

)(
ω2
3 + |k3|2/3p

) .
(2.25)

Before proceeding to compute this diagram, let us first look at an old argument: field

strength in a p-adic field theory does not get renormalized92. This is explained by Lerner
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and Missarov in92 that the self-similar Hamiltonian contains a counterterm that has the

form of a single-particle Hamiltonian and a single particle in a box is always finite. To

briefly illustrate this, we adapt the Wilson exact RG equation and imagine defining our

theory within a ball in theQp or its finite extension. In a normal scalar theory in real space-

time, self-similar conditions in the ball usually introduce higher momentum dependence

outside the ball. Thus to achieve a self-similar theory over the whole momentum space(the

fixed point), one has to “re-normalize” the theory as it can not be normalized in the ball

properly. While for the p-adic case, because of the ultrametricity, the momentum terms

inside the ball can not generate higher momentum terms outside the ball, and this term

could be properly normalized, or say, it is in any case, finite. In the end, this “breakdown”

of Wilsonian RG comes from the totally disconnected topology ofQp. In our mixed field

theory, however, the real momentum term gets renormalized while the p-adic momentum

term receives no renormalization. The net effect is a shift of the exponent z. It is tempting

to say that we are renormalizing the dimension!

In the ultra-violet region—a momentum space computation

Now we are going to manipulate the integral of (2.25) to find the divergent pieces that we

want. Integrals over p-adic momentums are always split into regions where the norm is

constant, and the remaining task is to complete the summations of powers of p. Only ratio-

nal functions of the momentum can be summed easily. Also, the sum of series of rational
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functions is usually another rational function, so we can complete the integrals sequentially

for each momentum. Thus our task now is to manipulate the integral till we have rational

functions. First, using Schwinger parametrization and the ωi integrals are over the Gaus-

sian functions and can be done straightforwardly. Then we change the variable to Feynman

parameters(or symmetric dimensionless parameters):

I
(2)
2 (ω, k) = π

∫
Q3

p

dk1dk2dk3

∫ 1

0

dx1dx2dx3
δ (1−

∑
i xi)√

x1x2x3
∑

i 1/xi

δp (k −
∑

i ki)(
ω2∑
i 1/xi

+
∑

i xi|ki|
2/3
p

)2 .
(2.26)

This integral has mass dimension 2 and so its superficial UV divergences is ofΛ2/3. So we

anticipate following terms in the integral:

I
(2)
2 (ω, k) = c2Λ

2/3 + c0ω
2 log

Λ2/3

ω2
+ b0ω

2 + (other finite terms) , (2.27)

for some dimensionless constants c2, c0, and b0. We do not include the divergent term with

p-adic momentum dependence like |k|2/3p log Λ2/3 because the ultra-metric momentum

does not get renormalized (an explicit computation confirms its absence). To fully track

the |k|p term in the integral is difficult and in general one has to consider special quadrilat-

eral structure of momentum conservation, where each triangle in it is either tall isosceles or
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equilateral:

k3

k
k1

k2
(2.28)

Loosely we can say in the ultra-violet limit where |ki|p becomes large, we have |k − k1 −

k2|p = |k1 + k2|p due to the ultrametricity and the integral is independent of |k|p in the

UV region. Then the delicate cancellation k1+k2+k3 = k can be split into hard and soft(as

soft as k) parts: k1h + k2h + k3h = ka and k1s + k2s + k3s = kb where |kih|p > |kis|p

and ka + kb = k. Due to ultrametricity, kb has to be soft and then consequently ka is

soft. Now in the ultra-violet region where one only deal with hard momentums kih, we

can really forget about k and change the momentum conservation to a loose constrain that

k1h + k2h + k3h has to be soft. In such regime we definitely expect no |k|2/3p log Λ2/3 like

term.

Now let’s focus on the real momentum dependent divergence. In order to investigate the

c0ω
2 log Λ

|ω|3 term, we consider the derivative

∂I
(2)
2 (ω, k)

∂ω2
= c0 log

Λ2/3

ω2
− c0 + b0 + (other finite terms)

= −2π

∫
|ki|p≤Λ

dk1dk2dk3

∫ 1

0

dx1dx2dx3
δ (1−

∑
i xi)√

x1x2x3 (
∑

i 1/xi)
3

δp (k −
∑

i ki)(
ω2∑
i 1/xi

+
∑

i xi|ki|
2/3
p

)3 .
(2.29)

As argued above, there is no k dependence in any divergent term, so we can safely focus
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on the k = 0 case while preserving the RG behaviour. Also, we know c0 is a constant

independent of ω, so we can set ω = 0, as well. And as always, we have to introduce a IR

cut-off sup |ki|p > 1 by hand to regularize this p-adic integral from below. This is believed

to have no effect on c0. Using the identity

∫ 1

0

dx1dx2dx3
δ (1−

∑
i xi)√

x1x2x3 (
∑

i 1/xi)
3

1

(
∑

i aixi)
3 =

π/2
√
a1a2a3(

√
a1 +

√
a2 +

√
a3)3

,

(2.30)

for positive a1, a2, and a3, we simplify (2.29) to

∂I
(2)
2 (ω, k)

∂ω2
= −π2

∫
1<sup |ki|p≤Λ

dk1dk2dk3
δp (
∑

i ki)

|k1k2k3|1/3
(∑

i |ki|
1/3
p

)3 + (finite terms) .

(2.31)

Momentum conservation now possesses a simple triangle structure. Due to ultrametricity,

this triangle is either tall isosceles or equilateral. And thanks to this totally disconnected

topology, we can perform the integrals in disjoint regions and then add them up. For the

equilateral contribution, we have

∫
1<|k1|p=|k2|p=|k3|p≤Λ

dk1dk2dk3
δp (
∑

i ki)

|k1k2k3|1/3
(∑

i |ki|
1/3
p

)3 =
log Λ2/3

18ζp(1) log p

(
1− 2

p

)
.

(2.32)
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For the tall isosceles contribution, we have

∫
1<|k2|p≤Λ

|k1|p<|k2|p=|k3|p

dk1dk2dk3
δp (
∑

i ki)

|k1k2k3|1/3
(∑

i |ki|
1/3
p

)3 =
3 log Λ2/3

16ζp(1)2 log p

∞∑
v=1

p−2v/3(
1 + 1

2
p−v/3

)3 .
(2.33)

There is no one-loop contribution, so we want the coefficient of ω2 logω2 term in the

counterterm to be the inverse of the coefficient of ω2 log Λ2/3 term from the melon dia-

gram. This is the correction that ω2 receives in the effective action. Expanding ω2(1−γω2 ),

identifying the coefficient, and we have the final result

γω2 = −λ2N + 2

36

π2

log p

[
p− 2

9 p ζp(1)
+

9

8 ζp(1)2

∞∑
v=1

p−2v/3

(1 + 1
2
p−v/3)3

]
. (2.34)

The same result is obtained in 55 by a position space computation. There we Fourier trans-

form the integral, manipulate the integral in position space, and then Fourier transform

back to momentum space. No UV cut-off needs to be introduced, but we use the differen-

tial regularization instead, where we drop all the divergent terms when transforming back

to momentum space.
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Wavefunction renormalization at the WF fixed point

Plugging (2.21) into (2.34) we find

γω2 = − [λ]2

z2
4 log p

9

N + 2

(N + 8)2

[
p− 2

9 p
ζp(1) +

9

8

∞∑
v=1

p−2v/3

(1 + 1
2
p−v/3)3

]
. (2.35)

Now we really see that for different prime numbers p, this mixed field theory falls into dif-

ferent universality classes. Respectively we have

γk = 0 . (2.36)

The net effect of this anisotropic renormalization is a rescaling of z to z(1− γω2).

We find no known result in the literature to compare with (2.35) as usually, people study

the criticality of a quantum Dyson’s hierarchical model via real-space RG where the time

direction is equivalently unscaled. γω2 is of order coupling square, so the correction to, for

example, anomalous mass dimension is not significant and cannot be used as a check, either.

The equation γk = 0, or the non-renormalization property, though, agrees with 104, where

they find the correlation exponent η to be the long-ranged mean-field value 2 − σ even in a

non-mean-field region. Actually, in condense matter literature, it is known for long-ranged

isotropic models that their correlation exponent remains the long-ranged mean-field value
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during RG flow 39,120,95. From a field theory perspective, we say that field strength in a purely

p-adic theory is not renormalized92. Here, however, the connection lies between mixed field

theories and long-ranged quantum models.

2.4 Discussion and future directions

With the help of p-adic number, we can construct non-local field theories with diagonalized

Lagrangian in momentum space and do perturbative loop calculations just like in a local

quantum field theory with a normal kinetic term. In this work, we perturb the free mixed

theory by a (ϕ⃗ 2)2 term and find a Wilson Fisher fixed point of the RG flow when spectral

exponent z is above the critical value 1/3. Because of symmetries, we expect that this theory

at the WF fixed point should be in the same universality class of a quantum Dyson’s hier-

archical model. The correlation length exponent ν we compute is slightly smaller than the

result in 104 but still close. Note that quantum Dyson’s hierarchical model can be partially

realized in a cold atom setup 10. In the future, we hope to see works that could carry the RG

to higher loop orders, where we expect an anomalous mass dimension close to what will be

found in these cold atom experiments. Note that extra care should be taken of this scaling

of z in higher loops.

Understanding this non-renormalization or “mixed renormalization” in the mixed field

theory remains to be improved. As mentioned at the end of the last section, z tends to be-
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come bigger at the fixed point. We hope to see future works that explore this interesting

feature.

Historically, p-adic and fundamental physics get connected by the p-adic string theory,

where the world sheet is taken to be p-adic, and the target space is kept real 25,41,125,42. From

a different philosophy, the mixed field theory applications to fundamental physics could

be possible as with a compact dimension, the awkward ultrametricity is hidden, and the-

ories are then consistent with our normal space-time, which is Archimedean. Interesting

constructions of field theories could be made by considering a p-adic internal space. In the

future, we want to further study mixed field theories with compact ultra-metric dimen-

sions. We expect to find a consistent truncation story here due to the ultrametricity: soft

modes only multiply to give soft modes. For example, one can consider Fourier expanding

the field by momentum along the compact dimension and plugging it in the equation of

motion with any non-linear term. A consistent truncation sets all hard momentum modes

to zero and gets equations of motion consistent with the original equation of motion. For

soft mode equations of motion, setting hard modes to be zero will give us a finite set of

equations with only soft modes. For hard mode equations of motion in a real scalar the-

ory, there are terms made of only soft modes, so setting hard modes to be zero will give us

an infinite set of equations of the soft modes. There is no guarantee that this infinite set

of equations will give solutions that are consistent. While in the p-adic case, thank to the
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ultrametricity, there is no term in the hard equations of motion that are made only of soft

modes. So setting hard modes to be zero gives us no new equation of the soft, and we get

a finite set of soft equations in the end. This is really a detailed way of saying the fact that,

at tree level, in a p-adic momentum preserving particle production process, a hard mode

cannot decay to or be generated from pure soft modes because a sum of soft momentums

will always be soft. We hope to see an exact dimensional reduction that can generate this

consistent truncation in the future. With a reduced action, we can study loop effects of the

consistent truncation relatively easily in the p-adic setting, which is regarded as a difficult

subject in the consistent truncation of Archimedean theories, like supergravity.
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3
Non-local field theory I: non-local

non-linear sigma model

Scalar field theories over the reals with bi-local kinetic terms were introduced in40, and

the recent work 109 provides a useful point of entry into the extensive literature. Similar

field theories over the p-adic numbers were considered in92 as a continuum description of
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Dyson’s hierarchical model 36. A unifying point of view on the bi-localO(N) vector model

was provided in 58, showing that the standard largeN development can be framed in terms

that are largely independent of whether the theory is formulated over the reals or the p-

adics. The present work extends the study of bi-local theories to bi-local non-linear sigma

models, starting with the action

S =
µn−s

2γ

∫
V×V

dnxdny

|x− y|n+s
d(ϕ(x), ϕ(y))2 , (3.1)

where |x−y| is the distance function on the n-dimensional base space V and d(ϕ(x), ϕ(y))

is the distance function on the target manifold. In the limit s → n, where the theory (3.1)

becomes classically scale-invariant, we find logarithmic divergences in one-loop diagrams,

which can be canceled by counterterms that can be expressed in terms of the target space

laplacian of the square of the distance function, together with field redefinitions.*

Ricci flatness suppresses the one-loop divergences that we encounter, so in a sense (and

with significant caveats), we may claim that we are deriving the vacuum Einstein equations

from conformal invariance, as in43. Our work was partly motivated by the more recent re-

sults of72, which were derived for the nearest neighbor arc length model on the Bruhat-Tits

tree—in other words, on the other side of the p-adic AdS/CFT duality62,69 from our results

*An exception, as we will see, is when s is an even integer and the base space V = Rn. Through a proce-
dure we will omit here, one recovers, in this case, a local non-linear sigma model, and at least for s = 2, we can
use our results to check the standard analysis43 of the one-loop beta function.
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for field theories over the p-adic numbers. However, the particular structure of countert-

erm we find suggests that renormalization of our theories have less to do with renormaliza-

tion of the local metric as normally understood (i.e. Ricci flow) than with an augmentation

of the action (3.1) to include the target space laplacian of d(ϕ(x), ϕ(y))2.

A conservative expectation is that once non-local terms are allowed in a field theory, they

proliferate, and the theory becomes non-renormalizable. Theories with purely quadratic

bi-local kinetic terms, as studied in40,92 (as well as many subsequent works) avoid such prob-

lems through a non-renormalization theorem: If we write

S =
1

2

∫
V

dnk ϕ̂(−k)|k|sϕ̂(k) +
∫
V

dnxU(ϕ(x)) , (3.2)

then the claim is that the quadratic bi-local term is never renormalized (at least pertur-

batively), though the purely local term U(ϕ(x)) certainly is—and depending on details,

derivative terms might be radiatively generated. Non-local interaction terms vitiate this

non-renormalization theorem, and one’s suspicions could be renewed that there is no sen-

sible theory. We will not be able in this work entirely to allay such concerns because we do

not give a demonstration parallel to the one in43 that Ward identities based on diffeomor-

phism invariance guarantee that loop divergences can only modify the original form of the

action. Indeed, the counterterms we generate at one loop do modify the bi-local action in

an unexpected way, but one which appears to be controlled in a derivative expansion so
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that higher derivative terms can be radiatively generated at each new order without spoiling

results from lower orders.

The organization of the rest of this chapter is as follows. In section 0.4.1 we present the

main results in Fourier analysis that we need, both over the reals and the p-adics. In sec-

tion 0.4.3 we explain how double integrals such as the one in (3.1) can be regulated if diver-

gences arise as |x − y| → 0. In section 3.1 we introduce the classical action for the bi-local

non-linear sigma model. In section 0.4.4 we discuss loop divergences in general terms, in-

cluding an introductory account of the non-renormalization property of the kinetic term in

(3.2). In sections 3.2.1-3.2.4 we investigate the simplest one-loop divergences of the bi-local

non-linear sigma model, and then in section 3.2.5 we argue that all these divergences can be

canceled by a laplacian counterterm in place of renormalization of the local metric, together

with field redefinitions.

3.1 The bi-local non-linear sigma model

LetM be a smoothD-dimensional manifold with a Riemannian metric gab, whose Rie-

mann and Ricci tensors are

Rab
c
d = ∂aΓ

c
bd − ∂bΓ

c
ad + ΓcaeΓ

e
bd − ΓcbeΓ

e
ad Rac = gbdRabcd . (3.3)
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Given any two pointsX and Y onM , let

Q(X,Y ) = d(X,Y )2 (3.4)

be the square of the shortest distance betweenX and Y . Clearly,Q(X,Y ) is a smooth

function ofX and Y , providedX and Y are not too far apart. For smooth functions

ϕ : V →M whose range is sufficiently localized, we consider the action functional

S =
µn−s

2γ

∫ ′

Rn

dnxdny

|x− y|n+s
Q(ϕ(x), ϕ(y)) , (3.5)

where
∫ ′ indicates a regulated double integral of the type discussed around (32)-(34).† Note

that this discussion requires us to avoid positive even integer s. When s > 2, there are

derivative terms like (∂ϕ)2 implicitly built into (3.5), with coefficients tuned so as to en-

sure convergence of the integral. The parameter µ has dimensions of energy so that we

can regard ϕ andQ(ϕ(x), ϕ(y)) as dimensionless. The factor γ is a loop-counting parame-

ter: Classical effects areO(γ−1), one-loop amplitudes areO(γ0), two-loop amplitudes are

O(γ), and so forth. In other words, γ plays the role of ~.
†One may wonder whether the primed integral, as defined following (33), spoils coordinate invariance

of the integrand. For instance, if s is sufficiently large we may, in light of (34), be required to include a�yQ
term to the integrand, which if written only in terms of partial derivatives does not appear to be coordinate
invariant. In fact, it is easy to convince oneself that, e.g.,�yQ can be constructed from covariant quantities:
∂ya∂ybQ = ∂2Q

∂ϕi∂ϕj
∂ϕi

∂ya
∂ϕj

∂yb + ∂Q
∂ϕi

∂2ϕi

∂ya∂yb =
(
∇ϕi

∂Q
∂ϕj

)
∂ϕi

∂ya
∂ϕj

∂yb + ∂Q
∂ϕi

∂ϕj

∂ya∇ϕj
∂ϕi

∂yb .
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A close cousin of the action (3.5) was considered in72:

S =
∑
⟨xy⟩

d(ϕ(x), ϕ(y))2 (3.6)

where now x and y are vertices of a graph, and the sum is over undirected edges. The for-

mula actually appears earlier in43, though it was intended there to be considered on a square

lattice, as a regulator for the local non-linear sigma model, rather than on the Bruhat-Tits

tree as in72.

We require the range of the maps ϕ to be sufficiently localized in order to ensure that

we do not encounter any failures of smoothness inQ(X,Y ), and in order to ensure that

we can use a single system of Riemann normal coordinates for ϕ throughout. One can

now solve the geodesic equation perturbatively in the curvature and use that to expand

Q(X,Y ). We observe that the action (3.5) consists of a non-local kinetic term (quadratic

term in the expansion ofQ) and non-local interaction terms (higher-order terms in that ex-

pansion) where the combination of Riemann tensors play the role of coupling constants.

Once the loop integrals are studied systematically and independent of the metric tensor, the

task becomes to study the contractions of Riemann tensors according to the rules defined

by those loop integrals.

Before presenting the result of expandingQ, we find it convenient to introduce some
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abbreviated notation, based on the following equivalences:

standard a1a2 ∇(a1∇a2) Xa1Xa2

abbreviated a12 ∇a12 Xa12

(3.7)

Here (ab) = 1
2
(ab + ba). We employ obvious extensions of (3.7) to larger index sets,

e.g.Xa123 meansXa1Xa2Xa3 .

We will often need to simplify expressions involving the curvature tensor and its covari-

ant derivatives. A primary tool is the Bianchi identities, which we may write using our ab-

breviated notation as

Ra1234 +Ra1423 +Ra1342 = 0

∇a5Ra1234 +∇a1Ra2534 +∇a2Ra5134 = 0 .

(3.8)

A contracted form of the second Bianchi identity,

∇bR
b
a123 = ∇a2Ra13 −∇a3Ra12

(3.9)

shows that any three-index contraction of∇a5Ra1234 (meaning any contraction leaving

three indices free) can be expressed as linear combinations of re-indexed versions of the

tensor∇a1Ra23 ; in this sense∇a1Ra23 by itself is a basis for all the three-index contractions
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of∇a1Ra2345 . This observation will be useful to us when we consider the possible Wick

contractions of the five-point interaction vertex in the bi-local non-linear sigma model.

Acting on the contracted second Bianchi identity (3.9) with∇b1 gives

∇b1b2R
b2
a123 = ∇b1a2Ra13 −∇b1a3Ra12

+
1

2
[∇b1 ,∇a2 ]Ra13 −

1

2
[∇b1 ,∇a3 ]Ra12 −

1

2
[∇b1 ,∇b2 ]R

b2
a123 .

(3.10)

We describe the terms in the second line of (3.10) as commutator terms. Evidently, they

can be written as curvature bilinears, meaning contractions of two factors of the Riemann

and/or Ricci tensors, with no covariant derivatives. Acting on the uncontracted second

Bianchi identity (the second line of (3.8)) with∇a5 gives

∇2Ra1234 = ∇a13Ra24 +∇a24Ra13 −∇a14Ra23 −∇a23Ra14 + (commutators) , (3.11)

where∇2 = ∇b∇b, and the commutator terms are similar to the ones occurring in (3.10):

In particular, they are curvature bilinears. The results (3.10) and (3.11) show that all four-

index contractions of∇a56Ra1234 can be expressed in terms of linear combinations of re-

indexed versions of the tensor∇a12Ra34 , together with curvature bilinears.

So far, all formulas in this section have been entirely independent of the choice of coordi-

nate system. We now pass to Riemann normal coordinates in order to study the square of
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the arc length,Q(X,Y ) = d(X,Y )2 between two pointsX and Y . We have from 17‡

Q(X,Y ) = ga12(X
a1 − Y a1)(Xa2 − Y a2) +

∑
r>3

Qr(X,Y )

Q4(X,Y ) = −1

3
Ra1234X

a13Y a24

Q5(X,Y ) = − 1

12
∇a5Ra1234X

a13Y a24(Xa5 + Y a5)

Q6(X,Y ) = Q∇∇R
6 (X,Y ) +QRR

6 (X,Y )

Q∇∇R
6 (X,Y ) = − 1

60
∇a56Ra1234(X

a1356Y a24 +Xa13Y a2456 +Xa135Y a246)

QRR
6 (X,Y ) =

1

45
Rb

a123Rba456(4X
a125Y a346 −Xa1245Y a36 −Xa25Y a1346)

(3.12)

Here ga12 ,Ra1234 , and its derivatives are all evaluated at the origin of Riemann normal coor-

dinates, which is the origin in terms of the coordinatesXa and Y a used in (3.12).

3.1.1 Loop integrals in momentum space

The loop is a single propagator starting and ending at the same vertex. This matters because

there is then only one internal momentum ℓ, and imposing the hard cutoff |ℓ| ≤ Λ is a

privileged choice because it corresponds to integrating ℓ over anO(n)-invariant region. An
‡Note however that the results leading toQRR

6 in 17 contain errors. In particular, 44 should have been 4 in
the first line of (11.24). We believe the error appears earlier in equation (11.18), among the Riemann-Riemann
terms. The correct expression has many equivalent forms, one of them is 24Ra

egbRgcfd − 24Ra
bgeRgcfd −

8Ra
bgcRgefd.
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example is the diagram proportional to

I0 =

∫
dnℓ

|ℓ|s
, (3.13)

assuming that whatever vertex factor is needed to fully evaluate the diagram doesn’t depend

on ℓ. We also assume n > s so that I0 is UV divergent but IR convergent. We straightfor-

wardly find

I0 =
2

ζ∞(n)

Λn−s

n− s
. (3.14)

There are obviously no subleading divergences in I0.

For convenience we introduce ϵ = n − s. We are interested in divergences proportional

to log Λ that arise when ϵ = n − s = 0. As a technical trick to isolate these divergences,

we make ϵ small and positive, and we look for divergences of the formΛϵ/ϵ, which in the

ϵ → 0+ limit give rise to log Λ terms. To characterize this limit precisely, given n0 > 0 and

λ ∈ R, we set n = n0 + λϵ and s = n0 + (λ − 1)ϵ and then take the ϵ → 0+ limit

with n0 and λ held fixed. (Clearly then we are allowing non-integer n, in the spirit of43.)

For the most part, our final results are independent of λ. When ϵ is sufficiently small, we

may replace (3.14) with

I0 = i0
Λϵ

ϵ
where i0 =

2

ζ∞(n0)
+O(ϵ). (3.15)
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The important point is that in the limit ϵ → 0+, I0 includes a logarithmic term i0 log Λ,

and isolating this term is our stated objective.

We will encounter one other loop integral:

I2(k) =

∫
dnℓ

|k − ℓ|s

|ℓ|s
. (3.16)

It comes from graphs similar to the one in (3.13), but with a vertex prefactor |k − ℓ|s. Using

the same reasoning that led to (46), we see that when a hard cutoff |ℓ| ≤ Λ is imposed, one

obtains, if n is positive but not an even integer,

I2(k) =

⌊n/2⌋∑
r=0

crk
2r Λ

n−2r

n− 2r
+ (UV finite) (3.17)

for some coefficients cr. If we choose n0 positive but not an even integer and fix any finite

value of λ, then for sufficiently small ϵ, (3.17) applies, and the least singular power ofΛ ap-

pearing in it isΛn−2⌊n/2⌋. As ϵ → 0+, this power remains positive and finite, tending

toΛn0−2⌊n0/2⌋. So there is no log Λ behavior, even in the ϵ → 0+ limit. If instead we

make n0 a positive even integer, then by choosing the very particular value λ = 1, so that

s = n0 exactly, we find (for sufficiently small ϵ > 0) that the least singular term in (3.17)

is c⌊n/2⌋|k|sΛ
ϵ

ϵ
, which does contribute a c⌊n/2⌋|k|s log Λ divergence in the ϵ → 0+ limit;
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moreover, in this case, by calculation, c⌊n/2⌋ = i0 +O(ϵ).§

We can summarize the situation by stating that for ϵ = n − s positive but sufficiently

small, then subject to the restriction that n cannot be a positive even integer,

I2(k) = (higher powers ofΛ) + i2|k|s
Λϵ

ϵ
+ (UV finite) , (3.18)

where

i2 =


i0 +O(ϵ) s is a positive even integer

0 otherwise .

(3.19)

The higher powers ofΛ in (3.18) are accompanied by non-negative integer powers of k2,

and they correspond to operators which remain relevant in the ϵ → 0+ limit. The only

log Λ behavior arising from I2(k), in the ϵ → 0+ limits described above, is the i2|k|s log Λ

term coming from the i2|k|sΛ
ϵ

ϵ
term shown in (3.18). We are not concerned aboutO(ϵ)

terms to i0 and i2 because they drop out of the log Λ behavior in the ϵ → 0+ limit. In the

following sections, therefore, we will dropO(ϵ) terms from (3.15) and (3.19), and we will

evaluate i0 and i2 in terms of n rather than n0.
§Although we have argued that the hard cutoff prescription |ℓ| ≤ Λ is the natural one to use, it is interest-

ing to note that if instead we impose |k − ℓ| ≤ Λ, then still c⌊n/2⌋ = i0 + O(ϵ)when s = 2⌊n/2⌋ and ϵ is
sufficiently small.
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3.2 Renormalization at one-loop

As we have said, computing loop diagrams amounts to setting rules for vertices contrac-

tions. Now we are ready to approach the main body of this chapter: having fun with Rie-

mann tensors. The way we present these results will not be altered significantly from the

original paper60, especially the part where we use color-coding. Readers may also find it

helpful when deriving or checking these results on Riemann tensors using tensor computa-

tion packages, like Cadabra (python) or xAct (Wolfram).

3.2.1 The propagator

To derive the tree-level propagator, we use an obvious generalization of (39) to multi-component

scalar fields to rewrite the free action in momentum space:

S2 =
µϵ

2γ̂
gab

∫
dnk ϕ̂a(−k)|k|sϕ̂b(k) , (3.20)
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where we recall that ϵ = n− s, and for notational convenience we have introduced¶

γ̂ = −Γ∞(n+ s)

2
γ . (3.21)

We immediately extract from (3.20) the propagator

Ĝab(k) =
γ̂gab

µϵ|k|s

Gab(x) = Γ∞(ϵ)
γ̂gab

(µ|x|)ϵ
+ (contact terms) .

(3.22)

We are primarily interested in ϵ small so thatGab(x) is nearly logarithmic.

We can understand the one-loop correction to the propagator as a contribution to the

1PI effective action coming from all possible Wick contractions of the two of the four fac-

tors of ϕ in Sint. The calculation is done most straightforwardly in momentum space,

where we can express

S4 =
µϵ

12γ̂
Rabcd

∫
dnk (ϕ̂aϕc)(−k)|k|s(ϕ̂bϕd)(k)

=
µϵ

12γ̂
Rabcd

∫
d4nk δn

(∑4
i=1ki

)
ϕ̂a(k1)ϕ̂

b(k2)ϕ̂
c(k3)ϕ̂

d(k4)|k2 + k4|s ,
(3.23)

¶A point worthy of remark is that while γ̂ and γ have the same sign for 0 < s < 2, for 2 < s < 4 they
have the opposite sign. The integral in (3.20) is well-defined and positive, so to make our theory sensible we
should always choose γ̂ > 0. This means that γ < 0 for 2 < s < 4. As explained in (41) for a single real
scalar, the regulated position space integral used to define the action (3.5) includes a (∂ϕ)2 term that enters
with the opposite sign of the non-local [ϕ(x)− ϕ(y)]

2 term, so positivity conditions are difficult to judge in
position space.

102



where d4nk =
∏4

i=1 d
nki. Symbolically, the Wick-contracted quartic action is

SWick
4 =

µϵ

12γ̂
Rabcd

∫
d4nk δn

(∑4
i=1ki

)
ϕ̂a(k1)ϕ̂

b(k2)ϕ̂
c(k3)ϕ̂

d(k4)|k2 + k4|s

+ (ϕ̂aϕ̂d contraction) .

(3.24)

We understand ϕ̂b(k2)ϕ̂c(k3) to mean a replacement of ϕ̂b(k2)ϕ̂c(k3) by Ĝbc(k2)δ
n(k2 +

k3). We omit the ϕ̂aϕ̂b and ϕ̂cϕ̂d contractions from (3.24) because of the antisymmetry of

Rabcd in ab and cd. We omit the ϕ̂aϕ̂c and ϕ̂bϕ̂d contractions because they include a factor

|k1 + k3|sδn(k1 + k3), which vanishes when s > 0. After some straightforward algebra, we

obtain from (3.24) the form

SWick
4 = −1

6
Rab

∫
dnk ϕ̂a(−k)I2(k)ϕ̂b(k) , (3.25)

where I2(k) is given in (3.16).

As discussed below (3.16), for suitably small positive ϵ = n − s, I2(k) includes a term

i2|k|sΛ
ϵ

ϵ
iff s is a positive even integer. This is the case which leads to local non-linear sigma

models. Otherwise the divergent terms in I2(k) are proportional to |k|2rΛn−2r for non-

negative powers n − 2r which remain finite as ϵ → 0+. Therefore, apart from the case of

local non-linear sigma models, the effects of the ultraviolet divergences in (3.25) are limited

to generating relevant, local interactions. We assume that relevant terms of this type can be
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R

(a)

∇R

(b)

Figure 3.1: (a) The one-loop contribution to the propagator. (b) The one-loop contribution to the 1PI three-point ver-

tex.

tuned away.

It would be tempting at this point to conclude that the non-local action (3.5) is non-

renormalized, as in the case (3.2). The reality is more subtle: We will see in section 3.2.4

that higher point diagrams generate one-loop divergences that require non-local countert-

erms; however, they are not quite of the form (3.5), involving the target space laplacian of

Q(X,Y ) instead.

3.2.2 Three-point vertices

There are no three-point vertices at tree-level provided we employ Riemann normal coordi-

nates. As we will explain in this section, three-point vertices appear to be generated at the

one-loop level, by the diagram in figure 3.1b; however, they can be absorbed through non-

linear field redefinition.

As for our discussion in section 3.2.1 of the one-loop corrections to the propagator, the

one-loop contribution to the three-point function can be obtained efficiently through
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Wick contractions in the momentum space of the quintic term in the action:

S5 =
1

2γ

∫ ′ dnxdny

|x− y|n+s
Q5(ϕ(x), ϕ(y))

=
µϵ

24γ̂
∇a5Ra1234

∫ [ 5∏
i=1

dnki ϕ̂
ai(ki)

]
δn
(∑5

i=1ki
)
|k24|s .

(3.26)

High-dimensional Fourier integrals of the type seen in the second line of (3.26) are common

in our calculations, so we have found it useful to introduce some shorthand notation:

standard dnk1d
nk2 δn(k1 + k2) |k1 + k2| ϕ̂a1(k1)ϕ̂

a2(k2)

abbreviated d2nk12 δn(k12) |k12| ϕ̂a12(k12)

(3.27)

with obvious extensions to larger index sets. IfA is any ordered set of indices, like 123, and

|A| is the number of indices in the set, then the integrals we see most often are of the form

J aA
ϕ,kA

[q(kA)] ≡
∫ [∏

i∈A

dnki ϕ̂
ai(ki)

]
δn
(∑

i∈Aki
)
q(kA)

=

∫
d|A|nkA δ

n(kA)ϕ̂
aA(kA)q(kA) ,

(3.28)

where q(kA) is any function of the ki, and the third expression is just a rewriting of the sec-

ond using the shorthand notation introduced in (3.27). Evidently, theJϕ integrals are con-

vergent for reasonable integrands q, like powers of norms of sums of momenta, provided

the ϕa are Schwartz-Bruhat functions. When there is no risk of confusion, we will omit the
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subscripted kA and just writeJ aA
ϕ . We can now rewrite (3.26) as

S5 =
µϵ

24γ̂
∇a5Ra1234J a12345

ϕ [|k24|s] . (3.29)

As in section 3.2.1, a Wick contraction amounts to a replacement

ϕ̂ai(ki)ϕ̂
aj(kj) → Ĝaij(kj)δ

n(kij) =
γ̂

µϵ
gaijδn(kij)|kj|−s . (3.30)

It is helpful to note the following examples of Wick contraction:

J a1a2aA
ϕ,k12A

[|k12|s] =
∫
d(|A|+2)nk12A δ

n(k12A)ϕ̂
a1(k1)ϕ̂

a2(k2)ϕ̂
aA(kA)|k12|s

=
γ̂

µϵ
ga12

∫
d|A|nkA δ

n(kA)ϕ̂
aA(kA)

∫
d2nk12 δ

n(k12)|k2|−s|k12|s = 0

J a1a2aA
ϕ,k12A

[|kC |s] =
γ̂

µϵ
ga12

∫
d|A|nkA δ

n(kA)ϕ̂
aA(kA)|kC |s

∫
d2nk12 δ

n(k12)|k2|−s

=
γ̂

µϵ
ga12J aA

ϕ,kA
[|kC |s]I0 = J a1a2aA

ϕ,kA
[|k12C |s]

J a1a2aA
ϕ,k12A

[|k1C |s] =
γ̂

µϵ
ga12

∫
d|A|nkA δ

n(kA)ϕ̂
aA(kA)

∫
d2nk12 δ

n(k12)|k2|−s|k1C |s

=
γ̂

µϵ
ga12J aA

ϕ,kA
[I2(kC)] .

(3.31)

HereA andC are collections of indices, neither including 1 or 2, withC ⊂ A, and we

assume s > 0 in order to obtain the vanishing of the first integral. Recall from section 0.4.4

that I0 diverges asΛϵ/ϵwhen ϵ = n−s is sufficiently small and positive, giving rise to log Λ
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behavior in the limit ϵ→ 0+.

There are
(
5
2

)
= 10 possible single Wick contractions of S5, but the (12) contraction

(meaning the contraction of a1 and a2) vanishes because ga12∇a5Ra1234 = 0; likewise the

(34) contraction vanishes. Meanwhile the (14) and (23) contractions are equal because

both∇a5Ra1234 and |k24|s are symmetrical under the simultaneous exchange of 1 ↔ 3

and 2 ↔ 4. For the same reason, the (15) and (35) contractions are equal, and so are the

(25) and (45) contractions. Finally, the (24) contraction vanishes because of the first line of

(3.31). We are left with

SWick
5 = SWick

5,(13) + 2SWick
5,(14) + 2SWick

5,(15) + 2SWick
5,(25)

(3.32)
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where

SWick
5,(13) =

µϵ/γ̂

24
∇a5Ra1234J a1a2a3a45

ϕ [|k24|s] =
1

24
∇a5Ra24J a245

ϕ [|k24|s]

=
1

24
∇a3Ra12J a123

ϕ [|k3|s]I0

SWick
5,(14) =

µϵ/γ̂

24
∇a5Ra1234J a1a23a4a5

ϕ [|k24|s] = − 1

24
∇a5Ra23J a235

ϕ [I2(k2)]

= − 1

24
∇a1Ra23J a123

ϕ [I2(k3)]

SWick
5,(15) =

µϵ/γ̂

24
∇a5Ra1234J a1a234a5

ϕ [|k24|s] =
1

24
(∇a3Ra24 −∇a4Ra23)J a234

ϕ [|k24|s]I0

=
1

24
(∇a3Ra12 −∇a1Ra23)J a123

ϕ [|k3|s]I0

SWick
5,(25) =

µϵ/γ̂

24
∇a5Ra1234J a1a2a34a5

ϕ [|k24|s] = − 1

24
(∇a3Ra14 −∇a4Ra13)J a134

ϕ [I2(k4)]

=
1

24
(∇a3Ra12 −∇a1Ra23)J a123

ϕ [I2(k3)] .

(3.33)

A few comments are in order:

• Because SWick
5,(14) and S

Wick
5,(25) are proportional to the I2 loop integral, they do not con-

tribute logarithmic divergences in the ϵ → 0+ limits described in section 0.4.4,
except when s is a positive even integer. In a position space account, these non-
logarithmic terms correspond to contractions of ϕ(x)with ϕ(y).

• We are mostly interested in SWick
5,(13) and S

Wick
5,(15) because I0 does produce a logarithmic

divergence in the ϵ → 0+ limit. Note that in these terms, the vertex factor |k13|s

involves only external momenta. This is the crucial feature, which allows non-local
counterterms to arise. In position space, the logarithmic terms correspond to con-
tractions of ϕ(y)with itself.
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In summary,

SWick
5 =

1

24

∫
d3nk123 δ

n(k123)ϕ̂
a123(k123)

[
I2(k3)(2∇a3Ra12 − 4∇a1Ra23)

+ I0|k3|s(3∇a3Ra12 − 2∇a1Ra23)
]
.

(3.34)

The minimal counterterm needed to cancel theΛϵ/ϵ divergences in (3.34) is

Sct
3 =

Λϵ

2ϵ

∫
d3nk123 δ

n(k123)ϕ̂
a123(k123)|k3|s

[
K1∇a3Ra12 +K2∇(a1Ra2)a3

] (3.35)

where

K1 = −3i0 + 2i2
12

K2 =
i0 + 2i2

6
, (3.36)

and i0 and i2 are as defined in (3.15) and (3.19). We use the notation Sct
3 to denote a countert-

erm that is cubic in the fields. Our primary interest is in cases where i2 = 0—namely, cases

in which s is not a positive even integer. However, tracking I0, I2(k), i0, and i2 throughout

our computations is useful as a bookkeeping device in order to simultaneously treat the lo-

cal and bi-local theories, in the ϵ → 0+ limit, with i2 entering in only to describe the local

theories.
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3.2.3 Renormalization through cubic order in the fields

Before entering into the more complicated story of quartic terms in the action, let’s preview

the endgame of our analysis. We produce a bare action that incorporates the renormalized

action plus the counterterms in a form we can express entirely in terms of arc length.

First, let’s rephrase the Wick-contracted quartic action (3.25) as

SWick
4 = −1

6

∫
d2nk12 δ

n(k12)ϕ̂
a12(k12)I2(k2)Ra12 , (3.37)

from which we conclude that we need a counterterm quadratic in the fields of the form

Sct
2 =

Λϵ

2ϵ

∫
d2nk12 δ

n(k12)ϕ̂
a12(k12)|k2|sK0Ra12 , (3.38)

where

K0 =
i2
3
. (3.39)

The results (3.38) and (3.35) together put some constraints on the renormalization proce-

dure, but as we will see they do not completely determine it.

The question of renormalizability is whether we can reorganize the renormalized action
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plus counterterms into a bare action whose form is the same that we started with:

S[ϕ] + Sct[ϕ] = SB[ϕB] . (3.40)

where

Sct[ϕ] =
∑
r>1

Sct
r (3.41)

is the sum of all counterterms, S[ϕ] is as given in (3.5), and

SB[ϕB] =
Λn−s

2γ

∫ ′

V×V

dnxdny

|x− y|n+s
QB(ϕB(x), ϕB(y)) , (3.42)

whereQB(XB, YB) = dB(XB, YB)
2. The bare arc length dB, derived from a bare metric

tensor gBab, may differ from the renormalized arc length d, and the bare coordinates ϕaB may

likewise differ from the renormalized coordinates ϕa. We require however that the points

ϕB = 0 and ϕ = 0 coincide. At tree level, where we ignore all counterterms, we have the

relations (
Λ

µ

)ϵ
gBab(ϕB) = gab(ϕ) ϕaB = ϕa , (3.43)

and our key task is to find perturbative corrections to these relations that render (3.40) cor-

rect.

To begin, let’s examine the quadratic terms in (3.40), using the counterterm Sct
2 from
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(3.38):

∫
d2nk12 δ

n(k12)ϕ̂
a12(k12)|k2|s

[
ga12 +

γ̂

ϵ

(
Λ

µ

)ϵ
K0Ra12

]
+O(ϕ3) +O(γ̂2)

=

(
Λ

µ

)ϵ ∫
d2nk12 δ

n(k12)ϕ̂
a12
B (k12)|k2|sgBa12 ,

(3.44)

where for simplicity we multiplied through by 2γ̂/µϵ. We surmise from (3.44) that correc-

tions to (3.43) can be expressed as a power series in the dimensionless quantity

γ̃ =
γ̂

ϵ

(
Λ

µ

)ϵ
. (3.45)

That is,

ϕaB(x) = ϕa(x) + γ̃
[
Ua

bϕ
b(x) + V a

b12ϕ
b12(x) +W a

b123ϕ
b123(x)

]
+O(ϕ4) +O(γ̃2) ,

(3.46)

where V a
b12 andW a

b123 are fully symmetric in their lower indices, and U , V , andW are all

independent of ϕ (and ϕB). In other words, (3.46) is a Taylor expansion of ϕaB in the coordi-

nates ϕa. Also, (
Λ

µ

)ϵ
gBab(ϕB) = gab(ϕ) + γ̃Tab(ϕ) +O(γ̃2) (3.47)

for some tensor Tab(ϕ). As our notation indicates, Tab(ϕ) does depend on ϕ. As with other

tensors, if we omit the argument, we mean that Tab is evaluated at ϕ = 0. Using (3.46) and

112



(3.47), we see that (3.44) is satisfied provided

ga12 + γ̃K0Ra12 = (δb1a1 + γ̃U b1
a1)(δ

b2
a2
+ γ̃U b2

a2)(gb12 + γ̃Tb12) +O(γ̂2) , (3.48)

or in other words, provided

Ta12 + 2Ua(12) = K0Ra12 , (3.49)

where

Ua12 = U b
a2ga1b Ua(12) =

1

2
(Ua12 + Ua21) . (3.50)

It should be kept in mind that Ta12 is the ϕ = 0 value of a tensor field Ta12(ϕ) defined over

the whole ofM , whereas Ua(12) is defined only at ϕ = 0. Let’s assume that

Ta12(ϕ) = t0Ra12(ϕ) Ua(12) = u0Ra12 . (3.51)

(A term in Ta12(ϕ) proportional toR(ϕ)ga12(ϕ) is also possible, but the divergences we

will encounter do not require it.) Then (3.49) reduces to

t0 + 2u0 = K0 . (3.52)
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As previously noted, based on the treatment of quadratic terms alone, we cannot distin-

guish between metric renormalization (related to the coefficient t0) and field redefinition

(related to the coefficient u0).

In order to proceed to higher orders, we require the squared arc length formula for bare

quantities:

QB(XB, YB) = gBa12(X
a1
B − Y a1

B )(Xa2
B − Y a2

B ) +
∑
r>2

QB
r(XB, YB) . (3.53)

We do not require ϕB to be Riemann normal coordinates for dB, so there are contributions

toQB at cubic order:

QB
3(XB, YB) = ΓB

a123
(Xa1

B − Y a1
B )(Xa2

B − Y a2
B )(Xa3

B + Y a3
B ) , (3.54)

where ΓB
abc = gBadΓ

Bd
bc and ΓBa

bc is the Christoffel connection for gBab. From (3.47) we have

immediately

(
Λ

µ

)ϵ
ΓB
a312

= γ̃

[
∇(a1Ta2)a3 −

1

2
∇a3Ta12

]
+O(γ̃2) , (3.55)
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FromQB
3 we obtain a cubic term in the bare action:

SB
3 =

Λϵ

2γ

∫ ′ dnxdny

|x− y|n+s
QB

3(ϕB(x), ϕB(y)) =
Λϵ

2γ̂
J a123
ϕB

[|k3|s]ΓB
a312

=
Λϵ

2ϵ
J a123
ϕ [|k3|s]

[
∇(a1Ta2)a3 −

1

2
∇a3Ta12

]
+O(γ̃) .

(3.56)

Another term cubic in ϕ arises in the bare action from plugging the non-linear field redefi-

nition (3.46) into the quadratic term SB
2 . To work this out, it helps first to note that passing

(3.46) through a Fourier transform yields

ϕ̂aB(k) = ϕ̂a(k) + γ̃δϕ̂a(k) +O(γ̃2) (3.57)

where

δϕ̂a(k) = Ua
bϕ̂
b(k) + V a

b12(ϕ̂
b1 ∗ ϕ̂b2)(k) +W a

b123(ϕ̂
b1 ∗ ϕ̂b2 ∗ ϕ̂b3)(k) +O(ϕ4)

(3.58)

and ∗ denotes convolution. It follows immediately that

J a12
ϕB

[|k2|s] = J a12
ϕ [|k2|s] + 2γ̃

∫
d2nk12 δ

n(k12)δϕ̂
(a1(k1)ϕ̂

a2)(k2)|k2|s +O(ϕ5) +O(γ̃2)

= J a12
ϕ [|k2|s] + 2γ̃

[
U (a1

bJ a2)b
ϕ,k2ℓ

[|k2|s] + V (a1
b12J

a2)b12
ϕ,k2ℓ12

[|k2|s]

+W (a1
b123J

a2)b123
ϕ,k2ℓ123

[|k2|s]
]
+O(ϕ5) +O(γ̃2) ,

(3.59)
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and so

SB
2 =

Λϵ

2γ̂
J a12
ϕB

[|k2|s]gBa12 = S2 +
Λϵ

2ϵ
J a12
ϕ [|k2|s] [Ta12 + 2Ua12 ] +

Λϵ

ϵ
J a123
ϕ [|k3|s]Va312

+
Λϵ

ϵ
J a1234
ϕ [|k4|s]Wa4123 +O(ϕ5) +O(γ̃) ,

(3.60)

where we are lowering indices on V andW with the renormalized metric gab. The Ta12 +

2Ua12 term in (3.60) is the same combination we saw in (3.49), with the symmetrization

Ua12 → Ua(12) implied because we multiply byJ a12
ϕ [|k2|s], which is symmetric. The

next term in (3.60) is the interesting one for us. The only constraint on Va312 is symme-

try in the 12 indices. This is the same symmetry thatJ a123
ϕ [|k3|s] possesses. Therefore

J a123
ϕ [|k3|s]Va312 is the most general linear combination of terms coming fromJ a123

ϕ [|k3|s]

integrals. Likewise, the only constraint onWa4123 is symmetry in 123, so the last term

shown explicitly in (3.60) is the most general linear combination of terms coming from

J a1234
ϕ [|k4|s] integrals.

We now have all the ingredients needed to calculate theO(ϕ3) correction to (3.44). Specif-

ically, we expand (3.40) to cubic order in the renormalized fields, using the expression (3.35)

for Sct
3 , as well as SB

3 from (3.56) and theO(ϕ3) term from (3.60). The result is

J a123
ϕ [|k3|s]

[
K1∇a3Ra12 +K2∇(a1Ra2)a3

]
= J a123

ϕ [|k3|s]
[
∇(a1Ta2)a3 −

1

2
∇a3Ta12 + 2Va312

]
.

(3.61)
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∇∇R

(a)

RR

(b)

R R

(c)

Figure 3.2: One-loop contributions to the 1PI four-point vertex: (a) SingleWick contractions of the∇∇R six-point

vertices; (b) SingleWick contractions ofRR six-point vertices; (c) Diagrams involving only four-point vertices.

Evidently, we may set

Va312 = v1∇a3Ra12 + v2∇(a1Ra2)a3 , (3.62)

where

−1

2
t0 + 2v1 = K1 t0 + 2v2 = K2 . (3.63)

The larger message is that Va312 is sufficiently unconstrained that we could use it to absorb

any counterterm proportional toJ a123
ϕ [|k3|s]. By the same token, when we get to quartic

order, the field redefinition coefficientsWa4123 can be used to absorb any terms propor-

tional toJ a1234
ϕ [|k4|s]. Therefore, when we do proceed to quartic order, we may simplify

our work by systematically dropping all such terms. We will see in section 3.2.4 that other

terms emerge, proportional toJ a1234
ϕ [|k24|s]. These are the ones that cannot be absorbed

into field redefinitions.
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3.2.4 Quartic counterterms

Four-point vertices are present at tree-level, and they are also generated by three different

types of one-loop diagrams, as shown in figure 3.2. Our goal in this section is to evaluate

one-loop divergences proportional to∇a12Ra34 (and re-indexings of it). The claim is that

only the diagram in figure 3.2a can contribute. Tracking only target space indices, the ver-

tex factor in this diagram is∇a56Ra1234 , and the internal propagator can tie any two of the

six indices together. So the diagram as a whole must be proportional to four-index contrac-

tions of∇a56Ra1234 . As explained in section 3.1, re-indexed versions of∇a12Ra34 , together

with curvature bilinears, provide a basis for such contractions. The diagrams in figure 3.2b

and 3.2c are manifestly proportional to curvature bilinears, so they cannot contribute terms

proportional to∇a12Ra34 . (One immediate way to see this is that the Riemann tensor

could vanish at ϕ = 0without its derivatives vanishing.) In the explicit calculations below,

we will encounter and discard many curvature bilinear terms, which we generically write as

O(RR), meaning some contraction ofRa1234Ra5678 .

We claim that the counterterms needed to cancel the divergences from the diagram in

figure 3.2a proportional to∇a12Ra34 (and re-indexings of it) are

Sct
6,∇∇R =

Λϵ

2ϵ

[
J a1234
ϕ [|k24|s] (K3∇a12Ra34 +K4∇a13Ra24)

+ J a1234
ϕ [|k4|s] (K5∇a12Ra34 +K6∇a34Ra12)

]
,

(3.64)
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where

K3 =
3i0 + 2i2

30
K4 = −7i0 + 3i2

60

K5 =
i0 + 3i2

30
K6 = −3i0 + 4i2

60
.

(3.65)

Color-coding in (3.64) is to help track to which term in (3.64) each of the many terms in

later equations contribute. The remainder of this section is devoted to deriving (3.65).

To derive the sixth-order vertex used in figure 3.2a, we start from theQ∇∇R
6 term in (3.12)

and extract the following six-order terms in the action:

S6,∇∇R =
µϵ

2γ

∫ ′ dnxdny

|x− y|n+s
Q∇∇R

6 (ϕ(x), ϕ(y)) = S4+2
6,∇∇R + S3+3

6,∇∇R (3.66)

where

S4+2
6,∇∇R =

µϵ

120γ̂
∇a56Ra1234J a123456

ϕ [|k24|s]

S3+3
6,∇∇R =

µϵ

240γ̂
∇a56Ra1234J a123456

ϕ [|k246|s] .
(3.67)

Our task is to compute the counterterms for all the single Wick contractions of S4+2
6,∇∇R and

S3+3
6,∇∇R.

For S4+2
6,∇∇R, relations among Wick contractions that are obvious from symmetries plus

the first line of (3.31) are as follows:

(12) = 0 (34) = 0 (24) = 0

(14) = (23) (15) = (35) = (16) = (36) (25) = (45) = (26) = (46) .

(3.68)
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Thus, of fifteen single Wick contractions of S4+2
6,∇∇R, there are actually only five that deter-

mine the full answer:

S4+2,Wick
6,∇∇R = S4+2,Wick

6,∇∇R,(13) + 2S4+2,Wick
6,∇∇R,(14) + 4S4+2,Wick

6,∇∇R,(15) + 4S4+2,Wick
6,∇∇R,(25) + S4+2,Wick

6,∇∇R,(56) .

(3.69)

If we write the counterterm for an expressionQ as {Q}ct, then the rules of computation we

need are a trivial adaptation of (3.31):

{
J a1a2aA
ϕ [|kC |s]

}
ct
=

{
J a1a2aA
ϕ [|k12C |s]

}
ct
= −γ̃ga12J aA

ϕ [|kC |s]i0{
J a1a2aA
ϕ [|k1C |s]

}
ct
= −γ̃ga12J aA

ϕ [|kC |s]i2 .
(3.70)

The counterterms that we need to cancel divergences coming from the single Wick contrac-

tions of S4+2
6,∇∇R, as shown in (3.69), are

S4+2,ct
6,∇∇R =

Λϵ

120ϵ

[
I4+2,ct
6,∇∇R,(13) + 2I4+2,ct

6,∇∇R,(14) + 4I4+2,ct
6,∇∇R,(15) + 4I4+2,ct

6,∇∇R,(25) + I4+2,ct
6,∇∇R,(56)

]
(3.71)
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where

I4+2,ct
6,∇∇R,(13) =

1

γ̃
∇a56Ra1234

{
J a1a2a3a456
ϕ [|k24|s]

}
ct
= −∇a56Ra24J a2456

ϕ [|k24|s]i0

= −∇a13Ra24J a1234
ϕ [|k24|s]i0

I4+2,ct
6,∇∇R,(14) =

1

γ̃
∇a56Ra1234

{
J a1a23a4a56
ϕ [|k24|s]

}
ct
= ∇a56Ra23J a2356

ϕ [|k2|s]i2

= ∇a12Ra34J a1234
ϕ [|k4|s]i2

I4+2,ct
6,∇∇R,(15) =

1

γ̃
∇a56Ra1234

{
J a1a234a5a6
ϕ [|k24|s]

}
ct
= −∇ba6R

b
a234J a2346

ϕ [|k24|s]i0

= (−∇a63Ra24 +∇a64Ra23)J a2346
ϕ [|k24|s]i0 +O(RR)

= (∇a12Ra34 −∇a13Ra24)J a1234
ϕ [|k24|s]i0 +O(RR)

I4+2,ct
6,∇∇R,(25) =

1

γ̃
∇a56Ra1234

{
J a1a2a34a5a6
ϕ [|k24|s]

}
ct
= −∇ba6Ra1

b
a34J a1346

ϕ [|k4|s]i2

= (∇a63Ra14 −∇a64Ra13)J a1346
ϕ [|k4|s]i2 +O(RR)

= (∇a12Ra34 −∇a34Ra12)J a1234
ϕ [|k4|s]i2 +O(RR)

I4+2,ct
6,∇∇R,(56) =

1

γ̃
∇a56Ra1234

{
J a1234a5a6
ϕ [|k24|s]

}
ct
= −∇2Ra1234J a1234

ϕ [|k24|s]i0

= (−2∇a13Ra24 + 2∇a12Ra34)J a1234
ϕ [|k24|s]i0 +O(RR) ,

(3.72)

where the color coding is to show which terms in (3.72) contribute to which terms of (3.64).
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Let us briefly summarize the analogous steps for S3+3
6,∇∇R. Obvious relations are

(12) = 0 (34) = 0 (13) = (24)

(14) = (23) (15) = (35) = (26) = (46) (16) = (36) = (25) = (45) ,

(3.73)

from which it follows that the desired counterterms are

S3+3,ct
6,∇∇R =

Λϵ

240ϵ

[
2I3+3,ct

6,∇∇R,(13) + 2I3+3,ct
6,∇∇R,(14) + 4I3+3,ct

6,∇∇R,(15) + 4I3+3,ct
6,∇∇R,(25) + I3+3,ct

6,∇∇R,(56)

]
.

(3.74)
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By direct computation using the rules (3.70),

I3+3,ct
6,∇∇R,(13) =

1

γ̃
∇a56Ra1234

{
J a1a2a3a456
ϕ [|k246|s]

}
ct
= −∇a56Ra24J a2456

ϕ [|k246|s]i0

= −∇a34Ra12J a1234
ϕ [|k4|s]i0

I3+3,ct
6,∇∇R,(14) =

1

γ̃
∇a56Ra1234

{
J a1a23a4a56
ϕ [|k246|s]

}
ct
= ∇a56Ra23J a2356

ϕ [|k26|s]i2

= ∇a12Ra34J a1234
ϕ [|k24|s]i2

I3+3,ct
6,∇∇R,(15) =

1

γ̃
∇a56Ra1234

{
J a1a234a5a6
ϕ [|k246|s]

}
ct
= −∇ba6R

b
a234J a2346

ϕ [|k246|s]i0

= (∇a12Ra34 −∇a34Ra12)J a1234
ϕ [|k4|s]i0 +O(RR)

I3+3,ct
6,∇∇R,(25) =

1

γ̃
∇a56Ra1234

{
J a1a2a34a5a6
ϕ [|k246|s]

}
ct
= −∇ba6Ra1

b
a34J a1346

ϕ [|k46|s]i2

= (∇a12Ra34 −∇a13Ra24)J a1234
ϕ [|k24|s]i2 +O(RR)

I3+3,ct
6,∇∇R,(56) =

1

γ̃
∇a56Ra1234

{
J a1234a5a6
ϕ [|k246|s]

}
ct
= −∇2Ra1234J a1234

ϕ [|k24|s]i2

= (−2∇a13Ra24 + 2∇a12Ra34)J a1234
ϕ [|k24|s]i2 +O(RR) .

(3.75)
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Putting (3.71)-(3.72) and (3.74)-(3.75) together and comparing with (3.64), we arrive at

K3 =
4

60
i0 +

2

60
i0 +

2

120
i2 +

4

120
i2 +

2

120
i2

K4 = − 1

60
i0 −

4

60
i0 −

2

60
i0 −

4

120
i2 −

2

120
i2

K5 =
2

60
i2 +

4

60
i2 +

4

120
i0

K6 = − 4

60
i2 −

2

120
i0 −

4

120
i0 ,

(3.76)

which agrees with (3.65).

3.2.5 Renormalization through quartic order in the fields

To renormalize at quartic order, we first inquire whether the counterterms (3.64) can be

organized into the bare arc length action (3.42), using the field redefinition (3.46) and the

relationship (3.47) between the bare and renormalized metric. For the non-local model, we

will find that this is impossible! So we will turn to a generalized form of the bare action that

includes a term proportional to the target space laplacian of the square of the arc length.

To get started, we need the bare arc length formula to quartic order in the bare fields:

That is, we need one more term in the series (3.53) than we computed in section 3.2.3. The

computation of arc length is less simple than for the renormalized metric because the ϕaB are

not Riemann normal coordinates for gBab—due to effects atO(γ̃), in particular a connec-

tion ΓBa
b12

∼ O(γ̃). As a technical device, we therefore introduce a third set of coordinates,
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ϕ
a, which are Riemann normal coordinates for the bare metric, which in barred coordi-

nates takes the form gab(ϕ). We can express ϕa in terms of ϕaB as

ϕ
a
= ϕaB + γ̃

[
Lab12ϕ

b12
B +Ma

b123ϕ
b123
B
]
+O(ϕ4

B) +O(γ̃2) , (3.77)

and we can write gBab(ϕB) in terms of gab(ϕ) as

gBb12(ϕB) = ga12(ϕ)
∂ϕ

a1

∂ϕb1B

∂ϕ
a2

∂ϕb2B
. (3.78)

Note that, by assumption, gBa12 = ga12 at ϕB = ϕ = 0. The condition that ϕa are Riemann

normal coordinates allows us to conclude

γ̃Lab12 =
1

2
ΓBa
b12

γ̃Ma
b123 =

1

6

(
∂

∂ϕ
(b1
B

ΓBa
b23)

+ ΓBa
b(b1

ΓBb
b23)

)
; (3.79)

see for exampleBrewin for a derivation. The ΓBΓB term in the expression (3.79) forMa
b123 is

optional because it isO(γ̃2), but it arises naturally in the derivation ofBrewin, so we include

it.

The bare arc length coincides between ϕ and ϕB coordinate systems because these are just
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different coordinate systems for the same metric, as per (3.78). Explicitly,

QB(XB, YB) = Q(X, Y ) = ga12(X
a1 − Y

a1
)(X

a2 − Y
a2
)− 1

3
Ra1234X

a13
Y
a24

+O(ϕ
5
) ,

(3.80)

where in the second equality we used the fact that ϕa are Riemann normal coordinates. The

notationO(ϕ̄5) in (3.80) is short for all terms involving five or more powers ofX and Y

combined; similar notation is used below. Using the first equation in (3.77) to eliminateX

and Y in favor ofXB and YB, we arrive at

QB(XB,YB) = gBa12(X
a1
B − Y a1

B )(Xa2
B − Y a2

B )

+ 2γ̃ [La312(X
a12
B − Y a12

B )(Xa3
B − Y a3

B ) +Ma4123(X
a123
B − Y a123

B )(Xa4
B − Y a4

B )]

− 1

3
RB
a1234

Xa13
B Y a24

B +O(ϕ5
B) +O(γ̃2) ,

(3.81)

where La312 = gBa3bL
b
a12 andMa4123 = gBa4bM

b
a123 . Note that the cubic terms in (3.81)

agree with (3.54), and recall from the subsequent analysis that the corresponding cubic term

SB
3 does not need to match S3 + Sct

3 , because of the additional term cubic in ϕ in (3.60) aris-

ing from theO(γ̃) difference between ϕB and ϕ. Likewise, the term in (3.81) proportional

toMa4123 gives rise to a term proportional toJϕB [|k4|s] in the action, but we do not need

to track it explicitly because the quartic term in (3.60) shows that it is precisely the sort of
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term that we can absorb into the field redefinition coefficientW a
b123 . Thus we may write

SB
4 =

Λϵ

2γ

∫ ′ dnxdny

|x− y|n+s
QB

4(ϕB(x), ϕB(y)) =
Λϵ

12γ̂
J a1234
ϕB

[|k24|s]RB
a1234

+ (field redef) ,

(3.82)

where (field redef) indicates field redefinition terms as discussed above.

Next we express SB
4 in terms of renormalized quantities in order to compare to (3.64).

Starting from (3.47), we obtain

(
Λ

µ

)ϵ
RB
a1234

= Ra1234 +
γ̃

2
(∇a14Ta23 −∇a24Ta13 −∇a13Ta24 +∇a23Ta14)

+O(RR) +O(γ̃2) .

(3.83)

Thus we find

SB
4 = S4 +

Λϵ

12ϵ
J a1234
ϕ [|k24|s] [t0∇a12Ra34 − t0∇a13Ra24 ]

+ (field redef) +O(RR) +O(γ̃) .

(3.84)

O(RR) terms arise in (3.84) not just from those in (3.83), but also from expressingJ a1234
ϕB

[|k24|s]

in terms of the renormalized field ϕ.‖ We have color-coded terms in (3.84) to match the way

we did in (3.64). Comparing the two equations, we can see that SB
4 accommodates the coun-

terterms Sct
6,∇∇R iffK3 = −K4. Based on (3.65), this happens iff i0 = i2, which means iff s

‖SB
3 does not contribute terms quartic in ϕ that we need to track because it starts atO(γ̃0), so quartic

terms coming from expressingJ a123

ϕB
[|k3|s] in terms of the renormalized ϕ enter atO(γ̃).
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is a positive even integer. This corresponds to the case of local non-linear sigma models.

Let us pursue further here what happens for the non-local case. Because i2 = 0, we

haveK1/K2 = −6/7, there is no hope of rendering the theory renormalizable with

just the arc length action we have been using so far. Some generalization of the arc length

action is needed. Whatever modification we make should involve two target space deriva-

tives relative to the original action, so as to absorb counterterms that appear with two extra

derivatives—like the∇a12Ra34 structure in Sct
6,∇∇R as compared toRa1234 in S4. Luckily,

there is a new term with the right properties which we can add to SB:

δSB = κB
Λϵ

2γ

∫ ′ dnxdny

|x− y|n+s
QB′′(ϕB(x), ϕB(y)) (3.85)

where we define

QB′′(XB, YB) ≡ (∇2
XB

+∇2
YB
)QB(XB, YB) . (3.86)

By explicit calculation (as sketched below (3.94)),

δSB = κB
Λϵ

60γ
(−6∇B

a12
RB
a34

+ 7∇B
a13
RB
a24

)

×
∫ ′ dnxdny

|x− y|n+s
[ϕa13B (x)− ϕa13B (y)] [ϕa24B (x)− ϕa24B (y)]

+ (field redef) +O(ϕ5
B) +O(RR) ,

(3.87)
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Passing to momentum space, we find

δSB = κB
Λϵ

60γ̂
(−6∇B

a12
RB
a34

+ 7∇B
a13
RB
a24

)J a1234
ϕB

[|k24|s]

+ (field redef) +O(ϕ5
B) +O(RR) .

(3.88)

Note that−6/7 ratio! Combining (3.84) and (3.88) and comparing with (3.64), we see that

κB = − γ̂
ϵ
i0
2
. Strikingly, we are forced also to choose t0 = 0: That is, the metric is not

renormalized!

Having allowed the two-derivative term (3.85) in SB, we should allow addition of a simi-

lar term to the renormalized action:

δS = κ
µϵ

2γ

∫ ′ dnxdny

|x− y|n+s
Q′′(ϕ(x), ϕ(y)) . (3.89)

We restrict κ to be anO(γ) quantity, which makes sense because then the overall scaling

with γ of (3.89) isO(γ0), and this aligns with the invariance ofQ′′(X,Y ) under overall

rescaling of the target manifold. The additional term (3.89) changes all the one-loop ampli-

tudes, but only byO(γ) quantities, relative to theO(γ0) scaling of one-loop amplitudes

and counterterms that we obtained in previous sections. In short, the only effect of allow-

ing non-zero κ in our counterterm analysis is to lead to a direct tree-level contribution to
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κB, so that in total, (
Λ

µ

)ϵ
κB = κ− γ̃

i0
2
. (3.90)

To rephrase this result in terms of the renormalization group, we can rewrite (3.90) as

Λϵ
(
κB +

γ̂

ϵ

i0
2

)
= µϵκ , (3.91)

and then since the right hand side is independent ofΛ, we arrive at

Λ
dκB

dΛ
= −ϵκB − γ̂

i0
2
. (3.92)

The first term on the right hand side of (3.92) is the tree-level term coming from the engi-

neering dimension factor of (Λ/µ)ϵ in (3.90). The one-loop effects are responsible for the

second term in (3.92). If we now take ϵ→ 0 in (3.92), we see that κB runs logarithmically:

κB = −γ̂ i0
2
log

Λ

Λ0

, (3.93)

whereΛ0 is a dynamically generated scale. Note that γ̂ and i0 are positive, so κB is positive

at scalesΛ belowΛ0 and negative aboveΛ0.
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To see that (3.87) is correct, let’s work on the renormalized side and note that

gb12
∂2

∂Xb1∂Xb2
Q∇∇R

6 = − 1

60
∇a56Ra1234Y

a24gb12
∂2Xa1356

∂Xb1∂Xb2
+ . . .

= − 1

30
(∇a13Ra24 + 4∇a1bR

b
a234 +∇2Ra1234)X

a13Y a24 + . . .

= − 1

30
(6∇a13Ra24 − 6∇a12Ra34 +∇a24Ra13)X

a13Y a24 + . . . .

(3.94)

The expression (3.94) is part of∇2
XQ(X,Y ), and it is easy to see that it is the only part

contributing terms of the form (∇∇R)XXY Y . Therefore

Q′′(X,Y ) = − 1

30
(−6∇a12Ra34 + 7∇a13Ra24)(X

a13Y a24 +Xa24Y a13)

+O(ϕ5) +O(RR) + . . . .

(3.95)

The ellipses in (3.94) and (3.95) indicate terms that are not quadratic in bothX and Y , for

example terms schematically of the form (∇∇R)XY Y Y or (∇∇R)Y Y Y Y , as well as

lower order terms which are either independent ofX or Y , or linear inX or Y . Plugging
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(3.95) into (3.89), we find

δS = −κ µϵ

60γ
(−6∇a12Ra34 + 7∇a13Ra24)

×
∫ ′ dnxdny

|x− y|n+s
[ϕa13(x)ϕa24(y) + ϕa24(x)ϕa13(y)]

+ (field redef) +O(ϕ5) +O(RR)

= κ
µϵ

60γ
(−6∇a12Ra34 + 7∇a13Ra24)

×
∫ ′ dnxdny

|x− y|n+s
[ϕa13(x)− ϕa13(y)] [ϕa24(x)− ϕa24(y)]

+ (field redef) +O(ϕ5) +O(RR) .

(3.96)

The contributions labeled (field redef) in (3.96) are linear in ϕ(x) or ϕ(y). To see that

(3.96) is correct, we have only to understand why we can freely add or drop from the in-

tegrand smooth functions which depend only on x or only on y, such as the direct terms

ϕa1234(x) + ϕa1234(y)which are present in the last expression in (3.96) but not the mid-

dle expression. As in section 0.4.3, this follows from careful use of the regulated integral

prescription:

∫ ′ dnxdny

|x− y|n+s
f(y) =

∫
dnxdny

|x− y|n+s

[
f(y)−

⌊s/2⌋∑
r=0

br�rf(x)(y − x)2r

]

=
1

ΓV (n+ s)

∫
dnxDsf(x) = 0

(3.97)
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for smooth functions f(x)with suitable falloff conditions at large x. The integral
∫ ′ dnxdny

|x−y|n+sf(x)

vanishes more trivially by subtraction of the r = 0 term in the sum appearing in square

brackets in (3.97).

3.3 LargeN

Let’s start with a recapitulation of the main points of our analysis. The starting point action

is

S =
µϵ

2γ

∫ ′

xy

Q(ϕ(x), ϕ(y)) , (3.98)

whereQ(X,Y ) = d(X,Y )2 is the square of the shortest distance between pointsX and

Y on the target manifold, and we understand that

∫ ′

xy

G(x, y) =

∫ ′ dnxdny

|x− y|n+s
G(x, y) (3.99)

is defined with a suitable regulation prescription, as in section 0.4.3. Recall that ϵ = n − s.

Focusing on the limit ϵ → 0+, with n and s converging to some positive n0 which is not an

even integer, we find that we are obliged to generalize the action (3.98) to

Simproved =
µϵ

2γ

∫ ′

xy

[Q(ϕ(x), ϕ(y)) + κQ′′(ϕ(x), ϕ(y))] , (3.100)
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whereQ′′(X,Y ) = (∇2
X + ∇2

Y )Q(X,Y ), and κ ∼ O(γ). With this improved ac-

tion, one-loop amplitudes atO(γ0) have a divergence structure which, as far as we have

taken the computations, can be absorbed entirely through field redefinitions and addi-

tive renormalization of κ, as given in the form of a renormalization group equation for the

bare version of κ in (3.92). No metric renormalization arises in the non-local model (at one

loop). This is in contrast with the local non-linear sigma model, where no improvement

terms are needed, and we cancel one-loop divergences instead through field redefinitions

and renormalization of the metric. We know that theO(N) symmetric local non-linear

sigma model has the same largeN limit like theO(N) (ϕ2)2 theory at the IR fixed point.

One could hope that the large target space dimensionN limit of the non-local non-linear

sigma model recover its renormalizability, but we will later see that this is not the case, at

least in the spherical target spaces. We will comment on the reason for this robust non-

renormalizability of the unimprovedQ2 action.

The general covariance of our arc length action makes it possible to study the theory

with any given metric conveniently. We can just plug in the tensor values at the very end

in loops and counterterms. (Otherwise, if no covariance, the loops or counterterms may

not be universal, and one has to work from the beginning for each different metric.) In odd

critical dimensions, our theory has the property that the metric is not renormalized, with

the covariance as constraints. We can quickly check this using a sphere metric. Plugging in
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Rabcd = k(gacgbd − gadgbc) for a sphere, the counterterms (inN target space dimensions)

are

(
26

45
k2 − 16

45
Nk2)XaXbYaYb + (− 4

15
k2 +

2

45
Nk2)XaX

aYbY
b (3.101)

In the original arc length action, we have simply

1

3
k XaXbYaYb −

1

3
k XaX

aYbY
b (3.102)

To make it renormalizable, we want the coefficients in the counter-terms to have the same

ratio as in the action, because we only have one RG parameter k. Solving it we find that

only inN = 1 (one dimension) is the theory renormalizable, which is the free theory.

Tracking all the quartic terms in the∇2d2 counter-terms gives

− 8

45
k2XaX

aXbYb +
8

45
Nk2XaX

aXbYb +
26

45
k2XaXbYaYb −

16

45
Nk2XaXbYaYb

− 4

15
k2XaX

aYbY
b +

2

45
Nk2XaX

aYbY
b − 8

45
k2XaYaYbY

b +
8

45
Nk2XaYaYbY

b

+
2

45
k2YaY

aYbY
b − 2

45
Nk2YaY

aYbY
b

(3.103)

Solving the over-constrained equations (XXYY terms having the correct ratio and all other

terms vanishing) also givesN = 1.

We could also ask what happens exactly in the largeN limit. The numerator of the regu-
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lated d2 Lagrangian in Riemann normal coordinates up to sixth order is

−2XaYa +
1

3
g XaXbYaYb −

1

3
g XaX

aYbY
b +

1

45
g2XaX

aXbXcYbYc −
4

45
g2XaXbXcYaYbYc

− 1

45
g2XaX

aXbX
bYcY

c +
4

45
g2XaX

aXbYbYcY
c +

1

45
g2XaXbYaYbYcY

c − 1

45
g2XaX

aYbY
bYcY

c

(3.104)

where g is the scalar metric. We want to see whether the largeN limit renders this ϕ4 plus

ϕ6 theory renormalizable. We will now first reproduce the 1-loop computation as a counter-

part of the covariant case. The propagator of the theory is

Gab(k) = C
δab

|k|s
(3.105)

In odd dimension there is no one loop correction to the propagator due to the fact that

there is usually no sub-leading divergency and thus many diagrams do not contribute to the

log divergency. One loop correction to the four point vertex comes from the fish diagram

and the jellyfish digram with four legs. The fish digram consists of two four point vertices

and is of order g2, while the jellyfish diagram consists of one six point vertices and is also of

order g2. The fish diagram can be represented by the following contraction:

1

3
g(gacgbd − gabgcd)X

aXbY cY d1

3
g(gacgbd − gabgcd)X

aXbY cY d →

4

9
g2(1−N)XaXbXaYb +

4

9
g2(1−N)Y aY bYaXb

(3.106)
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The jellyfish diagram can be represented by the following contraction:

1

45
g2XaX

aXbXcYbYc −
4

45
g2XaXbXcYaYbYc −

1

45
g2XaX

aXbX
bYcY

c +
4

45
g2XaX

aXbYbYcY
c

+
1

45
g2XaXbYaYbYcY

c − 1

45
g2XaX

aYbY
bYcY

c →

2

45
g2[(2N − 2)XaXbXaYb + (2N − 2)Y aY bYaXb + (−2N − 3)XaXaY

bYb + (N + 4)XaXbYaYb]

(3.107)

The total contribution to the vertex is then (note that the integral part is universal for all

these terms and we omit it for now)

2

45
g2[(−8N + 8)XaXbXaYb + (−8N + 8)Y aY bYaXb + (−2N − 3)XaXaY

bYb + (N + 4)XaXbYaYb]

(3.108)

Compare it to the original four point vertex:

1

3
g XaXbYaYb −

1

3
g XaX

aYbY
b (3.109)

One has to add counterterms that cannot be realized by rescaling the coupling g or shifting

the field, thus the theory is not renormalizable in odd dimensions. The extra counterterms
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needed are

E

45
g2[(8N − 8)XaXbXaYb + (8N − 8)Y aY bYaXb + (2N − 12)XaXaY

bYb + (−16N + 26)XaXbYaYb]

(3.110)

whereE is a constant. Under this, the “renormalization” of the theory is

Xa → Xa + AabX
b +Ba

bcX
bXc + Ca

bcdX
bXcXd (3.111)

g → g +Dg (3.112)

where

Aab =0

Ba
bc =0

(3.113)

and then we have a set of equations forC ,D andE:

1

3
gD +

E

45
g2(−16N + 26) +

2I2
45
g2(N + 4) = 0

−1

3
gD +

E

45
g2(2N − 12) +

2I2
45
g2(−2N − 3) = 0

−2C +
E

45
g2(8N − 8) +

2I2
45
g2(−8N + 8) = 0

(3.114)
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Solving the equations we have

Ca
bcd =− 4N − 4

21
g2I2δ

a
bδcd

D =− 2N + 2

7
gI2

E =
−I2
7

(3.115)

As expected, we needE the extra counterterm to make the constraints solvable. A remark-

able feature is thatE is independent of the target space dimensionN . This is consistent

with the covariant picture. So naively speaking, largeN is not rendering the theory renor-

malizable. This non-renormalizability is closely related to the fact that non-local actions

allow more possible tensor structures. For example,XaXbY
aY b andXaX

aYbY
b would

be indistinguishable for its local counterpartXaXbX
aXb. Note that the conclusion is only

for the order studied in this work now. It is thrilling to look for higher improvement terms

and to discover what they lead us to. Here RG flow leads the target space geometric flow,

but not in the usual way of Ricci flow. We would like to know what the geodesic arc length

flows to and why.
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4
Non-local field theory II: non-local

quantum electrodynamics

We have seen the non-renormalization of the non-local kinetic terms. While the anomalous

dimension of these fields is zero, classically marginal coupling constants of these theories

are not necessarily protected and may or may not run under renormalization group (RG)
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flow. In some cases, a combination of the non-renormalization property described above

together with additional constraints of the action may protect the dimension of a classically

marginal coupling so that it becomes exactly marginal. In other instances, renormalization

group flow may generate local kinetic terms, which, if relevant, may dominate the infrared

physics. In this chapter, we present an example where both can happen, depending on the

non-local spectral exponent and the dimensions.

The Euclidean action of a non-local version of quantum electrodynamics (QED), where

the kinetic term for the photons is non-local, and the fermions are local, is given by

S =

∫
ddx

1

4
FµνD

s−2F µν +
1

2ξ
(∂µA

µ)Ds−2(∂νA
ν) +

Nf∑
i=1

ψ̄i
(
i/∂ − e /A

)
ψi


(4.1)

where the non-local derivativeDs is defined through

∫
ddxDsϕ(x)eikx = |k|sϕ̂(k)

∫
ddxϕ(x)eikx = ϕ̂(k) . (4.2)

Our conventions for the Gamma matrices are

{γµ, γν} = −2δµν (4.3)

which coincide with those of77. We have derived in the introduction the real space expres-
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sion for the kinetic term (and gauge fixing term) of the photon in (4.1):

Dsϕ(0) = (2π)s
π− d

2
−sΓ

(
d+s
2

)
Γ
(
− s

2

) ∫
ddy

|y|d+s

ϕ(y)− ⌊s/2⌋∑
r=0

bry
2r (�rϕ) (0)

 (4.4)

with

br =
Γ
(
d
2

)
22rΓ

(
r + d

2

)
Γ (r + 1)

(4.5)

with Γ the Euler Gamma function, and s a real number greater than−dwhich is not a non-

negative even integer. Here we adapt a slightly different convention for the Fourier trans-

form from some previous chapters to simplify the notation, and hence the factor of (2π)s.

Note that when s is not too negative, the summation in (4.4) is set to zero; that is to say,

there is no subtraction on the right-hand side. We chooseNf in (4.1) such that there is no

parity anomaly.

As mentioned earlier, actions of the type (4.1) appear throughout the literature. When s

is an odd integer these actions are identical to the effective action obtained by considering

free photons coupled to fermions on lower-dimensional branes97,121 (see also48). The case of

d = 3 and s = 1 has recently received special attention64,82,32,29 partly due to its relation to

the physics of graphene 118,122 and its possible connection to the infrared fixed point of three-

dimensional QED 3,2,130,51,26,52. In 88 the authors attempt to relate non-local Abelian gauge

theories to strange metals. A study of the unitary and causal properties of (4.1) has been car-
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ried out in 31,98. More recently, the authors of 86,5 studied entanglement entropy properties

of non-local theories of the type described in this work. In the context of AdS/CFT96,61,129,

the works of 123,83,130,53,50 provided holographic descriptions of largeN QED3 and related

vector models, where the infiniteN boundary theory has an effective non-local propagator.

The classical scaling dimensions of the photon, fermion and electric charge in (4.1) are

given by

[Aµ] =
1

2
(d− s) [ψ] =

1

2
(d− 1) [e] =

1

2
(2 + s− d) (4.6)

implying that the electric charge is classically marginal for d = s+2, and that a canonical ki-

netic term for the photon is classically relevant whenever s > 2. We study the beta function

for the electric charge associated with (4.1). Some of our findings are as follows:

• We find that the d = s + 2 theory is exactly marginal as long as d is not an even
integer. As mentioned in97,121 and explained in appendix B the d = s+2 theory with
d ≥ 3 odd is the effective boundary theory for

S =

∫
dd+1x

1

4
Fµν

(
∇2
)d−4

F µν +

Nf∑
i=1

∫
ddxψ̄i

(
i/∂ − e /A

)
ψi (4.7)

with Neumann boundary conditions for the gauge field. Marginality of the d = 3

theory was discussed in64,82,32 and a check of marginality of the d = 5 theory at one
loop was carried out in48 (see also 51).

• Working in an ϵ expansion around d = 4we find that, as opposed to classical expec-
tations, a canonical kinetic term for the photon becomes relevant for s > d − 2.
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In other words, when 2 ≤ d ≤ 4 and the electric charge is relevant, non-local
QED flows to the same infrared fixed point as local QED. When the electric charge is
irrelevant non-local QED flows to a Gaussian theory. See figure 4.1. This infrared be-
havior is reminiscent of that of the long-range Ising model, though there, apart from
the Gaussian theory, there are two possible infrared fixed points. See40,115,71,70,109,9,8 for
details.

• For even values of d, the electric charge is no longer exactly marginal. We argue that
for d = 4 and s bigger than 2, the theory is asymptotically free but will generate
canonical kinetic terms in the infrared, serving as a UV completion of local four-
dimensional QED.

• Treating the non-local kinetic term as the deformation of a local theory, we find that
local three-dimensional QED possesses an exactly marginal non-local deformation
FµνD

−1F µν .

We argue that the scale invariant d = s+ 2 theory is also conformally invariant. In doing

so, we provide a method for coupling the metric to a non-local derivative. Unitarity of these

non-local theories are discussed in section 4.4.

4.1 Non-renormalization of the non-local photon

Action (4.1) falls in the category of non-local quadratic (photon kinetic term) theories

perturbed by local interactions (gauge coupling term), so a non-renormalization theorem

should apply. We will carefully examine the non-renormalization of the photon wave func-

tion to all orders in perturbation theory in this section as a warm-up for the RG analysis of

the full theory.
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Figure 4.1: Classical (left) and quantum corrected (right) scaling properties of the canonical kinetic term and electric

charge for various values of s and d as computed in themain text using an epsilon expansion and extrapolated to large

ϵ. The white circle signifies that the d = 3, s = 1 theory is exactly marginal, as are all theories with d = s− 2when

d is not an even integer.

Let us denote the bare action associated with (4.1) by

SB =

∫
ddx

(
1

4
Z3FµνD

s−2F µν +
Z4

2ξ
(∂µA

µ)Ds−2 (∂µA
µ)

+ iZ2

∑
j

ψ̄j /∂ψj − Z1e0µ
1
2
(2+s−d)

∑
j

ψ̄j /Aψj

)
(4.8)

where bare fields are given by

ψB = Z
1
2
ψψ AB = Z

1
2
AA eB = Z

1
2
α e0µ

1
2
(2+s−d) ξB = Zξξ (4.9)
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and

Z1 = Z
1
2
αZψZ

1
2
A , Z2 = Zψ , Z3 = ZA , Z4 = ZAZ

−1
ξ . (4.10)

Gauge invariance dictates that

Z1 = Z2 . (4.11)

The beta function for the normalized square of the electric charge,

α

(4π)
=

e20
(4π)d/2

(4.12)

is given by

βα = µ

(
∂α

∂µ

)
B

= −ϵα + 2αγA , (4.13)

where the subscriptB implies that we keep bare quantities fixed while taking the derivative,

and we have defined

ϵ = s+ 2− d , (4.14)

and

γA =
1

2
µ
∂

∂µ
lnZA , (4.15)

and used (4.11). Now we will argue for the non-renormalization of the photon wave func-
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tion based on the work of71.Alternate derivations of finiteness of the photon propagator for

d = 3 and s = 1 can be found in 32,64.

= 1
|p|s

(
δµν − (1− ξ)pνpµ

p2

)
=− /p

|p|2 δ
ij = e0µ

1
2
(2+s−d)γµδij

Figure 4.2: Feynman rules for the action (4.1).

First, it is straightforward to compute loop corrections to the photon propagator at one-

loop, given the Feynman rules as shown in figure 4.2. The one-loop result is from a fermion

loop and is insensitive to the non-local nature of the photon:

Πµν
(1)(k) = −e20µϵNfTr

∫
ddp

(2π)d
γµ/pγν

(
/p− /k

)
p2(p− k)2

= −2α

4π
µϵf(d)Nf

Γ
(
2− d

2

)
Γ
(
d
2

)2
Γ (d)

kd−4
(
k2δµν − kµkν

) (4.16)

where f(d) is the dimension of the γ matrices (f(4) = 4). Thus, if d is odd the one-loop

correction to the photon propagator is finite and we findZA = 1 + O(α2). One can also

compute the two-loop diagrams to explicitly show their finiteness for odd d but we skip

them as we will soon prove the non-renomalization to all loop orders. For details of the

two-loop results, one may consult the original paper68 and the textbook77.

We claim that non-local QED diagrams for the photon propagator are finite by arguing

that diagrams with a negative degree of divergence and whose subdivergences have been reg-

ulated are finite. A similar statement regarding the renormalizability of local QED can be
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found in 13. Indeed, our argument is a special case of a more general theorem due to Wein-

berg 126 which states that if a Feynman diagram has negative superficial degree of divergence

and its subdivergences have been subtracted, then it is finite. While Weinberg’s theorem

was proven for local theories, a careful analysis of the proof shows that it only relies on the

propagator being proportional to a negative power of the momentum. Therefore, it imme-

diately generalizes to non-local theories of the type studied in this work.

Given Weinberg’s theorem, and that taking derivatives and adding counterterms com-

mute in a minimal subtraction prescription (see, e.g., 28), we can argue for finiteness of the

photon correlator at any loop order. The superficial degree of divergence of a diagram with

ep external photon lines, no external fermions, and ℓ loops is

D = 2 + s− ep + (d− 2− s)ℓ , (4.17)

So, the superficial degree of divergence for the photon two-point function for ϵ = 0 is

D = s. We can now takeD + 1 derivative of any given diagramΠµ
(ℓ)µ together with its

associated counterterms with respect to the external momenta kµ to obtain an expression

whose superficial degree of divergence is negative. Thus, any divergences ofΠµ
(ℓ)µ must be

associated with integration constants which vanish when taking sufficiently many ∂/∂kµ

derivatives of it. SinceΠµ
(ℓ)µ is a scalar, all these divergences must be analytic in k2. So it has

to have an even power of k. If s (and therefore d) is odd we conclude thatΠµ
(ℓ)µ together
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with its associated counterterms is finite. Gauge invariance, kµΠµν
(ℓ) = 0, then implies that

Πµν
(ℓ) will be finite as well whenever d is odd. This proves the non-renormalization property

of non-local QED for ϵ = 0 and d odd advocated at the beginning of this section.

We note that an argument similar to the one presented above has been used to show that

there is no wavefunction renormalization in the continuum limit of the long-range Ising

model71. Indeed, for generic values of s and d, the superficial degree of divergence of the

photon two-point function,D, will not be an even integer, which implies that there is

no wavefunction renormalization of the photon in such cases as well. More precisely, at

ℓ loops, we have

D = (d− 2)ℓ− s(ℓ− 1) . (4.18)

In order for the diagram to be divergent, it must be the case thatD = 2nwith n > 0 an

integer. Thus, whenever

s =
ℓ

ℓ− 1
(d− 2)− 2n

ℓ− 1
, (4.19)

with ℓ > 1 the photon two-point function will have a logarithmically divergent contri-

bution. For all other values of s there won’t be any wave function renormalization of the

photon.
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4.2 RG flow

We have seen that for d = s + 2 and d odd, the electric charge is exactly marginal. When

d − (s + 2) < 0, the electric charge is relevant, and the theory may flow to a non-trivial

fixed point in the infrared. For example, three-dimensional QED (d = 3 and s = 2)

seems to behave in such a way, at least whenNf is large 2. If d = 3 and 1 < s < 2 (so

that a local kinetic term is classically irrelevant), one might expect the infrared fixed point

to be a non-local version of the fixed point of three-dimensional local QED, much like the

relation between the fixed point of the long-range Ising model and the short-range Ising

model studied in40,115,71. When s > 2, a local kinetic term becomes a relevant operator,

and the expectation is that the theory will flow to a local one in the infrared. However, in

what follows, we will find that the interplay between the generation of local kinetic terms

and the non-renormalization of the non-local kinetic term is subtle, and the naive classical

expectation breaks down, leading to interesting physical effects.

In four dimensions, renormalization of the one-loop correction to the photon propaga-

tor (given in (4.16)) requires us to introduce a local kinetic term for the photon. In order

to understand whether such a term is relevant in an RG sense, we follow the standard prac-

tice of adding it to the action and studying the resulting beta function associated with it.
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Working in d = 4− ϵ′ dimensions, our action takes the form

S =

∫
ddx

(
1

4
bZbµ

2−sFµνD
s−2F µν +

Z3

4
FµνF

µν + (gauge fixing terms)

+ iZ2

∑
j

ψ̄j /∂ψj + Z1e0µ
ϵ′
2

∑
j

ψ̄j /Aψj

)
. (4.20)

With some prescience (and similar to what was done in 115,71) we have rescaled the gauge field

(and electric charge) so that the local kinetic term is canonically normalized at tree level.

Rescaling the gauge field (and electric charge) back so that the tree level non-local kinetic

term is canonically normalized is a simple algebraic exercise which we will carry out towards

the end of this subsection. The bare coupling associated with (4.20) are given by

bB = bZbZ
−1
3 µ2−s , e2B = e20µ

ϵ′Z−1
3 . (4.21)

Slightly generalizing the arguments that lead to the non-renormalization theorem of the

previous section suggests that for generic values of s,* Zb = 1 leading to

βα(α, b) = α (−ϵ′ + 2γA(α, b))

βb(α, b) = b ((s− 2) + 2γA(α, b))

(4.22)

*Non-generic values of s are determined by (4.19) and either satisfy s = d− 2with d even or s < d− 2 in
which case the electric charge is irrelevant and the theory flows to the Gaussian one in the infrared.
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where βα and γA were defined in (4.13) and (4.15) respectively, and βb = µ (∂b/∂µ)B .

Unless s− 2 = −ϵ′ (a special case we will discuss shortly), a non-trivial fixed point will exist

only if b = 0 and 2γA(α∗, 0) = ϵ′. This fixed point is IR-stable whenever

B(α, b) =

∂bβb ∂αβb

∂bβα ∂αβα


∣∣∣∣∣
b=0
α=α∗

≻ 0 . (4.23)

Equation (4.23) reduces to

s > d− 2 , α∗
∂

∂α∗
γA(α∗, 0) > 0 . (4.24)

The first inequality implies that we must be in the region where the electric charge is rele-

vant. The second equality needs to be checked explicitly. In perturbation theory we find,

using (4.16) and setting d = 4 and s = 2 that

γA(α, 0) =
Nfα

3π
+O(α2) , (4.25)

for small ϵ′.

Note that the first inequality in (4.24) implies that the b = 0 fixed point is stable as long

as s > d− 2, as opposed to the classical s > 2. Put differently, we find that the local kinetic

term is relevant whenever s > d− 2 instead of s > 2 as implied by a naive power counting
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argument, at least as far as the epsilon expansion can be relied on. See figure 4.1.

Going back to (4.22), if d = 3 and s = 1 (s−2 = −ϵ′), there is a one-dimensional family

of solutions to βα = βb = 0. This exactly marginal direction contains the b = 0, α = α∗

theory which is the non-trivial infrared fixed point of QED3.† In other words, FαβD−1Fαβ

is an exactly marginal deformation of QED3. This is perhaps not surprising. Recall that the

d = 3, s = 1 theory is equivalent to the theory which captures the boundary dynamics

of a four-dimensional bulk photon coupled toNf boundary fermions. Thus, the non-local

deformation of the QED3 fixed point is equivalent to coupling QED3 to an additional

bulk photon in 4 dimensions. Such a coupling is exactly marginal.

Finally, let us rescale the gauge field in (4.20) by 1/
√
bµ2−s. In these variables the action

(4.20) may be thought of as a deformation of a non-local theory with charge ẽ0 = e0/
√
b

by a local operator b̃µs−2F 2 with b̃ = 1/b. Now

b̃B = b̃µs−2Z3 , ẽ2B = ẽ20µ
ϵ′+s−2 , (4.26)

so that

βα̃ = −α̃ (s− 2 + ϵ′)

βb̃ = −b̃ ((s− 2) + 2γA) .

(4.27)

†Based on an ϵ expansion analysis, we are assuming that γA(α∗, 0) is not a local minimum or maximum
of γA. If it is then there are no other solutions to (4.22) around b = 0.
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Thus, if d = 4 and s > 2, a theory with small b̃ is asymptotically free and can serve as a

UV completion of QED, sidestepping the infamous Landau pole of the local theory; in the

infrared, a (relevant) local kinetic term will be generated and dominate the dynamics.

The analysis we have carried out so far may be generalized to an epsilon expansion around

d = 2n− ϵ′ dimensions. For n > 2, the action

S =

∫
ddx

(
1

4
bµ2n−(s+2)ZbFµνD

s−2F µν +
Z3

4
FµνD

2n−4F µν + (gauge fixing terms)

+ iZ2

∑
j

ψ̄j /∂ψj + Z1e0µ
ϵ′
2

∑
j

ψ̄j /Aψj

)
(4.28)

generalizes (4.20), the bare coupling,

bB = bZbZ
−1
3 µ2n−(s+2) , (4.29)

generalizes (4.21), and the beta functions (4.22) now read

βα(α, b̃) = α (−ϵ′ + 2γA(α, b))

βb(α, b̃) = b ((s+ 2− 2n) + 2γA(α, b)) .

(4.30)

As was the case for n = 2, unless−ϵ′ = s+2−2n, the only non-trivial fixed point is b = 0
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and γ(α∗, 0) = ϵ′ whose stability is given by (4.24) except that now

γ(α, 0) = (−1)n
Nfαf(d)(n− 1)

4n
√
πΓ
(
n+ 1

2

) +O(α2) . (4.31)

For n even, the fixed point is perturbatively stable but for n odd the fixed point is perturba-

tively unstable, at least for real values of α. A similar observation was made for the n = 3

case in 51.

4.3 Conformal invariance and non-local currents

Theories with d = s + 2 and s odd are scale invariant for all values of the electric charge.

It is then natural to inquire whether they are also conformally invariant. For local, unitary

theories with d = 2, it is known that scale invariance implies conformal invariance 132,112,

but in higher dimensions it is already possible to find simple counterexamples. One such

example is free d = 3Maxwell theory79,37, in which the two-point function of the field

strength Fµν exhibits scale invariance but does not possess the correct tensor structure for

full conformal invariance. We can also compute two-point functions in the non-local free

Maxwell theory to find necessary conditions of conformal invariance. Using our rules for

the Fourier transform, the correlator in position space in our gauge is

⟨Aµ(x)Aν(0)⟩ =
1

(2π)s
πs−

d
2Γ
(
d−s
2

)
Γ
(
s
2

) δµν
|x|d−s

≡ CA
δµν

|x|d−s
. (4.32)
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The correlation function (4.32) is not gauge invariant. The gauge invariant operator we will

constrain is Fµν = ∂µAν − ∂νAµ, which we assume to be a primary. The simplest 2-point

function we can write down is:

⟨Fµν(x)Fρσ(0)⟩ = ⟨∂µAν(x)∂ρAσ(0)⟩ − ⟨∂µAν(x)∂σAρ(0)⟩ − (µ↔ ν) . (4.33)

To evaluate this, we use the standard technique of inserting the second operator at a point

yρ, then differentiating and setting y = 0 at the end. Doing this and summing over the

terms gives:

⟨Fµν(x)Fρσ(0)⟩ = CA
2(d− s)

xd−s+2

(
Iµρ(x)−

1

2
(d− s− 2)

xµxρ
x2

)(
Iνσ(x)−

1

2
(d− s− 2)

xνxσ
x2

)
− (µ↔ ν) . (4.34)

where

Iµν = δµν − 2
xµxν
x2

. (4.35)

By construction, this 2-point function comes from a scale invariant theory and is scale co-

variant. However, as we discussed in the introduction of this section, conformal covariance

is a nontrivial requirement. Since Fµν is primary, conformal covariance dictates that the

tensorial dependence of the field strength correlation function should appear only through
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Iµν(x) defined in (4.35) 107.We see from (4.34) that correlation functions of F are confor-

mally covariant only for d = s + 2, or in other words, the scaling dimension of F is exactly

2. One can also see that in the local limit of d = 3, s = 2, we match the conclusion of 37

that the theory is scale but not conformally invariant. What is free next is that at odd s, the

non-renormalization theorem keeps the scaling dimension fixed, and that is evidence of

conformal invariance even in the interacting theory.

Since studies of scale invariance versus conformal invariance often rely on the properties

of the trace of a local stress tensor (see, e.g., 127,20,27,112,34,33,35 and references therein), one may

worry that a non-local field theory will not possess such an operator rendering such an anal-

ysis mute. While a non-local field theory is not expected to support a local stress tensor, it is

possible that it allows for a non-local one. In fact, given a Lagrangian description of the the-

ory, one expects to be able to obtain a stress tensor via a Noether procedure or by coupling

the fields to an external metric. Indeed, if it is possible to couple the theory to a background

metric such that the resulting action transforms as a scalar under general coordinate trans-

formations, then we are guaranteed that the resulting energy momentum tensor, local or

not, will be conserved. Such an energy momentum tensor will generate translations in the

usual sense. Furthermore, standard arguments show that this stress tensor will be traceless

(up to improvement terms) if and only if the theory is conformally invariant.

To warm up and introduce the notion of non-local current in this chapter, we first dis-
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cuss simple U(1) currents in non-local scalar theories. Then we will use the Caffarelli-

Silvestre extension theorem 19 to couple the non-local LaplacianDs to an external metric

in a general coordinate covariant way. With such an expression in hand, we can couple the

action 4.1 to a metric and, from it, compute a (non-local) energy momentum tensor, T µν .

We also show that T µµ = 0 up to improvement terms. An alternate method for computing

the stress tensor in non-local theories can be found in 113,87.

4.3.1 Examples of non-local currents

We present two examples in this subsection. We first derive the U(1) current of the one-

dimensional free complex scalar to give the readers a hint of what is a non-local conserved

current mathematically. Then we proceed to look at the U(1) current of the non-local dual

photon in three dimensions, which is a non-local compact scalar, to explain its physical

relevance.

WritingDs as� s
2 , where� is the usual local laplacian, the action is

S =

∫
dx ϕ̄� s

2ϕ+ ϕ� s
2 ϕ̄ (4.36)

The idea is to express the fractional laplacian as a series of powers of usual laplacians:

� s
2 = lim

b→0
(�+ b)

s
2 =

∞∑
n=0

1

n!
b

s
2
−n�n

n−1∏
i=0

(
s

2
− i) (4.37)
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Starting with ϕ̄� s
2ϕ for example, we deform the field by a space-time dependent phase

e−iα(x)ϕ̄� s
2 (eiα(x)ϕ) = e−iα(x)ϕ̄

∞∑
n=0

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)�n(eiα(x)ϕ)

= e−iα(x)ϕ̄
∞∑
n=0

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)

2n∑
m=0

(
2n

m

)
(∂2n−m(eiα(x))∂mϕ)

(4.38)

m ̸= 2n and n ̸= 0 terms are the variation of the Lagrangian. Keeping only linear terms in

α, the derivative of the phase becomes i(∂2n−mα(x))eiα(x). Thus, the variation becomes

e−iα(x)ϕ̄
∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)

2n−1∑
m=0

(
2n

m

)
(i(∂2n−mα(x))eiα(x)∂mϕ)

= i
∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)

2n−1∑
m=0

(
2n

m

)
(ϕ̄∂mϕ)∂2n−mα(x)

(4.39)

Then we do integration by part and regard the factor of ∂α(x) as the current:

i
∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)

2n−1∑
m=0

(
2n

m

)
(−1)2n−m−1∂2n−m−1(ϕ̄∂mϕ)

=i
∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)

2n−1∑
m=0

(
2n

m

)
(−1)−m−1

2n−m−1∑
l=0

(
2n−m− 1

l

)
(∂lϕ̄∂2n−l−1ϕ)

(4.40)

We then need two steps to make progress. First, we notice that the absolute value of the

coefficient of ∂lϕ̄∂2n−l−1ϕ should only depend on n. This inspires us to find such an iden-
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tity:
2n−l−1∑
m=0

(−1)−m−1

(
2n

m

)(
2n−m− 1

l

)
= (−1)l (4.41)

A proof of it makes use of the Gauss’s hypergeometric theorem.‡ One can check instead this

equivalent identity:

N∑
m=0

(−1)−m−1 1

m!(N −m)!

1

N + l + 1−m
= (−1)N+1 l!

(N + l + 1)!
(4.43)

withN = 2n− l − 1. From the definition we have

N∑
m=0

(−1)−m
N !

m!(N −m)!

N + l − 1

N + l + 1−m
=2 F1(−N,−N − l + 1;−N − l − 2; 1)

(4.44)

Then Gauss’s hypergeometric theorem says

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(4.45)

Then we notice that there are negative integer poles in the gamma function. We can switch
‡While in deriving higher dimensional currents, similar observation lets us conjecture another identity:

2n∑
m=2

[m2 ]∑
l=1

(
n

l

)(
n− l

m− 2l

)
2m−2l(−1)m−1

[ r2 ]∑
t=r−l+1

(
l − 1

t

)(
l − 1− t

r − 2t

)
2r−2t = (r+1)(−1)r+n (4.42)

where [x] is the integer part of x. But it is beyond our current scope to prove this equation. Direct numerical
tests for n not too large find no counterexample.
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m andN −m:

N∑
m=0

(−1)−m−1 1

m!(N −m)!

1

N + l + 1−m
=

N∑
m=0

(−1)−N+m−1 1

m!(N −m)!

1

m+ l + 1

=2F1(−N, l + 1; l + 2; 1)
(−1)−N−1

l + 1

1

N !
(4.46)

Then the theorem tells us that

2F1(−N, l + 1; l + 2; 1) =
Γ(l + 2)Γ(N + 1)

Γ(1)Γ(N + l + 2)
=

(l + 1)!(N)!

(N + l + 1)!
(4.47)

And then

(l + 1)!(N)!

(N + l + 1)!

(−1)−N−1

l + 1

1

N !
= (−1)N+1 l!

(N + l + 1)!
(4.48)

The identity is proven.

The next step is to introduce linear differential operators that only acts on ϕ or its conju-
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gate, similar to those used in higher spin currents. The current is in good shape now:

i

∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)

2n−1∑
m=0

(−1)−m−1

(
2n

m

) 2n−m−1∑
l=0

(
2n−m− 1

l

)
(∂lϕ̄∂2n−l−1ϕ)

=i
∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)

2n−1∑
l=0

∂lϕ̄∂2n−1−lϕ(−1)l

≡i
∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)

2n−1∑
l=0

X lY 2n−1−l(ϕ̄ϕ)(−1)l

=−
i
(
(b+X2)

s
2 − (b+ Y 2)

s
2

)
X + Y

(ϕ̄ϕ)

(4.49)

whereX only acts on ϕ̄ and Y only acts on ϕ. That is to say

XmY n(ϕ̄ϕ) ≡ ∂mϕ̄∂nϕ (4.50)

Then the b→ 0 limit can be taken smoothly and we have the current

−2
i
(
(X2)

s
2 − (Y 2)

s
2

)
X + Y

(ϕ̄ϕ) (4.51)

The extra factor of 2 comes from the complex conjugation. Annihilation byX + Y under

the equation of motion should be understood as the conservation condition. One can also

set s to be even integers to recover local or higher derivative currents.
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The second example, a three-dimensional free compact scalar,

S =

∫
dx3ϕ� s

2ϕ (4.52)

has the ϕ → ϕ + α symmetry. The non-local current associated with this symmetry can be

derived similarly:

∆L =(ϕ+ α)� s
2 (ϕ+ α)− ϕ� s

2ϕ

= lim
b→0

∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)(α�nϕ+ ϕ�nα)

(4.53)

After an integration by parts, the coefficients of the ∂µα term are taken as the current:

lim
b→0

−2
∞∑
n=1

1

n!
b

s
2
−n

n−1∏
i=0

(
s

2
− i)�n−1∂µϕ

= lim
b→0

2(b
s
2 − (b+�)

s
2 )

� ∂µϕ

=− 2� s
2
−1∂µϕ

(4.54)

Now we have the current and the charge operator

jµ ∝ � s
2
−1∂µϕ Q ∝

∫
Σ

� s
2
−1∂µϕn

µdS (4.55)

whereΣ is a orientable closed two-dimensional surface and n is the normal vector of the
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surface. We want to show that the monopole operatorM = eiqϕ is charged under thisQ

operator. That amounts to ask what is [Q,M ]:

[Q,M(0)] ∝ [

∫
Σ

� s
2
−1∂µϕ(x)n

µdS, eiqϕ(0)] =

∫
Σ

� s
2
−1∂µ[ϕ(x), e

iqϕ(0)]nµdS (4.56)

With [ϕ(x), ϕ(0)] = GF (x), we can obtain

[ϕ(x), eiqϕ(0)] =[ϕ(x),
∞∑
n=0

1

n!
(iqϕ(0)n)]

=
∞∑
n=0

1

n!
(iq)n[ϕ(x), ϕ(0)n]

=
∞∑
n=0

1

n!
(iq)nnGF (x)ϕ(0)

n−1

=GF (x)iqe
iqϕ(0)

(4.57)

Thus, the charge operator acts onM as

[Q,M(0)] ∝ iqM

∫
Σ

� s
2
−1∂µGF (x)n

µdS (4.58)
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Using the Stokes theorem and the equation of motion, the integral becomes

∫
Σ

� s
2
−1∂µGF (x)n

µdS =

∫
V

∂µ� s
2
−1∂µGF (x)dV

∝
∫
V

δ(x⃗)dV =


1, if 0 ∈ V

0, otherwise

(4.59)

where V is the volume that is wrapped by the closed surfaceΣ. Note that the final result

becomes

[Q,M ] ∝


qM, ifM is insideΣ

0, otherwise

(4.60)

In this sense, the non-local current we obtained has the same physical meaning as its local

counterparts.

4.3.2 Non-local stress energy tensor

If a theory is local and translation invariant, one can couple the theory to a metric in a co-

ordinate invariant way by adding a Christoffel connection to the derivative operator ∂µ,

generating a covariant derivativeDµ which is general coordinate covariant, viz.,

(Dµ + δξDµ) (fν1...νn +£ξfν1...νn) = Dµfν1...νn +£ξ (Dµfν1...νn) +O(ξ2) . (4.61)
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Here£ξ represents a Lie derivative associated with an infinitesimal coordinate transforma-

tion x → x + ξ and δξDµ represents the infinitesimal transformation of the covariant

derivative under such a coordinate transformation.

To construct a covariant non-local derivative,Ds, we take a somewhat different route

and turn our attention to the Caffarelli-Silvestre extension theorem.§ 19 The CS theorem

allows one to relate the fractional derivative to a local operator in a higher dimension; Let

u(xµ, y) be a solution to

(
∇2
x +

1− s

y
∂y + ∂2y

)
u = 0 , (4.62a)

where∇2
x is the Laplacian onRd (spanned by the Cartesian coordinates xµ), y ∈ [0,∞),

and 0 < s < 2, supplemented with the boundary conditions

u(x, 0) = f(x) u(x,∞) = 0 . (4.62b)

The CS extension theorem states that

lim
y→0

y1−s∂yu = CDsf(x) , (4.63)

§The CS theorem was proven for 0 < s < 2 but the end result we obtain for the covariant derivative can
be analytically extended to other values of s.
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where

C = −
21−sΓ

(
1− s

2

)
Γ
(
s
2

) . (4.64)

A detailed proof of the CS extension theorem can be found in 19. Put briefly, consider the

ordinary differential equation

−ŵ(z) + 1− s

z
ŵ′(z) + ŵ′′(z) = 0 (4.65)

with z ∈ [0,∞) and boundary conditions

ŵ(0) = 1 ŵ(∞) = 0 . (4.66)

We can construct a solution of the Fourier transform of u, û(k, y), from ŵ via

û(k, y) = f̂(k)ŵ(|k|y). (4.67)

Then

lim
y→0

y1−s∂yû = |k|sf̂(k) lim
y→0

(|k|y)1−sŵ′(|k|y)

= C|k|sf̂(k)
(4.68)
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with

C = lim
z→0

z1−sŵ′(z). (4.69)

Since (4.65) is a Bessel equation, it is straightforward to compute (4.69) explicitly and ob-

tain (4.64).

Using the CS extension theorem, it is possible to construct a fractional derivative D̃s

which transforms covariantly under a general coordinate transformation, and reduces toDs

when the background metric is flat. To start, let us replace (4.62a) with

(
∇̃2
x +

1− s

y
∂y + ∂2y

)
u = 0 , (4.70)

with the same boundary conditions as in (4.62b) but where now ∇̃2
x = gµν∇µ∇ν with

gµν a non-trivial metric associated with the space spanned by the xµ coordinates and∇µ its

associated covariant derivative.

By construction, equation (4.70) transforms covariantly under coordinate transforma-

tions in the xµ directions implying that the associated D̃s will transform covariantly under

general coordinate transformations. To see this explicitly, let T denote a coordinate trans-

formation, x → x′(x) = T (x), such that T (f(x)) = f(T (x)), T (u(x, y)) = u(T (x), y)
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and T (∇̃2
xu(x, y)) = ∇̃2

T (x)u(T (x), y)). Then

T

((
∇̃2
x +

1− s

y
∂y + ∂2y

)
u(x, y)

)
=

(
∇̃2
T (x) +

1− s

y
∂y + ∂2y

)
u(T (x), y) , (4.71)

with

u(T (x), 0) = f(T (x)) . (4.72)

We denote u as the solution of

(
∇̃2
x +

1− s

y
∂y + ∂2y

)
u(x, y) = 0 (4.73)

or equivalently (
∇̃2
T (x) +

1− s

y
∂y + ∂2y

)
u(T (x), y) = 0 (4.74)

At the same time, u′ represents the solution of

(
∇̃2
T (x) +

1− s

y
∂y + ∂2y

)
u′(x, y) = 0 (4.75)

If we now define

CD̃sf(x) = lim
y→0

y1−s∂yu(x, y) (4.76)
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then, T (D̃s) is defined as

C T (D̃s)f(x) = lim
y→0

y1−s∂yu
′(x, y) , (4.77)

In the end, we show

C T (D̃sf(x)) = T

(
lim
y→0

y1−s∂yu(x, y)

)
= lim

y→0
y1−s∂yu(T (x), y) = C T (D̃s)f(T (x))

(4.78)

as required.

While it is difficult to obtain an explicit expression for D̃s, it is straightforward to do so

to linear order in metric perturbations around a flat background. Let us expand the metric

gµν = ηµν +hµν . The linearized expression for the covariant derivative ∇̃2
x acting on a rank

two antisymmetric tensor is given by

∇̃2
xFαβ = ∇2

xFαβ +∇2
x[h]Fαβ +O(h2) (4.79)
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where

∇2
x[h]Fαβ =− hµν∂ν∂µFαβ +

1

2
∂σh∂

σFαβ − ∂νFα
σ∂βh

ν
σ − ∂νFασ∂

νhβ
σ + ∂νFα

σ∂σhβ
ν

+ ∂νFβσ∂αh
νσ + ∂νFβσ∂

νhα
σ +

1

2
Fβ

σ∂ν∂αhνσ −
1

2
Fασ∂ν∂βh

νσ +
1

2
Fβ

σ∂ν∂
νhασ

− 1

2
Fα

σ∂ν∂
νhβσ −

1

2
Fβ

σ∂ν∂σhαν +
1

2
Fα

σ∂ν∂σhβν − ∂νh
νσ∂σFαβ − ∂νFβ

σ∂σhαν ,

(4.80)

with h = ηµνhµν and indices are raised and lowered with the Minkowski metric, e.g.,

hµν = ηµαηνβhαβ . To compute the associated linear correction toDs,

D̃s = Ds +Ds
1[h] +O(h2), (4.81)

we must solve (4.70) perturbatively in hµν . We will do so using Green’s functions.

Let us expand the solution to (4.70) in powers of h, replacing uwith a rank two antisym-

metric tensor ϕαβ ,

ϕαβ = ϕ0
αβ + ϕ1

αβ[h] +O(h2) , (4.82)
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such that

(
∇2
x +

1− s

y
∂y + ∂2y

)
ϕ0
αβ = 0 (4.83a)(

∇2
x +

1− s

y
∂y + ∂2y

)
ϕ1
αβ = −∇2

x[h]ϕ
0
αβ (4.83b)

etc. The boundary conditions associated with (4.83) are

ϕ0
αβ(x, 0) = fαβ(x) , ϕ1

αβ(x, 0) = 0 , (4.84)

and so on.

After Fourier transforming in the x directions, the two linearly independent solutions to

the scalar version of (4.83a) are given by

L+ = y
s
2K s

2
(|k|y) L− = y

s
2 I s

2
(|k|y) (4.85)

whereK s
2
and I s

2
are modified Bessel functions. Note that

L+(0) = |k|−
s
2Γ
(s
2

)
2

s
2
−1 +O(ys) L−(0) = O(ys) (4.86)

L+(∞) = 0 L−(∞) = ∞ (4.87)
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Thus,

ϕ̂0
αβ =

21−
s
2 |k| s2y s

2

Γ
(
s
2

) K s
2
(|k|y)f̂αβ(k) , (4.88)

and

lim
y→0

y1−s∂yϕ̂
0
αβ = −

21−sΓ
(
1− s

2

)
Γ
(
s
2

) |k|sf̂αβ(k) . (4.89)

inline with (4.69).

To solve for ϕ1
αβ we look for the Greens function satisfying

(
−|k|2 + 1− s

y
∂y + ∂2y

)
G(y, y′) = δ(y − y′) . (4.90)

Using standard techniques,G(y, y′) can be constructed from the two solutions to the ho-

mogeneous equation, L±. We find

G(y, y′) = −y
s
2 (y′)1−

s
2


I s

2
(|k|y′)K s

2
(|k|y) y > y′

K s
2
(|k|y′)I s

2
(|k|y) y < y′

. (4.91)

Thus,

ϕ̂ 1
αβ(k) =− y

s
2K s

2
(|k|y)

∫ y

0

(y′)1−
s
2 I s

2
(|k|y′)Sαβ(k, y′)dy′

− y
s
2 I s

2
(|k|y)

∫ ∞

y

(y′)1−
s
2K s

2
(|k|y′)Sαβ(k, y′)dy′

(4.92)
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with

Sαβ(k, y
′) = −∇2

x[h]ϕ
0
αβ(x, y

′)
∧

. (4.93)

Thus,

Ds
1[h]f
∧

αβ(k1) =
1

C
lim
y→0

y1−s∂yϕ̂
1
αβ(k1)

=
2

s
2k

s
2
1

Γ
(
1− s

2

) ∫ ∞

0

(y′)1−
s
2K s

2
(|k1|y′)Sαβ(k1, y′)dy′

= −
∫
ddkddk2
(2π)d

δ(k + k2 − k1)
(ks1 − ks2)

k21 − k22
×

(
1

2
ĥβρ

((
k2 + 2kµ2kµ

)
f̂α

ρ − kλ (kρ + 2k2
ρ) f̂αλ

)
+

1

2
ĥλρ

(
kβ
(
kλ + 2k2

λ
)
f̂α

ρ +
(
kλ + k2

λ
)
k2
ρf̂αβ

)
− 1

4
kµ2kµĥf̂αβ − (α ↔ β)

)
,

(4.94)

where we have omitted the explicit dependence of f̂αβ on k2 and of ĥαβ on k for brevity,

i.e., one should make the replacements

f̂αβ → f̂αβ(k2) , ĥαβ → ĥαβ(k) , (4.95)

in (4.94).

Using this method, we may couple the non-local derivative in

S =

∫
ddxϕ†Dsϕ+ V (|ϕ|2) , (4.96)
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to an external Abelian connection and use this to compute the associated conservedU(1)

current immediately,

Ĵµ(−k) = −
∫
ddq1d

dq2
(2π)d

(−|q1|s + |q2|s) (ϕ∗(q2)q
µ
1ϕ(q1)− qµ2ϕ

∗(q2)ϕ(q1))

|q1|2 − |q2|2
δ(k+q1+q2) .

(4.97)

which matches the one-dimensional example. It clear that this method is more powerful in

higher dimensions, as the derivation is much simpler.

We can now linearly couple the action (4.1) to an external metric using the covariant

derivative D̃s = Ds +Ds
1 +O(h2). Varying the Maxwell term,

SMaxwell =
1

4

∫
ddxFαβD

s−2Fαβ , (4.98)

with respect to the metric we find

T̂ µνMaxwell(−k) =
2(2π)d
√
η

δ

δĥµν(k)
SMaxwell

= −1

4

∫
ddk1d

dk2δ(k + k1 + k2)

(2π)d(k21 − k22)

(
Fαβ(k1)F

αβ(k2)τ
µν
0 (k1, k2) + Fαµ(k1)Fα

ν(k2)τ(k1, k2)

+ F βα(k1)Fβ
ν(k2)τ

µ
α(k1, k2)− F βµ(k1)Fβ

α(k2)τ
ν
α(k1, k2)

)

(4.99)
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with

τµν0 = ks−2
2 (kν1k

µ
2 + kµ1k

ν
2 + k · k1ηµν)− (k1 ↔ k2)

τ = −2ks−2
2

(
k2 + 2k · k1

)
− (k1 ↔ k2)

τµα = 2ks−2
2 kα (k

µ
1 − kµ2 ) + (k1 ↔ k2) .

(4.100)

It is straightforward to compute

kµT̂
µν
Maxwell(−k) =

∫
ddk1d

dk2
(2π)d

ks−2
1 F̂ βα(k1)F̂β

ν(k2)k1αδ(k + k1 + k2) (4.101)

which vanishes once the equations of motion are satisfied. In obtaining (4.101) we used the

Bianchi identity in the form

F̂ βα(k1)F̂β
ν(k2)k1 ν =

1

2
F̂βν(k1)F̂

βν(k2)k
α
1 (4.102)

and symmetry properties of F̂βν(k1)F̂ βν(k2) and F̂ βα(k1)F̂β
ν(k2) under exchange of k1

and k2, under the integral.
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The trace of the energy momentum tensor is given by

ηµνT̂
µν
Maxwell(−k) =

∫
ddk1d

dk2
(2π)d

δ(k + k1 + k2)(
|k1|s−2 − |k2|s−2

k21 − k22
kµF̂αµ(k1)F̂

α
ν(k2)k

ν − 1

4
F̂αβ(k1)F̂

αβ(k2)τ̃(k1, k2)

)
(4.103)

where

τ̃(k1, k2) =
(d− 4)

(
ks−2
2 k · k1 − ks−2

1 k · k2
)
+ 2(ks−2

1 − ks−2
2 )(2k2 − k1 · k2)

k21 − k22
.

(4.104)

Scale invariance of the Maxwell action will follow if

∫
ηµνT

µν
Maxwell(x)d

dx = 0 (4.105)

under the equations of motion. Expanding τ̃ at small k and using kµ1 = −kµ − kµ2 , we find

τ̃(−k − k2, k2) = (s+ 2− d)ks−2
2 +

1

2
(s− 2)(s+ 2− d)ks−4

2 k · k2 +O(k2) .

(4.106)
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Thus,

ηµνT̂
µν
Maxwell(0) = − i

2

∫
ddk2
(2π)d

(s+ 2− d)ks−2
2 kα2 Â

β(−k2)F̂αβ(k2) = 0 (4.107)

under the equations of motion, implying that the Maxwell action is scale invariant for any

value of s, as expected for a free theory.

In the special case of d = s+2 the leading terms in (4.106) vanishes. Since |k+k2|s−2−|k2|s−2

(k+k2)2−k22

and τ̃
k2

are finite at small k, we write

ηµνT̂
µν
Maxwell(−k) = kµkν

∫
ddk1d

dk2
(2π)d

δ(k + k1 + k2)(
|k1|s−2 − |k2|s−2

k21 − k22
F̂αµ(k1)F̂

α
ν(k2)−

ηµν
4
F̂αβ(k1)F̂

αβ(k2)
τ̃(k1, k2)

k2

)
(4.108)

implying that the real space expression for ηµνT µνMaxwell is a double derivative and that the

free Maxwell theory is conformally invariant.

Equation (4.106) establishes that the free Maxwell theory stress tensor is traceless upon

adding an appropriate improvement term. Thus, the Gaussian theory described by (4.1)

with e = 0 is conformally invariant; one can use the traceless stress tensor to construct

currents associated with scale invariance and special conformal transformations which will

be conserved. In the interacting theory, e ̸= 0, but the trace of the stress tensor will likely
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receive contributions which can be repackaged in terms of a beta of function, β(e) (see,

e.g., 106,78,6,117), which we know vanishes. Thus, the interacting theory is also expected to be

conformally invariant.

4.4 Unitarity and the non-local optical theorem

It is challenging to determine whether time evolution is unitary in non-local field theories.

We’ve shown that the d = s + 2 theories with d odd are conformally invariant. Since the

field strength has dimension 1
2
(d− s+ 2), it violates the unitarity bound 1

2
(d− s+ 2) ≥

max(2, d − 2) 100,102 whenever d > 4. Thus, at least for d = s + 2 and d ≥ 5, we expect

that time evolution is not unitary. For other values of d and s unitarity is more difficult to

address.

In what follows, we will study the unitarity of a local photon onR2,1 × R+ coupled

to charged fermions on theR2,1 boundary. The effective action for obtaining S-matrix ele-

ments of boundary states can be obtained from a non-local action of the type given in (4.1)

with d = 3 and s = 1. An earlier exploration of unitarity in non-local field theories using

the optical theorem can be found in98.

The theory defined onR2,1 × R+ is clearly unitary, and all S-matrix elements are ex-

pected to satisfy the optical theorem. Indeed, as we will show by an explicit example below,

the optical theorem is satisfied due to the possibility of boundary to bulk scattering pro-
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cesses. A non-local theory that reproduces only boundary to boundary S-matrix elements

does not allow for such processes.

Consider the Lorentzian action

S = −1

4

∫
d4xFmnF

mn +

∫
d3x ψ̄

(
i/∂ − e /A

)
ψ , (4.109)

where now we use the conventions of 111 for the signature of the metric and for solutions to

the Dirac equation (adopted to 2 + 1 dimensions). We use lower case roman indicesm, n

to denote bulk quantities and greek indices, µ, ν to denote boundary ones.

An explicit expression for the photon propagator,Gmn(x
µ, x3), can be obtained using

the method of images. For Neumann boundary conditions, the Greens function will be a

sum of Greens functions for photons onR3,1 with equal mirror charges. Near the bound-

ary, we have

Gmn(x
µ, x3 = 0) =

∫
d4k

(2π)4
−2iηmn
kmkm + iϵ

e−ikµx
µ

, (4.110)

where the factor of 2 is a result of the image charge necessary to generate Neumann bound-

ary conditions. Since all the vertices are on the boundary it is convenient to integrate over

the bulk momenta. We find

Gmn(x
µ, x3 = 0) =

∫
d3k

(2π)3
iηmne

−ikµxµ√
−kµkµ − iϵ

. (4.111)
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The resulting Feynman rules for computing S-matrix elements for boundary incoming and

outgoing particles can be found in figure 4.3.

= iηµν√
−kµkµ−iϵ

= i/k
kµkµ+iϵ

=−ieγµ

Figure 4.3: Feynman rules for the action (4.109).

The optical theorem in the presence of a boundary is almost identical to the one in its

absence. Decomposing the S-matrix into S = 1 + iT , unitarity of time evolution implies

that−i(T − T †) = T †T . The Feynman rules (4.3) imply that momentum is conserved

in directions parallel to the boundary so that we can write ⟨po|iT |pi⟩ = (2π)3δ(3)(po −

pi)iM(pi → po)with po and pi the outgoing and incoming momenta. Likewise, we find

that ⟨p|iT |p⟩ = (2π)3δ(3)(p − pi)iM(pi → p)where pi is the incoming momenta of a

particle located at the boundary and p the momentum of an outgoing bulk particle. Note

that the momentum-conserving delta function is insensitive to the bulk component of the

momenta of the outgoing particles. That is, since the interaction term has support only at

the boundary, momentum is not conserved in the direction transverse to it. Thus, we have

2ImM(pi → po) =
∑
p

∫
dΠpM∗ (po → p)M (pi → p) (2π)3δ(3) (pi − p) (4.112)

where the sum on the right-hand side is over all appropriately normalized momenta and

internal degrees of freedom of intermediate particles.
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Let us focus our attention on the tree level electron-positron (Bhabha) t-channel scatter-

ing amplitude depicted in the left panel of figure 4.4. The optical theorem (4.112) implies

p1

p2

k
q1

q2

p1

p2

k, ϵρ

Figure 4.4: Feynman diagrams. (Left) Tree level amplitude for t-channel electron positron scattering. (Right) decay of

charged fermions into a (bulk) photonwith polarization vector ϵρ.

that

2ImM (p1, p2 → q1, q2) =
∑
ρ, σ

ηρσ

∫
dk⃗

(2π)3
2

2Ek
Mσ ∗ (q1, q2 → k)Mρ (p1, p2 → k)

× (2π)3δ(3) (p1 + p2 − k) , (4.113)

whereE2
k = |⃗k|2 and we remind the reader that the momentum conserving delta function

has support on the three boundary spacetime directions while the integral is over the three

bulk spatial directions. The unusual factor of 2 in the integration measure comes about due

to the unconventional factor of 2 in the photon propagator.
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Using the Feynman rules from figure 4.3, we find

iM (p1, p2 → q1, q2) = −e2u(p1)γµv̄(p2)v(q1)γν ū(q2)
iηµν√
−kαkα

∣∣∣∣∣
kα=pα1+p

α
2

iMρ (p1, p2 → k) = −ieu(p1)γµv̄(p2)ϵρ ∗µ (k) .

(4.114)

A straightforward computation yields

∑
ρ, σ

ηρσ

∫
dk⃗

(2π)3
2

2Ek
Mσ ∗ (q1, q2 → k)Mρ (p1, p2 → k) (2π)3δ(3) (p1 + p2 − k)

= −Φ

∫
dk⃗

Ek
δ(p01 + p02 −

√
k21 + k22 + k23)δ(p

1
1 + p12 − k1)δ(p

2
1 + p22 − k2)

=


− 2Φ√

kαkα

∣∣∣
kα=pα1+p

α
2

(p1 + p2)
2 > 0

0 (p1 + p2)
2 < 0

,

(4.115)

where we have defined

Φ = e2u(p1)γ
µv̄(p2)v(q1)γ

ν ū(q2)ηµν . (4.116)

Equation (4.113) now follows. We get a hint why the optical theorem could hold in a bulk-
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boundary picture: at the first glance, it is a bit of tautology

If 2ImM = |M|2 then
∫
dpd

2π
2ImM =

∫
dpd

2π
|M|2 (4.117)

If the optical theorem holds for a bulk theory, it holds for the boundary theory because

that amounts to integrating out the perpendicular momentum on both sides. One could

have worked with the full propagator and integrate pd in the very last step as above. If the

bulk theory is still unitary with a mass (the mass being (pd)2) and if this integration and the

theorem commute, then we will always get the optical theorem on the boundary. Adding a

mass term usually does not ruin the unitarity. The real question is that whether the optical

theorems survive the integration of the perpendicular momentum. We can give another

example involving loops. But currently, a comprehensive proof is still lacking.

We consider the diagram representing the one-loop correction to the fermion propagator.

The inner product of cut diagrams is (k = (k0, 0, 0, ...)) (using p3 to denote the photon

momentum; pd3 to denote the perpendicular momentum component; p4 to denote the
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fermion momentum) (
∑

spins ϵ
∗γµu(p4)ū(p4)γ

νϵ = −γµp/4γµ = (d− 2)p/4)

(−i)∗(−i)
∫

dd+1p3
(2π)d+1

∫
ddp4
(2π)d

2πδ(p23)2πδ(p
2
4)
∑
spins

(..)(2π)dδd(p3 + p4 − k)

=

∫
ddp⃗3
(2π)d

∫
dd−1p⃗4
(2π)d−1

1

4E3E4

(d− 2)p/4(2π)
dδd−1(p⃗3

′ + p⃗4)δ(E3 + E4 − k0)

=

∫
ddp⃗3
(2π)d

1

4
√
(p⃗3

′)2 + (pd3)
2
√

(p⃗3
′)2

2πδ
(√

(p⃗3
′)2 + (pd3)

2 +
√

(p⃗3
′)2 − k0

)
(d− 2)p/4

(4.118)

where p3 is the bulk photon momentum, p4 is the boundary fermion momentum and p⃗3′ is

the spatial components of photon momentum that are one the boundary. Now we can see

that the integral will be zero if
√

(p⃗3
′)2 + (pd3)

2 +
√

(p⃗3
′)2 − k0 cannot be zero for real pd3,

that is

(
√
(p⃗3

′)2 − k0)2 −
√

(p⃗3
′)2 = (k0)2 − 2k0

√
(p⃗3

′)2 < 0 (4.119)

So, when the integral is not zero, we have k0 > 2
√
(p⃗3

′)2 and therefore

∫
ddp⃗3
(2π)d

1

4
√

(p⃗3
′)2 + (pd3)

2
√

(p⃗3
′)2

2π

√
(p⃗3

′)2 + (pd3)
2

pd3
δ(|pd3| − q)(d− 2)p/4

=

∫
dd−1p⃗3

′

(2π)d−1

1

4(k0 −
√
(p⃗3

′)2)
√

(p⃗3
′)2

2(k0 −
√

(p⃗3
′)2)√

(k0 −
√
(p⃗3

′)2)2 − (p⃗3
′)2

(d− 2)p/4

=

∫
dd−1p

(2π)d−1

1

2p
√

(k0)2 − 2k0p
(d− 2)γ · (p,−p⃗)

(4.120)

To do this integral, let’s restrict to d = 3 and see that the spatial parts give zero. The time
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part is then

γ0

4π

∫ ∞

0

dp
p√

(k0)2 − 2k0p
=

1

12π
γ0k0 =

k/

12π
(4.121)

In order to evaluate this divergent integral, we used the dimensional regularization.

1

4π

∫ ∞

0

dp
pd−2√

(k0)2 − 2k0p
=

√
k22−d−1(−k)d−3Γ

(
3
2
− d
)
Γ(d− 1)

π3/2

=

√
k2

12π
when d→ 3

(4.122)

If the external momentum k is space-like, we can choose k = (0, k1, 0, ...) and show that

|M|2 = 0 because of kinematic reasons.

Computing the imaginary part of the loop: treating (pd)2 like a mass term and integrat-

ing it out later. In such case, we can do Wick rotations.

iM = (−i)2
∫
dpd

2π

∫
ddp

(2π)d
γµi(p/− k/)γν

(p− k)2 + iϵ

−igµν
p2 − pd2 + iϵ

(4.123)

If doing the dpd integral first, we would get the non-local photon propagator. Here we will
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perform the ddp integral first and integrate pd out at an appropriate time.

M =i

∫
dpd

2π

∫
ddp

(2π)d
γµ(p/− k/)γν

(p− k)2 + iϵ

gµν

p2 − pd2 + iϵ

=i

∫
dpd

2π

∫
ddp

(2π)d

∫ 1

0

dx
(2− d)(p/− k/)

(p2 − 2xkp+ xk2 − (1− x)pd2)2

=i

∫
dpd

2π

∫ 1

0

dx

∫
ddl

(2π)d
(2− d)(l/− (1− x)k/)

(l2 + x(1− x)k2 − (1− x)pd2)2

(4.124)

We have changed the variable p = l + xk. Now we can Wick rotate l and obtain this

standard integral. Note that−x(1− x)k2 + (1− x)pd
2
> 0.

M =i

∫
dpd

2π

∫ 1

0

dx

∫
ddl

(2π)d
(2− d)(l/− (1− x)k/)

(l2 + x(1− x)k2 − (1− x)pd2)2

=i

∫
dpd

2π

∫ 1

0

dx
−i(1− x)(2− d)k/

(4π)d/2
Γ(2− d

2
)

Γ(2)
(−x(1− x)k2 + (1− x)pd

2
)
d
2
−2

(4.125)

We see that this expression is completely real if k2 < 0. So 2ImM = 0 = |M|2. What’s

less non-trivial is the case when k is time-like. Because k2 > 0,−x(1− x)k2 + (1− x)pd
2

can be negative. We still say that the ddl integral in (4.125) gives the same result even when

−x(1− x)k2 +(1− x)pd
2
< 0, as the result of analytic continuation. NowM has a finite
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imaginary part: (using dimreg d = 3 + ϵ)

M =

∫ 1

0

dx

∫
dpd

2π

(1− x)(2− d)k/

(4π)d/2
Γ(2− d

2
)

Γ(2)
(−x(1− x)k2 + (1− x)pd

2
)
d
2
−2

=

∫ 1

0

dx(1− x)(2− d)k/
2−d−1π− d

2
− 1

2kd−3(1− x)
d−4
2 x

d−3
2

(
− sec

(
πd
2

)
+ e

iπd
2

)
Γ
(
2− d

2

)
Γ
(
d
2
− 1
)

Γ
(
d−1
2

)
=

∫ 1

0

dx(1− x)k/
2−ϵ−4π− ϵ

2
−1kϵ(1− x)

ϵ−1
2 xϵ/2

(
cot
(
πϵ
2

)
+ i
)

Γ
(
ϵ
2
+ 1
)

(4.126)

The real part is divergent and we drop that. The imaginary part is finite and we can set ϵ =

0 here:

ImM =

∫ 1

0

dx(1− x)k/
1

16π
√
1− x

=
k/

24π

(4.127)

Now we can see this is exactly a half of (4.121). Therefore, the optical theorem holds and

reads:

2ImM =


k/

12π
, k2 > 0

0, k2 < 0

= |M|2 (4.128)

We have also checked that this same mechanism applies to the effective description of the

long-range Ising model which may be captured by an action describing a free bulk scalar

field with a ϕ4 interaction on the boundary. We have the boundary propagator being

∫ ∞

−∞

dkd

2π

i

k2 − kd2 + iϵ
=

1

2
√
k2 + iϵ

(4.129)
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For a 3 to 3 tree level scattering, the LHS is

2ImM = 2Im
1

i
(−i)2 1

2
√
k2 + iϵ

=


1
k
, k2 > 0

0, k2 < 0

(4.130)

The RHS is

(−i)∗(−i)
∫

dd+1p

(2π)d+1
2πδ(p2)(2π)dδd(p− k)

=


∫

dpd

(2π)
1

2|pd|(2π)δ(|p
d| − k0) = 1

k
, k2 > 0

0, k2 < 0

(4.131)

The optical theorem holds.
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5
A glimpse of the monodromy defect

We have seen the connection between non-local theories and boundary (codimension one)

theories in the introduction chapter and in the previous chapter. In general, one could con-

sider more than one perpendicular momentum, or higher codimensional defects. Confor-

mal defects have gained more attention recently 12,44,89,91,63,76,90,94,67. A conformal defect of

codimension q in a d-dimensional space is a (d − q)-dimensional flat or spherical subspace
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that preserves a SO(q)× SO(d− q+ 1, 1) subgroup of the original SO(d+ 1, 1) symme-

try group. In this chapter, we provide a quick introduction to the q = 2 defect defined by a

monodromy

ϕ(r, θ + 2π, y⃗) = ϕg(r, θ, y⃗) (5.1)

where y are the coordinates on the defect, r and θ are the perpendicular coordinates, and g

is an element in a global groupG acting on the fundamental field ϕ in the theory. For a free

scalar field and 3d Ising model,G = Z2. Such a monodromy defect in the 3d Ising model

(where it is a line defect) was introduced in 11,45, and further studied in 131,94.

A codimension two defect may also be studied by mapping the problem to a hyperbolic

cylinder, S1 × Hd−1 (for previous examples of conformal mapping toHm × Sn spaces

to describe conformal defects, see e.g. 80,73,44,105). A flat defect in flat space can be related by a

Weyl transformation to S1 ×Hd−1 as follows

ds2Rd = r2
(
(dy⃗)2 + dr2

r2
+ dθ2

)
= r2ds2S1×Hd−1 (5.2)

with y⃗ and r being the Poincaré coordinates onHd−1 and θ being the coordinate on S1.

The monodromy defect is then simply described by imposing twisted periodicity condi-

tions (5.1) along S1 in the path integral for the theory on S1 × Hd−1 (for instance, in the

Z2 case, this just means taking the scalar to be antiperiodic on S1). The defect is located at
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r = 0, which is the boundary of the hyperbolic space. The hyperbolic cylinder setup that

we use here is similar to that used in 84,23,24 to study Renyi entropies for a spherical entan-

gling region.* Starting with the theory on S1 ×Hd−1, one can then perform a Kaluza-Klein

reduction on S1 to obtain a tower of massive fields onHd−1 with the defect theory on its

boundary. Standard techniques from the AdS/CFT literature may then be used to obtain

results for the defect CFT data. For example, the scaling dimensions of the defect operators

can be related to the masses onHd−1. Other examples of defect CFT data may also be ex-

tracted conveniently from the hyperbolic space setup, and we will discuss a few explicit such

calculations below. Similar ideas have been used in the literature for boundaries in confor-

mal field theory in 108,22,66,65,49 and for higher codimension defects in 105. Field theory on a

hyperbolic cylinder was also studied in 1,114.

A monodromy defect with spherical geometry may be described in the same way by sim-

ply using, instead of the Poincaré metric in (5.2), the hyperbolic ball metric forHd−1, so

that the boundary is the sphere Sd−2. For a spherical defect, it is natural to define its expec-

tation value ⟨D⟩. In the hyperbolic space setup, this expectation value can be obtained in

terms of the free energy of the twisted theory on S1 ×Hd−1 as

− log⟨D⟩ = Ftwisted − Funtwisted (5.3)

*In that case, rather than a twisted periodicity condition, one lets the inverse temperature, i.e., the length
of S1, be 2πq to describe the qth Renyi entropy. This setup can also be thought of in terms of defect CFT, as
discussed in 73.
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where Ftwisted and Funtwisted are the free energies on S1 × Hd−1 in the presence and absence

of a monodromy defect respectively. The subtraction of the untwisted theory free energy

corresponds to normalizing ⟨D⟩ by the partition function of the theory without defect.

In this chapter, we consider more generally conformal field theories consisting ofN

scalars that preserve anO(N) symmetry, soG = O(N). We discuss both free and inter-

actingO(N)model, using the largeN and ϵ expansions. Already in the free theory, the

structure is richer compared to the case of a single free scalar.

5.1 Monodromy defects in free theory

Consider anO(N) symmetric theory ofN free scalars in flat space. The most general mon-

odromy defect that we can define imposes that the scalars satisfy 119

ϕI(r, θ + 2π, y⃗) = GIJϕJ(r, θ, y⃗), GIJ ∈ O(N). (5.4)
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The most generalO(N)matrixGIJ , can always, by a change of basis, be brought to the

following form

GIJ(ϑ) =



R(ϑ1)

. . . 0

R(ϑk)

±1

0
. . .

±1



, R(ϑ) =

cosϑ − sinϑ

sinϑ cosϑ

 .

(5.5)

So there are k pair of scalars that mix into each other and the rest either remain unchanged

or pick up a minus sign as they go around the defect. We can then combine each pair into a

complex combinationΦ = ϕ1 + iϕ2 and the monodromy can be represented as

Φ(r, θ + 2π, y⃗) = eiϑΦ(r, θ, y⃗), ϑ ∼ ϑ+ 2π. (5.6)

Hence ϑ = 0 describes the trivial defect while ϑ = π describes the special case when the

two fields change a sign as they go around the defect. So in the rest of this section, we will

consider a single complex scalar with the monodromy defined in (5.6). It has a U(1) ∼

194



SO(2) internal symmetry † which is enhanced toO(2) for ϑ = 0 and π (Φ → Φ̄, which

is a part ofO(2) but not SO(2), is also a symmetry for these values of ϑ). One may com-

bine these complex scalars with different ϑ’s to obtain results for freeO(N)model with a

general monodromy defect (for each minus sign in the monodromy matrix (5.5), one can

simply set ϑ = π in the result for a complex scalar below, and include an extra factor of

1/2 to describe a real component instead of a complex one). To make the expressions less

cluttered, we define v = ϑ/2π and use either v or ϑ, whichever is convenient. There is a

periodicity in v which implies that everything should be invariant under v → v + 1, but

for many calculations, we will fix the range of v to be 0 ≤ v < 1. We will write expressions

specializing to this range of v, so they may not look periodic in v.

In a conformal field theory with a defect, in addition to the usual short distance OPE in

the bulk, a bulk operator can also be expanded in terms of operators living on the defect.

For the complex scalar with monodromy given by (5.6), it takes the following form 12,45

Φ(r, θ, y⃗) =
∑
O

CΦ
O

eisOθ

r∆Φ−∆O
B∆O

(r, ∂⃗y)O(y⃗), sO ∈ Z+ v. (5.7)

As we mentioned in the introduction, SO(2) symmetry of rotations around the defect acts

as a global symmetry on the defect. sO is the charge of the operatorO under this global
†Not to be confused with the group of rotations around the defect, which is a spacetime symmetry in the

bulk and is also SO(2).
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symmetry and we will call it transverse spin or just spin. There is also a longitudinal spin l,

which is the charge under rotations along the defect, but we will only consider l = 0 defect

operators in this paper. The remaining conformal invariance fixes the bulk-defect two point

function

⟨Φ(x1)Ō(y⃗2)⟩ =
CΦ
OC∆O

eiθsO

r∆Φ−∆O(r2 + (y⃗12)2)∆O
(5.8)

where Ō is a defect operator that has spin−sO and dimension∆O. Consistency of (5.7)

and (5.8) fixes the form of the function Bs(r, ∂⃗y)

B∆O
(r, ∂⃗y) =

∞∑
m=0

(−1)mr2m(∂⃗2y)
m

m!22m
(
∆O + 2− d

2

)
m

. (5.9)

This is similar to what was done for BCFT in99. In general, there could be several defect

operators of a given spin. But sinceΦ is a free field, it satisfies the bulk equation of motion

∇2Φ = 0, which implies

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂y⃗21

)
⟨Φ(x1)Ō(y⃗2)⟩ = 0

=⇒ ∆O = ∆Φ ± |sO| =
d

2
− 1± |sO|.

(5.10)

The unitarity bound for the CFT on the defect requires the dimensions of the defect opera-

tor to satisfy

∆O ≥ max
(
d

2
− 2, 0

)
. (5.11)
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This is always satisfied for the positive sign above (as long as d > 2) and we defer the discus-

sion of negative sign until next section. So for every spin, there is a single operator on the

defect with dimension∆s = d/2− 1 + |s|. Hence, the bulk-defect OPE of the fundamen-

tal fields may be written as a sum over spins

Φ(r, θ, y⃗) =
∑
s∈Z+v

CΦ
s

eisθ

r∆Φ−∆s
Bs(r, ∂⃗y)Ψs(y⃗)

Φ̄(r, θ, y⃗) =
∑
s∈Z+v

(CΦ
s )

∗ e−isθ

r∆Φ−∆s
Bs(r, ∂⃗y)Ψ̄s(y⃗).

(5.12)

In terms of original real scalar fields,Ψs = ψ1
s + iψ2

s while Ψ̄s = ψ̄1
s − iψ̄2

s = ψ1
−s − iψ2

−s

where ψis appear in the bulk-defect OPE of the real scalars ϕi.

In the presence of a defect, the two-point function of bulk scalars is fixed up to a func-

tion of cross-ratios 12,94

⟨Φ(x1)Φ̄(x2)⟩ =
F(θ12, ξ)

(r1r2)
d
2
−1
, θ12 = θ1 − θ2, ξ =

(y⃗1 − y⃗2)
2 + (r1 − r2)

2

4r1r2
. (5.13)

Corresponding to the two OPE limits (i.e. the bulk OPE and the bulk-defect OPE), the

functionF can be expanded into bulk and defect channel conformal blocks

F(θ12, ξ) =
∑
O

CΦ̄;Φ;
OCO

1 g∆O,JO(θ12, ξ) =
∑
O

|CΦ
O |2f∆O,sO(θ12, ξ) (5.14)
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where g and f are the bulk channel and defect channel conformal blocks respectively. The

sum on the left runs over the bulk operators that get a non-zero one-point function, and

the coefficient is the product of the usual bulk OPE coefficient times the one-point func-

tion coefficient of the bulk operator. The sum on the right runs over the defect operators

that appear in the bulk-defect OPE ofΦ.

As we determined above, the operators appearing in the defect channel have spin s and

dimension∆s = d/2 − 1 + |s|. The defect channel blocks are known in general 12,94.

For the case of a codimension two defect, they simplify and the resulting expression for the

two-point function can be written as a sum over defect operators

⟨Φ(x1)Φ̄(x2)⟩ = GΦ̄Φ(x1, x2) =
∑
s∈Z+v

Γ (∆s) e
isθ12

2F1

(
∆s,∆s +

3−d
2
; 2∆s + 3− d;−1

ξ

)
2(r1r2)

d
2
−1πd/2Γ(∆s + 2− d

2
)(4ξ)∆s

.

(5.15)

The sum can be explicitly performed in d = 4 to get

⟨Φ(x1)Φ̄(x2)⟩ =
∑
s∈Z+v

eisθ12

8π2r1r2
√
ξ(1 + ξ)(

√
1 + ξ +

√
ξ)2∆s−2

=
(ξ(1 + ξ))−1/2

8π2r1r2

 eiθ12v
(√

ξ +
√
ξ + 1

)2v
−1 + eiθ12

(
2ξ + 2

√
ξ(1 + ξ) + 1

) +
eiθ12v

(√
ξ +

√
ξ + 1

)2−2v

−eiθ12 + 2ξ + 2
√
ξ(1 + ξ) + 1

 .

(5.16)

Note that we are using a normalization, such that in the bulk OPE limit, when x1 → x2,
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the correlator goes like

⟨Φ(x1)Φ̄(x2)⟩ ∼
Γ
(
d
2
− 1
)

2πd/2
1

|x1 − x2|d−2
. (5.17)

We normalize defect operators such thatCΦ
s = 1 in the free theory. The two-point func-

tion of the defect operators is then given by

⟨Ψs1(y⃗1)Ψ̄s2(y⃗2)⟩ =
δs1,s2C∆s1

(y⃗212)
∆s1

, C∆s1
=

Γ (∆s1)

2πd/2Γ
(
∆s1 + 2− d

2

) . (5.18)

In the bulk channel conformal block decomposition, the operators that appear are the

bulk scalar Φ̄Φ and the conserved currents of all spins, which can be schematically written

as Φ̄(∂µ)JΦ. To extract the bulk expansion coefficients, one may use the inversion formula

of94. Here, we restrict to calculating the one-point function of the first few operators of

low spin. The one-point function of the operator Φ̄Φ can be extracted from the short dis-

tance limit of the correlator (5.15)

⟨Φ̄Φ(x)⟩ = CΦ̄Φ
1

rd−2
, CΦ̄Φ

1 =
(d− 1)Γ

(
d
2
− v
)
Γ
(
d
2
− 1 + v

)
sin (vπ) Γ

(
d
2

)
π

d
2
+1Γ(d)(2− d)

. (5.19)

The conserved currents, which are spinning operators, also get one-point functions. The
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spin one current, which corresponds to the global U(1) symmetry of the theory, is given by

Jµ = i
(
Φ∂µΦ̄− Φ̄∂µΦ

)
. (5.20)

The one-point function of a parity odd spin one operator in the presence of a defect is fixed

by conformal symmetry 12

⟨Ji⟩ =
CJ

1 ϵijn
j

rd
, ⟨Ja⟩ = 0, ni = xi/r. (5.21)

We parametrize the coordinates as x = (xi, xa) =with i, j now being Cartesian transverse

coordinates, a, b being directions along the defect and ϵij is the antisymmetric tensor in

transverse directions. We can calculate this one point function by calculating derivatives of

(5.15), and then taking the short distance limit. Since it is fixed up to a constant, it is enough

to do the calculation just for one component. We do it for the θ component,

⟨Jθ⟩ = − CJ
1

rd−2
= i⟨Φ∂θΦ̄− Φ̄∂θΦ⟩ =

22−dπ− (d+1)
2 Γ

(
3−d
2

)
rd−2

∞∑
k=−∞

(k + v)Γ
(
d
2
− 1 + |k + v|

)
Γ
(
2− d

2
+ |k + v|

)
=

(d− 2)(2v − 1)

d− 1

CΦ̄Φ
1

rd−2
.

(5.22)

At v = 1/2, we expect the internal U(1) symmetry to be enhanced to fullO(2) symmetry
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which includes Φ̄ → Φ, under which Jµ → −Jµ. So we expect the correlators containing

odd powers of Jµ to vanish at v = 1/2, and indeed the one-point function vanishes at

v = 1/2.

Next let’s discuss the stress tensor, which is a spin two conserved current. Conformal

invariance, tracelessness and conservation fix the form of its one-point function up to a

constant 12,74,73

⟨Tij⟩Rd =
h

2π

(d− 1)δij − dninj
rd

, ⟨Tab⟩Rd = − h

2π

δab
rd
, ⟨Tai⟩Rd = 0. (5.23)

In analogy with the scaling dimensions of local operators, h is referred to as the conformal

weight of the defect 80,74,73. It can be determined by doing an explicit calculation of any com-

ponent of the stress tensor, and we choose Tθθ. The canonical stress energy tensor for a free

complex scalar in flat space is

Tµν = ∂µΦ̄∂νΦ− 1

2
gµν∂Φ̄ · ∂Φ− (d− 2)

4(d− 1)

(
∂µ∂ν − gµν∂

2
)
|Φ|2. (5.24)

This gives

⟨Tθθ⟩ =
⟨∂θΦ̄∂θΦ⟩

2
− r2

2(d− 1)
(⟨∂rΦ̄∂rΦ⟩+ ⟨∂⃗yΦ̄∂⃗yΦ⟩)−

d− 2

2(d− 1)
⟨Φ̄∂2θΦ⟩ −

r(d− 2)

2(d− 1)
⟨Φ̄∂rΦ⟩.

(5.25)
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Using the two-point function in (5.15) and taking appropriate derivatives, we get

⟨Tθθ⟩ =
Γ
(
3−d
2

)
(1− v)v

(
csc π

(
d
2
− v
)
− csc π

(
d
2
+ v
))

d(4π)
d−1
2 Γ

(
2− d

2
− v
)
Γ
(
1− d

2
+ v
) 1

rd−2
= −(d− 2)v(1− v)

d

CΦ̄Φ
1

rd−2
.

(5.26)

Comparing with (5.23), it is easy to see that

⟨Tθθ⟩ =
(d− 1)h

2π rd−2
=⇒ h = −

πΓ
(
1−d
2

)
(1− v)v

(
csc π

(
d
2
− v
)
− csc π

(
d
2
+ v
))

d(4π)
d−1
2 Γ

(
2− d

2
− v
)
Γ
(
1− d

2
+ v
) .

(5.27)

We checked numerically that this conformal weight h is always positive for d > 2. This is

consistent with the conjecture proposed in91 which says that h ≥ 0 in unitary defect CFTs

‡. We can follow this logic and calculate the one-point function of any higher spin current.

We just do it for one more case here, namely the spin 3 symmetric current. The current is

given by (explicit expression in d = 4 can be found in, for example,7)

Jµνρ = 6i

(
Φ̄∂µ∂ν∂ρΦ− 3(d+ 2)

d− 2
∂(µΦ̄∂ν∂ρ)Φ +

6

d− 2
g(µν∂

γΦ̄∂γ∂ρ)Φ

)
+c.c. (5.28)

where () in the subscript means that the indices are symmetrized. Its one-point function

is also fixed by conformal symmetry up to a number, so we only look at one of its compo-

nents with all indices equal to θ. We act with these derivatives on (5.15) and expand them in
‡In 91, stress tensor one-point function was written in terms of aT which is related to h by h = −2πaT /d,

so they conjectured that aT ≤ 0.
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the bulk limit ξ → 0 to get

⟨Jθθθ⟩ =
6(1− 2v) (3d2 − 2d(2(v − 1)v + 5) + 4(v − 1)v + 8)

d− 1

CΦ̄Φ
1

rd−2
. (5.29)

5.1.1 Mapping to S1 ×Hd−1

As explained in the introduction, the monodromy defect may also be studied on a hyper-

bolic cylinder by a Weyl transformation as in (5.2). The operators also get rescaled under

this Weyl transformation. The scalars, for instance, transform asOS1×Hd−1 = r∆OORd .

In order to describe a spherical defect, one may use the hyperbolic ball coordinates on

Hd−1, obtained from the Poincaré coordinates by the following coordinate transformation

r =
1

cosh η − Ω1 sinh η
, ya =

Ωa+1 sinh η

cosh η − Ω1 sinh η
(5.30)

where (Ω1, . . . ,Ωd−1) are the coordinates on a d − 2 dimensional sphere with |Ωa|2 = 1

and 0 ≤ η <∞. The metric in these coordinates takes the following simple form

ds2S1×Hd−1 = dθ2 + dη2 + sinh2 η ds2Sd−2 . (5.31)

Note that the defect is compact and is located at the boundary of the hyperbolic ball, η →

∞, which is a d− 2 dimensional sphere, Sd−2.
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The complex scalar on S1 ×Hd−1 is described by the action

S =
1

2

∫
ddx
√
g(x)

(
gµν∂µΦ∂νΦ̄ +

(
(d− 2)

4(d− 1)
R+m2

)
|Φ|2

)
=

1

2

∫
ddx
√
g(x)

(
gµν∂µΦ∂νΦ̄−

(
(d− 2)2

4
−m2

)
|Φ|2

) (5.32)

with the fieldΦ obeying twisted boundary conditions along S1,Φ(r, y⃗, θ+2π) = eiϑΦ(r, y⃗, θ).

We will be interested in the conformally coupled case withm2 = 0. An equivalent de-

scription of the system can be written in terms of untwisted fieldΨ defined byΦ(x) =

eivθΨ(x). Ψ has the usual periodic boundary conditionsΨ(r, y⃗, θ + 2π) = Ψ(r, y⃗, θ).

The action in terms ofΨ can be written as

S =
1

2

∫
ddx
√
g(x)

(∣∣∣∣ (∂θ + iv)Ψ

∣∣∣∣2 + gαβ∂αΨ∂βΨ̄− (d− 2)2

4
|Ψ|2

)
(5.33)

where α, β are the coordinates onHd−1. This shows that having a monodromy defect is

equivalent to having a constant background gauge field in the θ direction. Taking deriva-

tives with v is equivalent to inserting the θ component of the U(1) current

−δ logZ
δv

=
i

2

∫
ddx
√
g(x)⟨

(
Φ∂θΦ̄− Φ̄∂θΦ

)
⟩ = 1

2

∫
ddx
√
g(x)⟨Jθ⟩ (5.34)

whereZ is the partition function in presence of the defect.
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We then perform a Kaluza-Klein (KK) reduction on S1 to get a tower of massive scalar

fields onHd−1. The bulk field can be expanded into KK modes asΦ(r, y⃗, θ) =
∑
eisθΦs(r, y⃗)

where s ∈ Z+ v and modesΦs(r, y⃗) have mass s2 − (d− 2)2/4. Since the defect is located

on the boundary ofHd−1, we can use the standard AdS/CFT dictionary to calculate the

dimensions of the defect operators of spin s induced byΦ

∆s(∆s − d+ 2) = s2 − (d− 2)2/4 =⇒ ∆s =
d

2
− 1± |s|. (5.35)

As before, we leave the discussion of the− sign until the next section. The two-point func-

tion on S1 × Hd−1 can then be written as a sum over KK modes with the two-point func-

tion of each KK mode being just the usual bulk-bulk propagator onHd−1. This gives

⟨Φ(y⃗1, r1, θ1)Φ̄(y⃗2, r2, θ2)⟩ = GΦ̄Φ(x1, x2) =
∑
s∈Z+v

2eisθ12

2π
Gbb

∆s

=
∑
s∈Z+v

2Γ (∆s) e
isθ12

2F1

(
∆s,∆s +

3−d
2
; 2∆s + 3− d;−1

ξ

)
4πd/2Γ(∆s + 2− d

2
)(4ξ)∆s

.

(5.36)

This is related by a Weyl transformation to the two-point function in flat space (5.15).

A quantity of interest is the free energy on the hyperbolic space since this is related to the

expectation value of the spherical monodromy defect. In the free theory, it is given by the
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following determinant

Ftwisted(ϑ) = tr log
(
−∇2 +m2 − (d− 2)2

4

)
. (5.37)

The eigenfunctions of the Laplacian on S1 × Hd−1 may be written asΦHd−1(yi, r)eisθ

withΦHd−1 being the eigenfunction on the d− 1 dimensional hyperbolic space. The corre-

sponding eigenvalues are λ+ (d− 2)2/4 + s2 with a degeneracy given by 21,18

D(λ)dλ =
(Vol(Hd−1))

(4π)
d−1
2 Γ(d−1

2
)

|Γ(i
√
λ+ d−2

2
)|2

|Γ(i
√
λ)|2

dλ√
λ
. (5.38)

Using this, we can compute the twisted free energy on the hyperbolic space as

Ftwisted(ϑ) =

∫ ∞

0

dλD(λ)
∑
s∈Z+v

log
(
λ+m2 + s2

)
=

Vol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
∑
s∈Z+v

log
(
ν2 + s2 +m2

)
.

(5.39)

This can be used to calculate the expectation value of the defect, and it is natural to normal-

ize it by the partition function of the untwisted theory. In the conformally coupled case, it
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gives

− log⟨D⟩ = Ftwisted − Funtwisted

=
Vol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2

( ∑
n∈Z+v

−
∑
n∈Z

)
log
(
ν2 + n2

)
=

Vol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
log

(
1

2
csch2(πν) (cosh(2πν)− cos(2πv))

)
.

(5.40)

To derive the above formula, we had to use the sum 84

∑
k∈Z

log
(
(k + α)2 + a2

)
= log (2 cosh(2πa)− 2 cos(2πα)) . (5.41)

When d is even, the analytic form is easy to obtain by doing the integral over ν first in the

second line of (5.40) and regularizing the sum by a Zeta function regularization

log⟨D⟩ =

( ∑
n∈Z+v

−
∑
n∈Z

)
∂

∂α

[
Vol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
1

(ν2 + n2)α

]
α→0

.

(5.42)
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It gives

− log⟨D⟩d=2 = Vol(H1)

(
ζ (−1, v) + ζ (−1, 1− v) +

1

6

)
= v(1− v)Vol(H1)

− log⟨D⟩d=4 = Vol(H3)

(
−60ζ (−3, v)− 60ζ (−3, 1− v) + 1

360π

)
=
v2(1− v)2

12π
Vol(H3)

− log⟨D⟩d=6 = Vol(H5)

(
ζ (−5, v) + ζ (−5, 1− v)

60π2
− ζ (−3, v) + ζ (−3, 1− v)

36π2
+

1

1680π2

)
= −v

2(1− v)2(−3− v(1− v))

180π2
Vol(H5).

(5.43)

Note that the factors of the hyperbolic space volume here are logarithmically divergent 30,24,

see eq. (5.46). The quantity D̃ defined by

D̃ ≡ sin

(
π(d− q)

2

)
log⟨D⟩ (5.44)

is however finite and it is proportional to the quantities multiplying the volume factors

above. Indeed using the above result (5.40), D̃ can be seen to be a smooth and finite func-

tion of d. We plot it for 2 < d < 6 and in the special case ofZ2 monodromy, v = 1/2,

in figure 5.1. For future reference, let us also list some explicit values of D̃ in various d for

v = 1/2which can be directly obtained using (5.40)

D̃|d=3 =
log 2

4
− 7ζ(3)

8π2
, D̃|d=4 =

π

192
,

D̃|d=5 =
log 2

64
− 5ζ(3)

192π2
− 31ζ(5)

128π4
, D̃|d=6 =

13π

23040
.

(5.45)
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Figure 5.1: A plot of D̃ for a single free complex scalar between dimensions 2 < d < 6when v = 1/2.

To do the above calculation and obtain the plot, we had to use the regularized volume of

the hyperbolic space 30,24

Vol(Hd−1) = π
d
2
−1Γ

(
1− d

2

)
. (5.46)

5.1.2 One-point functions

One-point functions of bulk operators can also be readily obtained in the hyperbolic space.

For the scalar Φ̄Φ, it is a constant given by

CΦ̄Φ
1 =

1

πVol(Hd−1)

∂Ftwisted(ϑ)

∂m2

∣∣∣∣
m2=0

(5.47)
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The mass derivative of the free energy can be calculated as follows

∂Ftwisted(ϑ)

∂m2
=

∞∑
k=−∞

Vol(Hd−1)

(4π)
d−1
2 Γ

(
d−1
2

) ∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2

(
1

ν2 + (k + v)2 +m2

)

=
Vol(Hd−1)Γ

(
3−d
2

)
(4π)

d−1
2

∞∑
k=−∞

Γ

(
d
2
− 1 +

√
m2 + (k + v)2

)
Γ

(
2− d

2
+
√
m2 + (k + v)2

)
=

Vol(Hd−1)Γ
(
3−d
2

)
(4π)

d−1
2

∑
s

Γ (∆s)

Γ (3− d+∆s)
.

(5.48)

To perform the integral, we had to close the contour in the ν plane and sum over residues 22.

The arc at infinity can only be dropped for d < 3, but the final result can be analytically

continued in dimensional regularization. One of the Gamma function introduces poles at

ν = i(d/2− 1 + 2κ) for integer κ, which all lie in the upper half plane for d > 2 and need

to be summed to get the final result. Form→ 0, we get

∂Ftwisted(ϑ)

∂m2

∣∣∣∣
m2=0

=
Vol(Hd−1)Γ

(
3−d
2

)
(4π)

d−1
2

∞∑
k=−∞

Γ
(
d
2
− 1 + |k + v|

)
Γ
(
2− d

2
+ |k + v|

)
=

(d− 1)Vol(Hd−1)Γ
(
d
2
− v
)
Γ
(
d
2
− 1 + v

)
sin (vπ)

(4π)
d−1
2 (2− d)Γ

(
d+1
2

)
=⇒ CΦ̄Φ

1 =
(d− 1)Γ

(
d
2
− v
)
Γ
(
d
2
− 1 + v

)
sin (vπ) Γ

(
d
2

)
π

d
2
+1Γ(d)(2− d)

.

(5.49)
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This of course agrees with the flat space result (5.19). For the spin one U(1) current, using

its general form in (5.21), it is easy to see that the one-point function of its θ component is a

constant on hyperbolic cylinder. It may be calculated as in (5.34), by taking the derivative of

free energy with v

⟨Jθ⟩ =
1

πVol(Hd−1)

∂Ftwisted(ϑ)

∂v
=

∞∑
k=−∞

22−dπ− (d+1)
2

Γ
(
d−1
2

) ∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2

(
k + v

ν2 + (k + v)2

)

= 22−dπ− (d+1)
2 Γ

(
3− d

2

) ∞∑
k=−∞

(k + v)Γ
(
d
2
− 1 + |k + v|

)
Γ
(
2− d

2
+ |k + v|

)
=

(d− 2)(2v − 1)

d− 1
CΦ̄Φ

1 ,

(5.50)

which again agrees with the flat space result in (5.22).

Similarly, for the stress tensor, the general form (5.23) tells us that Tθθ should have a

constant one-point function on the hyperbolic cylinder. There is a simpler way to calcu-

late it on the hyperbolic cylinder73,93. We start by keeping the length of S1 to be a variable

β instead of fixing it to 2π. This is equivalent to rescaling the metric component gθθ by

(β/2π)2. So if we compute the free energy for arbitrary β and then take a derivative with

respect to β, this is the same as inserting Tθθ in the path integral

Tµν =
2
√
g

δS

δgµν
=⇒ ⟨Tθθ⟩S1×Hd−1 = − 1

Vol(Hd−1)

∂Ftwisted(ϑ, β)

∂β

∣∣∣∣
β=2π

. (5.51)
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In practice, we can calculate the free energy for a general β by rescaling n by 2π/β

Ftwisted(ϑ, β) =
Vol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
∑
n∈Z+v

log

(
ν2 +

4π2n2

β2

)
.

(5.52)

We can use this to calculate the stress-tensor one-point function

⟨Tθθ⟩S1×Hd−1 =
∞∑

k=−∞

1

π(4π)
d−1
2 Γ

(
d−1
2

) ∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
(k + v)2

ν2 + (k + v)2

=
Γ
(
3−d
2

)
π(4π)

d−1
2

∞∑
k=−∞

Γ
(
d
2
− 1 + |k + v|

)
(k + v)2

Γ
(
2− d

2
+ |k + v|

)
=

Γ
(
3−d
2

)
(1− v)v

(
csc π

(
d
2
− v
)
− csc π

(
d
2
+ v
))

d(4π)
d−1
2 Γ

(
2− d

2
− v
)
Γ
(
1− d

2
+ v
)

(5.53)

which is consistent with what we got above by a direct calculation in flat space in (5.26).

This hyperbolic space technique will be useful below, when we try to calculate the confor-

mal weight in the interacting theory.

5.2 Monodromy defects at largeN

In this section, we study the monodromy defect in the interactingO(2N)model (it will

soon be clear why we choose 2N instead ofN here) at largeN . The S1 × Hd−1 setup
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provides a convenient way to study the problem. The action may be written as §

S =

∫
ddx
√
g(x)

(
gµν∂µϕ

A∂νϕ
A

2
− (d− 2)2

8
ϕAϕA +

λ

4
(ϕAϕA)2

)
(5.54)

whereA now goes from 1 to 2N . We again consider monodromy defect defined as in (5.4).

We want to do a largeN analysis, and to accomplish that, we want to preserve a large sym-

metry group. The simplest such case is when we fix the matrixGAB in (5.5) to consist ofN

identical 2 × 2 blocks, so that all ϑi = ϑ. This is the only case we consider in this paper.

Then, as before, it is convenient to package these 2N real scalars intoN complex scalars as

ΦI = ϕ2I−1 + iϕ2I , where I goes from 1 toN and allN complex scalars have the same

monodromy as in (5.6). The original theory hasO(2N) symmetry, and the defect breaks

it down to U(N). However for ϑ = 0 and π which correspond to a trivial defect andZ2

monodromy defect respectively, the symmetry is enhanced and the defect preserves full

O(2N) symmetry. The action in terms of complex variables is

S =

∫
ddx
√
g(x)

(
gµν∂µΦ̄I∂νΦ

I

2
− (d− 2)2

8
Φ̄IΦ

I +
λ

4
(Φ̄IΦ

I)2
)
. (5.55)

§We assume that the mass terms have been tuned away so that the bulk is always critical.
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At largeN , we can use the well-known Hubbard-Stratonovich transformation to write this

in terms of auxiliary field σ(x)

S =

∫
ddx
√
g(x)

(
gµν∂µΦ̄I∂νΦ

I

2
− (d− 2)2

8
Φ̄IΦ

I +
1

2
σΦ̄IΦ

I

)
. (5.56)

We dropped a σ2/4λ term above, which can be consistently done in the critical limit (see

for example46, for a review). We can then integrate out the fieldsΦI since the action is

quadratic inΦI to get

Z = exp[−Ftwisted] =

∫
[dσ] exp

[
−N tr log

(
−∇2 + σ − (d− 2)2

4

)]
(5.57)

At largeN , we can use a saddle point approximation to do the integral over σ and look for

a saddle with a constant value for the field σ(x). This constant is the one-point function

of σ(x)which is a constant on the hyperbolic cylinder ¶. So at leading order at largeN , the

field σ(x) only contributes through its one-point function and acts as a mass term forΦI .

Similar to the case of free theory (5.39), the free energy in the interacting theory at leading

order at largeN may then be written as

Ftwisted(ϑ) =
NVol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
∑
n∈Z+v

log
(
ν2 + n2 + σ

)
. (5.58)

¶In the flat space, this one-point function is ⟨σ(x)⟩ = σ∗

r2 with σ∗ being the constant one-point function
on the hyperbolic cylinder
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The value of σ at the largeN fixed point, σ∗ can be obtained by solving the saddle point

equation, which says that the following derivative should vanish

∂Ftwisted(ϑ)

∂σ

∣∣∣∣
σ=σ∗

=
NVol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
∑
n∈Z+v

1

ν2 + n2 + σ∗

=
NVol(Hd−1)Γ

(
3−d
2

)
(4π)

d−1
2

∞∑
k=−∞

Γ

(
d
2
− 1 +

√
σ∗ + (k + v)2

)
Γ

(
2− d

2
+
√
σ∗ + (k + v)2

)
=
NVol(Hd−1)Γ

(
3−d
2

)
(4π)

d−1
2

∑
s∈Z+v

Γ (∆s)

Γ (3− d+∆s)

(5.59)

where the integral over ν is similar to the one in (5.48) and can be performed with similar

techniques. In the last line, we used the usual AdS/CFT dictionary to write the expression

in terms of the dimensions of defect operators

∆s(∆s − d+ 2) = s2 + σ∗ − (d− 2)2

4
=⇒ ∆±

s =
d

2
− 1±

√
σ∗ + s2. (5.60)

Note that we used∆+
s solution to write the above expression of ∂F/∂σ in (5.59). This

is because the spectral representation of the free energy is only valid for∆s > d/2 − 1.

However, written in terms of∆s, the expression in (5.59) can be analytically continued

and also used for the case when we impose∆− boundary condition on one or more of the
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operators. We also want the dimensions of all the defect operators to be real which requires

σ∗ ≥ max
(
−v2,−(1− v)2

)
. (5.61)

Another equivalent way to derive this largeN saddle point equation is to look at the

two-point function ofΦ in the bulk OPE limit. As we discussed above (5.36), the two-point

function on the hyperbolic cylinder is given by the sum over bulk-bulk propagators

⟨ΦI(x1)Φ̄J(x2)⟩ =
∑
s∈Z+v

δIJ
Γ (∆s) e

isθ12
2F1

(
∆s,∆s +

3−d
2
; 2∆s + 3− d;−1

ξ

)
2πd/2Γ(∆s + 2− d

2
)(4ξ)∆s

(5.62)

and here∆s is given by (5.60). In the bulk OPE limit, the two point function behaves as

⟨ΦI(x1)Φ̄J(x2)⟩ =
δIJ

π(4π)
d−1
2

∑
s∈Z+v

[
Γ
(
d−3
2

)
ξ

d−3
2

(1 +O(ξ)) +
Γ
(
3−d
2

)
Γ (∆s)

Γ (3− d+∆s)
(1 +O(ξ))

]
.

(5.63)

The constant ξ independent piece in the second term represents the presence of operator

ΦIΦ̄I of dimension d − 2 in the bulk OPE. Recall that in the largeN critical U(N)model,

this operator is replaced by the operator σ of dimension 2. This should still be true in the

presence of the defect, and demanding that this term vanishes is equivalent to the saddle

point equation written in (5.59).

When we impose∆+ boundary condition on all the operators, σ∗ can be determined by
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solving the following equation from (5.59)

Vol(Hd−1)Γ
(
3−d
2

)
(4π)

d−1
2

∞∑
k=−∞

Γ

(
d
2
− 1 +

√
σ∗ + (k + v)2

)
Γ

(
2− d

2
+
√
σ∗ + (k + v)2

) = 0. (5.64)

It is hard to perform this sum analytically as a function of d. To proceed, we separate out

the sum into a divergent piece at large k and a finite piece. The divergent piece of the sum

can be performed by dimensional regularization and analytically continued in d. For the

finite piece, it is harder to perform the sum as a function of d. However in d = 4 − ϵ, we

can first do a series expansion in ϵ and then it can be performed up to first two orders in ϵ.

Hence, the saddle point equation can be solved order by order in ϵ and it gives

σ∗ = v (v − 1) ϵ+
3v(v − 1) + 1

2
ϵ2 +O(ϵ3). (5.65)

Notice that the order ϵ2 term does not vanish at v = 0 and 1. But the defect becomes

trivial at v = 0 and 1, so all one-point functions, including the one-point function of σ

should vanish at these values of v. This problem arises because we are doing an expansion

in ϵ, and we expect this problem to be resolved by higher order terms in ϵ. Indeed when

we calculate σ∗ numerically in d = 3.9 below, we will see that it vanishes at v = 0 and 1.

One possibility is that the higher order terms in ϵ are singular at v = 0 and 1. For example,
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consider the ϵ expansion of the following simple function

ϵv
3
2

√
v + ϵ

= ϵv − ϵ2

2
+

3ϵ2

2v
+O(ϵ4). (5.66)

The function vanishes at v = 0 for any fixed ϵ, but when we expand at small ϵ, the limit

v → 0 becomes problematic. This is similar to what we see here.

Plugging this σ∗ into (5.60), we get the dimension of defect operators at largeN and

leading orders in ϵ

∆+
s = 1− ϵ

2
+ |s|+ v(v − 1)

2|s|
ϵ+

3v(v − 1) + 1

4|s|
ϵ2 − v2(v − 1)2

8|s|3
ϵ2 +O(ϵ3). (5.67)

We can also calculate the twisted free energy at the largeN fixed point

Ftwisted = Ftwisted

∣∣∣∣
σ=0

+

∫ σ∗

0

dσ
∂Ftwisted

∂σ

= Ftwisted

∣∣∣∣
σ=0

+
NVol(H3)

4π

∫ σ∗

0

dσ
(
−σ
ϵ
+ v (v − 1)

)
= NF free

twisted +
NVol(H3)v2 (v − 1)2

8π
ϵ

(5.68)

where we used the fact that Ftwisted(σ = 0) is the same as twisted free energy in the free

theory.

Away from d = 4, the finite piece of the sum in (5.64) can be performed numerically, for
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Figure 5.2: Saddle point value ofσ∗ in d = 3.9 critical theory with∆+ boundary condition at leading order in large

N . Dashed line represents smooth interpolation of the numerical result. For comparison, we also plot the analytic

result in d = 4− ϵ at ϵ = 0.1.

a given d, σ∗ and v. We start with d = 3.9, so that we can compare it with the prediction

in d = 4 − ϵ. We evaluate the sum for a range of values of σ and v, and then find the root

of the equation on the real σ axis for different values of v. We then interpolate in v and plot

the value of σ∗ in figure 5.2. We also compare the result with the result in d = 4− ϵ in (5.65)

at ϵ = 0.1.

A similar method also works in d = 3 to solve the saddle point equation in (5.64) numer-

ically. We plot the solution in figure 5.3. Once we know σ∗, we can calculate the dimensions

of defect operators using (5.60). We also plot the dimensions of three low-lying defect op-

erators in figure 5.3. For v = 1/2, corresponding toZ2 monodromy on all scalars, we get

σ∗ = −0.168, ∆1/2 = 0.786, ∆3/2 = 1.943 (5.69)

to leading order at largeN . We are doing a largeN analysis, but it is interesting to compare
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Figure 5.3: Saddle point value ofσ∗ and the dimensions of defect operators in three dimensional critical theory at

largeN . The solid lines are smooth interpolation of the numerical results. Note that the defect is one-dimensional,

therefore the unitarity bound just requires the defect dimensions to be positive.

the result with the Monte Carlo results for monodromy defect in d = 3 Ising model in 11.

They found∆1/2 = 0.918 and∆3/2 = 1.99.

Using σ∗, we can also calculate the expectation value of the defect with spherical geom-

etry. It is defined in the same way as the free theory (5.40), as the negative of the difference

between the twisted and the untwisted free energy. However, recall that in the untwisted

theory, the one-point functions vanish, so σ∗ = 0. This implies that the corrections due

to the interactions for the untwisted free energy start at order 1/N . So at leading order, we

can just use the untwisted free energy of the free theory and the interacting corrections to

the defect expectation value are due to the corrections in the twisted free energy

− log⟨D⟩ = −N log⟨D⟩free +
∫ σ∗

0

dσ
∂Ftwisted

∂σ
. (5.70)

The first term above is the free theory result we have from (5.40). We can numerically in-
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Figure 5.4: Defect expectation value in d = 3 critical theory at leading order in largeN . Solid line interpolates the

numerical results.

tegrate (5.59) using the numerical results for σ∗ to evaluate the second term. We plot the

result in figure 5.4 for the case of d = 3, corresponding to a circular defect. We used the

standard regularized volume ofH2,Vol(H2) = −2π, that can be obtained in (5.46).

We can also calculate the conformal weight of the defect in the interacting theory. It is

related to Tθθ (5.27), which in the hyperbolic cylinder approach is given by (5.51). So we

need to know the dependence of the twisted free energy on β. Similar to the case of free

theory, when we change the length of S1 to β, the expression for the free energy changes to

Ftwisted(ϑ, β) =
NVol(Hd−1)

(4π)
d−1
2 Γ(d−1

2
)

∫ ∞

−∞
dν

|Γ(iν + d−2
2
)|2

|Γ(iν)|2
∑
n∈Z+v

log

(
ν2 +

4π2n2

β2
+ σ

)
.

(5.71)

If we impose∆+ boundary condition on all the operators, then the largeN saddle point
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equation is

∂Ftwisted

∂σ

∣∣∣∣
σ=σ∗

=
NVol(Hd−1)Γ

(
3−d
2

)
(4π)

d−1
2

∞∑
k=−∞

Γ
(
d
2
− 1 +

√
4π2

β2 (k + v)2 + σ
)

Γ
(
2− d

2
+
√

4π2

β2 (k + v)2 + σ
) = 0

(5.72)

Proceeding in the same way as β = 2π, we first expand the sum in general d in large k and

isolate the pieces that diverge as k → ∞. The divergent piece of the sum can be performed

in dimensional regularization and analytically continued in d. And for the finite piece, we

have to either expand in ϵ or turn to numerical methods. In d = 4 − ϵ, the solution to the

saddle point equation to leading order in ϵ is

σ∗ =

(
2π2(6(v − 1)v + 1)

3β2
− 1

6

)
ϵ+O(ϵ)2 (5.73)

Correction to the twisted free energy, to leading order in ϵ andN is

Ftwisted(ϑ, β) = Ftwisted(ϑ, β)

∣∣∣∣
σ=0

+N

∫ σ∗

0

dσ
∂Ftwisted

∂σ

= Ftwisted(ϑ, β)

∣∣∣∣
σ=0

+ Vol(H3)N
(β2 − 4π2(6(v − 1)v + 1))

2

576π2β3
ϵ+O(ϵ)2

(5.74)
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Using (5.51) and (5.27), we get the conformal weight in terms of the free energy

h = − 1

Vol(Hd−1)

2π

(d− 1)

∂Ftwisted

∂β

∣∣∣∣
β=2π

. (5.75)

This gives the conformal weight in the interacting theory to leading order in ϵ

h = −
NπΓ

(
1−d
2

)
(1− v)v

(
csc π

(
d
2
− v
)
− csc π

(
d
2
+ v
))

d(4π)
d−1
2 Γ

(
2− d

2
− v
)
Γ
(
1− d

2
+ v
) +

N(1− v)v(9(1− v)v − 2)

72π
ϵ

=
Nv2(1− v)2

12π
+
ϵN(1− v)2v2

144π

(
−6H−v−1 − 6ψ(v − 1) + 37 + 6 log(π)− 4

v(1− v)

)
(5.76)

where ψ is the Polygamma function andHn is the nth harmonic number. We used the free

theory result for conformal weight (5.27) in d = 4− ϵ.

Away from d = 4, we can still work numerically. For a given d, we now have three vari-

ables in the sum (5.72), namely β, v and σ. We are interested in calculating a derivative with

β at β = 2π. So we choose three values of β near 2π as β = {2π − 0.01, 2π, 2π + 0.01}

and then calculate the sum in (5.72) over a range of values of σ and v. We do an interpo-

lation in σ and find the root for several values of v and all three values of β. So we have

an analogue of figure 5.3 but for three different values of β. We then use this saddle point

solution for σ∗ to calculate the integral for free energy in (5.74). We finally calculate the

223



0.2 0.4 0.6 0.8 1.0
v

0.005

0.010

0.015

0.020

h

N

Figure 5.5: Numerical result and a smooth interpolation for conformal weight in d = 3.

conformal weight using (5.75) where for the derivative, we use the numerical analogue

h = − 1

Vol(Hd−1)

2π

(d− 1)

Ftwisted(2π + 0.01)− Ftwisted(2π − 0.01)

0.02
. (5.77)

We plot the result in d = 3 in figure 5.5. It is positive in accordance with the conjecture

made in91.
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