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Introduction

The breaking of the spherical symmetry in nu-
clei results in the appearance of the rotational
band structures. The rotational bands are built on
deformed states with a substantial quadrupole de-
formation and exhibit strong electric quadrupole
(E2) transitions between the rotational states.
The collective rotational motion of all the nucle-
ons around an axis perpendicular to the symme-
try axis of the deformed density distribution ex-
plains the existence of such band structures. Apart
from the regular rotational-like bands, a new kind
of band structures in nuclei around the shell clo-
sures and typically with small deformation has
been observed. In contrast to the normal deformed
bands, these rotational-like bands are character-
ized by strong magnetic dipole (M1) and very
weak E2 transitions. These bands were inter-
preted and characterized as magnetic rotational
(MR) bands. There is also a possibility of anti-
magnetic rotational (AMR) motion in analogy to
anti-ferromagnetism in solids. The AMR bands
are understood in terms of a twin shears mecha-
nism, wherein the angular momentum is generated
by the simultaneous closing of the valence anti-
aligned proton and neutron blades towards the an-
gular momentum vector [1]. The anti-alignment of
the valence proton blades cancel the perpendicular
component of each others magnetic moment lead-
ing to the absence of magnetic dipole transitions.

In the present work, projected shell model
(PSM) approach calculations have been performed
to provide a microscopic understanding of the ob-
served AMR band in 105Pd [2]. This is the first
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application of the extended version of PSM ap-
proach, where the valence neutrons and protons
occupy different shells in contrast to the earlier
versions where the basis configurations are con-
structed from one major oscillator shell only.

Theoretical Framework
PSM is a microscopic shell model based ap-

proach wherein the deformed quasiparticle ba-
sis are constructed by solving axially deformed
Nilsson potential and BCS equations. In the
next stage, using the three-dimensional angular-
momentum projection operator, good angular-
momentum basis are projected out from the Nils-
son + BCS states. This restores the broken rota-
tional symmetry of the system. Finally, the pro-
jected states from the quasiparticle configurations
close to the Fermi surface are used to diagonalize
the shell model Hamiltonian (quadrupole + pair-
ing) given as : :

Ĥ = Ĥ0−
1

2
χ
∑
µ

Q̂†
µQ̂µ−GM P̂ †P̂−GQ

∑
µ

P̂ †
µP̂µ.

The wavefunctions obtained in the diagonaliza-
tion of the above mentioned Hamiltonian are then
used to calculate the electromagnetic transition
probabilities, the details of which can be found in
[3].

Results and Discussion
We have performed the PSM analysis in or-

der to have insight into the nature of band struc-
tures observed in 105Pd. As compared to the phe-
nomenological models, PSM approach is a micro-
scopic tool that allows to investigate the inter-
play among different excitation modes. In the
present study of odd-neutron 105Pd system, the
basis states are comprised of one, three and five
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FIG. 1: PSM energies after configuration mixing are
plotted along with the available experimental data [2]
for the 105Pd isotope.

quasiparticle excitations. The three quasiparti-
cles are formed from one-neutron coupled to two-
proton configurations and one neutron quasiparti-
cle coupled to two neutron quasiparticles. The five
quasiparticles are formed from three qasineutrons
coupled to two quasiprotons. The basis states have
been constructed with the deformation parame-
ter, β = 0.170 [4]. In the present work we have
employed N = 3, 4, 5 (2,3,4) oscillator shells for
neutrons (protons). To generate the positive par-
ity, a pair of neutrons and protons is occupying N
= 5 and 4 shells respectively. The odd neutron is
occupying the N = 4 oscillator shell.
The PSM results after diagonalization are pre-

sented and compared with the experimental data
in Fig. 1. As is evident from Fig. 1, the agree-
ment between the PSM results and the observed
data is satisfactory. The deviation in the cal-
culated energies at high spin is due to the fact
that in TPSM approach, the mean field is held
fixed for all the spin states and excitation ener-
gies. It is known from microscopic studies that
mean field can change with spin and excitation
energy. In Fig. 1 Band 1 and Band 2 are expected
to originate due to AMR and have the same intrin-
sic structure of three quasi-neutron configuration
[2]. In order to probe this, we have analysed the
wavefunction decomposition of these bands and
the results are plotted in Fig. 2. It is clear from
Fig. 2 that the dominant component in both these

bands is the three quasi-neutron configuration up
to I = 41/2

+
and above this spin value, the five-

quasiparticle configurations dominate. This is due
to the crossing of the five quasiparticle band. To
probe the AMR nature of the band structures,
B(E2) and BM(1) transitions have been evalu-
ated, and these quantities demonstrate that these
bands have AMR character.
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FIG. 2: Probability of various projected K configura-
tions in the wave functions of the band structures after
diagonalization are plotted for the 105Pd nucleus.

In the present work, we have performed a mi-
croscopic investigation of anti-magnetic rotational
band structures observed in 105Pd isotope using
the PSM approach. This is the first application of
the PSM approach to investigate the AMR phe-
nomena observed in 105Pd.
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