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Abstract

We investigate some properties of non-supersymmetric string theory which are expected
to be applied to phenomenology. We consider the non-supersymmetric string models con-
structed by orbifolding the toroidal models by Z, freely acting twists. The heterotic string
models are mainly focused on in this thesis.

We begin with identifying target space duality groups (T-duality groups) in the non-
supersymmetric string models by noting that the Narain lattice is split into two subsets
in the process of the construction. It is shown that the T-duality groups are congruence
subgroups of level 2 in O(dy, dg,Z), which are regarded as automorphisms of the two subsets
obtained by splitting the Narain lattice. We also point out that the transitions among the
non-supersymmetric string models can be induced by acting elements of O(dy,, dg, Z) which
are not included in the congruence subgroup.

Secondly, we study the massless spectra in the nine-dimensional non-supersymmetric
heterotic models which depend on the Wilson line and the radius. In particular, we restrict
our attention to the unwinding string states and figure out patterns of the gauge symmetry
enhancement and massless states in the untwisted and twisted sectors.

We then evaluate the cosmological constant in a particular class of the non-supersymmetric
string models and show that the exponential suppression of the cosmological constant can
occur if there is Bose-Fermi degeneracy at the massless level. This extremely small cos-
mological constant is preferable to make a realistic scenario from non-supersymmeric string
theory to low-energy physics. We find some configurations of the Wilson line that yield the
exponentially suppressed cosmological constant.

Finally, we analyze stability of the Wilson line moduli from the one-loop effective poten-
tial. We conclude that the global minima correspond to the maximal symmetry enhance-
ments which lead to the negative cosmological constant. Some of the Wilson lines that realize
the suppression of the cosmological constant correspond to the saddle points.

This thesis is based on a series of our work [I-5].
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1 Introduction

String theory is a promising candidate for a unified description of all the fundamental interac-
tions including gravity. One of the interesting features of string theory is that the dimension
of spacetime is required to be ten for superstrings or twenty-six for bosonic strings. This
fact is apparently inconsistent with our universe being four-dimensional. However, there
are some ways to rescue this situation. The most familiar one is compactifications; six spa-
tial dimensions are supposed to form a compact space of which the volume is sufficiently
small so that we cannot observe. Although there is no general principle to determine which
compact spaces should be chosen, supersymmetry plays a key role in indicating a policy of
the compactifications. It is known that some issues of the Standard Model (e.g. unnatu-
ralness) could be explained by introducing supersymmetry. It is hence favorable to adopt
Calabi-Yau manifolds [6] or orbifolds [[4,8] in top-down approaches from string theory so
that some supersymmetry is preserved in four-dimensional effective theories. In particular,
the compact spaces that lead to N/ = 1 supersymmetric theories in four dimensions are phe-
nomenologically preferred. For this reason, a lot of top-down scenarios have been considered
under the assumption that supersymmetry is completely broken at a somewhat low energy
scale. According to recent accelerator experiments, however, supersymmetry has not been
found at the multi TeV scale. Based on this fact, it is worth adopting the viewpoint that
supersymmetry is already broken at a very high energy scale, e.g., the Planck/string scale,
putting the benefits of low-energy supersymmetry aside.

The existence of non-supersymmetric string theories has already been known since the
mid-1980’s [0-12]. Although most of them have a tachyon in the free-spectra, there were
found few tachyon-free models, e.g., the SO(16) x SO(16) heterotic model even in ten-
dimensions [9,10]. More tachyon-free string models without supersymmetry in general di-
mensions have been constructed [[I3,14] and used for directly building realistic models such
as the Standard Models (see e.g. [I5,I6]) or exploring the early universe and the cosmic
history (see e.g. [[4-19]). However, there are some issues in non-supersymmetric string
phenomenology even though the models are tachyon-free. One of the serious ones is the
vacuum instability; in usual, the vacuum energies (cosmological constants) without super-
symmetry are rather large, and the dilaton tadpoles, which are proportional to the vacuum
energies, induce the instability [20,21]. For instance, in the SO(16) x SO(16) heterotic

models six-dimensionally toroidal compactified, the value of the one-loop cosmological con-



stant is order of M2, where M, is the string scale. To address this difficulty, some non-
supersymmetric string models with vanishing or small cosmological constants have been
proposed (see e.g. [22-33]). In this thesis, in particular, we focus on the interpolating mod-
els in which the cosmological constant can be exponentially suppressed. The interpolating
models are constructed by a stringy version of the Scherk-Scwharz compactifications [34-388],
and hence supersymmetry is broken at the scale of the inverse volume of the internal direc-
tions accompanied with the Scherk-Secwharz mechanism. In Ref [39,40], it is shown that in
nine-dimensional interpolating heterotic models, as the (dimensionless) radius R of a circle
goes to large, the leading contribution of the one-loop cosmological constant can be evaluated

as follows:
A(R) ~ (np —ng)éR™° + O(e™F), (1.1)

where ¢ is a constant which we will calculate in this thesis, and ng (ng) is the degrees of free-
dom of massless fermionic (bosonic) states. Eq. (D) implies that the cosmological constants
are exponentially suppressed in interpolating models in which Bose-Fermi degeneracy at
massless level is realized. Such models, which are often called super no-scale models [A1-43],
can avoid the problem of instability even without supersymmetry. In fact, the string models
with supersymmetry breaking by the Scherk-Schwarz mechanism has been attracting a lot
of attention in the context of non-supersymmetric heterotic string phenomenology [42-59].

Duality is a key feature in studies of theoretical physics. In string theory, there are two
well-known dualities: S-duality (strong-weak coupling duality) [60,61] and T-duality (target
space duality) [62-65]. A familiar example of S-duality is that between the heterotic SO(32)
superstring theory and the type I superstring theory. Although we will mainly focus on the
heterotic models in this thesis, the similar analysis in the type I theory has been discussed
in [66-71]. As for T-duality, one can see the typical example in bosonic string theory com-
pactified on a circle; strings on S* with a radius R are equivalent to those on S! with a radius
o/ /R, where o is the squared length of a string. This equivalence of two circles cannot be
found in theory of point particles, and hence T-duality is a characteristic property in string
theory. Such unique symmetries allow us to consider non-geometric backgrounds [72-87]
(e.g., asymmetric orbifolds or T-folds), and furthermore field theories that have the T-
duality as a manifest symmetry have been proposed [83-85]. Most interest of T-duality has
been devoted to compact spaces that preserve some supersymmtry. For instance, it is known

that the T-duality group of closed strings compactified on a torus in which supersymmetry
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are maximally preserved is given as a O(dr,dg,Z), where d; (dr) denotes the degrees of
freedom of the left (right) movers propagating in the compact space. In particular, on a
two-dimensional torus, T-duality group includes modular symmetries, and the supersym-
metric effective field theories that are invariant under a modular transformation have been
constructed in [86]. In the context of flavor physics, non-Abelian discrete symmetries (e.g.
the modular symmetry), which can be regarded as (parts of) T-dualities, are considered as
a candidate for an origin of the flavor symmetry in the Standard Model [87-94]. It has how-
ever not been known what kind of structure the T-duality group in the non-supersymmetric
models has. In this thesis, we will identify the T-duality groups of the string models in which
supersymmetry is completely broken by the Scherk-Schwarz mechanism.

This thesis is organized as follows. In section B, we review the procedure of the con-
struction of the non-supersymmetric models of which we will studied some properties in the
subsequent sections. We also give the partition functions and concrete examples, some of
which correspond to interpolating models. In section B, we identify the T-duality groups of
the non-supersymmetric string models by noting the construction introduced in section B.
We also point out that the transitions among the non-supersymmetric models are induced
by acting elements of O(dy,dg,Z) which are not in the T-duality group. In section B, we
study patterns of the symmetry enhancement which depends on configurations of the Wilson
line. As shown in (IT), the leading behavior of the cosmological constant is controlled only
by the massless spectrum. So, in order to find the exponentially suppressed cosmological
constants, it is important to understand possible enhancements of the gauge symmetry and
massless fermions. In section B, we devote ourselves to analyze stability of the Wilson line
moduli, focusing on the region where supersymmetry is asymptotically restored. In section

[, we summarize this thesis and show some future directions.



2 Review of non-supersymmetric string models

In this section, we review the construction of the non-supersymmetric models which were
originally proposed in ten-dimensions by Dixon and Harvey in [9], and generalized to arbi-

trary dimensions by Ginsparg and Vafa in [IT].

2.1 Construction

The construction of the non-supersymmetric models is done by Z, freely acting orbifolding.
Note that any moduli cannot be fixed in this construction and hence we can start with
string models compactified on any tori. In the toroidal compactifications, it is known that
modular invariance requires that the internal momenta live in an even-self dual lattice with
Lorentzian signature (dr,dg), which is called a Narain lattice [95,96]. The spectra in the
toroidal models are made of the following pairings of the spacetime representations and the

internal momentum lattices:

Type 1IB (IIA) strings: (v0, s5 (s¢),vs (ve), sv; T4) (2.1)
Heterotic strings: (o, 5;1°7%%) | (2.2)

where T'“24% denotes the Narain lattice and (o, v, s, ¢) represents the conjugacy classes of
SO(8) (see appendix [Al). The Zy generator which leads to the non-supersymmetric model is
given by (—1)"«a, where F is the spacetime fermion number (F' = Fy Fy for type II models,
F = Fp for heterotic models) and « is a shift of order 2 in the Narain lattice. Note that

2miP0 yunder a, where ¢ is a

the state with an internal momentum P yields an eigenvalue e
shift-vector such that 26 € I'*c47 and the inner product is taken by n = diag (14,, —1a,)-
It is convenient to decompose the Narain lattice T'%4% into T " and I'*** depending on

the inner products with § being even or odd:
1
[t = fperdudn |5.pez), D= {P ein 5. pe Z+§}- (2.3)

Then, after modding out by (—1)¥a, the spectrum in the untwisted sectors is expressed by

the following pairings:

Type IIB (ITA) strings: (m?, ss (sc); Fi’d;> : <v§ (ve), s@;F‘f’d> , (2.4)
Heterotic strings: (@; F}:Hd’d) , (3; F1,6+d’d> . (2.5)



Modular invariance of the one-loop partition function requires that % be an integer™ and
the twisted sectors be added. In the twisted sectors, the internal momenta are shifted by
d and the spacetime representations are identified by the S-transformations of the SO(8)

characters?. For 62 odd, the pairings of states in the twisted sectors are

Type IIB (ITA) strings: (06, cé (¢5); T + 5) : (OE (05), co; T + 5) , (2.6)
Heterotic strings: (6; F16+d7d + 5) , (E; plordd o (5) , (2.7)

and for 6% even,

Type IIB (ITA) strings: (06, ¢ (c5); T2 + 5) : (05 (05), co; ™ + 5) , (2.8)

Heterotic strings: (5; piotdd 4 5) , (E; Ffﬂl’d + 6) , (2.9)

This dependence of the twisted sectors on §% even or odd comes from the requirement of
the left-right level-matching condition. We will see the detail in the next subsection and

appendix B.

2.2 Partition function

Possible Narain lattices are characterized by a set of parameters \* called moduli. We
can introduce the generalized vierbein £(A\%) of the Narain lattice, which is expressed as
a (dp + dg) x (dr + dr) matrix. In order for the Narain lattice to be even and self-dual,
the Narain metric, which is defined as J = c‘:’nét, must be an integer matrix with signature
(dr,dg) of which diagonal components are even and determinant is +1. Then, an element

P of the Narain lattice is written as
P =ZENY, (2.10)

where Z is a (df, + dgr)-dimensional row vector with integer components. Note that the inner

product of two elements P, = Z,€ and P, = ZQS~ is independent of the moduli A*:

Py Py = Z1EN\E N ZL = Z, T ZL. (2.11)

ISee appendix B for details.
2We will see the details in the next subsection and appendix & .
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The one-loop partition function of the toroidal string models with maximal supersym-

metry preserved can be written as
ZT'(AY) = 287D Zp Zray an (AY). (2.12)

with the individual contributions defined as follows:

8—d

z5 =1 )", (2.13)
7 — (Vs — Sg) (Vs — Ss) or (Vs — Ss) (Vs — Cs)  (type IIB or type IIA strings) |
Vs — Ss (heterotic strings)
(2.14)
Drayiy = e Z q%qu%PIQ%, it dr, =dg =d (type II strings) |
Perdn dr d, —16 =dr =d (heterotic strings)
(2.15)

where ¢ = €?™7. Here 7(7) is the Dedekind eta function and (Og, Vg, Ss, Cs) denotes a
set of the SO(8) characters (see appendix [@l). Note that the partition function is invariant
under the rotations O(dg,R) x O(dg,R) which act on the left- and right-moving momenta
individually. Namely, two generalized vierbeins € and Eu give the same toroidal model if
u € O(dr,R) x O(dg,R).

As mentioned in the previous subsection, the non-supersymmetric model with the moduli
A% is constructed by orbifolding the toroidal model with the moduli A® by a Z, twist (—1)"a.

Since 26 is in ['*9%  the shift-vector § is expressed as

5= %ZS(A“), (2.16)

A

for a certain integer vector Z € 7%ctdr, Recalling that 62 is required to be an integer, Z

must satisfy
ZJZ' =0 (mod 4). (2.17)

From the definition (Z33) of T'%**®, we find that two choices Z and Z’ give the same splitting

of the Narain lattice into FiL’dR and I 7 if

~

Z = Z' (mod 2). (2.18)
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Thus, the choices of Z are constrained by (1), and the non-supersymmetric models are
classified by the inequivalent choices of Z with the equivalent relation given by (ZI8). We
can choose Z such that the components take 0 or 1 without loss of generality. It is of
course possible to choose Z = (OdL,OdR). But, this choice corresponds to the toroidal
compactification, and we will exclude this choice from our consideration in this thesis. It is
convenient to denote the shift-vector and the partition function labeled by Z such as 5(2)
and ZM for the choice of Z to be clear. Let us now write down the partition function

(2)

Z*(gZI’)LSY . From (Z34) and (E3), the contributions from the untwisted sectors are

Type IIB strings: Z& {(VSV8 + S3.55) Zpaa(A") = (Vs Ss + SsVs) Fdd(v)} (2.19)

Heterotic strings: Z {VSZ 16+a,d(A?) — SgZF£6+d,d(>\a>} : (2.20)

where Zpi6+4.4 is defined as
+

1:|:€Q7Ti6~P
ZFiL’dR = n_del_dR Z qépgqéplgé — 17 ﬁ_dR Z —2 qépgq% %% (221)
PeFiL’dR Perdr-dr

The contributions from the twisted sectors can be obtained by the modular covariance of
the partition traces. Note that (Z19) and (220) are rewritten as

| o
Type 1IB strings: 52, {(vg Ss) (Vi — S5) Zyaa + (Vi + Ss) (Vi + Ss) FZ?} . (2.22)

1 -~ _
Heterotic strings: §Z§§ 9 {(Vg Sg) Zrierd,d + (Vg + Sg) F?Gi)dd} , (2.23)
where we omit the argument A* and define ZIEdL)dR as
— _ i 1 1
Zﬁ’f,)d,% - erb’dR — Zyayan =1 L =dn Z (2T PSP g PR (2.24)

Perdr-dr

One can notice that ZI‘dL dn

space in which the Zs operator « is inserted in the time-direction of the world-sheet. Then

corresponds to the partition trace over the internal momentum

we can obtain the partition traces of the twisted sectors by performing the S-transformation
for the second terms in (222) and (2223). By using the formula

Y s =P)= > exp2miP-P"), (2.25)

Perdrdr Prerdr-dr

11



we find®

(Va + Ss) (vs+ss) 2455 — (Os —CS) (0s = Cs) 233 (type 1B strings)

. (2.26)
(Vs + Ss) 16+dd — (O3 C'g) F16+dd (heterotic strings)
where Zéi’g?dR is defined as
20 = Zrapanss = ity P g ki) (2.27)

Perdrdr

The action of (—1)" « on the twisted sectors can be determined by requiring that the partition
function be invariant under 7 — 7 4+ 1. The following partition traces must be added in

order for the partition function to be modular invariant:

Type 11B strings: F (Os + Cs) (Os + Cs) 252, (2.28)
Heterotic strings: =+ (Og + Cg) F‘iﬁldd, (2.29)

where Zﬁf{f),dR is defined as

rdr-9r

—dp 75— i _1 2
A - ZFiL»dRJ,-(s - ZF‘fL,dRJr(S = e n Z ¢’ 5Pq2(PL+6L) TR (2.30)
PerdL4r
The upper and lower signs of the prefactor in (228) and (2229) are applied for 62 odd and
62 even respectively, which is required for the invariance under the T-transformation (see
appendix B for details). As a result, the full partition function of the non-supersymmetric
models are written as follows; for type IIB strings

a 8—d 7 o a a

ZEF ) = 2570 { (VaVh + SSs) Zpaa(N) = (VaSs + SsVk) Zyaa (X7)
+ (0505 + CsCs) Zyaa 5(X*) = (OsCs + CxOs) Zyaa 5(N) } . (2.31)

and for heterotic strings

ZETT ) = 250 { VaZgaoraa(X) = S Zpaosaa(X°)

+OBZFlt6+d,d+6(>\a) — C’gZnger,dJré(/\a)} . (2.32)

These partition functions reproduce the free spectra of the non-supersymmetric strings given

in the previous subsection.

3See appandix @ for the S-transformation laws of the SO(8) characters.
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2.3 Ten-dimensional models

As the simplest example, in this subsection, we see the ten-dimensional non-supersymmetric
models (i.e. d = 0). In the type II models, there is no internal direction, and hence we
have one possibility of the Z, generator, i.e. (—1)¥. Orbifolding by this Z, twist gives the
well-known ten-dimensional non-supersymmetric models: the type 0B model and the type

0A model, both of which are tachyonic. The partition functions of the type 0B and type 0A

models are
28 = 7&) (0505 + ViVs + SsSs + C5Cs) | (2.33)
7208 = 78 (0505 + ViVi + SsCs + CsSs) - (2.34)

In the heterotic models, there are sixteen chiral left-moving bosons of which the momenta
live in an even self-dual 16-dimensional lattice with the Euclidean signature, which we denote
as [0, Tt is known that such an even self-dual Euclidean lattice can be realized only if the
dimension is the multiple of eight, and there are the two possibilities in sixteen dimensions:
the Eg x Eg root lattice and the Spin(32)/Zsy root lattice®. Choosing an element 7 of T,
we get a shift-vector 6 = 7/2. As mentioned in the previous subsection, two choices & and
7' give the same non-supersymmetric model if & = &/ + 27, for ?my € I''°. Furthermore, with
d = 0 there are no continuous parameters to couple to quantum numbers such as winding
numbers, and hence 7’ is in the equivalent choice to 7 if # = @’ up to permutations of
the components. Considering these constraints for inequivalent choices of 7, there are four
possible shift-vectors in the case with I''® being the Spin(32)/Z, root lattice, which are
shown in Table 0. The gauge symmetries and the spectra in the non-supersymmetric models
of course depend on the choices of 7. With the Eg x Eg root lattice, we have three possibilities
of the shift-vectors, and Table B shows them and the corresponding gauge groups.

From (E2232), the partition functions of the ten-dimensional non-supersymmetric models

are written as
Z‘(%SLSY — Zj(gs) {‘72321,1+6 — SSZFHS + OSZFLG—Fé - C'SZF;M-B} , (2.35)
where T'}¢ is defined as

I'S={mrer|a.re2z2}, TY={rel"|f-me2Z+1}. (2.36)

4We review these lattices in appendix Bl
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s=5 Jaom | ()02 (") (5)".0)
6) X

gauge sym. || SO(32) | SO(24) x SO(8) | SU(1 U(1) | SO(16) x SO(16)

Table 1: The shift-vectors to construct 10D non-supersymmetric heterotic models with the

Spin(32)/Zs lattice and the gauge symmetries in the models.

s=5 | woney (@000 [ o100
gauge sym. | SO(16) x Es | (FEr x SU(2))* | SO(16) x SO(16)

Table 2: The shift-vectors to construct 10D non-supersymmetric heterotic models with the

Es x Eg lattice and the gauge symmetries in the models.

From the partition function (E23H), one can check whether the spectrum includes physical
tachyonic states or not. From the expansions of the SO(8) characters and the Dedekind eta
function, a tachyonic state can appear only from the pairing (6' s+ 5) (see appendix A).
In this sector, the right-moving excitation starts from the level ——, while the tower of the
left-moving states is made by the Hamiltonian —1 + 3 L+ 5) + N where Ny, runs over
non-negative integers, and 7 € I''% or 7 € I''® depending on 62 odd or even. The left-moving
vacuum is thus at —1+§2 since 26 € T''% and § ¢ T''%. Note that the shift-vector can be chosen
such that §? is 1 or 2, as shown in Tables I and 2. Thus, except for the SO(16) x SO(16)
heterotic models, all the 10D non-supersymmetric models, in which 62 = 1, have physical
tachyonic states in the free spectra. In other words, only the SO(16) x SO(16) heterotic
models with §2 = 2 are tachyon-free in ten dimensions.

The non-supersymmetric heterotic models shown in Table [ and Table B were constructed
in the bosonic formulation by Dixon and Harvey [d], just as we have done above. One can
obtain the same non-supersymmetric models in the fermionic formulation by introducing a

discrete torsion [IT].

2.4 Nine-dimensional models
The type II models compactified on a circle have the internal momenta in ['':!:

P = (P, Pg) = (nR~"+mR,nR™" —mR), m,neZ, (2.37)

1
V2
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where R is the radius of the circle normalized to be dimensionless by using the string length
scale. In the type II models with d = 1 there are two inequivalent choices of Z = (m,n):
(1,0) and (0,1). For the choice (1,0) ((0,1)), n (m) is even in Ty' while odd in T-" since
§-P =mn (6-P=m). Then the partition function of the type IIB model with Z = (1,0) is

ZEST = 7 { (VaVs + SsSs) Aqioy [010] — (VaSs + SsVs) Ao [0]1]
+ (0305 + CsCs) A0y [10] — (OsCs + Cs0s) Aoy [1]1] }, (2.38)

where A1) ]3] is defined as

1 1 1 -1 2
10 [Oé|6 Z Z Z nR +mR q—z(nR 7mR) ‘ (239>
meZ+§ n€2Z+p
Noting that the states with m # 0 become very massive as R — oo, one can find
R_~3 (-1
Rooo ) 372 (n) fora=0
Ao [alf] == % 2 . (2.40)
0 for a #£ 0

In the limit R — 0, the states with n = 0 only contribute and the behavior of Aq o) [a|f] is

1 B
B0, R~y 2 (7)) ' for =0

: (2.41)
for 8 #0

A(l 0) [a|f] —

Therefore, from the partition function (P38), the type IIB model with Z = (1,0) produces
the 10D type IIB model and the 10D type OA model in the endpoint limits R — oo and
R — 0 respectively. Note that the chirality of the right-moving states is flipped in the limit
R — 0 since we perform T-dual to open up the compactified dimension. In the same way,
one can check that the type IIB model with 7= (0, 1) produces the 10D type 0B model and
the 10D type IIA model in the endpoint limits.

In the heterotic models with d = 1, the left- and right-moving internal momenta P; =

(1,pr) and Pr = pg are written as

lp, =1 —mA, (2.42a)
1 1
1 1
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where A = Ag; is a Wilson line. Here we take the Narain metric as

die6

0 0
J = 01|, (2.43)
10

0
0
where g6 is a Cartan metric of I''® which is defined as g;6 = ajgals with ajg being a set of
the basis of I''®. Note that the condition (27) for Z = (§,1h,n) € Z'+2¢ is rewritten as
7|2 + 2 =0 mod 4, (7 = Gag). (2.44)

We then classify the 9D non-supersymmetric heterotic models into the following four classes

depending on the choice of (m,n);

(1) |#]* =0 (mod 4), (n,7n) = (0,0);
With this choice, the splitting of the Narain lattice is

piet = {Zé |(w,m,n) € T8 x Z x Z} , (2.45)

where T'1 is defined as in (E238) by using 7. In the twisted sector, the momenta live in

Iyt 46 = {Zé

(1, m,n) € (Ff + g) X 7, % Z} . (2.46)

The non-supersymmetric models in this class correspond to the circle compactification
of the 10D non-supersymmetric heterotic models which are shown in Table Il and Table
B. To see this, let us study the behaviors in the endpoint limits. Since the states with

m =0 (n = 0) only contribute as R — oo (R — 0), we find

R =1 R \—1
ZFZIJ’I — ﬁ (7777) Zpgs, Zrli7,1+5 — ﬁ (777]) ZF1i6+g, (R — OO), (247)
1

Rym

Thus, one can see from (2233) that both of the endpoint limits in this class give the

Zrim — (nﬁ)_l ZFfa ZFL7,1+5 — (R — 0). (2.48)

1 -1
R—\/T_g (n1) Zr§[6+g7

10D non-supersymmetric model with 7.

(2) |#]* =0 (mod 4), (r,n) = (1,0);
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In this class, T} and T'}"' + § are expressed as

Pt = {Zé‘ (7, m,m) € (T8 x Z x 2Z) + (' x Z x (2Z + 1)) } . (2.49)

e (1 2) x (2+ 1) x22)
+((r}§+§) x <Z+%) X (2Z+1))}.

It 46 = {Zé

(2.50)
In the endpoint limits, er’l and Zriz,l_"_(s behave as
R
Zri” — — (777)) Zrie, Zri7,l+5 — 0, (R — OO), (2.51)

VT2
1 \—1 1 _\—1
Zrit?,l — R 5 (777’]) ZF§:6’ ZF1E7’1+5 — R—\/T_z (7]77) ZFliﬁ-i-g’ (R — 0) (252)

Note that the states with m = 0 do not live in I'}"" 4+ & and hence ng,l s 18 vanishing
as R — oo. The model in this class reproduces the 10D supersymmetric heterotic
model while give the 10D non-supersymmetric model with 7. In section B and B, we
will focus on the heterotic models in this class and discuss the cosmological constant

and the moduli stabilization.

(3) 7> =0 (mod 4), (1, 7) = (0,1);

In this class, I\ and T} + & are expressed as

D = {28 |(mm.n) € (TP x 22 Z) + (T x QL +1) < D)}, (259)

(m,m,n) € ((Ferg) x 27, X (Z+%))
+<(F}Fﬁ+ ) X (2Z41) x <Z+%>>}.

(2.54)
The behaviors of er[” and Zrli” s in the endpoint limits are

rgﬂ+5:{zé

N |

R _
Zrim — — (7777) ! ZFlfa Zritm

VT2
1
Joar1 —
F; R\/T_Q

— (R — 00), (2.55)

R
+6 ﬁ(ﬁﬁ) 2N

(n7) ™" Zpas, Zpras =0, (R—0). (2.56)
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The model in this class gives the 10D non-supersymmetric model with 7 and the
10D supersymmetric heterotic model in the endpoint limits R — oo and R — 0
respectively. The models in class (2) and class (3) are called interpolating models since

they interpolate between two different higher-dimensional string vacua.

(4) 7> =2 (mod 4), (1, 7) = (1,1);

In this class, I} and T}" + & are written as

g

(m,m,n) € <(Ff + g) x Fg“) + ((Ff + g) x Fﬁ”) } . (2.58)

where F(”), PS,"’, '™ and an) are the conjugacy classes of SO(2n) (see appendix [A).
g jugacy

P = {28 |(romon) € (0 5 00) + (1 % T0) } (2.57)

P {zg

The behaviors of Zpiz1 and Zpizi 5 in the endpoint limits are
+ +

R,
Zrim — ﬁ (7777) ! Zrie, Zl‘li7’1+5 — 0, (R — OO)7 (2.59)
1
Zrita = = (n7) " Zpas, Zyirays =0, (R—0). (2.60)

RyT
We find then that supersymmetry is asymptotically restored in both of the endpoint
limits, although broken at finite values of R. Note that if the models with A = 0 in
this class have the gauge symmetries with rank 16 that cannot be realized in the 10D
non-supersymmetric models as shown in Table 0 and Table P since ™ must be chosen
such that |7]* = 2 mod 4.
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3 Target space duality

From now, we assume d > 1 in order to discuss the T-duality groups. Modular invariance
requires that the Narain lattice be an even self-dual with Lorentzian signature (dg,dg).
Picking up a Narain lattice with a generalized vierbein &, it is known that all the even
self-dual lattices with the same Narain metric .J = £nél can be obtained by acting £(\*) €
O(dp,dg,R) on & from the left side, where the Lorentz boost O(dy,dr,R) is defined in
terms of the Narain metric J: £JE' = J. The deformed Narain lattices have the generalized
vierbein £(A*) = £(A*)&. As seen in the previous section, the deformation by £(A\*) that
satisfies £ = Eyu for u € O(dy, R) x O(dg, R) does not change the partition function. So,
the moduli space of the toroidal models is locally isomorphic to O(dr,dgr,R)/O(dL,R) x
O(dg,R) [95,96]. However, we should notice that the discrete subgroup O(dy,dg,Z) C
O(dp,dg,R) acts on the Narain lattice as an automorphism and keep the toroidal model

unchanged. Namely, two moduli A* and A'* give the same toroidal model if
ENYE = gEN)Eu (3.1)

holds for u € O(d,R) x O(dg,R) and g € O(dy, dg,Z). Therefore, the space of inequivalent
Narain lattices is given as O(dr,dgr,Z)\O(dr,dr,R)/O(dL,R) x O(dg,R). The discrete
subgroup O(dy,dg,Z) is called a T-duality group of the toroidal models.

The main goal of this section is to identify T-duality groups of the non-supersymmetric
models constructed in the previous section. The question is whether A\ and \'® give the
equivalent non-supersymmetric model whenever they satisfy (B), i.e., whether the following

proposition is true for any g € O(dr,dg,Z):

70 = 2T () = Zgﬁ(v);zfg)w(xa). (3.2)

Recalling that the partition function Z*(SZ{’;SY (A*) is obtained from ZTd(/\“) by splitting the
Narain lattice by §(A\*), we can easily see that (B=) does not always hold for any ¢g €
O(dp,dg,Z). In order for Z*(SZAU)’SY to be unchanged under the discrete deformations, g must

maintain the inner products of any P € I'*4® with § mod 1:
§-P=¢-P (mod1) for any P € ['dr (3.3)

where P’ is the corresponding element of the Narain lattice deformed by ¢. Inserting P = Z&,
P' = Zg€ and § = %Zg into (B=33), we find

A

Z =Zg (mod 2). (3.4)
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For a choice of Z, let us define a discrete group D( 2 (dr,dR) as
Dz, (1, dr) = {g € O(dy,dp, Z) | Zg = Z (mod 2) } . (3.5)

Then, D(Z) (dr,dg) corresponds to the T-duality group of the non-supersymmetric model
with Z. Obviously, Dz (dy,,dg) is a subgroup of O(dy, dg,Z) since if g; and g, are elements
of Dz (dr,dg), then the product gigs is also in D, (dz, dr):

Zg1g2 mozd 2 Zgg = 2 (36)

One can furthermore show that the principal congruence subgroup of level 2 of O(dy, dg,Z),
which is defined as

I'(2) = {g € 0(dr,dr,Z)|(¢)ap "2 * 1 for A=B, (g)ap "270for A+ B} . (37

is a subgroup of D (d,dr). The T-duality group D, (dr,dr) is thus a congruence sub-
group of O(dy,dg,Z).

We can understand the above result from a different point of view. Let A'* denote the
moduli that are related to A* by ¢ as in (80). The shift-vector §(\*) with Z can be then

expressed in terms of A* by using g:

SN = 78wy = %Zgéw)u, (3.8)

1
2
where v € O(dg,R) x O(dg,R). Recalling that Z7“(\*) is invariant under u, one can
find from (BR) that the shift-vector 6(X*) with Z is equivalent to 8(\*) with Zg. Using
ZT(Ne) = ZT°(\9), we get
SUFSY (y1a\ _ 7S8USY (ya

Z(Z) () = Zao) (A). (3.9)
Therefore, in order for the proposition (B3) to be true, it is required that Zg be in an
equivalent choice to Z. From (218), a T-duality element g in the non-supersymmetric
model with Z must satisfy Zg = Z mod 2. Then we obtain D 3)(dr,dr) defined in (B3)
as the T-duality group of the non-supersymmetric model with Z. Eq. (BM) also implies
that acting g € O(dr,dr,Z) not in D (dr,dr) on the non-supersymmetric model with Z
gives another non-supersymmetric model with Zg. Therefore g € O(dp,dgr,Z), in general,
induces the transitions among the non-supersymmetric models, and the models of which the

T-duality groups include g correspond to the fixed points of the transitions.
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3.1 T-duality in type II models

In the type II models d-dimensionally compactified, there are d x d moduli: a metric G = ee’
of the compactification lattice, an anti-symmetric two-form B. Note that these moduli are

described by a d x d matrix F = G + B called a background matrix. The standard choice

0 14
J:(ld . > (3.10)

An element of the Narain lattice in the type II models is then expressed as

of a Narain metric in I'“¢ is

P = Z&(e, B) = ZE(e, B)&,, (3.11)

e Be™t ~ 1 1, —14
E(e,B) = L &= — . 3.12
(€. B) ( 0 et ) NG ( 1, 14 ) (312

One can check &n&l = J and EJE' = J so that En€ = J. Using the background matrix E,
P = (Pp, Pg) is written as

where

P = 1 (n+mE,n—mE") e, (3.13)

V2
where Z = (m,n) = (ml, o omdng, - ,nd). One can easily check that (B) with d = 1
agrees with (2237). The free spectrum of a string is given by the Hamiltonian
1 1
Hr g (P;+ Pp) = éZM(E)Zt, (3.14)

where the part of the oscillators is omitted and a 2d x 2d matrix M is defined as

G - BG™'B BG™!
M(E) = E(e, B)E' (e, B) = < 1B o1 ) : (3.15)
The T-duality group O(d, d,Z) of the toroidal models acts on P as follows:
P — P = ZgE(e,B)&;, g= ( Z Z ) € 0(d,d,Z), (3.16)
where a, b, ¢, d are d x d integer matrices that satisfy the following relations:
a‘c+cla=0, bd+db=0, a'd+cb=1,. (3.17)
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We see that the O(d,d,Z) transformation is an automorphism of the free spectrum since
the Hamiltonian H transforms to H' = ZgM(E)g'Z" which gives another point in the same
space of states. The transformation (B8) can be interpreted as acting on the background

matrix E as
E—E =@E+b)(cE+d) ", (3.18)

Let us apply the above discussion about the T-duality group of the non-supersymmetric
models to the type II models. The non-supersymmetric models are classified by the possible
choices of Z = (m,n) with each slot taking 0 or 1 and satisfying /mn' = 0 mod 2. The

T-duality group (B3H) of the non-supersymmetric type IT model with Z is

Dyy(d,d) = {g: < o« b ) e O(d, d, 2)

(ma + ne,mb+ nd) = (m,n) (mod 2)} :
(3.19)

3.1.1 Specific elements of D, (d,d)

Let us focus on well-known elements of O(d,d,Z) and identify which elements survive in
the non-supersymmetric models. We here introduce the following four types of T-duality

elements:

e Basis change of the compactification lattice:

ge(K) = ( }0< Kot ) , (K eGL(d,7)). (3.20)

In order for g.(K) to be in D (d, d), K needs to satisty (mK,nK ™) = (1, n) mod 2.

e Integer theta-parameter shift of B-field:

95(0) = ( 10d ? ) . (0'=-0¢€ Myu(Z)). (3.21)

From (B9), the non-supersymmetric model with Z = (s, 7) is invariant under the

shifts B;; — B;; + ©;; with shift parameters satisfying m© = 0 mod 2.
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e Factorized duality and inversion:

1, — €; €;
gp, = ( a ) , (3.22)
€ 1;—¢;

where e; is a d X d matrix whose components are zero, except for the 7i one taking 1.

The condition for gp, to be in D 4 (d,d) is
(M, n) = (M — me; + ne;, n — ne; +me;) (mod 2). (3.23)

Thus, the non-supersymmetric model with 7 = (1, n) satisfying m’ = 7, is invariant
under the i-th factorized duality ¢gp,. The inversion gp of the background matrix E,

which is generated by the products of the factorized dualities,

d
0 1
gp = HQDZ- = ( ‘ ) ; (3.24)
Py 1, 0

is a symmetry only in the non-supersymmetric model with Z = (19,1%).

e Integer theta-parameter shift of dual B-field:

) B 1, 0
95(0) = gpgp(©)gp = ( éd L

> (6= -0 e Mpu(@). (3.25)
The non-supersymmetric model with Z = (1, 7) is invariant under the shifts with

parameters satisfying 70 = 0 mod 2.

The first two elements are called geometric ones. Indeed one can check E(e, B) =
ge(€)gp(B), and hence any generalized vierbeins are obtained by starting from £(14,0) = 194
and acting g. and gp. On the other hand, gp,, gp and gz are known as non-geometric ele-
ments.

The simplest example is the d = 1 case which we have introduced in subsection 224 and
in which there are two possibilities of Z, i.e., (1,0) and (0,1). There is only one non-trivial
element in O(1, 1,7Z), that is, the factorized duality gp,. But, the factorized duality does not
survive in both of the non-supersymmetric models since neither of the choices of Z satisfies
m! = n; mod 2. Rather than that, acting gp, on either of the models induces the transition
to the other model. As seen in subsection 24, the 9D non-supersymmetric models produce
the different 10D models in the limits R — oo and R — 0, and gp, is interpreted as the

interchange of the two 10D endpoint models.
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9p(r) 9p(7s) Jr gs2 9D,
9D,9-(Y1) 9Dy | 90:9-(V8)GDs | 9029w ID 9w | GRG(Vs) | 9529D, 952

Table 3: The elements g,(vr), g-(7s), gw and gp, generate the T-duality group in the
toroidal model. This table lists the products of the generators which give g,(7v), gr, gs2 and

9D, -

3.1.2 Type Il models with d =2

One of the simple and interesting examples is the d = 2 case. We can change the basis of
the moduli space such that the T-duality group O(2,2,7Z) is decomposed into PSL(2,7Z) %
PSL(2,Z). To do this, we define two complex parameters 7 and p by combining the four

real parameters G111, Gao, G12, Bis as follows:

G VG
_ T2, VT 3.26
T=T +1iT oy +1 Gor’ (3.26a)
p=p1+ips = Bio+iVG, (3.26b)
where G = G11Gay — G2,. Then we get the two complex momenta:
1
P | = _ _ 3.27
| L| \/m |(n1 T?’Lg) Y <m2 + 7—Tnl>| ’ ( a’)
1
|Pr| = [(n1 — Tna) — p(ma + Tmy)|. (3.27b)

V2722
Here, we have given only the absolute values of the momenta because there are the O(2, R) x
O(2,R) symmetry which is isomorphic to U(1) x U(1).

In the toroidal models, one can find two modular symmetries which act on the complex

structure 7 and the Kéhler structure p individually.

5 (o= (). (3.28)

cr+d’
ap+0b
: — 3.29
w0 ()= (7250, (3.20)
b
where v = ¢ J € PSL(2,7Z). Besides the above modular groups, there are some spe-
c

cific duality elements. One of them is the interchange of the complex and Kéhler structures,

gD, - (Ta p) — (p’ 7_)7 (330>
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which corresponds to the factorized duality for the X?2-direction. The factorized duality for

the X!'-direction is realized by the following transformation:

1 1
gp, : (7—7 p) - (__7 __> : (331>
The interchange of the basis X! <+ X2 is given by

gs2: (T,p) = @ —‘) : (3.32)

The others are the reflection Xo — — X, and the world sheet parity P, <> Pg, which are

respectively expressed as the following transformations:

gr - (7—7 p) — (_7_—7 _P)7 gw - (7—7 p) — (7—7 _ﬁ) (333>

Not all the elements we present above are independent. In fact, we can pick up the four
elements g.(yr), 9-(7s), gw and gp, as a minimum set of the generators. Here yr and g

are matrices generating a modular group:

_11 _01 (3.34)
VT—Ol,Vs— 10 ) .

The other elements are obtained by the combinations of the generators. For instance, the

modular group (B229) which acts on p is generated by

(1) = 9029-(v1)9Dss  9p(Vs) = 90297 (Vs) gD - (3.35)

The Zs elements ggr, gs2 and gp, can be also expressed as the products of the generators, as
shown in Table B.
The above transformations of (7, p) can be regarded as those of Z = (m,n). Under g, (),

gp, and gy, for instance, Z transforms as

9:(V) 1 Z = ZM; (7)), (3.36)
9p, : Z — ZMp,, (3.37)
gw : Z — ZMy, (3.38)

where M, (), Mp, and My, are 4 x 4 matrices defined as

v 0 er e -1, 0
MT(7)=<O 715)7 MDQ:(Q1 ;), MW:< 02 ) ) (3.39)
2 1 2
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(v, 1) 9-(7) 9,(v) | 9p, | 9p, | 9s2
(1,0,0,0) [ veTY2) |yeT*2) | g9p, | — —
(0,1,0,0) | v €Tu(2) |v€TH2) | — | gp, | —
(0,0,1,0) | v €T1(2) | v€T(2) | 9p, — —
(0,0,0,1) | ye€TH2) | v€Tu(2)| — | gp, | —
(1,0,0,1) [ yeTY2) | ~eTly — — —
(0,1,1,0) | yeI'1(2) | v€Tly — — —
(1,1,0,0) | ve€Ty |~ryel*(2)| — — | gge
(0,0,1,1) || veTy |vel(2) | — — Js2
(LL,L,1) || v€ly vy€Tly | gp, | 9py | gs2

Table 4: The elements of D, (2,2) which depend on the choice of Z are shown.

where e; = diag(1,0) and e; = diag(0, 1). The representation matrices of the other elements
are expressed as the products of M, (), My and Mp,. As shown in Table B, for instance,

the representation matrices of g,(v) and gg are given by

Mp(’}/) = MD2M7—<’}/)MD2, MR == MDQMWMDQMW' (340)

Let us study the T-duality group D Z)(Z, 2) of the non-supersymmetric model with Z on
the basis given in (B228). There are nine possible choices of Z withd=2: Z = (M, 0, O),
(0,0,1,0), (1,0,0,1), (0,1,1,0), (1,1,0,0), (0,0,1,1), (1,1,1,1). Here the underline indi-
cates the permutation of the components. We can identify the elements of D(z)(2,2) by
acting the representation matrix of ¢ on Z and checking whether the congruence condition

(B3) is satisfied or not. For the modular group (B=28), g-(7) is in D )(2,2) if v satisfies
(,n) = (Mmy,ny"") (mod 2). (3.41)

The other elements of Dz (2,2) can be identified in the same way by using the corresponding
representation matrices. Note that the reflection gr and the world-sheet parity gy are in
D Z)(2= 2) whatever the choice of Z is since the representation matrices are diagonal. The

specific elements of D, 5(2,2) are shown in Table @. Here I';(n) and [''(n) are the Hecke
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- \_1 \\\\»
(1,1;0,0) (1,0;0,1) (0,1;1,0) (0,0;1,1)
J/ L/// AN L//»i ~A ) A l
(1,0;0,0) (0,1;0,0) (0,0;0,1) (0,0;1,0)
g9-(yr) s — 9o(rr) + ===~ >
g-(17") : —> gp(vp') - »

Fig. 1: An example of the transitions among the non-supersymmetric type II models with
d=2.

congruence subgroups of the modular group

b
Ti(n) = { ( ¢ . ) € PSL(2,Z) | a,d=1, ¢ =0 (mod n)}, (3.42)
C
b
l(n) = { ( ¢ . ) € PSL(2,Z) | a,d=1, b=0 (mod n)}, (3.43)
C
and ['y is the theta subgroup
a b
Dy = { ( ) ) € PSL(2,Z) | ac=0, bd =0 (mod 2)} . (3.44)
C

At the end of this example, let us see the transitions among the non-supersymmetric

models induced by acting g. Focusing on 7 and 5", we notice

w&TN2), v €12, r,or" €Dy (3.45)

For example, starting from the model with Z = (1,1,1,1), we can obtain all of the other

models by acting on g,(vr), g-(77"), 9,(7r) or g,(73") successively and appropriately (see
Fig. ).
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3.2 T-duality in the heterotic models

In the heterotic models d-dimensionally toroidal compactified, there are (16 + d) x d moduli:
a metric G = ee! of the compactification lattice, an anti-symmetric two-form B and Wilson

lines A. As in (243), we can choose a Narain metric as

g 0 0
J = 0 0 1y, ) (916 = Oélﬁatm)- (3-46>
0 1, O

An internal momentum P € I''6t%4 ig then expressed as
P = Z&(e, B, A)&, (3.47)

where Z = (q,m,n) € Z%*% and an element £ of O(16 +d, d, R) and the initial generalized

vierbein & are given by

1 0 OélﬁAteft 16 0 0 ]
E(e,B,A) = —Aafﬁl e —(Ctet , go = 0 \/Lild —%ld , (C =B+ §AAt) .
0 0 et 0 Fli 5la
(3.48)

One can check that & and & satisfy c‘fongé = J, £JE' = J and the inner product is indepen-
dent of the moduli:

Py - Py = PPy = Z1J Zy = mymy 4+ myn + nym. (3.49)

Writing down P = (¢, pr, pr) explicitly, we get

lp =m—mA, (3.50a)
pL = % [TA"+m (G —C") +n]e™, (3.50b)
PR = % [TA"—m (G +C") +n]e™, (3.50¢)

where 7 = qayg lives in T'®. One can obtain (222) from (850) with d = 1. The T-duality
element g € O(16 + d, d,Z) of the toroidal models acts on P as

P — P' = Zg€(e, B, A)&, (3.51)
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where ¢ is a (16 + 2d) x (16 + 2d) integer matrix that satisfies gJg" = J.

Choosing a certain set of integers 7 = (4, m,n) that satisfies

17> + 2/mnt = 0 (mod 4), (3.52)
where 7 = Gayg and |7]|? = 77!, the shift vector § is expressed as
6= %Zg(e, B, A)&. (3.53)
The T-duality group of the non-supersymmetric heterotic model with 7 is
Dz (16 +d,d) = {g €016 +d,d,Z)| Z = Zg (mod 2) } . (3.54)

3.2.1 Specific elements of D ; (16 + d,d)

Let us see specific elements of O(16 + d, d,Z) and identify the congruence conditions which

the elements of D ;) (16 + d, d) must satisfy.

e Basis change of the compactification lattice:

16 0 O
ge(K) = 0 K 0 , (KeGL(d,7). (3.55)
0 0 K
The elements gx of D 4(16 + d, d) must satisfy (K, nK~") = (h,7) mod 2.
e Basis change of the gauge lattice:
alGWal_Gl 0 0
Gare (W) = 0 1, 0 |, (We0O(16,72)). (3.56)
0 0 1,4

By acting ga,, (W) on &, one can check that the Wilson lines transform as A — AW*
while G and B are unchanged. Acting ¢,,,(W) on Z leads to a change of the basis
of I''® as 1 — 7W accompanied with the O(16 + d) x O(d) rotation ({r,pr,pr) —
(¢tW*,pr,pr). The condition for gsis(W) to be in D (16 +d.d) is 7W = 7 + 2

for Fmy € T'1S.
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e Integer theta-parameter shift of B-field:

14 0 0
gO) =] 0 1, © |, (0'=-6¢cMyi(Z)). (3.57)
0 0 1,

If a shift parameter © satisfies m© = 0 mod 2 then g5(©) is an element of D ) (16 +
d, d).

e Wilson line shift:

1,6 O Gr6a’
gala) =1 —a 14 —%aglﬁat . (e e Myxi6(Z)) . (3.58)
0 O 1,

Under ga(a), the Wilson lines A and the two-form B are shifted as
1
A— A+, B—>B+§(A7rfl—7ra,4t)7 (3.59)

where m, = aais. The elements ga(a) of D, (16 + d,d) must satisfy both of the

following conditions:

1
ma = 0 (mod 2), (7? — iﬁma) 7t =0 (mod 2). (3.60)

e Factorized duality and inversion:

16 0 0
9p; = 0 1, —¢; €; s (361)
0 e; 1, — ¢

The non-supersymmetric models with Z satisfying 7’ = 7, have the i-th factorized

duality symmetry gp,. The inversion gp, which is expressed as

gp=]Jor.=] 0 0 14|, (3.62)
=1 0 1; 0

is an element of D, (16 + d,d) with Z satisfying /= # for all directions.
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e Integer theta-parameter shift of dual B-field:

1s 0 0
95(0) = gpgs@®gp=| 0 1, 0 |, (ét - He ded(Z)> . (3.63)
0 6 1,

If a shift parameter © satisfies 70 = 0 mod 2, then g(©) is an element of D 516 +
d, d).

e dual Wilson line shift:

116 glﬁdt 0
g9i(a) =gpga(@)gp =] 0 1,4 0 |, (aeMya(Z)). (3.64)

R P
—a —3ag16a° 14

The elements g4 (a) of D (16 4 d,d) must satisfy both of the following conditions:
. S ¢
na =0 (mod 2), |7 — Sfma | MG = 0 (mod 2). (3.65)

The first four elements are geometric ones and the last three elements are non-geometric
ones. Indeed, one can check (e, B, A) = ga(Aayy)gs(B)ge(e) from (BAR) as in the type II

models.

3.2.2 Heterotic models with d =1

Unlike in the type II models, there are a lot of T-duality elements in the heterotic models
even if d = 1. In subsection 24, we classified the 9D non-supersymmetric models into
the four classes by the possible choices of (m,n). With d = 1 there is no anti-symmetric
two form B, and then no degrees of freedom to make gp and gz. For the basis change of
the compactification lattice, K can only be +1, and hence ¢.(K) is in the T-duality group
D(Z)(17> 1) for any choices of Z. The basis change of the gauge lattice Jaye (W) acts only
on 7 and does not change m and n. So, ¢a,,(W) cannot induce the transitions among the
non-supersymmetric models in the different classes. Let us now study the (dual) Wilson line

shift ga(a) (g4(a)) and the inversion gp for each of the classes.

e class (1): |7]* =0 (mod 4), (i, n) = (0,0)

The Wilson line shift parameter a must satisfy the condition (BB0). In this class,
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class (1) class (2) class (3) class (4)
gala) | m € T(7) | m, €20 | 7, € T(7) | m, € 21716
gi(a) | mg € T(7) | ma € TI0(7) | mz € 20 | mz € 2T710

gp gp — — dp

Table 5: The (dual) Wilson line shift and the inversion in D, (17, 1).

the first condition in (BH0) is always satisfied, and the second one requires 7, € I''°.
For the dual Wilson line shift parameter @, we obtain the same requirement m; € I'}°
from (B34). The non-supersymmetric models in this class obviously have the inversion

duality as m = n.

e class (2): [#° =0 (mod 4), (r,7) = (1,0)
With this choice of Z, the condition (8%0) for the Wilson line shift parameter means
7, € 2T, Note that a satisfying the first condition in (BH0) is sufficient for the second
one. On the other hand, for the dual Wilson line shift, (3GA) indicates 75 € T'}%, which

comes from the second condition. The inversion cannot be a duality in this class as

M # i,

e class (3): |#° =0 (mod 4), (rm,n) = (0,1)
The situation in this class is the same in class (2) with the interchange of m and n.
Then, the shift parameters a and @ must satisfy m, € I''® and 7z € 2I''®, and gp is not

e class (4): |7]° =2 (mod 4), (m,n) = (1,1)
The conditions (BH0) is the same as in class (2) which requires 7, € 2I''6, while (B5G3)
is the same as in class (3) which requires m; € 2I''%. The non-supersymmetric models

in this class are clearly invariant under gp.

Note that class (1) and class (4) having the inversion duality is consistent with both of the
endpoint limits being the same, as we have seen in subsection 4. Table B summarizes the
(dual) Wilson line shift dualities and the inversion duality in each of the four classes. Let
us next see the transitions among the 9D non-supersymmetric heterotic models induced by
elements of O(17,1,7Z). As mentioned before, g., gp and g,,, cannot realize the transitions

among the different classes. So, we focus on the three elements g4(a), g;(a) and gp. To see
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class (1)

gi(a) with 75 € T'16 ga(a) with m, € I't6

class (2) <« gD > class (3)

16

ga(a) with m, € T1% g4(a) with 7 € T35

class (4)

Fig. 2: An example of the transitions among the non-supersymmetric heterotic models with
d=1.

the transitions induced by the (dual) Wilson line shifts, we introduce I'\° (7) defined as the

following subset of I'6:
I (7)) = {rel¥||r]* =2 (mod 4) } + {m € I'®||7[* = 0 (mod 4) }. (3.66)

Note that 7 - 7 — |7|?/2 is always odd for 7 € I''® (7). One can see that the Wilson line
shifts ga(a) with 7, € '} induce the transitions between class (1) and class (3), while those
with 7, € T'}% induce the transitions between class (2) and class (4) occur. On the other
hand, for the dual Wilson line shifts g;(a), the transitions between class (1) and class (2)
are realized by m; € I'!%, while one can obtain the transitions between class (3) and class
(4) by acting m; € I''® . The transitions between class (2) and class (3) are realized by

the inversion gp. Fig. B shows the transitions among the different classes induced by ga(a),

gi(a) and gp.
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4 Massless spectrum and symmetry enhancement

In the remaining sections, we focus on the 9D non-supersymmetric heterotic models which
are classified into the four classes in subsection E4. We assume henceforth that Z is chosen
such that the gauge twist is non-trivial (i.e. 7 ¢ 2I'*%), which means that neither I'}® nor
'S are empty.

In this section, we consider the massless spectra in the non-supersymmetric heterotic
strings and clarify patterns of the gauge symmetry enhancement depending on R and A°.
In particular, we will pay much attention to the region in the moduli space where R is
approaching either of the endpoint models. This analysis can be used for studying the
cosmological constant and the stability of the Wilson line moduli, which we will discuss in

the subsequent sections.

4.1 Untwisted sector

In heterotic models one-dimensionally compactified, the left- and right-moving mass formulae

in the untwisted sectors are given by

M; =l +pp +2 (N, — 1), (4.1a)
Mp = pp +2 (N — ag), (4.1b)

where ar = 1/2 for NS-sector and ar = 0 for R-sector. We have the two possibilities to get

the massless states. One of them comes from the states that satisfy
NL:L NR:CLR, m=n=0. (42)

We call a set of the massless states satisfying (B=2) sector 1. In NS-sector, sector 1 is consist of
a gravity multiplet (a graviton, an antisymmetric two-form and dilaton) and gauge bosons of
U)I*xU(1);xU(1),. Here, we denote U(1)1® as an Abelien gauge group which comes from
the excitations by 04[71651/27 while U(1); x U(1), comes from those by aﬁléﬁw and 0/1159_1/2,
where a_,, and b_g are the ocsillation modes of left-moving bosons and right-moving fermions

in NS-sector, and I and p denote the sixteen internal indices and the spacetime indices. We

5From the viewpoint of the Higgs mechanism, it is appropriate to express symmetry “breaking” rather
than symmetry “enhancement”. But, in this thesis, we regard the Abelian gauge group as a reference point

and interpret the non- Abelian gauge groups as being enhanced at special points in the moduli space.
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obtain their fermionic superpartners from R-sector if supersymmetry is preserved. Note that
the conditions (A2) are independent of the moduli, and hence there are always the massless
states in sector 1 at any points in the moduli space.

The other possibility, which we call sector 2, arises from the states that satisfy
Np =0, Nr=agr, [l)*+pi=2 ps=0. (4.3)
Inserting (242) into the last two conditions, we find
n=m (R2+%|A|2) —7-A, |7 —mA]’ +2m2R? = 2. (4.4)
We should note that the conditions (B4) can be written as

U . 12 .
m:n(R2+§]A|2>—7T‘A, ‘ﬂ—nA +2n*R?* = 2, (4.5)

where R and A are the dual radius and the dual Wilson line:
~ R ~ A
R:m, A:—m. (4.6)
In fact, one can check that acting the inversion gp on the generalized vierbein (B28) with
d = 1 gives the transformations R — Rand A — A accompanied with an appropriate
O(17,R) x O(1,R) rotation. The massless states in sector 2 correspond to the gauge bosons
with non-zero roots of a semisimple group, and hence the gauge symmetry is enhanced if
massless states in sector 2 exist. We can get the massless states in sector 2 only when A and
R satisfy (£3) for n, m and 7. So, the gauge symmetry is broken to U(1)1® x U(1); x U(1),
at generic points in the moduli space.
Let us first focus on the enhancement U(1); — SU(2). For simplicity, we assume that
the Wilson line A takes a generic value so that the conditions (B=) can be satisfied only for

the states with 7 = 0, for which (B4) is written as
2 L
nzm(R +§|A| ), 2mn = 2. (4.7)

These conditions lead to m = n = 1 and R? + 1|A|?> = 1. The latter implies R = R and
A = —A, that is, the fixed points under the inversion gp. Focusing on the structures of
Ff’l in each class, we find that spacetime vectors with 7 = 0 and m = n = £1 exist only in

class (1) and class (4). Namely, the enhancement U(1); — SU(2) can occur at the gp-fixed
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points in the moduli space of the non-supersymmetric models in class (1) and class (4). This
reflects the result in Table B which shows that only class (1) and class (4) are invariant under
the inversion gp.

Let us next study the symmetry enhancements of U(1)1°. We henceforth focus on only
the states with m = 0 or n = 0 since we are interested in the region near either of the
endpoint models where R is large or small. In particular, we will focus on the region with
supersymmetry being asymptotically restored in the subsequent sections, which is possible
in class (2), class (3) and class (4) as seen in subsection Z4. The condition (E=) for the

states with m = 0 is
n=-m-4A, |1]*=2. (4.8)

Note that the second condition implies that the massless states correspond to nonzero roots
of simisimple subgroup ¢’ C g with g being SO(32) or Eg x Eg. For the states with n = 0,
it is useful to adopt the dual description (E8). From (E3),

m=—-n-A |r1|*=2. (4.9)

In the rest of this subsection, we will pay our attention to the states with m = 0. The same
discussion can be done for the states with n = 0 since the condition (A7) is the same form
as (E]). We shall study not only the case of the non-supersymmetric models but also of
the toroidal model, in order to clarify the difference between them. So, let us first focus on
the toroidal model in which n € Z, m € Z and m € I''® for both NS- and R-sector. Let A

denote a set of the nonzero roots of a semisimple subgroup ¢’ C ¢g. In particular, for ¢’ = g,

A50(32) = { (:l:7 :i:a 014) } ) (41())

1
Apr, = {(i,i,o6;08) 5 (i,i,i,i,i,i,i,i+;08)}

1
+ {(08; +, +,0%), 5 <08; +, 4,4+ +, 4+, 4, i+>} , (4.11)

where the underline indicates permutations of the components and the subscript + denotes
the number of + is even. The condition (E8) means that a non-Abelian part of the gauge
group is ¢’ if A = AY) with AY) satisfying the following conditions®:

7-AY) e Z  forme Ay

. (4.12)
m-AY) ¢ Z  form e A)\A,

6The rank of ¢’ is not always 16. It is of course possible that some of U(1)7’s remain being abelian.
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For AY  in particular, the above conditions mean A € I'; where I' is the weight lattice
of g, i.e.,
1o =19 4 p{to 4 plo L 109 for g = SO(32)

I = . o . (4.13)
6 — (F£>+r§)) X (PS,)+F£>) for g = Ex x By

From (E42) with m = 0, one can see that in the Spin(32)/Zy model, the sector with m = 0
is invariant under the shift A — A + 7, with 7, € I';. So, we can choose AW = (019) by
using the Wilson line shift dualities. Note that for the full space of states, as seen in (B39),
the shift parameter m, must be an element of I'ys. Thus, in the Eg x Eg model, in which
[ = I';, there is no difference of the Wilson line shift between for the full spectrum and
for the sector with m = 0. Including the sector with m # 0 in the Spin(32)/Z, model, the
gauge group can be enhanced to a larger one than SO(32) (e.g. SO(34)) when the Wilson

' and R takes particular values (see e.g. [06-98]). We can of course find

line is in PS}G) or FE
massless spinors transforming in the same representation of the gauge group as the bosonic
states from R-sector since supersymmetry is preserved under toroidal compactifications.

In the non-supersymmetric models, the situation is different since the Narain lattice is
split into Ff’l and T'"', and bosonic states live in Ff’l while fermionic states live in T
The momentum with 7 = m = n = 0 must be in Ff’l independent of the choice of Z. So,
there are no fermionic massless states in sector 1. Let us study below the condition (24) for

sector 2 in each of the four classes:

e class (1);
In this class, n is an integer for both Ff’l and ™! and the condition for giving rise to
massless states in sector 2 is the same form as in (E12). We should however remember
that I''% is split into I''® and I''S depending on the right-moving states being in NS-
sector or R-sector. Thus, the gauge symmetries in the non-supersymmetric models
with A = AY) are not necessarily enhanced to ¢’, unlike in the toroidal models. Let
A} and A, denote subsets of m € I'\® and 7 € I'! respectively that satisfy I7|? = 2.
In the non-supersymmetric models in class (1), then, the gauge group realized by the

Wilson line A" have the following nonzero roots,

ab={rea}

7 A9 ¢ Z} , (4.14)
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and the representation in which massless spniors transform is given by

A, ={rea,

g

T A9 € Z} . (4.15)

The gauge symmetry in the non-supersymmetric model in class (1) is at least broken
to the group of which the nonzero roots consist of A;. There are two possibilities of
the Wilson lines which enhance U(1)! to the maximal gauge group. One of them is
A=AV ¢ I';, which also yields massless spinors transforming in the representation
given by AJ unless 7 is chosen such that A, = AF. Note that A, = AT implies
that A; is empty and fermions cannot be massless, and recall that in construction
of the 10D non-supersymmetric heterotic models, such choice of 7 is possible in the
Spin(32)/Zs lattice, which gives the non-supersymmetric SO(32) model (see Table ).
The other possibility of the Wilson line with the maximal enhancement is A = g, which
leads to A;r, = A;“, but at the same time makes Ag_/ empty. Namely, with A = 7%, the

gauge group U(1)1% is maximally enhanced, while all spinors become massive.

Note that there are states with m = 0 in twisted sector, which live in T'}"' + § given

by (E28). We will discuss the twisted sectors in the next subsection.

class (2);
In class (2), Ty is given by (229), and hence the condition (E8) implies for massless
vectors,

m-Ap) €2Z form € Al and/or mw-Ap €2Z+1 forme A, (4.16)

while for massless spinors,
T Aw) €22 form € Ay and/or m- A € 2Z+1 forme A, (4.17)

where we denote as Ay the Wilson line in the non-supersymmetric models in class
(2). Let Af’;) and AE“}/)) denote the Wilson lines that realize the enhancement to ¢’ in
class (2) and in the toroidal models respectively. Noting that Ag)) satisfies (A12), we
find from (EI8) that Agg;) can be expressed in terms of AEgT/)) as follows:

Al) =248 +#, (4.18)

In particular, the gauge group of this class is enhanced to g if Ay = 7 up to the shift

by 2I'7. Note that the shift parameter must be doubled in class (2), as we have seen
in Table B.
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By using (AIR), one can find that the conditions (E18) and (E—I7) are respectively

expressed in terms of A as follows:

Ay -m e Zform e Ay (for massless vectors), (4.19)

1
Ay -meZ+ 3 for m € Ay (for massless spinors). (4.20)

Note that these conditions do not depend on 7. Thus, by using Ay but not A, we
can identify the massless spectrum in class (2) without specifying the choice of 7. But,
one should note that this argument is valid only for the sector with m = 0, i.e., in the

region with supersymmetry restoration.

In this class, there is no state with m = 0 in the twisted sectors because of the shift

by L in T 46,

e class (3);
Focusing on the states with m = 0, we find from (2Z53) that the spectrum in class (3) is
the same as in class(1). So, the analysis for identifying the massless spectrum in sector
2 can be done in the same way as in class (1). Note that the region where the states
with m = 0 only contribute corresponds to R approaching the 10D non-supersymmetric

endpoint models.

e class (4);
In class (4) in which T}"" is given by (Z357), the spectrum with m = 0 agrees with
that in class (2), and (E3) leads to the conditions (A18) and (EI7). So, we can use
the relation (EIR) for identifying the massless spectra.

Although we have focused on the states with m = 0, the similar results as above are
obtained for the states with n = 0 by using the dual descriptions (E8) of the moduli. For
class (1) and class (2) with n = 0, the situation is the same as above if one replaces A to
A. The spectrum in class (2) with n = 0 in the dual description is the same as in class (3)
with m = 0 in the normal description. So, the above analysis in class(2) (in class (3)) can be
applied for identifying the massless states with n = 0 in class (3) (in class (2)). Recall that
the transitions between class (2) and class (3) are induced by the inversion gp, as shown in
Fig. 1.
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4.2 Twisted sector

Let us keep focusing on the states with m = 0. As mentioned in the previous subsection,
there are no twisted states with m = 0 in class (2) and class (4). So, we only consider the
twisted sectors in class (1) and class (3). In class (1), supersymmetry cannot be restored in
any region of the moduli space. In class (3), the twisted states with n € Z + 1/2 do not
contribute in the region with supersymmetry restoration, or rather they become significant
in the region with R approaching the non-supersymmetric endpoint. Thus, the analysis we
will do in this subsection cannot be used in the subsequent sections, but we believe that it
is worth figuring out the massless twisted states.

We can read off massless states in the twisted sectors from the partition function. From
the expansions (B—24), only conjugate spinors with pr+dg = 0 and scalars with (pr+dg)* = 1

can be massless. With m = 0, we get

(7T—|-ﬁ)-A: :(n+

(n—|—

) for conjugate spinors

, (4.21)
) + /2R for scalars

> N>

where n € Z and 7 € T'}°. Recall that the upper (lower) sign of I'} in the twisted sectors is
applied to conjugate spinors with 72/4 even (odd) or to scalars with 72/4 odd (even). The
condition (E=23) requires that R be a special value for scalars to be massless. For left-moving

states to be massless, the momenta must satisfy (P, + 6,)> = 2%. From (829), with m = 0,

2

~

T
(Pr+061)" — (pr+0r)" = |7+ 5| (4.22)
and the condition for the left-moving momentum is
712 2 for conjugate spinor
T+ =| = . (4.23)
2 1 for scalar
Let us define AT and AT as
7 7 |2 7 7 7|
+,c 16 _ +,0 16 _
Ag —{7T+§€F:t+§ 7T+§ —2}, Ag —{W+§€Fi+§ 7T+§ —1},
(4.24)

"The assumption that the gauge twist is non-trivial excludes the possibility of (P, + d7,)% = 0.
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Note that conjugate spinors and scalars have 7 + g € A, and 7 + g € A;’O respectively
for |§|2 odd, while have 7 + % € A;c and 7™ + g € A, ° respectively for |§|2 even. As
seen in subsection 223, we can choose 7 such that ‘gf is 1 or 2, and the lower bound of
}7r + 3‘2 with non-trivial gauge twist of order 2 is |§|2 Then, for the choice 7 with ‘3‘2 =2,
which correspond to the SO(16) x SO(16) non-supersymmetric endpoint model, A;t"’ is
empty, and hence there is no massless scalar with m = 0 in the twisted sector. In fact,
the massless scalars with (E220) and (B=23) are caused by the tachyonic states in the 10D
non-supersymmetric models acquiring the mass due to the compactification. The condition
(A=23) also implies that massless conjugate spinors and the massless scalars in the twisted
sectors are not gauge singlets.

We should note that unlike in the untwisted sectors, not all elements in A;tvc necessarily
satisfy (E23) with A € T';. Rather than that, the condition (E=23) for conjugate spinors
holds for any elements in AZ¢ if A € T'}S for class (1) and A € T''® for class (3). This fact
implies that the Wilson line is invariant under the shift by m, € I'}°, as we have seen in
subsection 24 (see Table B). In addition, in order to get massless scalars in class (1) (class
(2)), from the condition (E=2T), we find that A € T'!6 requires V2R € Z (V2R € Z +1/2),
while A € T requires V2R € Z +1/2 (V2R € Z).

As in the untwisted sectors, the analysis we have performed above can be used for iden-
tifying the massless states with n = 0 in the twisted sectors in class (1) and class (2) by

using the dual descriptions A and R.

4.3 Example 1: class (1) with the Spin(32)/Z, lattice

In this and the following subsections, we will give examples of the Wilson lines and identify
the corresponding massless spectra in class (1). We will keep restricting our attention to
the states with m = 0 for which the massless conditions are given by (A=) for the untwisted
sectors, while given by (EZZI) and (E=23) for the twisted sectors. Although we will only
focus on class (1), the massless spectra in class (3) can be obtained in a similar way; the
difference only appears in the twisted sectors; n in (B=21) is shifted by 1/2. The discussion of
massless states in class (2) will be given in the next section when we explore the possibility
of suppression of the cosmological constant. The study in class (2) is in fact easier than in
class (1) and class (3) because we can use the relation (II8), and then the massless spectrum

with m = 0 can be identified without the information of 7.
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In this subsection, we consider the non-supersymmetric models in class (1) with the
Spin(32)/Zs root lattice. For simplicity, we only pay our attention to the following two
types of the Wilson lines which satisfy 24 € T'}:

A= (op, (%)q) (p+q = 16), (4.25a)

()" (4250)

Recall that I'; = Félﬁ) +000 49 1 and (E=25d) with p even (odd) satisfies 24 € Fé”")
(24 € T'9) while (E250) satisfies 24 € T'{'9.
As shown in Table M, there are the four choices of 7 in class (1). Let us study massless

states in the untwisted and twisted sectors with m = 0 for each of the choices.

4.3.1 SO(32) model: I = (1,0")

With this choice of 7, one can see that AF = Agosg) and AJ is empty. Thus, the gauge
symmetry is SO(32) if A € T}, whereas there is no massless fermion in the untwisted sectors
whatever configuration the Wilson line takes. Noting }§|2 = 1, in the twisted sectors,
massless conjugate spinors and massless scalars live in A ¢ and A;’O respectively if they

c

exist. However, since I''6 = FSG), in which |7|> > 4 for any elements, A¢ is empty, and

hence there is no massless conjugate spinor in the twisted sectors. We obtain A;’O as
0 __ 15
AF?={(£0")}, (4.26)

and there are massless scalars transforming in a fundamental representation of the SO(32)
ifAEF}r6 and V2R € Z or A € T'*¢ and \/§REZ+1/2.

Let us consider the massless spectrum with the Wilson line (8253). In AY, the following
m's satisfy m- A € Z:

Ad = {(%,£,0°7%,07), (074, +,072) }. (4.27)

Then, U(1)1° is enhanced to SO(2p) x SO(2q). The massless scalars in the twisted sectors
exist if the radius R takes a special values. Applying (A=25a) to (E=20), we find that the

massless scalars have

A +,00-1,09) if V2REZ
Py f o) B0 . (4.28)
2 (07, +,071) if V2R € Z +1/2
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There are then massless scalars transforming in the fundamental representation of SO(2p)
(or SO(2q)) if v/2R is an integer (or a half-integer).

We now turn to the Wilson line (I=25H). The nonzero roots of SU(16) in AT = Agosa)
only satisfy 7 - A € Z:

m=(+,—,0"). (4.29)

As for massless scalars in the twisted sectors, all elements in A satisfy (E=21) if V2R = +1
mod 1. After all, with the Wilson line (I225H), there are gauge bosons of SU(16) x U(1),
and charged scalars transforming in 16 @16 of SU(16) which can be massless only if V2R €
Z+1/4dor V2REZ —1/4.

As mentioned above, in this model, all fermions are massive at any points in the moduli

space.
4.3.2 SO(24) x SO(8) model: § = (012, (1)*)
This 7 splits Ago(sz) into AF and A7 as follows:
A = Asoeuxsos) = { (£, £,0,0Y), (0%, +£,£,0°) }, A, ={(£,0",£,0%)}. (4.30)

These correspond to the nonzero roots of SO(24) x SO(8) and a bi-fundamental represen-
tation of SO(24) x SO(8) respectively. As for the twisted sectors, A and A are given

as
11 1 1 1 1 1 1
AT = :l:70117:|:_7:|:_7:|:_7:|:_ ) AP0 = 012,:|:—,:|:—,:|:—,:l:— ) (431)
g — _2 2 2 2 g 2 2 2 2,

which correspond to (24,8_) and (1,8;) of the SO(24) x SO(8) respectively. Here the
underline with the subscript + (—) means permutations with the number of +1/2 being
even (odd).

We now consider the Wilson line (B25d) with p < 12. The subsets A, and A, which
satisfy 7 - A € Z are

A% = {(£,£,0"7%,07), (07, 4,4,0177,0%) , (0, £,£,0%) }, (4.32)
A, ={(0°,£,0"7 £,0%)}, (4.33)

g

which lead to the symmetry enhancement U(1)1® — SO(2p) x SO(24 — 2p) x SO(8) and
(1,24 — 2p, 8) of the SO(2p) x SO(24 —2p) x SO(8) respectively. In A, we find that the
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following elements satisfy (7r + g) -AeZ:

ﬁ: P4 11*P:|:1:|:1:|:1:|:1 4.34
7T+ 2 <O7 70 7 27 27 27 27 * ( 3 )

Then, conjugate spinors in the twisted sectors transform in (1,24 — 2p, 8_) of the SO(2p) x
SO(24—2p) x SO(4). For scalars in the twisted sectors, (7 + Z)-A € Z holds for all elements
in A7, and hence the scalars transform in 8, of the SO(8) if V2R € 7.

In the case of the Wilson line (E=25a) with p > 12 (¢ < 4), we get

AY = {(£,£,0,0%), (0", £,4,0°79,07), (0°, £,+,07%) }, (4.35)
A = {(£0",£0%07}, (4.36)

g

and then the enhanced gauge symmetry from U(1)1% is SO(24) x SO(8 — 2¢) x SO(2q) and
massless spinors transform in (24,8 — 2q, 1) of the SO(24) x SO(8 — 2¢q) x SO(2q). As for
the twisted sectors, any elements in A~ do not satisfy (7T + %) - A € Z, and there is no
massless cojugate spinor. Assuming v/2R € Z or V2R € Z+1/2, we can find massless scalars
in the twisted sectors only if p = 14 or 16. With p = 16 which means A € F , we have
already mentioned this case; massless scalars transform in (1,8, ) of the SO(24) x SO(8) are
obtained if V2R € Z. With p = 14, scalars that have the following elements in A;“O become
massless, depending on values R takes:

i (02,4, #4 +3#1 ) fV2ReEZ | .

(044,41 41,41 ) ifV2REZ+}

o | =

T+

Then, we find the massless scalars transforming in (1,25,25) of SO(24) x SO(4) x SO(4)
where the chiralities of the spinors of the two SO(4)’s depend on whether 2R € Z or
V2R € Z+1/2.

Let us next consider the Wilson line (E25H). In the untwisted sectors, massless vactors

and massless spinors respectively live in

AY = {(+,-,0"7,0%,(0"%+,—-,0%)}, A, ={£(+0",-0°)}. (4.38)
Then U(1)}° is enhanced to SU(12) x SU(4) x U(1)?, and the massless spinors transform in
(12,1) & (ﬁ, 4) of the SU(12) x SU(4). As for conjugate spinors in the twisted sectors,
the elements in A that satisfy (77 + %) - A€ Z are

s 1 1 1 1
— =4 ot 4=, —=, =, —= 4.39
ﬂ-_'— 2 (+7 ?+27 27 27 2)7 ( )
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which leads to the U(1) charged conjugate spinors transforming in (12,4) & (12,4) of the
SU(12) x SU(4). Note that the last four components in (239) are decomposed as follows:

1 1 1 1 1 1 1 1 3
e e : 4.4

As for scalars in the twisted sectors, the following elements in A¥ satisfy (7T + %) -AeZ:

T 1 1 1 1
e 2= (0%l opop). (4.41)

27 20 27 2

while those satisfying (7T + %) -A€eZ+1/2are

s 1 1 1 1
— =4+ (0 o o =+ ). 4.42
g (0 ,+2,+2,+2,+2) (4.42)

Then the massless scalars transform in 6 of the SU(4) if /2R € Z, while have the U(1)
charge +1 if V2R € Z + 1/2.

4.3.3 SU(16) x U(1) model: I = ((5)16)

With this choice of 7, AT and A are

Ay = {200}, Ay ={£ (£, 1,09}, (4.43)

g

which respectively correspond to the nonzero roots of SU(16) and the representation 120 &
120 of the SU(16). As ‘%‘2 is odd, we need A;>¢ and Af in order to clarify massless states

in the twisted sectors:

Ay = {i <G)2 (-}JM) } A= {i (G)m) } . (4.44)

In the twisted sectors, then, we have U(1) charged massless cojugate spinors transforming
in 120 @ 120 of the SU(16), and massless scalars with the U(1) charges £1 if A € I'!% and
V2R € Z.

Let us consider the massless spectrum with the Wilson line (A2254). Imposing the condi-
tion 7 - A € Z into (E43), we get

AL = {(+,=,0"2%,07), (07, +,-,07%) }, AL = {£ (+,+,072,07) £ (07, +,+,07 %) },
(4.45)
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which lead to the enhancement U(1)} — SU(p) x SU(q) x U(1)? and the representation
(,,Cz ® ,Ca, 1) D (1,qC2 EBE) of the SU(p) x SU(q). As for conjugate spinors in the

twisted sectors, noting that the elements in A ¢ can be expressed as

+ ((%)2 (—%)M> =+ ((—}1)16) + (+,+,0"), (4.46)

we see that (7r + g) - A € Z holds for some elements in A if p is a multiple of 4. Tf p =0

A 16 ’ ’Opr’Oq
e T (1)) &) e (4.47)
2 4
(0P, 4, +,072)

which lead to the U(1) charged massless conjugate spinors transforming in (,Cz,1)®(1, ,Ca2)

or p =8, we get

of the SU(p) x SU(q) and its conjugate representation. If p =4 or p = 12, we find

N 1 16
ey ((—z) ) £ (1,07 4,07, (4.48)

which lead to the U(1) charged massless conjugate spinors transforming in (p,q) of the
SU(p) x SU(q) and its conjugate representation. From Al in (E24), we obtain the U(1)
charged massless scalars if V2R € Z with p = 0,8 or V2R € Z + 1/2 with p = 4, 12.
Turning to the Wilson line (E25H), we notice that AJ, = A and A, is empty since
A = Z. Then, U(1)}% is enhanced to SU(16) x U(1), while all spinors in the untwisted
sectors are massive. As for the twisted sectors, we find from (B24) that there are no massless

conjugate spinors, and the U(1) charged massless scalars exist if 2R € Z.

4.3.4 SO(16) x SO(16) model: = (08, (%)8)

With this choice of 7, AT and A are

A;_ = ASO(I(S)XSO(IG) = {(:l:a j:7 067 08) ) (087 :l:a j:7 06)} ) Ag_ - {(j:7 077 :t’ 07)} ) (449>

and hence U(1)}° is enhanced to SO(16) x SO(16) and massless spinors transform in (16, 16)
of the SO(16) x SO(16) if A € I';. Noting ‘%}2 = 2, we need A7¢ and A, but not A

and A;”O, in order to identify massless states in the twisted sectors. As mentioned in the
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. . Y S 212 . L
previous subsection, A_? is empty for 7 with ’%’ = 2, while A;’C is given as

1 1 1 1 1 1 1 1
ATC = A A ==, £, 4=, =, £, = +—, = ,0®
g 128 D 128 {( 27 27 27 27 27 27 27 2+7 )7

08,11,il,il,il,il,il,il,il . (4.50)
272 727727722 2 2,

The massless conjugate spinors then transform in (128,,1) & (1,128, ) of the SO(16) x
SO(16) if A e T'IS.
Let us first consider the Wilson line (A225a) with assuming p < 8. Then, we obtain A;,

and A;, as

A% = {(£,4£,0"2%,0177), (07, £,%£,0°7,0'%) , (0%, &, +,0° }, (4.51)
A = {(0P£,0"77, £,07)}, (4.52)

g

which lead to the enhancement U(1)}% — SO(2p) x SO(16 — 2p) x SO(16) and the massless
spinors transformin in (1,16 — 2p, 16) of the SO(2p) x SO(16 — 2p) x SO(16). As for
conjugate spinors in the twisted sectors, we find that the following elements in A;r,’c satisfy

(W+§)-A€Zifpiseven:

T+ g = ((ﬂ:%)pi, <i%>8_pi,og> , <o8,(i—%)8> , (4.53)

where the chirality of the spinors of the SO(2p) x SO(16 — 2p) is + for p = 4,8 while — for
p = 2,6. Then, the massless conjugate spinors transform in (2’;_1, 27P 1) @ (1,1,128,)
of the SO(2p) x SO(16 — 2p) x SO(16). For the Wilson line (I=25a) with p > 8, we obtain
the same result as above but we need the replacement p — gq.

We now pay our attention to the Wilson line (A225H). With this Wilson line, A;, and A,

are

AY = {(+,—,0%0%, (0% +,—,0%}, (4.54)
Ay ={£ (0, =00}, (4.55)
and then U(1)! is enhanced to SU(8) x SU(8) x U(1)? and massless spinors transform in
(8,8) @ (8,8) of the SU(8) x SU(8). As for conjugate spinors in the twisted sectors, the

elements in A satisfying (7T + g) - A €Z are

(O LG ) (= 0) () ()

(4.56)

47



These give massless conjugate spinors transforming in (70,1) @ (1, 70) of the SU(8) x SU(8)
and four massless conjugate spinors with the charges (j:\/§, 0) & (O, j:\/i) of the U(1)xU(1).

4.4 Example 2: class (1) with the Es x Eg lattice

We now consider the Fg x Eg root lattice. For simplicity, we assume that the last eight
components of the Wilson lines vanish: A = (A;;0%). Moreover, we restrict our attention to

A that satisfied 24, € I';. Namely, we focus on the following two types of configurations:

A = (om, (%)q) (1 + = 9), (4.57a)

w=((3)), (457b)

where p; is supposed to be even so that 2A4; € F; = Fgm) + Fgm). Note that Apg,x g, which

is defined in (EZI), can be decomposed as
Apgxrs = Mg, ® Ap, = (Asoqes) + A12s, ) D (Asogs) + A1z, ) (4.58)

where Ago(i6) and Aqag, are given as

1

Asous) = { (£, 1,09}, Az, = {5 <:|:,:|:,:l:,:|:,:|:,:|:,:|:,i+>}. (4.59)

We can also decompose A and A" into the two parts:
A=A @A, A=A, ©A. (4.60)

g2?

Here we denote g = (%, %) with 7; (i = 1,2) being in the Ej root lattice, and A:g':i is defined

as
A;;:{ﬂ'iGAES |ﬁZWzEQZ}, A;:{WZGAEg |7%Z7Tl€22+1} (461)

Since the Wilson line is assumed to be expressed as A = (A;;0%), A;/ and A, which are
defined in(A14) and (ET3) are written as

g27

+ At + - _ A- -
A = Ag’l oA A, = Ag’l ©A,. (4.62)
where A;—L,l is give as

Ay ={mely|m -AeZ}, Aj={mel |m A€eL}. (4.63)
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Namely, we only need to focus on the first eight components of 7 € Ag, . g, and identify A;E,l
in order to see massless states in the untwisted sectors.

As shown in Table B, there are the three inequivalent choices of 7 in the Eg x Eg root
lattice. Let us study the massless spectrum in each of the three non-supersymmetric models

in class (1).
4.4.1 SO(16) x Es model: 2 = (1,07;0%)
This choice of 7 splits Apg,« g, into A;“ and Aj as follows:

A;_ = Aso(w) D AEs, Ag_ = Alzg+ D {(08)} . (464)

In particular, one should note A;; = Asoqne) and Ay = Ajag,. Then, if A € I';, we obtain
gauge bosons transforming in an adjoint representation of SO(16) x Eg and massless spinors
transforming in (128, ;1) of the SO(16) x Es. In order to see massless states in the twisted

sectors, A ¢ and A;“" should be clarified:

1
A= Arss @ {(0°)} = {5 <i,:|:,:|:,:|:,:|:,:|:,:|:,:|:7;08> } AT = {(£,070%)).
(4.65)

In the twisted sectors, then, there are massless conjugate spinors transforming in (128_;1)
of the SO(16) x Eg and massless scalars transforming in (16; 1) of the SO(16) x Es if A € '
and V2R € Z.

Let us see the massless spectra which are realized by the non-trivial Wilson lines. As
mentioned above, it is sufficient to consider the inner products of the first eight components
in 7 € A with Ay. If A, is given as in (E557d), then A;E,l is

AL = {(£,£,072,07), (07, £,£,07%) ), AL = {((i%)p ,(i%)q )} (4.66)

where the chirality + in A;i is applied for p = 0,4, 8 while — is for p = 2,6. So, the enhanced

gauge symmetry from U(1)1% is SO(2p) x SO(2q) x Eg and massless spinors transform in
(2871,297%1) of the SO(2p) x SO(2q) x Es. As for the twisted sectors, imposing the
condition (E23) into A ¢ given in (EGH), we find

)q ;08> for p=4,8

, (4.67)
)q_;08> forp=2,6

L
i _—=
2




and for p = 0 there is no element in A ¢ satisfying (7r + g) - A € Z. We obtain massless
conjugate spinors transforming in (22_1, 211, 1) of the SO(2p) x SO(2q) x Es with the
upper signs for p = 4,8 and the lower signs for p = 2,6. For p = 0, which gives the same
massless states in the untwisted sectors as with p = 8, there is no massless conjugate spinor
in the twisted sectors. Note that both of the Wilson lines (AZ578) with p = 8 and p = 0 are
elements of T'*%, but the former lives in I'}® while the latter in I''®. As regards scalars in the

twisted sectors, the elements in A given in (A63) that satisfy (w7 +3) - A € Z are

~

5= (£.070%0%), (4.68)

while satisfying (7 + ) - A € Z+1/2 are
T ~1. 8
T+g = (07, £,07%0%).. (4.69)

Then, massless scalars transform in (2p,1;1) of the SO(2p) x SO(2q) x FEg if V2R € Z,
while transform in (1,2q; 1) of the SO(2p) x SO(2q) x Egs if V2R € Z + 1/2.

We now turn to the Wilson line (E57H). The condition 7 - A € Z leads to the following
Al and A

AL ={(+, -0} ® Ag, A;,:{<—I_— (%)8;08>,((%)4,(—%)4;08)}. (4.70)

Then, U(1)}° is enhanced to SU(8) x U(1) x Eg, and we obtain massless spinors transforming

in (70;1) of the SU(8) x Es and two U(1) charged massless spinors. There are no elements
in A that satisfy (7r + %) - A € 7Z, and hence conjugate spinors in the twisted sectors
cannot be massless with this Wilson line. One can notice that all the elements in AF°
satisfy (t+2)-A€Z+1/4or (n+2)- A€ Z—1/4 We then obtain massless scalars
transforming in 8 @ 8 of the SU(8) if V2R € Z 4+ 1/4.

4.4.2 (E; x SU(2))* model: % = (06, (L)% 08, (%)2)

With this choice of 7, A; and A are given as

AY = Apxsu@ @ Dpxsue), A, = Ase2) ® Ase2), (4.71)
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where Ag, . su2) and Asg 2y are defined as

Ap,xsu(2) = {(i,o‘*, 0%), (0% £, %), ((i%)(j , (i%)Q )} (4.72)
Ase2) = {(i,_of),i_,o) , ((i%)G ,(i%)Q >} (4.73)

Then, A gives the nonzero roots of E; x SU(2) x E; x SU(2) and A, corresponds to
(56,2;1,1) @ (1,1;56,2) of the E7 x SU(2) x E; x SU(2). Looking at the twisted sectors,

A7 ¢ and Af° are given as

s s
A;,c — A(56,1) b {52} + {31} ) A(56,1)7 (474)
s T
A;r’o =A@1,2) D {?2} + {?1} D A 2), (4.75)

where 2t = 22 = <06, (%)2>, and we define Asg 1) and A 2 as

(o () () (o)

(4.76)

Thus, there are massless conjugate spinors transforming in (56,1;1,1) & (1,1;56, 1) of the
E; x SU(2) x E; x SU(2) and massless scalars transforming in (1,2;1,1) & (1,1;1,2) of
the SU(2) x SU(2) if A € I''S and V2R € Z.

Let us turn on the non-trivial Wilson lines given in (E257d) or (E257H). In this model, we
study each of the five Wilson lines (i.e. (E57d) with p = 6,4, 2,0 and (E57H)) individually.

o A= (0%.)")
We notice A; = %, and hence A;Z = Ag, «su(2) while A;,l is empty. Thus, the gauge
symmetry remains to be enhanced to FE; x SU(2) x FE; x SU(2), although spinors
transforming in (56,2;1,1) of the E7 x SU(2) x E; x SU(2) are massive. We also
find that there are no elements that satisfy (7r + g) - A € Z in the second sets in
(B73) because (L) - A; = 1 and A = (A;;0%). So, only conjugate spinors in the
twisted sectors with m + % € Ase,1) @ {”—22} can be massless. Note that this statement

is true for all the Wilson lines we consider in this subsection. For any elements in
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Ase,1) D {%}, the inner products with A are

(ﬂ' + g) A= (7T1 + %) -A1 = (771 + %) : % € Z7 ((71—1708) < F1—6)‘ (4'77>

Then, massless conjugate spinors transform in (56,1;1,1) of the E; x SU(2) x E; x
SU(2). We also get massless scalars transforming in (1,2;1,1) @ (1,1;1,2) of the
E; x SU(2) x E; x SU(2) if V2R € Z +1/2.

A= (00.()")

With this Wilson line, A;r,l and A;, are

1

3 - 0ase . wan. (1) () (3) )}
A, = {(0{@,@) : ((i%)4 ,<i%>2 ,(i%)Q )} (4.79)

which lead to the SO(12) x SU(2) x SU(2) gauge group and massless spinors trans-
forming in (12,2, 2) of the SO(12) x SU(2) x SU(2). As for conjugate spinors in the
twisted sectors, the following elements m; + % € A(se,1) satisfy (m + %) <A € L

+ﬁ1 (w0802, (22 2 . 4 41 2 0 (4.80)
™ — = = = = .
1 9 ) ) ) 9 ) ) 9 _7 2 _7 3

which correspond to (32,1,1) of the SO(12) x SU(2) x SU(2). We obtain massless
scalars transforming in (1,1,2;1,1) ® (1,1, 1;1,2) of the SO(12) x SU(2) x SU(2) x
E; x SU(2) if V2R € Z 4+ 1/2.

A = (02, (%)6)

One can check that A;i with A, = (02, (%)6) is the same as with 4, = <04, (%)4> up
to the permutations, and hence U(1)§ is enhanced to SO(12) x SU(2) x SU(2). On
the other hand, A;,l with this Wilson line is

A, = {(0{1,02@),((%)2 ,(i%)4 ,(:I:%)Q >} (4.81)
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which corresponds to (32,1, 2) of the SO(12)xSU(2) xSU(2). As for conjugate spinors
in the twisted sectors, the following elements 7T1+% € A(se,1) satisfy (7?1 + %) Ay € Z:

7 1\’ 1\° "

1 4 2

— = |+ +-— +- +— 4.82
7T1+ 9 < 70707( 2) _>a(( 2) +7( 2) 70>’ ( 8 )

+

which give (12, 2,1) of the SO(12) x.SU(2) x SU(2). Whereas, all the elements in A 2
satisfy (7r1 + %) Ay € Z+1/2. In summary, in the twisted sectors, there are massless
conjugate spinors transforming in (12, 2,1) of the SO(12) x SU(2) x SU(2), and scalars
transforming in (1,1,2;1,1)®(1,1,1;1,2) of the SO(12) x SU(2) x SU (2) x £z x SU(2)
become massless if V2R € Z + 1/2.

. 4= (()")

As A= (A,0%) €T3,
case with A; = (0%); the enhanced gauge symmetry from U(1)}® is E7; x SU(2) x E; x
SU(2) and massless spinors transform in (56, 2;1,1)®(1,1; 56, 2) of the E; x SU(2) x

E7 x SU(2). There are however no elements in A_¢ satisfying (7T + g) - A € Z because

massless states in the untwisted sectors are the same as in the

A € T''S. Thus, conjugate spinors in the twisted sectors cannot be massless. We obtain
massless scalars transforming in (1,2;1,1)®(1,1; 1, 2) of the E; x SU(2) x Ez x SU(2)
if V2REZ+1/2.

« 4= (())

This Wilson line gives A;,l and A, as

sefomsien () o
si={eoo = () () @) =)

One can find that A;i corresponds to a set of the nonzero roots of Eg, and A;,l yields
27 ® 27 of the Fg and U(1) charges +1. In the untwisted sectors, thus, there are gauge
bosons of Eg x U(1); x U(1), and massless spinors transforming in (27, —1/v/2,0) @
(27.1/v2,0) @ (1,£1/v/2, £v/2) of the Eg x U(1); x U(1)55. Let us move on to the

twisted sectors. There are no elements in A+ satisfying (7T + g) - A € Z, and hence

~

8The unbolded letters indicate U(1) charges.
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conjugate spinors cannot massless. Whereas, we can obtain massless scalars by tuning
R to an appropriate value. If V2R € Z + 1 /2, there are massless scalars transforming
in (1;1,2) of the Eg x By x SU(2). If V2R € Z + 1/4 or V2R € Z — 1/4, there are
massless scalars with charges +1/v/2 of the U(1);.

4.4.3 SO(16) x SO(16) model: % = (1,07;1,07)
The splitting of Ag,«g, by this choice of 7 is
A7 = Asoas) ® Asops), A, = Arzs, @ Ajag, . (4.85)

With the Wilson lines A € I, thus, we obtain gauge bosons of SO(16) x SO(16) and
massless spinors transforming in (128,,1) & (1,128,) of the SO(16) x SO(16). Note that
in the twisted sectors, scalars cannot be massless and conjugate spinors live in A;“C (but not
A;’C) since ‘%‘2 =2. If Ae F}f, then there are massless conjugate spinors transforming in
(16,1) © (1,16) of the SO(16) x SO(16) as A} is given as

APC = A1 @ {%} + {%} @ Asg, (4.86)
where - = 22 = (1,07) and
Age = {(£,07)}. (4.87)

Let us study the massless spectra with the non-trivial Wilson lines given in (E57d) and
(ER7H). Note that AF is the same as in the SO(16) x Eg model. Thus, the massless vectors
and spinors in the untwisted sectors respectively live in A;Z ® Ago(ie) and Ag_i ® A28, where
A;i and A;,l are obtained in subsection B=471. We have already known the massless states in
the untwisted sectors. So, in this subsection, we only need to take care of conjugate spinors
in the twisted sectors.

We now consider the Wilson line (ER73). If p=0 (i.e. A= ((%)8 : 08> € T''%) then it is
clear that any elements in A;’C do not satisfy (7r + %) - A € 7, and massless conjugate spinors
do not exist. If p # 0, we find the following elements in A that satisfy (7r + g) A e

~

T+ g = (£,0°1,0%1,07), (07, 4,007%1,07) , (1,07; &,07) . (4.88)

Then, we obtain massless conjugate spinors transforming in (2p,1,1)®(1,2q,1)®(1,1,16)
of the SO(2p) x SO(2q) x SO(16).
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For the Wilson line (E557H), there are no elements in A satisfying (7T + g) -A € Z, and
all conjugate spinors in the twisted sectors are massive.
The massless spectra in class (1) which we identified in subsections BZ3 and B4 are

summarized in appendix 0.
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5 Cosmological constant

In this subsection, we evaluate the one-loop cosmological constant (vacuum energy) and
show that it is exponentially suppressed in the region where supersymmetry is restored if
there is a Bose-Fermi degeneracy in the massless level, as seen in (). We only focus on
the non-supersymmetric models in class (2), but the same discussion can be done in class
(3) and class (4) by adopting the dual description of the moduli. Note that restoration of

supersymmetry occurs as R — oo in the case of class (2).

5.1 Exponential suppression of cosmological constant
From (P332) and (2229), the partition function in class (2) is written as
ZEE (R Aw) = 75 {Vs (AD[0j0]o] + A [0[1]0]) — S (A [0]1]0] + A [0]o]o])

+0s (AB[10[1] + AP [1]1]1]) — Cs (AF[1]11] + AF[1]0]1]) },
(5.1)

where A®)[a|B]7] is defined as

Dl =n )t Y Y Y galEd)gark, (5.2)

el 0+ L& meZ+G n€2Z+P

with (1, pr,pr) given in (Z22). Note that the lower signs of A®) and A in the twisted
sectors are adopted only when the non-supersymmetric endpoint model is the SO(16) x
SO(16) model.

The cosmological constant is defined as the integral of the partition function over the

fundamental domain of the modular group:
1 o [ d*r
A= L) / OT gsesr (5.3)
2 F T2
where the fundamental domain F is
1
.7-":{7—7'1—}—2726(3"——<7'1<— ]T|>1} (5.4)

For our convenience, we decompose F into two pieces F>1 = F|n,>1 and Fo; = F|<1. The

contributions from the states with m # 0 are exponentially suppressed as R grows larger.
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Thus, we can ignore the last two terms in the partition function (). Using the Jacobi’s
abstruse identity (m), we get

A~ (anal) / S ¢ (A9[0jo]o] — A€[o[1]0]) (5.5)

€= :I:

Focusing on the internal momenta with m = 0, we find

ik _arny (A (L mA )
A©[0[0[0] = A[0[1]0] ~ 5~ 1T qa'z<e ks (* 2 ) s R2(+ 2 ))

wel'l6 neL
WA() . 71"A<2)+1 .
43 — 43T,
17 1 2 2
>t ( [0 ](O’Rz)_ﬁl 0 ](OR>>
rel'l6

One should not confuse the two different uses of 7: one is for the ratio of a circle’s circum-
ference, while the other is for a element of I''S. By using the S-transformation low (A IG)

of the theta function, we see that (B8) can be written as

! E cos [m(2n — 1) (7 - Agz))] exp [——R : (5.7)
V72 TFEFH’ n>1 ( )] Ary

The cosmological constant can be then expressed as

ne1)2
A~ ZZ Z ECLM M cos[ (2n —1) (W.A(Q))}/CF_ZGQMHM(Ew(272M++<24T21>R2>7

2 T
47T O{ n>1 e=x M M £z

(5.8)

where we expanded the contributions from 7 and the oscillators as follows:
Z q Z aM v e27rz‘r1M_6727r7'2M_,_ (59>
7T€F16 M_ M+

Let us evaluate the integral over F by decomposing into F.; and F>;. For the integration
over F_1, the domain itself is finite and the integrand itself is singularity free. We can thus

easily bound the integration as follows:

6
Ty

d27_ . _77(27171)2 R2 Tr(2n—1)2 2 d27— .
/ - eZﬂleM_e 27r7'2M+e 17y <e 27rM+€ 1 R 627"71M_. (51())
F< Fa T2

So, the contribution from the integration over F_; is suppressed at least by the factor e~ mR?/4

as R goes to infinity. As for F>1, the domain is infinite and it is non-trivial to give a finite

o7



contribution. By using the inequality on the arithmetic-geometric mean, however, we can
determine the upper bound of the 7»-dependent factor:
2n — 1)?
exp {—w <2TQM+ + (4—)1%2)1 < e VIRV MER (5.11)
T2

This bound is 75 independent and together with 7, °, it can be integrated over Fs, giving a
finite prefactor. Note that we can carry out the integration over 7, and 7, individually, and
the former gives d5;_o. Under the level-matching condition M_ = 0, M, cannot be negative,
and hence the contribution from the integration over >, is suppressed at least by the factor

Vor My

e R ynless M, = 0. Therefore, the leading contribution comes from the integration

of the terms with M, = 0 over F>i:

*d _n(en=1? po
A~ —— ZZ Z eaMMCOS[(Qn—l)(W.A(Z))]/ i626 (4T2)R

(47T )2 31— My ,M_=0 1 T2
~ (2n — 1)1 ea cos [m(2n—1)(m- A , (512
7T14 \/_R 4 (S R\ ; §M+,Z M M- [ ( ) ( (2))} (5.12)

where we perform the mp-integration and omit the exponentially suppressed terms. Let us
show that this leading contribution (B12) is proportional to ng —np with np and ng being
the degrees of freedom of massless fermions and massless bosons respectively if A@) € I},
There are two possibilities of M, = M_ = 0. One is with 7 = 0 which corresponds to sector
1 we introduced in the previous section and which has 8 x 24 degrees of freedom. The other

is with |7|? = 2 which correspond to sector 2. Then, the cosmological constant (5132) is
g

A ————> " 2n—1)71%8824+ ) ) ccos[n(2n—1) (r- Aw)] p. (5.13)
7?'14 \/—R n>1 e=+ meAg
Let us assume that A satisfies 7 - Az) € Z for all elements 7 of Ay, ie.,, A € I';. Under
this assumption, the second term in the parentheses in (513) is independent of n, and one
can notice
+1 for Ay with (218
ecos [m(2n — 1) (- Ap))] = @ (&) . (5.14)
—1 for A(g) with (M)
Recalling that the massless conditions for vectors and spinors in sector 2 are given by (A1)

and (EI7) respectively, this factor assigns +1 to massless vectors and -1 to massless spinors.
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Including the contribution from sector 1, up to the exponentially suppressed terms, the

cosmological constant is expressed as

48 1 1

where np and np are the degrees of freedom of massless bosons and fermions, and ((s,a) is

the Hurwitz zeta function:

((s,a) =) (n+a)”. (5.16)

n>0
We have therefore shown that the cosmological constant is exponentially suppressed as R —
oo if there exists the Bose-Fermi degeneracy at the massless level.

Note that the Wilson line was above assumed to satisfy 7- Ay € Z for any 7 € A, so that
all the cosine factors multiplied by € in (6213) give +1 or —1, which is respectively assigned
to a massless boson and a massless fermion. So, it seems that the expression (AH) of the
cosmological constant is valid only when A € A}. However, we can relax this assumption
to 2A() € Aj. This is because, under the new assumption, there might exist 7 € A, with
7 - Ag) € Z + 1/2 which do not give massless states, but such 7’s do not contribute to the
leading term of the cosmological constant, and hence the non-vanishing contributions come
only from 7’s with 7- A3y € Z. Then, it can be interpreted that the cosmological constant is
proportional to ngp —ng up to the exponentially suppressed terms if the Wilson line satisfies
2A() € A},

At the end of this subsection, we should point out that the leading term (613) does not
depend on the choice 7 (i.e. splitting of I''® into I'!% and I''%). Recall that the Wilson line
Ay in class (2) is related to that in toroidal models by (BI8). Inserting (EI8) into (B13),

A~ —Lg Z(Zn —1)7198 ¢ 24 + Z cos [27(2n — 1) (- Aq))] ¢ (5.17)

it (\/ER) n>1 TEA,
The cosine factor gives +1 and —1 for 7 € Ay with 7 - Ay € Z and m- Ay € Z + 1/2
respectively, while vanishes for m with 7- A7y € Z+1/4. Then, the cosmological constants of
the non-supersymmetric models (interpolating models) in class (2) do not depend on the non-
supersymmetric endpoint models as long as we only focus on the region with supersymmetry
being restored. We will adopt the description by A ) but not A, in the later discussions in

which the symmetry enhancement and the moduli stability in class (2) are mainly considered.
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In [#4], the subleading contributions to the cosmological constant have been derived,
but we do not consider the exponentially suppressed contributions in this thesis. We can
evaluate the cosmological constants in class (3) and class (4) in the same way as we have
done above. But one should note that supersymmetry is restored as R — 0 in class (3), and
needs to replace (A, R) to (151, R) in (613H). In class (4), supersymmetry is restored in both
of the endpoint limits, and (51H) is valid for both of the normal and dual descriptions of
the moduli.

5.2 Exponential suppression with Wilson line

In this subsection, we identify the massless spectra in class (2) as we have done in subsection
A3 and E4. In particular, we devote our attention to searching for the massless spectra with
ng = npg which realize the exponentially suppressed cosmological constants. Unlike in class
(1), we do not need to specify the choice of 7 in order to figure out the massless spectrum
with m = 0 due to the relation (BI8) between Ay and A(). The information of 7 is needed
if one would like to know the corresponding Wilson line Ay in the non-supersymmetric
models. We thus use the massless conditions (A19) and (2=20) (but not (E18) and (E-17)),
and restrict our attention to the Wilson lines that satisfy 4A(r) € I'; so that the expression
(BTH) can be used.
We here define A(f) and Aél,w) as

AP ={reng|n-Amez}, A= {ﬂeAg

1

Note that AEJJ,B) is a set of the nonzero roots of the gauge group that is enhanced by A, and
Ag) yields the representation of massless spinors. In order to realize nrp = ng, the Wilson

line must give a massless spectrum that satisfies
F B
A - 1AL] = 24, (5.19)

where |A| indicates the number of elements in a set A. Note that 24 is the degrees of freedom

of the left-moving massless states in sector 1.

60



5.2.1 Supersymmetric Spin(32)/Z, endpoint model

Let us first consider the following configuration of the Wilson line:

Ay = (OP, (%)q G>T> (p+q+r=16). (5.20)

Note that this Wilson line satisfies 447 € Féw) or 4A(ry € NS Recalling A, given by
(A10), we find

(B) _ 2 qtr 2 -

A = {(&,£,0072,077) (0P, £, £,0772,07), (0749, —, +,0"%) }, (5.21)
(F) _ - 1y -

AS = {(£,0071, £,0071,07) £ (07494, +,0772) ] (5.22)

Then, with the Wilson line (5220), there are gauge bosons transforming in the adjoint rep-
resentation of SO(2p) x SO(2q) x SU(r) and massless spinors transforming in (2p,2q,1) ®
(1,1, @) ® <1, 1, @) of the SO(2p) x SO(2q) x SU(r). Then, the numbers of

elements in A(gﬁg) and Ag) are

AP = 2p(p — 1) + 2(q — 1) + r(r - 1), (5.23)
A = dpg +r(r 1), (5.24)

and (B19) is written as
p+qg—(p—q)? =12 (5.25)

With p + ¢ + r = 16, the solutions of (5=23) are

(p,q,7) =(7,9,0),(6,7,3),(6,6,4). (5.26)

The cosmological constant is therefore exponentially suppressed with the gauge symmetry
enhancements from U(1)} to SO(18) x SO(14) or SO(14) x SO(12) x SU(3) x U(1) or
SO(12) x SO(12) x SU(4) x U(1).

The other interesting configuration of the Wilson line is that satisfying 44 € {9 or

4Ary € o, So, let us consider the following Wilson line:

A = ((é) (g)t) (54t = 16). (5.27)
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Note that 4A(7) € Fglﬁ) for ¢ even, while 4A7) € Fglﬁ) for ¢ odd. With this A7), we obtain
Aff) and Aél,p) as

(B) I S— S —

Ay ={(+, =020, (0%, 4, -, 077 }, (5.28)
(F) _ . _

Ay ={£(+0+07h)}, (5.29)

which lead to the symmetry enhancement U(1)1® — SU(s) x SU(t) x U(1)* and massless
spinors transforming in (s,t) @ (3,t) of the SU(s) x SU(t), and then \A;?)l and \Aff)] are

B) _ (F)y _
A =s(s=1)+tt—1), [A,"]=2st (5.30)
Inserting (A=30) into (BTY),
—(s—1)*+16 = 24. (5.31)

Clearly, there is no solution of (A=31). Rather than that, (A=3T) implies that the cosmolog-
ical constant with the Wilson line (B=27) is always negative. Thus, we cannot obtain the

exponentially suppressed cosmological constant with the Wilson line (I-25H).

5.2.2 Supersymmetric Fg X Fg endpoint model

As in the case with the Spin(32)/Z, endpoint model, we consider the Wilson line Ay =
(Aq; Ag) satisfying 4A1) € ['6 that is, 44, € ng) or 4A; € F§8> for i = 1,2. As in subsection

aa, Aff) and Aff) can be expressed as the direct sums of the two sets:

A=A e AY, AY =AF e, (5.32)

g g1 g

where A(g],_g) and Ag) are defined as

Af}? = {m e Ag, |m; - A; € LY}, Af}f) = {m € Ap,

1

So, it is sufficient to see only the first eight components of the Wilson line and identify Aff)
and Aéf). The counterparts A;f) and A;Z) can be obtained in the same way. We then focus

on the following configurations of Aj:

G —
A — ((%)j | (5.34b)
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where p; + ¢1 + 171 = 8 and ry is even so that 44, € Fés). The results of the massless spectra
that the above Wilson lines realize are shown in Table B. We here give the procedure of
identification of the massless spectra only for A; given in (5234d) with r; = 0 and r; = 8.
The results for the other Wilson lines can be obtained in the same way we will present below.

Recall that Ag, is decomposed into Ago(i6) and Ajag, . Restricting our attention to the

elements in Ago(ig), the following 7’s satisfy m; - A; € Z for A, = <0p1’ (%)fh):
m o= (F,£,077%,0m) (07, £,4,077%). (5.35)
Whereas, 1 € Ago(i6) that satisfy m - Ay € Z +1/2 are

m o= (&,0772 £,077?). (5.36)

One can check that the elements m; € Aqag, satisfy - Ay € Z or 7y - Ay € Z+ 1/2 only if
p1 is even. Thus, for A; with p; odd, A;{f) gives the nonzero roots of SO(2p;) x SO(2q),
and Ag) gives (2p1,2q1) of the SO(2p,) x SO(2q).

Let us consider the cases with p; even. If py = 0 or p; = 8, which means A; is in the Fy
root lattice, then Aif) = Ap, and Ag) is empty. If p; = 2, we have the following m; € Aq2s,
satisfying m - A; € Z:

1
m=3 (i, + 4,4+ 4+ £ 1 i_) , (5.37)

Accompanied with (A=38) with p; = 2, we get the nonzero roots of SU(2) x E;. As for
massless spinors, m € Aqag, satisfying 71 - Ay € Z +1/2 are
1
M= (:I:,i £ttt ) (5.38)
2 + +
Including (B538) with p; = 2, then, we obtain (2, 56) of the SU(2) x E;. The case with p; = 6

leads to the same Aé?) and A;{;) as with p; = 2 up to the permutations of the components.

If py = 4, subsets of A28, in which the elements satisfy m - Ay € Z and m - Ay € Z +1/2

are respectively

1

= (i, AN i+> , (5.39)
1

m = (:I:, 44+ 4+t j:_) . (5.40)

Accompanied with the nonzero roots of SO(8) x SO(8) given by (b=33) with p; = 4, (5239)
which corresponds to (8,,8,) of SO(8) x SO(8) leads to the nonzero roots of SO(16).
Meanwhile, (620) and (6238) with p; = 4 yield 128 of SO(16).
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If 4, = ((}1)8>, the following m € Ago(ie) satisfy 71 - Ay € Z and 7 - Ay € Z + 1/2:

(+,-,0°)  form - A €Z

. (5.41)
+ (—i—,—i—,OG) for m - Ay € Z—i—%

™ =

For m; € Aqas,, we find the following elements satisfying 7 - A; € Z or my - Ay € Z+ 1/2:

+ ((%)8) 1 ((+)4, (—)4) for 7y - Ay € Z
£ (2.0)7) form Ay €24

T =

(5.42)

Putting (5-41) and (B42) together, we obtain the nonzero roots of E; x SU(2) for m- Ay € Z
and (2,56) of the F7 x SU(2) for m - Ay € Z+ 1/2.

The one sides of the massless spectra with A; = (Opl, (%)(ﬂ) and A; = ((%1)8) which
we have just seen above are shown in the first six rows and in Table B. Note that A; =
(0“, (%)m) with p; even and A; = ((}L)8> satisfy 24, € Fég) or 2A, € ng), and hence
|A§f)| + |A;f)| = |Apg,| since all the elements in Ag, satisfy either w1 - Ay € Z or m; - A €
Z+1/2.

We now search for the possibility of suppression of the cosmological constant. We show
|Ag)| — |A§?)| for each of A; for which 44, € (Ff(,s) + F§8)> holds in the fourth column in
Table B. In order to find out the massless spectra which lead to the exponentially suppressed
cosmological constant, we need to get the combination in the fourth column in Table B such
that the sum is 24. There are two such combinations: 16 + 8 and 12 4+ 12. Then, the
cosmological constant is exponentially suppressed when U(1)}% is enhanced to SO(16) x

SO(10) x SO(6) or SU(8) x SU(2) x SU(8) x SU(2).
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Gauge bosons

Massless spinors

‘A(F)’ _ |A(B)|
g 91

()’ (1))
) % , E@)‘% (4"
H). (0.0 0
. (5" (1))
) () (3))
(0.5 (3)")

Es
SO(14) x U(1)

E; x SU(2)
SO(10) x SO(6)
SO(16)

E; x SU(2)

E; x U(1)

Es x SU(2) x U(1)
SO(12) x SU(2) x U(1)
SU(8) x SU(2)
SO(14) x U(1)
SU(8) x U(1)
SO(10) x SO(6)

Eg x SU(2) x U(1)
SO(12) x SU(2) x U(1)
E; x U(1)

(14,41)
(56,2)
(10, 6)
128
(56,2)
(1,£2)
(27,1,+2/6)
(32,2,0) @ (1,1, £V2)
(70,1)
(14,41)
(28,£1/v2)
(10, 6)
(27,1, +2/V6)
(32,2,0) & (1,1, £2)
(1,4v2)

—240
—56
—16

+8
+16
—16
—124
—20
+4
+12
—56
0
+8
—20
+4
—124

Table 6:

This table shows the massless spectra and ]Ag)] — |A§f)] depending on the

configurations of the Wilson line in class (2) with the Eg root lattice. The unbolded letters

indicate U(1) charges.

65




6 Moduli stability

The cosmological constants in the non-supersymmetric models, which can be regarded as
the effective potential of the moduli, do not vanish because of supersymmetry breaking,
and hence some of the moduli can be stabilized. In this section, we analyze stability of the
Wilson line moduli by using the cosmological constant we calculated in the previous section.
We use the expression (511) but not (5T3) so that the stability analysis does not depend on
the choice of the non-supersymmetric endpoint model of the interpolation. In this section,

we denote A7y as A, omitting the subscription.

6.1 Supersymmetric Spin(32)/Z, endpoint model

We first consider the interpolating models with the supersymmetric endpoint model being
the Spin(32)/Z, model. Inserting A, = A2y into (BI7), the Wilson line dependent part

can be written as

=Y @n—=1)7" Y cos[2m(2n — 1) (x - A)]

n>1 T€A50(32)
=2 (2n—1)7"") " (cos [2m(2n — 1) (A" + A”)] + cos [2m(2n — 1) (A" — A7)])
n>1 I>J
=—4> (2n—1)""") "cos [27(2n — 1)A"] cos [27(2n — 1)A] | (6.1)
n>1 I>J
where I, J = 1,--- .16 indicate the indices in the six-teen internal dimensions, and we have

omitted the positive prefactor which is not important in the stability analysis. Then, the
first derivative of the cosmological constant is
oA

o7~ 8T > (20— 1) sinf2r(2n — 1)A"] ) " cos [2m(2n — 1)A7] . (6.2)

n>1 J£I

For simplicity, we only consider the Wilson lines given in (5220) for which 44 € Féw) or
4A € T{'9 holds. Inserting (520) into (E32), we find

— . (6.3)
OAT | 81 e 20— 1) (= 1) (p—q) (I=p+g+1,---,16)
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We thus find the two types of the critical points which satisfy either of the following two

conditions:

(i): =0, p+q =16,

(ii): r>1, p=gq, p+q+r=16.
Note that the critical points (i) satisfy 2A € T,

The next step of the stability analysis is to calculate the Hessian matrix, that is, to

evaluate the second derivative. From the first derivative (62), we get

on —16m 37,51 (2n — 1)~ ®sin[27(2n — 1) A"] sin[27(2n — 1) A] (I#J)
QATOAT | 1672 % (20— 1) cos [2m(2n — 1) AT] T, cos [27(2n — 1)AT] (I=1])
(6.4)

For the critical points (i), all the off-diagonal components of the Hessian matrices vanish,
and the diagonal components are, up to the prefactor,

cos [2m(2n — 1) A’ Zcos [27(2n — 1)A7] = poa-l I=1-p) . (6.5)

A —(p—q+1) (U=p+1--,16)

For the Hessian matrix to be positive definite, therefore, (p,q) must be (16,0) or (0, 16).
Note that these Wilson lines imply A € I'}, and U(1)}° is enhanced to SO(32) while there
are no massless spinors, as we have shown in the previous section. One can also find from
(63) that the Hessian matrix is negative definite only when p = ¢ = 8, which means that
the points with the enhanced gauge symmetry SO(16) x SO(16) correspond to the maxima
of the effective potential.

As for the critical points (ii), the Hessian matrices can be expressed as a block diagonal

matrix as follows:

oA Hiz1 0
~ 167> — 1) --- 6.6
gaTgAr ~ 167 2 (20 ( . H1/4>’ (6.6)

n>1

where Hy is a (p + ¢) x (p + ¢) diagonal matrix with the diagonal components given as
in (63), and Hy/4 is a 7 x r off-diagonal matrix with the off-diagonal components given by
—1. The Hessian matrix (60) clearly have at least one negative leading principle minor and

cannot be positive definite. As a result, the critical points (ii) cannot be minima.
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To summarize, in the non-supersymmetric models in class (2) with the Spin(32)/Z
lattice, the Wilson lines are stabilized such that U(1)}% is maximally enhanced to SO(32).
Note that these Wilson lines correspond to global minima since the cosine factor in (h14)
gives +1 for all # € Ago(se), which means that A takes a minimum value.

As we revealed in the previous section, the cosmological constant is exponentially sup-
pressed when (p,q,7) = (7,9,0),(6,7,3),(6,6,4). The points with (p,q,7) = (7,9,0) and
(p,q,7) = (6,6,4) respectively satisfy the conditions (i) and (ii). Thus, the exponential
suppression with the symmetry enhancements U(1)1® — SO(18) x SO(14) and U(1)}% —
SO(12) x SO(12) x SU(3) x U(1) occurs at the saddle points.

6.2 Supersymmetric Fgs X EFy endpoint model

We next consider the interpolating models with the supersymmetric Eg X Eg endpoint model.
The sum over m € Apg,«p, can be decomposed into the two copies over 7 € Ag,. So, it is

sufficient to pay our attention to the following contributions in the cosmological constant

(6T):

=Y @n-17" > cos[2m(2n— 1) (r - A)]

n>1 TFEAEgEB{OS}

- Z(Qn — 1) Z + Z cos 2m(2n — 1) (m - A1)]. (6.7)

n>1 mE€Aso(16) MEA128,

The sum over m € Agoag) can be expressed as in (61):

_ Z(Qn — 1)~ Z cos [2m(2n — 1) (my - Ay)]

n>1 T1E€AS0(16)
=2 Z(Qn — 1) Z (cos [2m(2n — 1) (A" + A7)] + cos [2m(2n — 1) (AT — A7)])
n>1 ILi>Jy
=4 2(271 — 1)~ Z cos [2m(2n — 1)A"] cos [2m(2n — 1) A" ], (6.8)
n>1 L>J;
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where I;,J; = 1,--- ,8 indicate the first eight components of A and 7. In order to evaluate

the sum over m; € Aqgs,, we can use the following trigonometric identity:

cos (x4 -+ xg) = Hcos () — Hsin (xr) Hcos (xr)

Then, we find
- Z(Qn — 1) Z cos [2m(2n — 1) (71 - Ay)]
n>1 71'16A123+
8 8
= —128 Z(Qn — 1) (H cos [m(2n — 1) A" + H sin [7(2n — 1)Aﬂ> . (6.10)
n>1 n=1 n=1

Note that the second, third and fourth terms in (69) are canceled by summing up m; € Aqas, .
For instance, m = ((i)4+, (j:)4+> and m = 3 ((i){, (i){) give the different sign of
the third terms and have the same degrees of freedom. As a result, (a half part of) the

cosmological constant (BZ1) can be expressed as

=3 @n—1)7" {4 > cos [2m(2n — 1) A"] cos [2m(2n — 1) A”]

n>1 nLi>n
+128 <H cos [m(2n — 1)AD] + H sin [7(2n — 1) Aﬂ) } . (6.11)
Il 1 11 1

The first derivative is then given as

% ~ 87y (20 —1)7° {Sin[27r(2n — A" Y 7 cos [2m(2n — 1)AN] + Vg)h} o

n>1 J1#£1

where Vél)h

yih — 16 (sin [7(2n — 1)A"] H cos [m(2n — 1)A”] — cos [m(2n — 1)A"] H sin [7(2n — 1)A‘]1}> :

Jl;éll JI#II

is defined as

(6.13)

As in the Spin(32)/Zs case, we only focus on the Wilson lines that satisfy 4A4; € Fés):

s 1 q1 1 1
At = Opl, 5 s Z y (pl +Q1 +r = 8, rE 2Z) (614)
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Inserting (614) to (612), we find for I; =0,--- ,p;

A 0 for 1
0 N . n , (6.15)
OAn ) 1987 (%) > o (2n = )T (=1)" for py =1
and for 1 =p1 +1,--- ,p1 + @,
0 for 1
A “? (6.16)

0A" ] 1287 (%) 3o (2n = 1)(=1)" forg =1

As for Iy = p1 + ¢ + 1,--- , 8, noting that ry is even, we see that the first derivative is

Ah ~ 8wZ 2n =1 { (1" o = a1) + VR (6.17)
where VU is given as
Ali=1/4
0 for py #0, 1 #0orpr =q =0
r1
Vr(zl)h‘Ah:l/4 =4 16 <\/L§> (=1)" for p1 =0, ¢1 #0 : (6.18)
16 <L2>r1 (_1)n+1 for pr #0, 1 =0

From (613), (608) and (614), we find two types of the critical points which satisfy one of

the following conditions:

(1> r = OJ D1 7é 17 a1 # 17
(i) >2, p1#1 ¢ #1, p1=aqu.

We now evaluate the Hessian matrix. The off-diagonal components are

oA
~ =167 ) (2n —1)7* {sin[27(2n — 1) A"]sin[27(2n — 1) A] + VP11
DATIHAT Z:l

(6.19)

where we define V21171 a5

VPN =8 sin[r(2n — 1) A" sin[r(2n — 1)AN] J]  cos[r(2n — 1)A%]

n
Ki#I,J1

+8cos[r(2n — 1)A"cos[r(2n — 1)A"] ] sin[r(2n—1)A%].  (6.20)
Ky#I,J1
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The diagonal components are

oA n A 2
JAL DAL ~ 167 ; (2n—1)" {COS[QTF( 1)A ]J%; cos[2m(2n — 1) A7) + V¢ )}
(6.21)
where V¥ is defined as
=38 H cos[m 1AM +8 H sin[r(2n — 1)A"]. (6.22)
n=1 n=1

Let us first calculate the Hessian matrix of the critical points (i). Obviously, the first term

2)11.J1

in (6B9) vanishes for any I;, J; if 4 = 0. One can also see that v = 0 for any I,

Jy unless (p1,q1) = (2,6),(6,2). As for the diagonal components, the first term in (6221) is
given as the same form as in (63) with (p, ¢) replaced by (p1,¢1), and v is

Yo 8 for (p1,q1) = (8,0),(0,8) |
0 for the others

(6.23)

Then, the critical points (i) with (p1,q1) = (8,0), (0,8), at which U(1)} is enhanced to E,

give the positive definite Hessian matrix. If (p1,q1) = (2,6), then YO — P2 = 8 and

(2)1J1

the other components of V;, vanish, and then we obtain

5 —8 0 -~ 0

oA -8 -5 0
-~ 160> 2n—1)"*[ 0 0 3 . (6.24)
DALYAN gt o o

This matrix is clearly neither positive definite nor negative definite, and hence the critical
point (i) with (p1,¢1) = (2,6) corresponds to a saddle point of the effective potential. In the
same way, one can check that the critical point (i) with (p1,¢q1) = (6,2) is also a saddle point.
One can also see that the critical point (i) with p; = ¢; = 4 gives the negative definite Hessian
matrix, and hence the points with the enhanced symmetry SO(16) x SO(16) correspond to

the maxima of the potential, as we have obtained the same result in the Spin(32)/Z, case.
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We now turn to the critical points (ii). If py = ¢ # 0, then the diagonal components
(BZ20) are
(]1 = 17 72]91)

oA —1
~ 1677 ) (2n —1)" . (6.25)
JAL YA pe 0 (I, =2py,--- ,8)

If py = ¢ =0, then all the diagonal components are +1 (except the prefactor). As for the
off-diagonal components, the first term in (619) vanishes unless both At and A7 are 1/4,

for which it gives +1 (except the prefactor). If p; = ¢; > 3, then v — 0 for any I, Ji,
and the Hessian matrix is
8 ]-2p><2p ; 0
~ 1672 —1)B[---2%% ---- 6.26
9ATgAT ; " < 0ty ) (6.26)

where H,/4 is a 71 X 1 off-diagonal matrix with all the off-diagonal components being —1.
This matrix is clearly not positive definite. If p; = ¢; = 2, then VAR VIOL 2, and the

Hessian matrix is

OA Hﬁ;) S 1 -2
~ 16 en-1)"%| o gD g ith H%Y =~
OATPAT i ; " 0 ,:,}{1[2, 1 O |, W 1/2 —9 1/’
O | O | H1/4
(6.27)

YhJi V(2)11J1
n

which is not positive definite. If p; = ¢; = 0, then v = =1 for any I, Jy, and

the Hessian matrix is

oA 2 - :
~1672y (20 —1)"% | . (6.28)

which is not positive definite.
We can perform the same analysis for the last eight components A’ of the Wilson line.
To summarize, as in the Spin(32)/Z, case, the minima of the effective potential correspond

to the points with A € T''® at which the maximal enhancement U(1)}% — Fg x Ey is realized.
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We revealed in the previous section that the cosmological constant is exponentially sup-

pressed when the Wilson line takes one of the following configurations®:

ORLNE
A= (n@hemn @) (6.29)
537
All these Wilson lines satisfy either of the conditions (i) or (ii) for the critical points. There-

fore, the exponential suppression of the cosmological constant occurs at the saddle points.

90f course, these configurations should be considered up to appropriate permutations.
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7 Summary and outlook

In this thesis, we consider the non-supersymmetric string models constructed by orbifolds
with a Zs freely acting twist, in which supersymmetry is completely broken due to the stringy
Scherk-Schwarz mechanism. One of the important features in the non-supersymmetric string
models is that the Narain lattice is split into FiL’dR and %% and spacetime bosons and
fermions live in different subsets FiL AR and T8 respectively in the untwisted sectors. We
reviewed construction of the non-supersymmetric models in section B. In particular, we
classified the 9D heterotic models into the four classes by the choice of a Zy freely acting
twist (more precisely, the choice of Z € Z% x ZIr).

We first discussed the T-duality group in the non-supersymmetric string models. A T-
duality element in the non-supersymmetric models must be an automorphism of FiL’dR and
%292 hug not I8 and hence the T-duality group is restricted to a congruence subgroup of
order 2 in O(dy, dg,Z), which depends on the choice of Z. As concrete examples, we clarified
which elements of O(dy,dg,Z) still survive in the non-supersymmetric type II models with
d = 2 and heterotic models with d = 1. Moreover, we noted that the transitions among the
non-supersymmetric string models with different choices of shift-vectors can be induced by
acting an element of O(dy, dg,Z) that is not in the congruence subgroup. We also gave the
examples of the transitions in the type II models with d = 2 and the heterotic models with
d =1 (see Fig. I and Fig. 2).

Secondly, we studied the possible massless spectra of the 9D non-supersymmetric het-
erotic strings at various points in the moduli space. We gave the massless conditions for
states which transform as not gauge singlets. In particular, we focused on the unwinding
states (i.e. with m = 0) and clarified the massless conditions for both of the untwisted and
twisted sectors in each of the four classes of the 9D heterotic models. As concrete examples,
we revealed patterns of the gauge symmetry enhancements and the representations in which
massless states transform, in class (1). Furthermore, we pointed out that the Wilson line in
class (2) is related to that in the toroidal models. This relation allows us to figure out the
massless spectra in class (2) easily since the massless conditions for unwinding states do not
depend on the choice of 10D non-supersymmetric endpoint models.

Thirdly, we evaluated the cosmological constant of the non-supersymmetric models in
class (2). We showed that the leading contribution of the cosmological constant is propor-

tional to np —npg, where np and np are the degrees of freedom of the massless fermions and

74



bosons respectively, up to the exponentially suppressed terms in the region with supersymme-
try asymptotically being restored. We also found some configurations of the Wilson line that
realize the massless spectra with ny = np, that is, the exponentially suppressed cosmological
constant. In the models with the supersymmetric Spin(32)/Zs endpoint model, the suppres-
sion occurs when the Wilson line leads to the enhancement from U(1)1¢ to SO(18) x SO(14)
or SO(14) x SO(12) x SU(3) x U(1) or SO(12) x SO(12) x SU(4) x U(1). If the super-
symmetric endpoint is the Eg X Fg one, the Wilson lines that induce the enhancements to
SO(16) x SO(10) x SO(6) or SU(8) x SU(2) x SU(8) x SU(2) realize the suppression of
the cosmological constant.

Finally, we analyzed stability of the Wilson line moduli in class (2) from the one-loop
effective potential in the region where supersymmetry is restored. We have shown that the
Wilson line is stabilized at the points where U(1)}° is maximally enhanced. We did not
find any local minima, and the points at which the cosmological constant is exponentially
suppressed correspond to the saddle points.

There are some issues that we have to overcome and something worth investigating. We

would like to here present some possible future directions:

e In this thesis, we restrict our attention to a particular class of non-supersymmetric
string models which are constructed by orbifolding with freely acting Z, twists. It is in-
teresting to generalize the non-supersymmetric models by Zy orbifolding and consider
various patterns of supersymmetry breaking, e.g. N =2 — 0or N =1 — 0. In par-
ticular, it is worth exploring asymmetric orbifolds or non-geometric backgrounds with
the stringy Scherk-Schwarz mechanism since we have already revealed the T-duality

elements, including non-geometric ones, in the non-supersymmetric string models.

e It is in this thesis shown that the T-duality groups of the non-supersymmetric string
models are congruence subgroups of O(dp,dg,Z). In the context of flavor physics,
recently, the non-Abelian discrete groups have been used for explaining the origin of
the flavor structure of the Standard Model. In particular, congruence subgroups of
PSL(2,7Z) are frequently in the spotlight. Then, the T-duality groups we obtained
in this thesis are expected to be applied to the exploration of the flavor structure,
accompanied with the scenario that supersymmetry is broken at a very high-energy

scale.
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e In this thesis, we conclude that the moduli are unstable when the cosmological constant
is zero or positive up to the exponentially suppressed terms, and the stable moduli
correspond to anti-de Sitter vacua. This is not a desirable situation for making realistic
models from non-supersymmetric string theory. We would like to stabilize the moduli
at the same time as suppressing the cosmological constant. To realize that, it is worth
calculating the higher loop corrections and clarifying the effects that they have on the
effective potential. One of the other directions is to include the non-perturbative effects
which are anticipated to uplift the effective potential and make a de-Sitter vacuum as
n [99]. Thus, it is interesting to investigate the type I models, which are related to the
heterotic ones by S-duality, in order to extract the information of the non-perturbative

corrections.
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A Lattices and characters

Irreducible representations of SO(2n) can be classified into the four conjugacy classes:

e The trivial conjugacy class (the root lattice):

i=1

Fé’n) — {(nl, .« ’nn)

e The vector conjugacy class:

I‘l()n) — {(nl’ [ ,nn)

n; € 7, Zni€22+1}. (A.2)

i=1

e The spinor conjugacy class:

1 1

e The conjugate spinor conjugacy class:

1 1
an):{(n1+§’7nn+§)

The weight lattice of SO(2n), which is dual to Fén), is given by the sum of the four conjugacy

i=1

n; € 7, Zni€2Z—|—1}. (A.4)
=1

classes:

NS VO VOES NS VO (A.5)

w S

Modular invariance of the partition functions of the 10D supersymmetric heterotic string
models requires that the internal momenta should live in an even self-dual Euclidean lattice.

In 16-dimensions, only two such lattices exist. One of them is the root lattice of Eg x Fsg,
= (P +18) x (I + 1) , (A.6)

and the other is that of Spin(32)/Z, which is expressed as the sum of the trivial and spinor
conjugacy classes of SO(32):

6 =6 4 7o), (A7)
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The SO(2n) characters of the corresponding conjugacy classes are defined as

1 e 1 0] 0]
_ sinl? _ _~ n n
On=p & =g (g ens e [ on ) s
WEF(gn) - -2
1 e 1 0] 0]
_ = lml® — n — oy
= Xt = g (o ffen - len). @
ﬂEFS,n) - - L2
1 l\WF 1 n_%_ n -%_
Son=— > @™ =— (v 2] (0,7)+9" 2| (0,7) |, (A.10)
" 2\ [0 >
el - - -7
1 e 1 1] 1]
G- 2 St = (e -0 Plon). @)
a er 20" 0] [ 2]

where the Dedekind eta function and the theta function with characteristics are defined as

n(r) =q¢= [] (1-4"), (A.12)
vV [;] (z,7) = Z exp (mi(n + a)*t 4 2mi(n + a)(z + B)) . (A.13)

It is known that the SO(8) characters satisfy the Jacobi’s abstruse identity
Vs — Ss = 0. (A.14)

In order to check modular invariance of the partition functions, it is useful to reveal how
the SO(2n) characters transform under 7': 7 — 7+ 1 and S : 7 — —1/7. The eta function
and the theta function satisfy the following identities:

n(r+1) = 6%77(7'), 9" (0,7 4+ 1) = e~™elely “ L1 (0,7), (A.15)
g a+pf—3
1 1 Lo
U (——) = (=im) (), 0 H (0,——) = (—ir)ze’™ [ ’ ] (0,7).  (A.16)
T 15} T —«
Then we find the transformation laws of the SO(2n) characters:
T : (O2n7 ‘/Qna SQn; C2n) — (O2n7 ‘/2117 SQnu C2n) 75717 (A17>
S : (O2n7 ‘/—27“ S2n7 CZn) — (02n7 ‘/Zna S2n7 C2n) 82717 (A18>

(A.19)
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where 75, and Ss,, are 4 x 4 matrices defined as follows:

e 0 0 0 11 1 1
0 —e % 0 0 11 1 -1 =1
0 0 e 6 1 -1 & ="
0 0 0 e 1 —1 —i" 4

We here expand the products 77 (Os,,, Van, Son, Cay), which appear in the partition func-
tions. This expansions are useful for studying the free spectra of strings. Note that 7% is the
contribution from the oscillators of eight world-sheet bosons while the SO(2n) characters are

the contributions from n compactified world-sheet bosons or 2n world-sheet Majorana-Weyl

fermions.
8+n 2n(2n — 1
n_SOgn ~ q_% (1 + (8 + %) q—+ O(qz)) , (A.21)
18 Van ~ g~ 33 (20 + O(q)) (A.22)
1880, = 17580, ~ g~ 2 (2771 4+ O()) - (A.23)

In particular, for n = 4, which appears in the type II models or in the right-moving parts of

the heterotic models,

7805 ~ q 77 (1+36g + O(¢?)) (A.24a)
n"Vs ~ 8+ O(q), (A.24D)
155 =0 *Cs ~ 8+ O(q). (A.24c)
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B Invariance under the T-transformation

In this appendix, we check the invariance of the partition functions (2231) and (E=37) under
7 — 7+ 1. In particular, we show that the SO(8) characters and ZFiL’dRJré in the twisted
sectors must be combined appropriately. From (A=T3) and (A7), we find that under the
T-transformation, the product of the SO(8) character and n® has an eigenvalue —1 only

when the character is of the trivial conjugacy class:
T: 77_8 (OSa‘/SaS&CS) - 77_8 (_087‘/873&08) : (B1>

Then, the untwisted sectors, which include neither Og nor Og, are obviously invariant since

P is in an even lattice. In the twisted sectors, the momenta are shifted by o, and then we

get the following phase from Z a4z +5 under 7 — 7 + 1, excluding the phase which comes
+

from n~dry—dr;

em'(P2+62+2P~6) ' (B.2)
If 62 is even and P € T%%" or 62 is odd and P € I'%*" then the phase (B2) is +1. Thus,
ZFiLdR+6 with 62 even or ZFiLdR+6 with 62 odd must be accompanied with (Og@g + CgC_'g)
in the type IIB case and with Cy in the heterotic case. On the other hand, the phase (B22)
is —1 if 02 is even and P € T*% or §? is odd and P € T'%%. Thus, Zyapar g With 5% even
or ZF:l_LdR+6 with 62 odd must be accompanied with (OgC’g + 08@8) in the type IIB case
and with Og in the heterotic case. As a result, we see that the partition functions (2231)
and (232) have the appropriate combinations of the SO(8) characters and ZFiL,dR L Which

make the partition functions invariant under the shift = — 7 + 1.
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C DMassless spectra in class (1)

In this appendix, we summarize the massless spectra with m = 0 in class (1) which we
revealed in subsections B3 and B4. We only denote U(1) charges for states which trivially
transform under non-Abelian gauge groups in the tables below. Recall that all the Wilson

lines we considered in subsections B=3 and B4 satisfy 2A € I,

C.1 The Spin(32)/Z, lattice

Untwisted sectors Twisted sectors
A Gauge symi. Spinors | Co-spinors Scalars
(016) 50(32) — — 32 (V2R € 7Z)
©F SO(32) — — 32 (VZRe Z+1)

(2p,1) (V2R € Z)
(1,2q) (V2RE€Z + )
)““‘) sUe) xU(l) | — - 1616 (V2R Z + 1)

(o7, (3)1) | SO(2p) x SO(2q)

((

e

Table 7: SO(32) model: 2 = (1,0').

Untwisted sectors Twisted sectors
A Gauge sym. Spinors Co-spinors Scalars
). ((H)") SO(24) x SO(8) (24.8) (24.8.) (1,8,) (V2R € Z)
(07, (3)7 SO(2p) x SO(24 — 2p) B B
< 1) < 50(8) (1,24 —2p,8) | (1,24 —2p,8_) (1,1,8,) (V2R € Z)
.(3)") s0(24) 4.5 20.1) - B
(p =13,15) xSO(8 — 2q) x SO(2q)
4 (12 SO(24) - (1,2,,2,) (V2R € Z)
(U (3) ) xSO(4) x SO(4) (24,4.1) (1,2_,2.) (V2ZRe€Z +1)
1\16 ) I — (1,6) (V2R € Z)
(") SU(12) x SU(4) x U(1)? | (12,4) & (12,4) | (12,4) & (12,4) 0,40 (VER € Z4 )
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Untwisted sectors Twisted sectors

Gauge sym. Spinors Co-spinors Scalars
SU(16) x U(1) 120 & 120 120 ¢ 120 +1 (V2R € 7Z)
Cz @ ,Cs,1)
SU(p) x SU(q) x U(1)* v P — +(1,1+2) (V2RE€Z+2
( @(17‘102@(102) ( 8) ( 8)
(»C2 ®C2,1) (»C2 ® C2,1)

SU(p) x SU(q) x U(1)? +(1,1+2) (V2R e Z)

@(174102 GBE) 69(]-aq(jZ GquZ)

(»C2 ® C2,1)

SU(p) x SU(q) x U(1)? 5 (1,4 & 1)

(pg®@q |+(L1+28) (V2ZReZ+3)

SU(16) x U(1) +(1L,1+2) (V2ReZ)

Table 9: SU(16) x U(1) model: % = ((}1)16)

Untwisted sectors Twisted sectors
Gauge sym. Spinors Co-spinors Scalars
SO(16) x SO(16) (16,16) (128,,1) @ (1,128,) —

SO(2p) x SO(16 — 2p) x SO(16) | (1,16 — 2p, 16) — —

SO(2p) x SO(16 — 2p) x SO(16) | (1,16 — 2p, 16) (2571,27771) B
' ’ 7 i ®(1,1,128,)

SO(2p) x SO(16 — 2p) x SO(16) | (1,16 — 2p, 16) (227,207, 1)
) X _ ) x o, _
" "’ oo ©(1,1,128.)

SO(16) x SO(2¢) x SO(16 —2q) | (16,1,16 — 2q)

(L2727
SO(16) x SO(2q) x SO(16 —2q) | (16,1,16 — 2q) —
S2) (128+7 17 1)

(1,2971,2779)
SO(16) x SO(2q) x SO(16 —2¢) | (16,1,16 — 2q) —
2] (128+7 17 1)

s x sve vy | @fe(ss) | USR]

Table 10: SO(16) x SO(16) model: § = (0%, (1)°).
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C.2 The E5 x Eg root lattice

Untwisted sectors Twisted sectors
A Gauge sym. Spinors Co-spinors Scalars
(0%;0%) SO(16) x Eg (128,;1) (128 ;1) (16;1) (V2R € 7)
(00 SO(16) x Es (128,:1) — (16:1) (V2R € Z+})
s 16 | | (4.1:1) (V2R € 2)
(0 , (5) 708) SO(4) x SO(12) x Fg | (2-,32_;1) | (24,324;1) (1.12:1) (VAR € 7+ %)
1 (1) 08 ) . (8,1;1) (V2R € Z)
(o NOND ) SO(8) x SO(8) x Es | (84,8451) | (8,8 ;1) L81) (VIR EZ 1
e . ‘ (12,1;1) (V2R € Z)
(067 (5) 708) SO(12) x SO(4) x Fg | (32_,2_;1) | (324,2,;1) (1.41) (VIR 7+ %)
(O%:0) | su® <o =B [(mo1),+v3] | 8e81) (ViRezx)

Table 11: SO(16) x Eg model: Z = (1,07;0°).

Untwisted sectors Twisted sectors
A Gauge sym. Spinors Co-spinors Scalars
56,2;1,1 56,1;1,1 1,2:1,1)®(1,1;1,2
(0%;0%) E; x SU(2) x E; x SU(2) ( ) ( ) ( )& )
®(1,1;56,2) ®(1,1;56,1) (V2R € 7)
56,2;1,1 1,2:1,1)®(1,1;1,2
((%)8;08) Er x SU(2) x Ey x SU(2) (56,2;1,1) (1, )0 )
®(1,1;56,2) (V2ReZ+1)
1,2:1,1) @ (1,1;1,2)
02, (1)°%;0%) | Er x SU2) x E; x SU(2 1,1;56,2 56,1;1,1 (1,21, o
2 2 12,2,1;1,1 1,1,2;1,1)®(1,1,1;1,2
(047 (%)4708) 50(12) X SU( ) X SU( ) ( y Ay Ly by ) (327 17 17 17 1) ( ) by &y )@( )
x E; x SU(2) ®(1,1,1;56,2) (V2ReZ+1)
12 2) x SU(2 32,1,2;1,1 1,1,2;1,1)®(1,1,1;1,2
(067(%)2;08) SO( )XSU()X () ( y Ly Ay Ly ) (1272711]“1) ( ) ) )EB( )
x B x SU(2) ®(1,1,1;56,2) (V2ReZ+1)
27 ©27:1,1
((1)8.08) Es x U(1) x U(1) (@(1'56 2) ) (1;1,2) (V2R Z + 1)
1) x By x SU(2) (ii i’i)’ (i%,o) (V2ZReZ+1)
V2 Ve

Table 12: (B x SU(2))* model: % = (07, (3)750°, (3)°).
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Untwisted sectors

Twisted sectors

A Gauge sym. Spinors Co-spinors Scalars

(0%; 0°) SO(16) x SO(16) (128,;1) & (1;128,) (16;1) @ (1;16) —

((2)%50%) SO(16) x SO(16) (128,:1) & (1:128,) (1;16) —

2 (1\6. 8 (2.,32_;1) (4,1;1) @ (1,12;1) -
(o (1) .,o) SO(4) x SO(12) x SO(16) 11198, 16

4 (1 4 8 (8+78+;1) (871§1)®(178; 1) -
(0 (150 ) SO(8) x SO(8) x SO(16) 11128 o116

6 (1\2. 08 (32_,2_;1) (12,1;1)  (1,4;1) -
(o L (3) ,o) SO(12) x SO(4) x SO(16) o L1128 ) o0

((i)S;US) SU(8) x U(1) x SO(16) (70;1) @ (1;128,), +/2 _ _

Table 13: SO(16) x SO(16) model: Z = (1,07;1,07).
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