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Abstract

We investigate some properties of non-supersymmetric string theory which are expected

to be applied to phenomenology. We consider the non-supersymmetric string models con-

structed by orbifolding the toroidal models by Z2 freely acting twists. The heterotic string

models are mainly focused on in this thesis.

We begin with identifying target space duality groups (T-duality groups) in the non-

supersymmetric string models by noting that the Narain lattice is split into two subsets

in the process of the construction. It is shown that the T-duality groups are congruence

subgroups of level 2 in O(dL, dR,Z), which are regarded as automorphisms of the two subsets

obtained by splitting the Narain lattice. We also point out that the transitions among the

non-supersymmetric string models can be induced by acting elements of O(dL, dR,Z) which
are not included in the congruence subgroup.

Secondly, we study the massless spectra in the nine-dimensional non-supersymmetric

heterotic models which depend on the Wilson line and the radius. In particular, we restrict

our attention to the unwinding string states and figure out patterns of the gauge symmetry

enhancement and massless states in the untwisted and twisted sectors.

We then evaluate the cosmological constant in a particular class of the non-supersymmetric

string models and show that the exponential suppression of the cosmological constant can

occur if there is Bose-Fermi degeneracy at the massless level. This extremely small cos-

mological constant is preferable to make a realistic scenario from non-supersymmeric string

theory to low-energy physics. We find some configurations of the Wilson line that yield the

exponentially suppressed cosmological constant.

Finally, we analyze stability of the Wilson line moduli from the one-loop effective poten-

tial. We conclude that the global minima correspond to the maximal symmetry enhance-

ments which lead to the negative cosmological constant. Some of the Wilson lines that realize

the suppression of the cosmological constant correspond to the saddle points.

This thesis is based on a series of our work [1–5].
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1 Introduction

String theory is a promising candidate for a unified description of all the fundamental interac-

tions including gravity. One of the interesting features of string theory is that the dimension

of spacetime is required to be ten for superstrings or twenty-six for bosonic strings. This

fact is apparently inconsistent with our universe being four-dimensional. However, there

are some ways to rescue this situation. The most familiar one is compactifications; six spa-

tial dimensions are supposed to form a compact space of which the volume is sufficiently

small so that we cannot observe. Although there is no general principle to determine which

compact spaces should be chosen, supersymmetry plays a key role in indicating a policy of

the compactifications. It is known that some issues of the Standard Model (e.g. unnatu-

ralness) could be explained by introducing supersymmetry. It is hence favorable to adopt

Calabi-Yau manifolds [6] or orbifolds [7, 8] in top-down approaches from string theory so

that some supersymmetry is preserved in four-dimensional effective theories. In particular,

the compact spaces that lead to N = 1 supersymmetric theories in four dimensions are phe-

nomenologically preferred. For this reason, a lot of top-down scenarios have been considered

under the assumption that supersymmetry is completely broken at a somewhat low energy

scale. According to recent accelerator experiments, however, supersymmetry has not been

found at the multi TeV scale. Based on this fact, it is worth adopting the viewpoint that

supersymmetry is already broken at a very high energy scale, e.g., the Planck/string scale,

putting the benefits of low-energy supersymmetry aside.

The existence of non-supersymmetric string theories has already been known since the

mid-1980’s [9–12]. Although most of them have a tachyon in the free-spectra, there were

found few tachyon-free models, e.g., the SO(16) × SO(16) heterotic model even in ten-

dimensions [9, 10]. More tachyon-free string models without supersymmetry in general di-

mensions have been constructed [13,14] and used for directly building realistic models such

as the Standard Models (see e.g. [15, 16]) or exploring the early universe and the cosmic

history (see e.g. [17–19]). However, there are some issues in non-supersymmetric string

phenomenology even though the models are tachyon-free. One of the serious ones is the

vacuum instability; in usual, the vacuum energies (cosmological constants) without super-

symmetry are rather large, and the dilaton tadpoles, which are proportional to the vacuum

energies, induce the instability [20, 21]. For instance, in the SO(16) × SO(16) heterotic

models six-dimensionally toroidal compactified, the value of the one-loop cosmological con-
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stant is order of M4
s , where Ms is the string scale. To address this difficulty, some non-

supersymmetric string models with vanishing or small cosmological constants have been

proposed (see e.g. [22–33]). In this thesis, in particular, we focus on the interpolating mod-

els in which the cosmological constant can be exponentially suppressed. The interpolating

models are constructed by a stringy version of the Scherk-Scwharz compactifications [34–38],

and hence supersymmetry is broken at the scale of the inverse volume of the internal direc-

tions accompanied with the Scherk-Scwharz mechanism. In Ref [39, 40], it is shown that in

nine-dimensional interpolating heterotic models, as the (dimensionless) radius R of a circle

goes to large, the leading contribution of the one-loop cosmological constant can be evaluated

as follows:

Λ(9)(R) ∼ (nF − nB)ξR
−9 +O(e−R), (1.1)

where ξ is a constant which we will calculate in this thesis, and nF (nB) is the degrees of free-

dom of massless fermionic (bosonic) states. Eq. (1.1) implies that the cosmological constants

are exponentially suppressed in interpolating models in which Bose-Fermi degeneracy at

massless level is realized. Such models, which are often called super no-scale models [41–43],

can avoid the problem of instability even without supersymmetry. In fact, the string models

with supersymmetry breaking by the Scherk-Schwarz mechanism has been attracting a lot

of attention in the context of non-supersymmetric heterotic string phenomenology [42–59].

Duality is a key feature in studies of theoretical physics. In string theory, there are two

well-known dualities: S-duality (strong-weak coupling duality) [60,61] and T-duality (target

space duality) [62–65]. A familiar example of S-duality is that between the heterotic SO(32)

superstring theory and the type I superstring theory. Although we will mainly focus on the

heterotic models in this thesis, the similar analysis in the type I theory has been discussed

in [66–71]. As for T-duality, one can see the typical example in bosonic string theory com-

pactified on a circle; strings on S1 with a radius R are equivalent to those on S1 with a radius

α′/R, where α′ is the squared length of a string. This equivalence of two circles cannot be

found in theory of point particles, and hence T-duality is a characteristic property in string

theory. Such unique symmetries allow us to consider non-geometric backgrounds [72–82]

(e.g., asymmetric orbifolds or T-folds), and furthermore field theories that have the T-

duality as a manifest symmetry have been proposed [83–85]. Most interest of T-duality has

been devoted to compact spaces that preserve some supersymmtry. For instance, it is known

that the T-duality group of closed strings compactified on a torus in which supersymmetry
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are maximally preserved is given as a O(dL, dR,Z), where dL (dR) denotes the degrees of

freedom of the left (right) movers propagating in the compact space. In particular, on a

two-dimensional torus, T-duality group includes modular symmetries, and the supersym-

metric effective field theories that are invariant under a modular transformation have been

constructed in [86]. In the context of flavor physics, non-Abelian discrete symmetries (e.g.

the modular symmetry), which can be regarded as (parts of) T-dualities, are considered as

a candidate for an origin of the flavor symmetry in the Standard Model [87–94]. It has how-

ever not been known what kind of structure the T-duality group in the non-supersymmetric

models has. In this thesis, we will identify the T-duality groups of the string models in which

supersymmetry is completely broken by the Scherk-Schwarz mechanism.

This thesis is organized as follows. In section 2, we review the procedure of the con-

struction of the non-supersymmetric models of which we will studied some properties in the

subsequent sections. We also give the partition functions and concrete examples, some of

which correspond to interpolating models. In section 3, we identify the T-duality groups of

the non-supersymmetric string models by noting the construction introduced in section 2.

We also point out that the transitions among the non-supersymmetric models are induced

by acting elements of O(dL, dR,Z) which are not in the T-duality group. In section 5, we

study patterns of the symmetry enhancement which depends on configurations of the Wilson

line. As shown in (1.1), the leading behavior of the cosmological constant is controlled only

by the massless spectrum. So, in order to find the exponentially suppressed cosmological

constants, it is important to understand possible enhancements of the gauge symmetry and

massless fermions. In section 6, we devote ourselves to analyze stability of the Wilson line

moduli, focusing on the region where supersymmetry is asymptotically restored. In section

7, we summarize this thesis and show some future directions.
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2 Review of non-supersymmetric string models

In this section, we review the construction of the non-supersymmetric models which were

originally proposed in ten-dimensions by Dixon and Harvey in [9], and generalized to arbi-

trary dimensions by Ginsparg and Vafa in [11].

2.1 Construction

The construction of the non-supersymmetric models is done by Z2 freely acting orbifolding.

Note that any moduli cannot be fixed in this construction and hence we can start with

string models compactified on any tori. In the toroidal compactifications, it is known that

modular invariance requires that the internal momenta live in an even-self dual lattice with

Lorentzian signature (dL, dR), which is called a Narain lattice [95, 96]. The spectra in the

toroidal models are made of the following pairings of the spacetime representations and the

internal momentum lattices:

Type IIB (IIA) strings:
(
vv̄, ss̄ (sc̄), vs̄ (vc̄), sv̄; Γd,d

)
, (2.1)

Heterotic strings:
(
v̄, s̄; Γ16+d,d

)
, (2.2)

where ΓdL,dR denotes the Narain lattice and (o, v, s, c) represents the conjugacy classes of

SO(8) (see appendix A). The Z2 generator which leads to the non-supersymmetric model is

given by (−1)Fα, where F is the spacetime fermion number (F = FLFR for type II models,

F = FR for heterotic models) and α is a shift of order 2 in the Narain lattice. Note that

the state with an internal momentum P yields an eigenvalue e2πiP ·δ under α, where δ is a

shift-vector such that 2δ ∈ ΓdL,dR and the inner product is taken by η = diag (1dL ,−1dR).

It is convenient to decompose the Narain lattice ΓdL,dR into ΓdL,dR
+ and ΓdL,dR

− depending on

the inner products with δ being even or odd:

ΓdL,dR
+ =

{
P ∈ ΓdL,dR

∣∣ δ · P ∈ Z
}
, ΓdL,dR

− =

{
P ∈ ΓdL,dR

∣∣ δ · P ∈ Z+
1

2

}
. (2.3)

Then, after modding out by (−1)Fα, the spectrum in the untwisted sectors is expressed by

the following pairings:

Type IIB (IIA) strings:
(
vv̄, ss̄ (sc̄); Γd,d

+ ;
)
,
(
vs̄ (vc̄), sv̄; Γd,d

−

)
, (2.4)

Heterotic strings:
(
v̄; Γ16+d,d

+

)
,
(
s̄; Γ16+d,d

−

)
. (2.5)
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Modular invariance of the one-loop partition function requires that δ2 be an integer1 and

the twisted sectors be added. In the twisted sectors, the internal momenta are shifted by

δ and the spacetime representations are identified by the S-transformations of the SO(8)

characters2. For δ2 odd, the pairings of states in the twisted sectors are

Type IIB (IIA) strings:
(
oō, cc̄ (cs̄); Γd,d

− + δ
)
,
(
oc̄ (os̄), cō; Γd,d

+ + δ
)
, (2.6)

Heterotic strings:
(
ō; Γ16+d,d

+ + δ
)
,
(
c̄; Γ16+d,d

− + δ
)
, (2.7)

and for δ2 even,

Type IIB (IIA) strings:
(
oō, cc̄ (cs̄); Γd,d

+ + δ
)
,
(
oc̄ (os̄), cō; Γd,d

− + δ
)
, (2.8)

Heterotic strings:
(
ō; Γ16+d,d

− + δ
)
,
(
c̄; Γ16+d,d

+ + δ
)
, (2.9)

This dependence of the twisted sectors on δ2 even or odd comes from the requirement of

the left-right level-matching condition. We will see the detail in the next subsection and

appendix B.

2.2 Partition function

Possible Narain lattices are characterized by a set of parameters λa called moduli. We

can introduce the generalized vierbein Ẽ(λa) of the Narain lattice, which is expressed as

a (dL + dR) × (dL + dR) matrix. In order for the Narain lattice to be even and self-dual,

the Narain metric, which is defined as J = ẼηẼ t, must be an integer matrix with signature

(dL, dR) of which diagonal components are even and determinant is ±1. Then, an element

P of the Narain lattice is written as

P = ZẼ(λa), (2.10)

where Z is a (dL+dR)-dimensional row vector with integer components. Note that the inner

product of two elements P1 = Z1Ẽ and P2 = Z2Ẽ is independent of the moduli λa:

P1 · P2 = Z1Ẽ(λa)ηẼ t(λa)Zt
2 = Z1JZ

t
2. (2.11)

1See appendix B for details.
2We will see the details in the next subsection and appendix A .
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The one-loop partition function of the toroidal string models with maximal supersym-

metry preserved can be written as

ZT d

(λa) = Z
(8−d)
B ZFZΓdL,dR (λ

a). (2.12)

with the individual contributions defined as follows:

Z
(8−d)
B = τ

− 8−d
2

2 (ηη̄)−(8−d) , (2.13)

ZF =

 (V8 − S8)
(
V̄8 − S̄8

)
or (V8 − S8)

(
V̄8 − C̄8

)
(type IIB or type IIA strings)

V̄8 − S̄8 (heterotic strings)
,

(2.14)

ZΓdL,dR = η−dL η̄−dR
∑

P∈ΓdL,dR

q
1
2
P 2
L q̄

1
2
P 2
R , with

 dL = dR = d (type II strings)

dL − 16 = dR = d (heterotic strings)
,

(2.15)

where q = e2πiτ . Here η(τ) is the Dedekind eta function and (O8, V8, S8, C8) denotes a

set of the SO(8) characters (see appendix A). Note that the partition function is invariant

under the rotations O(dL,R) × O(dR,R) which act on the left- and right-moving momenta

individually. Namely, two generalized vierbeins Ẽ and Ẽu give the same toroidal model if

u ∈ O(dL,R)×O(dR,R).
As mentioned in the previous subsection, the non-supersymmetric model with the moduli

λa is constructed by orbifolding the toroidal model with the moduli λa by a Z2 twist (−1)Fα.

Since 2δ is in ΓdL,dR , the shift-vector δ is expressed as

δ =
1

2
ẐẼ(λa), (2.16)

for a certain integer vector Ẑ ∈ ZdL+dR . Recalling that δ2 is required to be an integer, Ẑ

must satisfy

ẐJẐt = 0 (mod 4). (2.17)

From the definition (2.3) of ΓdL,dR
± , we find that two choices Ẑ and Ẑ ′ give the same splitting

of the Narain lattice into ΓdL,dR
+ and ΓdL,dR

− if

Ẑ = Ẑ ′ (mod 2). (2.18)
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Thus, the choices of Ẑ are constrained by (2.17), and the non-supersymmetric models are

classified by the inequivalent choices of Ẑ with the equivalent relation given by (2.18). We

can choose Ẑ such that the components take 0 or 1 without loss of generality. It is of

course possible to choose Ẑ =
(
0dL , 0dR

)
. But, this choice corresponds to the toroidal

compactification, and we will exclude this choice from our consideration in this thesis. It is

convenient to denote the shift-vector and the partition function labeled by Ẑ such as δ(Ẑ)

and Z���SUSY
(Ẑ)

, for the choice of Ẑ to be clear. Let us now write down the partition function

Z���SUSY
(Ẑ)

. From (2.4) and (2.5), the contributions from the untwisted sectors are

Type IIB strings: Z
(8−d)
B

{(
V8V̄8 + S8S̄8

)
ZΓd,d

+
(λa)−

(
V8S̄8 + S8V̄8

)
ZΓd,d

−
(λa)

}
, (2.19)

Heterotic strings: Z
(8−d)
B

{
V̄8ZΓ16+d,d

+
(λa)− S̄8ZΓ16+d,d

−
(λa)

}
, (2.20)

where ZΓ16+d,d
±

is defined as

Z
Γ
dL,dR
±

= η−dL η̄−dR
∑

P∈ΓdL,dR
±

q
1
2
P 2
L q̄

1
2
P 2
R = η−dL η̄−dR

∑
P∈ΓdL,dR

1± e2πiδ·P

2
q

1
2
P 2
L q̄

1
2
p2R . (2.21)

The contributions from the twisted sectors can be obtained by the modular covariance of

the partition traces. Note that (2.19) and (2.20) are rewritten as

Type IIB strings:
1

2
Z

(8−d)
B

{
(V8 − S8)

(
V̄8 − S̄8

)
ZΓd,d + (V8 + S8)

(
V̄8 + S̄8

)
Z

(0,δ)

Γd,d

}
, (2.22)

Heterotic strings:
1

2
Z

(8−d)
B

{(
V̄8 − S̄8

)
ZΓ16+d,d +

(
V̄8 + S̄8

)
Z

(0,δ)

Γ16+d,d

}
, (2.23)

where we omit the argument λa and define Z
(0,δ)

ΓdL,dR
as

Z
(0,δ)

ΓdL,dR
= Z

Γ
dL,dR
+

− Z
Γ
dL,dR
−

= η−dL η̄−dR
∑

P∈ΓdL,dR

e2πiδ·P q
1
2
P 2
L q̄

1
2
P 2
R . (2.24)

One can notice that Z
(0,δ)

ΓdL,dR
corresponds to the partition trace over the internal momentum

space in which the Z2 operator α is inserted in the time-direction of the world-sheet. Then

we can obtain the partition traces of the twisted sectors by performing the S-transformation

for the second terms in (2.22) and (2.23). By using the formula∑
P∈ΓdL,dR

δ (P ′ − P ) =
∑

P ′′∈ΓdL,dR

exp (2πiP ′ · P ′′) , (2.25)
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we find3

S :

 (V8 + S8)
(
V̄8 + S̄8

)
Z

(0,δ)

Γd,d → (O8 − C8)
(
Ō8 − C̄8

)
Z

(δ,0)

Γd,d (type IIB strings)(
V̄8 + S̄8

)
Z

(0,δ)

Γ16+d,d →
(
Ō8 − C̄8

)
Z

(δ,0)

Γ16+d,d (heterotic strings)
, (2.26)

where Z
(δ,0)

ΓdL,dR
is defined as

Z
(δ,0)

ΓdL,dR
= ZΓdL,dR+δ = η−dL η̄−dR

∑
P∈ΓdL,dR

q
1
2
(PL+δL)

2

q̄
1
2
(PR+δR)2 . (2.27)

The action of (−1)Fα on the twisted sectors can be determined by requiring that the partition

function be invariant under τ → τ + 1. The following partition traces must be added in

order for the partition function to be modular invariant:

Type IIB strings: ∓ (O8 + C8)
(
Ō8 + C̄8

)
Z

(δ,δ)

Γd,d , (2.28)

Heterotic strings: ±
(
Ō8 + C̄8

)
Z

(δ,δ)

Γ16+d,d , (2.29)

where Z
(δ,δ)

ΓdL,dR
is defined as

Z
(δ,δ)

ΓdL,dR
= Z

Γ
dL,dR
+ +δ

− Z
Γ
dL,dR
− +δ

= η−dL η̄−dR
∑

P∈ΓdL,dR

e2πiδ·P q
1
2
(PL+δL)

2

q̄
1
2
(PR+δR)2 . (2.30)

The upper and lower signs of the prefactor in (2.28) and (2.29) are applied for δ2 odd and

δ2 even respectively, which is required for the invariance under the T -transformation (see

appendix B for details). As a result, the full partition function of the non-supersymmetric

models are written as follows; for type IIB strings

Z���SUSY
(Ẑ)

(λa) = Z
(8−d)
B

{(
V8V̄8 + S8S̄8

)
ZΓd,d

+
(λa)−

(
V8S̄8 + S8V̄8

)
ZΓd,d

−
(λa)

+
(
O8Ō8 + C8C̄8

)
ZΓd,d

∓ +δ(λ
a)−

(
O8C̄8 + C8Ō8

)
ZΓd,d

± +δ(λ
a)
}
, (2.31)

and for heterotic strings

Z���SUSY
(Ẑ)

(λa) = Z
(8−d)
B

{
V̄8ZΓ16+d,d

+
(λa)− S̄8ZΓ16+d,d

−
(λa)

+Ō8ZΓ16+d,d
± +δ(λ

a)− C̄8ZΓ16+d,d
∓ +δ(λ

a)
}
. (2.32)

These partition functions reproduce the free spectra of the non-supersymmetric strings given

in the previous subsection.

3See appandix A for the S-transformation laws of the SO(8) characters.
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2.3 Ten-dimensional models

As the simplest example, in this subsection, we see the ten-dimensional non-supersymmetric

models (i.e. d = 0). In the type II models, there is no internal direction, and hence we

have one possibility of the Z2 generator, i.e. (−1)F . Orbifolding by this Z2 twist gives the

well-known ten-dimensional non-supersymmetric models: the type 0B model and the type

0A model, both of which are tachyonic. The partition functions of the type 0B and type 0A

models are

Z(0B) = Z
(8)
B

(
O8Ō8 + V8V̄8 + S8S̄8 + C8C̄8

)
, (2.33)

Z(0A) = Z
(8)
B

(
O8Ō8 + V8V̄8 + S8C̄8 + C8S̄8

)
. (2.34)

In the heterotic models, there are sixteen chiral left-moving bosons of which the momenta

live in an even self-dual 16-dimensional lattice with the Euclidean signature, which we denote

as Γ16. It is known that such an even self-dual Euclidean lattice can be realized only if the

dimension is the multiple of eight, and there are the two possibilities in sixteen dimensions:

the E8 × E8 root lattice and the Spin(32)/Z2 root lattice4. Choosing an element π̂ of Γ16,

we get a shift-vector δ = π̂/2. As mentioned in the previous subsection, two choices π̂ and

π̂′ give the same non-supersymmetric model if π̂ = π̂′+2π0 for
∃π0 ∈ Γ16. Furthermore, with

d = 0 there are no continuous parameters to couple to quantum numbers such as winding

numbers, and hence π̂′ is in the equivalent choice to π̂ if π̂ = π̂′ up to permutations of

the components. Considering these constraints for inequivalent choices of π̂, there are four

possible shift-vectors in the case with Γ16 being the Spin(32)/Z2 root lattice, which are

shown in Table 1. The gauge symmetries and the spectra in the non-supersymmetric models

of course depend on the choices of π̂. With the E8×E8 root lattice, we have three possibilities

of the shift-vectors, and Table 2 shows them and the corresponding gauge groups.

From (2.32), the partition functions of the ten-dimensional non-supersymmetric models

are written as

Z���SUSY
(π̂) = Z

(8)
B

{
V̄8ZΓ16

+
− S̄8ZΓ16

−
+ Ō8ZΓ16

± +δ − C̄8ZΓ16
∓ +δ

}
, (2.35)

where Γ16
± is defined as

Γ16
+ =

{
π ∈ Γ16

∣∣ π̂ · π ∈ 2Z
}
, Γ16

− =
{
π ∈ Γ16

∣∣ π̂ · π ∈ 2Z+ 1
}
. (2.36)

4We review these lattices in appendix A
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δ = π̂
2

(1, 015)
((

1
2

)4
, 012

) ((
1
4

)16) ((
1
2

)8
, 08
)

gauge sym. SO(32) SO(24)× SO(8) SU(16)× U(1) SO(16)× SO(16)

Table 1: The shift-vectors to construct 10D non-supersymmetric heterotic models with the

Spin(32)/Z2 lattice and the gauge symmetries in the models.

δ = π̂
2

(1, 07; 08)
((

1
2

)2
, 06;

(
1
2

)2
, 06
)

(1, 07; 1, 07)

gauge sym. SO(16)× E8 (E7 × SU(2))2 SO(16)× SO(16)

Table 2: The shift-vectors to construct 10D non-supersymmetric heterotic models with the

E8 × E8 lattice and the gauge symmetries in the models.

From the partition function (2.35), one can check whether the spectrum includes physical

tachyonic states or not. From the expansions of the SO(8) characters and the Dedekind eta

function, a tachyonic state can appear only from the pairing
(
ō; Γ16

± + δ
)
(see appendix A).

In this sector, the right-moving excitation starts from the level −1
2
, while the tower of the

left-moving states is made by the Hamiltonian −1 + 1
2
(π + δ)2 + NL where NL runs over

non-negative integers, and π ∈ Γ16
+ or π ∈ Γ16

− depending on δ2 odd or even. The left-moving

vacuum is thus at −1+δ2 since 2δ ∈ Γ16 and δ /∈ Γ16. Note that the shift-vector can be chosen

such that δ2 is 1 or 2, as shown in Tables 1 and 2. Thus, except for the SO(16) × SO(16)

heterotic models, all the 10D non-supersymmetric models, in which δ2 = 1, have physical

tachyonic states in the free spectra. In other words, only the SO(16) × SO(16) heterotic

models with δ2 = 2 are tachyon-free in ten dimensions.

The non-supersymmetric heterotic models shown in Table 1 and Table 2 were constructed

in the bosonic formulation by Dixon and Harvey [9], just as we have done above. One can

obtain the same non-supersymmetric models in the fermionic formulation by introducing a

discrete torsion [10].

2.4 Nine-dimensional models

The type II models compactified on a circle have the internal momenta in Γ1,1:

P = (PL, PR) =
1√
2

(
nR−1 +mR,nR−1 −mR

)
, m, n ∈ Z, (2.37)
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where R is the radius of the circle normalized to be dimensionless by using the string length

scale. In the type II models with d = 1 there are two inequivalent choices of Ẑ = (m̂, n̂):

(1, 0) and (0, 1). For the choice (1, 0) ((0, 1)), n (m) is even in Γ1,1
+ while odd in Γ1,1

− since

δ · P = n (δ · P = m). Then the partition function of the type IIB model with Ẑ = (1, 0) is

Z���SUSY
(1,0) = Z

(7)
B

{(
V8V̄8 + S8S̄8

)
Λ(1,0) [0|0]−

(
V8S̄8 + S8V̄8

)
Λ(1,0) [0|1]

+
(
O8Ō8 + C8C̄8

)
Λ(1,0) [1|0]−

(
O8C̄8 + C8Ō8

)
Λ(1,0) [1|1]

}
, (2.38)

where Λ(1,0) [α|β] is defined as

Λ(1,0) [α|β] = (ηη̄)−1
∑

m∈Z+α
2

∑
n∈2Z+β

q
1
4(nR−1+mR)

2

q̄
1
4(nR−1−mR)

2

. (2.39)

Noting that the states with m ̸= 0 become very massive as R → ∞, one can find

Λ(1,0) [α|β]
R→∞−−−→

 R
2
τ
− 1

2
2 (ηη̄)−1 for α = 0

0 for α ̸= 0
. (2.40)

In the limit R → 0, the states with n = 0 only contribute and the behavior of Λ(1,0) [α|β] is

Λ(1,0) [α|β]
R→0−−−→

R−1τ
− 1

2
2 (ηη̄)−1 for β = 0

0 for β ̸= 0
. (2.41)

Therefore, from the partition function (2.38), the type IIB model with Ẑ = (1, 0) produces

the 10D type IIB model and the 10D type 0A model in the endpoint limits R → ∞ and

R → 0 respectively. Note that the chirality of the right-moving states is flipped in the limit

R → 0 since we perform T-dual to open up the compactified dimension. In the same way,

one can check that the type IIB model with Ẑ = (0, 1) produces the 10D type 0B model and

the 10D type IIA model in the endpoint limits.

In the heterotic models with d = 1, the left- and right-moving internal momenta PL =

(ℓL, pL) and PR = pR are written as

ℓL = π −mA, (2.42a)

pL =
1√
2R

[
π · A+m

(
R2 − 1

2
|A|2

)
+ n

]
, (2.42b)

pR =
1√
2R

[
π · A−m

(
R2 +

1

2
|A|2

)
+ n

]
, (2.42c)
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where A = A9I is a Wilson line. Here we take the Narain metric as

J =


g16 0 0

0 0 1

0 1 0

 , (2.43)

where g16 is a Cartan metric of Γ16 which is defined as g16 = α16α
t
16 with α16 being a set of

the basis of Γ16. Note that the condition (2.17) for Ẑ = (q̂, m̂, n̂) ∈ Z16+2d is rewritten as

|π̂|2 + 2m̂n̂ = 0 mod 4, (π̂ = q̂α16). (2.44)

We then classify the 9D non-supersymmetric heterotic models into the following four classes

depending on the choice of (m̂, n̂);

(1) |π̂|2 = 0 (mod 4), (m̂, n̂) = (0, 0);

With this choice, the splitting of the Narain lattice is

Γ17,1
± =

{
ZẼ
∣∣(π,m, n) ∈ Γ16

± × Z× Z
}
, (2.45)

where Γ16
± is defined as in (2.36) by using π̂. In the twisted sector, the momenta live in

Γ17,1
± + δ =

{
ZẼ
∣∣∣∣(π,m, n) ∈

(
Γ16
± +

π̂

2

)
× Z× Z

}
. (2.46)

The non-supersymmetric models in this class correspond to the circle compactification

of the 10D non-supersymmetric heterotic models which are shown in Table 1 and Table

2. To see this, let us study the behaviors in the endpoint limits. Since the states with

m = 0 (n = 0) only contribute as R → ∞ (R → 0), we find

ZΓ17,1
±

→ R
√
τ2

(ηη̄)−1 ZΓ16
±
, ZΓ17,1

± +δ →
R
√
τ2

(ηη̄)−1 ZΓ16
± + π̂

2
, (R → ∞), (2.47)

ZΓ17,1
±

→ 1

R
√
τ2

(ηη̄)−1 ZΓ16
±
, ZΓ17,1

± +δ →
1

R
√
τ2

(ηη̄)−1 ZΓ16
± + π̂

2
, (R → 0). (2.48)

Thus, one can see from (2.35) that both of the endpoint limits in this class give the

10D non-supersymmetric model with π̂.

(2) |π̂|2 = 0 (mod 4), (m̂, n̂) = (1, 0);
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In this class, Γ17,1
± and Γ17,1

± + δ are expressed as

Γ17,1
± =

{
ZẼ
∣∣(π,m, n) ∈

(
Γ16
± × Z× 2Z

)
+
(
Γ16
∓ × Z× (2Z+ 1)

)}
. (2.49)

Γ17,1
± + δ =

{
ZẼ
∣∣∣∣(π,m, n) ∈

((
Γ16
± +

π̂

2

)
×
(
Z+

1

2

)
× 2Z

)
+

((
Γ16
∓ +

π̂

2

)
×
(
Z+

1

2

)
× (2Z+ 1)

)}
.

(2.50)

In the endpoint limits, ZΓ17,1
±

and ZΓ17,1
± +δ behave as

ZΓ17,1
±

→ R
√
τ2

(ηη̄)−1 ZΓ16 , ZΓ17,1
± +δ → 0, (R → ∞), (2.51)

ZΓ17,1
±

→ 1

R
√
τ2

(ηη̄)−1 ZΓ16
±
, ZΓ17,1

± +δ →
1

R
√
τ2

(ηη̄)−1 ZΓ16
± + π̂

2
, (R → 0). (2.52)

Note that the states with m = 0 do not live in Γ17,1
± + δ and hence ZΓ17,1

± +δ is vanishing

as R → ∞. The model in this class reproduces the 10D supersymmetric heterotic

model while give the 10D non-supersymmetric model with π̂. In section 5 and 6, we

will focus on the heterotic models in this class and discuss the cosmological constant

and the moduli stabilization.

(3) |π̂|2 = 0 (mod 4), (m̂, n̂) = (0, 1);

In this class, Γ17,1
± and Γ17,1

± + δ are expressed as

Γ17,1
± =

{
ZẼ
∣∣(π,m, n) ∈

(
Γ16
± × 2Z× Z

)
+
(
Γ16
∓ × (2Z+ 1)× Z

)}
, (2.53)

Γ17,1
± + δ =

{
ZẼ
∣∣∣∣(π,m, n) ∈

((
Γ16
± +

π̂

2

)
× 2Z×

(
Z+

1

2

))
+

((
Γ16
∓ +

π̂

2

)
× (2Z+ 1)×

(
Z+

1

2

))}
.

(2.54)

The behaviors of ZΓ17,1
±

and ZΓ17,1
± +δ in the endpoint limits are

ZΓ17,1
±

→ R
√
τ2

(ηη̄)−1 ZΓ16
±
, ZΓ17,1

± +δ →
R
√
τ2

(ηη̄)−1 ZΓ16
± + π̂

2
, (R → ∞), (2.55)

ZΓ17,1
±

→ 1

R
√
τ2

(ηη̄)−1 ZΓ16 , ZΓ17,1
± +δ → 0, (R → 0). (2.56)
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The model in this class gives the 10D non-supersymmetric model with π̂ and the

10D supersymmetric heterotic model in the endpoint limits R → ∞ and R → 0

respectively. The models in class (2) and class (3) are called interpolating models since

they interpolate between two different higher-dimensional string vacua.

(4) |π̂|2 = 2 (mod 4), (m̂, n̂) = (1, 1);

In this class, Γ17,1
± and Γ17,1

± + δ are written as

Γ17,1
± =

{
ZẼ
∣∣(π,m, n) ∈

(
Γ16
± × Γ(1)

g

)
+
(
Γ16
∓ × Γ(1)

v

)}
, (2.57)

Γ17,1
± + δ =

{
ZẼ
∣∣∣∣(π,m, n) ∈

((
Γ16
± +

π̂

2

)
× Γ(1)

s

)
+

((
Γ16
∓ +

π̂

2

)
× Γ(1)

c

)}
, (2.58)

where Γ
(n)
g , Γ

(n)
v , Γ

(n)
s and Γ

(n)
c are the conjugacy classes of SO(2n) (see appendix A).

The behaviors of ZΓ17,1
±

and ZΓ17,1
± +δ in the endpoint limits are

ZΓ17,1
±

→ R
√
τ2

(ηη̄)−1 ZΓ16 , ZΓ17,1
± +δ → 0, (R → ∞), (2.59)

ZΓ17,1
±

→ 1

R
√
τ2

(ηη̄)−1 ZΓ16 , ZΓ17,1
± +δ → 0, (R → 0). (2.60)

We find then that supersymmetry is asymptotically restored in both of the endpoint

limits, although broken at finite values of R. Note that if the models with A = 0 in

this class have the gauge symmetries with rank 16 that cannot be realized in the 10D

non-supersymmetric models as shown in Table 1 and Table 2 since π̂ must be chosen

such that |π̂|2 = 2 mod 4.
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3 Target space duality

From now, we assume d ≥ 1 in order to discuss the T-duality groups. Modular invariance

requires that the Narain lattice be an even self-dual with Lorentzian signature (dL, dR).

Picking up a Narain lattice with a generalized vierbein Ẽ0, it is known that all the even

self-dual lattices with the same Narain metric J = Ẽ0ηẼ t
0 can be obtained by acting E(λa) ∈

O(dL, dR,R) on Ẽ0 from the left side, where the Lorentz boost O(dL, dR,R) is defined in

terms of the Narain metric J : EJE t = J . The deformed Narain lattices have the generalized

vierbein Ẽ(λa) = E(λa)Ẽ0. As seen in the previous section, the deformation by E(λa) that

satisfies EẼ0 = Ẽ0u for u ∈ O(dL,R)×O(dR,R) does not change the partition function. So,

the moduli space of the toroidal models is locally isomorphic to O(dL, dR,R)/O(dL,R) ×
O(dR,R) [95, 96]. However, we should notice that the discrete subgroup O(dL, dR,Z) ⊂
O(dL, dR,R) acts on the Narain lattice as an automorphism and keep the toroidal model

unchanged. Namely, two moduli λa and λ′a give the same toroidal model if

E(λ′a)Ẽ0 = gE(λa)Ẽ0u (3.1)

holds for u ∈ O(dL,R)×O(dR,R) and g ∈ O(dL, dR,Z). Therefore, the space of inequivalent
Narain lattices is given as O(dL, dR,Z)\O(dL, dR,R)/O(dL,R) × O(dR,R). The discrete

subgroup O(dL, dR,Z) is called a T-duality group of the toroidal models.

The main goal of this section is to identify T-duality groups of the non-supersymmetric

models constructed in the previous section. The question is whether λa and λ′a give the

equivalent non-supersymmetric model whenever they satisfy (3.1), i.e., whether the following

proposition is true for any g ∈ O(dL, dR,Z):

ZT d

(λa) = ZT d

(λ′a) =⇒ Z���SUSY
(Ẑ)

(λa)
?
= Z���SUSY

(Ẑ)
(λ′a). (3.2)

Recalling that the partition function Z���SUSY
(Ẑ)

(λa) is obtained from ZT d
(λa) by splitting the

Narain lattice by δ(λa), we can easily see that (3.2) does not always hold for any g ∈
O(dL, dR,Z). In order for Z���SUSY

(Ẑ)
to be unchanged under the discrete deformations, g must

maintain the inner products of any P ∈ ΓdL,dR with δ mod 1:

δ · P = δ · P ′ (mod 1) for any P ∈ ΓdL,dR , (3.3)

where P ′ is the corresponding element of the Narain lattice deformed by g. Inserting P = ZẼ ,
P ′ = ZgẼ and δ = 1

2
ẐẼ into (3.3), we find

Ẑ = Ẑg (mod 2). (3.4)
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For a choice of Ẑ, let us define a discrete group D(Ẑ) (dL, dR) as

D(Ẑ) (dL, dR) =
{
g ∈ O(dL, dR,Z)

∣∣∣ Ẑg = Ẑ (mod 2)
}
. (3.5)

Then, D(Ẑ) (dL, dR) corresponds to the T-duality group of the non-supersymmetric model

with Ẑ. Obviously, D(Ẑ)(dL, dR) is a subgroup of O(dL, dR,Z) since if g1 and g2 are elements

of D(Ẑ)(dL, dR), then the product g1g2 is also in D(Ẑ)(dL, dR):

Ẑg1g2
mod 2
= Ẑg2

mod 2
= Ẑ. (3.6)

One can furthermore show that the principal congruence subgroup of level 2 of O(dL, dR,Z),
which is defined as

Γ(2) =
{
g ∈ O(dL, dR,Z)

∣∣∣(g)AB
mod 2
= 1 for A = B, (g)AB

mod 2
= 0 for A ̸= B

}
, (3.7)

is a subgroup of D(Ẑ)(dL, dR). The T-duality group D(Ẑ)(dL, dR) is thus a congruence sub-

group of O(dL, dR,Z).
We can understand the above result from a different point of view. Let λ′a denote the

moduli that are related to λa by g as in (3.1). The shift-vector δ(λ′a) with Ẑ can be then

expressed in terms of λa by using g:

δ(λ′a) =
1

2
ẐẼ(λ′a) =

1

2
ẐgẼ(λa)u, (3.8)

where u ∈ O(dL,R) × O(dR,R). Recalling that ZT d
(λa) is invariant under u, one can

find from (3.8) that the shift-vector δ(λ′a) with Ẑ is equivalent to δ(λa) with Ẑg. Using

ZT d
(λ′a) = ZT d

(λa), we get

Z���SUSY
(Ẑ)

(λ′a) = Z���SUSY
(Ẑg)

(λa). (3.9)

Therefore, in order for the proposition (3.2) to be true, it is required that Ẑg be in an

equivalent choice to Ẑ. From (2.18), a T-duality element g in the non-supersymmetric

model with Ẑ must satisfy Ẑg = Ẑ mod 2. Then we obtain D(Ẑ)(dL, dR) defined in (3.5)

as the T-duality group of the non-supersymmetric model with Ẑ. Eq. (3.9) also implies

that acting g ∈ O(dL, dR,Z) not in D(Ẑ)(dL, dR) on the non-supersymmetric model with Ẑ

gives another non-supersymmetric model with Ẑg. Therefore g ∈ O(dL, dR,Z), in general,

induces the transitions among the non-supersymmetric models, and the models of which the

T-duality groups include g correspond to the fixed points of the transitions.
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3.1 T-duality in type II models

In the type II models d-dimensionally compactified, there are d×d moduli: a metric G = eet

of the compactification lattice, an anti-symmetric two-form B. Note that these moduli are

described by a d × d matrix E = G + B called a background matrix. The standard choice

of a Narain metric in Γd,d is

J =

(
0 1d

1d 0

)
. (3.10)

An element of the Narain lattice in the type II models is then expressed as

P = ZẼ(e,B) = ZE(e,B)Ẽ0, (3.11)

where

E(e,B) =

(
e Be−t

0 e−t

)
, Ẽ0 =

1√
2

(
1d −1d

1d 1d

)
. (3.12)

One can check Ẽ0ηẼ t
0 = J and EJE t = J so that ẼηẼ t = J . Using the background matrix E,

P = (PL, PR) is written as

P =
1√
2

(
n+mE,n−mEt

)
e−t, (3.13)

where Z = (m,n) =
(
m1, · · · ,md, n1, · · · , nd

)
. One can easily check that (3.11) with d = 1

agrees with (2.37). The free spectrum of a string is given by the Hamiltonian

H ∼ 1

2

(
P 2
L + P 2

R

)
=

1

2
ZM(E)Zt, (3.14)

where the part of the oscillators is omitted and a 2d× 2d matrix M is defined as

M(E) = E(e,B)E t(e,B) =

(
G−BG−1B BG−1

−G−1B G−1

)
. (3.15)

The T-duality group O(d, d,Z) of the toroidal models acts on P as follows:

P → P ′ = ZgE(e,B)Ẽ0, g =

(
a b

c d

)
∈ O(d, d,Z), (3.16)

where a, b, c, d are d× d integer matrices that satisfy the following relations:

atc+ cta = 0, btd+ dtb = 0, atd+ ctb = 1d. (3.17)
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We see that the O(d, d,Z) transformation is an automorphism of the free spectrum since

the Hamiltonian H transforms to H ′ = ZgM(E)gtZt which gives another point in the same

space of states. The transformation (3.16) can be interpreted as acting on the background

matrix E as

E → E ′ = (aE + b) (cE + d)−1 . (3.18)

Let us apply the above discussion about the T-duality group of the non-supersymmetric

models to the type II models. The non-supersymmetric models are classified by the possible

choices of Ẑ = (m̂, n̂) with each slot taking 0 or 1 and satisfying m̂n̂t = 0 mod 2. The

T-duality group (3.5) of the non-supersymmetric type II model with Ẑ is

D(Ẑ)(d, d) =

{
g =

(
a b

c d

)
∈ O(d, d,Z)

∣∣∣∣∣ (m̂a+ n̂c, m̂b+ n̂d) = (m̂, n̂) (mod 2)

}
.

(3.19)

3.1.1 Specific elements of D(Ẑ)(d, d)

Let us focus on well-known elements of O(d, d,Z) and identify which elements survive in

the non-supersymmetric models. We here introduce the following four types of T-duality

elements:

• Basis change of the compactification lattice:

ge(K) =

(
K 0

0 K−t

)
, (K ∈ GL (d,Z)) . (3.20)

In order for ge(K) to be in D(Ẑ)(d, d), K needs to satisfy (m̂K, n̂K−t) = (m̂, n̂) mod 2.

• Integer theta-parameter shift of B-field:

gB(Θ) =

(
1d Θ

0 1d

)
,

(
Θt = −Θ ∈ Md×d(Z)

)
. (3.21)

From (3.19), the non-supersymmetric model with Ẑ = (m̂, n̂) is invariant under the

shifts Bij → Bij +Θij with shift parameters satisfying m̂Θ = 0 mod 2.
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• Factorized duality and inversion:

gDi
=

(
1d − ei ei

ei 1d − ei

)
, (3.22)

where ei is a d× d matrix whose components are zero, except for the ii one taking 1.

The condition for gDi
to be in D(Ẑ)(d, d) is

(m̂, n̂) = (m̂− m̂ei + n̂ei, n̂− n̂ei + m̂ei) (mod 2). (3.23)

Thus, the non-supersymmetric model with Ẑ = (m̂, n̂) satisfying m̂i = n̂i is invariant

under the i-th factorized duality gDi
. The inversion gD of the background matrix E,

which is generated by the products of the factorized dualities,

gD =
d∏

i=1

gDi
=

(
0 1d

1d 0

)
, (3.24)

is a symmetry only in the non-supersymmetric model with Ẑ =
(
1d, 1d

)
.

• Integer theta-parameter shift of dual B-field:

gB̃(Θ̃) = gDgB(Θ̃)gD =

(
1d 0

Θ̃ 1d

)
,

(
Θ̃t = −Θ̃ ∈ Md×d(Z)

)
. (3.25)

The non-supersymmetric model with Ẑ = (m̂, n̂) is invariant under the shifts with

parameters satisfying n̂Θ̃ = 0 mod 2.

The first two elements are called geometric ones. Indeed one can check E(e,B) =

ge(e)gB(B), and hence any generalized vierbeins are obtained by starting from E(1d, 0) = 12d

and acting ge and gB. On the other hand, gDi
, gD and gB̃ are known as non-geometric ele-

ments.

The simplest example is the d = 1 case which we have introduced in subsection 2.4 and

in which there are two possibilities of Ẑ, i.e., (1, 0) and (0, 1). There is only one non-trivial

element in O(1, 1,Z), that is, the factorized duality gD1 . But, the factorized duality does not

survive in both of the non-supersymmetric models since neither of the choices of Ẑ satisfies

m̂1 = n̂1 mod 2. Rather than that, acting gD1 on either of the models induces the transition

to the other model. As seen in subsection 2.4, the 9D non-supersymmetric models produce

the different 10D models in the limits R → ∞ and R → 0, and gD1 is interpreted as the

interchange of the two 10D endpoint models.
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gρ(γT ) gρ(γS) gR gS2 gD1

gD2gτ (γT )gD2 gD2gτ (γS)gD2 gD2gWgD2gW gRgτ (γS) gS2gD2gS2

Table 3: The elements gτ (γT ), gτ (γS), gW and gD2 generate the T-duality group in the

toroidal model. This table lists the products of the generators which give gρ(γ), gR, gS2 and

gD1 .

3.1.2 Type II models with d = 2

One of the simple and interesting examples is the d = 2 case. We can change the basis of

the moduli space such that the T-duality group O(2, 2,Z) is decomposed into PSL(2,Z)×
PSL(2,Z). To do this, we define two complex parameters τ and ρ by combining the four

real parameters G11, G22, G12, B12 as follows:

τ = τ1 + iτ2 =
G12

G22

+ i

√
G

G22

, (3.26a)

ρ = ρ1 + iρ2 = B12 + i
√
G, (3.26b)

where G = G11G22 −G2
12. Then we get the two complex momenta:

|PL| =
1√
2τ2ρ2

|(n1 − τn2)− ρ (m2 + τm1)| , (3.27a)

|PR| =
1√
2τ2ρ2

|(n1 − τn2)− ρ̄ (m2 + τm1)| . (3.27b)

Here, we have given only the absolute values of the momenta because there are the O(2,R)×
O(2,R) symmetry which is isomorphic to U(1)× U(1).

In the toroidal models, one can find two modular symmetries which act on the complex

structure τ and the Kähler structure ρ individually.

gτ (γ) : (τ, ρ) →
(
aτ + b

cτ + d
, ρ

)
, (3.28)

gρ(γ) : (τ, ρ) →
(
τ,

aρ+ b

cρ+ d

)
, (3.29)

where γ =

(
a b

c d

)
∈ PSL(2,Z). Besides the above modular groups, there are some spe-

cific duality elements. One of them is the interchange of the complex and Kähler structures,

gD2 : (τ, ρ) → (ρ, τ), (3.30)
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which corresponds to the factorized duality for the X2-direction. The factorized duality for

the X1-direction is realized by the following transformation:

gD1 : (τ, ρ) →
(
−1

ρ
,−1

τ

)
. (3.31)

The interchange of the basis X1 ↔ X2 is given by

gS2 : (τ, ρ) →
(
1

τ̄
,−ρ̄

)
. (3.32)

The others are the reflection X2 → −X2 and the world sheet parity PL ↔ PR, which are

respectively expressed as the following transformations:

gR : (τ, ρ) → (−τ̄ ,−ρ̄), gW : (τ, ρ) → (τ,−ρ̄). (3.33)

Not all the elements we present above are independent. In fact, we can pick up the four

elements gτ (γT ), gτ (γS), gW and gD2 as a minimum set of the generators. Here γT and γS

are matrices generating a modular group:

γT =

(
1 1

0 1

)
, γS =

(
0 1

−1 0

)
. (3.34)

The other elements are obtained by the combinations of the generators. For instance, the

modular group (3.29) which acts on ρ is generated by

gρ(γT ) = gD2gτ (γT )gD2 , gρ(γS) = gD2gτ (γS)gD2 . (3.35)

The Z2 elements gR, gS2 and gD1 can be also expressed as the products of the generators, as

shown in Table 3.

The above transformations of (τ, ρ) can be regarded as those of Z = (m,n). Under gτ (γ),

gD2 and gW , for instance, Z transforms as

gτ (γ) : Z → ZMτ (γ) , (3.36)

gD2 : Z → ZMD2 , (3.37)

gW : Z → ZMW , (3.38)

where Mτ (γ), MD2 and MW are 4× 4 matrices defined as

Mτ (γ) =

(
γ 0

0 γ−t

)
, MD2 =

(
e1 e2

e2 e1

)
, MW =

(
−12 0

0 12

)
, (3.39)
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(m̂, n̂) gτ (γ) gρ(γ) gD2 gD1 gS2

(1, 0, 0, 0) γ ∈ Γ1(2) γ ∈ Γ1(2) gD2 — —

(0, 1, 0, 0) γ ∈ Γ1(2) γ ∈ Γ1(2) — gD1 —

(0, 0, 1, 0) γ ∈ Γ1(2) γ ∈ Γ1(2) gD2 — —

(0, 0, 0, 1) γ ∈ Γ1(2) γ ∈ Γ1(2) — gD1 —

(1, 0, 0, 1) γ ∈ Γ1(2) γ ∈ Γϑ — — —

(0, 1, 1, 0) γ ∈ Γ1(2) γ ∈ Γϑ — — —

(1, 1, 0, 0) γ ∈ Γϑ γ ∈ Γ1(2) — — gS2

(0, 0, 1, 1) γ ∈ Γϑ γ ∈ Γ1(2) — — gS2

(1, 1, 1, 1) γ ∈ Γϑ γ ∈ Γϑ gD2 gD1 gS2

Table 4: The elements of D(Ẑ)(2, 2) which depend on the choice of Ẑ are shown.

where e1 = diag(1, 0) and e2 = diag(0, 1). The representation matrices of the other elements

are expressed as the products of Mτ (γ), MW and MD2 . As shown in Table 3, for instance,

the representation matrices of gρ(γ) and gR are given by

Mρ(γ) = MD2Mτ (γ)MD2 , MR = MD2MWMD2MW . (3.40)

Let us study the T-duality group D(Ẑ)(2, 2) of the non-supersymmetric model with Ẑ on

the basis given in (3.26). There are nine possible choices of Ẑ with d = 2: Ẑ =
(
1, 0, 0, 0

)
,(

0, 0, 1, 0
)
, (1, 0, 0, 1), (0, 1, 1, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1). Here the underline indi-

cates the permutation of the components. We can identify the elements of D(Ẑ)(2, 2) by

acting the representation matrix of g on Ẑ and checking whether the congruence condition

(3.4) is satisfied or not. For the modular group (3.28), gτ (γ) is in D(Ẑ)(2, 2) if γ satisfies

(m̂, n̂) =
(
m̂γ, n̂γ−t

)
(mod 2). (3.41)

The other elements of D(Ẑ)(2, 2) can be identified in the same way by using the corresponding

representation matrices. Note that the reflection gR and the world-sheet parity gW are in

D(Ẑ)(2, 2) whatever the choice of Ẑ is since the representation matrices are diagonal. The

specific elements of D(Ẑ)(2, 2) are shown in Table 4. Here Γ1(n) and Γ1(n) are the Hecke
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Fig. 1: An example of the transitions among the non-supersymmetric type II models with

d = 2.

congruence subgroups of the modular group

Γ1(n) =

{(
a b

c d

)
∈ PSL(2,Z)

∣∣∣∣∣ a, d = 1, c = 0 (mod n)

}
, (3.42)

Γ1(n) =

{(
a b

c d

)
∈ PSL(2,Z)

∣∣∣∣∣ a, d = 1, b = 0 (mod n)

}
, (3.43)

and Γϑ is the theta subgroup

Γϑ =

{(
a b

c d

)
∈ PSL(2,Z)

∣∣∣∣∣ ac = 0, bd = 0 (mod 2)

}
. (3.44)

At the end of this example, let us see the transitions among the non-supersymmetric

models induced by acting g. Focusing on γT and γ−t
T , we notice

γT /∈ Γ1(2), γ−t
T /∈ Γ1(2), γT , γ

−t
T /∈ Γϑ. (3.45)

For example, starting from the model with Ẑ = (1, 1, 1, 1), we can obtain all of the other

models by acting on gτ (γT ), gτ (γ
−t
T ), gρ(γT ) or gρ(γ

−t
T ) successively and appropriately (see

Fig. 1).
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3.2 T-duality in the heterotic models

In the heterotic models d-dimensionally toroidal compactified, there are (16+d)×d moduli:

a metric G = eet of the compactification lattice, an anti-symmetric two-form B and Wilson

lines A. As in (2.43), we can choose a Narain metric as

J =


g16 0 0

0 0 1d

0 1d 0

 , (g16 = α16α
t
16). (3.46)

An internal momentum P ∈ Γ16+d,d is then expressed as

P = ZE(e,B,A)Ẽ0, (3.47)

where Z = (q,m, n) ∈ Z16+2d, and an element E of O(16+d, d,R) and the initial generalized

vierbein Ẽ0 are given by

E(e,B,A) =


116 0 α16A

te−t

−Aα−1
16 e −Cte−t

0 0 e−t

 , Ẽ0 =


α16 0 0

0 1√
2
1d − 1√

2
1d

0 1√
2
1d

1√
2
1d

 ,

(
C = B +

1

2
AAt

)
.

(3.48)

One can check that Ẽ0 and E satisfy Ẽ0ηẼ t
0 = J , EJE t = J and the inner product is indepen-

dent of the moduli:

P1 · P2 = P1ηP
t
2 = Z1JZ

t
2 = π1π

t
2 +m1n

t
2 + n1m

t
2. (3.49)

Writing down P = (ℓL, pR, pL) explicitly, we get

ℓL = π −mA, (3.50a)

pL =
1√
2

[
πAt +m

(
G− Ct

)
+ n
]
e−t, (3.50b)

pR =
1√
2

[
πAt −m

(
G+ Ct

)
+ n
]
e−t, (3.50c)

where π = qα16 lives in Γ16. One can obtain (2.42) from (3.50) with d = 1. The T-duality

element g ∈ O(16 + d, d,Z) of the toroidal models acts on P as

P → P ′ = ZgE(e,B,A)Ẽ0, (3.51)
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where g is a (16 + 2d)× (16 + 2d) integer matrix that satisfies gJgt = J .

Choosing a certain set of integers Ẑ = (q̂, m̂, n̂) that satisfies

|π̂|2 + 2m̂n̂t = 0 (mod 4), (3.52)

where π̂ = q̂α16 and |π̂|2 = π̂π̂t, the shift vector δ is expressed as

δ =
1

2
ẐE(e,B,A)Ẽ0. (3.53)

The T-duality group of the non-supersymmetric heterotic model with Ẑ is

D(Ẑ) (16 + d, d) =
{
g ∈ O(16 + d, d,Z)

∣∣∣ Ẑ = Ẑg (mod 2)
}
. (3.54)

3.2.1 Specific elements of D(Ẑ)(16 + d, d)

Let us see specific elements of O(16 + d, d,Z) and identify the congruence conditions which

the elements of D(Ẑ)(16 + d, d) must satisfy.

• Basis change of the compactification lattice:

ge(K) =


116 0 0

0 K 0

0 0 K−t

 , (K ∈ GL (d,Z)) . (3.55)

The elements gK of D(Ẑ)(16 + d, d) must satisfy (m̂K, n̂K−t) = (m̂, n̂) mod 2.

• Basis change of the gauge lattice:

gα16(W ) =


α16Wα−1

16 0 0

0 1d 0

0 0 1d

 , (W ∈ O (16,Z)) . (3.56)

By acting gα16(W ) on E , one can check that the Wilson lines transform as A → AW t

while G and B are unchanged. Acting gα16(W ) on Z leads to a change of the basis

of Γ16 as π → πW accompanied with the O(16 + d) × O(d) rotation (ℓL, pL, pR) →
(ℓLW

t, pL, pR). The condition for gα16(W ) to be in D(Ẑ)(16 + d, d) is π̂W = π̂ + 2π0

for ∃π0 ∈ Γ16.
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• Integer theta-parameter shift of B-field:

gB(Θ) =


116 0 0

0 1d Θ

0 0 1d

 ,
(
Θt = −Θ ∈ Md×d(Z)

)
. (3.57)

If a shift parameter Θ satisfies m̂Θ = 0 mod 2 then gB(Θ) is an element of D(Ẑ)(16 +

d, d).

• Wilson line shift:

gA(a) =


116 0 g16a

t

−a 1d −1
2
ag16a

t

0 0 1d

 , (a ∈ Md×16(Z)) . (3.58)

Under gA(a), the Wilson lines A and the two-form B are shifted as

A → A+ πa, B → B +
1

2

(
Aπt

a − πaA
t
)
, (3.59)

where πa = aα16. The elements gA(a) of D(Ẑ)(16 + d, d) must satisfy both of the

following conditions:

m̂a = 0 (mod 2),

(
π̂ − 1

2
m̂πa

)
πt
a = 0 (mod 2). (3.60)

• Factorized duality and inversion:

gDi
=


116 0 0

0 1d − ei ei

0 ei 1d − ei

 , (3.61)

The non-supersymmetric models with Ẑ satisfying m̂i = n̂i have the i-th factorized

duality symmetry gDi
. The inversion gD, which is expressed as

gD =
d∏

i=1

gDi
=


116 0 0

0 0 1d

0 1d 0

 , (3.62)

is an element of D(Ẑ)(16 + d, d) with Ẑ satisfying m̂ = n̂ for all directions.
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• Integer theta-parameter shift of dual B-field:

gB̃(Θ̃) = gDgB(Θ̃)gD =


116 0 0

0 1d 0

0 Θ̃ 1d

 ,
(
Θ̃t = −Θ̃ ∈ Md×d(Z)

)
. (3.63)

If a shift parameter Θ̃ satisfies n̂Θ̃ = 0 mod 2, then gB̃(Θ̃) is an element of D(Ẑ)(16 +

d, d).

• dual Wilson line shift:

gÃ (ã) = gDgA(ã)gD =


116 g16ã

t 0

0 1d 0

−ã −1
2
ãg16ã

t 1d

 , (ã ∈ Md×16(Z)) . (3.64)

The elements gÃ (ã) of D(Ẑ)(16 + d, d) must satisfy both of the following conditions:

n̂ã = 0 (mod 2),

(
π̂ − 1

2
n̂πã

)
πt
ã = 0 (mod 2). (3.65)

The first four elements are geometric ones and the last three elements are non-geometric

ones. Indeed, one can check E(e,B,A) = gA(Aα
−1
16 )gB(B)ge(e) from (3.48) as in the type II

models.

3.2.2 Heterotic models with d = 1

Unlike in the type II models, there are a lot of T-duality elements in the heterotic models

even if d = 1. In subsection 2.4, we classified the 9D non-supersymmetric models into

the four classes by the possible choices of (m̂, n̂). With d = 1 there is no anti-symmetric

two form B, and then no degrees of freedom to make gB and gB̃. For the basis change of

the compactification lattice, K can only be ±1, and hence ge(K) is in the T-duality group

D(Ẑ)(17, 1) for any choices of Ẑ. The basis change of the gauge lattice gα16(W ) acts only

on π̂ and does not change m̂ and n̂. So, gα16(W ) cannot induce the transitions among the

non-supersymmetric models in the different classes. Let us now study the (dual) Wilson line

shift gA(a) (gÃ(ã)) and the inversion gD for each of the classes.

• class (1): |π̂|2 = 0 (mod 4), (m̂, n̂) = (0, 0)

The Wilson line shift parameter a must satisfy the condition (3.60). In this class,
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class (1) class (2) class (3) class (4)

gA(a) πa ∈ Γ16
+ (π̂) πa ∈ 2Γ16 πa ∈ Γ16

+ (π̂) πa ∈ 2Γ16

gÃ(ã) πã ∈ Γ16
+ (π̂) πã ∈ Γ16

+ (π̂) πã ∈ 2Γ16 πã ∈ 2Γ16

gD gD — — gD

Table 5: The (dual) Wilson line shift and the inversion in D(Ẑ)(17, 1).

the first condition in (3.60) is always satisfied, and the second one requires πa ∈ Γ16
+ .

For the dual Wilson line shift parameter ã, we obtain the same requirement πã ∈ Γ16
+

from (3.65). The non-supersymmetric models in this class obviously have the inversion

duality as m̂ = n̂.

• class (2): |π̂|2 = 0 (mod 4), (m̂, n̂) = (1, 0)

With this choice of Ẑ, the condition (3.60) for the Wilson line shift parameter means

πa ∈ 2Γ16. Note that a satisfying the first condition in (3.60) is sufficient for the second

one. On the other hand, for the dual Wilson line shift, (3.65) indicates πã ∈ Γ16
+ , which

comes from the second condition. The inversion cannot be a duality in this class as

m̂ ̸= n̂.

• class (3): |π̂|2 = 0 (mod 4), (m̂, n̂) = (0, 1)

The situation in this class is the same in class (2) with the interchange of m̂ and n̂.

Then, the shift parameters a and ã must satisfy πa ∈ Γ16
+ and πã ∈ 2Γ16, and gD is not

in D(Ẑ)(17, 1).

• class (4): |π̂|2 = 2 (mod 4), (m̂, n̂) = (1, 1)

The conditions (3.60) is the same as in class (2) which requires πa ∈ 2Γ16, while (3.65)

is the same as in class (3) which requires πã ∈ 2Γ16. The non-supersymmetric models

in this class are clearly invariant under gD.

Note that class (1) and class (4) having the inversion duality is consistent with both of the

endpoint limits being the same, as we have seen in subsection 2.4. Table 5 summarizes the

(dual) Wilson line shift dualities and the inversion duality in each of the four classes. Let

us next see the transitions among the 9D non-supersymmetric heterotic models induced by

elements of O(17, 1,Z). As mentioned before, ge, gB and gα16 cannot realize the transitions

among the different classes. So, we focus on the three elements gA(a), gÃ(ã) and gD. To see
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class (1)

class (2)

class (4)

class (3)

Fig. 2: An example of the transitions among the non-supersymmetric heterotic models with

d = 1.

the transitions induced by the (dual) Wilson line shifts, we introduce Γ16
+−(π̂) defined as the

following subset of Γ16:

Γ16
+−(π̂) =

{
π ∈ Γ16

+

∣∣|π|2 = 2 (mod 4)
}
+
{
π ∈ Γ16

−
∣∣|π|2 = 0 (mod 4)

}
. (3.66)

Note that π̂ · π − |π|2/2 is always odd for π ∈ Γ16
+−(π̂). One can see that the Wilson line

shifts gA(a) with πa ∈ Γ16
+ induce the transitions between class (1) and class (3), while those

with πa ∈ Γ16
+− induce the transitions between class (2) and class (4) occur. On the other

hand, for the dual Wilson line shifts gÃ(ã), the transitions between class (1) and class (2)

are realized by πã ∈ Γ16
+ , while one can obtain the transitions between class (3) and class

(4) by acting πã ∈ Γ16
+− . The transitions between class (2) and class (3) are realized by

the inversion gD. Fig. 2 shows the transitions among the different classes induced by gA(a),

gÃ(ã) and gD.
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4 Massless spectrum and symmetry enhancement

In the remaining sections, we focus on the 9D non-supersymmetric heterotic models which

are classified into the four classes in subsection 2.4. We assume henceforth that Ẑ is chosen

such that the gauge twist is non-trivial (i.e. π̂ /∈ 2Γ16), which means that neither Γ16
+ nor

Γ16
− are empty.

In this section, we consider the massless spectra in the non-supersymmetric heterotic

strings and clarify patterns of the gauge symmetry enhancement depending on R and A5.

In particular, we will pay much attention to the region in the moduli space where R is

approaching either of the endpoint models. This analysis can be used for studying the

cosmological constant and the stability of the Wilson line moduli, which we will discuss in

the subsequent sections.

4.1 Untwisted sector

In heterotic models one-dimensionally compactified, the left- and right-moving mass formulae

in the untwisted sectors are given by

M2
L = |ℓL|2 + p2L + 2 (NL − 1) , (4.1a)

M2
R = p2R + 2 (NR − aR) , (4.1b)

where aR = 1/2 for NS-sector and aR = 0 for R-sector. We have the two possibilities to get

the massless states. One of them comes from the states that satisfy

NL = 1, NR = aR, π = n = 0. (4.2)

We call a set of the massless states satisfying (4.2) sector 1. In NS-sector, sector 1 is consist of

a gravity multiplet (a graviton, an antisymmetric two-form and dilaton) and gauge bosons of

U(1)16L ×U(1)l×U(1)r. Here, we denote U(1)16L as an Abelien gauge group which comes from

the excitations by αI
−1b̃

µ
−1/2, while U(1)l×U(1)r comes from those by α9

−1b̃
µ
−1/2 and αµ

−1b̃
9
−1/2,

where α−n and b̃−s are the ocsillation modes of left-moving bosons and right-moving fermions

in NS-sector, and I and µ denote the sixteen internal indices and the spacetime indices. We

5From the viewpoint of the Higgs mechanism, it is appropriate to express symmetry “breaking” rather

than symmetry “enhancement”. But, in this thesis, we regard the Abelian gauge group as a reference point

and interpret the non- Abelian gauge groups as being enhanced at special points in the moduli space.
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obtain their fermionic superpartners from R-sector if supersymmetry is preserved. Note that

the conditions (4.2) are independent of the moduli, and hence there are always the massless

states in sector 1 at any points in the moduli space.

The other possibility, which we call sector 2, arises from the states that satisfy

NL = 0, NR = aR, |ℓL|2 + p2L = 2, p2R = 0. (4.3)

Inserting (2.42) into the last two conditions, we find

n = m

(
R2 +

1

2
|A|2

)
− π · A, |π −mA|2 + 2m2R2 = 2. (4.4)

We should note that the conditions (4.4) can be written as

m = n

(
R̃2 +

1

2
|Ã|2

)
− π · Ã,

∣∣∣π − nÃ
∣∣∣2 + 2n2R̃2 = 2, (4.5)

where R̃ and Ã are the dual radius and the dual Wilson line:

R̃ =
R

R2 + 1
2
|A|2

, Ã = − A

R2 + 1
2
|A|2

. (4.6)

In fact, one can check that acting the inversion gD on the generalized vierbein (3.48) with

d = 1 gives the transformations R → R̃ and A → Ã accompanied with an appropriate

O(17,R)×O(1,R) rotation. The massless states in sector 2 correspond to the gauge bosons

with non-zero roots of a semisimple group, and hence the gauge symmetry is enhanced if

massless states in sector 2 exist. We can get the massless states in sector 2 only when A and

R satisfy (4.4) for n, m and π. So, the gauge symmetry is broken to U(1)16L ×U(1)l ×U(1)r

at generic points in the moduli space.

Let us first focus on the enhancement U(1)l → SU(2). For simplicity, we assume that

the Wilson line A takes a generic value so that the conditions (4.4) can be satisfied only for

the states with π = 0, for which (4.4) is written as

n = m

(
R2 +

1

2
|A|2

)
, 2mn = 2. (4.7)

These conditions lead to m = n = ±1 and R2 + 1
2
|A|2 = 1. The latter implies R = R̃ and

A = −Ã, that is, the fixed points under the inversion gD. Focusing on the structures of

Γ17,1
+ in each class, we find that spacetime vectors with π = 0 and m = n = ±1 exist only in

class (1) and class (4). Namely, the enhancement U(1)l → SU(2) can occur at the gD-fixed
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points in the moduli space of the non-supersymmetric models in class (1) and class (4). This

reflects the result in Table 5 which shows that only class (1) and class (4) are invariant under

the inversion gD.

Let us next study the symmetry enhancements of U(1)16L . We henceforth focus on only

the states with m = 0 or n = 0 since we are interested in the region near either of the

endpoint models where R is large or small. In particular, we will focus on the region with

supersymmetry being asymptotically restored in the subsequent sections, which is possible

in class (2), class (3) and class (4) as seen in subsection 2.4. The condition (4.4) for the

states with m = 0 is

n = −π · A, |π|2 = 2. (4.8)

Note that the second condition implies that the massless states correspond to nonzero roots

of simisimple subgroup g′ ⊂ g with g being SO(32) or E8 × E8. For the states with n = 0,

it is useful to adopt the dual description (4.6). From (4.5),

m = −π · Ã, |π|2 = 2. (4.9)

In the rest of this subsection, we will pay our attention to the states with m = 0. The same

discussion can be done for the states with n = 0 since the condition (4.9) is the same form

as (4.8). We shall study not only the case of the non-supersymmetric models but also of

the toroidal model, in order to clarify the difference between them. So, let us first focus on

the toroidal model in which n ∈ Z, m ∈ Z and π ∈ Γ16 for both NS- and R-sector. Let ∆g′

denote a set of the nonzero roots of a semisimple subgroup g′ ⊂ g. In particular, for g′ = g,

∆SO(32) =
{(

±,±, 014
)}

, (4.10)

∆E8×E8 =

{(
±,±, 06; 08

)
,
1

2

(
±,±,±,±,±,±,±,±

+
; 08
)}

+

{(
08;±,±, 06

)
,
1

2

(
08;±,±,±,±,±,±,±,±

+

)}
, (4.11)

where the underline indicates permutations of the components and the subscript + denotes

the number of + is even. The condition (4.8) means that a non-Abelian part of the gauge

group is g′ if A = A(g′) with A(g′) satisfying the following conditions6: π · A(g′) ∈ Z for π ∈ ∆g′

π · A(g′) /∈ Z for π ∈ ∆g\∆g′

. (4.12)

6The rank of g′ is not always 16. It is of course possible that some of U(1)L’s remain being abelian.
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For A(g), in particular, the above conditions mean A(g) ∈ Γ∗
g where Γ∗

g is the weight lattice

of g, i.e.,

Γ∗
g =

Γ
(16)
w = Γ

(16)
g + Γ

(16)
v + Γ

(16)
s + Γ

(16)
c for g = SO(32)

Γ16 =
(
Γ
(8)
v + Γ

(8)
s

)
×
(
Γ
(8)
v + Γ

(8)
s

)
for g = E8 × E8

. (4.13)

From (2.42) with m = 0, one can see that in the Spin(32)/Z2 model, the sector with m = 0

is invariant under the shift A → A + πa with πa ∈ Γ∗
g. So, we can choose A(g) = (016) by

using the Wilson line shift dualities. Note that for the full space of states, as seen in (3.59),

the shift parameter πa must be an element of Γ16. Thus, in the E8 × E8 model, in which

Γ16 = Γ∗
g, there is no difference of the Wilson line shift between for the full spectrum and

for the sector with m = 0. Including the sector with m ̸= 0 in the Spin(32)/Z2 model, the

gauge group can be enhanced to a larger one than SO(32) (e.g. SO(34)) when the Wilson

line is in Γ
(16)
v or Γ

(16)
c and R takes particular values (see e.g. [96–98]). We can of course find

massless spinors transforming in the same representation of the gauge group as the bosonic

states from R-sector since supersymmetry is preserved under toroidal compactifications.

In the non-supersymmetric models, the situation is different since the Narain lattice is

split into Γ17,1
+ and Γ17,1

− , and bosonic states live in Γ17,1
+ while fermionic states live in Γ17,1

− .

The momentum with π = m = n = 0 must be in Γ17,1
+ independent of the choice of Ẑ. So,

there are no fermionic massless states in sector 1. Let us study below the condition (4.4) for

sector 2 in each of the four classes:

• class (1);

In this class, n is an integer for both Γ17,1
+ and Γ17,1

− , and the condition for giving rise to

massless states in sector 2 is the same form as in (4.12). We should however remember

that Γ16 is split into Γ16
+ and Γ16

− depending on the right-moving states being in NS-

sector or R-sector. Thus, the gauge symmetries in the non-supersymmetric models

with A = A(g′) are not necessarily enhanced to g′, unlike in the toroidal models. Let

∆+
g and ∆−

g denote subsets of π ∈ Γ16
+ and π ∈ Γ16

− respectively that satisfy |π|2 = 2.

In the non-supersymmetric models in class (1), then, the gauge group realized by the

Wilson line A(g′) have the following nonzero roots,

∆+
g′ =

{
π ∈ ∆+

g

∣∣∣π · A(g′) ∈ Z
}
, (4.14)
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and the representation in which massless spniors transform is given by

∆−
g′ =

{
π ∈ ∆−

g

∣∣∣π · A(g′) ∈ Z
}
. (4.15)

The gauge symmetry in the non-supersymmetric model in class (1) is at least broken

to the group of which the nonzero roots consist of ∆+
g . There are two possibilities of

the Wilson lines which enhance U(1)16L to the maximal gauge group. One of them is

A = A(g) ∈ Γ∗
g, which also yields massless spinors transforming in the representation

given by ∆−
g unless π̂ is chosen such that ∆g = ∆+

g . Note that ∆g = ∆+
g implies

that ∆−
g is empty and fermions cannot be massless, and recall that in construction

of the 10D non-supersymmetric heterotic models, such choice of π̂ is possible in the

Spin(32)/Z2 lattice, which gives the non-supersymmetric SO(32) model (see Table 1).

The other possibility of the Wilson line with the maximal enhancement is A = π̂
2
, which

leads to ∆+
g′ = ∆+

g , but at the same time makes ∆−
g′ empty. Namely, with A = π̂

2
, the

gauge group U(1)16L is maximally enhanced, while all spinors become massive.

Note that there are states with m = 0 in twisted sector, which live in Γ17,1
± + δ given

by (2.46). We will discuss the twisted sectors in the next subsection.

• class (2);

In class (2), Γ17,1
± is given by (2.49), and hence the condition (4.8) implies for massless

vectors,

π · A(2) ∈ 2Z for π ∈ ∆+
g and/or π · A(2) ∈ 2Z+ 1 for π ∈ ∆−

g , (4.16)

while for massless spinors,

π · A(2) ∈ 2Z for π ∈ ∆−
g and/or π · A(2) ∈ 2Z+ 1 for π ∈ ∆+

g , (4.17)

where we denote as A(2) the Wilson line in the non-supersymmetric models in class

(2). Let Ag′

(2) and A
(g′)
(T ) denote the Wilson lines that realize the enhancement to g′ in

class (2) and in the toroidal models respectively. Noting that A
(g′)
(T ) satisfies (4.12), we

find from (4.16) that A
(g′)
(2) can be expressed in terms of A

(g′)
(T ) as follows:

A
(g′)
(2) = 2A

(g′)
(T ) + π̂, (4.18)

In particular, the gauge group of this class is enhanced to g if A(2) = π̂ up to the shift

by 2Γ∗
g. Note that the shift parameter must be doubled in class (2), as we have seen

in Table 5.
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By using (4.18), one can find that the conditions (4.16) and (4.17) are respectively

expressed in terms of A(T ) as follows:

A(T ) · π ∈ Z for π ∈ ∆g′ (for massless vectors), (4.19)

A(T ) · π ∈ Z+
1

2
for π ∈ ∆g′ (for massless spinors). (4.20)

Note that these conditions do not depend on π̂. Thus, by using A(T ) but not A(2), we

can identify the massless spectrum in class (2) without specifying the choice of π̂. But,

one should note that this argument is valid only for the sector with m = 0, i.e., in the

region with supersymmetry restoration.

In this class, there is no state with m = 0 in the twisted sectors because of the shift

by 1
2
in Γ17,1

± + δ.

• class (3);

Focusing on the states with m = 0, we find from (2.53) that the spectrum in class (3) is

the same as in class(1). So, the analysis for identifying the massless spectrum in sector

2 can be done in the same way as in class (1). Note that the region where the states

withm = 0 only contribute corresponds to R approaching the 10D non-supersymmetric

endpoint models.

• class (4);

In class (4) in which Γ17,1
± is given by (2.57), the spectrum with m = 0 agrees with

that in class (2), and (4.8) leads to the conditions (4.16) and (4.17). So, we can use

the relation (4.18) for identifying the massless spectra.

Although we have focused on the states with m = 0, the similar results as above are

obtained for the states with n = 0 by using the dual descriptions (4.6) of the moduli. For

class (1) and class (2) with n = 0, the situation is the same as above if one replaces A to

Ã. The spectrum in class (2) with n = 0 in the dual description is the same as in class (3)

with m = 0 in the normal description. So, the above analysis in class(2) (in class (3)) can be

applied for identifying the massless states with n = 0 in class (3) (in class (2)). Recall that

the transitions between class (2) and class (3) are induced by the inversion gD, as shown in

Fig. 2.
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4.2 Twisted sector

Let us keep focusing on the states with m = 0. As mentioned in the previous subsection,

there are no twisted states with m = 0 in class (2) and class (4). So, we only consider the

twisted sectors in class (1) and class (3). In class (1), supersymmetry cannot be restored in

any region of the moduli space. In class (3), the twisted states with n ∈ Z + 1/2 do not

contribute in the region with supersymmetry restoration, or rather they become significant

in the region with R approaching the non-supersymmetric endpoint. Thus, the analysis we

will do in this subsection cannot be used in the subsequent sections, but we believe that it

is worth figuring out the massless twisted states.

We can read off massless states in the twisted sectors from the partition function. From

the expansions (A.24), only conjugate spinors with pR+δR = 0 and scalars with (pR+δR)
2 = 1

can be massless. With m = 0, we get

(
π +

π̂

2

)
· A =

−
(
n+ n̂

2

)
for conjugate spinors

−
(
n+ n̂

2

)
±

√
2R for scalars

, (4.21)

where n ∈ Z and π ∈ Γ16
± . Recall that the upper (lower) sign of Γ16

± in the twisted sectors is

applied to conjugate spinors with π̂2/4 even (odd) or to scalars with π̂2/4 odd (even). The

condition (4.23) requires that R be a special value for scalars to be massless. For left-moving

states to be massless, the momenta must satisfy (PL + δL)
2 = 27. From (3.49), with m = 0,

(PL + δL)
2 − (pR + δR)

2 =

∣∣∣∣π +
π̂

2

∣∣∣∣2 , (4.22)

and the condition for the left-moving momentum is

∣∣∣∣π +
π̂

2

∣∣∣∣2 =
 2 for conjugate spinor

1 for scalar
. (4.23)

Let us define ∆±,c
g and ∆±,o

g as

∆±,c
g =

{
π +

π̂

2
∈ Γ16

± +
π̂

2

∣∣∣∣∣
∣∣∣∣π +

π̂

2

∣∣∣∣2 = 2

}
, ∆±,o

g =

{
π +

π̂

2
∈ Γ16

± +
π̂

2

∣∣∣∣∣
∣∣∣∣π +

π̂

2

∣∣∣∣2 = 1

}
,

(4.24)

7The assumption that the gauge twist is non-trivial excludes the possibility of (PL + δL)
2 = 0.
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Note that conjugate spinors and scalars have π + π̂
2
∈ ∆−,c

g and π + π̂
2
∈ ∆+,o

g respectively

for
∣∣ π̂
2

∣∣2 odd, while have π + π̂
2
∈ ∆+,c

g and π + π̂
2
∈ ∆−,o

g respectively for
∣∣ π̂
2

∣∣2 even. As

seen in subsection 2.3, we can choose π̂ such that
∣∣ π̂
2

∣∣2 is 1 or 2, and the lower bound of∣∣π + π̂
2

∣∣2 with non-trivial gauge twist of order 2 is
∣∣ π̂
2

∣∣2. Then, for the choice π̂ with
∣∣ π̂
2

∣∣2 = 2,

which correspond to the SO(16) × SO(16) non-supersymmetric endpoint model, ∆±,o
g is

empty, and hence there is no massless scalar with m = 0 in the twisted sector. In fact,

the massless scalars with (4.21) and (4.23) are caused by the tachyonic states in the 10D

non-supersymmetric models acquiring the mass due to the compactification. The condition

(4.23) also implies that massless conjugate spinors and the massless scalars in the twisted

sectors are not gauge singlets.

We should note that unlike in the untwisted sectors, not all elements in ∆±,c
g necessarily

satisfy (4.23) with A ∈ Γ∗
g. Rather than that, the condition (4.23) for conjugate spinors

holds for any elements in ∆±,c
g if A ∈ Γ16

+ for class (1) and A ∈ Γ16
− for class (3). This fact

implies that the Wilson line is invariant under the shift by πa ∈ Γ16
+ , as we have seen in

subsection 2.4 (see Table 5). In addition, in order to get massless scalars in class (1) (class

(2)), from the condition (4.21), we find that A ∈ Γ16
+ requires

√
2R ∈ Z (

√
2R ∈ Z + 1/2),

while A ∈ Γ16
− requires

√
2R ∈ Z+ 1/2 (

√
2R ∈ Z).

As in the untwisted sectors, the analysis we have performed above can be used for iden-

tifying the massless states with n = 0 in the twisted sectors in class (1) and class (2) by

using the dual descriptions Ã and R̃.

4.3 Example 1: class (1) with the Spin(32)/Z2 lattice

In this and the following subsections, we will give examples of the Wilson lines and identify

the corresponding massless spectra in class (1). We will keep restricting our attention to

the states with m = 0 for which the massless conditions are given by (4.8) for the untwisted

sectors, while given by (4.21) and (4.23) for the twisted sectors. Although we will only

focus on class (1), the massless spectra in class (3) can be obtained in a similar way; the

difference only appears in the twisted sectors; n in (4.21) is shifted by 1/2. The discussion of

massless states in class (2) will be given in the next section when we explore the possibility

of suppression of the cosmological constant. The study in class (2) is in fact easier than in

class (1) and class (3) because we can use the relation (4.18), and then the massless spectrum

with m = 0 can be identified without the information of π̂.
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In this subsection, we consider the non-supersymmetric models in class (1) with the

Spin(32)/Z2 root lattice. For simplicity, we only pay our attention to the following two

types of the Wilson lines which satisfy 2A ∈ Γ∗
g:

A =

(
0p,

(
1

2

)q)
(p+ q = 16), (4.25a)

A =

((
1

4

)16
)
. (4.25b)

Recall that Γ∗
g = Γ

(16)
g +Γ

(16)
v +Γ

(16)
s +Γ

(16)
c , and (4.25a) with p even (odd) satisfies 2A ∈ Γ

(16)
g

(2A ∈ Γ
(16)
v ) while (4.25b) satisfies 2A ∈ Γ

(16)
s .

As shown in Table 1, there are the four choices of π̂ in class (1). Let us study massless

states in the untwisted and twisted sectors with m = 0 for each of the choices.

4.3.1 SO(32) model: π̂
2
= (1, 015)

With this choice of π̂, one can see that ∆+
g = ∆SO(32) and ∆−

g is empty. Thus, the gauge

symmetry is SO(32) if A ∈ Γ∗
g, whereas there is no massless fermion in the untwisted sectors

whatever configuration the Wilson line takes. Noting
∣∣ π̂
2

∣∣2 = 1, in the twisted sectors,

massless conjugate spinors and massless scalars live in ∆−,c
g and ∆+,o

g respectively if they

exist. However, since Γ16
− = Γ

(16)
s , in which |π|2 ≥ 4 for any elements, ∆−,c

g is empty, and

hence there is no massless conjugate spinor in the twisted sectors. We obtain ∆+,o
g as

∆+,o
g =

{(
±, 015

)}
, (4.26)

and there are massless scalars transforming in a fundamental representation of the SO(32)

if A ∈ Γ16
+ and

√
2R ∈ Z or A ∈ Γ16

− and
√
2R ∈ Z+ 1/2.

Let us consider the massless spectrum with the Wilson line (4.25a). In ∆+
g , the following

π’s satisfy π · A ∈ Z:

∆+
g′ =

{(
±,±, 0p−2, 0q

)
,
(
0p±,±, 0q−2

)}
. (4.27)

Then, U(1)16L is enhanced to SO(2p) × SO(2q). The massless scalars in the twisted sectors

exist if the radius R takes a special values. Applying (4.25a) to (4.21), we find that the

massless scalars have

π +
π̂

2
=


(
±, 0p−1, 0q

)
if
√
2R ∈ Z(

0p,±, 0q−1
)

if
√
2R ∈ Z+ 1/2

. (4.28)
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There are then massless scalars transforming in the fundamental representation of SO(2p)

(or SO(2q)) if
√
2R is an integer (or a half-integer).

We now turn to the Wilson line (4.25b). The nonzero roots of SU(16) in ∆+
g = ∆SO(32)

only satisfy π · A ∈ Z:

π =
(
+,−, 014

)
. (4.29)

As for massless scalars in the twisted sectors, all elements in ∆+,o
g satisfy (4.21) if

√
2R = ±1

4

mod 1. After all, with the Wilson line (4.25b), there are gauge bosons of SU(16) × U(1),

and charged scalars transforming in 16⊕16 of SU(16) which can be massless only if
√
2R ∈

Z+ 1/4 or
√
2R ∈ Z− 1/4.

As mentioned above, in this model, all fermions are massive at any points in the moduli

space.

4.3.2 SO(24)× SO(8) model: π̂
2
=
(
012,

(
1
2

)4)
This π̂ splits ∆SO(32) into ∆+

g and ∆−
g as follows:

∆+
g = ∆SO(24)×SO(8) =

{(
±,±, 010, 04

)
,
(
012,±,±, 02

)}
, ∆−

g =
{(

±, 011,±, 03
)}

. (4.30)

These correspond to the nonzero roots of SO(24) × SO(8) and a bi-fundamental represen-

tation of SO(24)× SO(8) respectively. As for the twisted sectors, ∆−,c
g and ∆+,o

g are given

as

∆−,c
g =

{(
±, 011,±1

2
,±1

2
,±1

2
,±1

2−

)}
, ∆+,o

g =

{(
012,±1

2
,±1

2
,±1

2
,±1

2+

)}
, (4.31)

which correspond to (24,8−) and (1,8+) of the SO(24) × SO(8) respectively. Here the

underline with the subscript + (−) means permutations with the number of +1/2 being

even (odd).

We now consider the Wilson line (4.25a) with p ≤ 12. The subsets ∆+
g′ and ∆−

g′ which

satisfy π · A ∈ Z are

∆+
g′ =

{(
±,±, 0p−2, 0q

)
,
(
0p,±,±, 010−p, 04

)
,
(
012,±,±, 02

)}
, (4.32)

∆−
g′ =

{(
0p,±, 011−p,±, 03

)}
, (4.33)

which lead to the symmetry enhancement U(1)16L → SO(2p) × SO(24 − 2p) × SO(8) and

(1,24− 2p,8) of the SO(2p)×SO(24− 2p)×SO(8) respectively. In ∆−,c
g , we find that the
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following elements satisfy
(
π + π̂

2

)
· A ∈ Z:

π +
π̂

2
=

(
0p,±, 011−p,±1

2
,±1

2
,±1

2
,±1

2−

)
. (4.34)

Then, conjugate spinors in the twisted sectors transform in (1,24− 2p,8−) of the SO(2p)×
SO(24−2p)×SO(4). For scalars in the twisted sectors,

(
π + π̂

2

)
·A ∈ Z holds for all elements

in ∆+,o
g , and hence the scalars transform in 8+ of the SO(8) if

√
2R ∈ Z.

In the case of the Wilson line (4.25a) with p > 12 (q < 4), we get

∆+
g′ =

{(
±,±, 010, 04

)
,
(
012,±,±, 02−q, 0q

)
,
(
0p,±,±, 0q−2

)}
, (4.35)

∆−
g′ =

{(
±, 011,±, 03−q, 0q

)}
, (4.36)

and then the enhanced gauge symmetry from U(1)16L is SO(24)× SO(8− 2q)× SO(2q) and

massless spinors transform in (24,8− 2q,1) of the SO(24)× SO(8− 2q)× SO(2q). As for

the twisted sectors, any elements in ∆−,c
g do not satisfy

(
π + π̂

2

)
· A ∈ Z, and there is no

massless cojugate spinor. Assuming
√
2R ∈ Z or

√
2R ∈ Z+1/2, we can find massless scalars

in the twisted sectors only if p = 14 or 16. With p = 16 which means A ∈ Γ16
+ , we have

already mentioned this case; massless scalars transform in (1,8+) of the SO(24)×SO(8) are

obtained if
√
2R ∈ Z. With p = 14, scalars that have the following elements in ∆+,o

g become

massless, depending on values R takes:

π +
π̂

2
=


(
012,±1

2
,±1

2+
,±1

2
,±1

2+

)
if
√
2R ∈ Z(

012,±1
2
,±1

2−
,±1

2
,±1

2−

)
if
√
2R ∈ Z+ 1

2

. (4.37)

Then, we find the massless scalars transforming in (1,2±,2±) of SO(24) × SO(4) × SO(4)

where the chiralities of the spinors of the two SO(4)’s depend on whether
√
2R ∈ Z or

√
2R ∈ Z+ 1/2.

Let us next consider the Wilson line (4.25b). In the untwisted sectors, massless vactors

and massless spinors respectively live in

∆+
g′ =

{(
+,−, 010, 04

)
,
(
012,+,−, 02

)}
, ∆−

g′ =
{
±
(
+, 011,−, 03

)}
. (4.38)

Then U(1)16L is enhanced to SU(12)×SU(4)×U(1)2, and the massless spinors transform in(
12,4

)
⊕
(
12,4

)
of the SU(12) × SU(4). As for conjugate spinors in the twisted sectors,

the elements in ∆−,c
g that satisfy

(
π + π̂

2

)
· A ∈ Z are

π +
π̂

2
= ±

(
+, 011,+

1

2
,−1

2
,−1

2
,−1

2

)
, (4.39)
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which leads to the U(1) charged conjugate spinors transforming in (12,4) ⊕
(
12,4

)
of the

SU(12)× SU(4). Note that the last four components in (4.39) are decomposed as follows:(
+
1

2
,−1

2
,−1

2
,−1

2

)
=

(
−1

2
,−1

2
,−1

2
,−1

2

)
+
(
+, 03

)
. (4.40)

As for scalars in the twisted sectors, the following elements in ∆+,o
g satisfy

(
π + π̂

2

)
· A ∈ Z:

π +
π̂

2
=

(
012,+

1

2
,+

1

2
,−1

2
,−1

2

)
, (4.41)

while those satisfying
(
π + π̂

2

)
· A ∈ Z+ 1/2 are

π +
π̂

2
= ±

(
012,+

1

2
,+

1

2
,+

1

2
,+

1

2

)
. (4.42)

Then the massless scalars transform in 6 of the SU(4) if
√
2R ∈ Z, while have the U(1)

charge ±1 if
√
2R ∈ Z+ 1/2.

4.3.3 SU(16)× U(1) model: π̂
2
=
((

1
4

)16)
With this choice of π̂, ∆+

g and ∆−
g are

∆+
g =

{(
+,−, 014

)}
, ∆−

g =
{
±
(
+,+, 014

)}
, (4.43)

which respectively correspond to the nonzero roots of SU(16) and the representation 120⊕
120 of the SU(16). As

∣∣ π̂
2

∣∣2 is odd, we need ∆−,c
g and ∆+,o

g in order to clarify massless states

in the twisted sectors:

∆−,c
g =

{
±

((
3

4

)2

,

(
−1

4

)14
)}

, ∆+,o
g =

{
±

((
1

4

)16
)}

. (4.44)

In the twisted sectors, then, we have U(1) charged massless cojugate spinors transforming

in 120⊕ 120 of the SU(16), and massless scalars with the U(1) charges ±1 if A ∈ Γ16
+ and

√
2R ∈ Z.
Let us consider the massless spectrum with the Wilson line (4.25a). Imposing the condi-

tion π · A ∈ Z into (4.43), we get

∆+
g′ =

{(
+,−, 0p−2, 0q

)
,
(
0p,+,−, 0q−2

)}
, ∆−

g′ =
{
±
(
+,+, 0p−2, 0q

)
,±
(
0p,+,+, 0q−2

)}
,

(4.45)
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which lead to the enhancement U(1)16L → SU(p) × SU(q) × U(1)2 and the representation(
pC2 ⊕ pC2,1

)
⊕
(
1, qC2 ⊕ qC2

)
of the SU(p) × SU(q). As for conjugate spinors in the

twisted sectors, noting that the elements in ∆−,c
g can be expressed as

±

((
3

4

)2

,

(
−1

4

)14
)

= ±

((
−1

4

)16
)

±
(
+,+, 014

)
, (4.46)

we see that
(
π + π̂

2

)
· A ∈ Z holds for some elements in ∆−,c

g if p is a multiple of 4. If p = 0

or p = 8, we get

π +
π̂

2
= ±

((
−1

4

)16
)

±


(
+,+, 0p−2, 0q

)
(
0p,+,+, 0q−2

) . (4.47)

which lead to the U(1) charged massless conjugate spinors transforming in (pC2,1)⊕(1, qC2)

of the SU(p)× SU(q) and its conjugate representation. If p = 4 or p = 12, we find

π +
π̂

2
= ±

((
−1

4

)16
)

±
(
+, 0p−1,+, 0q−1

)
. (4.48)

which lead to the U(1) charged massless conjugate spinors transforming in (p, q) of the

SU(p) × SU(q) and its conjugate representation. From ∆+,o
g in (4.44), we obtain the U(1)

charged massless scalars if
√
2R ∈ Z with p = 0, 8 or

√
2R ∈ Z+ 1/2 with p = 4, 12.

Turning to the Wilson line (4.25b), we notice that ∆+
g′ = ∆+

g and ∆−
g′ is empty since

A = π̂
2
. Then, U(1)16L is enhanced to SU(16) × U(1), while all spinors in the untwisted

sectors are massive. As for the twisted sectors, we find from (4.44) that there are no massless

conjugate spinors, and the U(1) charged massless scalars exist if
√
2R ∈ Z.

4.3.4 SO(16)× SO(16) model: π̂
2
=
(
08,
(
1
2

)8)
With this choice of π̂, ∆+

g and ∆−
g are

∆+
g = ∆SO(16)×SO(16) =

{(
±,±, 06, 08

)
,
(
08,±,±, 06

)}
, ∆−

g =
{(

±, 07,±, 07
)}

, (4.49)

and hence U(1)16L is enhanced to SO(16)×SO(16) and massless spinors transform in (16,16)

of the SO(16) × SO(16) if A ∈ Γ∗
g. Noting

∣∣ π̂
2

∣∣2 = 2, we need ∆+,c
g and ∆−,o

g , but not ∆−,c
g

and ∆+,o
g , in order to identify massless states in the twisted sectors. As mentioned in the
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previous subsection, ∆−,o
g is empty for π̂ with

∣∣ π̂
2

∣∣2 = 2, while ∆+,c
g is given as

∆+,c
g = ∆128+ ⊕∆128+ =

{(
±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2+

, 08
)
,(

08,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2+

)}
. (4.50)

The massless conjugate spinors then transform in (128+,1) ⊕ (1,128+) of the SO(16) ×
SO(16) if A ∈ Γ16

+ .

Let us first consider the Wilson line (4.25a) with assuming p ≤ 8. Then, we obtain ∆+
g′

and ∆−
g′ as

∆+
g′ =

{(
±,±, 0p−2, 016−p

)
,
(
0p,±,±, 06−p, 016

)
,
(
08,±,±, 06

)}
, (4.51)

∆−
g′ =

{(
0p±, 07−p,±, 07

)}
, (4.52)

which lead to the enhancement U(1)16L → SO(2p)×SO(16− 2p)×SO(16) and the massless

spinors transformin in (1,16− 2p,16) of the SO(2p) × SO(16 − 2p) × SO(16). As for

conjugate spinors in the twisted sectors, we find that the following elements in ∆+,c
g′ satisfy(

π + π̂
2

)
· A ∈ Z if p is even:

π +
π̂

2
=

((
±1

2

)p

±

,

(
±1

2

)8−p

±

, 08

)
,

(
08,

(
±1

2

)8
)
, (4.53)

where the chirality of the spinors of the SO(2p)× SO(16− 2p) is + for p = 4, 8 while − for

p = 2, 6. Then, the massless conjugate spinors transform in
(
2p−1
± ,27−p

± ,1
)
⊕ (1,1,128+)

of the SO(2p)× SO(16− 2p)× SO(16). For the Wilson line (4.25a) with p > 8, we obtain

the same result as above but we need the replacement p → q.

We now pay our attention to the Wilson line (4.25b). With this Wilson line, ∆+
g′ and ∆−

g′

are

∆+
g′ =

{(
+,−, 06, 08

)
,
(
08,+,−, 06

)}
, (4.54)

∆−
g′ =

{
±
(
+, 07,−, 07

)}
, (4.55)

and then U(1)16L is enhanced to SU(8) × SU(8) × U(1)2 and massless spinors transform in(
8,8
)
⊕
(
8,8
)
of the SU(8) × SU(8). As for conjugate spinors in the twisted sectors, the

elements in ∆+,c
g satisfying

(
π + π̂

2

)
· A ∈ Z are

π +
π̂

2
=

(
±
(
1

2

)8

, 08

)
,

((
+
1

2

)4

,

(
−1

2

)4

, 08

)
,

(
08,±

(
1

2

)8
)
,

(
08,

(
+
1

2

)4

,

(
−1

2

)4
)
.

(4.56)
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These give massless conjugate spinors transforming in (70,1)⊕(1,70) of the SU(8)×SU(8)

and four massless conjugate spinors with the charges
(
±
√
2, 0
)
⊕
(
0,±

√
2
)
of the U(1)×U(1).

4.4 Example 2: class (1) with the E8 × E8 lattice

We now consider the E8 × E8 root lattice. For simplicity, we assume that the last eight

components of the Wilson lines vanish: A = (A1; 0
8). Moreover, we restrict our attention to

A1 that satisfied 2A1 ∈ Γ∗
g. Namely, we focus on the following two types of configurations:

A1 =

(
0p1 ,

(
1

2

)q1)
(p1 + q2 = 8), (4.57a)

A1 =

((
1

4

)8
)
, (4.57b)

where p1 is supposed to be even so that 2A1 ∈ Γ∗
g = Γ

(16)
g + Γ

(16)
s . Note that ∆E8×E8 , which

is defined in (4.11), can be decomposed as

∆E8×E8 = ∆E8 ⊕∆E8 =
(
∆SO(16) +∆128+

)
⊕
(
∆SO(16) +∆128+

)
, (4.58)

where ∆SO(16) and ∆128+ are given as

∆SO(16) =
{(

±,±, 06
)}

, ∆128+ =

{
1

2

(
±,±,±,±,±,±,±,±

+

)}
. (4.59)

We can also decompose ∆+
g and ∆−

g into the two parts:

∆+
g = ∆+

g1
⊕∆+

g2
, ∆−

g = ∆−
g1
⊕∆−

g2
. (4.60)

Here we denote π̂
2
=
(
π̂1

2
; π̂2

2

)
with π̂i (i = 1, 2) being in the E8 root lattice, and ∆±

gi
is defined

as

∆+
gi
= {πi ∈ ∆E8 |π̂i · πi ∈ 2Z} , ∆−

gi
= {πi ∈ ∆E8 |π̂i · πi ∈ 2Z+ 1} . (4.61)

Since the Wilson line is assumed to be expressed as A = (A1; 0
8), ∆+

g′ and ∆−
g′ which are

defined in(4.14) and (4.15) are written as

∆+
g′ = ∆+

g′1
⊕∆+

g2
, ∆−

g = ∆−
g′1
⊕∆−

g2
. (4.62)

where ∆±
g′1

is give as

∆+
g′1

=
{
π1 ∈ ∆+

g1
|π1 · A1 ∈ Z

}
, ∆−

g′1
=
{
π1 ∈ ∆−

g1
|π1 · A1 ∈ Z

}
. (4.63)
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Namely, we only need to focus on the first eight components of π ∈ ∆E8×E8 and identify ∆±
g′1

in order to see massless states in the untwisted sectors.

As shown in Table 2, there are the three inequivalent choices of π̂ in the E8 × E8 root

lattice. Let us study the massless spectrum in each of the three non-supersymmetric models

in class (1).

4.4.1 SO(16)× E8 model: π̂
2
= (1, 07; 08)

This choice of π̂ splits ∆E8×E8 into ∆+
g and ∆−

g as follows:

∆+
g = ∆SO(16) ⊕∆E8 , ∆−

g = ∆128+ ⊕
{(

08
)}

. (4.64)

In particular, one should note ∆+
g1

= ∆SO(16) and ∆−
g1

= ∆128+ . Then, if A ∈ Γ∗
g, we obtain

gauge bosons transforming in an adjoint representation of SO(16)×E8 and massless spinors

transforming in (128+;1) of the SO(16)×E8. In order to see massless states in the twisted

sectors, ∆−,c
g and ∆+,o

g should be clarified:

∆−,c
g = ∆128− ⊕

{(
08
)}

=

{
1

2

(
±,±,±,±,±,±,±,±−; 0

8
)}

, ∆+,o
g =

{(
±, 07; 08

)}
.

(4.65)

In the twisted sectors, then, there are massless conjugate spinors transforming in (128−;1)

of the SO(16)×E8 and massless scalars transforming in (16;1) of the SO(16)×E8 if A ∈ Γ16
+

and
√
2R ∈ Z.

Let us see the massless spectra which are realized by the non-trivial Wilson lines. As

mentioned above, it is sufficient to consider the inner products of the first eight components

in π ∈ ∆±
g with A1. If A1 is given as in (4.57a), then ∆±

g′1
is

∆+
g′1

=
{(

±,±, 0p−2, 0q
)
,
(
0p,±,±, 0q−2

)}
, ∆−

g′1
=

{((
±1

2

)p

±

,

(
±1

2

)q

±

)}
, (4.66)

where the chirality + in ∆−
g′1
is applied for p = 0, 4, 8 while − is for p = 2, 6. So, the enhanced

gauge symmetry from U(1)16L is SO(2p) × SO(2q) × E8 and massless spinors transform in(
2p−1
± ,2q−1

± ;1
)
of the SO(2p) × SO(2q) × E8. As for the twisted sectors, imposing the

condition (4.23) into ∆−.c
g given in (4.65), we find

π +
π̂

2
=


((

±1
2

)p
−
,
(
±1

2

)q
+
; 08
)

for p = 4, 8((
±1

2

)p
+
,
(
±1

2

)q
−
; 08
)

for p = 2, 6
, (4.67)
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and for p = 0 there is no element in ∆−,c
g satisfying

(
π + π̂

2

)
· A ∈ Z. We obtain massless

conjugate spinors transforming in
(
2p−1
∓ ,2q−1

± ;1
)
of the SO(2p) × SO(2q) × E8 with the

upper signs for p = 4, 8 and the lower signs for p = 2, 6. For p = 0, which gives the same

massless states in the untwisted sectors as with p = 8, there is no massless conjugate spinor

in the twisted sectors. Note that both of the Wilson lines (4.57a) with p = 8 and p = 0 are

elements of Γ16, but the former lives in Γ16
+ while the latter in Γ16

− . As regards scalars in the

twisted sectors, the elements in ∆+,o
g given in (4.65) that satisfy

(
π + π̂

2

)
· A ∈ Z are

π +
π̂

2
=
(
±, 0p−1, 0q; 08

)
, (4.68)

while satisfying
(
π + π̂

2

)
· A ∈ Z+ 1/2 are

π +
π̂

2
=
(
0q,±, 0q−1; 08

)
. (4.69)

Then, massless scalars transform in (2p,1;1) of the SO(2p) × SO(2q) × E8 if
√
2R ∈ Z,

while transform in (1,2q;1) of the SO(2p)× SO(2q)× E8 if
√
2R ∈ Z+ 1/2.

We now turn to the Wilson line (4.57b). The condition π · A ∈ Z leads to the following

∆+
g′ and ∆−

g′ :

∆+
g′ =

{(
+,−, 06

)}
⊕∆E8 , ∆−

g′ =

{(
±
(
1

2

)8

; 08

)
,

((
+
1

2

)4

,

(
−1

2

)4

; 08

)}
. (4.70)

Then, U(1)16L is enhanced to SU(8)×U(1)×E8, and we obtain massless spinors transforming

in (70;1) of the SU(8)×E8 and two U(1) charged massless spinors. There are no elements

in ∆−,c
g that satisfy

(
π + π̂

2

)
· A ∈ Z, and hence conjugate spinors in the twisted sectors

cannot be massless with this Wilson line. One can notice that all the elements in ∆+,o
g

satisfy
(
π + π̂

2

)
· A ∈ Z + 1/4 or

(
π + π̂

2

)
· A ∈ Z − 1/4. We then obtain massless scalars

transforming in 8⊕ 8 of the SU(8) if
√
2R ∈ Z± 1/4.

4.4.2 (E7 × SU(2))2 model: π̂
2
=
(
06,
(
1
2

)2
; 06,

(
1
2

)2)
With this choice of π̂, ∆+

g and ∆−
g are given as

∆+
g = ∆E7×SU(2) ⊕∆E7×SU(2), ∆−

g = ∆(56,2) ⊕∆(56,2), (4.71)
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where ∆E7×SU(2) and ∆(56,2) are defined as

∆E7×SU(2) =

{(
±,±, 04, 02

)
,
(
06,±,±

)
,

((
±1

2

)6

−

,

(
±1

2

)2

−

)}
, (4.72)

∆(56,2) =

{(
±, 05,±, 0

)
,

((
±1

2

)6

+

,

(
±1

2

)2

+

)}
. (4.73)

Then, ∆+
g gives the nonzero roots of E7 × SU(2) × E7 × SU(2) and ∆−

g corresponds to

(56,2;1,1)⊕ (1,1;56,2) of the E7 × SU(2)×E7 × SU(2). Looking at the twisted sectors,

∆−,c
g and ∆+,o

g are given as

∆−,c
g = ∆(56,1) ⊕

{
π̂2

2

}
+

{
π̂1

2

}
⊕∆(56,1), (4.74)

∆+,o
g = ∆(1,2) ⊕

{
π̂2

2

}
+

{
π̂1

2

}
⊕∆(1,2), (4.75)

where π̂1

2
= π̂2

2
=
(
06,
(
1
2

)2)
, and we define ∆(56,1) and ∆(1,2) as

∆(56,1) =

{(
±, 05,

(
±1

2

)2

−

)
,

((
±1

2

)6

+

, 02

)}
, ∆(1,2) =

{(
06,

(
±1

2

)2

+

)}
.

(4.76)

Thus, there are massless conjugate spinors transforming in (56,1;1,1)⊕ (1,1;56,1) of the

E7 × SU(2) × E7 × SU(2) and massless scalars transforming in (1,2;1,1) ⊕ (1,1;1,2) of

the SU(2)× SU(2) if A ∈ Γ16
+ and

√
2R ∈ Z.

Let us turn on the non-trivial Wilson lines given in (4.57a) or (4.57b). In this model, we

study each of the five Wilson lines (i.e. (4.57a) with p = 6, 4, 2, 0 and (4.57b)) individually.

• A1 =
(
06,
(
1
2

)2)
We notice A1 = π̂1

2
, and hence ∆+

g′1
= ∆E7×SU(2) while ∆−

g′1
is empty. Thus, the gauge

symmetry remains to be enhanced to E7 × SU(2) × E7 × SU(2), although spinors

transforming in (56,2;1,1) of the E7 × SU(2) × E7 × SU(2) are massive. We also

find that there are no elements that satisfy
(
π + π̂

2

)
· A ∈ Z in the second sets in

(4.74) because
(
π̂1

2

)
· A1 = 1

2
and A = (A1; 0

8). So, only conjugate spinors in the

twisted sectors with π+ π̂
2
∈ ∆(56,1) ⊕

{
π̂2

2

}
can be massless. Note that this statement

is true for all the Wilson lines we consider in this subsection. For any elements in
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∆(56,1) ⊕
{

π̂2

2

}
, the inner products with A are(

π +
π̂

2

)
· A =

(
π1 +

π̂1

2

)
· A1 =

(
π1 +

π̂1

2

)
· π̂1

2
∈ Z, ((π1, 0

8) ∈ Γ16
− ). (4.77)

Then, massless conjugate spinors transform in (56,1;1,1) of the E7 × SU(2)× E7 ×
SU(2). We also get massless scalars transforming in (1,2;1,1) ⊕ (1,1;1,2) of the

E7 × SU(2)× E7 × SU(2) if
√
2R ∈ Z+ 1/2.

• A1 =
(
04,
(
1
2

)4)
With this Wilson line, ∆+

g′1
and ∆−

g′1
are

∆+
g′1

=

{(
±,±, 02, 04

)
,
(
02,±,±, 02

)
,
(
06,±,±

)
,

((
±1

2

)4

+

,

(
±1

2

)2

−

,

(
±1

2

)2

−

)}
,

(4.78)

∆−
g′1

=

{(
04,±, 0,±, 0

)
,

((
±1

2

)4

+

,

(
±1

2

)2

+

,

(
±1

2

)2

+

)}
, (4.79)

which lead to the SO(12) × SU(2) × SU(2) gauge group and massless spinors trans-

forming in (12,2,2) of the SO(12)× SU(2)× SU(2). As for conjugate spinors in the

twisted sectors, the following elements π1 +
π̂1

2
∈ ∆(56,1) satisfy

(
π1 +

π̂1

2

)
· A1 ∈ Z:

π1 +
π̂1

2
=

(
±, 03, 02,

(
±1

2

)2

−

)
,

((
±1

2

)4

−

,

(
±1

2

)2

−

, 02

)
, (4.80)

which correspond to (32,1,1) of the SO(12) × SU(2) × SU(2). We obtain massless

scalars transforming in (1,1,2;1,1)⊕ (1,1,1;1,2) of the SO(12)×SU(2)×SU(2)×
E7 × SU(2) if

√
2R ∈ Z+ 1/2.

• A1 =
(
02,
(
1
2

)6)
One can check that ∆+

g′1
with A1 =

(
02,
(
1
2

)6)
is the same as with A1 =

(
04,
(
1
2

)4)
up

to the permutations, and hence U(1)8L is enhanced to SO(12) × SU(2) × SU(2). On

the other hand, ∆−
g′1

with this Wilson line is

∆−
g′1

=

{(
02,±, 03,±, 0

)
,

((
±1

2

)2

−

,

(
±1

2

)4

−

,

(
±1

2

)2

+

)}
, (4.81)
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which corresponds to (32,1,2) of the SO(12)×SU(2)×SU(2). As for conjugate spinors

in the twisted sectors, the following elements π1+
π̂1

2
∈ ∆(56,1) satisfy

(
π1 +

π̂1

2

)
·A1 ∈ Z:

π1 +
π̂1

2
=

(
±, 0, 04,

(
±1

2

)2

−

)
,

((
±1

2

)2

+

,

(
±1

2

)4

+

, 02

)
, (4.82)

which give (12,2,1) of the SO(12)×SU(2)×SU(2). Whereas, all the elements in ∆(1,2)

satisfy
(
π1 +

π̂1

2

)
·A1 ∈ Z+1/2. In summary, in the twisted sectors, there are massless

conjugate spinors transforming in (12,2,1) of the SO(12)×SU(2)×SU(2), and scalars

transforming in (1,1,2;1,1)⊕(1,1,1;1,2) of the SO(12)×SU(2)×SU(2)×E7×SU(2)

become massless if
√
2R ∈ Z+ 1/2.

• A1 =
((

1
2

)8)
As A = (A1, 0

8) ∈ Γ∗
g, massless states in the untwisted sectors are the same as in the

case with A1 = (08); the enhanced gauge symmetry from U(1)16L is E7 ×SU(2)×E7 ×
SU(2) and massless spinors transform in (56,2;1,1)⊕(1,1;56,2) of the E7×SU(2)×
E7×SU(2). There are however no elements in ∆−,c

g satisfying
(
π + π̂

2

)
·A ∈ Z because

A ∈ Γ16
− . Thus, conjugate spinors in the twisted sectors cannot be massless. We obtain

massless scalars transforming in (1,2;1,1)⊕(1,1;1,2) of the E7×SU(2)×E7×SU(2)

if
√
2R ∈ Z+ 1/2.

• A1 =
((

1
4

)8)
This Wilson line gives ∆+

g′1
and ∆−

g′1
as

∆+
g′1

=

{(
+,−, 04, 02

)
,
(
06,+,−

)
,

((
+
1

2

)3

,

(
−1

2

)3

,

(
±1

2

)2

−

)}
, (4.83)

∆−
g′1

=

{
±
(
+, 05,−, 0

)
,±

((
+
1

2

)2

,

(
−1

2

)4

,

(
1

2

)2
)
,±

((
1

2

)8
)}

. (4.84)

One can find that ∆+
g′1

corresponds to a set of the nonzero roots of E6, and ∆−
g′1

yields

27⊕27 of the E6 and U(1) charges ±1. In the untwisted sectors, thus, there are gauge

bosons of E6 × U(1)1 × U(1)2 and massless spinors transforming in
(
27,−1/

√
2, 0
)
⊕(

27, 1/
√
2, 0
)
⊕
(
1,±1/

√
2,±

√
2
)
of the E6 × U(1)1 × U(1)2

8. Let us move on to the

twisted sectors. There are no elements in ∆−,c
g satisfying

(
π + π̂

2

)
· A ∈ Z, and hence

8The unbolded letters indicate U(1) charges.
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conjugate spinors cannot massless. Whereas, we can obtain massless scalars by tuning

R to an appropriate value. If
√
2R ∈ Z+ 1/2, there are massless scalars transforming

in (1;1,2) of the E6 × E7 × SU(2). If
√
2R ∈ Z + 1/4 or

√
2R ∈ Z − 1/4, there are

massless scalars with charges ±1/
√
2 of the U(1)1.

4.4.3 SO(16)× SO(16) model: π̂
2
= (1, 07; 1, 07)

The splitting of ∆E8×E8 by this choice of π̂ is

∆+
g = ∆SO(16) ⊕∆SO(16), ∆−

g = ∆128+ ⊕∆128+ . (4.85)

With the Wilson lines A ∈ Γ∗
g, thus, we obtain gauge bosons of SO(16) × SO(16) and

massless spinors transforming in (128+,1)⊕ (1,128+) of the SO(16)× SO(16). Note that

in the twisted sectors, scalars cannot be massless and conjugate spinors live in ∆+,c
g (but not

∆−,c
g ) since

∣∣ π̂
2

∣∣2 = 2. If A ∈ Γ16
+ , then there are massless conjugate spinors transforming in

(16,1)⊕ (1,16) of the SO(16)× SO(16) as ∆+,c
g is given as

∆+,c
g = ∆16 ⊕

{
π̂2

2

}
+

{
π̂1

2

}
⊕∆16, (4.86)

where π̂1

2
= π̂2

2
= (1, 07) and

∆16 =
{(

±, 07
)}

. (4.87)

Let us study the massless spectra with the non-trivial Wilson lines given in (4.57a) and

(4.57b). Note that ∆±
g1

is the same as in the SO(16)×E8 model. Thus, the massless vectors

and spinors in the untwisted sectors respectively live in ∆+
g′1
⊕∆SO(16) and ∆−

g′1
⊕∆128+ where

∆+
g′1

and ∆−
g′1

are obtained in subsection 4.4.1. We have already known the massless states in

the untwisted sectors. So, in this subsection, we only need to take care of conjugate spinors

in the twisted sectors.

We now consider the Wilson line (4.57a). If p = 0 (i.e. A =
((

1
2

)8
, 08
)
∈ Γ16

− ), then it is

clear that any elements in ∆+,c
g do not satisfy

(
π + π̂

2

)
·A ∈ Z, and massless conjugate spinors

do not exist. If p ̸= 0, we find the following elements in ∆+,c
g that satisfy

(
π + π̂

2

)
· A ∈ Z:

π +
π̂

2
=
(
±, 0p−1, 0q; 1, 07

)
,
(
0p,±, 0q−1; 1, 07

)
,
(
1, 07;±, 07

)
. (4.88)

Then, we obtain massless conjugate spinors transforming in (2p,1,1)⊕(1,2q,1)⊕(1,1,16)

of the SO(2p)× SO(2q)× SO(16).

54



For the Wilson line (4.57b), there are no elements in ∆+,c
g satisfying

(
π + π̂

2

)
·A ∈ Z, and

all conjugate spinors in the twisted sectors are massive.

The massless spectra in class (1) which we identified in subsections 4.3 and 4.4 are

summarized in appendix C.
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5 Cosmological constant

In this subsection, we evaluate the one-loop cosmological constant (vacuum energy) and

show that it is exponentially suppressed in the region where supersymmetry is restored if

there is a Bose-Fermi degeneracy in the massless level, as seen in (1.1). We only focus on

the non-supersymmetric models in class (2), but the same discussion can be done in class

(3) and class (4) by adopting the dual description of the moduli. Note that restoration of

supersymmetry occurs as R → ∞ in the case of class (2).

5.1 Exponential suppression of cosmological constant

From (2.32) and (2.49), the partition function in class (2) is written as

Z���SUSY
(π̂,1,0)(R,A(2)) = Z

(7)
B

{
V̄8

(
Λ(+)[0|0|0] + Λ(−)[0|1|0]

)
− S̄8

(
Λ(+)[0|1|0] + Λ(−)[0|0|0]

)
+Ō8

(
Λ(±)[1|0|1] + Λ(∓)[1|1|1]

)
− C̄8

(
Λ(±)[1|1|1] + Λ(∓)[1|0|1]

)}
,

(5.1)

where Λ(±)[α|β|γ] is defined as

Λ(±) [α|β|γ] = η−16 (ηη̄)−1
∑

π∈Γ16
± + γ

2
π̂

∑
m∈Z+α

2

∑
n∈2Z+β

q
1
2(ℓ2L+p2L)q̄

1
2
p2R , (5.2)

with (ℓL, pL, pR) given in (2.42). Note that the lower signs of Λ(±) and Λ(∓) in the twisted

sectors are adopted only when the non-supersymmetric endpoint model is the SO(16) ×
SO(16) model.

The cosmological constant is defined as the integral of the partition function over the

fundamental domain of the modular group:

Λ = −1

2

(
4π2α′)− 9

2

∫
F

d2τ

τ 22
Z���SUSY

(π̂,1,0) , (5.3)

where the fundamental domain F is

F =

{
τ = τ1 + iτ2 ∈ C

∣∣∣∣−1

2
≤ τ1 ≤

1

2
, |τ | ≥ 1

}
. (5.4)

For our convenience, we decompose F into two pieces F≥1 = F|τ2≥1 and F<1 = F|τ2<1. The

contributions from the states with m ̸= 0 are exponentially suppressed as R grows larger.
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Thus, we can ignore the last two terms in the partition function (5.1). Using the Jacobi’s

abstruse identity (A.14), we get

Λ ∼ −1

2

(
4π2α′)− 9

2

∫
F

d2τ

τ 22
Z

(7)
B V̄8

∑
ϵ=±

ϵ
(
Λ(ϵ)[0|0|0]− Λ(ϵ)[0|1|0]

)
. (5.5)

Focusing on the internal momenta with m = 0, we find

Λ(ϵ)[0|0|0]− Λ(ϵ)[0|1|0] ∼ η−17η̄−1
∑
π∈Γ16

ϵ

q
|π|2
2

∑
n∈Z

(
e
− 4πτ2

R2

(
n+

π·A(2)
2

)2

− e
− 4πτ2

R2

(
n+

π·A(2)+1

2

)2)

= η−17η̄−1
∑
π∈Γ16

ϵ

q
|π|2
2

(
ϑ

[
π·A(2)

2

0

](
0,

4iτ2
R2

)
− ϑ

[
π·A(2)+1

2

0

](
0,

4iτ2
R2

))
.

(5.6)

One should not confuse the two different uses of π: one is for the ratio of a circle’s circum-

ference, while the other is for a element of Γ16. By using the S-transformation low (A.16)

of the theta function, we see that (5.6) can be written as

2R
√
τ2
η−17η̄−1

∑
π∈Γ16

ϵ

q
|π|2
2

∑
n≥1

cos
[
π(2n− 1)

(
π · A(2)

)]
exp

[
−π(2n− 1)2

4τ2
R2

]
. (5.7)

The cosmological constant can be then expressed as

Λ ∼ − R

(4π2α′)
9
2

∑
n≥1

∑
ϵ=±

∑
M+,M−

ϵa
(ϵ)
M+,M−

cos
[
π(2n− 1)

(
π · A(2)

)] ∫
F

d2τ

τ 62
e2πiτ1M−e

−π

(
2τ2M++

(2n−1)2

4τ2
R2

)
,

(5.8)

where we expanded the contributions from π and the oscillators as follows:∑
π∈Γ16

ϵ

q
|π|2
2 η−24η̄−8V̄8 =

∑
M−,M+

a
(ϵ)
M+,M−

e2πiτ1M−e−2πτ2M+ . (5.9)

Let us evaluate the integral over F by decomposing into F<1 and F≥1. For the integration

over F<1, the domain itself is finite and the integrand itself is singularity free. We can thus

easily bound the integration as follows:∫
F<1

d2τ

τ 62
e2πiτ1M−e−2πτ2M+e

−π(2n−1)2

4τ2
R2

< e−2πM+e−
π(2n−1)2

4
R2

∫
F<1

d2τ

τ 62
e2πiτ1M− . (5.10)

So, the contribution from the integration over F<1 is suppressed at least by the factor e−πR2/4

as R goes to infinity. As for F≥1, the domain is infinite and it is non-trivial to give a finite
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contribution. By using the inequality on the arithmetic-geometric mean, however, we can

determine the upper bound of the τ2-dependent factor:

exp

[
−π

(
2τ2M+ +

(2n− 1)2

4τ2
R2

)]
≤ e−

√
2π(2n−1)

√
M+R. (5.11)

This bound is τ2 independent and together with τ−6
2 , it can be integrated over F≥1, giving a

finite prefactor. Note that we can carry out the integration over τ1 and τ2 individually, and

the former gives δM−,0. Under the level-matching condition M− = 0, M+ cannot be negative,

and hence the contribution from the integration over F≥1 is suppressed at least by the factor

e
√
2π
√

M+R unless M+ = 0. Therefore, the leading contribution comes from the integration

of the terms with M+ = 0 over F≥1:

Λ ∼ − R

(4π2α′)
9
2

∑
n≥1

∑
ϵ=±

∑
M+,M−=0

ϵa
(ϵ)
M+,M−

cos
[
π(2n− 1)

(
π · A(2)

)] ∫ ∞

1

dτ2
τ 62

e
−π(2n−1)2

4τ2
R2

∼ − 48

π14
(√

α′R
)9 ∑

n≥1

(2n− 1)−10
∑
ϵ=±

∑
M+,M−=0

ϵa
(ϵ)
M+,M−

cos
[
π(2n− 1)

(
π · A(2)

)]
, (5.12)

where we perform the τ2-integration and omit the exponentially suppressed terms. Let us

show that this leading contribution (5.12) is proportional to nF − nB with nF and nB being

the degrees of freedom of massless fermions and massless bosons respectively if A(2) ∈ Γ∗
g.

There are two possibilities of M+ = M− = 0. One is with π = 0 which corresponds to sector

1 we introduced in the previous section and which has 8× 24 degrees of freedom. The other

is with |π|2 = 2 which correspond to sector 2. Then, the cosmological constant (5.12) is

Λ ∼ − 48

π14
(√

α′R
)9 ∑

n≥1

(2n− 1)−108

24 +
∑
ϵ=±

∑
π∈∆ϵ

g

ϵ cos
[
π(2n− 1)

(
π · A(2)

)] . (5.13)

Let us assume that A(2) satisfies π · A(2) ∈ Z for all elements π of ∆g, i.e., A ∈ Γ∗
g. Under

this assumption, the second term in the parentheses in (5.13) is independent of n, and one

can notice

ϵ cos
[
π(2n− 1)

(
π · A(2)

)]
=

+1 for A(2) with (4.16)

−1 for A(2) with (4.17)
. (5.14)

Recalling that the massless conditions for vectors and spinors in sector 2 are given by (4.16)

and (4.17) respectively, this factor assigns +1 to massless vectors and -1 to massless spinors.
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Including the contribution from sector 1, up to the exponentially suppressed terms, the

cosmological constant is expressed as

Λ ∼ 48

π14
(√

α′R
)92−10ζ

(
10,

1

2

)
(nF − nB) , (5.15)

where nF and nB are the degrees of freedom of massless bosons and fermions, and ζ(s, a) is

the Hurwitz zeta function:

ζ(s, a) =
∑
n≥0

(n+ a)−s . (5.16)

We have therefore shown that the cosmological constant is exponentially suppressed as R →
∞ if there exists the Bose-Fermi degeneracy at the massless level.

Note that the Wilson line was above assumed to satisfy π ·A(2) ∈ Z for any π ∈ ∆g so that

all the cosine factors multiplied by ϵ in (5.13) give +1 or −1, which is respectively assigned

to a massless boson and a massless fermion. So, it seems that the expression (5.15) of the

cosmological constant is valid only when A(2) ∈ ∆∗
g. However, we can relax this assumption

to 2A(2) ∈ ∆∗
g. This is because, under the new assumption, there might exist π ∈ ∆g with

π · A(2) ∈ Z + 1/2 which do not give massless states, but such π’s do not contribute to the

leading term of the cosmological constant, and hence the non-vanishing contributions come

only from π’s with π ·A(2) ∈ Z. Then, it can be interpreted that the cosmological constant is

proportional to nF −nB up to the exponentially suppressed terms if the Wilson line satisfies

2A(2) ∈ ∆∗
g.

At the end of this subsection, we should point out that the leading term (5.15) does not

depend on the choice π̂ (i.e. splitting of Γ16 into Γ16
+ and Γ16

− ). Recall that the Wilson line

A(2) in class (2) is related to that in toroidal models by (4.18). Inserting (4.18) into (5.13),

Λ ∼ − 48

π14
(√

α′R
)9 ∑

n≥1

(2n− 1)−108

24 +
∑
π∈∆g

cos
[
2π(2n− 1)

(
π · A(T )

)] . (5.17)

The cosine factor gives +1 and −1 for π ∈ ∆g with π · A(T ) ∈ Z and π · A(T ) ∈ Z + 1/2

respectively, while vanishes for π with π ·A(T ) ∈ Z+1/4. Then, the cosmological constants of

the non-supersymmetric models (interpolating models) in class (2) do not depend on the non-

supersymmetric endpoint models as long as we only focus on the region with supersymmetry

being restored. We will adopt the description by A(T ) but not A(2) in the later discussions in

which the symmetry enhancement and the moduli stability in class (2) are mainly considered.
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In [44], the subleading contributions to the cosmological constant have been derived,

but we do not consider the exponentially suppressed contributions in this thesis. We can

evaluate the cosmological constants in class (3) and class (4) in the same way as we have

done above. But one should note that supersymmetry is restored as R → 0 in class (3), and

needs to replace (A,R) to (Ã, R̃) in (5.15). In class (4), supersymmetry is restored in both

of the endpoint limits, and (5.15) is valid for both of the normal and dual descriptions of

the moduli.

5.2 Exponential suppression with Wilson line

In this subsection, we identify the massless spectra in class (2) as we have done in subsection

4.3 and 4.4. In particular, we devote our attention to searching for the massless spectra with

nF = nB which realize the exponentially suppressed cosmological constants. Unlike in class

(1), we do not need to specify the choice of π̂ in order to figure out the massless spectrum

with m = 0 due to the relation (4.18) between A(2) and A(T ). The information of π̂ is needed

if one would like to know the corresponding Wilson line A(2) in the non-supersymmetric

models. We thus use the massless conditions (4.19) and (4.20) (but not (4.16) and (4.17)),

and restrict our attention to the Wilson lines that satisfy 4A(T ) ∈ Γ∗
g so that the expression

(5.15) can be used.

We here define ∆
(B)
g′ and ∆

(F )
g′ as

∆
(B)
g′ =

{
π ∈ ∆g

∣∣π · A(T ) ∈ Z
}
, ∆

(F )
g′ =

{
π ∈ ∆g

∣∣∣∣π · A(T ) ∈ Z+
1

2

}
. (5.18)

Note that ∆
(B)
g′ is a set of the nonzero roots of the gauge group that is enhanced by A(T ), and

∆
(F )
g′ yields the representation of massless spinors. In order to realize nF = nB, the Wilson

line must give a massless spectrum that satisfies

|∆(F )
g′ | − |∆(B)

g′ | = 24, (5.19)

where |∆| indicates the number of elements in a set ∆. Note that 24 is the degrees of freedom

of the left-moving massless states in sector 1.
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5.2.1 Supersymmetric Spin(32)/Z2 endpoint model

Let us first consider the following configuration of the Wilson line:

A(T ) =

(
0p,

(
1

2

)q

,

(
1

4

)r)
(p+ q + r = 16). (5.20)

Note that this Wilson line satisfies 4A(T ) ∈ Γ
(16)
g or 4A(T ) ∈ Γ

(16)
v . Recalling ∆g given by

(4.10), we find

∆
(B)
g′ =

{(
±,±, 0p−2, 0q+r

)
,
(
0p,±,±, 0q−2, 0r

)
,
(
0p+q,−,+, 0r−2

)}
, (5.21)

∆
(F )
g′ =

{(
±, 0p−1,±, 0q−1, 0r

)
,±
(
0p+q+,+, 0r−2

)}
. (5.22)

Then, with the Wilson line (5.20), there are gauge bosons transforming in the adjoint rep-

resentation of SO(2p)× SO(2q)× SU(r) and massless spinors transforming in (2p,2q,1)⊕(
1,1, r(r−1)

2

)
⊕
(
1,1, r(r−1)

2

)
of the SO(2p) × SO(2q) × SU(r). Then, the numbers of

elements in ∆
(B)
g′ and ∆

(F )
g′ are

|∆(B)
g′ | = 2p(p− 1) + 2q(q − 1) + r(r − 1), (5.23)

|∆(F )
g′ | = 4pq + r(r − 1). (5.24)

and (5.19) is written as

p+ q − (p− q)2 = 12. (5.25)

With p+ q + r = 16, the solutions of (5.25) are

(p, q, r) = (7, 9, 0), (6, 7, 3), (6, 6, 4). (5.26)

The cosmological constant is therefore exponentially suppressed with the gauge symmetry

enhancements from U(1)16L to SO(18) × SO(14) or SO(14) × SO(12) × SU(3) × U(1) or

SO(12)× SO(12)× SU(4)× U(1).

The other interesting configuration of the Wilson line is that satisfying 4A(T ) ∈ Γ
(16)
s or

4A(T ) ∈ Γ
(16)
c . So, let us consider the following Wilson line:

A(T ) =

((
1

8

)s

,

(
3

8

)t
)

(s+ t = 16). (5.27)
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Note that 4A(T ) ∈ Γ
(16)
s for t even, while 4A(T ) ∈ Γ

(16)
c for t odd. With this A(T ), we obtain

∆
(B)
g′ and ∆

(F )
g′ as

∆
(B)
g′ =

{(
+,−, 0s−2, 0t

)
,
(
0s,+,−, 0t−2

)}
, (5.28)

∆
(F )
g′ =

{
±
(
+, 0s−1,+, 0t−1

)}
, (5.29)

which lead to the symmetry enhancement U(1)16L → SU(s) × SU(t) × U(1)2 and massless

spinors transforming in (s, t)⊕
(
s, t
)
of the SU(s)× SU(t), and then |∆(B)

g′ | and |∆(F )
g′ | are

|∆(B)
g′ | = s(s− 1) + t(t− 1), |∆(F )

g′ | = 2st. (5.30)

Inserting (5.30) into (5.19),

−(s− t)2 + 16 = 24. (5.31)

Clearly, there is no solution of (5.31). Rather than that, (5.31) implies that the cosmolog-

ical constant with the Wilson line (5.27) is always negative. Thus, we cannot obtain the

exponentially suppressed cosmological constant with the Wilson line (4.25b).

5.2.2 Supersymmetric E8 × E8 endpoint model

As in the case with the Spin(32)/Z2 endpoint model, we consider the Wilson line A(T ) =

(A1;A2) satisfying 4A(T ) ∈ Γ16, that is, 4Ai ∈ Γ
(8)
g or 4Ai ∈ Γ

(8)
s for i = 1, 2. As in subsection

4.4, ∆
(B)
g′ and ∆

(F )
g′ can be expressed as the direct sums of the two sets:

∆
(B)
g′ = ∆

(B)

g′1
⊕∆

(B)

g′2
, ∆

(F )
g′ = ∆

(F )

g′1
⊕∆

(F )

g′2
, (5.32)

where ∆
(B)

g′i
and ∆

(F )

g′i
are defined as

∆
(B)

g′i
= {πi ∈ ∆E8 |πi · Ai ∈ Z} , ∆

(F )

g′i
=

{
πi ∈ ∆E8

∣∣∣∣πi · Ai ∈ Z+
1

2

}
. (5.33)

So, it is sufficient to see only the first eight components of the Wilson line and identify ∆
(B)

g′1

and ∆
(F )

g′1
. The counterparts ∆

(B)

g′2
and ∆

(F )

g′2
can be obtained in the same way. We then focus

on the following configurations of A1:

A1 =

(
0p1 ,

(
1

2

)q1

,

(
1

4

)r1)
, (5.34a)

A1 =

((
1

8

)8
)
, (5.34b)
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where p1 + q1 + r1 = 8 and r1 is even so that 4A1 ∈ Γ
(8)
g . The results of the massless spectra

that the above Wilson lines realize are shown in Table 6. We here give the procedure of

identification of the massless spectra only for A1 given in (5.34a) with r1 = 0 and r1 = 8.

The results for the other Wilson lines can be obtained in the same way we will present below.

Recall that ∆E8 is decomposed into ∆SO(16) and ∆128+ . Restricting our attention to the

elements in ∆SO(16), the following π1’s satisfy π1 · A1 ∈ Z for A1 =
(
0p1 ,

(
1
2

)q1):
π1 =

(
±,±, 0p1−2, 0q1

)
,
(
0p1 ,±,±, 0q1−2

)
. (5.35)

Whereas, π1 ∈ ∆SO(16) that satisfy π1 · A1 ∈ Z+ 1/2 are

π1 =
(
±, 0p1−2,±, 0q1−2

)
. (5.36)

One can check that the elements π1 ∈ ∆128+ satisfy π1 · A1 ∈ Z or π1 · A1 ∈ Z+ 1/2 only if

p1 is even. Thus, for A1 with p1 odd, ∆
(B)

g′1
gives the nonzero roots of SO(2p1) × SO(2q1),

and ∆
(F )

g′1
gives (2p1,2q1) of the SO(2p1)× SO(2q1).

Let us consider the cases with p1 even. If p1 = 0 or p1 = 8, which means A1 is in the E8

root lattice, then ∆
(B)

g′1
= ∆E8 and ∆

(F )

g′1
is empty. If p1 = 2, we have the following π1 ∈ ∆128+

satisfying π1 · A1 ∈ Z:

π1 =
1

2

(
±,±−,±,±,±,±,±,±−

)
, (5.37)

Accompanied with (5.35) with p1 = 2, we get the nonzero roots of SU(2) × E7. As for

massless spinors, π1 ∈ ∆128+ satisfying π1 · A1 ∈ Z+ 1/2 are

π1 =
1

2

(
±,±

+
,±,±,±,±,±,±

+

)
. (5.38)

Including (5.36) with p1 = 2, then, we obtain (2,56) of the SU(2)×E7. The case with p1 = 6

leads to the same ∆
(B)

g′1
and ∆

(F )

g′1
as with p1 = 2 up to the permutations of the components.

If p1 = 4, subsets of ∆128+ in which the elements satisfy π1 · A1 ∈ Z and π1 · A1 ∈ Z + 1/2

are respectively

π1 =
1

2

(
±,±,±,±

+
,±,±,±,±

+

)
, (5.39)

π1 =
1

2

(
±,±,±,±−,±,±,±,±−

)
. (5.40)

Accompanied with the nonzero roots of SO(8)× SO(8) given by (5.35) with p1 = 4, (5.39)

which corresponds to (8+,8+) of SO(8) × SO(8) leads to the nonzero roots of SO(16).

Meanwhile, (5.40) and (5.36) with p1 = 4 yield 128 of SO(16).
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If A1 =
((

1
4

)8)
, the following π1 ∈ ∆SO(16) satisfy π1 · A1 ∈ Z and π1 · A1 ∈ Z+ 1/2:

π1 =


(
+,−, 06

)
for π1 · A1 ∈ Z

±
(
+,+, 06

)
for π1 · A1 ∈ Z+ 1

2

. (5.41)

For π1 ∈ ∆128+ , we find the following elements satisfying π1 · A1 ∈ Z or π1 · A1 ∈ Z+ 1/2:

π1 =

±
((

1
2

)8)
, 1
2

(
(+)4, (−)4

)
for π1 · A1 ∈ Z

±1
2

(
(+)2, (−)6

)
for π1 · A1 ∈ Z+ 1

2

. (5.42)

Putting (5.41) and (5.42) together, we obtain the nonzero roots of E7×SU(2) for π1 ·A1 ∈ Z
and (2,56) of the E7 × SU(2) for π1 · A1 ∈ Z+ 1/2.

The one sides of the massless spectra with A1 =
(
0p1 ,

(
1
2

)q1) and A1 =
((

1
4

)8)
which

we have just seen above are shown in the first six rows and in Table 6. Note that A1 =(
0p1 ,

(
1
2

)q1) with p1 even and A1 =
((

1
4

)8)
satisfy 2A1 ∈ Γ

(8)
g or 2A1 ∈ Γ

(8)
s , and hence

|∆(B)

g′1
| + |∆(F )

g′1
| = |∆E8| since all the elements in ∆E8 satisfy either π1 · A1 ∈ Z or π1 · A1 ∈

Z+ 1/2.

We now search for the possibility of suppression of the cosmological constant. We show

|∆(F )

g′1
| − |∆(B)

g′1
| for each of A1 for which 4A1 ∈

(
Γ
(8)
g + Γ

(8)
s

)
holds in the fourth column in

Table 6. In order to find out the massless spectra which lead to the exponentially suppressed

cosmological constant, we need to get the combination in the fourth column in Table 6 such

that the sum is 24. There are two such combinations: 16 + 8 and 12 + 12. Then, the

cosmological constant is exponentially suppressed when U(1)16L is enhanced to SO(16) ×
SO(10)× SO(6) or SU(8)× SU(2)× SU(8)× SU(2).
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A1 Gauge bosons Massless spinors |∆(F )

g′1
| − |∆(B)

g′1
|

(08) ,
((

1
2

)8)
E8 — −240(

07, 1
2

)
,
(
0,
(
1
2

)7)
SO(14)× U(1) (14,±1) −56(

06,
(
1
2

)2)
,
(
02,
(
1
2

)6)
E7 × SU(2) (56,2) −16(

05,
(
1
2

)3)
,
(
03,
(
1
2

)5)
SO(10)× SO(6) (10,6) +8(

04,
(
1
2

)4)
SO(16) 128 +16((

1
4

)8)
E7 × SU(2) (56,2) −16(

06,
(
1
4

)2)
,
((

1
2

)6
,
(
1
4

)2)
E7 × U(1)

(
1,±

√
2
)

−124(
05, 1

2
,
(
1
4

)2)
,
(
0,
(
1
2

)5
,
(
1
4

)2)
E6 × SU(2)× U(1)

(
27,1,±2/

√
6
)

−20(
04,
(
1
2

)2
,
(
1
4

)2)
,
(
02,
(
1
2

)4
,
(
1
4

)2)
SO(12)× SU(2)× U(1) (32,2, 0)⊕

(
1,1,±

√
2
)

+4(
03,
(
1
2

)3
,
(
1
4

)2)
SU(8)× SU(2) (70,1) +12(

04,
(
1
4

)4)
,
((

1
2

)4
,
(
1
4

)4)
SO(14)× U(1) (14,±1) −56(

03, 1
2
,
(
1
4

)2)
,
(
0,
(
1
2

)3
,
(
1
4

)4)
SU(8)× U(1)

(
28,±1/

√
2
)

0(
02,
(
1
2

)2
,
(
1
4

)4)
SO(10)× SO(6) (10,6) +8(

02,
(
1
4

)6)
,
((

1
2

)2
,
(
1
4

)6)
E6 × SU(2)× U(1)

(
27,1,±2/

√
6
)

−20(
0, 1

2
,
(
1
4

)6)
SO(12)× SU(2)× U(1) (32,2, 0)⊕

(
1,1,±

√
2
)

+4((
1
8

)8)
E7 × U(1)

(
1,±

√
2
)

−124

Table 6: This table shows the massless spectra and |∆(F )

g′1
| − |∆(B)

g′1
| depending on the

configurations of the Wilson line in class (2) with the E8 root lattice. The unbolded letters

indicate U(1) charges.
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6 Moduli stability

The cosmological constants in the non-supersymmetric models, which can be regarded as

the effective potential of the moduli, do not vanish because of supersymmetry breaking,

and hence some of the moduli can be stabilized. In this section, we analyze stability of the

Wilson line moduli by using the cosmological constant we calculated in the previous section.

We use the expression (5.17) but not (5.15) so that the stability analysis does not depend on

the choice of the non-supersymmetric endpoint model of the interpolation. In this section,

we denote A(T ) as A, omitting the subscription.

6.1 Supersymmetric Spin(32)/Z2 endpoint model

We first consider the interpolating models with the supersymmetric endpoint model being

the Spin(32)/Z2 model. Inserting ∆g = ∆so(32) into (5.17), the Wilson line dependent part

can be written as

−
∑
n≥1

(2n− 1)−10
∑

π∈∆SO(32)

cos [2π(2n− 1) (π · A)]

= −2
∑
n≥1

(2n− 1)−10
∑
I>J

(
cos
[
2π(2n− 1)

(
AI + AJ

)]
+ cos

[
2π(2n− 1)

(
AI − AJ

)])
= −4

∑
n≥1

(2n− 1)−10
∑
I>J

cos
[
2π(2n− 1)AI

]
cos
[
2π(2n− 1)AJ

]
, (6.1)

where I, J = 1, · · · , 16 indicate the indices in the six-teen internal dimensions, and we have

omitted the positive prefactor which is not important in the stability analysis. Then, the

first derivative of the cosmological constant is

∂Λ

∂AI
∼ 8π

∑
n≥1

(2n− 1)−9 sin[2π(2n− 1)AI ]
∑
J ̸=I

cos
[
2π(2n− 1)AJ

]
. (6.2)

For simplicity, we only consider the Wilson lines given in (5.20) for which 4A ∈ Γ
(16)
g or

4A ∈ Γ
(16)
v holds. Inserting (5.20) into (6.2), we find

∂Λ

∂AI
∼

 0 (I = 1, · · · , p+ q)

8π
∑

n≥1(2n− 1)−9(−1)n+1 (p− q) (I = p+ q + 1, · · · , 16)
. (6.3)
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We thus find the two types of the critical points which satisfy either of the following two

conditions:

(i): r = 0, p+ q = 16,

(ii): r ≥ 1, p = q, p+ q + r = 16.

Note that the critical points (i) satisfy 2A ∈ Γ∗
g.

The next step of the stability analysis is to calculate the Hessian matrix, that is, to

evaluate the second derivative. From the first derivative (6.2), we get

∂Λ

∂AI∂AJ
∼

−16π2
∑

n≥1(2n− 1)−8 sin[2π(2n− 1)AI ] sin[2π(2n− 1)AI ] (I ̸= J)

16π2
∑

n≥1(2n− 1)−8 cos
[
2π(2n− 1)AI

]∑
J ̸=I cos

[
2π(2n− 1)AJ

]
(I = J)

.

(6.4)

For the critical points (i), all the off-diagonal components of the Hessian matrices vanish,

and the diagonal components are, up to the prefactor,

cos
[
2π(2n− 1)AI

]∑
J ̸=I

cos
[
2π(2n− 1)AJ

]
=

 p− q − 1 (I = 1, · · · , p)

− (p− q + 1) (I = p+ 1, · · · , 16)
. (6.5)

For the Hessian matrix to be positive definite, therefore, (p, q) must be (16, 0) or (0, 16).

Note that these Wilson lines imply A ∈ Γ∗
g, and U(1)16L is enhanced to SO(32) while there

are no massless spinors, as we have shown in the previous section. One can also find from

(6.5) that the Hessian matrix is negative definite only when p = q = 8, which means that

the points with the enhanced gauge symmetry SO(16)× SO(16) correspond to the maxima

of the effective potential.

As for the critical points (ii), the Hessian matrices can be expressed as a block diagonal

matrix as follows:

∂Λ

∂AI∂AJ
∼ 16π2

∑
n≥1

(2n− 1)−8

(
H1/2 0

0 H1/4

)
, (6.6)

where H1/2 is a (p + q) × (p + q) diagonal matrix with the diagonal components given as

in (6.5), and H1/4 is a r × r off-diagonal matrix with the off-diagonal components given by

−1. The Hessian matrix (6.6) clearly have at least one negative leading principle minor and

cannot be positive definite. As a result, the critical points (ii) cannot be minima.
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To summarize, in the non-supersymmetric models in class (2) with the Spin(32)/Z2

lattice, the Wilson lines are stabilized such that U(1)16L is maximally enhanced to SO(32).

Note that these Wilson lines correspond to global minima since the cosine factor in (5.17)

gives +1 for all π ∈ ∆SO(32), which means that Λ takes a minimum value.

As we revealed in the previous section, the cosmological constant is exponentially sup-

pressed when (p, q, r) = (7, 9, 0), (6, 7, 3), (6, 6, 4). The points with (p, q, r) = (7, 9, 0) and

(p, q, r) = (6, 6, 4) respectively satisfy the conditions (i) and (ii). Thus, the exponential

suppression with the symmetry enhancements U(1)16L → SO(18) × SO(14) and U(1)16L →
SO(12)× SO(12)× SU(3)× U(1) occurs at the saddle points.

6.2 Supersymmetric E8 × E8 endpoint model

We next consider the interpolating models with the supersymmetric E8×E8 endpoint model.

The sum over π ∈ ∆E8×E8 can be decomposed into the two copies over π ∈ ∆E8 . So, it is

sufficient to pay our attention to the following contributions in the cosmological constant

(5.17):

−
∑
n≥1

(2n− 1)−10
∑

π∈∆E8
⊕{08}

cos [2π(2n− 1) (π · A)]

= −
∑
n≥1

(2n− 1)−10

 ∑
π1∈∆SO(16)

+
∑

π1∈∆128+

 cos [2π(2n− 1) (π1 · A1)] . (6.7)

The sum over π1 ∈ ∆SO(16) can be expressed as in (6.1):

−
∑
n≥1

(2n− 1)−10
∑

π1∈∆SO(16)

cos [2π(2n− 1) (π1 · A1)]

= −2
∑
n≥1

(2n− 1)−10
∑
I1>J1

(
cos
[
2π(2n− 1)

(
AI1 + AJ1

)]
+ cos

[
2π(2n− 1)

(
AI1 − AJ1

)])
= −4

∑
n≥1

(2n− 1)−10
∑
I1>J1

cos
[
2π(2n− 1)AI1

]
cos
[
2π(2n− 1)AJ1

]
, (6.8)
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where I1, J1 = 1, · · · , 8 indicate the first eight components of A and π. In order to evaluate

the sum over π1 ∈ ∆128+ , we can use the following trigonometric identity:

cos (x1 + · · ·+ x8) =
8∏

I=1

cos (xI)−
2∏

I=1

sin (xI)
8∏

I=3

cos (xI)

+
4∏

I=1

sin (xI)
8∏

I=5

cos (xI)−
6∏

I=1

sin (xI)
8∏

I=7

cos (xI) +
8∏

I=1

sin (xI) . (6.9)

Then, we find

−
∑
n≥1

(2n− 1)−10
∑

π1∈∆128+

cos [2π(2n− 1) (π1 · A1)]

= −128
∑
n≥1

(2n− 1)−10

(
8∏

I1=1

cos
[
π(2n− 1)AI1

]
+

8∏
I1=1

sin
[
π(2n− 1)AI1

])
. (6.10)

Note that the second, third and fourth terms in (6.9) are canceled by summing up π1 ∈ ∆128+ .

For instance, π1 = 1
2

(
(±)4

+
, (±)4

+

)
and π1 = 1

2

(
(±)4

−
, (±)4

−

)
give the different sign of

the third terms and have the same degrees of freedom. As a result, (a half part of) the

cosmological constant (6.7) can be expressed as

−
∑
n≥1

(2n− 1)−10

{
4
∑
I1>J1

cos
[
2π(2n− 1)AI1

]
cos
[
2π(2n− 1)AJ1

]
+128

(
8∏

I1=1

cos
[
π(2n− 1)AI1

]
+

8∏
I1=1

sin
[
π(2n− 1)AI1

])}
. (6.11)

The first derivative is then given as

∂Λ

∂AI1
∼ 8π

∑
n≥1

(2n− 1)−9

{
sin[2π(2n− 1)AI1 ]

∑
J1 ̸=I1

cos
[
2π(2n− 1)AJ1

]
+ V(1)I1

n

}
, (6.12)

where V(1)I1
n is defined as

V(1)I1
n = 16

(
sin
[
π(2n− 1)AI1

] ∏
J1 ̸=I1

cos
[
π(2n− 1)AJ1

]
− cos

[
π(2n− 1)AI1

] ∏
J1 ̸=I1

sin
[
π(2n− 1)AJ1

])
.

(6.13)

As in the Spin(32)/Z2 case, we only focus on the Wilson lines that satisfy 4A1 ∈ Γ
(8)
g :

AI1 =

(
0p1 ,

(
1

2

)q1

,

(
1

4

)r1)
, (p1 + q1 + r1 = 8, r1 ∈ 2Z). (6.14)
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Inserting (6.14) to (6.12), we find for I1 = 0, · · · , p1

∂Λ

∂AI1
∼

 0 for p1 ̸= 1

128π
(

1√
2

)r1∑
n≥1(2n− 1)−9(−1)n+1 for p1 = 1

, (6.15)

and for I1 = p1 + 1, · · · , p1 + q1,

∂Λ

∂AI1
∼

 0 for q1 ̸= 1

128π
(

1√
2

)r1∑
n≥1(2n− 1)−9(−1)n for q1 = 1

. (6.16)

As for I1 = p1 + q1 + 1, · · · , 8, noting that r1 is even, we see that the first derivative is

∂Λ

∂AI1
∼ 8π

∑
n≥1

(2n− 1)−9
{
(−1)n+1(p1 − q1) + V(1)I1

n

∣∣
AI1=1/4

}
(6.17)

where V(1)I1
n

∣∣∣
AI1=1/4

is given as

V(1)I1
n

∣∣
AI1=1/4

=


0 for p1 ̸= 0, q1 ̸= 0 or p1 = q1 = 0

16
(

1√
2

)r1
(−1)n for p1 = 0, q1 ̸= 0

16
(

1√
2

)r1
(−1)n+1 for p1 ̸= 0, q1 = 0

. (6.18)

From (6.15), (6.16) and (6.17), we find two types of the critical points which satisfy one of

the following conditions:

(i): r1 = 0, p1 ̸= 1, q1 ̸= 1,

(ii): r1 ≥ 2, p1 ̸= 1, q1 ̸= 1, p1 = q1.

We now evaluate the Hessian matrix. The off-diagonal components are

∂Λ

∂AI1∂AJ1
∼ −16π2

∑
n≥1

(2n− 1)−8
{
sin[2π(2n− 1)AI1 ] sin[2π(2n− 1)AJ1 ] + V(2)I1J1

n

}
,

(6.19)

where we define V(2)I1J1
n as

V(2)I1J1
n =8 sin[π(2n− 1)AI1 ] sin[π(2n− 1)AJ1 ]

∏
K1 ̸=I1,J1

cos[π(2n− 1)AK1 ]

+ 8 cos[π(2n− 1)AI1 ] cos[π(2n− 1)AJ1 ]
∏

K1 ̸=I1,J1

sin[π(2n− 1)AK1 ]. (6.20)
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The diagonal components are

∂Λ

∂AI1∂AI1
∼ 16π2

∑
n≥1

(2n− 1)−8

{
cos[2π(2n− 1)AI1 ]

∑
J1 ̸=I1

cos[2π(2n− 1)AJ1 ] + V(2)
n

}
,

(6.21)

where V(2)
n is defined as

V(2)
n = 8

8∏
I1=1

cos[π(2n− 1)AI1 ] + 8
8∏

I1=1

sin[π(2n− 1)AI1 ]. (6.22)

Let us first calculate the Hessian matrix of the critical points (i). Obviously, the first term

in (6.19) vanishes for any I1, J1 if r1 = 0. One can also see that V(2)I1J1
n = 0 for any I1,

J1 unless (p1, q1) = (2, 6), (6, 2). As for the diagonal components, the first term in (6.21) is

given as the same form as in (6.5) with (p, q) replaced by (p1, q1), and V(2)
n is

V(2)
n =

 8 for (p1, q1) = (8, 0), (0, 8)

0 for the others
. (6.23)

Then, the critical points (i) with (p1, q1) = (8, 0), (0, 8), at which U(1)8L is enhanced to E8,

give the positive definite Hessian matrix. If (p1, q1) = (2, 6), then V(2)12
n = V(2)21

n = 8 and

the other components of V(2)I1J1
n vanish, and then we obtain

∂Λ

∂AI1∂AJ1
∼ 16π2

∑
n≥1

(2n− 1)−8



−5 −8 0 · · · 0

−8 −5 0 · · · 0

0 0 3
...

...
. . .

...

0 0 · · · 3


. (6.24)

This matrix is clearly neither positive definite nor negative definite, and hence the critical

point (i) with (p1, q1) = (2, 6) corresponds to a saddle point of the effective potential. In the

same way, one can check that the critical point (i) with (p1, q1) = (6, 2) is also a saddle point.

One can also see that the critical point (i) with p1 = q1 = 4 gives the negative definite Hessian

matrix, and hence the points with the enhanced symmetry SO(16)× SO(16) correspond to

the maxima of the potential, as we have obtained the same result in the Spin(32)/Z2 case.
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We now turn to the critical points (ii). If p1 = q1 ̸= 0, then the diagonal components

(6.21) are

∂Λ

∂AI1∂AI1
∼ 16π2

∑
n≥1

(2n− 1)−8 ×

−1 (I1 = 1, · · · , 2p1)

0 (I1 = 2p1, · · · , 8)
. (6.25)

If p1 = q1 = 0, then all the diagonal components are +1 (except the prefactor). As for the

off-diagonal components, the first term in (6.19) vanishes unless both AI1 and AJ1 are 1/4,

for which it gives +1 (except the prefactor). If p1 = q1 ≥ 3, then V(2)I1J1
n = 0 for any I1, J1,

and the Hessian matrix is

∂Λ

∂AI∂AJ
∼ 16π2

∑
n≥1

(2n− 1)−8

(
−12p×2p 0

0 H1/4

)
, (6.26)

where H1/4 is a r1 × r1 off-diagonal matrix with all the off-diagonal components being −1.

This matrix is clearly not positive definite. If p1 = q1 = 2, then V(2)12
n = V(2)34

n = 2, and the

Hessian matrix is

∂Λ

∂AI1∂AJ1
∼ 16π2

∑
n≥1

(2n− 1)−8


H

(2,2)
1/2 0 0

0 H
(2,2)
1/2 0

0 0 H1/4

 , with H
(2,2)
1/2 =

(
−1 −2

−2 −1

)
,

(6.27)

which is not positive definite. If p1 = q1 = 0, then V(2)I1J1
n = V(2)I1J1

n = 1 for any I1, J1, and

the Hessian matrix is

∂Λ

∂AI1∂AJ1
∼ 16π2

∑
n≥1

(2n− 1)−8


1 −2 · · · −2

−2
. . .

...
...

. . . −2

−2 · · · −2 1

 . (6.28)

which is not positive definite.

We can perform the same analysis for the last eight components AI2 of the Wilson line.

To summarize, as in the Spin(32)/Z2 case, the minima of the effective potential correspond

to the points with A ∈ Γ16 at which the maximal enhancement U(1)16L → E8×E8 is realized.
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We revealed in the previous section that the cosmological constant is exponentially sup-

pressed when the Wilson line takes one of the following configurations9:

A =



(
04,
(
1
2

)4
; 05,

(
1
2

)3)(
04,
(
1
2

)4
; 02,

(
1
2

)2
,
(
1
4

)4)(
03,
(
1
2

)3
,
(
1
4

)2
; 03,

(
1
2

)3
,
(
1
4

)2) . (6.29)

All these Wilson lines satisfy either of the conditions (i) or (ii) for the critical points. There-

fore, the exponential suppression of the cosmological constant occurs at the saddle points.

9Of course, these configurations should be considered up to appropriate permutations.
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7 Summary and outlook

In this thesis, we consider the non-supersymmetric string models constructed by orbifolds

with a Z2 freely acting twist, in which supersymmetry is completely broken due to the stringy

Scherk-Schwarz mechanism. One of the important features in the non-supersymmetric string

models is that the Narain lattice is split into ΓdL,dR
+ and ΓdL,dR

− , and spacetime bosons and

fermions live in different subsets ΓdL,dR
+ and ΓdL,dR

− respectively in the untwisted sectors. We

reviewed construction of the non-supersymmetric models in section 2. In particular, we

classified the 9D heterotic models into the four classes by the choice of a Z2 freely acting

twist (more precisely, the choice of Ẑ ∈ ZdL × ZdR).

We first discussed the T-duality group in the non-supersymmetric string models. A T-

duality element in the non-supersymmetric models must be an automorphism of ΓdL,dR
+ and

ΓdL,dR
− but not ΓdL,dR , and hence the T-duality group is restricted to a congruence subgroup of

order 2 in O(dL, dR,Z), which depends on the choice of Ẑ. As concrete examples, we clarified

which elements of O(dL, dR,Z) still survive in the non-supersymmetric type II models with

d = 2 and heterotic models with d = 1. Moreover, we noted that the transitions among the

non-supersymmetric string models with different choices of shift-vectors can be induced by

acting an element of O(dL, dR,Z) that is not in the congruence subgroup. We also gave the

examples of the transitions in the type II models with d = 2 and the heterotic models with

d = 1 (see Fig. 1 and Fig. 2).

Secondly, we studied the possible massless spectra of the 9D non-supersymmetric het-

erotic strings at various points in the moduli space. We gave the massless conditions for

states which transform as not gauge singlets. In particular, we focused on the unwinding

states (i.e. with m = 0) and clarified the massless conditions for both of the untwisted and

twisted sectors in each of the four classes of the 9D heterotic models. As concrete examples,

we revealed patterns of the gauge symmetry enhancements and the representations in which

massless states transform, in class (1). Furthermore, we pointed out that the Wilson line in

class (2) is related to that in the toroidal models. This relation allows us to figure out the

massless spectra in class (2) easily since the massless conditions for unwinding states do not

depend on the choice of 10D non-supersymmetric endpoint models.

Thirdly, we evaluated the cosmological constant of the non-supersymmetric models in

class (2). We showed that the leading contribution of the cosmological constant is propor-

tional to nF −nB, where nF and nB are the degrees of freedom of the massless fermions and
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bosons respectively, up to the exponentially suppressed terms in the region with supersymme-

try asymptotically being restored. We also found some configurations of the Wilson line that

realize the massless spectra with nF = nB, that is, the exponentially suppressed cosmological

constant. In the models with the supersymmetric Spin(32)/Z2 endpoint model, the suppres-

sion occurs when the Wilson line leads to the enhancement from U(1)16L to SO(18)×SO(14)

or SO(14) × SO(12) × SU(3) × U(1) or SO(12) × SO(12) × SU(4) × U(1). If the super-

symmetric endpoint is the E8 × E8 one, the Wilson lines that induce the enhancements to

SO(16) × SO(10) × SO(6) or SU(8) × SU(2) × SU(8) × SU(2) realize the suppression of

the cosmological constant.

Finally, we analyzed stability of the Wilson line moduli in class (2) from the one-loop

effective potential in the region where supersymmetry is restored. We have shown that the

Wilson line is stabilized at the points where U(1)16L is maximally enhanced. We did not

find any local minima, and the points at which the cosmological constant is exponentially

suppressed correspond to the saddle points.

There are some issues that we have to overcome and something worth investigating. We

would like to here present some possible future directions:

• In this thesis, we restrict our attention to a particular class of non-supersymmetric

string models which are constructed by orbifolding with freely acting Z2 twists. It is in-

teresting to generalize the non-supersymmetric models by ZN orbifolding and consider

various patterns of supersymmetry breaking, e.g. N = 2 → 0 or N = 1 → 0. In par-

ticular, it is worth exploring asymmetric orbifolds or non-geometric backgrounds with

the stringy Scherk-Schwarz mechanism since we have already revealed the T-duality

elements, including non-geometric ones, in the non-supersymmetric string models.

• It is in this thesis shown that the T-duality groups of the non-supersymmetric string

models are congruence subgroups of O(dL, dR,Z). In the context of flavor physics,

recently, the non-Abelian discrete groups have been used for explaining the origin of

the flavor structure of the Standard Model. In particular, congruence subgroups of

PSL(2,Z) are frequently in the spotlight. Then, the T-duality groups we obtained

in this thesis are expected to be applied to the exploration of the flavor structure,

accompanied with the scenario that supersymmetry is broken at a very high-energy

scale.
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• In this thesis, we conclude that the moduli are unstable when the cosmological constant

is zero or positive up to the exponentially suppressed terms, and the stable moduli

correspond to anti-de Sitter vacua. This is not a desirable situation for making realistic

models from non-supersymmetric string theory. We would like to stabilize the moduli

at the same time as suppressing the cosmological constant. To realize that, it is worth

calculating the higher loop corrections and clarifying the effects that they have on the

effective potential. One of the other directions is to include the non-perturbative effects

which are anticipated to uplift the effective potential and make a de-Sitter vacuum as

in [99]. Thus, it is interesting to investigate the type I models, which are related to the

heterotic ones by S-duality, in order to extract the information of the non-perturbative

corrections.
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A Lattices and characters

Irreducible representations of SO(2n) can be classified into the four conjugacy classes:

• The trivial conjugacy class (the root lattice):

Γ(n)
g =

{
(n1, · · · , nn)

∣∣∣∣∣ ni ∈ Z,
n∑

i=1

ni ∈ 2Z

}
. (A.1)

• The vector conjugacy class:

Γ(n)
v =

{
(n1, · · · , nn)

∣∣∣∣∣ ni ∈ Z,
n∑

i=1

ni ∈ 2Z+ 1

}
. (A.2)

• The spinor conjugacy class:

Γ(n)
s =

{(
n1 +

1

2
, · · · , nn +

1

2

) ∣∣∣∣∣ ni ∈ Z,
n∑

i=1

ni ∈ 2Z

}
. (A.3)

• The conjugate spinor conjugacy class:

Γ(n)
c =

{(
n1 +

1

2
, · · · , nn +

1

2

) ∣∣∣∣∣ ni ∈ Z,
n∑

i=1

ni ∈ 2Z+ 1

}
. (A.4)

The weight lattice of SO(2n), which is dual to Γ
(n)
g , is given by the sum of the four conjugacy

classes:

Γ(n)
w = Γ(n)

g + Γ(n)
v + Γ(n)

s + Γ(n)
c . (A.5)

Modular invariance of the partition functions of the 10D supersymmetric heterotic string

models requires that the internal momenta should live in an even self-dual Euclidean lattice.

In 16-dimensions, only two such lattices exist. One of them is the root lattice of E8 × E8,

Γ16 =
(
Γ(8)
g + Γ(8)

s

)
×
(
Γ(8)
g + Γ(8)

s

)
, (A.6)

and the other is that of Spin(32)/Z2 which is expressed as the sum of the trivial and spinor

conjugacy classes of SO(32):

Γ16 = Γ(16)
g + Γ(16)

s . (A.7)
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The SO(2n) characters of the corresponding conjugacy classes are defined as

O2n =
1

ηn

∑
π∈Γ(n)

g

q
1
2
|π|2 =

1

2ηn

(
ϑn

[
0

0

]
(0, τ) + ϑn

[
0
1
2

]
(0, τ)

)
, (A.8)

V2n =
1

ηn

∑
π∈Γ(n)

v

q
1
2
|π|2 =

1

2ηn

(
ϑn

[
0

0

]
(0, τ)− ϑn

[
0
1
2

]
(0, τ)

)
, (A.9)

S2n =
1

ηn

∑
π∈Γ(n)

s

q
1
2
|π|2 =

1

2ηn

(
ϑn

[
1
2

0

]
(0, τ) + ϑn

[
1
2
1
2

]
(0, τ)

)
, (A.10)

C2n =
1

ηn

∑
π∈Γ(n)

c

q
1
2
|π|2 =

1

2ηn

(
ϑn

[
1
2

0

]
(0, τ)− ϑn

[
1
2
1
2

]
(0, τ)

)
, (A.11)

where the Dedekind eta function and the theta function with characteristics are defined as

η(τ) = q
1
24

∞∏
n=1

(1− qn) , (A.12)

ϑ

[
α

β

]
(z, τ) =

∞∑
n=−∞

exp
(
πi(n+ α)2τ + 2πi(n+ α)(z + β)

)
. (A.13)

It is known that the SO(8) characters satisfy the Jacobi’s abstruse identity

V8 − S8 = 0. (A.14)

In order to check modular invariance of the partition functions, it is useful to reveal how

the SO(2n) characters transform under T : τ → τ + 1 and S : τ → −1/τ . The eta function

and the theta function satisfy the following identities:

η(τ + 1) = e
πi
12η(τ), ϑ

[
α

β

]
(0, τ + 1) = e−πiα(α−1)ϑ

[
α

α + β − 1
2

]
(0, τ), (A.15)

η

(
−1

τ

)
= (−iτ)1/2η(τ), ϑ

[
α

β

](
0,−1

τ

)
= (−iτ)

1
2 e2πiαβϑ

[
β

−α

]
(0, τ). (A.16)

Then we find the transformation laws of the SO(2n) characters:

T : (O2n, V2n, S2n, C2n) → (O2n, V2n, S2n, C2n) T2n, (A.17)

S : (O2n, V2n, S2n, C2n) → (O2n, V2n, S2n, C2n)S2n, (A.18)

(A.19)
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where T2n and S2n are 4× 4 matrices defined as follows:

T2n =


e−

nπi
12 0 0 0

0 −e−
nπi
12 0 0

0 0 e
nπi
6 0

0 0 0 e
nπi
6

 , S2n =
1

2


1 1 1 1

1 1 −1 −1

1 −1 in −in

1 −1 −in in

 . (A.20)

We here expand the products η−8 (O2n, V2n, S2n, C2n), which appear in the partition func-

tions. This expansions are useful for studying the free spectra of strings. Note that η−8 is the

contribution from the oscillators of eight world-sheet bosons while the SO(2n) characters are

the contributions from n compactified world-sheet bosons or 2n world-sheet Majorana-Weyl

fermions.

η−8O2n ∼ q−
8+n
24

(
1 +

(
8 +

2n(2n− 1)

2

)
q +O(q2)

)
, (A.21)

η−8V2n ∼ q−
8+n
24

+ 1
2 (2n+O(q)) , (A.22)

η−8S2n = η−8S2n ∼ q−
8−2n
24

(
2n−1 +O(q)

)
. (A.23)

In particular, for n = 4, which appears in the type II models or in the right-moving parts of

the heterotic models,

η−8O8 ∼ q−
1
2

(
1 + 36q +O(q2)

)
, (A.24a)

η−8V8 ∼ 8 +O(q), (A.24b)

η−8S8 = η−8C8 ∼ 8 +O(q). (A.24c)
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B Invariance under the T -transformation

In this appendix, we check the invariance of the partition functions (2.31) and (2.32) under

τ → τ + 1. In particular, we show that the SO(8) characters and Z
Γ
dL,dR
± +δ

in the twisted

sectors must be combined appropriately. From (A.15) and (A.17), we find that under the

T -transformation, the product of the SO(8) character and η8 has an eigenvalue −1 only

when the character is of the trivial conjugacy class:

T : η−8 (O8, V8, S8, C8) → η−8 (−O8, V8, S8, C8) . (B.1)

Then, the untwisted sectors, which include neither O8 nor Ō8, are obviously invariant since

P is in an even lattice. In the twisted sectors, the momenta are shifted by δ, and then we

get the following phase from Z
Γ
dL,dR
± +δ

under τ → τ + 1, excluding the phase which comes

from η−dL η̄−dR :

eπi(P
2+δ2+2P ·δ). (B.2)

If δ2 is even and P ∈ ΓdLdR
+ , or δ2 is odd and P ∈ ΓdLdR

− , then the phase (B.2) is +1. Thus,

Z
Γ
dLdR
+ +δ

with δ2 even or Z
Γ
dLdR
− +δ

with δ2 odd must be accompanied with
(
O8Ō8 + C8C̄8

)
in the type IIB case and with C̄8 in the heterotic case. On the other hand, the phase (B.2)

is −1 if δ2 is even and P ∈ ΓdLdR
− , or δ2 is odd and P ∈ ΓdLdR

+ . Thus, Z
Γ
dLdR
− +δ

with δ2 even

or Z
Γ
dLdR
+ +δ

with δ2 odd must be accompanied with
(
O8C̄8 + C8Ō8

)
in the type IIB case

and with Ō8 in the heterotic case. As a result, we see that the partition functions (2.31)

and (2.32) have the appropriate combinations of the SO(8) characters and Z
Γ
dL,dR
± +δ

, which

make the partition functions invariant under the shift τ → τ + 1.
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C Massless spectra in class (1)

In this appendix, we summarize the massless spectra with m = 0 in class (1) which we

revealed in subsections 4.3 and 4.4. We only denote U(1) charges for states which trivially

transform under non-Abelian gauge groups in the tables below. Recall that all the Wilson

lines we considered in subsections 4.3 and 4.4 satisfy 2A ∈ Γ∗
g.

C.1 The Spin(32)/Z2 lattice

Untwisted sectors Twisted sectors

A Gauge sym. Spinors Co-spinors Scalars

(016) SO(32) — — 32 (
√
2R ∈ Z)((

1
2

)16)
SO(32) — — 32 (

√
2R ∈ Z+ 1

2
)(

0p,
(
1
2

)q)
SO(2p)× SO(2q) — —

(2p,1) (
√
2R ∈ Z)

(1,2q) (
√
2R ∈ Z+ 1

2
)((

1
4

)16)
SU(16)× U(1) — — 16⊕ 16 (

√
2R ∈ Z± 1

4
)

Table 7: SO(32) model: π̂
2
= (1, 015).

Untwisted sectors Twisted sectors

A Gauge sym. Spinors Co-spinors Scalars

(08) ,
((

1
2

)16)
SO(24)× SO(8) (24,8) (24,8−) (1,8+) (

√
2R ∈ Z)(

0p,
(
1
2

)q)
(p ≤ 12)

SO(2p)× SO(24− 2p)

×SO(8)
(1,24− 2p,8) (1,24− 2p,8−) (1,1,8+) (

√
2R ∈ Z)(

0p,
(
1
2

)q)
(p = 13, 15)

SO(24)

×SO(8− 2q)× SO(2q)
(24,8− 2q,1) — —

(
014,

(
1
2

)2) SO(24)

×SO(4)× SO(4)
(24,4,1) —

(1,2+,2+) (
√
2R ∈ Z)

(1,2−,2−) (
√
2R ∈ Z+ 1

2
)((

1
4

)16)
SU(12)× SU(4)× U(1)2

(
12,4

)
⊕
(
12,4

)
(12,4)⊕

(
12,4

) (1,6) (
√
2R ∈ Z)

(0,±1) (
√
2R ∈ Z+ 1

2
)

Table 8: SO(24)× SO(8) model: π̂
2
=
(
012,

(
1
2

)4)
.
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Untwisted sectors Twisted sectors

A Gauge sym. Spinors Co-spinors Scalars

(016) ,
((

1
2

)16)
SU(16)× U(1) 120⊕ 120 120⊕ 120 ±1 (

√
2R ∈ Z)(

0p,
(
1
2

)q)
(p /∈ 4Z)

SU(p)× SU(q)× U(1)2
(
pC2 ⊕ pC2,1

)
⊕
(
1, qC2 ⊕ qC2

) — ±
(
1, 1 + p

8

)
(
√
2R ∈ Z± p

8
)(

0p,
(
1
2

)q)
(p = 8)

SU(p)× SU(q)× U(1)2
(
pC2 ⊕ pC2,1

)
⊕
(
1, qC2 ⊕ qC2

) (
pC2 ⊕ pC2,1

)
⊕
(
1, qC2 ⊕ qC2

) ±
(
1, 1 + p

8

)
(
√
2R ∈ Z)(

0p,
(
1
2

)q)
(p = 4, 12)

SU(p)× SU(q)× U(1)2
(
pC2 ⊕ pC2,1

)
⊕
(
1, qC2 ⊕ qC2

) (p, q)⊕ (p, q) ±
(
1, 1 + p

8

)
(
√
2R ∈ Z+ 1

2
)((

1
4

)16)
SU(16)× U(1) — — ±

(
1, 1 + p

8

)
(
√
2R ∈ Z)

Table 9: SU(16)× U(1) model: π̂
2
=
((

1
4

)16)
.

Untwisted sectors Twisted sectors

A Gauge sym. Spinors Co-spinors Scalars

(016) ,
((

1
2

)16)
SO(16)× SO(16) (16,16) (128+,1)⊕ (1,128+) —(

0p,
(
1
2

)q)
(p ≤ 8, p odd)

SO(2p)× SO(16− 2p)× SO(16) (1,16− 2p,16) — —(
0p,
(
1
2

)q)
(p = 4, 8)

SO(2p)× SO(16− 2p)× SO(16) (1,16− 2p,16)

(
2p−1
+ ,27−p

+ ,1
)

⊕ (1,1,128+)
—(

0p,
(
1
2

)q)
(p = 2, 6)

SO(2p)× SO(16− 2p)× SO(16) (1,16− 2p,16)

(
2p−1
− ,27−p

− ,1
)

⊕ (1,1,128+)
—(

0p,
(
1
2

)q)
(p > 8, p odd)

SO(16)× SO(2q)× SO(16− 2q) (16,1,16− 2q) — —(
0p,
(
1
2

)q)
(p = 12)

SO(16)× SO(2q)× SO(16− 2q) (16,1,16− 2q)

(
1,2q−1

+ ,27−q
+

)
⊕ (128+,1,1)

—(
0p,
(
1
2

)q)
(p = 10, 14)

SO(16)× SO(2q)× SO(16− 2q) (16,1,16− 2q)

(
1,2q−1

− ,27−q
−
)

⊕ (128+,1,1)
—

((
1
4

)16)
SU(8)× SU(8)× U(1)2

(
8,8
)
⊕
(
,8,8

) (70,1)⊕ (1,70) ,(
±
√
2, 0
)
⊕
(
0,±

√
2
) —

Table 10: SO(16)× SO(16) model: π̂
2
=
(
08,
(
1
2

)8)
.
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C.2 The E8 × E8 root lattice

Untwisted sectors Twisted sectors

A Gauge sym. Spinors Co-spinors Scalars

(08; 08) SO(16)× E8 (128+;1) (128−;1) (16;1) (
√
2R ∈ Z)((

1
2

)8
; 08
)

SO(16)× E8 (128+;1) — (16;1) (
√
2R ∈ Z+ 1

2
)(

02,
(
1
2

)6
; 08
)

SO(4)× SO(12)× E8 (2−,32−;1) (2+,32+;1)
(4,1;1) (

√
2R ∈ Z)

(1,12;1) (
√
2R ∈ Z+ 1

2
)(

04,
(
1
2

)4
; 08
)

SO(8)× SO(8)× E8 (8+,8+;1) (8−,8−;1)
(8,1;1) (

√
2R ∈ Z)

(1,8;1) (
√
2R ∈ Z+ 1

2
)(

06,
(
1
2

)2
; 08
)

SO(12)× SO(4)× E8 (32−,2−;1) (32+,2+;1)
(12,1;1) (

√
2R ∈ Z)

(1,4;1) (
√
2R ∈ Z+ 1

2
)((

1
4

)8
; 08
)

SU(8)× U(1)× E8 (70;1), ±
√
2 —

(
8⊕ 8;1

)
(
√
2R ∈ Z± 1

4
)

Table 11: SO(16)× E8 model: π̂
2
= (1, 07; 08).

Untwisted sectors Twisted sectors

A Gauge sym. Spinors Co-spinors Scalars

(08; 08) E7 × SU(2)× E7 × SU(2)
(56,2;1,1)

⊕ (1,1;56,2)

(56,1;1,1)

⊕ (1,1;56,1)

(1,2;1,1)⊕ (1,1;1,2)

(
√
2R ∈ Z)((

1
2

)8
; 08
)

E7 × SU(2)× E7 × SU(2)
(56,2;1,1)

⊕ (1,1;56,2)
—

(1,2;1,1)⊕ (1,1;1,2)

(
√
2R ∈ Z+ 1

2
)(

02,
(
1
2

)6
; 08
)

E7 × SU(2)× E7 × SU(2) (1,1;56,2) (56,1;1,1)
(1,2;1,1)⊕ (1,1;1,2)

(
√
2R ∈ Z+ 1

2
)(

04,
(
1
2

)4
; 08
) SO(12)× SU(2)× SU(2)

×E7 × SU(2)

(12,2,1;1,1)

⊕ (1,1,1;56,2)
(32,1,1;1,1)

(1,1,2;1,1)⊕ (1,1,1;1,2)

(
√
2R ∈ Z+ 1

2
)(

06,
(
1
2

)2
; 08
) SO(12)× SU(2)× SU(2)

×E7 × SU(2)

(32,1,2;1,1)

⊕ (1,1,1;56,2)
(12,2,1;1,1)

(1,1,2;1,1)⊕ (1,1,1;1,2)

(
√
2R ∈ Z+ 1

2
)

((
1
4

)8
; 08
) E6 × U(1)× U(1)

×E7 × SU(2)

(
27⊕ 27;1,1

)
⊕ (1;56,2),(
± 1√

2
,± 1√

2

) —
(1;1,2) (

√
2R ∈ Z+ 1

2
)(

± 1√
2
, 0
)
(
√
2R ∈ Z± 1

4
)

Table 12: (E7 × SU(2))2 model: π̂
2
=
(
06,
(
1
2

)2
; 06,

(
1
2

)2)
.
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Untwisted sectors Twisted sectors

A Gauge sym. Spinors Co-spinors Scalars

(08; 08) SO(16)× SO(16) (128+;1)⊕ (1;128+) (16;1)⊕ (1;16) —((
1
2

)8
; 08
)

SO(16)× SO(16) (128+;1)⊕ (1;128+) (1;16) —(
02,
(
1
2

)6
; 08
)

SO(4)× SO(12)× SO(16)
(2−,32−;1)

⊕ (1,1;128+)

(4,1;1)⊕ (1,12;1)

⊕ (1,1;16)
—

(
04,
(
1
2

)4
; 08
)

SO(8)× SO(8)× SO(16)
(8+,8+;1)

⊕ (1,1;128+)

(8,1;1)⊕ (1,8;1)

⊕ (1,1;16)
—

(
06,
(
1
2

)2
; 08
)

SO(12)× SO(4)× SO(16)
(32−,2−;1)

⊕ (1,1;128+)

(12,1;1)⊕ (1,4;1)

⊕ (1,1;16)
—((

1
4

)8
; 08
)

SU(8)× U(1)× SO(16) (70;1)⊕ (1;128+), ±
√
2 — —

Table 13: SO(16)× SO(16) model: π̂
2
= (1, 07; 1, 07).
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