THESE DE DOCTORAT

de I'Université de recherche Paris Sciences et Lettres
PSL Research University

Ecole Normale Supérieure

QUANTUM TRAJECTORIES WITH
INCOMPATIBLE DECOHERENCE CHANNELS

Ecole doctorale n°s64

PHYSIQUE EN iLE DE FRANCE

Spécialité PHYSIQUE

COMPOSITION DU JURY :

M. BERNARD Denis
Ecole Normale Supérieure, Membre du jury

M. GOUGH John
Aberystwyth University, Rapporteur

M. JORDAN Andrew
University of Rochester, Membre du jury

M. LEEK Peter
University of Oxford, Rapporteur

Soutenue par Quentin FICHEUX

le 7 Décembre 2018 M ROCHNieolas
nstitut Néel, Membre du jury

Dirigée par Benjamin HUARD M. HUARD Benjamin

et codirigée par Zaki LEGHTAS Ecole Normale Supérieure de Lyon, Directeur
de thése

M. LEGHTAS Zaki
Mines ParisTech, Co-directeur de thése




Quentin Ficheux, Quantum trajectories with incompatible decoherence channels.
(©) october 2018



A celle qui se reconnaitra.






ABSTRACT

In contrast with its classical version, a quantum measurement necessarily disturbs the
state of the system. The projective measurement of a spin-1/2 in one direction maxi-
mally randomizes the outcome of a following measurement along a perpendicular direc-
tion. In this thesis, we discuss experiments on superconducting circuits that allow us to
investigate this measurement back-action. In particular, we measure the dynamics of
a superconducting qubit whose three Bloch x, y and z components are simultaneously
recorded.

Two recent techniques are used to make these simultaneous recordings. The x and
1y components are obtained by measuring the two quadratures of the fluorescence field
emitted by the qubit. Conversely, the z component is accessed by probing an off-
resonant cavity dispersively coupled to the qubit. The frequency of the cavity depends
on the energy of the qubit and the strength of this last measurement can be tuned
from weak to strong in situ by varying the power of the probe. These observations are
enabled by recent advances in ultra-low noise microwave amplification using Josephson
circuits. This thesis details all these techniques, both theoretically and experimentally,
and presents various unpublished additional results.

In the presence of the simultaneous measurements, we show that the state of the
system diffuses inside the sphere of Bloch by following a random walk whose steps obey
the laws of the backaction of incompatible measurements. The associated quantum
trajectories follow a variety of dynamics ranging from diffusion to Zeno blockade. Their
peculiar dynamics highlights the non-trivial interplay between the back-action of the
two incompatible measurements. By conditioning the records to the outcome of a final
projective measurement, we also measure the weak values of the components of the
qubit state and demonstrate that they exceed the mean extremal values. The thesis
discusses in detail the statistics of the obtained trajectories.



RESUME

Au contraire de sa version classique, une mesure quantique perturbe nécessairement
létat du systéme. Ainsi, la mesure projective d’un spin-1/2 selon une direction rend
parfaitement aléatoire le résultat d’une mesure successive de la composante du méme
spin le long d’un axe orthogonal. Dans cette thése, nous discutons des expériences
basées sur les circuits supraconducteurs qui permettent de mettre en évidence cette
action en retour de la mesure. Nous mesurons en particulier la dynamique d’un qubit
supraconducteur dont on révéle simultanément les trois composantes de Bloch x, y et
z.

Deux techniques récentes sont utilisées pour réaliser ces enregistrements simultanés.
Les composantes x et y sont obtenues par la mesure des deux quadratures du champ de
fluorescence émis par le qubit. La composante z est quant a elle obtenue en sondant une
cavité non résonante couplée de maniére dispersive au qubit. La fréquence de la cavité
dépend de I’énergie du qubit et la force de cette derniére mesure peut étre ajustée in situ
en faisant varier la puissance de la sonde. Ces observations sont rendues possibles grace
aux avancées récentes dans 'amplification ultrabas bruit des signaux micro-onde grace
aux circuits Josephson. Cette thése détaille toutes ces techniques & la fois théoriquement
et expérimentalement et présente différents résultats annexes inédits.

En présence des mesures simultanées, nous montrons que I'état du systéme diffuse &
I'intérieur de la sphére de Bloch en suivant une marche aléatoire dont les pas obéissent
aux lois de 'action en retour de mesures incompatibles. Les trajectoires quantiques
associées ont des dynamiques allant du régime diffusif au régime de blocage de Zénon
soulignant l'interaction non-triviale des actions en retours des deux mesures incom-
patibles effectuées. En conditionnant les enregistrements aux résultats d’une mesure
projective finale, nous mesurons également les valeurs faibles des composantes de notre
qubit et démontrons qu’elles dépassent les valeurs extrémales moyennes. La thése dis-
cute en détail de la statistique des trajectoires obtenues.
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INTRODUCTION

1.1 BACKGROUND

I recall that during one walk FEinstein suddenly stopped, turned to me and asked
whether I really believed that the moon exists only when I look at it.

— Abraham Pais [1]

Albert Einstein came up with numerous memorable questionings when trying to un-
derstand the concept of reality. He wanted physical objects to have objective properties,
whether or not they were measured. For this ontological reason, the quantum origin
of the classical world was incredibly difficult to concede for the founding fathers of
quantum mechanics. On top of the singular role played by measurement, the quantum
theory exhibits many ‘strange’ features such as entanglement and state superposition.
In an effort to replace quantum theory by a more complete description of reality with
classical underpinnings Einstein, Podolsky and Rosen expressed the influential EPR
paradox [2] in 1935 while de Broglie and Bohm suggested an interpretation in terms
of ‘hidden variables’ [3], to name but a few. In 1964, Bell showed that a quantitative
numerical prediction of the quantum theory entails the nonexistence of these kinds of
local variables. This prediction was experimentally confirmed by Freedman and Clauser
[4] and later by Alain Aspect et al. [5]. The conclusion of this test is independent of
whether one believes or not in the interpretation of quantum mechanics. Bell’s test
shows that the very counterintuitive notion of entanglement or non locality if we insist

on classical realism is required to describe the world we live in.

One can even set up quite ridiculous cases ... The psi-function of the entire system
would express this by having in it the living and dead cat (pardon the expression)
mixed or smeared out in equal parts.

— Erwin Schrédinger [6]

According to the rules of quantum mechanics, one can imagine a scenario where a
cat is simultaneously both dead and alive, a state known as a quantum superposition.
Quantum superpositions can, in principle, be exploited to encode information into
ensembles of individually accessible degrees of freedom by associating the 0 and the 1
values of the usual binary code to the dead and alive states of the cat. Since there are
many possible Schrodinger-cat states, the size of the total set of states in the Hilbert
space is prodigious compared to size of the set of ‘classically legal’ states. One has to
explain the selection rule that prevents the existence of most states in the Hilbert space
in the classical world. Decoherence and einselection account for the transition between
the quantum and classical world. As Zurek explains [7], classicality is an emergent



INTRODUCTION

property induced in a system by its interaction with the environment. During the
interaction, the system transmits information into its environment through gquantum
channels. In these conditions, the information on the quantum state is lost in the many
degrees of freedom of the bath except for a preferred set of pointer states (or classical
states) that survive the interaction. Since information is exchanged, decoherence can
be seen as a continuous observation of the system by its environment.

Observations not only disturb what has to be measured, they produce it. We compel
to assume a definite position. .. We ourselves produce the results of measurements.

— Pascual Jordan [8]

As Pascual Jordan puts it, information is acquired by an observer only when measure-
ment records are produced by observation. The state of a system is encoded in a density
matriz which refers to an observer’s knowledge about the system. More precisely, the
density matrix contains the probability of outcomes of any future measurements that an
observer can perform on the system conditioned on her knowledge about the system at
that time. Every time a measurement is performed, the observer updates his knowledge
on the state of the system to take into account the measurement record, this effect is
known as measurement back-action. To go back to Einstein’s questioning, in general we
cannot answer deterministically if the moon was there or not without the intervention
of an observer. Different observers with different knowledge may assign simultaneously
different density matrices to a same system revealing the observer-dependent character
of the quantum state. One of the main results of this thesis is to demonstrate this fact
experimentally with continuous measurement.

Shut up and calculate!
— David Mermin

David Mermin beautifully epitomized the general attitude adopted by most physi-
cists toward the philosophical questions raised by quantum theory. In this thesis, we
suggest the alternative approach "Shut up and contemplate!" [9] by providing textbook
experimental observations of measurement and decoherence ‘in action’ on a quantum
system. Directly accessible macroscopic systems, on which one makes up one’s intuition,
never display entanglement, state superposition or measurement back-action. The ‘in-
triguing’ aspects of quantum mechanics are more easily observed in systems made of a
limited number of well-defined quantum degrees of freedom.

1.2 INDIVIDUAL QUANTUM SYSTEMS

... It is fair to state that we are not experimenting with single particles, any more
than we can raise Ichthyosauria in the zoo.

— Erwin Schrédinger [10]



1.2 INDIVIDUAL QUANTUM SYSTEMS

As a matter of fact, experiments involving single particles such as electrons, atoms or
photons are nowadays routinely realized all over the world. A lot of different technologies
are found in the zoo of experiments involving only a small number of quantum degrees
of freedom including trapped ions [11], cavity quantum electrodynamics [12], circuit
quantum electrodynamics [13], quantum dots [14], cavity optomechanics [15], etc ...

In this thesis, we manipulate quantum devices constructed from superconducting
electrical circuits [16, 17, 18] (introduced in chapter 2). These circuits are composed of
a large number of microscopic particles that exhibits a very simple set of macroscopic
collective degrees of freedom. They form resonators and transmission lines that can be
combined together in a modular manner. The insertion of non linear components such
as Josephson junctions enables us to mimic the non linearity introduced by matter
in quantum electrodynamics. However, in contrast with real atoms, superconducting
device parameters can be tuned during their fabrication by design.

We use one particular kind of superconducting device dubbed the transmon [19,
20] (section 2.2). At a temperature of a few tens of mK, the transmon behaves as an
artificial atom with independently addressable levels. The first two levels |g) and |e)
are usually used as a qubit (two-dimensional Hilbert space) but there is no restriction
to use it as qutrit (three dimensions) as in chapter 4 by addressing the third level |f)
or even as qudit (N dimensions) (see Fig. 1.1) to encode more information.

=L 4

Figure 1.1: a. Bloch sphere representation of a quantum state p = %(]l +x0o, +yo, +z0,) of a
qubit. The ground state is the south pole z = —1 and the excited state is the north

phase (rad)

—T

pole z = +1. Only the poles of the sphere correspond to ‘classically legal’ states
while all the other states correspond to quantum superpositions of classical states.
b. Experimental density matrix of the superposed state |¢) ~ (|g) +i|e) +|f))/V3
of a qutrit (section 4.2).

These circuits provide an excellent test-bed for the Gedanken experiments envisioned
by the founding father of quantum mechanics and quantum optics. Quantum circuits
are also among the many promising candidate platforms that could lead to the advent
of a universal quantum computer [13, 21].
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1.3 DECOHERENCE AND READOUT OF A SUPERCONDUCTING QUBIT

The electromagnetic environment of the transmon is controlled by placing it into a
cavity (see Fig. 1.2). The macroscopic size of the artificial atom allows a coupling to the
cavity much larger than the rate of the dissipation processes [22] enabling us to explore
the light-matter interaction at the most fundamental level. The qubit is manipulated
with microwave photons at the frequency of the qubit f, sent at the input port of the
system. The electromagnetic environment induces decoherence on the qubit either by
extracting information via photons temporarily stored inside the cavity (section 3.2.2),
or by collecting photon spontaneously emitted by the artificial atom or even by exciting
the qubit. This last mechanism can be neglected in our systems by making sure that

the environment is almost in a vacuum state.

BTN ¢} SRR S v

JPA

Figure 1.2: We place an artificial atom inside a cavity that is connected to the rest of the elec-
trical circuit via two ports. We monitor the spontaneous emission of the transmon
(in green) at f, while concurrently probing the state of the cavity (in purple) at fy
that is coupled to the qubit. The photons are amplified with a Josephson parametric
amplifier (at the frequency of the cavity) and a Josephson parametric converter (at
the frequency of the qubit). Qubit rotations are performed by sending a resonant
drive at the input.

We said earlier that decoherence can be seen as the action of an observer on the
system (chapter 3). Let us be that observer. We monitor the decoherence channel asso-
ciated with the energy relaxation of the qubit by measuring the complex amplitude of
the outgoing field in green on Fig. 1.2. We obtain information on the real and imaginary
parts of the lowering operator of the qubit o_ = (0, —ioy)/2. Therefore, the associated
continuous measurement records u(t) and v(t) reveal respectively the information on
the o, and o, components of the qubit [23, 24, 25]|. This detection is called fluorescence
measurement (section 3.3).

When the qubit-cavity detuning is much larger than their interaction rate, the natural
dipolar interaction between the qubit and the cavity couples the o, component of the
qubit to the average number of excitations stored inside the cavity. Probing the state of
the cavity leads to a continuous measurement record w(t) which yields the o, component
of the qubit [26, 27, 28, 29]. This very standard readout procedure is known as dispersive
measurement (section 3.2).

By raw averaging the measurement records wu(t), v(t) and w(t), genuine quantum
effects caused by measurement back-action vanish. In this case, monitoring both de-
coherence channels of the qubit is equivalent to imaging the average evolution of the
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quantum state in the Bloch sphere (see Fig. 1.3) under the influence of decoherence
induced by the coupling to the environment. By doing so, we obtain in section 3.4 a
gate-free full quantum tomography of the system.

Figure 1.3: Rabi oscillations in the presence of decoherence observed with our quantum tomog-
raphy method. The speed of the circular motion is large compared to the damping
induced by decoherence in Fig. a while the opposite situation is depicted in Fig. b.
The situation in Fig. a corresponds to the usual Rabi oscillation whereas the situ-
ation of Fig. b is in the Zeno regime [30, 31].

If the signal goes through a very noisy quantum channel, most of the information is
dismissed preventing an observation of the impact of measurement performed by the
observer on a single realization of the experiment. Owing to the recent development of
quantum-limited microwave amplification, the observation of measurement back-action
of either strong or weak measurement is within experimental reach. A weak measure-
ment corresponds to the situation where the observer did not extract all the information
on the quantum state. The state of the system is thus slightly perturbed by measure-
ment back-action and it experiences a ‘random kick’ instead of a collapse on one of the
pointer states of the measurement. Microwave signals can be detected with an efficiency
of the order of unity thanks to the Josephson parametric amplifier (JPA on Fig. 1.2)
[32, 33, 34, 35, 36, 37| that amplifies the signal at the frequency of the cavity and a
Josphson parametric converter (JPC on Fig. 1.2) [38, 39, 40] that amplifies the signal at
the frequency of the qubit. These amplifiers are crucial to reach the extreme sensitivity
required to investigate measurement back-action on individual open quantum systems.
Microwave amplification at the quantum limit is the subject of chapter 5.
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1.4 QUANTUM TRAJECTORIES

When continuously monitoring a qubit, its quantum state undergoes a non trivial
stochastic evolution but the experimentalist can use the measurement outcomes to
reconstruct a posteriori the evolution of the system. The density matrix of the system
is updated at each time step conditioned on the random measurement outcome to take
into account the succession of non-projective ‘kicks’ caused by the measurement. The re-
sulting path in the Hilbert space is called a quantum trajectory (see Fig. 1.4) [41, 42, 43,
44,45, 46, 26, 27, 47, 48, 28, 23, 29, 49, 25|. Chapter 6 contains an in-depth description

of fundamental concepts and experimental implementation of quantum trajectories.
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Figure 1.4: A 5 us-long tracking of a quantum state. a. Raw (not normalized) measurement
records u(t) (blue), v(t) (red) and w(t) (yellow) as a function of time for one re-
alization of the experiment. b. Bloch sphere representation of the reconstructed
quantum trajectory.

The inherent back-action of a quantum measurement is better discussed by repre-
senting distributions of states at a given time (see Fig. 1.5) as the randomness of the
measurement back-action spreads apart quantum states corresponding to different real-
izations of the experiment. We can isolate the contribution of dispersive measurement
(Fig. 1.5 a b ¢) [26, 27| from the contribution of the energy relaxation (Fig. 1.5 d e f)
[23, 25| or we can combine the effect of both measurements at the same time (Fig. 1.5
g h i) by collecting the records of one or the two detectors. While both measurements
lead to the same average trajectory, their back-action differ. The uniqueness of percep-
tion of the three observers has its roots in the records stored in the observer’s memory
and it leads to the distinct statistics of Fig. 1.5. We prove in section 6.2.4 that every
observers can safely use their density matrices to predict the results of an independent
tomography.

The asymmetry of Fig. 1.5 g reveals the incompatibility of the dispersive measure-
ment and fluorescence measurement (section 6.3.2). Monitoring dynamics of a system
undergoing incompatible measurements provides a test of quantum foundations by ex-
posing the subtle interplay between different back-action at the single quantum system
level. The possibility to achieve simultaneous incompatible measurements was only very
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Figure 1.5: Impact of the type of detector on the distribution of quantum states in the Zeno
regime of Fig. 1.3 b. a,b,c Marginal distribution in the 2 —y (a), z— 2z (b) and y—z
(c) planes of the Bloch sphere of the qubit states p, corresponding to 1.5 millions of
measurement records {w(¢)} at the cavity frequency only. The information about
{u(t),v(t)} is here discarded. The boundary of the Bloch sphere is represented as a
black circle and the average quantum trajectory as a solid line. d,e,f Case where the
states are conditioned on fluorescence records {u(t),v(t)} instead while discarding
the information on {w(t)}. g,h,i Case where the states are conditioned on both
fluorescence and dispersive measurement records {u(t), v(t),w(t)}.
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recently demonstrated by Hacohen-Gourgy et al. [49] in the case of a qubit with two de-
phasing channels. Jordan and Biitikker [50] proposed such an experiment theoretically
in 2005. By monitoring both decoherence channels, we take the place of the environ-
ment in this experiment and we reveal the knowledge that only the bath acquires in
most experiments.

The quantum state diffuses inside the Bloch sphere, which is reminiscent of the
Brownian motion [51] of a particle inside a colloid as explained in section 6.4. In this
case, the measurement back-action plays the role of the Langevin force. The probability
distribution of quantum trajectories obeys the celebrated Fokker-Planck equation. We
gain insight into the physics of the diffusion of the quantum trajectories by analyzing
the different terms of the Fokker-Planck equation. We find that our experiment is the
first observation of a genuine 3D diffusion inside the Bloch sphere (section 6.4.6) and
we explain the deep link between diffusion and back-action. The incompatibility of
our measurement is encoded in a persistant diffusion enforced by a Heinsenberg-like
inequality on the diffusivity of quantum states (section 6.4.8).

1.5 POST-SELECTED EVOLUTION

In the 50s, von Neumann and Bohm [52, 53] suggested that the irreversible collapse of
a wave packet of the state of a system under the influence of measurement introduces
a fundamental time asymmetry at the microscopic level. The measurement back-action
was thus thought of as a time asymmetric element in quantum theory. Nevertheless, the
symmetry of the rules of quantum mechanics is fully restored when specifying both the
initial state and the final state of a closed system. The symmetric role of preparation
or pre-selection and post-selection was enlightened by Aharonov et al. in 1964 [54].
While the density matrix p; is the quantum state of the system conditioned on the
past measurement records, the effect matriz Ey; [55, 56, 57, 58] is the quantum state
conditioned on the information available in the future (chapter 7). Taking into account
the forward and backward estimation of the quantum state at the same time provides a
so-called past quantum state that encapsulates all the information available from past
and future measurements (section 7.1).

Po prediction P+ ;<& retrodiction Er

| | —>
0 t T

preparation post-selection

Figure 1.6: The state of the system can be predicted conditioned on past measurement records
using the density matrix p; or rectrodicted, a posteriori, conditioned on the future
measurement records by unravelling the effect matrix E;. The past quantum state
(pt, Et) uses the complete measurement records to give an estimate of the distribu-
tion of any measurement performed on the system at time t.
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In the presence of both preparation and post-selection, the measured expectation val-
ues of the signal can spread outside of the eigenvalue range defined by the corresponding
observable. These anomalous values were called weak values [59, 60] and they can, in
principle, reach arbitrarily large values. In this thesis, we present the results of an ex-
periment illustrating this fact. By combining preparation and post-selection, the Bloch
vector imaged with our direct quantum tomography method exceeds the boundary of
the unit sphere (61, 62, 63, 64| in section 7.2.2.

1.6 OUTLINE

This thesis is organized as follows. Chapter 2 gives an introduction to the field of
superconducting circuits. It aims at bridging the gap from the condensed matter aspect
of superconducting circuits to the open quantum mechanics description of qubits and
harmonic oscillators. In chapter 3 we describe a novel gate-free tomography method.
The x and y components of the qubit are obtained by measuring the two quadratures of
the fluorescence field emitted by the artificial atom while the z component is accessed
by probing an off-resonant cavity dispersively coupled to the qubit. The experimentalist
is not restricted to the first two levels of the transmon. We demonstrate in chapter 4
the coherent control and readout of a transmon qutrit. We give a general explanation
of the most commonly used near quantum limited amplifiers in the microwave range
in chapter 5. These amplifiers are instrumental to observe the partial collapse of the
density matrix under the influence of weak measurement. Measurement back-action and
quantum trajectories are at the heart of chapter 6. We investigate the case of multiple
simultaneous observers monitoring incompatible operators on the same quantum bit.
Impressively, the random walk of the state of the system in the Bloch sphere can be
studied with the tools of classical diffusion physics. Finally chapter 7 investigates the
behavior of post-selected quantum trajectories revealing weak values of our detection
signals that exceed the boundary of the unit sphere.

The White Rabbit put on his spectacles. “Where shall I begin, please your Majesty ?”
he asked. “ Begin at the beginning,” the King said, gravely, “ and go on till you come
to the end : then stop.”

— Lewis Carroll, Alice’s Adventures in Wonderland
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INTRODUCTION TO SUPERCONDUCTING CIRCUITS

The goal of this first part is to give an up-to-date introduction to the field of super-
conducting circuits from an experimentalist perspective while focusing on the devices
that are used in this thesis work. The first chapter will focus on the transmon qubit,
which is the most widespread qubit in the superconducting circuit community. A lot of
other types of qubits have very promising performances but they are not the subject of
this thesis. The second chapter is dedicated to the readout of superconducting qubits
with a particular emphasis on dispersive and fluorescence readout that are crucial to
the second part of this thesis. The third chapter is dedicated to three-level systems.
Most applications of superconducting circuits rely on quantum operations on two-level
systems while transmons offer many more levels that are individually addressable. In-
creasing the size of the Hilbert space for quantum operations or quantum algorithms
opens up new perspectives for quantum physics and quantum information processing.
The fourth chapter is dedicated to pumped microwave circuits and more specifically to
linear microwave amplifiers. Three kinds of amplifiers were used in this work and a non-
exhaustive review is given on the current state-of-the-art of microwave amplification at
the quantum level.

In this first chapter, we will introduce the transmon as an elementary unit instrumen-
tal to circuit QED. We will start by introducing quantum circuits from the solid-state
physics perspective and then we combine it with the universal quantum mechanics
description valid for a wide range of platforms dealing with single quantum systems.

2.1 CIRCUIT QUANTUM ELECTRODYNAMICS
2.1.1 Introduction

The goal of cavity quantum electrodynamics (CQED) is to study the properties of light
(photons) coupled to matter (electrons, atoms, ...). This field has led to numerous
ground-breaking experiments [12, 65] well described in books and reviews such as Ez-
ploring the quantum by Serge Haroche and Jean-Michel Raimond [66]. Subsequently, a
new branch of this field emerged in 1999 with the invention of the first superconduct-
ing qubit [17] later followed by the demonstration of strong coupling regime between
a transmon and a resonator [22| and was dubbed circuit QED. This first section is
dedicated to the quantum optics of microwave circuits with superconducting artificial
atoms.

A first striking property of these circuits is that they are macroscopic quantum sys-
tems. While they contain a large number of microscopic particles, they host macroscopic
degrees of freedom that behave quantum-mechanically. Secondly, their properties are
not set by fundamental constants like the Rydberg energy. They are engineered at will
by design with the technology of microelectronic chips. Lastly, a truly remarkable level
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of control was achieved in these systems thanks to the exponential growth of coherence
times of these devices known as Schoelkopf’s Law [13]. The system used throughout this
thesis is the transmon', which is nowadays the most commonly used superconducting
qubit. This qubit was originally envisioned to be coupled to a 2D resonator connected
to a transmission line [19] but it can also be embedded into a 3D electromagnetic or
into a lumped mode [67] in order to straightforwardly increase the quality factor of the
LC resonator.

Transmons are usually made of a Josephson junction shunted by a large capacitance
[20] and the circuit is shielded and anchored to the base plate of a dilution refrigerator
at about 20 mK so that the energy of the thermal fluctuations is much smaller than
the energy quantum at a few GHz hw > kgT.

Another important thing to mention about superconducting circuits is that it is one
of the many candidate platforms that could lead to the advent of a universal quantum
computer thanks to quantum error correction |68, 69]. A lot of landmarks were achieved
such as the implementation of multi qubit algorithms [70] or gate fidelities sufficient
for error correction [71] and few small uncorrected quantum processors are already
available online but the race is still ongoing.

2.1.2  Quantum LC oscillator

A quantum LC oscillator is the simplest circuit element that can be built with capac-
itors and inductors |73, 74| as depicted in Fig. 2.1 a. In practice, the dynamics of a
cavity mode is modeled by a harmonic oscillator. The most commonly used resonators
in circuit QED are 3D rectangular cavities machined out of aluminum (Fig. 2.1 b),
3D coaxial \/4 cavities (Fig. 2.1 ¢) and A/2 coplanar-wave-guide (CPW) resonators
(Fig. 2.1 d). There are no resistors in the circuit representation because the cavities are
made out of superconducting materials that ensure that the supercurrent flows with
negligible dissipation in the circuit. Losses will be introduced as a perturbation. In the
case of a rectangular cavity of dimensions I, I, [., the limit conditions impose that
the resonant frequency of the TE,,,) and TM,,,,) modes are given by [75]

e () () + ()

where the indices n, m, [ refer to the number of anti-nodes in standing wave pattern in

the z, y, z directions. A cavity with dimensions (I, ly,[;) = (26.5x26.5x9.6) mm? has
a first TEq19 mode at f1 10 = 8 GHz. Similarly, a coaxial \/4 cavity has a fundamental
resonance frequency fo ~ 4.25 GHz for [ = 20 mm [76] well separated from its first har-
monic frequency f1 = 3fp = 12.75 GHz. Finally, A/2 CPW resonators are planar trans-
mission lines terminated by two open circuits loads. The two terminations are sufficient
to create a standing wave as in a Fabry-Pérot cavity and a [ = 20 mm resonator will
have a fundamental mode at fy = 8.5 GHz. The first harmonic is f; = 2fy = 17 GHz.

The original name comes from transmission-line shunted plasma oscillation qubit [19].

14



Figure 2.1:

2.1 CIRCUIT QUANTUM ELECTRODYNAMICS

a. Electrical circuit of an LC oscillator. This system is analogous to a mass-spring
system in mechanics with position coordinate taken to be ®, the magnetic flux
through the coil and the momentum variable is @, the charge accumulated on the
capacitor. The role of the spring constant is played by 1/L and the mass is C. The
standard electrical variable V' and I are obtained by Hamilton’s equation (2.5). b.
Picture of two blocks of aluminum forming a microwave cavity resonating at 8 GHz
[67]. The cavity is created with a drilling machine from a raw block of aluminum. A
qubit can be inserted in the cavity before closing it with an indium seal. c. Picture of
a 3D coaxial A/4 cavity [72]. The length of the central pin determines the resonant
frequency of the cavity. The electromagnetic mode is confined at the bottom of
the cavity and it is evanescent from the pin to the top opening. d. Schematics
of a A\/2 coplanar waveguide (CPW) resonator surrounded by its ground plane. A
superconducting material (in our group Nb or TiN) in green is deposited on a silicon
substrate in gray. The impedance of the resonator is determined by the width of the
resonator w, the size of the gap g, the height of the superconducting material and
the nature of the substrate. e. Energy levels of an harmonic oscillator. The energy
levels in dashed line are evenly spaced by Aw,. The wavefunction amplitudes of
the different Fock states are represented in orange as a function of the flux ®. The
number of nodes of the wave function is equal to the number of photons in the
cavity.
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INTRODUCTION TO SUPERCONDUCTING CIRCUITS

The Lagrangian of the classical system is readily written as the difference of the
potential energy stored in the capacitor and the kinetic energy stored in the inductor

_ Q2 (1)2
20 2L (2.2)

by defining the flux threading the coil ® and the charge on the capacitor () according
to

@:/t V(thdt

- : (2.3)
Q= / I(tdt
And the Hamiltonian can be written
. (I)Q QQ
%—Q(ID—E—EjL%. (2.4)

Hamilton’s equations of motion give us the current crossing the inductor and the

voltage applied across the leads of the capacitor
6o OH _Q _
(2.5)

Remarkably the whole complexity of the system containing an enormous number of
electrons boils down to a system with a single position degree of freedom. We choose
the flux threading the coil ® as the position coordinate. The system is simply analogous
to a spring with mass? C, spring constant 1/L and momentum Q. The two variables
® and Q can be promoted to quantum operators ® and Q that obey the canonical
commutation relation

[®, Q] = ih. (2.6)

The Hamiltonian now reads

.dr 02

We can diagonalize it in the usual form

R 1
H = hw, (a*a + 2> (2.8)

in terms of the ladder operators
1 - 1

frd (I)_i_'
V2L, 2hCew,
i = i —0
V2hLw, V2hCw,

Note that it is also possible to choose the charge accumulated on the capacitor as the position coordinate

Q

joN

but with a ‘mass’ L and ‘spring constant’ 1/C.
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2.1 CIRCUIT QUANTUM ELECTRODYNAMICS

with w, =1/ vV LC'. And the creation and annihilation operators obey the usual bosonic
relation [a,af] = 1. The number operator 7 = afa gives the number of quanta in the
mode that we dub photons. We can think of these quanta as collective excitations of
both the electrical field and the Cooper pairs inside the materials®.

The energy spectrum of the harmonic oscillator is represented in Fig 2.1e. The energy
levels of the harmonic oscillator are evenly spaced as predicted from (2.8). Sending a
cold enough classical microwave radiation at energy hw, inevitably populates all the
levels of the Hilbert space with a Poisson distribution leaving the cavity in a coherent
state. In order to prepare other states, one needs to couple the oscillator to a non linear
element or to perform postselection or non-Gaussian measurements. This will be the
role of the Josephson junction in the following.

The charge and flux operators can then be expressed as

{ é) = (I)ZPF(& + &T) (2 10)

. , s
Q = —iQzpr(a —a')
where the zero-point fluctuations are defined as a function of the characteristic impedance

of the resonator Z = /L/C by Qzpr = 1/% and ®Pypp = \/%. Notice that the
h

Heisenberg minimal uncertainty product is given by Qzpr®zpr = 3.

Equation (2.5) allows to estimate the zero-point voltage fluctuations of a cavity mode
in the ground state

h
Vzpg ~ Q?F ~ W/ §Z ~ 0.4 uV (2.11)

with w, = 27 x 8 GHz and Z = 100 Q.

2.1.3  Open quantum systems

In practice our microwave circuits are open quantum systems and the above groundwork
has to be completed by connecting the harmonic oscillator to the rest of the circuitry
to enable coherent control and measurement of the system. The dynamics of an open
system of Hamiltonian H is governed by the Lindblad equation

dpr _ %

= h[ﬁapt]‘sz:Dk(Pt)dta (2.12)

where p; is the density matrix of the cavity at time ¢, Di(p;) = LkptLL — %ptLLLk —
%LIZLkpt is the dissipation super-operator and { L} are the jump operators. Each index
k is associated to an irreversible quantum channel and the effect of the interaction
between the bath and the system is encoded in L.

This very general differential equation describes the decoherence of an open quantum
system by extending the Schrodinger equation to Markovian open systems, that is,

Note that usually physicists rigorously speak about photons only as excitations of a free propagating
electromagnetic mode but our denomination is legitimized by the fact that the stationary photons that
we defined above can fully be converted into propagating excitations of a transmission line whose limit
conditions can be continuously impedance matched to infinity.
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local in time [77]. Local in time means that p;;4 must be entirely determined by p;.
Dissipation originates from the fact that energy and information can flow from the
system to the bath however if this is a two-way process, information can also flow back
in the system and give rise to a non-Markovian evolution of the system since we need
to know the value of p at earlier times.

In order to derive the Lindblad Eq. (2.12) the following hypotheses are required [66]

e We usually deal with Eq. (2.12) by dividing the time into ‘slices’ of duration dt
and every evolution p; from time ¢ to ¢t + dt is incremental. This ‘coarse-grained’
description of the first order differential Eq. (2.12) screens out high frequency
component of the dynamics with w > 1/dt. We thus perceive the dynamics of
the studied system through a filter and this description will be accurate only for
dt < Ty where T is the typical time scale of evolution of the observables of p
due to unitary evolutions or damping processes.

e The environment must be a ‘sink’. We assume that this large system has a great
number of degrees of freedom (represented by the collection of discrete electro-
magnetic modes in Fig. 2.2 b) and that the dynamics of the bath does not impact
the dynamics of the system. This amounts to neglect the memory effects of the
bath (also called reservoir in statistical physics). Mathematically we denote by
7r the time scale of the fluctuations and correlations of the environment. The
inequality 7 < dt is required to ensure that the environment is amnesic at the
scale dt. We thus renounce to the microscopic description of fluctuations much
faster than dt.

e There is no notion of quantum measurement in the derivation of Eq. (2.12). Con-
tinuous quantum measurement will be introduced in Chapter 3 and the dynamics
of the quantum state will be predicted by the stochastic master equation in chap-
ter 6.

In the case of a cavity losing photons ‘one-by-one’ via a coupling to a transmission
line, only one jump operator is non zero L = \/ka where & is the coupling rate to the
transmission line. We will see the jump operators associated to a qubit in a following
section and for any given system that satisfies the above-listed conditions, there exists
a set of jump operators describing the decoherence of the system.

2.1.4  Cavity coupled to two transmission lines

In this thesis, we used two-port cavities with jump operators L1 = Fia and Ly =
/Fkz2a. The input-output relation (see appendix A)

\/FTZ& = dfn + déut (213)

relates the input and output propagating modes of the transmission line to the station-
ary mode a of the device. In the case of 3D resonators, the value of the coupling is
determined by the length of the pins of the SMA connectors mounted on the cavity,
while the coupling is given by a planar capacitance in the case of 2D resonators. In our
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AAA
W/

Figure 2.2: a. Example of an open quantum system: a cavity is connected to the transmission
line. The coupling capacitance C,. sets the value of k in the input-output relation
(2.13). b. By discretizing the modes of the transmission line, we find an equivalent
description: the quantum system is coupled to an infinite number of LC modes. c.
The impedance of the infinite ensemble of LC resonators can be represented by
a purely reactive dissipative element whose Caldeira-Leggett representation is the
ensemble of modes.

case, we have K ~ 27 x 2.3 MHz for the most coupled port that will be used to collect
the outgoing signals.
Equivalently to (2.12), operators evolve in time in the Heisenberg picture according
to the quantum Langevin equation
da oA K1+ K2 + KL . . R .
P ﬁ[H’ al — - e— + v/K1Gin,1 + 1/K20in,2 + /KLGAin L (2.14)
with an additional k7 term that models the internal losses of the cavity by a zero-

temperature dissipative mode. Adding an external driving force of amplitude A4 and
angular velocity wg on the system amounts to add the following Hamiltonian [78§]

Herive = h(Ag(t)e™™aat + A% (t)e™ta) (2.15)
By driving the system with a coherent field on port 1, Eq. (2.14) becomes on average

do(t)
dt

K1+ Ko+ KL,
2

= —iw,a(t) —

a(t) + VE1ting (2.16)

where «(t) is the complex amplitude of the coherent field stored in the cavity at time
Olout,l(w)

and the transmission
Qin,1(w)

t. We can then write the reflection coefficient S1;(w) =

aout,Q(W)

- in the spectral domain as
aln,l(w)

coefficient Sa1(w) =

K1 — Ko — KL, + 2i(w — wy)

g —
nw) K1+ ke + Kk — 2i(w — wy)

2/
S5y (w) _ K1k2

K1+ ke + kK — 2i(w — wy)

(2.17)

We often denote kiot = k1 + ko + k1 the total damping rate of the system, Q =
wyr /Kot the quality factor of the resonator and Qine = w,/ky, its internal quality factor.
Internal quality factors as high as 10® are reported for 3D cavities [76] in presence of
a superconducting qubit and 10'° for experiments with flying Rydberg atoms [79]. In
our experiment we used a 3D rectangular copper cavity with s = 27 x 2.3 MHz and
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a total quality factor of ~ 500 dominated by the coupling to one of the transmission
line to enhance photon collection by the so-called Purcell effect explained below.
From Eq. (2.17), we can see that the transmission profile is always a Lorentzian in
amplitude accompanied with a 7 phase shift (see Fig 2.3). The width of Lorentzian
and the phase shift is always given by ko. In reflection on port 1, three regimes are

observed.

e The over-coupled regime is defined by k1 > Kk + ko. In this regime the losses
are negligible so in reflection |S11(w)| = 1 and a 27 phase shift is observed (blue

curve in Fig 2.3).

e The critical coupling corresponds to k1 = K, + k2. In this regime a 7 phase shift
is observed in reflection while the amplitude vanishes at resonance (green curve
in Fig 2.3).

e The under-coupled regime corresponds to Kz, + k2 > k1. A bigger dip in amplitude
is observed in reflection due to the important losses with a phase shift < 7 (red

curve in Fig 2.3).
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Figure 2.3: Reflection (a, b and ¢) and transmission (d, e and f) signal through the cavity
given by Eq. (2.17) for ko = 27 x 100 kHz, x;, = 27 x 1 MHz and various &
(indicated by color). The distinct over-coupled (blue line), critical (green curve)
and under-coupled (red curve) regimes are observed in the reflected signal whereas
the transmitted signals are all Lorentzian resonances.
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2.2 TRANSMON QUBIT

Now that we know how to deal with open quantum systems, we need to add a non
linear element to complete the cQED toolbox. The transmon is an artificial atom made
of a Josephson junction connected to two superconducting islands. In our case the
aluminum /alumina/aluminum junction is typically 250 x 200 nm and the associated
tunnel resistance at room temperature of the order of 2 to 8 k2 (see appendix B). The
coupling Hamiltonian associated to the coherent tunneling of a Cooper pair through
the barrier reads

) EJ +oo

Htunneling = _7 Z (’N> <N + 1‘ + ‘N + 1> <ND (218)

N=—o0

where Ej is a macroscopic parameter, which is proportional to the DC conductance
G, of the junction in the normal state, which can be adjusted during the fabrication
process and to the superconducting gap A of the material E; = AGn%. The state
|N) corresponds to exactly N Cooper pairs having passed through the junction.

We can define a new ‘plane wave’ basis

—+00

e = 3 @V¥eIn). (2.19)

N=—o00

The number ¢ can be thought of as an angle since ¢ — p+27 leaves |p) unaffected. The
variable ¢ corresponds to the superconducting phase difference across the junction and
the Josephson relation relates to the electromagnetic flux by ¢ = % (mod 27) with the
reduced flux quantum ¢y = % The tunneling Hamiltonian (2.18) is formally a hopping

Hamiltonian in a 1D tight-binding model, so we get the usual cosine dispersion relation

I:Itunneling ’@) =—FE; COS(‘P) "P) . (220)

On top of this tunneling energy, one has to consider the charging energy. The po-
. . . : . 2.
tential energy associated with the transfer of a single electron is B¢ = 5 with C the
capacitance between the two superconducting islands so the energy operator associated
with the transfer of a Cooper pair is four times larger. We obtain the Cooper Pair Box
(CPB) Hamiltonian [80]

—

H = 4Fc(N — N,)? — Ejcos(y). (2.21)

where we added N, called the dimensionless gate charge. It represents either the effect of
a voltage applied across the junction or a junction asymmetry that breaks the symmetry
between positive and negative charge transfer [73]. We define the number operator
N = S8 N |N) (N|. The number operator N has integer eigenvalues whereas Ny is
a continuous variable. The Hamiltonian (2.21) is formally identical to the Hamiltonian
of a ‘quantum rotor’ in a gravity field with the charging energy playing the role of
‘moment of inertia’ and the Josephson energy as the torque produced by gravity.
Unfortunately, the gate charge uncontrollably fluctuates and this is what limited the
interest of the CPB as a qubit [17, 81]. However when E;/Ec ~ 50 or above, the energy
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Figure 2.4: a. Atomic force microscope image of a Josephson junction in 3D and in 2D. The

22

amplitude of the signal in tapping mode is shown. The height of the different layers
of superconductor is coming from the double angle evaporation in the fabrication
recipe (see Appendix B). A small ‘diving platform’ can be seen next to the junction.
In fact this small additional Josephson junction is not connected to the rest of the
circuit. It is used to release the strain on the Dolan bridge during fabrication.
b. Schematics of a Josephson junction with Josephson energy E; and intrinsic
capacitance Cj(~ fF) in parallel with a large capacitance C that ensures that
this Cooper pair box operates in the transmon regime E; > 50Ec. The CPB
Hamiltonian (2.21) can be expanded in an LC circuit in parallel with a non linear
element (2.22) represented by the ‘spider’ symbol. c. Energy diagram of a transmon
with F;y = h x 20 GHz and F¢ = i x 200 MHz. The energy levels of the transmon
are represented in orange while the energy levels of the corresponding harmonic
oscillator are in dashed lines. At low temperature k1" < hf,, a single level of the
qubit can be occupied. The frequency of the qubit transition is given by hf, ~
V8E;E¢ and the anharmonicity of the qubit is haw ~ —F¢.
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spectrum of the CPB becomes almost independent of IV, this is the so-called transmon
regime |19, 20]. In our design, we make sure to operate in this regime by shunting the
junction by a large enough capacitance that is obtained by connecting the junction
to large enough pads (see Fig. 2.5). From the Hamiltonian (2.21), we see that in this
regime eigenstates have a well defined phase d and a large Q uncertainty in charge Q

2D architecture

500 pm

3D architecture

Figure 2.5: a. Scanning electron microscope image under an angle of a 2D transmon embed-
ded in a niobium CPW circuit. The Josephson junction made out of aluminum is
connected to two large pads forming a large capacitance that lowers the charging
energy Eo = h% ~ i x 234 MHz. b. and c. Zooms on the Josephson junction de-
posited by double angle evaporation with the Dolan bridge technique (see appendix
B). d. 3D aluminum cavity with a sapphire chip. The chip is gripped on its two
edges between two blocks of aluminum to ensure that the substrate is thermalized.
We measured E; = i x 20.588 GHz and Ec = i x 174 MHz for this chip so we are
deeply in the tranmson regime. e. SEM image of the Josephson junction of the 3D
transmon device, which is very similar to the one on silicon in Fig. c.

By reording the terms in (2.21), we obtain

(2.22)

X R 1 g2
H= <4EC(N — Ng)* + §EJ¢>2) - E; —Ej (cos(«p) + % - 1)

/ O\

~~ ~~

ﬁHO FINL
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INTRODUCTION TO SUPERCONDUCTING CIRCUITS

where Hyo is the Hamiltonian of the harmonic oscillator Hyo = hf,(ata + 1/2) at
frequency f, = % 8FEjE¢c, which is of the order of ~ 5 GHz in our systems. In the
limit ¢ < 1, the purely non-linear term reads

Hyp = —Ej(cos(p) + ¢?/2 —1) ~ —Es(* /4! — °/6! + o3 /8! + ...). (2.23)

This term is symbolized by the spider element in Fig. 2.4 and is responsible for the
non evenly spaced distribution of the energy levels. This anharmonicity is crucial to
selectively manipulate a limited number of levels and effectively truncate the Hilbert
space. Specifically, the first two levels |g) and |e) are used as a two-level system or qubit
throughout this thesis and in the third chapter we additionally used the third level |f)
to work with a qutrit.

The basics features of the transmon circuit (Fig. 2.4b) were explained in this sec-
tion without taking into consideration the cavity. Introducing it at this stage becomes
quite technical since the geometry of the transmon and cavity modes are affected and
distorted by one another to become dressed states, which both inherit some non lin-
earity of the junction. The complexity increases further by including the harmonics of
the cavity. We rather derive an effective Hamiltonian with the Black-box quantization
method.

2.2.1 Black-box quantization of a transmon embedded in a cavity

2.2.1.1 General theory with a single junction

Typical circuits used in our experiments have more degrees of freedom than a simple
harmonic oscillator and all the complexity of the system can be captured in a ‘black box’.
The black box quantization method was originally introduced by Nigg et al. [82]. Gener-
alizations of this method have been proposed by Solgun et. al. [83] and Malekakhlagh et.
al. [84] to model more complex environment but we restrict the discussion to the Foster
decomposition of the environment. Its principle relies on solving the linearized problem
and treat the non linearity perturbatively. In the case of a linear circuit, knowing the
impedance Z(w) or admittance Y (w) = Z~!(w) of a dipole black box connected as a
function of frequency completely characterizes its quantum properties.

We start by decomposing the impedance seen by the junction into M RLC-oscillators
in series* Z(w) = Z;ﬁil(jwcp+ﬁ+é)_l (Fig. 2.6). First, neglecting the dissipation
associated to the R, elements, the Hamiltonian of the linear system reads [85]

M
ﬁlinear = Z mp(&;;&p + 1/2) (224)
p=1

with w, = 1/4/L,C), (for weak dissipation i.e. Rp > /Lp/C)). This Foster decompo-
sition is equivalent to diagonalizing coupled modes into M uncoupled hybrid or dressed
modes which are collective excitations of the linear circuit. The ladder operators of

each mode p are defined as a, = ﬁ‘ii’ +1 %QP with Z, = \/L,/Cp,. We obtain

It is important to understand that usually the circuit elements drawn in electrical circuits have no
physical counter part in the actual device.
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Figure 2.6: a. Schematics of a Josephson junction coupled to an arbitrary linear circuit dubbed
‘cavity modes’ for the transmon. b. The Josephson element is replaced by a purely
non linear element (spider symbol) the linear inductance L; and capacitance C; of
the junction together with the cavity modes are encapsulated in an impedance Z(w)
seen by the spider element. c. The impedance is replaced by its pole decomposition
(Foster-equivalent) Z(w) = Zﬁil(ijp + jwle + Rip)_l. We also introduce the
fluxes @, used in the text.

the expression of the flux across the junction = Z]]JW: 1 <i>p that can be reinjected in
the non linear Hamiltonian (2.23). By restricting ourselves to the first non linear term,

we obtain

. N 1 o
Hyu =Y Apiy + 3 > hxpyiipis, (2.25)
p pp’

with the excitation number operator n, = &;dp of mode p. The Lamb-shift of mode p
is Ay = —%(Zp o Ly — Z3/2) expressing a frequency ‘renormalization’ due to the
presence of the other modes. The expressions of the self-Kerr x,, and cross-Kerr x,,
constants are given by

Ly €

G
fixpp = ——L L Ec=—Z>—E¢
P LG PLy (2.26)

hixXpp = =24/ XppXp'p'

where C is the capacitance shunting the junction. Lastly, the finite width of the reso-
nances are given by the imaginary part of the zeros of the admittance Y (w) = Z=1 of
the Black-box. The quality factor of mode p is given by

_ wp Im[Y(wy)]

Qp = 7m- (2.27)

Similarly to the non-linearity, dissipation is spread over all effective modes. This method
can be extended to multiple non linearities coupled to an arbitrary black box but it
requires heavier equations [82]. We will know apply it to the case of a transmon coupled

to a cavity.

2.2.1.2  Application to the transmon

For a transmon inside a cavity, the qubit and cavity are treated as electromagnetic
modes on equal footing and then we account for the weak non linearity of the Joseph-
son potential perturbatively®. As depicted above, there is no clear separation between

Note that this method is applicable to transmon qubits because they exhibit a weak anharmonicity
that allow the perturbative treatment.
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INTRODUCTION TO SUPERCONDUCTING CIRCUITS

the qubit and the cavity in this model and one mode with a strong (resp. weak) anhar-
monicity is called qubit-like (resp. cavity like). Mathematically speaking the qubit-like
mode has a much higher impedance seen by the junction Z, > Z, for all p. By restrict-
ing ourselves to one cavity mode, we obtain a total Hamiltonian similar with a non
linear part given by Eq. (2.25)

~ i it ta ot i, K ..
Hppg = hwqagaq + hwedlie — hxaiacagaq — hga:;?ag + h;a?ag (2.28)

where w, and w, are the dressed qubit and cavity frequencies, a, and a. are the anni-
hilation operators of the qubit-like and cavity-like modes. The non-linear terms reads

( E,
a=—xq/h= ?C (anharmonicity of the transmon)
9\? .
X = —2Xge/h =2 <Z> (cavity pull) . (2.29)
Z:\* E
K = Xxee/h=— (> —¢ (self — Kerr of the cavity mode)
( Z,) h

In practice the anharmonicity of the cavity K is negligible because Z;, > Z. and in
our system |K| ~ 27 x 40 kHz so we will neglect this term in the rest of the thesis.
The interaction strength is given by cavity pull® x as a function of the dipolar coupling
constant g between the artificial atom and the electrical field and the detuning A =
|wg —we| [86]. The cavity pull is of the order of a few MHz in our experiments and it may
be enhanced by increasing the length of the antenna to obtain a greater dipole moment.
The anharmonicity of the transmon « is of the order of a ~ 27w x 100 — 200 MHz. Its
value is controlled by the charging energy which is set by the antenna area.

The cavity mode is connected to a resistor (Fig. 2.7) modeling the coupling to an

I and

external transmission line. Photons leak out of the cavity on a time scale x~
Eq. (2.27) predicts a finite quality factor @, for the qubit-like mode and thus a finite
decay rate known as Purcell rate T'1 purcenn = wq/Qq. We obtain the Purcell decay rate

that limits the lifetime of the transmon

Re[Y'(wg)] 4°

T ()] Ayl (2.30)

I-‘I,Purcell =2
In practice with typical values ¢g/27 = 290 MHz, x/27 = 2.3 MHz and A/27 =
2.4 GHz, we obtain I'j pyrcenn = (4.7 ps)~! which is much higher than the experimen-
tal value. This known discrepancy [86] could be due to one of the approximations of
the model and it is nonetheless possible to get a good approximation of I'y pyrcenn by
simulating directly the admittance seen by the junction with finite-element simulations.
However we make sure that the relaxation time of the qubit is limited by Purcell effect
in this thesis to be able to collect a significant part of the spontaneous emission in the

output line (see chapter 3).

The cavity-pull of the transmon is reduced by a factor 1/A compared to a Jaynes-Cummings hamilto-
nian due to higher levels.
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Figure 2.7: a. Schematics of the system. A capacitively shunted Josephson junction is coupled
to an harmonic oscillator with a small dissipative element R < 1/L/C used to
model the coupling to a transmission line. b. Equivalent decription with the Black-
box quantization method. A purely non-linear element is connected to an impedance
whose Foster decomposition contain a qubit-like mode and a cavity-like mode. The
non linearity is distributed over the two modes depending on their impedance Z,
according to Eq. (2.26). The dissipation is also distributed over the modes and
in particular the qubit-like mode acquires a dissipative element R, resulting in
the Purcell effect. c. Energy ladder for the Hamiltonian (2.32) of transmon-cavity
system in the two-level limit approximation. The energy diagram is composed of
two harmonic oscillator ladders with a transition frequency w.+x/2 (resp. w.—x/2)
if the qubit is in |g) (resp. |e)).

In this formalism all modes are bosons but we usually think about fermions when
talking about qubits. The last step that we have to make is to confine the number of
excitations in the transmon’ to one photon. In this case, we can safely replace

o,+1
2

hweibag — haal®a — hw, (2.31)

1 0
with the Pauli matrix o, = < > expressed in the basis {|e) , |g) }. We end up with
0 -1

the circuit QED Hamiltonian in the dispersive regime

~ W, R N
H = h?qaz + hwcalac - h%azalac. (2.32)

We recover the energy ladder of this Hamiltonian in Fig. 2.7 for the hybrid levels of the
transmon-cavity system.

The previous derivation is universal in the sense that we only dealt with lumped
elements regardless of the structure of the actual device (metallic tracks, bulk metal,
dielectric substrates and tunnel junctions) whose geometry may be planar (2D CPW
architecture) or three-dimensional. This formalism becomes particularly powerful to
design an experiment with targeted parameters values by looking at the electromagnetic
energy distribution in the actual device thanks to finite element simulation.

We implicitly assume that we drive the qubit with pulses with a duration much longer than h/a to
ensure that the higher levels of the transmon are not excited.
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2.2.2  Finite element simulation - Energy participation ratios

In order to predict the values of the frequencies {w,} in (2.24) and x’s in (2.26), we
perform classical finite element simulation of our devices®. We replace the Josephson
element by a lumped? electromagnetic element of inductance L; and capacitance'” C;
and the solver extracts the electromagnetic eigenmodes of the linear problem (2.24).
The frequency of the eigenmode p is w), and even its quality factor @, (see Eq. (2.27))
can be predicted by introducing losses in the simulation.

The solver gives the stationary electric and magnetic eigenfields E,,(7) and H,,(7)
of mode m where 7 indicates the spatial coordinates. The total electromagnetic en-
ergy of the system breaks down in the sum of its inductive energy Einguctive and
its capacitive energy Ecapacitive- 1he inductive energy originates from the magnetic
fields and from the kinetic energy stored in the lumped linear inductance of the junc-
tion Einductive = Emag fields + Ekinetic Whereas the capacitive energy is solely stored
in the electrical fields Ecapacitive = Eelec fields- When a stationary mode m is excited
on resonance the total energy equilibrates between inductive and capacitive energy
Ecapacitive = Einductive Decause of the equipartition theorem.

We introduce the energy participation ratios of the junction to the mode m as the
fraction of inductive energy stored in the junction when exciting mode m

D = gkinetic = Eelec fields = ©¢mag fields (2.33)
Einductive m, quipartition gelec fields
where the electromagnetic energies are computed as [87|
]. 3_' = N =
gelec fields = 5 d°r (E(F)E(T)E(T)>
(2.34)

Emag fields = ;/dsf (ﬁ(f‘)g(ﬁﬁ(ﬂ)

where ¢ (resp. p) denotes the electric-permittivity tensor (resp. magnetic-permeability
tensor). B

Interestingly the list of participation ratio {p,,} is sufficient to characterize the non-
linearity of a multi-mode circuit hosting one Josephson junction. It is easy to show that
they are real numbers between 0 and 1 and that they sum up to one Zn]\le Pm = L.
We typically obtain participation ratios of the order of ~ 0.9 for qubit-like modes and
< 0.1 for cavity-like modes. It is possible to show that!! the impedance of mode m seen

by the junction is simply Z,, = %—’;pm and from Eq. (2.26) we obtain the non linear
terms of the Hamiltonian as a function of the participation ratios
Y
Xmm = —h
8E;
(2.35)
hwmwn

PmPn (for n # m)

Xmn = —

iE,

These simulations are performed using HFSS or Sonnet.

The lumped approximation is justified by the fact the size of the junction ~ hundreds nm is very small
compared to the wavelength ~ cm of the electromagnetic modes.

In practice, we forget about this capacitance because it is negligible in the transmon regime.

Zlatko Minev et al. in preparation.

28



2.3 OPEN SYSTEM DYNAMICS OF A QUBIT

In practice, we use an open-source package pyEPR!? developed by Zlatko Minev
and Zaki Leghtas which automates the energy participation ratio approach with HFSS.
The package allows to compute the non linear couplings between electromagnetic modes
with more than one junction and at an arbitrary order in the expansion of the cosine
potential (2.23). This package was tested in the design of several experiments [88, 89,
90] and it fills the need for a simple and systematic method to predict the non-linear
interaction of the increasingly complex and diverse architecture of circuit QED.

2.3 OPEN SYSTEM DYNAMICS OF A QUBIT

Now that we understand the transmon, we can forget about the solid-state description
of the device and replace it with the quantum physics representation of a two states
system called qubit or spin system. The qubit is the quantum analog of ‘bit’ or ‘binary
digit’ that can only have two distinct logical values. In the quantum world, the qubit
is a superposition of two distinct states |g) (ground state) and |e) (excited state). The
formalism described in this section is widely used in the field of nuclear magnetic res-
onance to describe the dynamics of nuclear spins in the presence of time dependent
magnetic fields as well as in the fields of quantum computing and quantum communi-
cation. We will introduce the Bloch decomposition of the density matrix on the Pauli
matrices, the Bloch sphere that is extensively used in this thesis, the concept of entropy
and purity of a spin 1/2 and finally we will discuss the decoherence mechanisms proper
to a two-level system.

2.3.1 Qubits

We consider that the qubit is in a perfectly known state or pure state such that we can
write it as a superposition of ground and excited state [¢)) = «|g) + 8 |e) with « and 8
two complex coefficients satisfying /|c|? 4+ |3]? = 1. In this case, the density matrix p
associated to [¢) is simply

2 *
b= %) (W] = ('B' « B). (2.36)

af* |af?

The density matrix is a generic object used to encapsulate an observer’s knowledge
about the state of the system [91] and more general states known as mized states or
statistical mixtures can be cast in a density matrix. We consider a statistical mixture
of states |1;) with probability p;,

p= Zpi ) (W] (2.37)

12 http://github.com/zlatko-minev/pyEPR
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where p; is a set of classical probabilities such that ). p; = 1. Since p is Hermitian,
positive and of trace 1, it can be decomposed on the Pauli matrix basis

Oz

1 1 1 o
p:§(]l+max+y0y+20z):§ ]l+(x Yy z> o :§(H+T-U) (2.38)

with the useful Pauli matrices

() e (0w (0 ) () 0] e
01 10 i 0 0 -1

The state of a qubit p is represented by its Bloch vector ¥ = (z,y, 2)T" in the Bloch
sphere, which is a ball of radius 1 (see Fig. 2.8). Every coordinate ¢ € {z,y, 2z} is the
averaged result of the measurement of the observable o;, i = (o), = Tr(po;). The
excited state is the north pole ((¢,) = +1) of the sphere and the ground state is the
south pole of the sphere ((c,) = —1). Given Eq. (2.38), a non zero x or y coordinate
is equivalent to quantum states with coherences between |g) and |e). A state p is said
to be pure if and only if ||7]|> = 1 and in this case the density matrix has exactly the
same information content as a state vector. The surface of the ball is thus composed of
pure states whereas the inner of the ball is composed of mixed states.

0.35
7, = |0.35 p=p|H) (+H + 1 =p) =) (~| p=ala) {al + B |b) §b|+’y\c) (c]
035 p~80.3% *U*a*g*“/) |a) (d|
- ~ % B~15% v~4%
S(p) >~ 0.716 bits a~T71% 5% v o

Figure 2.8: a. A mixed state p is represented by its Bloch vector 7 inside the Bloch sphere.
We compute the entropy S =~ 0.716 bits of this quantum state from Eq. (2.41). b.
Decomposition of p on to orthogonal pure states'® |+) and |—). This decomposition
is in fact unique and the {p,1 — p} are the eigenvalues of the density matrix used
to compute the entropy. c. Another decomposition of p on 4 arbitrary chosen non
orthogonal pure states denoted by |z) (z| for € {a, b, ¢, d}. The decomposition of a
mixed state is not unique and there is no way to recover the initially prepared states
with the associated classical probabilities {p;}. For instance, from a maximally
mixed state p = 1/2 there is no way to tell if the operator prepared a statistical
mixture of |g) and |e) with probability 1/2 or a statistical mixture of {|g), |e) , (|g) +
le))/V/2, (|g) — |e))/v/2} with probability 1/4 each.

It is easy to notice that ||7]|? = 2% + y? + 22 = 2Tr(p?) — 1 = 27y(p) — 1 where the
purity v of the quantum state p is defined as

2(p) = Tr(p?). (2.40)
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For a qubit!# the purity is bounded 1/2 < v < 1 and its extrema v = 1 and v = 1/2
correspond to the surface of the ball (pure states) and the center of the ball (maximally
mixed state).

2.3.2  Entropy of a qubit

Entropy is a key concept used to measure how much information is lacking about the
state of a physical system. This lack of information comes from the classical uncertainty
of Eq. (2.37) where the set of probability and pure vectors are not uniquely defined as
explained in Fig. 2.8. Several definitions exist and we will use Von Neumann entropy

[ S(p) = Tr(pLogs(p)) = —pLogy(p) — (1 — p)Logs(1 — p)| (2.41)

where Log, is the binary logarithm, we define 0Logy(0) = 0 and {p,1 — p} are the

eigenvalues of the qubit density matrix. The entropy of a qubit lies between 0 (pure
state) and 1 (maximally mixed-state or center of the Bloch sphere)'®. Interestingly, Von
Neumann entropy can be seen as a generalization of the classical Shannon entropy of a
probability distribution equal to the eigenvalues of the quantum state. It can be shown
that the entropy of a quantum state increases after an unread projective measurement
but it can decrease because of decoherence!®.

In addition to the previous definition, we define the quantum relative entropy between

two quantum states o and p as [92]

S(plle) = =Tr(pLogy(p)) + Tr(pLogy(c)) (2.42)

which is a measure of the ‘distance’ between the two quantum states. The definition
(2.42) is symmetric S(p||o) = S(o||p) and non-negative S(p||o) > 0 (Klein’s inequality)
with equality if and only if ¢ = p. The relative entropy of two quantum states is
monotonic, it can only decrease when tracing out a ‘part’ of a bipartite system. For
our open-system experiments, we will see that relative entropy can only decrease in
time under the effect of unread measurements because a part of the information on the
system is lost.

2.3.3 Decoherence mechanisms

Similarly to the case of a cavity, we can write a Lindblad equation for the density
matrix p; at time ¢ of a qubit
dpy i
dt — h

The Hamiltonian H can describe any unitary evolution. The Lindbladian can be de-

[H, pe] + L(p1)- (2.43)

composed according to

3
Lipr) =Y _ Dilpr) (2.44)
=1

In general the purity satisfies 1/d < v < 1 where d is the dimension of the Hilbert space.

In dimension d, the entropy lies between 0 and Log,[d].

An energy relaxation channel brings the quantum system in the ground state, which is a pure state of
zero entropy.
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with the dissipation super-operator D;(p;) = LiptL;r — %L;{Lipt — %ptL;rLi. The L;’s are
dubbed jump operators

e [ = /I' o_ for relaxation

o Ly = /I'to for excitation

o L3=/ 2—“’02 for pure dephasing.

The energy relazation channel or amplitude damping channel [93] is a model of the
decay of an atom due to spontaneous emission of a photon in the environment. By
‘detecting’ the photon, the environment causes an exponential decay of the energy of
the qubit driving the state of the qubit toward the ground state. In practice, this relax-
ation effect comes from spontaneous emission of the qubit into the output transmission
line and other events associated to non radiative decay of the qubit such as dielectric
losses in the substrate, interaction with a resonant two-level system, quasi-particles in
the aluminum. We make sure that the predominant relaxation process is energy relax-
ation through the output transmission line by Purcell effect to be able to monitor this
decoherence channel. The excitation channel or heating channel is due to the coupling
to hot baths that induce thermal excitation. This could be substrate phonons, high fre-
quency radiations routed via the transmission lines or trapped two-level systems. We
can measure the typical time for energy decay to relax to thermal equilibrium, which
is given by 177 = ﬁ

The dephasing channel or phase damping channel destroys the extra-diagonal terms
of the density matrix of the qubit exponentially fast in the energy basis. In practice
the Bloch sphere shrinks to a spheroid aligned with the z axis (see Fig. 2.9). This
decoherence mechanism is a general feature of any system leaking information that is
imprinted in auxiliary degrees of freedom [7|. In our system, dephasing is usually caused
by residual thermal photons inside the cavity coupled to the qubit, by flux noise in the
superconducting loops formed of Josephson junctions, interaction with non-resonant
trapped two-level systems. It can be measured in Ramsey interference experiments by
measuring Th = ﬁ, which is the typical time for coherence decay.

In both cases, decoherence shrinks the accessible volume of Hilbert space in time as
depicted in Fig. 2.9 but no physical process described by Lindblad equation (2.43) can
blow it up again. However, we will see that these channels can be monitored and that
we can use the extracted information to recover knowledge on the state of the system
which results in a purification of the density matrix during the evolution.

In term of Pauli coordinates the evolution during a time step dt due solely to dissi-
pation reads

dx;iissipation - _ <I; + F¢> Tpdt

o T
dy;ilsmpatlon _ (21 + F¢> ytdt (245)

dzéhsmpatlon _ _Fl (Zt _ Zth)dt

where I'y = 1/T1 =T1+T' and zy, = 11:1111:1 is the z component of the qubit at thermal

equilibrium.
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dephasing

energy relaxation

Figure 2.9: Representation of the dissipation evolution given in Eq. (2.45) in the z — z (a and
c) and z — y (b and d) planes of the Bloch sphere. The arrows form a vector field
that pushes the quantum states toward the z axis for dephasing (Fig. a and b)
and toward the ground state |g) for energy relaxation (Fig. ¢ and d). The vector
fields are obtained by paving the Bloch sphere with quantum states that evolve
according to Eq. (2.45) for a duration dt such that I'1dt = I'ydt = 0.2. Ellipsoids
corresponding to the boundary of reachable states at times I't = 0.2,0.4, ...,1.6 (in
blue) and T't = 0.1,0.3, ..., 1.8 (in green) are represented in dashed lines.
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2.4 CONCLUSION

This introduction chapter was dedicated to

e quantum electrodynamics with superconducting circuits with a detailed treatment
of linear and non-linear oscillators and their practical implementation in cQED.

e the black-box quantization method and its use for designing experiments with
specified parameter values thanks to finite-element simulations.

e the dynamics of open quantum systems with a comprehensive list of decoherence

channels for a qubit.

e the basic quantum mechanics toolbox to work with qubits including the Bloch
sphere representation, the notion of purity and entropy.
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The quantum state of a system is usually encoded in a density matrix which refers to
an observer’s knowledge about a system. More precisely, it is the knowledge that the
observer has about the outcome of future measurements on this system conditioned on
their observation and we will see that observers with different knowledge may assign
simultaneously different density matrices to a single system. This apparent paradox
is resolved when defining properly the crucial quantum operation performed by the
observer when measuring a quantum system. In this chapter, we aim at clarifying this
procedure and apply it to the measurement of the transmon qubit introduced in the
previous chapter. Another consequence of these statements is that when performing
repeated or continuous measurements, obtaining information on the system necessarily
changes the state of the system in time depending on the measurement outputs. This is
know as the quantum back-action of the measurement. For standard readout, we average
a large number of realizations and this genuinely quantum effect vanishes. A detailed
study of the back action of continuous quantum measurement in the framework of single
quantum trajectories is the subject of chapter 6 and we will here focus on different kinds
of tomography protocols.

Measuring the state of a qubit is a fundamental operation of quantum physics that is
still actively developed in circuit-QED. The duration and fidelity of qubit readout are
of critical importance for quantum information processing. The fidelity of algorithms,
which reuse qubits after measurement or apply feedback based on the measurement
results are limited by readout performances [94, 71]. Most quantum non-demolition
readout schemes in circuit QED are currently based on dispersive interaction [19]. Op-
timizing the parameters of the system with the addition of Purcell filters [95] leads to
state-of-the-art fidelities as high as 99.2% in 88 ns [96, 97]. However, this approach is
intrinsically limited since increasing the power of the readout pulse induces unwanted
transitions preventing one from increasing significantly the fidelity of the measurement
[98, 99]. Other measurement paradigm are readily available such as the readout by
a bistable system [100, 101] or the so-called High power readout developed by Reed
et al. [102], whose mechanism is still the subject of intense research [103, 104, 105].
Very recently Touzard et al. [106] proposed a novel readout technique by engineering
an on-demand ‘longitudinal coupling’ with a cavity that would implement a fast and
selective QND readout while minimizing decoherence effects. In this chapter, we do not
aim to reach record-breaking fidelities. Instead, we present the physical mechanisms of
two different kind of detections namely the usual dispersive readout and the fluores-
cence tomography. We implement them together to obtain the first implementation of
a gate-free full quantum tomography of a qubit.

First, we recall a quantum measurement theory that goes beyond the Von Neumann
projective measurement by introducing an intermediate ancilla or probe system. We
take this formalism to the continuous time limit that describes our experiments. We
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then apply this formalism to the dispersive readout of an atom via a coupled electro-
magnetic field and study the decoherence induced by probing the state of the qubit.
The spontaneously fluoresced field of a spin-1/2 detected by an heterodyne apparatus
fits in this formalism as well and it can be used as an alternative readout technique
that amounts to take the place of the environment in which the system relaxes. Finally,
we propose a novel readout method combining the two previous techniques that grants
a direct access to the Bloch vector by raw averaging. All these concepts are explained
by the formalism developed herein below.

3.1 MEASURING A QUANTUM SYSTEM
3.1.1 Generalized measurement

In textbook quantum mechanics [107, 66], we learn that the measurement of an observ-
able! A leads to the collapse of the system into an eigenstate of A and the observer learns
the corresponding eigenvalue a referred to as the measurement outcome. The quantum
state prior to the measurement is p. We detect a with probability p, = Tr(Il,p) where
II, is the projection operator? over the eigen-space associated to a. Immediately after
the measurement, the density matrix conditioned on the outcome reads
pll, — Tgpll,
Pa  Tr(Iap)

This process is known as a Von Neumann measurement. A first striking feature is

Pa = (3'1)

that the transformation between p and p, in Eq. (3.1) is non linear because of the
normalisation coefficient that ensures that the process is trace preserving as opposed to
the linear Hamiltonian and Lindbladian evolutions. Futhermore, the value of the density
matrix is instantaneously updated to p, with an evolution infinitely sharp in time so
the system cannot evolve because of other causes during the measurement process and
the information is transferred to the observer instantaneously as well3.

Projective measurements are not the most general measurements possible on a quan-
tum system and in general they are inadequate to describe actual measurements done
in the lab. We introduce the concept of generalized measurement that is modeled by a
unitary evolution of a total system composed of the studied physical system coupled
to an ancillary or probe system (electromagnetic field, atoms, ...) followed by a Von
Neumann measurement of the probe [108]|. In order to formulate such a measurement
paradigm we first assume that the system and the ancilla start in an initial separable
pure state*. The density matrix of the total system is

psip = p® [0p) (O] (3.2)

Let us denote by Ug p the unitary evolution of the system and ancilla during the
measurement caused by the interaction between S and P and O = Is @ (3_, Aully)

An observable is a self-adjoint operator. In virtue of the spectral theorem, it can be diagonalized in an
orthonormal basis and its eigenvalues are real numbers.

I, is not necessarily a rank-1 operator as the eigenvalues of A can be degenerate.

This can be a relativity issue if the observer and system do not occupy the exact same spatial position.
This is also possible to generalize further to the case where the meter is not initially in a pure state
[44].
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3.1 MEASURING A QUANTUM SYSTEM

the final Von Neumann measurement of the probe with possible outcomes {\,},. We
define here IT, = |A,) (A,| as rank-1 operators so the A’s may be degenerate. We define
the measurement operator M, as the operation on the system state resulting from the
unitary evolution and the measurement of the probe in state |A,) i.e.

M, = (M| Us,p|0p) (3.3)
In this case, the probe yields the outcome A\, with an occurrence probability
pp=Tr ((IS & )\MHM)US,P(P @ ’0P> <9PDU;P(IS & )‘uHu)> = Tr(M#pM;E) (3.4)

After the measurement the conditional state of the system reads

M,uPM,t]: _ MMPMI]:
Pu Tr(M,pMf)

Py = (3.5)

This last equation is of the same form as Eq. (3.1) but the important difference is that
the {M,,} are no longer projectors but arbitrary operators called measurement operators.
The operators {M, ,JEM .} are hermitian and positive and they form a Positive Operator
Valued Measure (POVM). The occurence probability of outcome A, is p,, = Tr(M, ;EM uP)
and a consequence of the definition (3.3) is that

> MiM, =1 (3.6)
nw

which ensures the normalisation of the measurement probabilities Zu py = 1. In the
rest of the manuscript we indistinctly talk about set of measurement operators or set
of Kraus operators. Kraus operators describe the action of any quantum map or any
physical super-operator® by a relation of the form

Lip) = AupAj, (3.7)
I

where the operators {A,} are called Kraus operators. An example of such a quantum
map is the action of unread measurements on the state of the system. Indeed, the rela-
tion (3.5) describes the evolution of a quantum state conditioned on the measurement
records and its physical consequences are discussed in section 6.1. When discarding
the measurement outcomes, the state of the system enters a statistical mixture after
measurement

> pupu =Y MupM} = L(p), (3.8)
1 1

which amounts to tracing out the degrees of freedom of the environment. We find an
expression of the form of Eq. (3.7). The measurement operators {M,} are thus an
example of Kraus operators but they are not unique.

Physically this unread measurement is lost information and it decreases the rela-
tive entropy between two quantum states that are more and more likely to look alike.

Mathematically, the quantum map has to be trace-preserving, completely positive and convex linear
see [92].
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Lindblad and Uhlmann [109] showed the monotonicity of relative entropy defined in
Eq. (2.42) i.e. for two quantum states p and o,

S(L(p)I[£(a)) < S(pllo). (3.9)

This description corresponds to the common understanding of decoherence. The en-
vironment ‘watches’ the system but the information is lost for the observer and its
density matrix - that only contains their knowledge on the state of the system - loses
its distinguishability.

3.1.2  Continuous measurement

We will now apply the previous results to the continuous evolution of a quantum system
between t and t + dt where dt is a short time step compared to any other time scale of
the problem. We use the set of assumptions exposed in section 2.1.3 namely we assume
that the environment is Markovian and that the time scale hierarchy 75 < dt < Ty is
respected where 75 is the correlation time of the bath and Ty is time scale of evolution
of the observables of the system [66]. In this limit, it is possible to show that a single
measurement operator is of order unity®

My=1- %Hdt — Jdt (3.10)

where H and J are Hermitian. Because of the normalisation condition }_ M;EM p=1

are at best of order vdt and we can write

M, = VatL, (for u # 0)

. 1 (3.11)
with J = > LlL,

u#0
with the jump operators {L,} of order unity.

The meaning of the Kraus operators can be understood by examining a simple physi-
cal situation. Let us consider an excited qubit that spontaneously relaxes by emitting a
propagating electromagnetic wave packet. The environment is modeled as a collection
of photocounters. There are two Kraus operators in this case, My for which no click

was detected at all during dt and M; for which a click was recorded. Observing no
MopM]

Te(MopM{)

application of the Hamiltonian H concurrently with J that ensures the normalisation

click during dt leads to an evolution of the form which corresponds to the

of the Kraus operators. The absence of a click during dt is an information on the energy
state of the qubit whose state is updated by the operator J. When a click is recorded,

"
MipMy  that projects the state of the

the state of the system evolve according to ———21+
Tr(MipM])

system in the ground state.
In the continuous time limit, the case of unread measurements (3.7) becomes

prrar = L(pr) =Y Myp M}, (3.12)
n

It is always possible to perform a unitary evolution of the system-apparatus so as to get a single
operator My of order unity
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3.2 DISPERSIVE READOUT

which becomes the so-called Lindblad equation with Eq. (3.10) and (3.11)

dpt )

with the Lindblad superopertator D[L|(p;) = Lp L' — 3{LTL, p;}. We see that the
formalism above not only gives a more general definition of a quantum measurement
but it also gives an interpretation of decoherence as unread measurements performed
by the environment leading to a Lindbladian evolution. The formalism enables us to

predict the system state conditioned on the measurement as will be show in section 6.1.
The records read [110]

yu(t)dt = \/Tx(Lup + pLi)dt + dW,(t). (3.14)

In this expression dW,(t) is a Wiener process accounting for noise, which includes the
irreducible quantum fluctuations of the signal. It satisfies

{ E[dW,(t)] = 0

A — (3.15)

Because of this Wiener process, the measured outcomes are random and updating our
knowledge on the system creates a ‘random kick’ on the density matrix. The quantum
state undergoes a non trivial stochastic evolution but the experimentalist can use the
measurement outcomes to reconstruct a posteriori the evolution of the system and avoid
the decrease of relative entropy associated to the case of unread measurement. To do
so, the stochastic master equation is used and it is the subject of chapter 6. For now,
we are going to apply this formalism to understand the dispersive measurement of a
cavity coupled to a transmon for qubit state tomography.

3.2 DISPERSIVE READOUT
3.2.1 Homodyne detection of the cavity field

We call homodyne detection the measurement of one quadrature of an oscillating signal
that can be performed by demodulating that signal with a standard oscillation of exactly
the same frequency that can be produced by a local oscillator (LO). This technique is
very general with applications ranging from direct-conversion radio receiver to quantum
optics [111] and it can be understood in classical physics as the multiplication of a signal
s(t) = I(t) cos(wst) + Q(t) sin(wst) with slow varying quadratures I(t) and Q(t) by a
tone A cos(wrot + ¢) produced by the local oscillator with wy = wpo. By filtering
out the fast oscillating components, the resulting signal is % cos(¢p) + % sin(¢) so by
varying the phase of the local oscillator, one can choose the measured quadrature. In
the microwave domain, the homodyne detection is performed using a commercial mixer
(represented on Fig. 3.1a). A microwave source provides both the carrier frequency of
the signal and the LO to minimize relative phase fluctuation of the two signals and the
signal is digitized by an acquisition board”.

7 see appendix B for details on the experimental techniques.
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READOUT OF A SUPERCONDUCTING QUBIT

The signal that we detect is coming from our quantum system in cavity. The Hamil-

tonian (2.32) of the qubit-cavity device in the dispersive regime can be rewritten

- w

H= h?qaz + Awe — x;)AldC (3.16)
so the interaction term can be seen as a qubit-state dependent frequency of the cavity
w! = we + x/2 and w¢ = w. — x/2. When probing the state of the cavity at the center
frequency we, the input signal acquires a phase shift £6/2 as it is transmitted through
the cavity that depends on the state of the qubit (Fig. 3.1¢), this is known as dispersive
readout [112, 19]. The information on the state of the system is thus encoded in the
phase of the propagating signal agyt.

a.
e
N L Vm w(t
Tmm _
VWA g s> Fypy OO
d
Ja
b. C. 100
Im&ain) Im(aout) %D 50
v/n photons Via. y
> 5 0
| Re(aip) : *Re(dout) S
0 o7 50
1/2 ph 4
photon — .
K ~100-"5 %06 7808 7810 7812 7814

vacuum uncertainty

fa (GHz)

Figure 3.1: a. Schematics of the measurement setup for the homodyne detection of a disper-
sively coupled electromagnetic field. Microwave light at frequency fy close to f,.
is sent at the input of the cavity. The field interacts with the qubit according to
Hamiltonian (3.16) and the signal is amplified by a Josephson parametric amplifier
(JPA), routed out of the refrigerator and detected by mixing it with a local oscilla-
tor (LO) before digitization. b. Fresnel plane representation of the signal in a plane
rotating at f.. On the left, the signal at the input of the system is represented.
The input field is a displaced vacuum field or coherent field generated by a classical
microwave source represented by a distribution (circle) caused by irreducible quan-
tum fluctuations. On the right, the outgoing signal is represented. The initial field
acquired a phase shift +6/2 if the qubit is in |e) and —6/2 if the qubit is in |g)
according to Eq. (3.18). Note that this representation is valid only if the system
is probed at f.. Formally, the Gaussian distributions are the Wigner functions of
the field. c¢. Measured phase of the transmitted signal aq,swhen the qubit is in |g)
(brown) or |e) (yellow) as a function of probe frequency fy. The central frequency
of the cavity is displaced as w. — w. + x/2 for a qubit in the ground state and as
we = we — x/2 for a qubit in the excited state.
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3.2 DISPERSIVE READOUT

More quantitatively, Gambetta et al. have shown in a seminal paper [113] that the
field inside the driven cavity evolves depending on the qubit state according to the first
order equations

‘mjt(t) = i(wg — we — %)ag(t) - g%(t) + Gd. (3.17)
dadet(t) = i(wd — We + %)O‘e(t) - gae(t) T €d

Here « is the decay rate of the cavity, x is the cavity pull and ¢4 is the drive strength.
The steady state values of the field are obtained by canceling the left side of (3.17)
2€4

= a. d =
YT T ix — 2i(wg — we) " e

2€4

Kk —ix — 2i(wg — we) (3.18)

In transmission, the output field is related to the intra cavity field by (aout) =
VFout (@) where Koyt is the damping rate of the cavity mode through the output port.
In our setup, the decay rate of the cavity is dominated by its coupling to the output
port so Kout ~ K. The two corresponding outgoing field amplitudes are represented on
Fig 3.1b when the cavity is in a steady state. By detecting Im(aqy,) we can reveal the
information on the energy of the qubit and conversely the quadrature Re(aqy) does
not depend on the qubit state, an homodyne detection is thus well-suited. We use a
home made quantum-limited phase-preserving amplifier called Josephson parametric
amplifier (JPA in Fig 3.1a) that amplifies the quadrature of interest at the expense of
the other quadrature® followed by commercial amplifiers that are not represented on
the figure for simplicity.

By using the measurement theory developed hereabove, the continuous time mea-
surement record reads [44]

w(t)dt = /1g (2Im(aou)) dt + dW(t) (3.19)

where ng = 34% is the measurement efficiency of the detection setup. By assuming that
the cavity field reached the steady state and that wy = w., we can express

Qe — @ Kmx?
(Im(ane) = VA 2Im(a)) = Vi () “ 0 =200 [ 320)
where n = :Q‘ifl; is the average number of photon stored in the cavity. The signal to

noise ratio (SNR) of the measurement record (3.19) during dt is defined as

V1a (2Im(aout)) dt
AW (t)

2
SNR(dt) = ( ) = nakloe — ag|* (0.)? dt (3.21)

since dW,,(t)? = dt. The measurement rate I';,, can be defined as half the signal to

noise ratio per unit of time when (o,) = +1

SNR(t) nak
= 2t == 7|O[€ - Oég

|2 _ 2ndn’€X2

Fm IQZ + X2

(3.22)

8 See chapter 5 for a complete description of this amplifier.
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Figure 3.2: a. Histograms of 5 x 10* integrated measurement records « fOTw(t)dt for various
numbers of photons n indicated by the colors. The photon numbers are reported
as dashed lines in b. The integration time is 7" = 1 us and « is a proportionality
constant in mV that depends on the detection setup. The qubit is initialized in
(lg)+1e))/+v/2 and we observe the progressive separation of two peaks corresponding
to the qubit in either |g) or |e). Their width is given by the combined effect of zero-
point fluctuations and the noise added by the detection setup. If the two peaks do
not overlap, the spin state is projected and the measurement is strong. When the
two peaks overlap, the experimentalist cannot distinguish between |g) and |e) and
the measurement is weak. b. Number of bits of information gained on the qubit
state by unit of time as a function of the stationary number of photons stored
in the cavity. We observe a linear dependence of I';, in the number of photons n
in agreement with Eq. (3.22) up to ~ 1.5 photons. Beyond this number, the JPA
placed after the cavity (see Fig. 3.1) becomes non-linear because the high photon
flux at the amplifier input ‘exhausts’ the pump.

The scale factor 2 is arbitrary in (3.22), this particular choice is motivated because
as defined I'y, /In(2) is the number of bits of information gained from the measurement
per unit of time [114] (see Fig. 3.2b).

The measurement record thus takes the form

w(t)dt = /20, (o) dt + dWy,(t), (3.23)

which exactly corresponds to (6.29) with a jump operator L,, = /T'q/20, with T'), =
nal'q. According to equation (3.22), the measurement rate can be varied by tuning the
input power of the readout field a;, that changes the stationary number of photon n
in the cavity. In Fig 3.2 are represented histograms of the integrated output signal
fOT w(t)dt for an increasing stationary number of photons in the cavity. When the two
distributions in Fig. 3.1 and 3.2 are well-separated, we can resolve the qubit state in a
single-shot manner, that is in one realization of the experiment. In this case, we know
if the qubit is in |g) or |e) and the qubit state is projected because we extract more
than one bit of information during the measurement time 7'. The measurement is then
said to be strong. By increasing I',, well above any other time scale of the system, we
enter the quantum jump regime [115]. The measurement records are discontinuous in
time because the qubit state ‘jumps’ between the two pointer state values |g) and |e)
and any unitary departure from this point is suppressed by Zeno effect [116]. When the
two distributions overlap, the qubit state is not projected onto |e) or |g), we talk about
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3.2 DISPERSIVE READOUT

weak measurement. However, the density matrix of the system is updated conditioned
on the measurement outcome to take into account the non-projective ‘kick’ caused by
the measurement.

Finally, we mention that this measurement scheme is routinely used in circuit QED
to perform a quantum tomography of a qubit state. In Fig. 3.3, we prepare arbitrary
pure states on the surface of the Bloch sphere by applying a pulse 64 on the qubit where
6 € [0, 27] is the rotation angle of the unitary transformation and ¢ is the phase of the
preparation pulse. We then perform a quantum tomography of each prepared state by
measuring the qubit strongly after having mapped o, oy or o, onto o, by a § pulse.
The measurement outputs span a sphere proving that any state on the Bloch surface
can be faithfully extracted with this technique. Here, the fidelity of the tomography is
F = 98% for an integration time of 2 us.
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Figure 3.3: Quantum tomography by dispersive measurement a. Pulse sequence used for the
measurement. We prepare the qubit with a pulse 64 with 6 = kx/12 for k =
0,1,...,11 and ¢ = nrw/9 for n =0, 1,...8 and then perform a quantum tomography
with a fast gate 0, 5 , Or %’y followed by a strong dispersive readout of the cavity.
b. The raw averaged measurement outputs given by the 3 rotations correspond
to the three Bloch coordinates and they span a Bloch sphere when displayed in 3
dimensions.

3.2.2  AC stark shift and measurement induced dephasing

A direct measurable consequence of the dispersive interaction Hamiltonian is that in-
creasing the average population of the cavity shifts the measured frequency of the qubit,
this is known as the AC Stark shift. When driving the cavity with a coherent field at fy
close to f., the field produced in the cavity follows a Poisson statistics so the qubit fre-
quency itself follows a Poisson statistics. The average density matrix of the qubit is the
weighted mean of Bloch vectors rotating at different angular velocities f,,, = f; —nxh.
This loss of purity is dubbed measurement induced dephasing® because this effect can

9 This phenomenon originates from noise in the qubit frequency which matches the photon shot noise.
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READOUT OF A SUPERCONDUCTING QUBIT

be seen as an unread measurement of the qubit state by the cavity field described by a
quantum map of the form (3.12). In this section we give the expression of the frequency
shift of the qubit and dephasing associated to this decoherence mechanism as a function
of the drive parameters in the steady state regime.

In the case of unread measurements performed by the cavity, we can model the deco-
herence by the interaction Hamiltonian (3.16) and then trace out the electromagnetic
field stored in the cavity. The resulting qubit dynamics is of the Lindblad form as shown
at the beginning of this chapter with renormalized qubit frequency wy — w +wstark and
a jump operator L, = y/I'¢/20,. The Stark-shift frequency and measurement induced
dephasing rate read [113]

{ La(t) = xIm[og (t)ae(t)]

(3.24)
Wstark (t) = xRe [04; (t)ae(t)]
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Figure 3.4: a. and b. Measured induced dephasing and Stark-shift as a function of the detuning
between the probe and the cavity for various input powers. The dephasing rates are
obtained by Ramsey interferometry in the presence of an electromagnetic field that
creates an extra dephasing and a frequency shift. We normalize the measurement
rate and Stark-shift by the relative dimensionless power of the input drive |e4]? to
show the validity of Eq. (3.25) up to €]** = 40 MHz?2. We superimpose a theoretical
curve in black given by Eq. (3.25) with independently measured parameters y =
21 x 4.9 MHz and x = 27 X 3.6 MHz. c. and d. Numerical simulations of the Stark-
shift and dephasing rate given by Eq. (3.25) for various x/k ratios ranging from
0.56 to 2.22 and k = 27 x 3.6 MHz. Note also that the Stark shift can become
negative for some y/k ratios.
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3.3 MEASUREMENT OF FLUORESCENCE

In the steady state regime, we can use Eq. (3.18) and we obtain the explicit expres-

sions
r 8I£X2|6d|2
d=—
(K2 + 4(wg — we)? — x2)% + 4x2k2 (3.25)
o Axleql* (k% + 4(wq — we)? — X?)
Hork T K2+ A(wd — wo)? — X2 + A2

These frequencies are measured by performing a Ramsey interferometry experiment
with a populated cavity. We prepare the qubit in the (|g) + |e))/+/2 superposition with
a m/2 detuned pulse, wait for a given amount of time and then readout the cavity
just after a fast 7/2 rotation. We observe an exponentially decaying oscillation with
a decay rate I'y + I's and the frequency allows a precise measurement of w + wWgtark-
We performed such a measurement for a range of drive frequencies and input powers
gathered in Fig. 3.4. Another important remark is that we use these measurements to
calibrate the attenuation of the line and convert an input power at the input of the

10 K2+

dilution refrigerator in dBm into a number of photons™ n = >§2 I'y in the cavity

2K
as shown in Fig. 3.2. We can thus prepare a coherent field containing on average a

‘fraction’ of a photon in the cavity with our system with a predictable frequency shift
and coherence time reduction for the qubit.

3.3 MEASUREMENT OF FLUORESCENCE
3.3.1 Heterodyne detection of the fluorescence of a qubit

We call heterodyne detection, the simultaneous measurement of the two quadratures
of an oscillating signal. It can be performed by down-conversion to a lower frequency
range (compatible with the bandwidth of the digitization boards) using the mixing
with a tone produced by a local oscillator at a frequency close to the carrier frequency
of the signal. Similarly to the homodyne detection, the heterodyne detection is widely
used in signal processing and applications range from the celebrated superheterodyne
radio receiver to current quantum optics experiments [111]. We propose here to collect
the fluorescence of a spin-1/2 by heterodyne detection [117, 23].

In our experiments, qubit pulses are generated by a microwave source modulated at a
few tens of MHz (typically 50 MHz, orange drive in Fig. 3.5), the spontaneous emission
of the qubit is collected in the output port. The coupling rate of the input port of the
cavity and the internal loss rate of the cavity are much smaller than the coupling rate
to the output port of the cavity as depicted on Fig. 3.5. By doing so, we ensure that
the large majority of the fluoresced field goes in the ouput port owing to Purcell effect.
Indeed, coupling the cavity to a transmission line reduces the lifetime of the qubit (see
chapter 2). It is also much more ‘likely’ that the qubit emits a photon in the output
port than into the input port because of the coupling rate asymmetry.

It is important to understand that an external drives populate the cavity in a coherent state of average
photon number n and not a Fock state with a perfectly defined number of photons.
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Figure 3.5: a. Schematics of the heterodyne detection of the fluorescence field emitted by an
atom. We monitor the light emitted in the output port at f,. The signal goes
through the Josephson parametric converter (JPC) that amplifies both quadra-
tures of the signal followed by commercial amplifiers (not represented in the figure).
The signal is down-converted by mixing with a local oscillator detuned of a few
tens of MHz from f, and before digitization and numerical demodulation. The
two extracted measurement records dubbed u and v are given by Eq. (3.26). b.
Bloch sphere representation of the targeted states (theory). We span the Bloch
sphere with a pulse 64 pulse where 6 is proportional to the drive amplitude and
¢ =0,7/4,7/2,...,7 w/4 is the phase of the pulse indicated by the color. c. Average
on 10° realization of the integrated quadratures I o fOTu(t)dt and @ fOTv(t)dt
for T'= 2 us for every prepared state of b. According to Eq. (3.26), the integrated
records reveal (o) and (o) up to a prefactor. This IQ plane representation is thus
a projection of the Bloch sphere in the x — y plane. d. and e. Average integrated
quadratures as a function of drive amplitude at f,. The drive amplitude is propor-
tional to the angle 6 of the pulse. The solid lines correspond to the solid lines of b.
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3.3 MEASUREMENT OF FLUORESCENCE

The signal is then amplified by a phase-preserving amplifier named Josephson para-
metric converter (JPC)!. In this process the phase of the signal is preserved by am-
plification and we detect both observables Re(aout) and Im(aoyt) associated with the
two quadratures'? The amplified field is mixed with the signal of the same microwave
source that is used to generate the carrier of the input drive to avoid phase drifts. The
resulting signal is a low frequency field oscillating at 50 MHz that is digitized with an
acquisition board and numerically demodulated to recover the I and Q) quadratures.

In this case, the system is probed by the vacuum fluctuations of the electromagnetic
fields that can be viewed as triggering the emission of photons by the atom. So we
can apply the generalized measurement theory (6.29) with two jump operators L, =
ma, and L, = iL, corresponding to the two detected quadratures [85] where I'|
is the de-excitation rate of the qubit and o_ = (0, —i0y)/2 is the lowering operator of
the qubit. The measurement records read

u(t)dt = /nsT /2 (op) dt + dWy(t)
v(t)dt = \/nsL /2 (oy) dt + dW, (1)

where ny = 14 % is the efficiency of the detection setup. Similarly to the homodyne

(3.26)

detection, we can define a signal to noise ratio and the measurement rate of the fluo-
rescence detection.

We show the integrated signals [ u(t)dt and [v(t)dt during T = 2 ps in Fig. 3.5 of
an undriven qubit relaxing after a 6, preparation pulse for various 6 and ¢. As can be
seen, this detection technique leads to the & and y Bloch coordinates of the qubit state.
However the measurement rate associated to this tomography is set by the relaxation
rate of the artificial atom I') = 50 — 100 kHz (variable from one run to the other). It is
not tunable in situ in contrast with the dispersive readout.

3.3.2  Destructive and QND measurements

In this section, we introduce the concepts of destructive measurement as opposed to
quantum non-demolition measurement (QND). A QND measurement intuitively means
that we are able to probe a quantum state without ‘destroying’ it [66]. For instance,
when one photon is detected in a transmission line by heterodyne detection or by
photocounting the state of the wave packet carrying the photon is not projected, it is
altogether ‘demolished’. Instead of erasing the entire information on the state of the
system, a QND measurement projects the state of the system in one of the pointer
states of the measurement and thus preserving information for subsequent quantum
operations. A second key ingredient of the definition is that two successive strong
QND measurements should yield the same outcome. In the case of Von Neumann
measurement a second measurement of the same observable immediately after the first

See chapter 5 for a detailed description of this amplifier.

The two quadratures Re(a) and Im(a) of a quantum electromagnetic field do not commute. Pleasingly,
on top of amplifying the signal the JPC mixes the quadratures with an extra idler mode that transforms
the quadratures of the field in a set of commuting observables [26] at the price of adding an extra noise
to the signal corresponding to the zero-point fluctuations of this idler mode.
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projection leads to the same outcome!3. In the generalized measurement formalism, a
sufficient condition for QND measurement is that the interaction Hamiltonian between
the probe and the system commutes with the projector operator of the Von Neumann
measurement performed on the probe [66]. But it is not necessary.

In the case of the dispersive interaction, information on the state of the qubit is
imprinted in the phase of the electromagnetic field without destroying the state of the
qubit. For large values' of Ty, the measurement is repeatable and the state of the
system is projected in |g) or |e), which are the pointer states of the measurement. This
process is thus QND even if the interaction Hamiltonian o,a'a does not commute with
the measured observable Im(a + af).

In the case of energy relaxation, one photon is emitted at the frequency of the qubit
and we detect it by heterodyne detection. The interaction Hamiltonian and the mea-
sured observables do not commute either. In this case the measurement erases the
information on the quantum state by reseting the qubit in its ground state. In the
strong measurement limit ¢.e. I') much larger than any other inverse time scale, the
measurement has two possible outcomes corresponding to qubit having relaxed in its
ground state after emitting one photon or no photons were emitted. The measurement
cannot be repeated immediately after the emission of a photon without re-excitation
of the qubit preventing this process to be a QND measurement. Lastly, we note that
we monitor the expectation value of the operator o_ which is not an observable!®. The
fact that we are not ‘measuring’ an observable of the system can be understood by the
open nature of the system and in this case the quantum state of the system is converted
into a propagating photon whose detection ‘destroys’ the state of the qubit.

3.4 FULL QUANTUM TOMOGRAPHY

In this section, we propose a novel detection setup combining the two previous ones.
As we saw an heterodyne monitoring of the spontaneous emission of an atom divulges
information on its (o) and (o) components while an homodyne monitoring of the cav-
ity in the dispersive regime reveals information on (o). First, we show that performing
the two detections concurrently over a large number of realizations amounts to imaging
the Bloch vector. This technique is then used to monitor Rabi oscillations in the pres-
ence of decoherence and our method is validated by comparison with the solution of
Lindblad equation. Finally, we compare the fidelity of this quantum tomography with
the usual tomography protocol obtained from successive strong measurements of x,y

and z components of the qubit.

3.4.1 Direct access to the Bloch vector

In the actual detection setup, we combine the two previous measurements'® (see Fig. 3.6).
The spontaneous emission is at the frequency of the qubit f, ~ 5.3 GHz while the

This not the case if we let the system evolve or relax between the two measurements.

Much larger than any other time scale of the system.

In particular, it is not Hermitian of = oy = (04 + icy)/2.

We can retrieve any of the previous situations by discarding the outputs of one of the detector.
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dispersive readout is at the frequency of the cavity f. ~ 7.8 GHz. The two signals are
spatially separated by a commercial frequency diplexer TIGER TGF-A4214-001 placed
in the output line'” (see Fig. 3.6). The signal is then routed out of the fridge via two
detection setups described in the previous sections namely two quantum limited am-
plifiers are used to perfom an homodyne detection of the field at the frequency of the
cavity and an heterodyne detection of the spontaneous emission at the frequency of
the spin. The signal is then down-converted by mixing it with local oscillators before
digitization and numerical demodulation.

JPC JPA

fq

e Ja
N 0=
R ! ‘ %

f>7GHz
fa

Figure 3.6: Schematics of the complete detection setup. We concurrently monitor the sponta-
neous emission of the atom at f; (green) and we probe the state of the cavity at
fa =~ fe (purple). The two signals are spatially separated based on their frequencies
thanks to a commercial frequency diplexer. The complete measurement output is
a vector (u,v,w) given by Eq. (3.27) and its raw average scaled by the appropriate
prefactors is directly the Bloch vector (z,y, z). This method enables us to perform
a complete quantum tomography of the system without performing any gate on the

system.

We obtain simultaneously three measurement records

u(t)dt = \/nfL' /2 (04) dt + dW, ()
o(t)dt = \/nsT /2 (0,) dt + dW,(t)- (3.27)
w(t)dt = /214l <0'2> dt + dWy, (t)

17 This is a key ingredient of our detection setup. It is in principle possible to replace the diplexer by
a beam splitter but by doing so we would lose ‘half of the signal’ resulting in halving the detection

efficiencies.
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A simple raw averaging provides a full quantum tomography of the system according
to

20\ (alt)/\/nTi
y(t) | = | 50)/ T2 (3.28)
(1) o(t)/v/2nal'a

where T denotes the average over many realizations of the experiments. In order to ob-
tain the Bloch vector, the two prefactors /nsT1/2 and v/21;Tq must be determined.
The rates I'y ~ (15 us)f1 and T'y are respectively inferred from energy relaxation mea-
surement and Ramsey oscillations in the presence of a populated cavity (see section
3.2.2). The quantum efficiency 7y and 74 are obtained by SNR estimation or by reck-
oning the back-action of the measurement'®. In the actual experiments, the signal is
integrated during time steps dt = 100 ns and the records are amplified and filtered by
the detection chains'” so that we obtain (au, av, fw) where a and 3 are the amplitude
gains of the two chains. These scaling factors are precisely measured by looking at the
amplitude of Rabi oscillations?’. We can thus image the Bloch vector in time without
performing any quantum gates on the system in contrast with the usual tomography
protocol of Fig. 3.3. This ‘gate free’ tomography is robust to any systematic errors on
pulse calibration and relies instead on the estimation of the normalization constant of
the chains.

In the following section, we confirm the validity of this readout technique in the case
of Rabi oscillation in the presence of decoherence by comparing the raw average of the
measurement records with the prediction of Lindblad equation.

3.4.2  Tomography of a qubit undergoing Rabi oscillations

In this experiment, the qubit is initialized in its thermal state close to the ground state
with an excitation probability of 2%. We apply a microwave drive on the device at the
frequency of the qubit, which acts as a driving torque of amplitude ) around the oy
axis. We use the detection setup of Fig. 3.6 to observe the dynamics of the system in
the presence of weak decoherence (see Fig. 3.7).

The evolution of the state of the system is predicted by Lindblad equation

dpy Ry’ Iq+7T
T Z[g”mﬂt] + TM)

[0:](pt) + Ty Dlo—_](pt) + T+ Dlo+](p¢) (3.29)
where I'y = H%I‘l ~ 0.75 ms is the thermal excitation rate of the qubit, D[L](p) =
LpLt— %(pLTL—I—LTLp) is the Lindblad super-operator, 2z, = —0.96 is the z component
of the qubit at equilibrium and I'| = 1_%I‘l ~ T = (15 pus)~ ! is the decay rate of the
qubit. The dephasing rates I'q = (5.0 us)~! and 'y, = (17.9 us)~! are respectively the
measurement induced dephasing rate and the pure dephasing rate. For an initial state

See chapter 6.

In this chapter we make sure that dt is much smaller than any evolution and relaxation rate of the
system. We also take it greater than the inverse bandwidth of the amplifiers to avoid any time filtering
of the signal by finite bandwidth of the JPA and JPC.

They can be equivalently inferred from noise correlations, see chapter 6 for details.
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5 10 15 20
time (us)

- .
0 20 us

Figure 3.7: Dynamics of a qubit undergoing a Rabi oscillation around the y axis from a thermal
state with 2% of excitation probability. The dots are the full quantum tomogra-
phy on the system obtained by raw averaging the measurement records given in
Eq. (3.28). The solid lines correspond to solutions of Eq. (3.29) with the parameters
Iy = (15pus)™ Y Ty = (179 us)™t, Ty = (5.0 us)™! and Q/27 = (2 ps)~! deter-
mined by independent projective measurements. a. Bloch sphere representation of
the evolution of the density matrix of the system. The color of the dots encodes the
evolution time 0 < ¢ < 20 us. b. Projections along the axes of the Bloch sphere as
a function of time, the color now encodes the axis of the projection. We observe a
good agreement between the continuous tomography and the solution of Lindblad
equation.

po = %(1 + 2004 + 200), the time evolution of the component of the Bloch vector is
confined in the x — z plane and its components read

#(1) = i + e~ OTIFT R0 () — ) (cos(vt) + sin(ut) L2 Iy (o gy T,
174 v
2(t) = zing + e~ GTIFRDAA2TOG (o 2 cos(wt) — sin(vr) L 2ie —2d 21;5 Lt N L O]
(3.30)
where rotation speed in the Bloch sphere around oy, is given by v = \/ 02 — w
and the quantum state converges toward
REARYIN Zthrl(l_‘l + 211@ + 2Fd)
Tinf = ) Zinf = 5 (3.31)
I'i (I 4 2T, + 2Tg) + 29 (T + 2T, +2Tg) + 29

in the long time limit.

As depicted in Fig. 3.7, because of decoherence the state of the system experiences
under-damped oscillation toward the center of the Bloch sphere which is the mazimally
mixed state or most entropic state of the Bloch sphere. This damping is caused by the
fact that we lose a part of our knowledge on the state of the system with time resulting
in an increase of the entropy of the system. A good agreement between our tomography
and the solution of the Lindblad equation is found in Fig. 3.7 proving the validity of our
tomography. However it is interesting to compare the effectiveness of our tomography
with the usual tomography based on strong measurements.

51



21

READOUT OF A SUPERCONDUCTING QUBIT

3.4.3 Comparing the fidelities of a weak and projective quantum tomography

Our tomography protocol is a direct averaging of the measurement records (u,v,w)
on a large number of experiments N. Our tomography protocol highly differs from
the usual technique that consists in measuring the three components of the qubit in
separate experiments by projective measurements and it is thus interesting to compare
the effectiveness of the two methods.

For the case of projective tomography, let us assume that we are able to measure any
axis of the bloch sphere with a fast and single-shot readout of fidelity F' = 1. After 3N
measurements, the probability distributions of the measurement records are given by a
binomial distribution of 41 and —1 and the variance of the estimated Bloch coordinates

22 1—q2 _ .2
are Var(<o-x>estimated) = le? Var(<0y>estimated) = Ty and Var(<02>estimated) = ITZ

Three million experiments are thus needed to estimate an arbitrary state with a stan-
dard deviation lower than 1073. For our detection setup, the measurement records

integrated during a time dt are given by Eq. (3.27). In the limit of a large number N of

2
= Var( <Uy> estimated ) = Nnylydt and Var( <JZ > estimated) =

Thus, with the parameters of Fig. 3.7, 2 x 10° experiments are needed to

experiments Var((0z) oimated)

IV Tt
estimate an arbitrary state with a standard deviation lower than 1073. For these pa-
rameters, our method is much slower than the standard tomography to reconstruct
a density matrix at least for the small integration time dt = 100 ns chosen in our
experiment.

Nevertheless, the average evolution of a quantum state evolving in time can only be
accessed by doing a set of quantum tomography at successive time steps. In Fig. 3.7,
there are 198 time steps so reconstructing the evolution of the state of the qubit by
projective tomography would require 6 x 10® experiments while 2 x 10° experiments are
still required for tomography based on weak measurements. The signal to noise ratio
of the tomography based on weak measurements is thus independent on the number of
successive tomography and it becomes favorable in order to reconstruct lengthy evolu-
tion of a qubit. More precisely, our method becomes more effective when reconstructing
more than 660 successive time steps. Alternatively, increasing the integration time dt
to higher values is straightforward with our setup?' and the variance of the outcomes
is reduced as 1/dt. There is trade-off between the SNR of the measurement during a
single time-step and the number of time-step required to resolve the dynamics of the
qubit.

Moreover, the convergence of the result of the projective tomography depends on the
state of the qubit and the variances of the signal vanish when the quantum state is in
a pointer state of the measured observable. The reconstruction of the time evolution of
an oscillating qubit thus leads to a time varying uncertainty on the quantum state for
a given number of realizations with the usual method. On the other hand, in the case
of weak tomography, the variance of the measurement records is independent of the
state of the system so our technique provides a uniform signal to noise ratio regardless
of the state of the system.

Note that the expression of the records (3.27) is only valid in the small dt regime. One has to integrate
this expression to obtain the measurement outcomes integrated over time-scales that are not negligible
compared to the characteristic time of evolution of the system.
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3.0 CONCLUSION

Finally, we assumed that the fidelity of the strong measurement is F = 1 but in
practice is it often limited by the fidelity of the readout process as well as the fidelity of
the quantum gates. With our qubit parameters, even 100 ns long gates have a fidelity
lower than 99 % because of the large dephasing on the qubit??. Our method does not
rely on any quantum gates and therefore avoids this limitation.

3.5 CONCLUSION

In this chapter we demonstrated

e a general theory for quantum measurement in continuous time limit with Kraus
operators.

e the readout of a superconducting qubit by dispersive measurement both for weak
measurement and tomography with the unavoidable decoherence associated to
the photon shot-noise of the cavity.

e the monitoring of the fluorescence field spontaneously emitted by an atom.

e a measurement scheme combining the monitoring of the two above mentioned
decoherence channels allowing for a continuous full quantum tomography of the
qubit by direct raw averaging.

22 This rough estimation only takes into account I', which is the fastest decoherence mechanism in our
experiment.
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QUTRITS

4.1 INTRODUCTION

As we saw in chapter 2 the transmon hosts about 10 levels inside the cosine potential
so the quantum physicist is not restricted to the first two levels of the artificial atom
to store information and manipulate quantum states. This section is dedicated to the
coherent manipulation and readout of a three level system.

Morse code is based on a three letter alphabet: dashed, dot and space. This encoding
was widely used with the advent of the telegraph but modern communications use bi-
nary signals. The quantum equivalent of Morse code is quantum communication with
three-state systems dubbed qutrits. A very good level of control was achieved with
superconducting qutrits [118, 119] suggesting qutrits as a building block to achieve
universal quantum computation [120]. Moreover, they are useful in communication pro-
tocols such as quantum key distribution [121] and they are known to be more robust to
certain class of eavesdropping attacks [122]. Besides, they are routinely used in the su-
perconducting circuits community to shape the temporal profile of single photons [123],
to implement a quantum random generator [124] or to realize geometric phases [125].
More broadly, multi level systems have many applications including the simplification
of quantum gates [126, 127, 119], the simulation and investigation of quantum chaos
[128] or even for metrology [129].

4.2 PREPARATION OF AN ARBITRARY QUANTUM SUPERPOSITION OF THREE
LEVELS

If we go back to the BBQ formalism explained in section 2.2.1, we can write the
Hamiltonian of a transmon coupled to a cavity

H = haalae + hanala, — Eycosy(pe(ar + a)) + @ele + al)) (4.1)

where cosg(z) = cos(z) — 1 + %2, d. and @, (resp. a; and a) are the annihilation
and creation operators of the cavity (resp. transmon). In the case of small zero point
fluctuation amplitudes ¢y, ¢, < 1, we can restrict the cosine expansion to 4" order.
In the dispersive regime, the Hamiltonian of a qutrit dispersively coupled to a cavity
reads

3
H = haoy [1) (1] + A(wor + wiz) [2) (2| — hx > ) (| alae (4.2)
i=0

where we denote by |0), 1), |2)! the quantum states corresponding to a well defined
number of excitations in the transmon. The frequency of the g <+ e qubit transition is

1 We equivalently use the notation |0), |1), |2) or |g), |e), |f) throughout this chapter.
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wo1 = Wy, the frequency of the 1 <+ 2 transition is wis = wy—a with o the anharmonicity
and y is the cavity pull®.
The addition of a drive on the system results in a driven Hamiltonian of the form

Harive = eor [0) (1] + €5y [1) (O] + €12 |1) (2] + €15 [2) (1] + eqdic + €al. (4.3)

Under the rotating wave approximation, only one of these terms will be resonant. The
first term is resonant when the pump is applied around the angular frequency wp, the
second term is resonant when the pump is applied at w2 and finally the last term is kept
when the pumped is applied around w.. As we can see we cannot directly drive the 0 <> 2
transition. This ‘selection rule’ comes from the truncation of the expansion of the cosine
that only allows the conversion of one pump photon in one qubit excitation. A higher
expansion allows to convert one pump photon into two qubit excitations by driving the
system at f; — a/2 but it requires a much higher pump power?. In practice, we used
100 ns long gaussian pulses to implement qutrit gates. We denote the qutrit gates by
(9)?{ where 6 € [0,2n[ is the rotation angle of the unitary transformation, ij denotes
the addressed transition and a € {z,—z,y, —y} denotes the phase of the pulse. For
instance, (%)Zl denotes a 7/2 pulse around the x axis applied to the 0 <> 1 transition.
We now can easily compute the unitary transformation resulting in a sequence of pulses.
Table 4.1 is a summary of the list of pulses used to prepare several different initial states
starting with a qutrit in the ground state.

Targeted quantum state | Preparation pulse

Lo+ +1) | (3o (arccos( )
Ll +1e) | (5))7 o (~2acos( )
Lo+l -1 | (-3),7 e (2arccos())
Lo -+l | (1)) o (~2arccos( )
L)+l | () o(?arccos(%,))f
L)+l +il) | (-3))7 e (2accos())
Ll +ile+15) | ()20 (~2arccos( )

Table 4.1: List of pulses to prepare an arbitrary superposition of three levels, see text for
notation details.
4.3 PROJECTIVE TOMOGRAPHY OF A THREE-LEVEL SYSTEM

This section is dedicated to the projective tomography of a three-level atom. Similarly to
the qubit case, the dispersive interaction couples the qubit to the cavity and permits to

2 The cavity pull is the same for the two transition when expanding the cosine at 4" order. Expanding
it further reveals transition dependent cavity pull.
3 This actually extends to any order [105].
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readout the energy state of the system. However it does not provide any information on
the relative phases of a superposition of states. It is in principle possible to reconstruct
the full density matrix of a quantum system by placing a complete set of independent
quantum operations ahead of a dispersive readout pulse.

4.3.1 From the measurement output to the density matrix

The density matrix of a qutrit is a 3 x 3 matrix positive and self-adjoint matrix p
of trace one. The state of the system is thus fully determined by 9 independent real
numbers. Our tomography is achieved by 9 independent measurements with the set of
following rotations prior to measurement

GG ENENENENEIE

Other sets of pulses are possible [118| but we found this list to have the best fidelity
with our measurement setup and to be the least sensitive to pulse calibration errors?.
The tomography protocols give a list of 9 complex outputs (s1, ..., S9). Each output s;

corresponds to pulse i in (4.4). We can decompose
8§ = Cg,i0lg + CeiOle + Cfi00f (4.5)

with ¢y, ¢cei,cpi > 0 and ¢y + cei + ¢p; = 1. The complex amplitudes ay, ce, oy
represent the coherent state of the cavity in steady state regime when the qutrit is
prepared in |g) , |e), |f). More quantitatively Gambetta et al. have shown [113] that in
the frame rotating at w. — x the stationary coherent field inside the cavity reads

—1€q
g = :
I R/Qil(wcf‘*)T*X)
_ —1€q
e = K/2 —i(we — wy) (4.6)
—1i€g
(8% =
f k)2 —i(we — wr + X)

where €4 is the amplitude of the readout tone and w, its angular velocity. The complex
amplitudes a;’s are represented in the quadrature plane in Fig. 4.1. Transmission signals
of the cavity are also shown for the parameters of the experiment.

Simple arithmetic manipulations show that the density matrix of the qutrit p can be
expressed in terms of the measurement outputs

P11 = Cg1 P22 = Cel P33 = Cf1

p12 = py1 = (ce3 — ¢3)/2 —i(cg2 — Ce2)/2

p13 =Py = (Ces — Cf.6 + Cpa — Cen)/V2 —i(Cer — Cp7+Cps — o)/ V2
p23 = p3z = (Cf5 — Ce5)/2 — i(Cet — Cra) /2

(4.7)

where we assumed that p; € R and p;; = P;z

4 This is due to the symmetry of Eq. (4.7) that cancels out any systematic measurement error.
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Figure 4.1: Readout signals given by (4.6) for the parameters of the experiment x = 3.9 MHz

and y = 27 x 4.6 MHz. a. Quadrature plane representation of the signal. The com-
plex amplitudes oy, e, oy correspond to the coherent fields populating the cavity
when the qutrit is in the state |g),|e),|f). A red cross embodies a measurement
record s = cg0g + cce + cray. b. and c. Expected amplitude and phase of the
transmitted signal through the cavity as a function of the frequency of the probe.
The dashed line represents the measurement frequency of a.

4.3.2  Representation of the density matriz of a qutrit

In the case of a qutrit, there are no simple geometric representation such as the Bloch

sphere for a qubit so we represent each element of the density matrix with a cylinder

whose height and color encode the magnitude and phase of the tomographically recon-
structed matrix element. Fig. 4.2 represents the density matrices obtained for an arbi-
trary list of prepared quantum states. We calculate the fidelity F' = [Tr( \V/PT p\/p_T)] 2
to the target state pr. The fidelities shown in Fig. 4.2 are lower than 90 % because of
a calibration error on the angle of the (2 aurccos(\/ig))01 pulses.

F=8% ' F=84% ' F=8% '

F=84% '

Figure 4.2: Tomography of a qutrit for several superposition of |g), |e) and |f). The height
of the cylinders encodes the magnitude of the matrix elements, while the color
encodes the phase of the superposition. We are able to prepare any desired state
with an appropriate sequence of 0 +» 1 and 1 « 2 pulses (see Table 4.1). The
fidelity F' = [Tr( \/p_Tp\/p_T)]z to the target state pp is given on each panel. The
fidelities are here limited by a pulse calibration error for this measurement.
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4.4 QUADRATURE PLANE CALIBRATION AND TEMPERATURE MEASUREMENT

The described projective tomography protocol can be used to track any operation
on the qutrit. As an example we prepared a ‘GEF’ state [¢) = (|g) +|e) + |f))/v/3 and
we let it relax to the ground state of the transmon. The evolution of the density matrix
over time can be visualized in Fig. 4.3.

t=0 us t=10.25 pus t=0.5 us t=0.75 ps phase

y b b 4
POYY

t=1ps t=1.25pus t=1.5 ps t=1.75pus

=}

I ———— .

|
|
5

Figure 4.3: Tomography of the relaxation of a ‘GEF’ state. The qutrit is initialized in the
(|9) + le) + | f))/V/3 state and a projective tomography is carried out every 250 ns
after the preparation.

4.4 QUADRATURE PLANE CALIBRATION AND TEMPERATURE MEASUREMENT

In this section, we show how to calibrate the I, () quadrature plane of the readout signal
of a qutrit. This calibration is instrumental to convert the measured signal in milliVolts
into the coefficients cg, cc, ¢y in Eq. (4.5). We also give a simple protocol to estimate
the temperature of a 3D transmon qubit thanks to the control of the third level.

4.4.1 Calibration of the I1Q plane

In this run, we had a ‘hot’ transmon with an effective temperature of the order of
160 mK. The residual temperature of 3D transmons are commonly attributed to the
coupling to unknown hot bath (phonons of the substrate, quasi-particles, ...) that ran-
domly injects excitations in the transmon mode. This effect could be caused by a poor
thermalisation of the substrate or of the complete device or by an irradiation of high
frequency noise [130] routed by the microwave lines. Aluminum cavities usually have
colder transmons than copper cavities and we noticed that by etching the inner surface
of the cavity before placing it inside the fridge, the residual temperature population
was reduced. The proposed method for the temperature measurement is very simple
and efficient and it also gives an alternative way to measure gate fidelities for qubit
and qutrit operations. At the end of the section, we compare this method with a ‘di-
rect’ temperature measurement, which requires a single shot measurement with a good
signal to noise ratio.

We cannot directly prepare a pure state |g) (resp. |e) or |f)) and measure the corre-
sponding cavity transmissions because of the initial temperature of the qubit and the
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Figure 4.4: a. Determination of g, ae and ary. The 6 transmission amplitudes are indicated by
red stars. The solution of the system (4.9) gives the values of ay, a. and oy used
for the tomography. We superimpose in blue, green and orange measured Rabi
oscillations between the three levels of the qutrit along with linear interpolation
(solid lines). b. Rabi oscillations as a function of drive amplitude between different
levels projected along the lines drawn in a. The vertical axis origin matches the
dash on each line in a and the arrow indicates the sign of the signal. The dots are
the measured signal and the solid lines are sinusoidal fits. These Rabi oscillations
are used to calibrate our qutrit gates.

finite fidelities of the gates. We measure transmissions of the cavity having prepared
the qutrit in 6 different initial states with the following pulses

1, 7% 72070 712 70l ogl2 7016 7126 701, (4.8)
The measurements are represented by red stars on Fig 4.4. We propose a simplified
model to find the complex values of oy, a. and oy that relies on the following assump-

tions

e We operate in a Hilbert space of dimension 3 namely py + pe + py = 1 where p;
is the probability to find the qutrit in state |i) after a measurement. There is no

leakage to states |h) or higher.

e The qutrit is initially in a thermal state py, corresponding to a Boltzmann distri-
bution with a well-defined temperature T

e We model the finite fidelity of the 7 pulses of the transitions 0 <> 1 and 1 <
2 by two numbers F' and F’. The density matrix a|g) (9| + e) (e] becomes
(BF+(1—F)a)|g) (g|+ (aF +B(1—F)) |e) (| after a 7 pulse of fidelity F. And
similarly the density matrix a|e) (e|+ 3 |f) (f] becomes (BF’+ (1 —F")a) |e) {e|] +
(aF'+B(1—F")|f) (f| after a w2 pulse of fidelity F’. We thus assume that there
are no leakage to the |f) state during a 7! pulse and no leakage to the |g) state
during a 7'2 pulse.
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We then solve the following system of coupled equations for the complex transmission
(t1,...,t6) corresponding to the pulses (4.8)

t1 = pgg + PeCre + pray
ta = (Fpe + (1 = F)pg)ag + (Fpg + (1 — F)pe)ae + proy
t3 = (Fpe+ (1 - F)Pg)ag + (F/pf + (1 - F/)(Fpg + (1 = F)pe)) e
+ (F'(Fpg + (1 = F)pe) + (1 — F')py)ay
ts = pgog + (F'pp + (1 — F)pe)ae + (F'pe + (1 — F')pg)ay
ts = (1 = F)pg + F(F'py + (1 = F')pe))ag + (Fpg + (1 = F)(F'ps + (1 = F')pe))ae
+ (F'pe + (1 = F')py)ay
te = (F(F'ps + (1 = F')(Fpg + (1 = F)pe)) + (1 = F)(Fpe + (1 — F)pg)) ey
+ (F(Fpe + (1 = F)pg) + (1 = F)(F'py + (1 = F')(Fpg + (1 = F)pe)))ae
|+ (F'(Fpg + (1= F)pe) + (1 = F')py)ay

(4.9)

where p, = ﬁ, Pe = ﬁ and py = ﬁ with the Boltzmann weight b =
e~"wa/ksT The resolution of (4.9) gives us the values of ay, ae, oy, the temperature T
and the fidelities F' and F’.

From the measurements shown in Fig. 4.4, we extract the fidelities ' = 95 % for
71 pusles and F' = 94 % for 7'2 pulses. We also obtain an 8 % probability to find
the qubit in the |e) state and 0.8 % probability to find the qubit in the |f) state,
which corresponds to a qubit temperature of 160 mK. We thus demonstrated that
our model allowed us to infer the value of oy, o, and ay at rest. This calibration
is essential to obtain the density matrix of the qutrit by a projective tomography (see
previous section). A similar temperature measurement method was used to measure the
efficiency of a cooling protocol known as the double drive reset of population (DDROP)

[86] in our group [85].
4.4.2  Direct temperature measurement

In this section, we show that etching the inner surface of the cavity reduces the residual
temperature of the transmon. We also use this opportunity to introduce a new temper-
ature measurement based on a single-shot heterodyne measurement of the qubit in its
thermal state at the frequency f. — x/2 (see chapter 3). For this measurement the life-
time of the qubit was increased to Ty = 15 us and the cavity linewidth to (~ 70 ns)~*
by closing the output port of the cavity. We observe two separated probability distribu-
tions corresponding to the qubit in state |g) or |e). The probability to find the qubit in
the excited state is given by the relative weight of the two distributions, which has to
be measured in a time much longer than the inverse linewidth of the cavity and much
shorter than the lifetime of the qubit.

From Fig 4.5, we extract the probability to find the qubit in the excited state p, ~
1.8 % £+ 0.2 % corresponding to an equilibrium with a bath at 7' ~ 63 + 2 mK. We
checked that the two temperature measurement methods give compatible results during
the same experimental run. Recently Serniak et al. [131] discovered that quasiparticles
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Figure 4.5: Measurement of the temperature of the qubit after etching the cavity (colder qubit
temperature). a. A dispersive readout pulse is applied on the cavity and the in phase
component of the signal is integrated for 0.4 us (blue curve), 1 us (yellow curve),
2 us (green curve) and 4 ps (red curve). Two distinct probability distributions cor-
responding to the ground state (positive signal) and excited state (negative signal)
can be distinguished. b. Owing to the finite relaxation time, the relative weight of
the two distributions corresponds to the excitation probability only for integration
times well below 77 = 15 pus and well above both the inverse measurement rate
1/T'4 = 0.025 ps and the inverse cavity linewidth ~ 70 ns.

were for a good part responsible for a part of the thermal population of transmon but
the generation mechanisms of non-equilibrium quasiparticles are not well understood
yet.

4.5 OPEN-SYSTEM DYNAMICS OF A THREE-LEVEL ATOM
4.5.1 Lindblad equation

We can write a Lindblad equation for the qutrit

dp i

— =——|H L 4.10

D L)+ 200) (4.10)
where the Hamiltonian reads H = hwp [1) (1] + A(wor + wi2) |2) (2] (plus a possible
drive see Hamiltonian. (4.3)) and the Lindbladian reads

L(p) = ZDi(p)- (4.11)

The Lindblad super-operator® is D;(p) = Lz-pLZT — %LILz’P — % pLILZ- with the following
jump operators {L;};.

The Lindbladian of a qutrit can only take this form when the pure dephasing of the two transitions 0 <>
1 and 1 <> 2 are caused by uncorrelated frequency fluctuations. For a tunable transmon, unavoidable
flux noise changes E; resulting in correlated wo1 and wi2 fluctuations. In this case an extra term has
to be added to the Lindbladian as explained by Li et al [132]. In the opposite case, the dephasing
channels associated to Ls and Le are not independent.
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Symbol Expression Physical meaning

L0y (1] spontaneous deexcitation 0 — 1

h
[\]
%ﬁ
-2
=

) (0] spontaneous excitation 1 — 0
L3 I‘iQ 1) (2] spontaneous deexcitation 2 — 1
Ly F%Q 12) (1] spontaneous excitation 1 — 2
Ls \/? |1) (1] — |0) (0]) pure dephasing 0 <> 1

10)
—[1) (1)) pure dephasing 1 <> 2

(1)
Lg \/FQ?(>

Table 4.2: List of jump operators of a qutrit. F?( Y is the (de)excitation rate of the transition

|2

17 and ng is the random AC Stark shift rate of transition ij, which can be modeled
as fluctuations of w;;. We define the inverse lifetime of the i <+ j transition as
ry = Ff + I”Tj.

From the expression of the jump operators 4.2, we can write the Lindbladian explicitly

as follow
) 2(09 p11-19" poo) @ +rQt i 2r 400 —Q 42413 400z
[:(,0) = 5 *(F31+F?1+F%2+2F31+Ff)ﬂ1o 2(1"?1900*1"?1011>+2(1"12P22*F%2011) *(F$1+F12+F%2+2F¢ +F2>1)p12
@4+ 4% r ) 000 —(@ 424012 4or 2409 oy 2032011 -T (% p22)
(4.12)

In the following section we will measure the different rates in 4.2 and check that the
Eq. (4.10) indeed predicts the average evolution of the density matrix of the qutrit.
Obviously the qubit case is recovered by setting all the relaxations rates I'"? and drives
€;2 to zero.

4.5.2  FEnergy relazation

In this experiment, we first excite the qutrit with two successive drives at wg; and wio
(see Fig. 4.6) and we then monitor the evolution of the populations of the density matrix
by tomographic reconstruction [118, 119|. The evolution of the populations reads

dpoo
7 =TI p11 — T poo
dp11
i T2 poo — (T +T3%)p11 + T2 p2z (4.13)
dp22 12
7 =TI — T Ppo

This measurement allow us to extract the value of the matrix elements (1“81)*1 =
(12 £ 0.5) us and (Fiz)*l = (6 £ 0.5) us as well as an estimation of the heating rates
(I“?l)*1 ~ 80 us and (Ff)*1 > 100 ps. The heating rates can only be estimated
asymptotically on time scales of the order of I'"! hence the previous estimation for this
30 ps long measurement (see previous sections for the temperature measurements with
a good accuracy).
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Figure 4.6: a. Pulse sequence. We successively excite the 0 <> 1 and 1 <> 2 transitions and
then measure the population of the density matrix of the qubit by dispersive mea-
surement. b. Raw signal in the IQ plane for 30 us of relaxation. We observe a
relaxation from a¢ toward ay4. The line is curved in the direction of o, because the
matrix element T')? is absent from (4.13). c. Extracted population as a function of
time. The solid lines are the solution of Eq. (4.13).

4.5.3 Ramsey experiments

Similarly to the previous experiment we can realize any kind of experiment involving
a unitary evolution and Lindbladian (4.12). By analogy with the qubit, we perfom
Ramsey experiments [118, 119] between the two transitions by imprinting a rotation
on the coherences of the density matrix. We initialized the qubit in a superposition of
lg) and |e) (Fig. 4.7 a) or |e) and |f) (Fig. 4.7 b) and let the coherences of the density
matrix rotate in order to measure the coherence times of the qutrit.

The Ramsey like experiments in Fig. 4.7 enable us to determine the decoherence
times characterizing the qubit as well as the precise values of wgy; ans wis within an
accuracy of few tens of kHz, which is below the typical fluctuation rate of transmon
qubits. From Fig. 4.7, we extract the values of the coherence times of our qutrit 759! =
(O + T 4+ T2+ 200" +T3%) 7" = (10.0+0.2) ps and Ty? = (P! 4+ T}% + T} + 207 +
I‘g})*l = (6.05 £ 0.2) us. Interestingly, we find that TS (resp. T4?) has about the
same value as T (vesp. T1?) indicating that a quantum superposition of |0) and |1)
(resp. |1) and |2)) would decohere in twice this amount of time solely because of pure
dephasing likely originating from residual thermal excitation of the cavity mode [133].
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Figure 4.7: Ramsey experiments on a qutrit. a. and b. Pulse sequences for Ramsey experiments
onthe 0 «+ 1 and 1 < 2 transitions. In a. (resp. b.) we prepare (|g)+|e))/v/2 (resp.
(le) + |f))V/2) with a fast detuned (%)21 (resp. (g)iz) pulse. After each waiting
time ¢ € [0, 20 pus] a tomographic reconstruction of the density matrix is performed
by applying the list of rotations (4.4) prior a dispersive measurement. c. (resp.
d.) measurement outputs after a (%)rl (resp. (g)f) rotation. In c., we observe
oscillations of p12 along a line of the IQ (see temporal sgaoe in e. as Re[pp1]). In
contrast in d. the coherence signal extends in both directions of the IQ plane owing
to the relaxation 1 — 0. e. and f. selected density matrix elements reconstructed
by tomography. The solid lines are given by Lindblad equation (4.10) with the
coherence times T9! = (1"31 + I‘gl + 1"%2 + 2F251 + Ff)_l = (10.0 £ 0.2) ps and
Ty = (TP + T2+ T2+ 202 +T9) " = (6.05 £ 0.2) ps.

4.6 CONTINUOUS MEASUREMENT OF A THREE-LEVEL SYSTEM

In this section, we show that it is possible to measure continuously a superconducting
qutrit. We measured the transmitted signal of a dispersively coupled superconducting
cavity hosting the device. The signal is measured in the I, () quadrature plane. In order
to readout the state of the qutrit with a sufficiently good signal to noise ratio, we
use a Josephson parametric amplifier (see chapter 5 for more details). The amplifier
is operated with a power gain Gg = 11 dB and a dynamical bandwidth of 9 MHz.
The center frequency of the amplifier is detuned by 2 MHz from the readout frequency

65



QUTRITS

to avoid interferences between the signal and idler mode and thus operate is a phase
preserving mode. We choose the highest readout power that does not affect the JPAS.

We will first demonstrate that it is possible to separate the cavity states correspond-
ing to |g),le) or |f) in a time shorter than the transition rates of the qutrit. We will
then show quantum jumps between the different energy levels of the qutrit.

4.6.1 Dispersive measurement of a qutrit
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Figure 4.8: Density histogram of 10° digitized readout signals of a (|g) + |e) + |f))/V/3 state
integrated over T' = 2 pus ~ ﬁ The signals are demodulated and they are equal

to fOT(dI +14dQ) (see Eq. (4.15)) up to a constant pre factor o. By optimizing the
integration time and readout power, three maxima appear corresponding to the
values ay, ae and ay. The red dashed circles are ‘guides for the eye’ that indicate
a confidence interval to assert that the qutrit is in a given state. We see that a
lot of measurements fall outside of these region because the measurement time
Tm 18 a significant fraction of the inverse relaxation rates (1"31)’1 ~ 12 us and
(T3~ =6 ps

In the continuous measurement limit, the measurement records at time ¢ during a
time dt are given by [118|

{ dl = \/2nk(poo(t)zg + p11(t)xe + p2o(t)xs)dt + dWy s (4.14)

dQ = /21K (poo(t)yg + p11(t)ye + p22(t)yy)dt + dWy g

6 When reading out the qutrit with a too large number of photon inside the cavity, the JPA is pumped
by the readout signal itself and thus enter a phase sensitive mode. The ‘stiff pump’ approximation of
the amplifier breaks down.
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where z; = Re(w;) and y; = Im(o;), « is the damping rate of the cavity mode and 7
is the quantum efficiency of the measurement. dW;; and dW; g are two independent
Wiener processes of variance dt accounting for the quantum fluctuations of the field.

In the present experiment (see Fig. 4.8), we integrate the signal during a time 7' =
2 ps and we collect the digitized records”

I(T) =« / ' drI
0 (4.15)

an=a [

where « is a scaling factor in mV that takes into account the gain of the amplification
chain.

4.6.2  Quantum jumps between three levels

This non demolition readout allows us to observe quantum jumps [115]. This kind of
jumps appear when the total measurement rate I'),, becomes much larger than any
other spontaneous transition rate of the system. Similarly to the qubit case, we define
a measurement rate ' = e — j|? to distinguish between states |i) and |j) and

the total measurement rate reads I'y, = min T%. After a typical time, I',! we can
ij
distinguish any state from the others and if this timescale is much faster than the

transition rates of the system, we observe jumps. In this case, the state of the system is
one of the pointer states of the measurement and any coherent departure from a pointer
state is suppressed. This effect is known as Zeno effect (see chapter 6 for more details).
In this experiment, the qutrit in initialized in (|g) +|e)+|f))/v/3 and then left undriven,
while the cavity contains the same readout field used in Fig. 4.8. We are not deeply
in the ‘quantum jump regime’ because the measurement time 7' = 2 ps ~ i is not
negligible compared to the relaxation times (Fgl)*1 and (I‘}/Z)*1 of our device. However,
the measurement records are mainly localized around oy, a. and oy (maxima of the
probability distribution of Fig. 4.8) and it is still possible to observe jumps between
the surroundings of the maxima of the probability distribution.

In Fig. 4.9, we show three examples of such continuous measurements of an undriven
transmon starting in (|g) +|e) +|f))/v/3 exhibiting a blockade of the qutrit state in | f),
jumps between |f) and |e) and between |f) and |g). For each measurement, we extract
the coefficients ¢y, c. and ¢y such that

{f+i@ = Cyg + CeQe + Cray (4 16)

Cgtcetep=1

An important difference with Eq. (4.5) is that the condition ¢y, ¢, ¢y > 0 is now relaxed
and the coefficients are no longer bounded because of the noisy Wiener processes dW;
and dW; g in Eq. (4.14). In the IQ plane, the signal is blurred and the complex output
can fluctuate outside of the triangle formed by ag4, o and ay contrary to an ideally
averaged output s; of Eq. (4.5). In practice, we are yet able to resolve jumps of the
coefficients between 0 and 1 triggered by relaxation events of the system.

7 We assume here that the integration time 7' is much larger than the bandwidth of the detection setup.
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Figure 4.9: Continuous measurement of a qutrit. The qutrit is initialized in a pure ‘GEF’ state
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(lg)+1e)+1£))/V/3 and the state of the qutrit is then continuously probed by hetero-
dyne measurement for 30 us and integrated over 2 us time steps. The qutrit state
can jump between different states because of thermal excitation and relaxation. We
superimpose the values of ag, a., oy determined by an independent measurement.
The red dashed circles are ‘guides for the eye’ that indicate a confidence interval to
assert that the qutrit is in a given state similarly to Fig. 4.8. a. In this measurement,
the output stays close to a indicating that the qutrit state was projected in the
|f) state and is blocked there for the duration of the measurement. The ¢, value
of the state fluctuates around 1. b. The measurement output first reaches the aj
region (¢y ~ 1) before jumping close to ae (cc ~ 1). c. Jumps between «, and
ay. The measurement outputs takes complex values between oy and oy because of
relaxation events occurring during the measurement.



4.7 CONCLUSION

This measure can be improved by increasing the gain of the quantum amplifier that
would increase the detection efficiency of the measurement resulting in a stronger separa-
tion of g, a. and ay. The readout power could also be increased and the measurement
time decreased well below the characteristic times of the qutrit by increasing the pump
power of the JPA and thus enforce the stiff pump approximation for the amplifier. How-
ever, it was not possible in our case to preserve a sufficient dynamical bandwidth to
operate the JPA as a phase-preserving amplifier.

4.7 CONCLUSION

In this chapter, we demonstrated

e the coherent control of a three level system to prepare arbitrary superpositions
of three quantum states.

the dispersive measurement of a qutrit in its energy basis.

the observation of quantum jumps by continuous monitoring of the system.

a good understanding of decoherence mechanisms of the qutrit.

a method to estimate the thermal population of a qubit and the gate fidelities of
a qutrit.

These methods can readily be extended to populate and read out more than three
levels of the transmon. Note that the protection of the transmon against charge noise
requires larger and larger Fj/E¢c as the level number increases. With our transmon
Ej/Ec = 140 so all levels are addressable up to the 6' level as explained in the supple-
mentary material of [105]. The projective tomography method requires 3 measurements
to reconstruct the density matrix of one qubit and 9 measurements for the density ma-
trix of one qutrit. A 4 qutrits device has a Hilbert space of dimension N = 3% = 81
and (N —1) + QW = 6560 real coefficients to determine so the use of higher di-
mensional Hilbert space requires an exponential number of measurements to achieve
the full quantum tomography of the system.

We presented only linear readout methods with superconducting amplifiers but a
generalization to higher measurement power is an alternative way to obtain high fidelity
single-shot measurements.
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MICROWAVE AMPLIFIERS

5.1 INTRODUCTION

In the microwave domain, pumped circuits provide a complete toolbox to amplify sig-
nals [134, 135, 136], engineer non classical states of light [137, 138|, catch and release
quantum states [139], stabilize quantum states and manifolds [140, 88]. In this thesis
I used three kinds of microwave amplifiers based on superconducting circuits namely
the Josephson Parametric Amplifier (JPA), the Josephson Parametric Converter (JPC)
and the Josephson Traveling Wave Parametric Amplifier (JTWPA). The following sec-
tions describe a general theory of quantum limited amplifiers and explain the operation
principle of the above-mentioned amplifiers. Finally, we compare the figures of merit of
the different amplifiers available in our laboratory.

The detailed fabrication processes of the JPA and JPC can be found in appendix
B. The JTWPA was provided by the Lincoln Lab [136, 141] in 2017 and it was not
used for the continuous time measurement presented in this thesis. At the end of this
chapter, we compare the figure of merit of the different amplifiers namely gain, band-
width, compression point, quantum efficiency and we explain the requirements for our

experiments.

5.2 QUANTUM PARAMETRIC AMPLIFICATION

An amplifier can be modeled as a lumped device connected to two semi-infinite trans-
mission lines that converts and amplifies an incoming quantum electromagnetic field a;,
into an outgoing field aqyt. Note that we restrict the discussion to scattering amplifiers.
The elementary excitations of these fields are the carriers of the information that we
want to acquire. These electromagnetic modes are bosons so they verify the following

commutation rule
[ain(t), al, ()] = [Gout(t), @by ()] = 8(t — 1) (5.1)

at all time ¢ and ¢’. The nature of the amplifier is encoded in the scattering relation be-
tween the incoming field and the re-emitted outgoing field. Naively one could think that
the simplest amplifier would correspond to oyt (t) = \/adin(t) but it is incompatible
with (5.1) so it is forbidden by quantum mechanics.

5.2.1 Phase preserving amplification

By introducing an additional operator bin called idler mode, one can write the relation

dout = VGain + VG — 1b] . (5.2)
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Figure 5.1: The contour of the Wigner distribution of an input field a;, represented in the
complex plane on the left. The input field is converted in an output field G,y on
the right. A phase preserving amplifier scales the incoming amplitude and add
an extra noise (in blue) corresponding to the zero-point fluctuations of the idler
mode. In contrast, a phase sensitive amplifier squeezes the input field. Namely one
quadrature of the field is amplified while the other quadrature is deamplified.

With this new relation the commutation relation (5.1) can be satisfied both at the
input and at the output. In the large gain limit G > 1 and for an idler port at zero
temperature, this added noise boils down to half a photon at the signal frequency
referred to the input. This is known as Caves’ theorem [142|. This theorem can be
expressed with the following relation

(AXL.) + (AP,

dout

> (AXZ ) +(APL) + ((AXG)

+ (AP?
G G>1 (AF,)

(5.3)

|0) |0>)

>half a quantum

where X, = Re(a) and P, = Im(a) are the two quadratures of the electromagnetic
mode.

This extra half photon can be seen as a requirement of the Heisenberg uncertainty
principle. Since they are non-commuting observables, both quadratures of the field
cannot be known simultaneously with an arbitrary precision. An amplifier in the regime
where the degradation of the signal to noise ratio of the amplifier is only caused by
irreducible quantum fluctuation is a quantum limited amplifier.
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5.2.2  Phase sensitive amplification

Another way to satisfy the commutation relation (5.1) is to amplify one quadrature of
the field while the corresponding conjugate quadrature is de-amplified

o = VG + VG —1a), (5.4)

for a given squeezing angle 8. We can see that in the large gain regime G > 1 two
: 0 _ 0 o _ _1 0 :
quadratures of the field are given by X%, = 2v/GX? and P/, = %Pin' If the input
signal only consists in vacuum fluctuations, the amplifier squeezes the fluctuations
making the quadrature P? less uncertain than the standard quantum limit (half a
photon) while the uncertainty on X? is enhanced to preserve the Heisenberg uncertainty

principle.

5.3 JOSEPHSON PARAMETRIC AMPLIFIER

The Josephson Parametric Amplifier (JPA) is a single-mode parametric amplifier con-
nected to one transmission line via a non reciprocal device called a circulator [143]. It
has recently known a strong revival decades after the seminal work of Yurke et al. [32].
This kind of device can be made out of a Josephson non linearity embedded into a A/2

microwave resonator.

Figure 5.2: a. Circuit representation of the device. A SQUID composed of two Josephson junc-
tions is embedded into a A/2 resonator coupled to the transmission line via a mi-
crowave circulator. b. Optical image of the device. We evaporated a \/2 microstrip
aluminium resonator with a loop of two Josephson junctions forming a SQUID in
its center.

Under the Markov approximation and the rotating-wave approximation, the dynam-
ics of the amplifier is governed by the Quantum Langevin Equation (QLE) equation

da
dt

- ﬁ[ﬁ, 6] = S+ /i (1) (5.5)

with H = hw,afa + h&(a')?(a)? the lowest order approximation of the Hamiltonian
where G and af are the ladder operators of the oscillator with [a,af] = 1, w, is the
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pulsation of the oscillator, K is the Kerr constant and x is the coupling rate to the

bath.

Note that,
e The Hamiltonian of the JPA can be found by considering a ‘BBQ’ version of the
JPA [144]
gt = nanita — £, 5 S ot (5.6

n>1

with the frequency of the lumped resonator wy = /8EjEc/h and pyzpr =
E¢ /hw are the reduced zero-point fluctuations of the flux. The transmon qubit
has the same Hamiltonian but with a much higher non linearity. By expanding

the Hamiltonian to the first non-linear order, one obtains

ﬁﬁ)ﬁped ~ hwoala — E; ('OZPF (a+ aT)4
24 (5.7)

~ ata SOZPFT ~\2
w2 hwrala — B2 (ah)? (@),

This approximation is valid in the regime E¢ < hw, and the renormalized res-

onator frequency is w, = wg—F; ngF . Placing the junction in a resonator amounts
to replace pzpr by the total zero-point fluctuation of the flux but the non linear
term in the expansion (5.6) are of the same form.

e This oscillator is know in classical physics as the Duffing oscillator. It exhibits an
abrupt transition when driven above a critical power. The operation principle of
the Josephson Bifurcation Amplifier [100] relies on this sharp transition.

e The so-called Markov approximation assumes that the environment is ohmic.
That means that the density of modes can be considered constant around the

transition frequencies of the circuit.

e The coupling constant to the bath x is supposed to be small compared to any
transition frequency in (5.5).

It is possible to integrate the QLE and express the circuit variable a(t) as a function
of ain(t). The output field is obtained via the Input-Output relation

\/Ed(t) - din(t) + &out(t)' (58)

Let us introduce the Fourier transformed operator afw] = fj;o dte™ta(t).
The QLE (5.5) now reads
(z’(w ) — g) dlw] — iKat[—w] * aw] * alw] + VRaim|w] = 0 (5.9)
We assume that the system receives a drive-tone at the input so intense that it can
be modeled by a coherent field of amplitude aj,. The steady state of the intra-resonator
field is then given by a coherent field « such that

P . — (5.10)
5+ (w—w) - Klaf
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Figure 5.3: a. Phase of the reflected signal on an anharmonic oscillator as a function of in-
put power and frequency of the probe drive. A black cross marks the position
of the critical point of the oscillator. b. Horizontal cuts a for an input power
P = (-50.5,—45.5,—40.5, —32.5, —33.5,—33, —32.5) dBm from darkblue to light-
blue (power is referred to the input of the dilution refrigerator). The dots are
the measured phases and the solid lines correspond to a fit with equation (5.10)
with w, = 27 x 7.966 GHz, x = 43 MHz and the photon number calibration
Kl|a|?> = (50.77(GHz))107(dBm)/10 The theory developed in the text is consistent
for low powers but we see that the first non-linear order approximation in (5.7) is
not sufficient close to the critical point (lightblue).

The auto-consistent equation (5.10) exhibits a bifurcation at a critical input power
loin|? = —%% When reaching this power, new solutions of equation (5.10) appear
leading to an instability of the system. The reflection response of a JPA device can
be seen in figure (5.3) where the critical point is marked with a black cross. Cuts of
the 2D map are compared with the theory obtained by solving (5.10) and (5.8) with a
good agreement below the critical point. For this device, internal losses were negligible
compared to the coupling to the transmission line so all the information is contained

in the phase of the outgoing signal.

5.3.1 Different JPAs and different pumping schemes

The denomination Josephson Parametric Amplifier encompasses a lot of different am-
plifiers. A JPA can be a lumped non-linear element connected to a transmission line |32,
36] or it can be embedded in a CPW or micro-strip resonator [33]. The non-linearity
can be distributed over several elements to increase the dynamical range of the device
[37]. The resonator is usually coupled to the rest of the circuitry by a geometric capac-
itance or impedance matched to the transmission line to enhance the gain bandwidth
product of the amplifier [145]. Even for a given circuit design, several pumping schemes
are available. The JPA can be pumped on resonance with a monochromatic micro-wave
pump, with a bichromatic pump centered on its resonance frequency [35] or with a flux
modulation at twice its frequency [34].
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Figure 5.4: Frequency landscape for the differents pumping schemes of the JPA. The dashed

lines represent the response function of the device close to w,. a. First pumping
scheme: A monochromatic current pump (in red) is sent at the resonator frequency.
b. Second pumping scheme: A bichromatic current pump (in red) is centered around
the resonator frequency. ¢. Third pumping scheme: A monochromatic flux pump (in
orange) is applied at twice the resonator frequency. d. Degradation of the coherence
time of a 3D transmon followed by two isolators (40 dB of isolation) and a JPA
pumped with a monochromatic current pump (pumping scheme a). In this case
the frequency of the amplifier is matched with the frequency of the cavity of the
3D transmon. Increasing the pumping power will increase the amplifier gain but a
fraction of the pump tone unavoidably populates the cavity leading to a reduction
of the coherence time of the qubit by measurement induced dephasing.

Under different assumptions, all the three following pumping schemes lead to an

effective Hamiltonian of the form of a perfect one-mode squeezer

H=nmQata + 7aT2 +

A AXN*
22

; (5.11)

where () is the frequency of the amplifier in a rotating frame that depends on the

pumping scheme and A is the strength of the parametric pump. We are now going to

detail the derivation of the Hamiltonian (5.11) for the three most common pumping

schemes.

a) Single pump

The first pumping scheme is the current-pumped JPA [33] where a monochromatic

pump near resonance with the oscillator is used. A, denotes the pump amplitude and

wp its angular frequency. The pumped Hamiltonian is
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H = hwyala + Ta%z + hAy (e~ rtat + et (5.12)
In the displaced rotating frame of the pump @ — (& + a)e~*»!, one obtains

K K
(wr —wp+2K|a|?)ata+ E(a%ﬂ? +a*?a?)+ Ea%? +K(aata+arata?) (5.13)
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under the condition id = A, + (2 — K|a|? —ik/2)a where Q = w, —w, + 2K |a|?, which
is exactly the QLE (5.9) for y/kain = A,. In the limit of small quantum fluctuations
wzpr < 1 and large pump |a| > 1 the two last terms in (5.13) are negligible and one
finds a squeezing Hamiltonian of the form (5.11) with a pumping amplitude A = Ka?.

The squeezing Hamiltonian (5.11) is obtained in a displaced rotating frame and
there are tight constraints in order to fully neglect the cubic terms in (5.13). Another
important drawback is that there are no spatial or spectral separation of the signal and
the pump tone. The pump tone can then leak into the rest of the circuit and cause
unwanted effect on other devices matched at the same frequency. In figure (5.4d) is
an example of the degradation of coherence time of a transmon due to the leaking
of a pump tone of a well-isolated amplifier matched at the frequency of the cavity
hosting the qubit. A way to circumvent this last difficulty is to cancel the pump tone
by destructive interferences but the amplitude and phase of the cancelation tone has
to be recalibrated very often.

b) Bichromatic pump

A second way to obtain parametric amplification is by pumping the device with two
symmetric tones around its resonant frequency. The pump amplitudes are denoted A;
and their angular frequencies are denoted w;. Similarly to (5.12), the Hamiltonian reads

2
- hK . ,
H = hw.ata + 7&”512 + ) Ai(e el 4 e™ita). (5.14)
=1

In a displaced rotating frame rotating at Q12 = (w1 +ws)/2 such that & — ae~*42t +
are” @1t 4 et and under the condition A > Klaq||asl, one obtains

H K
T, (et 2K (|ou |* + [aa]?) — Qip)ata + Kanasa™ + Kajasa® + E&TQ&Q (5.15)

under the assumption that g and «s satisfy the coupled equations

{ioél = A + (wr — w1 + Koy |2 —i5/2)on + K(2]as]? + arage 12 oy (5.16)

idy = Ag 4 (wy — wo + Klan|* —ik/2)as + K (2|oq |> + OézafeiA”t)ag

In the limit of small quantum fluctuation, the squeezing Hamiltonian (5.11) is recov-
ered with Q = w, + 2K (Ja1|> + |a2|?) — Q12 and A = 2Kajas by neglecting the last
term in (5.15). We see that the cubic corrections in (5.15) are now safely neglected by
the application of the RWA. Moreover the spectral separation of the signal and pump
tones allows an efficient filtering of the pump tones without the need of a cancellation
scheme.

¢) Fluz pumping
A third way to obtain parametric amplification with a JPA is by directly modulating

the inductance of a SQUID, which behaves as a flux-dependent non-linear inductance.
This slight modification of the amplifier allows for flux pumping and DC flux biasing
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of the device in order to adjust its operating frequency as can be seen in figure (5.5 b).
Let us start with the Hamiltonian (5.6). Replacing the junction by a SQUID modifies
the Josephson energy such that

Ej — Ejcos(@ext) (5.17)

where poxy = @ext%@ is the reduced magnetic flux. We can decompose the magnetic flux
in (5.17) into the sum of a static component and an oscillatory component at angular
velocity wp @ext = F + 6f cos(wpt), with §f < 1. We then separate the different

harmonics
Ejcos(F + 0 f cos(wpt)) 6f: 1EJ cos(F') — Ejé f sin(F') cos(wpt)
<
B E;6f% cos(F) (5.18)
4

Let us derive the Hamiltonian of the system at first order in § f and fourth order in

cos(2wpt) + ...

wzpr With wy, ~ 2wy,

2
H =~ hwoata — B f sin(F) cos(wyt) SDZQPF (a+ah)?

—E; “uew (a4 ah)? (cos(F) — 8 f sin(F) cos(wpt)) + ...

4!
A . 5.19)
2 ~2 Jiwpt ~12 —iwpt 4 (
At a pzpp 4P+ a e P PZPF 112/ 2)\2
~ Tweala+ Egd — By R
i r @0 B0 2 1=y @
4
+E; 90%2131? (de?)eiwpt + df3de—iwpt)
In the limit of small quantum fluctuations, the two last ¢* terms in (5.19) can be

dropped. In the rotating frame @ — ae~™»t/2 rotating at half the pump frequency, the

Hamiltonian is of the form of (5.11) with Q = w, —w,/2 and A = E 6 fp2pp/4h. A very
interesting point here is that the strength of the drive is in @%PF so it does not depend
on the Kerr non linearity of the resonator and in the small flux pump limit § f < 1, the
leading correction are the same than for the bichromatic current pumped JPA. Also in
this last scheme, there is no displacement transformation to obtain (5.19).

d) Summary
Pumping scheme | Frame a — Q A
ingle de " wp Wr—Wp+ o o
Singl iwpt p+2K ol Ka?
Bichromatic Ge~ ¥ 2t 4 e~ W1t f qpe—iwat wr+2K(|a1|2+\o¢2|2)7Q12 2Kaias
. Ej6f¢2
Flux a (lab frame) wp— 22 22T OZPE

Table 5.1: Comparison of the different pumping scheme of this section. In each case, we specify
the transformation used to obtain the squeezing Hamiltonian (5.11) with the corre-
sponding operating frequency of the amplifier in this frame as well as the strength
of the parametric pump.

In this thesis the second pumping scheme of table 5.1 was used to avoid the need of
a pump cancellation scheme and the addition on a on-chip flux pump.
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5.3.2  Amplification

All the previous pumping schemes are ways to obtain a squeezing Hamiltonian (5.11)

- hA hX*
The equation of motion of the intracavity field is given by the QLE (5.5) in the frame

rotating at the frequency of the oscillator

KI2—i0 QA ) ( ) ) _\/E<am[a;} ) (5.21)
( —ix k2 —iw) \al[-@] al [~a)

where @ = w — Q, ajw] = fj;o dte™'a(t) is the Fourier transformed signal mode and
af[w] is the corresponding idler mode.
By inverting the matrix in (5.21) and using the input-output relation (5.8), the

amplified signal reads
Gout ] = 95.in[@] + g1 i)y [~3] (5.22)

where the signal and idler amplitude gains are defined as

K(Kk/2 —id)
9sw = — -1
(r/2 —_@;«;)j —[A]? (5.23)

Ie = (k)2 —i@)2 — A2

The power gain is defined as G = | gg@\Q. In the large gain limit, we can approximate
IN? = %2(1 + dz) with dz < 1. The expression of the gain reads

(k2/2 + w?)?

Glw] = (K2/4)2622 + K202 + ot

(5.24)

Close to the resonance frequency w < &, the gain curve is a Lorentzian function and
the power gain reads

Go

Gl =1 T (20/7)2

(5.25)

where Gy = 4/ 622 is the power gain of the amplifier and the bandwidth of the resonance
~ given by

v = r62/2 = K /\/Go. (5.26)

We notice that with this first order theory +/Ggy is a constant. It is in fact a general
feature of any parametric amplifier that increasing the gain by increasing the pump
power comes with a reduction of the effective operating bandwidth!. An experimentally
measured gain curve can be seen on Fig. 5.5. The power gain is Gy = 16 dB over a
bandwidth of 6.3 MHz leading to a gain-bandwidth product of v/Goy ~ 39.8 MHz.
When the pump strength reaches a critical value |Aeit| = 1/@? 4 K2 /4 the expression
of the amplitude gain gg , diverges. The amplification of zero-point fluctuations leads to
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Figure 5.5: a. Power gain in reflection measured as a function of frequency. The dots correspond
to gains measured with a Vector Network Analyzer and the red solid line is a
Lorentzian function given by Eq. (5.25). We extract a gain Go = 16 dB over a
bandwidth of 6.3 MHz from this fitting procedure. The gain-bandwidth product
is v/Goy ~ 39.8 MHz so the amplifier has a bandwidth of 4 MHz when operated
with a 20 dB power gain. b. Frequency of the resonator of the JPA as a function
of the external magnetic flux applied. The theory given by Eq. (5.30) (green line)
reproduces the experimental values (in blue) with a participation ratio p ~ 2 %.

the generation of a large number of photons, this is known as parametric oscillation. In
practice, the amplitude of the oscillation will be limited by additional extra non-linear
terms that were not taken into account in the Hamiltonian (5.11).

An important point is that the Hamiltonian (5.11) corresponds to the case of a degen-
erate amplifier for which only one electromagnetic mode is involved. If the measurement
bandwith of the detection setup includes both the signal at w and the idler mode at
—w, the device operates as a phase-sensitive amplifier [147]. On the contrary if the
idler is filtered out, the amplifier is a phase preserving amplifier with power gain | g57w]2.
This technique was used to implement an heterodyne readout of the state of a qutrit
in section 4.6.2.

It is also possible to use the same device as a non degenerate amplifier. For instance,
pumping a A\/2-resonator JPA at a frequency close to 3w, /2 leas to amplification be-
tween two distinct modes. The signal mode is the first cavity mode whereas the idler
is the second harmonic of the resonator.

5.3.3  Frequency tunability

The typical bandwidth of such amplifiers is of the order of a few MHz when operated at
a gain of 20 dB. An essential requirement for such a practical amplifier is to be frequency
tunable in order to match other frequencies of the setup. In our implementation, the
frequency tunability is achieved by placing a SQUID in the middle of a \/2 resonator.
The inductance of the symmetric SQUID reads

L,;(0)

Lj(pext) = Tcos(un)] (5.27)

It is possible to avoid this constraint using reservoir engineering [146] or impedance matching [145].
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where L;(0) is half of the inductance of a single junction in the SQUID. The JPA is
composed of two A/4 resonators of characteristic impedance Zj linked by a SQUID. By
symmetry, the electrical potential in the middle of the SQUID is 0 so the impedance
of the device Zjpa as seen from the transmission line is equal to the impedance of
a A/4 resonator terminated by a load Z1 = iL j(pext)w/2 corresponding to half the
impedance of the SQUID [148]

Z1, + iZy tan(pBl)
0Z0 + iZy, tan(B1)

Zypa = (5.28)

with f = 27w /A the angular wave number and [ the effective length of the resonator
that depends on the external flux. In the regime where the frequency of the resonator
is only slightly affected by the SQUID, one can write

w(pext) = w(0) + (W(pext) —w(0)) (5.29)
<w(0)
such that for a \/4-resonator 8l ~ 7 + gw and tan(pl) ~ —M#%.

The resonance frequencies are the poles of the input impedance (5.28)

w(0)
1+ p/|cos(Pext)|’

Wy (Pext) = (5.30)

where p = w(0)L;(0)/Zp7 is the participation ratio of the SQUID to the inductance
of the resonator. The measured flux dependence is shown in Fig. 5.5b from which a
participation ratio of 2% was inferred with a static bandwidth? of the order of 600 MHz
justifying a posteriori the approximation of Eq. (5.29).

5.4 JOSEPHSON PARAMETRIC CONVERTER

The Josephson Parametric converter (JPC) was first built at Yale in 2010 [38] as a non
degenerate quantum limited microwave amplifier. The amplifier relies on a non linear
element known as the Josephson ring modulator (JRM) built with 4 Josephson junctions
in a Graetz bridge geometry which was later improved in our group in 2012 [39] by
shunting the Josephson ring with linear inductances to increase its static bandwidth.

5.4.1 Josephson ring modulator

The Josephson ring modulator is analog of a Graetz bridge in which diodes are replaced
by Josephson junctions. We will first describe the bridge and derive its Hamiltonian
and then couple it to resonators to form a Josephson Parametric Converter. The ring
is shunted by 4 linear inductances in order to increase the stability frequency range of
the JRM and avoid phase-slip events. The Hamiltonian of the ring reads [40]

1
H = —Ej(cos(¢a) + cos(pp) + cos(pe) + cos(pq)) + QEL(tpi +o5+ 9> +93) (5.31)

Note that the dynamic bandwidth of the amplifier is the width of the gain curve in Fig. 5.5a whereas
the static bandwidth is the range of frequencies accessible in Fig. 5.5b by changing the operating point
of the amplifier.
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Figure 5.6: Josephson ring modulator. a. Circuit diagram of the Josephson ring modulator
(JRM) consisting in a bridge of four identical junctions shunted by four linear
inductors. b. Optical microscope image of a Josephson ring modulator [40] analog
to the one used in the experiment. The Josephson junctions are marked by the blue

rectangles.

©3

where B, = 2 is the magnetic energy associated to the shunt inductance and E;

is the Josephson energy of the junctions. By assuming that the shunting inductances

participate symmetrically we can write

Pa = P2 — @1+ Pext/4 + 2mnq
Vb = 3 — P2 + Pext /4 + 271y
Qe = Q1 — P3 + Pext /4 + 20 |
©d = 1 — P+ Pext/4 + 2704

(5.32)

where eyt /4 is the reduced magnetic flux threading each sub-loop and (ng, np, ne, ng)

are the number of flux quanta threading the loops.
It is then convenient to introduce the normal modes of the ring

X = P3 — Y1
Py = P4 — P2

1
oz = §(¢2+<ﬂ4—<ﬂ1 — ¢3)

The Hamiltonian (5.31) can be rewritten in these new variables as
H = —4Ej cos(px /2) cos(py /2) cos(vz) cos(Pext/4)
—4E;sin(px/2) sin(py /2) sin(¢z) sin(pext /4)

Ep,
+ (ko +20%)
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For small applied voltage at the nodes, we can expand the Hamiltonian (5.34) at 3
order in the normal modes

H = —4E; cos(pext/4)
1 Ep

1
+ S (5F + By cos(ea /) (0k + ¢F) + 5 (BL +4E) cos(pex/0)0% (5.35)

— Ejsin(@ext/4)px oy ¢z

The last term is the three wave mixing term that we wanted to generate with the
JRM that is used for several application including quantum limited amplification of
microwave signals.

Note that a higher order expansion of (5.35) would reveal the following self-Kerr and
cross-Kerr terms

H4thorder _ _@ <90‘)1( + 80411/

Ey
=% T @%) — =2 (X ¥% + Vv s + vxey/4) . (5.36)

4

Similarly to the JPA, the non linear element is inserted in microwave resonators that
are addressable via a 180 hybrid coupler (see Fig 5.8(a) for the actual implementation).
The JRM is connected to two resonators that will define 3 spatially separated elec-
tromagnetic modes that naturally couple to the modes X,Y and Z. The new modes
of the whole circuit are denoted a, b and ¢ and their quadratures are directly propor-
tional to the quadratures of the normal modes X,Y and Z [40]. The three wave mixing
Hamiltonian of the device can be re-expressed as

H = hwaa'a + hwpb' + hweete + hy(a + a") (b + b1 (c + ¢h). (5.37)

The modes a, b and ¢ interact via higher order non linear terms (5.36), that lead to
unwanted effects limiting the ideal behavior of the JPC as a linear amplifier as described
in the following section. It is the starting point of all the applications involving the JPC.

5.4.2  Amplification mode

The JPC is commonly used as an amplifier by applying a stiff classical pump p on
the common mode at a frequency w, = w, + ws, sum of the two non degenerate mode
frequencies. The three wave mixing Hamiltonian then becomes

H
5= waala +wpbTb + x(p + p*)(a + al) (b + bT). (5.38)

By applying the rotating wave approximation on the Eq. (5.38) with the frequency
matching condition wy, = w, + wy the rapidly oscillating term can be neglected so that
the resulting Hamiltonian reads

H
- = waala + wpbb + x(p*ab + pa'dl). (5.39)

The parametric down conversion term pafb! can be understood as the annihilation of
one pump photon at w, and the creation of two photons at frequencies w, and wj. This
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Figure 5.7: Figure from [39]. a. Measured frequency of the resonator mode at w, as a function
of the external flux applied to the JPC without pump. b. Reflection gain on the
mode a as a function of frequency for various external fluxes encoded by the color
of lines in a.

pump

Figure 5.8: a. Schematic of a practical implementation of the JPC. A 180° hybrid coupler is
used to excite the common mode with the pump tone and the mode a with the
signal. b. Optical image of a Josephson parametric converter in the microstrip ge-
ometry. The Josephson ring modulator is placed at the center of two A/2 resonators
capacitively coupled to transmission lines.
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gives rise to the phenomenon of amplification in the JPC. Let us write the QLE for
modes a and b

g;‘ - %[ﬁ,&] — %& + VRabin
o , (5.40)

I LY, b
o = 7B = b+ /b

with k, and & the coupling rates of modes a and b to the transmission lines. By taking
Eq. (5.40) to the Fourier domain and with the input-output relations

{ Ka@[w] = Gin[w] + Aout[w] (5.41)

SR = bine] + bouwt[w']

one obtains the scattering relation [135]

dout[W]\  (Taa Sab\ [ Ginlw]
<b(1;ut[ ’]) N <8ba Tbb) (B:fn[w/]) (5.42)

where

(=8 =8+

T L= o)1+ 0a) — [P

o (L84 00) + [P
(1=0p)(1+6a) —lpl* (5.43)
_ 2ip

Pab = 1= 6b)(1 + 64) — [
B —2ip*

L% T (U= 0b) (1 + 6a) — I

with p = 2xp/\/Kakp, 06 = 2i(w — wq)/ke and 6b = 2i(w’ — wy)/Kp. We defined the
cooperativity as C' = |p|?. The gain of the amplifier is defined by G = |raq|? = |rw|?.

In the large gain limit, the gain curve is given by a Lorentzian function close to
the frequency of the amplifier. For a detuning Aw around the central frequency of the
amplifier, the gain reads

Go
GAw]| = ——— 5.44
[Aw] 1+ (2Aw/7)? ( )
where Gg is the maximum gain and the bandwidth ~ of the resonance reads
2 (5.45)
’}/ = . °
\/Go(l/lﬁ:a + l/lﬁlb)

Measured gain curves are represented on Fig. 5.7(b). We achieved typical values of
Go = 20 dB for the power gain over dynamical bandwidths of v = 3 MHz.

When the pump is driven above the critical value C' = 1, the parametric gain over-
comes the damping rate of the electromagnetic modes and the oscillator enters the
self-oscillation regime [149] similarly to the bifurcation physics of the JPA.
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5.4.3  Flux tunability

Similarly to the JPA, the operating frequency of the JPC can be tunned by application
of an external magnetic flux because of the @eyt dependence of Eq. (5.35). This tunabil-
ity enable the experimentalist to match the frequency of the system under study. The
frequencies of modes a and b are adjustable by varying the external applied flux [39]

Wa,b(Pext) = wy mLab/2
a, ex a’b7T2La7b/2 + Lajb(gpext)

(5.46)

where wg,b is the bare frequency of the \/2 resonator of mode a (resp. b) without the
JRM, L, is its equivalent lumped inductance and Lg p(@ext) is the JRM inductance.
As long as Er /4 + Ejcos(ext) > 0 the JRM inductance reads

> —1
La,b(soext) = 90(2) (2L +Ey COS(SOext/4)> . (547)

The flux dependence of mode a can be observed in Fig. 5.7(a). The ‘stable configu-
ration’ of the ring E7/4 + Ejcos(pext) > 0 corresponds to the wide arches. For small
shunting inductances 4 < Er,/Ej, the stability condition is always met and the narrow
arches disappear. The inductance of the ring is then always given by Eq. (5.47).

If we want to work on one of the wide arches and by noticing that a non zero flux
bias is required to obtain amplification®, we can estimate the overall flux tunability of
our amplifiers to be of the order of ~ 300 MHz.

5.9 TRAVELLING WAVE PARAMETRIC AMPLIFIER

The last amplifier that we use in our lab is the Josephson traveling wave parametric
amplifier (JTWPA) [150, 151, 152, 136] provided by the Lincoln laboratory (MIT). In
the section, we describe only briefly its principle of operation since the measurements
that I performed with this amplifier are not reported in the present manuscript.

5.5.1 Phase matching condition

We saw from Eq. (5.26) and Eq. (5.45) that the gain bandwidth product of our amplifiers
are limited by the linewidth of the resonant mode that hosts the non-linearity. In order
to get rid of this constraint, one can replace the stationary resonant mode stored in the
cavity by a free propagating mode of a transmission line. However, the participation
ratio of the non linearity is diluted and the gain of the amplifier vanishes. A way to
solve this issue is to create a very long non linear transmission where the non linearity
is distributed all over the line. The signal and a large pump tone are sent in the
transmission line and a four wave mixing process converts pairs of pump photons into
a signal photon and an idler photon. This four-wave mixing process has an hamiltonian
of the form apa paTSa} and this process is resonant if and only if the pump and the signal
and idler mode are in phase all along the line. Obtaining this condition is challenging

Because of the sin(pext/4) dependence of the Hamiltonian (5.35).
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because the presence of a strong co-propagating pump modifies the phase velocities
through self and cross Kerr effects hence generating a phase mismatch and preventing
an exponential gain during the propagation. However, if this condition is satisfied, the
non linear transmission line implements the exact microwave analog of the celebrated
optic parametric amplifier [153].

The JTWPA is made of approximately two thousand of periodically repeated sections
creating a lumped-element transmission line with a Josephson junction as the inductive
element. In [136], every three unit cells of 16 um, a lumped resonator is inserted in
the transmission line to ensure the phase-matching condition in agreement with the
proposition of O'Brien et al. [152]. Several other attempts were carried out to fulfill the
phase-matching condition such as periodic loading of TWPAs based on weak nonlinear
kinetic inductance materials [150, 154| but they require a significantly higher pump
power to achieve comparable gains combined with a longer propagation length. They
are also much more sensitive to backward parametric amplification because the phase-
matching direction is satisfied for both directions.

In practice, building such an amplifier is very challenging because of the very large
number of repeated sections and any impedance mismatch? along the line or any in-
homogeneity in the frequency of the resonators creates standing waves in the system
that leads to ripples in the transmission signal as a function of frequency and thus a
frequency-dependent gain (see Fig. 5.9 b and c).

5.5.2  Amplification performance

Getting rid of the gain-bandwidth constraint leads to remarkable performance as de-
picted in the measurement of Greg Calusine in Fig. 5.9. We obtain a 20 dB gain over
more than 3 GHz in the 4 — 7 GHz frequency range (Fig. 5.9 c) corresponding to a gain
bandwidth product beyond 30 GHz that outperforms our other quantum limited am-
plifiers by more than two orders of magnitude. The JTWPA acts as a phase-preserving
parametric amplifier because of the large spectral separation of the signal and idler
modes. By probing the unpumped device with a low power tone, the above-mentioned
ripples are observed as well as a large dip corresponding to a stop-band created by the
resonators inserted along the line. The pump tone should be sent in the vicinity of the
stop-band so that the phase-matching condition is met (red arrow on Fig. 5.9 b) and
the pump power is adjusted to obtain the desired gain at the frequency of interest. This
stop-band in the dispersion relation prevents amplification on a 200 MHz window that
can easily be avoided when designing our experiments. Finally, the amplifier operates
close to the quantum limit as seen from the SNR improvement of the detection chain
(Fig. 5.9 d) and total quantum efficiencies as high as 0.49% were reported in [136] for
qubit readout experiments.

A special care must be taken to ensure a continuous impedance matching where the lumped filters are
inserted by locally adjusting the parameters of the lumped element of the transmission line.

87



MICROWAVE AMPLIFIERS

Gain (dB)

b 30 Dispersive Feature
- Optimal pump
frequenc
40 q y
50
o
»
-60 +
70+
-80 - - - : ‘
4 5 6 7 8
Frequency (GHz)
d. 5 SNR Improvement

SNR Improvement=14.7055dB
Tho Twea = 20K
TwitH Twea = 0.68K

70 } Tt Proton = 036K

Power at output (dBm)

: —

w w/ i gt

-100

p 5 B 7 3 75008 75009 76  7.6001 76002
Frequency (GHz) Frequency (GHz)

Figure 5.9: Image and measurements performed by Greg Calusine at Lincoln laboratory at MIT
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[141]. a. JTWPA device package. In an actual experiment, the pump is combined
with the signal by a directional coupler and routed to the amplifier. The experiments
must be isolated from the JTWPA using commercial cryogenic circulators to pre-
vent injection of residual backward amplified noise in the experiment. The device is
made of a symmetric lumped-element transmission line so that any of the two ports
can be used as the input. A careful handling of the amplifier is appropriate because
of the high sensitivity of the device to electrostatic discharge. b. Measured trans-
mission coeflicient S5; through the JTWPA at low power and without any pump.
We observe a broadband transmission with some ripples probably due to standing
waves arising from imperfect impedance matching along the line or inhomogeneity
in the frequency of the filters. A clear dip in the transmission signal is observed
around 6.1 GHz corresponding to the so-called resonant phase-matching stop band
[136]. The optimal pump frequency is indicated by a red arrow. c. Power gains for
various pump powers. We observe a 20 dB of gain over a dynamical bandwidth of
more than 3 GHz leading to a gain bandwidth product beyond 30 GHz. d. Noise
spectral density at the output of the JTWPA when the pump is on (green) or off
(blue). We observe a large SNR enhancement bringing the noise temperature of the
detection chain from 20 K to 0.68 K.
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In the above sections, we described the amplifiers available in our lab. We saw that
phase preserving amplifiers are suitable for heterodyne measurement of a quantum
signal whereas phase sensitive amplification is the best choice to perform an homodyne
measurement. Several other criteria are important to select the best practical amplifiers
for one given experiment. In this section, we enlighten the relevant figures of merit of
the amplifiers presented in this chapter and we explain our amplification constraints to
carry out the quantum trajectories experiments described in section 6.2.

5.6.1 Amplifying setup

Our detection setup is composed of a succession of low noise amplifiers amplifiers as
depicted in Fig. 5.10 a that are designed to amplify low level signals with minimal
additive noise. However, the noise is amplified with the same gain as the signal in
addition to any additive noise. Therefore the amplifier cannot increase the signal to
noise ratio (SNR) as the signal level and the noise level rise with the same gain. In
the case of narrow band amplifiers, the amplifier is able to filter signals that are out of
band but it cannot improve the SNR due to the in-band noise.

a. typical input typical output
= A B
m m S v 6
= = signal
3 N T added noise
% gain _ %
= signal gaill Q.
= +added =
= noise =
= 20
2 n
freq (GHz) freq (GHz)

amplifying chain

input —{>—{>— ------------- —{>—{>— output

Gl,Nl GN7NN

o

Figure 5.10: a. Typical input and output signal of a low noise amplifier. The signal and the
noise floor are amplified by the same gain leading to a similar SNR at the input
and at the ouput. The degradation of the SNR is due to additive noise referred to
the input of the amplifier. b. Amplifying chain composed of N low noise amplifiers
in series that take a low level signal at the input to a detectable voltage at the
end of the chain. Each amplifier has a gain G; and a noise level N;. In the large
(G1 gain limit, the noise figure of the first amplifier dominates the noise figure of
the entire amplifying chain.
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It may seem pointless to amplify a signal if the SNR remains unchanged. To under-
stand the relevance of amplification, we need to think about losses. In the case of a
chain of amplifiers in series, a loss at the input of one of the amplifiers will not signifi-
cantly degrade the SNR of the signal if the noise level is already well above the thermal
noise level of the lossy channel. Following [40], let us consider the amplifying chain of
Fig. 5.10 b composed of n amplifiers. Each amplifier has a gain G; and an input noise
level N;. The total gain of the chain is G = G X G3 X ... X G, and the total noise of
the chain at the output is

Noutput = (GlGQGn)Nl + (G2G3Gn)NQ + (G3G4Gn)N3 —+ ... (548)

The total noise of the chain referred to its input reads

Noutput N2 N3
— N + 22 5.49
G e e, (5-49)

This measurement imperfection is best characterized by the total quantum efficiency

N:

of the detection setup. In the case of phase preserving amplifiers, the quantum efficiency

is given by n; = where the added noise NNV; is expressed in number of photons. As

1
Ni+1/2
explained in section 5.2.1, the minimal added noise for a phase-preserving amplifier is
1/2 photon and corresponds to unit quantum efficiency. In the large gain limit G; > 1,

the inverse detection efficiency of the chain is

-1 —1 ] ! U !
2 3
noo=n 4+ =+ + ... 5.50
1 Gy G1Gy ( )

If the first low noise amplifier has a sufficiently large gain G > n1/n2,m /n3Ga, ..., the
noise figure of the first amplifier dominates the noise figure of the entire amplifying
chain.

The most widespread commercial low noise amplifier able to operate at cryogenic
temperature of about 4 K are High Electron Mobility Transistor (HEMT) amplifiers.
They are able to reach high gain values around 40 dB on a bandwidth of several GHz
but they are limited by their input noise of 2.5 — 4 K for Caltech HEMT amplifiers
[155] and 2—2.5 K for Low Noise Factory (LNF) HEMT amplifiers [156] at 5 GHz. The
gain conversion between a noise temperature T' and a number of photons N is given by
the Bose-Einstein statistics

1 1 hw 1
N = o =7 = 3ot <2kBT> by (5:51)

Commercial amplifiers add of the order of 8 photons to the input signal before amplifi-
cation at 5 GHz. If we take into account the losses between a qubit and an amplifying
chain we find that the total added noise is equivalent to 20 photons at 5 GHz. Our
experiments require high detection efficiencies that are incompatible with using HEMT
amplifiers as the first detector of the chain.

5.6.2 Gain

A sufficient power gain of the near quantum limited amplifier that is the closest to the
system of interest is needed so that a significant part of the noise that we measure is
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due to zero-point fluctuations. Operating a quantum limited amplifier with a 20 dB
power gain as the first amplifier of the chain followed by a HEMT brings the noise
temperature of the HEMT to about 0.08 photons at 5 GHz referred to the input of the
chain. Roughly speaking, it means that about 16% of the measured noise is technical
noise coming from the HEMT amplifier and the other 84% comes from zero-point
fluctuations®. In section 6.2, we measure quantum trajectories with a JPA operated
with a gain of 22 dB and a JPC with a gain of 17 dB to make sure that the efficiency
of the detection chain is mainly limited by the efficiency of the first quantum limited
amplifier and not by the noise temperature of the following HEMT. A gain of 22 dB set
an upper bound of 94% on the quantum efficiency of detection of the dispersive signal
at 7.8 GHz while a gain of 17 dB set an upper bound of 70% on the quantum efficiency
of detection of fluorescence at 5.3 GHz.

5.6.3  Quantum efficiencies

The signal-to-noise ratio (SNR) of the measurement is limited by unavoidable losses
in the cables, insertion losses at the input of the amplifier in addition to the above-
mentioned noise temperature of the HEMT. The losses in the lines and microwave
components (diplexer and circulators) before the signal reaches the amplifier are esti-
mated to be at least of the order of —1.5 dB which leads to an efficiency ncapies ~ 0.7.
Since the first amplifier is not perfectly quantum limited, the inefficiency of the quan-
tum amplifier itself is routinely modeled as a beam splitter with a transmission ampiifier
followed by a lossless device. The beam splitter mixes the input signal with an extra
channel, which unavoidably comes with an additional noise. Intrinsic quantum efficien-
cies of JPA and JPC can reach 1 in principle but they are often reported to have a
finite value greater than 80% [40]|. For the fluorescence signal we must introduce an

additional collection efficiency ncon = ';Ct’zz ~ 87% that contains the probability that a
qubit emits a photon into the output line during a relaxation event [157]. In practice
our total quantum efficiencies are the product of all the above mentioned efficiencies

and they were limited to 34% for the JPA and 14% for the JPCS.

5.6.4 Dynamical bandwidth

In order to measure the real time dynamics of a quantum system continuously, the
dynamical bandwidth of the amplifier has to be larger than the typical rates and fre-
quency of the evolution of interest. However, amplitude gain of the amplifier is inversely
proportional to the bandwidth of the amplifier (see Eq. (5.26)). The gain-bandwidth
product of the device being constant, there is a tradeoff between reactivity and gain for
our amplifiers. In practice we decided to operate both amplifiers with a bandwidth of
4.25 MHz that led to the above-mentioned gains to reach a sampling time of d¢t = 100 ns
separating two successive independent measurements.

We assume in this simplified calculation that there is no extra added noise by the first amplifier of the
chain.

We also showed by numerical simulation in section 6.4 that the quantum efficiency of the detection
setup only qualitatively changes the statistics of quantum trajectories for efficiencies up to 75%.
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5.6.5 Static bandwidth

The frequency tunability of the amplifiers allows to shift the operating frequency on
a range called the static bandwidth. It was of the order of 300 MHz for the JPC and
500 MHz for the JPA. This figure characterizes our ability to match the center frequency
of each amplifier with either the frequency of the qubit or cavity. In practice it took us
several tries to get the correct frequency agreement with decent quantum efficiencies
because of fabrication uncertainties and aging of the junctions that shift the frequencies
from one cool-down to another.

5.6.6 Dynamical range

The 1 dB-compression point is defined by the amount of input power beyond which
the power gain is reduced by 1 dB. The theories described above rely on the first order
expansion of the cosine of the inductive part of the Hamiltonian. When the number of
photons inside the amplifier increases this approximation breaks down and the power
gain starts to deteriorate’. Higher order non linearities are known to limit not only
the gain of the amplifiers but the quantum efficiencies and to introduce non gaussian
signatures in the output field [144]. 1 dB-compression points of the order of —120 dBm
are routinely reported for JPAs and JPCs. In our experiments, we operated within
the single photon limit so the compression of the amplifier gain is negligible for both
measurements and this figure of merit is not important.

5.6.7 Comparison between two detection chains and a JTWPA

In the final year of this thesis, we received a JTWPA from Lincoln Labs [141], which
has incredible performances in term of gain-bandwidth product and a very high 1 dB-
compression point® of —95 dBm when operated with a gain greater than 15 dB. This
amplifier could have been used as a quantum limited amplifiers for both measurement
channels and total quantum efficiencies has high as 49% are reported for qubit readout
[136]. However, using a phase preserving amplifier to perform an homodyne detection
leads to an effective reduction of the quantum efficiency of the chain. In current state
of the art experiments, the JTWPA is placed after JPAs or JPCs pre-amplifiers and
immediately followed by a HEMT amplifier [49] to obtain a maximal quantum efficiency.

Note that the 1 dB-compression point of a JPA can be increased by replacing the SQUID with an array
of M SQUIDS. It changes the inductive energy —Ej cos(p) — —M E; cos(p/M) so the non-linearity
is ‘distributed’ over several junctions [158].

JTWPA are designed for multiplexed readout of many qubits. A broadband gain combined with a high
1 dB-compression point is required for this kind of application.

92



5.7 CONCLUSION

5.7 CONCLUSION

This chapter was dedicated to the operation principle of quantum limited amplifiers.

We explained

e the general distinction between phase preserving and phase sensitive amplifica-

tion.

e the choice of design and operating principle of the Josephson parametric amplifier
(JPA) with a detailed discussion on the different pumping schemes.

e the Josephson ring modulator (JRM) and its use in the Josephson parametric
converter (JPC).

e the figures of merit of the different amplifiers and their optimization for our

experiments.

The field of superconducting amplifiers in the microwave domain is still a very ac-
tive field of research. Recent works are pushing further the limitations mentioned in
this chapter. Roy et al. went beyond the usual gain-bandwidth product by correctly
engineering the input impedance of a JPA [145]. Quantum efficiencies as high as 80%
were reported [159] by placing an artificial atom directly inside a parametric amplifier?.
The Josephson junctions can be replaced by a pure three-wave mixing Josephson dipole
element [160] to reduce the non-linearity of the amplifier. There has been interest is de-
veloping quantum limited nonreciprocal devices [161, 162, 163, 146, 164, 165]. The long
term goal is to replace the lossy commercial isolators between the system and the am-
plifier by a on-chip nonmagnetic nonreciprocal device compatible with superconducting

technology.

9 The amplification chain following the device was composed of a JPA, a JTWPA, a HEMT and room

temperature amplifiers.
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QUANTUM TRAJECTORIES

One of the first non-classical aspects we learn about quantum mechanics is that measur-
ing a system affects its state. This measurement back-action can lead to great confusion
if one does not recall precisely what is a quantum state. For instance, why would the
state of a system S depend on the fact that an observer recorded the measurement
outcome or not? A quantum state is nothing but an efficient way of encoding anything
one can predict about the statistics of a future measurement on the system. OK but
statistics on what ensemble? The prediction in fact concerns statistics on realizations of
the experiment with common assumptions. When we say that the measurement affects
the state of a quantum system, it means that if we do the statistics on realizations
where that measurement lead to a given outcome, it may differ from the statistics on
realizations where we do not condition on the measurement outcome at all. In a given re-
alization of an experiment, several observers may have different quantum states. There
is no conflict in their predictions as they do not concern identical selections of exper-
imental realizations. Simply, the observers that extract more information will be able
to predict better the outcome of a later measurement for a given realization. There-
fore, the measurement back-action boils down to calculating conditional probabilities
on quantum systems measurements. The way a quantum measurement modifies a quan-
tum state is thus specific to the nature of the measurement and to the outcome that
the observer records.

This chapter is dedicated to the quantum back-action of continuous measurements on
a spin-1/2 with two kinds of detectors by several observers. We were able to reconstruct
the modified quantum state of the system as a function of time from the experimental
records, from the point of view of three observers. This path in the Hilbert space is
called a quantum trajectory. The continuous reconstruction of the state of the system
is described by the formalism hereinafter referred to as repeated Kraus operations or
quantum Stochastic Master Equation (SME) in the continuous time limit. The concept
of quantum trajectories dates back to the 1990’s, when they were introduced [166, 42,
167] as a mathematical trick to reduce the complexity of Monte Carlo simulation of
Lindblad equation®. In the case of weak measurements of a quantum system, the state
diffuses in the Hilbert space under the stochastic measurement backaction. This diffu-
sion was first predicted in 1992 as a mathematical possibility by Gisin and Percival [41]
and understood a year later as corresponding to a physical measurement backaction by
Wiseman and Milburn [168]. Excellent reviews on the subject can be found in [42, 44,
45, 46].

Diffusive quantum trajectories were observed in two physical systems until now. Using
a series of propagating Rydberg atoms, it was possible to measure weakly and repeat-
edly the state of a microwave cavity and reconstruct its quantum trajectories [43|. This

The idea was to replace the open dynamics of an N x N density matrix by a collection of pure stochastic
wave functions of dimension V.
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pioneer experiment soon found its equivalent in the field of superconducting circuits.
Indeed, owing to the development of high-efficiency quantum limited detectors in the
microwave domain over the last decade, it became possible to realize weak continu-
ous measurement of superconducting qubits with observable measurement backaction.
Before the present work, several experimental reconstructions of quantum trajectories
were performed using continuous homodyne |27, 28, 29| or heterodyne [26] detection of
a dephasing channel, homodyne [25] or heterodyne [23] detection of fluorescence. More
exotic experiments were carried out such as the observation of quantum trajectories of
two qubits [47, 48, 169] or the simultaenous detection of two incompatible dephasing
channels [49, 170].

We will first explain the effect of a weak measurement on the state of the system by
tracking its evolution conditioned on the measurement outcome by using the generalized
measurement theory explained in chapter 3. Second, we will describe a sequence of
such measurements forming a diffusive quantum trajectory and prove that they provide
a faithful record of the state of the system. Then, we will describe the statistics of
the trajectories and observe a continuous transition from the Zeno regime to the usual
Rabi oscillations. Similarly to other diffusion phenomena, the probability to find a
quantum trajectory at a given time and position inside the Bloch sphere is ruled by
the Fokker-Planck equation. The diffusion tensor reveals that the trajectory diffuses in
3 dimensions and the magnitude of the diffusion is lower bounded by a Heisenberg-like

inequality.

6.1 QUANTUM BACK-ACTION OF MEASUREMENT
6.1.1 Kraus operators formulation

The Copenhagen interpretation of quantum mechanics usually arouses every student
curiosity because of its measurement postulates that imply an instantaneous collapse
of the density matrix whenever a Von Neumann measurement occurs. We introduced
the concept of generalized measurements in chapter 3 wherein the system first interacts
with a probe that finally undergoes a Von Neumann measurement resulting in a partial
collapse of the density matrix of the system. While keeping the same postulates?, this
paradigm allows us to ‘zoom’ in on the measurement process and observe the dynamics
of the collapse of the density matrix. Let us assume that the state of the system under
study is described by a density matrix p. Immediately, after the measurement of an
outcome p, the conditional state of the system is given by Eq. (3.5)

MMPM;E

=__Hr 6.1
Te(M,pM}) o1

Pu

where {M,} is a set of Kraus operators. In the continuous measurement limit, we saw
that one of these operators can be singled out as being the ‘no-click’ Kraus operator

My=1— %Hdt — Jdt (6.2)

Our approach does not solve the philosophical questions associated to the measurement postulates but
it allows us to understand some of the consequences of this theory.
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while the others are at best of order V/dt i.e.
M, = VdtL,, (6.3)

where the {L,} are the jump operators of order unity and J = % > 10 LLL“. To clarify
the discussion, let us take the example of a spin-1/2 spontaneously emitting photons
collected by a photocounter. We work in the rotating frame oscillating at the frequency
of the atom so that H = 0 in this frame. There is only one jump operator L = /T'jo_
where I'y is the inverse lifetime of the atom. If no photons are detected, the state of
the system evolves according to Eq. (6.1) under the ‘no-click’” operator

r
My=1- ?lmra,dt (6.4)

and this possibility happens with probability pg = Tr(Mgng) =1- Lgl (14-2)+0(dt?).
When one photon is detected, the system evolves under the ‘click operator’

M1 = \/FldtO', (65)

with an associated probability p; = Tr(M;pM. ;r ) = D% (1+2). At order dt, the complete
evolution of the system can be recasted with a unique operator M as follows

Mp Mt

Pt+dt = T A
" Te(Mpe M) (6.6)

r
with M =1 — ?10'4_0'_6# + NVdt

where N = 0 if no click ocured and N = 1 if a photon was detected during dt, N
is a discrete stochastic variable (a Poisson process) sampled with probability py and
p1 = 1 — po. If the photocounter has a finite efficiency 0 < n < 1, the relation of
evolution Eq. (6.6) becomes [44, 171]

_ MpM'+ (1 —n)Tidto_pioy
Predt =y (MpeMT + (1 = n)Tidto_pioy)

(6.7)
r
mmle—iﬂmﬁ+WWWﬁ

where the new term I'yo_p;o4 corresponds to the Kraus evolution resulting from an
unread measurement performed by the environment. This unread measurement happens
with a probability 1 — 7 to account for imperfect detection of the photocounter.

The Eq. (6.7) gives the conditional evolution of the density matrix depending on the
output of the detector and we showed that the Kraus formulation encompasses at the
same time the decoherence resulting from the unread part of the measurement and the
innovation of the density matrix due to the stochastic output N of the measurement.
Let us apply this formalism to our experiments with either the homodyne detection of
the cavity field or the heterodyne detection of fluorescence and compare the integrated
measurement records with a subsequent and independent tomography of the partially
collapsed system.
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6.1.2 Dispersive interaction

In the case of the continuous dispersive measurement, the jump operator is of the form
Ly =/ WQF 47, and the evolution of the state is given by the Kraus map

( __Kip)
7T T (K ()

r
where K (py) = MpMT + (1 — nd)ydazpazdt

{ Ly nal'q
dM=1—-(-H+ —)dt _—
an (h + 1 ) + 5

| with the record w(t)dt = /204l gz dt + dW (1)

o w(t)dt

The expression of the measurement records comes from Eq. (3.23) and z; = Tr(o,p¢) is
the z component of the Bloch vector. Note that we neglected any energy relaxation of
the qubit and the pure dephasing of the artificial atom so Eq. (6.8) is valid for times
much smaller than 77 ~ 15 ps and T, = 17.9 ps. In the case of an undriven system,
the projections of Eq. (6.8) along the Bloch coordinates in the rotating frame of the

qubit read
dxy = =T gredt — \/2ngl gz 2edWoy (1)
dy; = —Tgqyedt — QUddetthWw(t) . (69)

dze = /2nala(1 — 27)dW, (t)

In the actual experiments (Fig. 6.1), we integrate the record w(t)dt of Eq. (6.8)
during a time T' = 1 us < 711 and we compare it with an independent tomography
(see Fig. 6.1 a) similarly to Murch et al. [27]. Owing to the stochastic nature of Eq. (6.9),
integration and differentiation require the so-called Ito’s formula.

For a stochastic variable3 H; of the form
dH; = Aidt + B;dW; (610)

where dW; is a Brownian motion. The differential of a function f(Hy,t) that depends
on the stochastic variable H; is modified according to Ito’s formula

of of 10%f 9
A(f (Hy, 1)) = o (Hy, )t + S (Hy, O)dH, + 525 (i 1) Bdt (6.11)
From Eq. (6.11) we obtain
d(arctanh(z;)) = diztz + 2zl gdt = \/2nqL qw(t)dt (6.12)

1— 2
that can be integrated between 0 and T' to obtain the evolution of the z component of
the qubit under measurement as a function of the integrated measurement record

T
arctanh(zr) = arctanh(zg) + \/Qndfd/ w(t)dt. (6.13)
0

In our experiments, dH; plays the role of the increments of the Bloch coordinates (dz:, dy:, dzt).
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Figure 6.1: a. Similarly to section 3.2. We amplify and detect the imaginary quadrature Im[aout]

of the cavity field leading to the measurement record w(t). The signal in the IQ
plane is squeezed along the Q quadrature before mixing with the local oscillator.
The measurement records encode the o, component of the qubit state according to
Eq. (6.8). b. Pulse sequence. We initialize the qubit in (o) = 1 with a 7/2 pulse.
We integrate the measurement records w(t) during T = 1 us, Q = fOT w(t)dt. We
then perform a strong tomography of o, o, or o, at the end of the experiment.
¢ Back-action of the measurement on a qubit superposition state. The state of
the system is thrust toward |g) (south pole) or |e) (north pole) depending on the
sign and magnitude of the integrated record Q. d. We gather the experimental
realizations yielding the same integrated measurement record Q within +1 mV and
we average the tomography results over 5 x 10° realizations. The signal measured
at the output of the refrigerator Q is amplified with a constant (cables attenuation,
LO power, ...) that was calibrated by measuring the output noise of the detection
setup (see section 6.2.3.1). The correlation between the integrated records and the
tomography behaves according to Eq. (6.15) (solid lines) with a quantum efficiency
na = 25% and measurement induced dephasing rate I'y = 0.95 us in agreement
with independent calibrations. Note that the value of 74 is smaller than the one
used to unravel quantum trajectories in section 6.2 because the JPA was operated
at a different operating point.
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Moreover we can infer the z component of the qubit because Sarlette and Rouchon
showed [172] that the dynamics of the density matrix is confined to an ellipsoid for this
detection. The equation of the ellipsoid reads

a2+ y? + (22 —1)=0 (6.14)

where v = (1 —ny)Tq and by = bgpe ™" with by determined by the initial conditions. The
confinement of the dynamics to this manifold can be shown by direct calculation from
Eq. (6.11) and a physical explanation is given in section 6.4.

From Eq. (6.13) and Eq. (6.14), we obtain that for a qubit initialized in the pure

state [+) = (|g) + le))/v2 [27],

xp =4/1— z%erT

yr =0 (6.15)

zr = tanh (\/ 2ndFdQ>

where Q = fOT w(t)dt is the integrated measurement record.

We perform such an experiment in Fig. 6.1 a-b, we recall the detection setup and the
pulse sequence for this measurement. The back-action of the weak measurement takes
the state of the qubit away from the equator and brings it toward one of the pointer
states of the measurement |g) or |e) depending on the integrated signal (Fig. 6.1 c).
We can check the prediction of Eq. (6.15) to demonstrate that the Kraus operator
formalism (6.8) accurately describes the update of the quantum state conditioned on
the measurement record. This measurement provides a calibration of the quantum
efficiency of the detection setup 1y = 25% in agreement with the method of section 3.2.

We demonstrated that we are able to observe the partial collapse of the wave function
under the weak measurement of an observable. When the integrated signal is close to
zero, no information was extracted on the state of the system. The density matrix stays
close to the equator. When the integrated signal is extremal, the qubit state collapses
in |g) or |e). Increasing the measurement rate 73’y — +o0, the hyperbolic tangent
of Eq. (6.15) can be replaced by a step function. We then recover the case of a Von
Neumann measurement.

6.1.3 Measurement along the orthogonal quadrature

By changing the phase of the pump of the JPA, we can tune the squeezed quadrature of
the amplifier. The information on the qubit state is encoded in the phase of the outgoing
signal that only contributes to the imaginary part of agut. This former quadrature is
thus always chosen to readout a qubit. Conversely, the real part of the field does not
depend on the state of the qubit. It is thus discarded when performing a tomography. In
this section, we demonstrate that the fluctuations of the real quadrature of the signal
carry the information about the back-action of the measurement induced dephasing
[27].
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6.1 QUANTUM BACK-ACTION OF MEASUREMENT

The jump operator of the problem is L, = iL,, = 14/ ”dQ dd d .. The projected dynamics
reads

dry = =T qxedt + /2040 qyedWoy (1)
dy; = —Tqyrdt + \/2ngL g dWy, (t) (6.16)
dZt =0

with the measurement record
w' (t)dt = dWy (t). (6.17)

Note that in this case, the total output signal of the detection setup corresponds to

an offset signal k (projection along the @ axis of the mean of the distributions

RzTX2
in Fig. 6.2 a) with n the average number of photons stored inside the cavity plus
the measurement record (6.17) that contains noise alone. This case is very interesting
because the measurement record (6.17) does not depend on p but still induces a back-
action on the qubit state. The integrated record allows us to track the evolution of
the qubit state according to Eq. (6.16). This measurement leads to a diffusive behavior
of the qubit state along the equator of the Bloch sphere (Fig. 6.2 ¢). It can even be
corrected by feedback if one wants to stabilize a given state [28].

Similarly to the previous case, the state of the qubit is confined to a deterministic

circle [172] at a constant z altitude in the Bloch sphere. Besides,
vty =e ", (6.18)

where v = (1 — n)T'y is the measurement induced dephasing rate corresponding to the
unmonitored part of the cavity field. A physical explanation of this property is given
in section 6.4. Let us use Ito rule (6.11) and differentiate

ndI‘dxtdt ,7],52 mgtdww’ (t)
d(arccos(7t)) = ——= | 1 — -
J1- a2 1- J1- a2
! ~2 i (6.19)
. nal qbdt i V21T dWy (t)
d(arcsin()) = ———= (1 — =) - 4
V11— 2 1— g V1-3;
where 7; = €'y and §; = e7ty,. Using Eq. (6.18), the expression boils down to
d(arccos(ezy)) \/QndFddW
(6.20)
d(arcsin(ey;)) = /21qT qd W (

We obtain the evolution of the Bloch coordinate between 0 and T as a function of
the integrated measurement record, for a qubit starting in (|g) + |e))/v/2

ITT = COS ( 277dFdI~> e T
(6.21)

yr = sin ( 2ndFdf) e T

where I = fo t)dt is the integrated measurement record.

Histograms of the integrated measurement (Fig. 6.2) records reveal a clear correlation
with the final tomography according to Eq. (6.21). We find a corresponding quantum
efficiency of ng = 24% with the same operating point as in Fig. 6.1.
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Figure 6.2: a. We amplify and detect the quadrature Re[aoys] of the cavity field leading to
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the measurement record w’(t). The signal in the IQ plane is squeezed along the
I quadrature before mixing with the local oscillator. The measurement records
do not depend on the qubit state according to Eq. (6.17) but its noise contains
the information on the dephasing of the qubit. Note that we do not take into
consideration the offset signal r, /-7 in the IQ plane so that w'(t) has a zero

average. b. Pulse sequence. We initialize the qubit in (o,) = 1 with a 7/2 pulse.
We integrate the measurement records w’(t) during T = 1 ps, I = fOT w'(t)dt. We
perform a strong tomography of o, o, or o, at the end of the experiment. ¢ Back-
action of the measurement on a qubit superposition state. The state of the system
picks up a random phase that depends on the measurement record. d. We gather the
experimental realizations yielding the same integrated measurement record I and
we average the tomography results over 5 x 108 realizations. The signal measured
at the output of the refrigerator I is amplified by a constant that was calibrated
by measuring the output noise of the detection setup (see section 6.2.3.1). The
correlation between the integrated records and the tomography behaves according
to Eq. (6.21) (solid lines) with a quantum efficiency ny = 24% and measurement
induced dephasing rate I'y = 0.95 us in agreement with independent calibrations.



6.1 QUANTUM BACK-ACTION OF MEASUREMENT

6.1.4 Fluorescence signal

One can also investigate the back-action of the fluorescence measurement. Following
[85], we obtain integrable quantities for the monitoring of energy relaxation. In this
case, the evolution of the density matrix is related to integrated weighted signal and
not to the raw integrated signals. The problem is described by two jump operators
L, =+/I'1/20_ and L, = iL,. Similarly to Eq. (6.8), we can write the incremental
evolution of the density matrix as a function of Kraus operators

_ K(p)
P T (K ()
where K(p;) = MpMT + (1 — ny)T1(0_poy)dt . (6.22)

] r r
and M =1 — (%H + oo )dt + %a_(u(t) +iu(t))dt

with the records

T
u(t)dt = 1/ %xtdt +dW,(t)
: (6.23)

nyly

v(t)dt = 5

yedt 4+ dW, (t)

In the case H = 0, projecting Eq. (6.22) along the Bloch coordinates yields

T T
di; = —éwtdt + % (1 + 2z — 27)dWy (t) — zyedWo (1))

T I
dyr =~ yrdt + % (1 + 2 — D) AW (t) — zeyed Wi (1)) (6.24)

T
| = —T1(1+ 2)dt - %(1 + 2) (2dWo(t) + ydW,(t))

Remarkably, the dynamics of the quantum state predicted by Eq. (6.24) is restricted
to the surface of a deterministic spheroid going through the south pole of the Bloch
sphere [23, 172]

1\ 2

ct(x? +y7) + ¢} (zt +1-— c) =1 (6.25)
t

where ¢; = 17+ (c(0) —n)el 1" and ¢(0) is determined by the initial condition. We worked

in the presence of a parasitic pure dephasing of rate I, ~ (27 ps)~! that leads to an

additional decoherence dynamics dx; = —I',xdt and dy; = I',y,dt. Using Ito rule

Ty I' Tt nel'y nely
d =(2-r W,
<1+zt) <2 "9>1+thr g T\ Ty

Iy 4 nsly
—(Z2-r N t)dt
(2 “’)1+thr 5l

(6.26)
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Figure 6.3: a. We detect the complex amplitude of the fluorescence emitted by the qubit lead-
ing to two measurement records u(t) and v(t). The signal is amplified by a near
quantum limited amplifier (JPC) to ensure a significant detection efficiency. b.
Pulse sequence for the measurement. We initialize the qubit in |e) and we integrate
the measurement records (u(t),v(t)) during 7' = 10 us to construct the integrated
weighted signals m,, = fOT e~ /2=Te)by(t)dt and m, = fOT e~ (M/2=Te)by (1) dt. We
then perform a strong tomography of o, o, or o,. c-f. We bin together all the
experiments that yield the same m, or m, and we average the tomography results
on each subset to reconstruct the ratios 7 and ZLH The figure contains 9.5 x 10°
measurements. We observe a linear correlation between m,, (resp. m,) and -5
(resp. 2245 ) and no correlations between m,, (resp. m,) and ;# (resp. J*27) in
agreement with Eq. (6.27). We extract the value of the quantum efficiency 1y = 24%
from this measurement. Note that this value is higher than the one used in the tra-

jectories of section 6.2 because the gain of the JPC was higher in this measurement.
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6.2 QUANTUM TRAJECTORIES

The quantity y;/1 + z; can also be differentiated. We obtain the following result for
a qubit starting in (o,) =1

o~ (F-T)T z(T) _ nsT My
2(T)+1 2 (6.27)
(o _yd) y(T) Ufrlm
A(T)+1 2 Y

where m,, = [ e”11/27L)ty(t)dt and m, = fOT e~(1/2=Te)ty(#)dt are the integrated
weighted signals.

The predicted Bloch coordinates x; = Tr[ogps], v+ = Tr[oyps] and z; = Tr[o.p] are
not independently measurable in a single realization of an experiment. Let us select a
set of trajectories sharing a given m,,. Every trajectory k as the same 11% ratio which

X

is also equal to 75 where © denotes the average of the set of trajectory of equal my,.

We can thus repeat the experiment and carry alternatively a strong measurement of
either o, o, or o, and compute the % ratio of all trajectories that led to the same
my,. In Fig. 6.3, we record the fluorescence signal of a qubit initialized in (o,) = 1 for
T = 10 ps. We sort the trajectories according to the values of m, and m, calculated
by integration of the measurement records. We observe a linear correlation between

m,, and 1 and between m, and validating the Kraus operator formalism to

+1
predict the evolution of a relaxing qubit undergoing an heterodyne measurement. The

measurement is a calibration of the quantum efficiency of detection, here 1y = 24%.

6.2 QUANTUM TRAJECTORIES
6.2.1 Repeated Kraus map and Markov chain

In the previous section, we saw measurement ‘in action’ and we demonstrated that
the Kraus formalism of equations (6.7,6.8,6.22) faithfully predicts the update of the
density matrix conditioned to the information written in an observer’s memory during
a single measurement of duration 7T'. Let us extend this formalism to an arbitrary set of
jump operators {L,} associated to the detection efficiencies {n,} characterizing every
decoherence channel of the system.

The incremental evolution of a quantum state p of a monitored open quantum system

reads
( 0 _ Ky(t) (pt)
T (K, (p1)
with Ky(t) (pr) = (t)ptM y(t) + Z T}M )dtL ptL

= (6.28)

i
and My =1~ | 2H+ Y LLLu/2 | di+ Y /Ly, (t)dt
\ p#0 u#0

The associated measurement records read

yu(t)dt = /mTr(Lup + pLl)dt + dW,(t). (6.29)
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and y(t) = (yu(t)), is the vector of the measurement records at time t. The super-
operator K is called a partial* Kraus map. We recall the properties of the Wiener
processes {W,} in Ito formalism
E[dW,(t)] =0
W0 =0 630
dW,(t)” =dt
Repeating a series of such measurements® yields a succession of outcomes y(0), y(dt), y(2dt), ...
and at each time step the density matrix is updated in agreement with

_ Ky(ndt) (pndt)
Tr(Ky(ndt) (pndt))

Pndt = Pndt+dt = P(n+1)dt (6.31)

Under Markov assumption, the successive evolutions (6.31) are independent and
stochastic specifying a Markov chain® on the density matrix called quantum trajec-
tory. A quantum trajectory is the time evolution of the density matrix of a system
monitored by an observer” conditioned on the realization of the measurement records.

6.2.2 The stochastic master equation

At first order in dt, the partial Kraus map of Eq. (6.28) reads

i

Ky (pt) = pt — h[H’ peldt + Z dt(LuPtLL —
I

LiL,  LLL,
9 Pt Pt72 )
(6.32)

+ > (Lppe + prLf)yp(t)dt.
"

And since Tr(Ky ) (pr)) = 14+, | /nMTr(Lupt—FptLL)yu(t)dt. The normalisation factor
can be approximated at order dt by

1
e = 1 Tr(Lypi+pe LT )y, () dt+ Tr(L,pi+p.LT)2dt. (6.33
Tr(Ky@) (o)) Zy:\/% (LupetpeL))yu(t) ZH:W (Lupt+piLy,) ( )

By combining Eq. (7.8) and Eq. (7.9), we obtain the so-called stochastic master equation
(SME)

dpy = —%[H, prldt+ " Dilpr)dt + 3 /M) dAWi(t) (6.34)
=1 =1

where the Lindblad super-operator is D;(p;) = LiptLl-L — % ptLI»LZ- — %LZTLZ-pt, the innova-
tion super-operator is M;(p;) = Lips + ptLI —Tr(Lips + ptL;f)pt and the measurement
records are given by Eq. (6.29).

A partial Kraus map is not trace preserving in general Tr(K(p)) < Tr(p) contrary to a Kraus map.
This formalism can be extended to an arbitrary sequence of measurements of unequal duration
T, 15,73, ...

See for instance [108, 173] for an introduction on the subject.

The quantum trajectory is observer-dependent. The dynamics of the system is defined by its Hamilto-
nian, the set of jump operators {L,} and the initial condition. A class of observer is specified by the
set of measurement efficiencies {n,} associated to each information channel.
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The contributions of the terms in Eq. (6.34) are well-separated. The first two terms
correspond to the Hamiltonian evolution and the dissipation of Lindblad equation. The
third term is called the innovation. It originates from the measurement back-action
associated to the different jump operators. This last term averages out to zero because
of the properties of the Wiener processes (see Eq. (6.30)). The solution of Lindblad
equation is thus recovered by averaging a large number of quantum trajectories.

The SME is a continuous stochastic partial differential equation used to describe
random walkers. It is equivalent to the Kraus formulation (6.28) when dt is much
smaller than any other time-scale of the system. We will use this equation in section
6.4 to derive a Fokker-Planck equation for our system.

6.2.3 From measurement records to quantum trajectories

We follow a systematic procedure to unravel the quantum trajectories from the raw
measurement records.

6.2.3.1 Correlation of the output signals

The JPA and JPC are used as pre-amplifier with a bandwidth of 4.25 MHz > T’y
(measured by a Vector Network Analyzer sent on the reflection probe of the cavity as
in chapter 5) and the signal is integrated over time steps of duration dt = 100 ns. The
filtering of the signal is incompatible with our white Gaussian noise description (6.30)
of the stochastic part of the signal. We propose here a method to ‘unfilter’ the records.
The filtering effect can be modeled as a first order low-pass temporal filter with a time
constant Typs or Typc and a gain Sypa or Bypc that depends on the amplifier. At room

temperature, we acquire (a(t),0(t),w(t)) such that

=g

(t) = Bypa(1 — e~ /TPy (t) 4+ e~ TPoq(t — dt)
(t) = Bypa (1 — e~ /TPy y(t) 4 e~ /TPyt — dt) (6.35)

W(t) = Bypa(1 — e~ WP () 4 e~ W/ PAG (1 — dt)

[SH

where (u(t),v(t),w(t)) are the normalized records with an infinite bandwidth discussed
up to now in this thesis.

The value of the aforementioned parameters were experimentally determined. The
prefactors  are obtained by rescaling the variance of the measurement records to
dt according to Eq. (6.30). The correlation times of the filters are chosen to can-
cel out the first order correlations of the measurement records Efu(t)u(t + dt)] =
E[v(t)v(t +dt)] = E[w(t)w(t 4+ dt)] = 0. The corresponding time constants are found to
be 7y5pa = Typc = 78 ns (see Fig. 6.4). We independently checked that this condition
maximizes the amount of information gathered on the quantum system via the mea-
surement records i.e. this value of time constants gives the highest detection efficiencies.
The equality between the two time constants is due to the equality of the bandwidths
of the amplifiers that occurs owing to a careful choice of power gains for each amplifier.
The time step dt used in the trajectories cannot thus be chosen arbitrarily small because
of the finite bandwidth of the amplifiers or arbitrarily large because the reconstruction
with Eq. (6.28) is only valid for dt much smaller than any time scale involved in the
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Figure 6.4: Non normalized experimental correlations between two consecutive unfiltered mea-
surement records before normalizing their variance to dt as a function of the time
scale T of Eq. (6.35). The parameters Tyjpp = Typc = 78 ns (green dashed line) were
found to cancel the autocorrelation of the signals induced by the finite bandwidth
of the amplifiers.

experiment. Our choice dt = 100 ns was the smallest achievable time step compatible
with the bandwidth of the amplifiers. The unfiltered and rescaled measurement records
are used to reconstruct all the trajectories presented in this thesis.

6.2.3.2 Unravelling the trajectory

We model our system with four jump operators L, = 4/ %a_, Ly =1Ly, Ly = 4/ ”d—gdaz

and L, = 4/ %az. The fourth jump operator takes into account the unread (1, = 0)

pure dephasing® of the qubit so that the total decoherence rate of the system is I'y =
% +1I'y, + I'y. The measurement record-dependent evolution reads

. Ky (pt)
t t — M /v 7\
" Tr(Ky4 (1)

. Iy
with Ky« (pr) = My(t)ptM;(t) + (1= ng)dtlho—poy + (1 —na)dt—-ozp0;

h 2 4 2 2

\

H T I'y+T r r
and M) =1 — <Z +Loio_ + M) dt + /L 10_(u(t) +iv(t))dt + Mazw(t)alt
(6.36)

The system is driven by an Hamiltonian of the form H = —%ay where 2 is the Rabi

frequency. All the parameters that enter Eq. (6.36) are determined by independent

T’y is the residual dephasing rate of the qubit when the cavity is not populated.
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measurements and we check that the average evolution? is faithfully described by the

Lindblad equation with the corresponding parameters.

a. 10 ‘ ‘ ‘ ‘ ‘ b.

il il i
MY
(1)

1 2
time (us

4

Figure 6.5: A typical 5 us-long tracking of a quantum state. a. Raw (not normalized) mea-

surement records @(t) (blue), 9(¢) (red) and w(t) (yellow) as a function of time
for one realization of the experiment. These records feed Eq. (6.36) with the pa-
rameters I'y = (15 ps)™!, Ty = (0.9 us)™*, Ty, = (17.9 ps)~ !, Q/27 = 5.2 pus and
(nf,ma) = (14%, 34%). The records are very noisy but Eq. (6.36) acts as a filter that
leads to the trajectory represented in the Bloch sphere in b.

In Fig. 6.5, we give Bloch sphere representation of a 5 us-long quantum trajectory.
The measurement records are dominated by noise but Eq. (6.36) acts as a Bayesian
filter leading to a diffusive trajectory. The trajectory is oscillating around the y axis
because of the drive described by the Hamiltonian.

6.2.4 Validation by an independent tomography

Quantum trajectories are physically meaningful if and only if they can be used to predict
the distribution of outcomes of any future measurement performed of the system. The
validity of the reconstructed trajectories can be tested by post-selecting an ensemble of
realizations of the experiment for which the trajectory predicts a given value z(7T) =
Tiraj at a time T'. If the trajectories are valid, then a strong measurement of o, at time
T should give x(,j on average on this post-selected ensemble of realizations. In practice,
we compare the prediction of the quantum trajectories with a strong measurement by
selecting all the trajectories of a large ensemble that ends up in some slice of the Bloch
sphere (see Fig. 6.6). An example of 4 trajectories ending up with 0.74 < ¢raj < 0.76
are depicted on Fig. 6.6 d. Here, the average over the strong o, measurement yields a
value ~ 0.75.

9 We recall that the raw average of the measurement records is a full quantum tomography of the system
(see section 3.4).
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# j > 1
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Tomographic validation of the quantum trajectories. a. b. c. Correlations between
the coordinates (Ziraj, Yiraj, Ztraj) Of the trajectories after 19.8 us of evolution and
an independent tomography. The quantum trajectories were reconstructed from
Eq. (6.36) with the parameters I't = (15 us)™!, Ty = (5 us)~!, T'y, = (17.9 us) ™,
Q/2m = (5 us)~! and (ny,mq) = (14%, 34%). Each panel represents the average
value of the tomography results for the subset of trajectories ending up less than
0.01 away from a given value of Tiraj (), Ysraj (b) OF Zuaj (€). The error bars are
given by the standard deviation of the tomography results divided by the square
root of the number of trajectories in the subset out of a total number of 1.5 million
trajectories per panel. The agreement between the tomography and the coordinates
of the trajectories demonstrates the validity of the quantum trajectories. d. Bloch
sphere representation of 4 quantum trajectories that end up with 0.74 < 2;a; < 0.76
(red dashed line) after 19.8 us corresponding to one bin of the histogram in a.
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We have checked for any value of @iy, (Fig. 6.6 &), Ytraj (Fig. 6.6 b) and 24 (Fig. 6.6
c), and for 30 representative values of measurement strength and drive that the trajec-
tories predict accurately the tomography results. However, in the presence of a large
drive Q ~ 1/dt or a large measurement rate I'y ~ 1/dt, the unravelling (6.36) is no
longer valid and large deviations are observed between the reconstructed trajectories
and the independent tomography.

6.2.5 Parameter estimation

In this section, we show that the parameters of the filter (6.36) can be inferred in a
self-consistant manner from the measurement records themselves. It was already demon-
strated in our group by Six et al with a mazimum likelihood estimation in the frame-
work of hidden Markov problems [174]. We propose instead a new empirical method
that rely on the validation of the trajectories by an independent tomography. We apply
the stochastic filter (6.36) for various values of the parameter that we want to esti-
mate. Only the correct value provides valid quantum trajectories in agreement with
a subsequent tomography. The time constants entering Eq. (6.36) can be estimated
by comparing the average evolution of the system with the solution of the Lindblad
equation or by Rabi and Ramsey calibrations, which is not the case for the quantum
efficiencies 1y and 7g. We thus apply this method to estime them precisely.

In Fig. 6.7, the trajectories are reconstructed for several values of y and 74 and their
coordinates (Ziraj,Ytraj,2traj) are statistically compared to an independent tomography
(similarly to Fig. 6.6). The results of the trajectories and the tomography are in agree-
ment only for the correct values of the efficiencies. In practice, there exists a correlation
between the coordinates of the trajectory and the measurement records in the other
cases that is approximately linear with a slope different from 1. We extract the slope of
the correlation histograms by linear regression for the different values of the efficiencies.
We find that the agreement is verified for efficiencies 1y = 0.14 and 7g = 0.34 within
a confidence interval of £0.01 for any values of the amplitude drive and measurement
induced dephasing rate.
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Figure 6.7: Correlations between the coordinates (Ziraj,Ytraj,2traj) Of the trajectories after
19.8 us of evolution and an independent tomography on the dataset correspond-
ing to 'y = (15 us)™!, Ty = (5 pus)™ %, Ty, = (17.9 pus)~! and Q/27 = (2.0 ps)~ L.
In Fig. al,bl,c1 the sole output of the fluorescence records is used to reconstruct
the trajectories (ng = 0) and 7y takes 3 different values in Eq. (6.36). Incorrect
values of 7y lead to a deviation from a slope one line (in black). Similarly 7y is
set to 0 in a2,b2,c2 and three values of 7y are tested. Note that because of the
structure of the dispersive measurement back-action, all the dynamics of the qubit
is confined in the x — z plane with this sole detection thus yiaj = 0 at all times in
agreement with Fig. 6.1. In Fig. d1 and d2 the slopes of the correlation histograms
are extracted by linear regression for the different values of ny and 74 used each
time in Eq. (6.36). The values 1y = 0.14 and nq = 0.34 (green solid lines) are found
by this method with a precision +0.01 (green dashed lines).
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6.3 TRAJECTORIES STATISTICS

A quantum trajectory is a stochastic process corresponding to a random walk in the
Bloch sphere. The inherent back-action of a quantum measurement is thus better dis-
cussed by representing distributions of states at a given time [27, 175, 176, 23, 24, 49] or
distributions of trajectories for a given duration [175, 177, 25, 169, 178|. Before repre-
senting the statistics of our trajectories, we observe the impact of the values of the Rabi
frequency and measurement induced dephasing rate on the average trajectory. Then,
we compare the statistics obtained by different observers in two characteristic regimes.
Finally, we advertise an online animated viewer created for this thesis to observe the
trajectories in all regimes from the viewpoints of the different observers.

6.3.1 Different regimes

By varying the drive amplitudes at the cavity and qubit transition frequencies, we
are able to reach a variety of regimes corresponding to different values of Q/T"; and
I'y/T'1. The timescales Ffl and I’ ;1 are fixed because they characterize the lifetimes of
the energy and coherences of the undriven qubit. The measurement induced dephasing
rate 'y can be tuned arbitrarily!'? as it is proportional to the drive power at f.. The Rabi
frequency 2 is arbitrarily tunable as well as it is proportional to the drive amplitude
at fq.

As we showed in section 3.4, the raw average of the measurement records is a full
quantum tomography of the qubit in time. In this section, we reveal the impact of the
configuration of parameters on the average trajectory. Let us exemplify the variety of
obtainable regimes with two configurations of the input drive: one in the regime of
underdamped Rabi oscillations (Fig. 6.8 a) and another one in the regime of strong
dispersive measurement rate, the so-called Zeno regime [30, 31| (over-damped oscilla-
tions of Fig. 6.8 b). In both cases, the qubit is initialized in the ground state and a
Rabi rotation around o, is applied. The effect of decoherence under a strong Rabi drive
corresponds to an average loss of purity Tr(p?) = %(]l + 22 +y? + 2%) that can be seen
as a decreasing distance of the mean trajectory from the center of the Bloch sphere
when time increases. In the long time limit, the state converges towards the center
of the Bloch sphere, which is the maxzimally mized state or most entropic state of the
sphere. In Fig. 6.8 a, the qubit state evolves with underdamped oscillations because the
decoherence rates are much smaller than the Rabi frequency I'1, 'y <« % In contrast,
in Fig. 6.8 a the qubit state endures over-damped oscillations because I'y, % < Iy
The circular motion is blocked by the presence of a large dephasing channel and the
average trajectory quickly reaches its steady state.

For high values of T'y ~ dt™!, Eq. (6.36) is not valid. When reaching a critical number of photons
(around 100 photons in our system), the transmon is driven into highly excited states and it is no
longer a qubit. This is the high power readout regime (see introduction of chapter 3).
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20 us

Figure 6.8: Direct averaging of the three measurement records in the under-damped Rabi
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oscillation regime and in the over-damped Zeno regime. a. Dots: Rescaled av-
erage of the measurement records (t) = u(t)/\/nsL1/2, 9(t) = o(t)//nsL1/2
and w(t) = w(t)/v/2n4lq for 1.5 x 105 realizations of an experiment where the
qubit starts in |g) at time 0 and is driven so that it rotates at a Rabi frequency
Q/2m = (2 pus)~! around o, and endures a measurement induced dephasing rate
Ty = (5 ps)~! . Lines: Calculated coordinates of the Bloch vector z(t), y(t) and
z(t) from the master equation (6.36) with ng s = 0). b. Same figure in the Zeno
regime with a drive such that /27 = (16 us)~! and T'y = (0.9 us)~*.
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6.3.2 Zeno dynamics - Interplay between detectors

We first focus on the Zeno regime of Fig. 6.8 b because the competition between the
back-action of fluorescence measurement and dispersive measurement can be better ob-
served when decoherence dominates the dynamics. We reconstruct an ensemble of 1.5
million experiments and obtain the statistics of the trajectories. In Fig. 6.9, we show
the distributions of qubit states in color at a long time 7 = 6.5 us after which the distri-
bution is close to its steady state while the qubit is both Rabi driven and dispersively
measured at a strong measurement rate. The average over this set of trajectories gives
the average trajectory (black solid line). The finite spread of the distribution around
the average trajectory is only due to the measurement back-action corresponding to
the stochastic term in Eq. (6.34). The trajectories are determined using three sets of
measurement records: dispersive only {w(t)} (Fig. a b c¢), fluorescence only {u(t),v(t)}
(Fig. d e f) or both (Fig. g h i). These three cases correspond to three different 0b-
servers that access different quantum states based on their records during the same
realization of the experiment. The uniqueness of perception of the three observers has
its roots in the records stored in the observer’s memory and it leads to the distinct
statistics of Fig. 6.9. In practice, we retrieve the information from both detectors for ev-
ery experiment and we discard a part of this information in hindsight by setting n; = 0
or ng = 0 in Eq. (6.36) to reconstruct the trajectories, which is exactly equivalent to
removing the unread detector.

The Zeno effect leads to the damping of the Rabi oscillations and the average trajec-
tory (solid line) quickly reaches its steady state. The average trajectory is the same for
every observer because it is predicted to be independent of the measurement records
(average of Eq. (6.34)). Interestingly, while the average trajectory stays in the x — z
plane with (o,) = 0 (similarly to Fig. 6.8 b), the back-action of the fluorescence mea-
surement leads to a nonzero spread (back-action) in the y direction of the Bloch sphere
(Fig. 6.9 d). This is in stark constrast with the dispersive measurement alone that does
not provide any back-action towards the y direction of the Bloch sphere(Fig. 6.9 a)
so that the qubit states keeps a zero o, component during its evolution. In the case
of fluorescence, in the long time, the combined action of Rabi drive and fluorescence
measurement back-action leads to a uniform spread of the qubit state close to the most
entropic state 1/2 at the center of the sphere (Fig. 6.9 d e f). The qubit states span
a small Bloch sphere composed of very unpure states revealing only a small amount
of information on the state of the system because of the large measurement induced
dephasing rate created by the strong dispersive measurement.

When the dispersive measurement is recorded (Fig. 6.9 a b c), a trajectory corre-
sponding to a single realization of the experiment experiences a series of stochastic
jumps between two areas of the Bloch sphere that are close to the two eigenstates
of the o, measurement operator. In the distribution of states, this leads to two areas
with high probability of occupation near the poles of the Bloch sphere. The dispersive
measurement records can thus reveal that the state of the qubit was either close to
|g) or |e) revealing almost one bit of information on the qubit. These two areas can
be interpreted as zones frozen by the Zeno effect. The rest of the Bloch sphere is still
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Figure 6.9: Impact of the type of detector on the distribution of quantum states in the Zeno
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regime. a,b,c Marginal distribution in the  — y (a),  — z (b) and y — z (c)
planes of the Bloch sphere of the qubit states p, corresponding to 1.5 millions of
measurement records at the cavity frequency only {w(¢)} from time ¢ between 0 and
7 = 6.5 ps. The information about {u(t), v(t)} is here discarded (by setting 1y = 0).
All panels in the figure correspond to the Zeno regime with /27 = (5.2 us)~! and
'y = (0.9 ps)~t. The boundary of the Bloch sphere is represented as a black circle
and the average quantum trajectory as a solid line. d,e,f Case where the states
are conditioned on fluorescence records {u(t),v(t)} instead while discarding the
information on {w(t)} (ng = 0). g,h,i Case where the states are conditioned on
both fluorescence and dispersive measurement records {u(t), v(t),w(t)}.
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occupied with a lower probability because of the finite time it takes for the jump to
occur from one pole to the next under strong dispersive measurement rate [179].

It is crucial to understand that the records reveal the information leaking in the two
decoherence channels of the qubit!!. In this sense, we take the place of the environment
and reveal the knowledge that only the bath acquires in most experiments.

As expected, the quantum states that are conditioned on all measurement records
{u(t),v(t), w(t)} are less entropic than with a single measurement. This can be seen in
Figs. 6.9 g-1 where the spread of the distributions is larger than for the cases of single
measurements. A clear asymmetry appears in the spread of the marginal distribution
in the z — y plane of Fig. 6.9 g between positive and negative values of x. The non zero
spread in this plane is solely due to back-action of the fluorescence as seen from Fig. 6.9
a and d. This asymmetry originates from the fact that the fluorescence measurement
is linked to the jump operator o_ for which |g) is the single pointer state. Indeed the
measurement back-action is null when the qubit state is close to |g) while it is strongest
when the qubit state is close to |e). Since the Rabi drive correlates the ground state to
positive x (red zone shifted to the right of the south pole in Fig. 6.9 g) and the excited
state to negative x, the spread in y is smaller for positive & than for negative x. This
asymmetry highlights the profound difference between measuring both quadratures of
fluorescence and measuring o, and o, simultaneously [49]. While both methods lead to
the same result on average, their back-action differs. The latter corresponds to quantum
non-demolition measurements, while fluorescence does not. In the end, the asymmetry
in the distributions of Figs. 6.9 g and i results from the incompatibility between a
dispersive measurement with no back-action on |e) and a fluorescence measurement
with maximal back-action on |e) as will be explained in section 6.4.

6.3.3 Rabi oscillations

By decreasing the decoherence rates to values much lower than the Rabi rate €, we
enter the Rabi oscillations regime corresponding to Fig. 6.8 a. Rabi oscillation in the
presence of weak decoherence is very well-documented as it is predicted from Lind-
blad equation. We aim here at revealing the information acquired by the environment
through decoherence during the evolution.

In Fig. 6.10, we show projections of probability distribution in  — y (Fig. a), x — 2
(Fig. b) and y — z (Fig. ¢) planes associated to the complete measurement record
{u(t),v(t),w(t)}. The first interesting feature is that the maximum of the distribution
is distinct from the mean path of the average trajectory (black solid line) as can be
seen from Fig. 6.10 b. In the long time limit, we observe that the combination of weak
measurement with the Rabi rotation spreads uniformly the distribution over all the
x — z plane which is similar to what is obtained by simultaneously measuring o, and o,
in an effectively undriven qubit [49]. Even though the distribution of states is stationary,
the individual trajectory diffuses indefinitely inside the Bloch sphere [180)].

There are only two decoherence mechanisms for this qubit because the excitation channel is negligible
as it is associated to a very long time-scale FT_I = 0.75 ms.
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Figure 6.10: Evolution of the distribution of quantum states. a,b,c Colored dots: Each frame
represents the marginal distribution, in the x —y (Fig. a), z — z (Fig. b) and y — 2
(Fig. c) planes of the Bloch sphere, of the states of the qubit at a given time 7 for
1.5 million realizations of the experiment, in the same experimental conditions as
Fig. 6.8 a. Each state (z,y, z) is reconstructed from the complete measurement
records {u(t),v(t), w(t)} from time ¢t between 0 to 7 using Eq. (6.36). Time 7 is
increasing from 0.3 ps to 19 us from left to right as indicated at the bottom of
the figure. For each figure, the surrounding black circles represent the pure states
of the plane (e.g. z = 0 for a). Solid lines: average projection of all 1.5 millions of
quantum trajectories {z(t),y(t), 2(t)} for 0.2 us <t < 7.
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6.3.4 FExploration of several regimes

The two regimes presented in the previous discussion are just two examples of many
possible ones. In fact we carried out similar experiments for 30 different regimes (see
Fig. 6.12) with (30 ps)™* < Ty < (0.3 us)~! and 0 < $& < 2 ps. All the experimental
results can be visualized in a small animated application available online'?. A typical
visual of the application is shown in Fig. 6.11. The values of I'j and € can be changed
in the application thanks to sliders. The measurement can be chosen to take into
account the measurement records of the dispersive measurement only, the fluorescence
measurement only or both. All the movies are also available for download from an
online repository!3.

a. 1
1000 g
. o ‘S
>0 E 100 ©
: 2
e ©
o 10 E
+
-1 1
-1 0 1 1
X
d. 3 e. f. E
) =x T(l ka
o= y ¥
82 z T = 15.0 us
S t = 5.5 us
g R T, = 17.9 us
§1 ‘ Tq= 4.8 us Vg = 14,95
H* -
_A Tr = 15.0 us
0- K 5 a "]disp = 34 %
-1 0 1

Figure 6.11: Typical visual of the application available online. Projections of 1.5 million mea-
sured trajectories in the x —y (Fig. a), z—z (Fig. b) and y — z (Fig. ¢) planes. The
solid black line is the average trajectory, the blue doted line is a randomly cho-
sen trajectory and the color plot is the probability distribution of the trajectories.
d. Histograms of the x, ¥ and z component of the trajectories. e. Bloch sphere
representation of the probability distribution (green dots) and of the particular
trajectory (blue) represented in a, b and c. f. parameters of the experiment.

In Fig. 6.12, we show the & — z distribution of trajectories reconstructed from the com-
plete record {u(t),v(t), w(t)} in all 30 reachable configurations. The movie associated
to any of these configurations can be accessed by clicking on the corresponding figure.
Note how the ensemble of trajectories can go from uniform for weak measurement in
the presence of a strong Rabi rate /27 > I'1, Iy to localized at the poles for a strong
measurement rate in the presence of a weak or zero oscillation rate I'y > T';,Q/27
(lower left corner).

12 http://www.physinfo.fr/publications/Ficheux1710.html
13 https://figshare.com/articles/Supplementary Videos for Dynamics _of a qubit_while  simulta-
neously monitoring its relaxation and dephasing /6127958/1
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Figure 6.12: Distributions of the x — z Bloch coordinates for 1.5 million measured trajectories
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shown 6 us after the beginning of the measurement sequence. Each panel repre-
sents a particular choice of Rabi frequency 2 and dispersive measurement rate
I'y. The representation is identical to that of Fig. 6.9 and both fluorescence and
dispersive measurement records are taken into account. The movie of any of these
30 configurations can be accessed by clicking on the figure.
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6.4 DIFFUSION OF QUANTUM TRAJECTORIES
6.4.1 Introduction

We saw in the previous sections that our quantum trajectories diffuse similarly to
the Brownian motion |51] of a particle inside a colloid. Starting from a known initial
condition, the evolution of the probability to find such a particle at a given position
and time is ruled by the so-called Fokker-Planck equation (referred to as FP equation)
proposed by Adriaan Fokker in 1913 and Max Planck in 1917. The FP equation is
a partial differential equation that found application in all domains of science where
fluctuations are important including physics, chemistry and biology [181].

Following a private discussion with Alain Sarlette and Pierre Rouchon, we introduce
in this section a Fokker-Planck equation for the quantum state of a qubit undergoing
weak measurements. By doing so, we switch to a ‘macroscopic viewpoint’ to describe
the evolution of the ensemble of trajectories between ¢ and t + dt. We are thus losing
the ‘microscopic viewpoint’ of individual trajectories. In particular, the FP equation
does not describe the time-correlations in individual trajectories.

In analogy with Brownian motion, measurement back-action plays the role of the
Langevin’s force. The Wiener process is the quantum analog of the noise term resulting
from thermal collisions with molecules of the solvent. Drives and dissipation enter a

convection term*

analogous to the one resulting from advection flows and transport
phenomena in hydrodynamics [182].

First, we derive the Fokker-Plank equation for a monitored qubit and validate it
by comparing the trajectory statistics with random walk simulations. We use these
simulations to explore high detection efficiency regimes that were not achievable in our
experiment. The Fokker-Planck equation can be re-expressed with a convection and a
diffusion term. We gain insight into the physics of diffusion by analyzing these terms.
We study the dimensionality of the diffusion and we prove that our experiment is the
first qubit experiment with a non zero determinant for the diffusion tensor revealing
a genuine 3D diffusion. Finally, we show that an Heisenberg-like lower bound on the
magnitude of the diffusion of pure states results from the incompatibility of the two
measurements!®.

6.4.2 Fokker-Planck equation

For our system, the stochastic master equation (6.34) can be written in terms of Bloch
coordinates as

dyt = A(xt,yt,Zt)dt+B(l’t,yt,2ﬁt)- de(t) (637)
dZt dWw(t)

Using this analogy, we talk about convection and advection for a qubit even if there is no medium in
which the qubit state propagates.
We thank Irfan Siddiqi for pointing out this interesting question.
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with the following vector and matrix

—(% + Fd + F¢)xt — ta
Az, g1, 21) = —(F+Ta+To)w ;
—Fl(l + Zt) + Q.%'t

nsl 2 nsl1 (6.38)
Vo (L —ai +2) —\/ T3 Tty —V2nalqzez
r I
B(we, ye, 2t) = —/ L my, U=y +2)  —v2nalayez
I T
U+ z)ze =S+ 20y V2nala(l — 2)

Let us introduce p(z,y, z,t) the probability to find a quantum trajectory at position

(x,y,z) at time ¢. Following [183], p is ruled by a Fokker-Planck partial differential
equation of the form

@_7 a(pr) 0?
5= + ) Teae PPx) (6.39)

x€{z,y,2} XX €{z,y,2}

where the diffusion tensor is defined as D = BBT/2. The partial differential equation
(6.39) can also be written as a convection-diffusion equation

0
aiz = _V.(pC) + V. (DVp) (6.40)
K
ox
with V = % and where the convection velocity is defined by
9
0z
0D,
1 >x agxx
C(z,y,2) = A(z,y,2) — 3 > T |- (6.41)
oD,
Zx 8XX

In practice, the FP equation (6.39) is hard to solve!®. We propose instead to perform
random-walk simulation of a particle experiencing a convection velocity C(zy, y, 2¢)
and a diffusion tensor D(xy,y, 2¢) calculated from the expression of A and B given
by Eq. (6.38). The Fokker-Planck equation (6.39) is associated to the initial condition
p(x,y,2,0) = 0(x)d(y)d(1 + 2z) corresponding to a qubit initialized in the ground state
at time ¢ = 0 in the experiment. For the simulation, we impose the boundary condition
22 4+ y? + 22 < 1 implying a zero probability flow outside the boundary of the Bloch
sphere. In figure 6.13, we observe a good agreement between the experimental statistics
of 1.5 million trajectory and the simulated probabiliy density p(x,y, z,t). We verified
that the simulation reproduced the experimental observation at all times and for each
of the 30 configurations of Fig. 6.12 validating the Fokker-Planck equation (6.39) to
describe the evolution of the trajectory statistics.

It might be possible to estimate the stationary solution p from the stationary convection-diffusion
equation —V.(pC) + V.(DVp) = 0.
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Figure 6.13: Comparison between the statistics of the projection of qubit trajectories in the
x —1y, r — z and y — z planes of the Bloch sphere for the complete measurement
records {u(t), v(t),w(t)} (Fig. a) with the projection of the simulated probability
density to find a particle experiencing a Brownian motion with a convection veloc-
ity C(x,y,z) and a diffusion tensor D(z,y,z) (Fig. b). The experimental param-
eters T'y = (15 ps)™*, Ty, = (17.9 ps)™*, Ty = (0.9 ps)~! and Q/27 = (5.2 ps)~!
enter Eq. (6.38) to compute the convection velocity field C' (Eq. (6.41)) and the
diffusion tensor field D = BB'/2 used in the simulation.

6.4.3 Impact of the efficiencies on the statistics

We demonstrated the accuracy of FP equation to describe the dynamics of the proba-
bility distribution of the quantum trajectory of a qubit. Assuming that it is still valid
for parameters that are not accessible in the experiment, we can simulate the trajec-
tory statistics to explore unattainable regimes of parameters. As explained in section
5.6, increasing the detection efficiencies 1y and 7y is a difficult technical challenge!”.
However, in the FP equation (6.39), the efficiencies only play a role in the diffusion
term, which can be computed at will.

In Fig. 6.14, we show the simulated probability densities in the condition of Fig. 6.13
for increasing efficiencies up to 100%. As the efficiency increases, the shape of the dis-
tribution resulting from the diffusion (measurement back-action) appears more clearly
and the random walkers (trajectories) span a larger area of the Bloch sphere with a
higher density closer to the surface of the sphere (higher purity states). Interestingly
though, the characteristic shapes that are linked to the incompatibility between our
various detectors explained in section 6.3.2 are already qualitatively captured at our
experimental level of efficiency and only change quantitatively as the efficiencies rise.

We recall that the inefficiency of the detection setup originates from unavoidable losses of microwave
components between the system and the quantum limited amplifier, the finite noise temperature of
the following amplifier, losses to spurious other modes such as the input line. See chapter 5.
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Figure 6.14: Projections of the simulated probability density on three planes of the Bloch sphere
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in the configuration of Fig. 6.9. Fig. a is a simulation with the efficiencies ny = 0.14
and 1g = 0.34 as in the experiment. We increase jointly the efliciencies 1y q = 0.5
(Fig. b), ny.a = 0.75 (Fig. ¢), and nyq = 1 (Fig. d). A clear broadening of the
distribution of states occurs for simulated higher detector efficiencies. The shape of
the distribution remains qualitatively the same except for unit efficiencies, which
is out of experimental reach.
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At unit efficiency, the quantum states is confined to a pure wavefunction diffusion on
the surface of the Bloch sphere. The characteristic shape of the projected distribution

changes in the last row of Fig. 6.14 but this situation is unreachable in practice!8.

6.4.4 Conwvection velocity

We can gain insight into the transport phenomena of qubit states by analyzing the
convection velocity C. Using Eq. (6.41), the convection velocity reads

—Toxy — Qz n T (1 — 6zt2) (1 + 2 — %(zf + yf))
Clavyna)=|  —raw | #7505 (w06 | +0T1 | wbz- 36t +u)
—T1(1+ 2¢) + Quy 6zt(1—zt2) %(1+zt)(1+zt —3(x?+y?))
(6.42)

where the inverse coherence time is I'y = % +Ig+ T,

The first term of Eq. (6.42) corresponds to the advection of the probability flow by the
circular motion induced by the Rabi torque and by the damping caused by decoherence.
This advection term alone brings the qubit state along the average trajectory depicted
in Fig. 6.13. The two other contributions emanate from the diffusive back-action of
the measurements translated into the finite spread of the probability distribution. The
convection of the probability flow takes place both by advection and by diffusion'?.

Figure 6.15: Cuts of the convection velocity field (6.42) in the  — y (Fig. a), z — z (Fig. b)
and y — z (Fig. c¢) planes. The blue arrows correspond to C(zi,y:, 2¢)dt with
the parameters of Fig. 6.13 I'y = (15 us)™*, I'y, = (17.9 ps)~!, Ty = (0.9 ps)~*,
Q/27 = (5.2 us)~! and dt = 100 ns. The solid black circle represents the pure
state of the plane that is also the rigid boundary condition for the FP equation.

In Fig. 6.15, we show cuts of the convection velocity field. In the plane (o,) = 0
(Fig. a), the convection brings the qubit along the z-axis. Away from this plane, the
convection tends to bring quantum states to negative (resp. positive) z for (o) > 0
(resp. (0.) < 0) planes (not represented on Fig. 6.15). Interestingly, a cut of the x — z

At the time of writing this thesis, the highest total detection efficiency reported in the microwave
domain is 80% for a single dispersive channel [159].

This situation is reminiscent of convective heat transfer. For instance in fluid dynamics, the apparition
of Rayleigh—Bénard convection originates jointly from the diffusion of heat from the fluids to the plates
and advection of heat in the fluid under the action of buoyancy and gravity.
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plane (Fig. b) reveals two regions where the convection tends to vanish corresponding
to the two maxima of the probability distribution of Fig. 6.13. The convection velocity
in the # — 2 plane is independent of the (o) value. Finally, Fig. c reveals that the
convection flow pushes the probability density toward the pointer states of the o,
measurement (the poles) owing to its large measurement rate.

6.4.5 Diffusion tensor

In the Zeno regime, we showed that the general shape of the probability distribution can
be understood from an analysis of the convection velocity field. However, the diffusion
tensor alone induces the non-deterministic behavior of the system. The diffusion does
not depend on the applied drives, nor on unmonitored channels and thus exclusively
characterizes the measurement process. We can compute D = BBT/2 from Eq. (6.38).

20

The diffusion can be decomposed into independent contributions*” corresponding to

the Wiener processes W,,, W,, and Wy,

1
D(:L‘,y,z) = EB(x7y) Z)B(ZL‘,y, Z)T = Du(l‘,y, Z) +D’U($7yaz) +Dw(x,y, Z) (643)

where the independent contributions read

n T, (142 —2?)2 —(+z—a2®zy —(1+2)z(l+2—22)
Du(w,y.2) = L= | 4z a2y 222 2y(1+2)
—x(1+2)(1 + 2z — z2) 22y(1+ 2) 22(1 4 2)2
o a?y? —(1+2—y?)ay zy?(1+ 2)
Dy(z,y,2) = 5= | ~(tz=yPmy  (tz=y)? (0 +2u+z—y?)
wy?(l+2) —(+2)y(l+z-y%) y?(1+2)?
222 xyz? —(1 = 2%)z2
Dw(x7 Y, Z) = 277drd xyz? y?2? —(1=2%)yz

—(1-22z2z —(1-22)yz (1 —22)?

In contrast to the convection velocity, the diffusion is given by a tensor field, which
cannot be easily represented inside the Bloch sphere. We further improve our under-
standing of the diffusion by looking at two invariant quantities of the tensor, its deter-

minant and trace.

6.4.6 Dimensionality of the diffusion

The determinant of the diffusion tensor tells whether, the diffusion occurs in all direc-
tions or if it is singular and restricted a subspace of the Bloch sphere. If the random
walk is confined in one direction (resp. two directions), the diffusion tensor will have
two zero eigenvalues (resp. one zero eigenvalue) and a zero determinant. In this case,
the quantum state can still diffuse in the complete Bloch ball if the vector fields of the
stochastic Eq. (6.34) satisfy Hérmander’s condition [184]. Let us give a brief analysis
to understand the dimensionality of diffusion in experimentally relevant situations.

The independence between the contributions to the diffusion tensor is a property of the stochastic
master equation (6.34). For a set of jump operators {L,} acting on a qubit, the diffusion tensor reads
Dij =% 3 Tr(Mi(p)os) Tr(My(p)o;) where Mi(p) = Lip+ pL} — Tr(Lip + pL])p.
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In the case of a dispersive measurement alone, the only contribution to the diffusion
tensor (6.43) is D,,, which has two zero eigenvalues. The diffusion is thus 1-dimensional.
This is in agreement with the result of Sarlette and Rouchon [172] who showed that at
every time-step, the diffusion develops on an ellipse that shrinks toward the z axis of the
Bloch sphere according to Eq. (6.14). A similar result can be obtained when measuring
the orthogonal quadrature of the cavity field. The diffusion occurs on a deterministic
circle given by Eq. (6.18).

For an exclusive fluorescence measurement, the two contributions to the diffusion
tensor (6.43) correspond to the Wiener processes W, and W,. The diffusion tensor
D = D, + D, has one zero eigenvalue revealing a 2-dimensional diffusion. The random
walk takes place on the surface of a spheroid |23, 172| given by Eq. (6.25) that goes
through the south pole of the Bloch sphere.

Recently, Hacohen-Gourgy et al. [49] were able to measure simultaneously two non-
commuting observable of a qubit in a rotating frame namely the observables o, and o.
They observed an isotropic and persistent diffusion in x — y plane when the strengths
of the two measurement are balanced. In their case, the diffusion tensor has one zero
eigenvalue revealing that they observed a 2-dimensional diffusion phenomenon in a
plane.

By taking into account the outcomes of the two detectors in our experiment, the
three Wiener processes contribute to the diffusion (see Eq. (6.43)). The determinant
reads

_ nal'ansTh

Det[D(z,y, z)] 3

(1+2)*(1—2®—y* - 22)2 . (6.44)

The determinant annihilates on the surface of the Bloch sphere as it is not possible to
diffuse in the direction orthogonal to the boundary. In the bulk of the Bloch ball, the
determinant (6.44) takes finite values when the two channels are monitored ngny # 0.
Our experiment is thus the first qubit experiment with a non zero determinant for the
diffusion tensor revealing a genuine 3D diffusion in the volume of the Bloch ball.

6.4.7 Diffusivity

Instead of considering the diffusion along particular coordinates, we consider the ‘overall’
diffusion. We express the average diffusivity as follows

‘d(:c,y, z) = Tr[D(x,y, z)]. ‘ (6.45)

The diffusivity is a scalar field that represents the magnitude of the back-action at any
point of the Bloch sphere regardless of the direction of the diffusion. This scalar field is
invariant under rotation around z. In Fig. 6.16, we represent cuts of the diffusivity in
the x — z plane. We separate the different contributions coming from the monitoring of
the cavity field (Fig. a), the monitoring of fluorescence (Fig. b) and the simultaneous
monitoring of both (Fig. c).

Whenever measuring continuously an observable (such as o) or an operator (such as
o_), the quantum back-action stochastically kicks the quantum state to update it based
on the result of the measurement. However, the back-action vanishes when reaching the
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10log(diffusivity (MHz))

Figure 6.16: Magnitude of the average diffusivity given by Eq. (6.45) in a (o) = 0 slice of
the Bloch sphere for dispersive measurement (Fig. a), fluorescence measurement
(Fig. b) and both (Fig. ¢). In Fig. a, the diffusion is symmetric under z — —z. We
use the parameters of Fig. 6.13, T'y = (15 us)™!, I'y = (0.9 us)~! and (ng,ma) =
(0.14,0.34). Diffusion vanishes when the quantum state approaches one of the
pointer states of the o, measurement (poles of the sphere). Monitoring energy
relaxation (Fig. b) leads to a maximal diffusivity at the north pole of the Bloch
sphere where the quantum state experiences the strongest measurement back-
action and minimal diffusivity in the ground state. The average magnitude of
the diffusion induced by this last measurement is much smaller than the one of
Fig. a because of the measurement rate asymmetry %% ~ (0.025. The resulting
total diffusivity (Fig. ¢) only vanishes at the south pole of the Bloch sphere.

so-called pointer states of the measurement. In the case of a ¢, measurement, the pointer
states are given by the poles of the Bloch sphere (Fig. 6.16 a). In between, the magnitude
of the coefficient diffusion is maximal near the equator so the qubit state ‘must’ jump
quickly from one region to the other in quantum trajectories. When monitoring o_, the
south pole |g) of the Bloch sphere is the only pointer state (Fig. 6.16 b). When the qubit
state is close to the excited state |e), the energy relaxation probability is maximal and
the back-action of the associated measurement chases the state away from the north
pole. Hence, the total diffusivity (Fig. 6.16 ¢) only goes to zero in the ground state |g).
In the excited state, the diffusion is persistent even if the contribution of the dispersive

measurement vanishes.

6.4.8 An Heisenberg-like inequality for pure states

We used throughout this thesis the concept of incompatible measurement to describe
the quantum back-action of energy relaxation and dispersive measurement. We may
wonder if there is an Heisenberg-like inequality for our system. The usual Heisenberg-
Roberston uncertainty relation [185] states that the accuracy with which two Von Neu-
mann measurements can be performed is limited by the restriction that the product of
the uncertainties in the two measurements is at least of the order of the commutator
of the associated observables?!.

In the case of the two conjugate variable X and P describing the free propagation of a particle, we
recover the historical Heisenberg inequality oxop > h/2.
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In the continuous measurement framework, the signature of the incompatibility of
the measurement is encoded in a lower bound of the diffusion coefficients [186]. We
show that the Heisenberg inequality finds its correspondence in a lower bound on the
total diffusivity of pure states. From Eq. (6.37) we notice that Tr[BB]dt = 2Tr[dpdp].
We link the diffusivity to the incremental evolution of the density matrix??

1
d(z,y,z) = aTr[dpd,o}. (6.46)

For pure states, the quantity Tr[dpdp] is known to be related to the sum of the variances
of the measurements [49]. On the surface of the Bloch sphere, we obtain

d(w,y,z) = 11 (Aos)(Ao-)) + 1ala (Ao.?) (6.47)
where AA = A — (A). A complication arises from the fact that the monitored operator
o_ = (0, —10y)/2 is not hermitian nor skew-hermitian hence the apparition of o = ol .

However, we can develop
(80 ) (A0 ) = 1 ((A02) + {80y — i ([0, ay]) (6.48)

The two first terms are the variances associated to the measurement of the x and y
coordinates of the qubit, the last term shows how the hermitian and skew-hermitian
parts interference of the jump operator associated to the energy relaxation channel. In

the end, we obtain

r r r
dla,y.2) = L2 (80,%) + 22 (A0?) 4+l (A0.?) = 2oi (o,0,)) - (6.49)

The diffusivity is thus related to the sum of the variances associated to the measurement

of every Pauli observable (plus the previously mentioned correction), and not to their
product like in the Heisenberg inequality. In the general case, for a pure state p = |¢) (]
and an arbitrary set of jump operators { Ly}, the diffusivity is linked to jump operators
by the relation

Te[dpdp] =23 mi (W[ (AL (AL |) d. (6.50)
k

Our task is thus to find a lower bound on (¢|(ALL)(AL;€)\1/J> = ||(ALg) |#b) ||*. Such a
lower bound is not unique. For incompatible observable, there always exists a non zero
lower bound on the sum of incompatible observable [187]. This statement does not hold
in general for operators. We can however give a lower bound on Eq. (6.50) using the
geometrical inequality

[@ILY ) 2 < (1L ) |17 (6.51)

valid for 1)) orthogonal to |¢). In the end we obtain the following lower bound on the
diffusivity

d(z,y,2) > (1+2) (”fQFl (1+ 2) +ngla(1 — z)> . (6.52)

This identity is not specific to our system. It holds for any monitored open quantum system ruled by
the stochastic master equation (6.34).
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In the excited state the diffusion never vanishes as it is lower bounded by the magni-
tude of the back-action of energy relaxation 2nI'y (see Fig. 6.16). In the ground state,
the lower bound vanishes as the back-action goes to zero. However, this is a special
case for which the lower bound (6.52) is always saturated. The fact that the Heisenberg
inequality transforms into a lower bound on the diffusion is a signature of the enhance-
ment of the diffusion due to the different measurements. Equilibrium points (pointer
states) correspond to where the diffusivity vanishes (see Fig. 6.16 or [49]). We talk about
a persistant diffusion around these points. The contributions of the measurements are
independent in Eq. (6.52). In the spirit of the Heisenberg inequality we ‘mix’ the two
contributions by application of the Cauchy-Schwarz inequality to Eq. (6.47)

Vlmala
d(a,y,2) 2 /i Tmalal (0|Acs A [p) [P = YEEEE8 (142 (@ +47) (6.53)

this last bound is similar to the one of [49] but it is weaker than Eq. (6.52) and it
vanishes in the excited state.

6.5 CONCLUSION

In this chapter we discussed

e the general framework for measurement back-action with the example of weak

measurement of the dispersive and energy relaxation channels.

e the formalism of quantum trajectories leading to a stochastic diffusion in the

Bloch sphere.

e the shape of the trajectory statistics that contains the knowledge of different

observers about a same quantum system.

e the Fokker-Planck equation revealing a 3-dimensional diffusion, which is charac-
teristic of our incompatible measurements.

e an Heisenberg like inequality for continuous measurements of arbitrary operators.

Quantum trajectories have a bright future with numerous applications including
real-time adaptative measurement [188|, quantum parameter estimation with a neural
network [189], the determination of the arrow of time from the irreversibility of quan-
tum measurement [190], the observation of spikes in quantum trajectories [191, 192],
investigation of chaos [193], the determination of quantum caustics [175, 25, 177] and
applications in single-shot quantum thermodynamics [194, 195, 196].
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Our everyday experience teaches us that the future is different from the past so we
can intuitively determine the direction of an arrow of time pointing towards the fu-
ture. Time asymmetry arises in classical physics for irreversible evolution of either a
dissipative system or an out-of-equilibrium closed system with an internal dynamics.
In the latter case, the irreversibility of the evolution is formalized by the second law of
thermodynamics, which proclaims that the entropy of an isolated system can never de-
crease over time. In the absence of irreversibility, watching a ‘movie’ backwards shows
an evolution consistent with the laws of physics.

In quantum mechanics, the Schrodinger equation for isolated system is time sym-
metric as is its classical counterpart. In the 50s, von Neumann and Bohm [52, 53]
suggested that the irreversible collapse of a wave packet of the state of a system under
the influence of measurement introduces a fundamental time asymmetry at the micro-
scopic level. The measurement back-action was thus thought of as a time asymmetric
element in quantum theory. Nevertheless, the symmetry of the rules of quantum me-
chanics is fully restored when specifying both the initial state and the final state of
a closed system. The equivalent role of preparation or pre-selection and post-selection
was enlightened by Aharonov et al. in a seminal paper [54] and gave rise to the two-
state vector formalism [197]. Aharonov et al. introduced a retrodiction estimation of a
quantum state which was revisited in the case of open systems with the introduction of
an effect matriz |55, 56, 57, 58]. While the density matrix is the quantum state of the
system conditioned on the past measurement records, the effect matriz is the quantum
state conditioned on the information available in the future. Taking into account the
forward and backward estimation of the quantum state at the same time provides a
so-called past quantum state that encapsulates all the information available from past
and future measurements.

In 1987, Aharonov noticed [59] that in the presence of both preparation and post-
selection, the measured expectation values of the signal can spread outside of the nor-
mal eigenvalue range. This anomalous values were called weak values [60]. Thus, on a
carefully selected sub-ensemble of realizations of the experiment, the result of a weak
measurement of a component of a qubit can in principle reach arbitrarily larges val-
ues!. In this chapter, we present the results of an experiment illustrating this fact. By
combining preparation and post-selection, the Bloch vector resulting from the direct
quantum tomography method exposed in chapter 3 exceeds the boundary of the unit
sphere [61, 62, 63, 64].

Weak values were observed for the first time in 1991 [198] and have been shown to lead
to a violation of Leggett-Garg inequality [61, 199, 200, 201] and thus to rule out macro-

In practice, the magnitude of the weak value is limited by the decoherence between preparation and
post-selection.
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realistic physical theories?. Weak values are claimed to provide interesting features such
as noiseless amplification [202, 203, 60|, a direct measurement of a wavefunction [204]
or even to solve quantum ‘paradoxes’ [205]. These anomalous values seem to originate
from a statistical effect arising from measurement back-action with preparation and
post-selection but this topic is the subject of considerable debates [206, 60, 207, 208,
209, 210|. However there is no question that post-selecting realizations is well defined
and that one needs the tools to predict the average outcome under post-selection. This
chapter intends to put the formalism to the test and understand its limitations.

Similarly to classical estimation theory, predictions on the outcome of a measurement
at time ¢ can be made by filtering given observations before and up to ¢, by retrodiction
given the observations after ¢ or by smoothing given observations before and after ¢.
The smoothed estimate conditioned on the complete measurement record is obtained
by filtering and retro-filtering techniques [211, 57]. Using all the information extracted
from the past and future measurements relative to the time at which an observable
is estimated leads to an acausal smoothed estimation of the probability of outcomes
associated to this measurement [212].

First, let us introduce the past quantum state composed of the density matrix and
the effect matriz to describe pre-selected and post-selected trajectories [55, 56, 57, 58].
Similarly to the density matrix, the effect matrix evolves according to a stochastic
differential equation in the continuous times limit. This formalism is then related to
the weak values envisioned by Aharonov. Finally its operational meaning is investigated

by confrontation with our experimental results.

7.1 PAST QUANTUM STATE
7.1.1 Prediction and retrodiction
This derivation is based on the work of Gammelmark et al. [58]. We introduce in this

section the effect matriz and the associated past quantum state. A quantum trajectory
is defined as iterated Kraus maps given by Eq. (6.31)

= Ky (Ptn) _ Ky(an) 0 0 Kya) (P0) (1)
T [Ky ) (o)) Te[Ky, 0 0 Ky (00)]

where we define the discrete times t,, = ndt between each time step of the trajectory
for 0 < n < N and {y,} are the vectors of the measurement records at each time.
For a system with a set of jump operators {L,}, the partial Kraus map giving the
incremental evolution during dt is given by Eq. (6.28)

Ky(t) (pt) = My(t)ptM;(t) + Z(l — Uu)dtLyPtLL
u#0
. (7.2)
with M) =1 — %H w3 LhL2 ) dt+ Y iLy(t)dt
w#0 1#0

2 under the assumption that the detector does not disturb the system in a classical sense.
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as a function of the measurement record y,,(t)dt = \/n,Tr(L,.p; + ptLL)dt + dW,(t).

We want to perform a generalized measurement? between t,_1 = t,, — dt and ¢, that
replaces the Kraus map evolution of Eq. (7.1) during this time step. The measurement
is associated to a set of measurement operators {{2,,} (see chapter 3). The probability
to measure m between t, 1 and t, conditioned on the past measurement records is
given by

|P[m|p07 y(tO)’ ey y(tn—2)] = Tr[Qmptn_1QIn]' (73)

*
Kyto Kyt1 KytN—1

NN ¥
Pto  Pt1  Pts Ptrn_1 Etn EtN—lEtN
I I —----— —----— I —>

to 1 9 tn—1\ tn IN—2lN—1 TN

Figure 7.1: The forward estimation of the state of the system is obtained by iteration of the
Kraus map (7.2) yielding the usual density matrix. Reciprocally, the state of the
system conditioned on the future measurement records is captured by the effect
matriz that propagates backward in time according to Eq. (7.6). We perform a
generalized measurement between t,_1 and t, leading to a record m stored in a
safe. The probability to find m is best estimated conditioning on the complete
sequence of measurement records with p(m|y) o< Tr[Qmpe, Q5 E;, ] according to
Eq. (7.4).

Imagine that the record m is stored ‘in a safe’ for later inspection (see Fig. 7.1). At
the end of the experiment we want to estimate a posteriori the value observed when
the safe is opened knowing the complete measurement record of the experiment. The
probability to find the record m conditioned on the complete record reads

Tr[K, v )00 K - (Qmptn_ Qin)]
[P[m|;007y(to),,y(tT)] = y(tn—1) y(tn) 1 .
52k TrlK ey ) © -0 Ky, (U, )]

This expression can be recast as

(7.4)

Tr[Qmpe, QInE .
Pimlpo.y(to) (1)) = o eomPtoca o Pt (75
>k Tr[Qepr, B,

where we introduced the effect matriz

K;(tn) 0...0 KZ(tN—l)(]l)

Ly = . . .
Tr[Ky(tn) 0..0 Ky(thl)(]l)]

(7.6)

3 We allow the measurement apparatus during this particular time step to differe from the other mea-
surements along the trajectory.
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The adjoint* of the Kraus map is K*(t)( ) = M )y EMy +>2,(1 nﬂ)dtLLELM. The
effect matriz is an estimation of the state of the qubit condltloned on the information
available from the ‘future’® measurement records of the trajectory. This hermitian ma-
trix evolves backward in time by application of the conjugated Kraus maps according

to the retrodiction formula
K*( )(Etn+1)
" Tr[ y(t )(Etn+1 )] '

The time symmetry of the formalism is restored by specifying the final state of the

Ey

(7.7)

evolution E, along with the initial condition p;,. Note that in the absence of post-
selection after time ty, Ey, = %. In contrast, in the absence of preparation, py, is in its
equilibrium thermal state.

The pair of matrices =, = (pt,_,, Et,) is called the past quantum state in the for-
malism of Gammelmark et al. [58]. It contains all the available information to make a
predictions about the outcome of a measurement occurring between t,_1 and t,, thanks
to Eq. (7.5). The introduction of an initial (preparation) and final (post-selection) se-
lection procedures makes our formalism perfectly time symmetric in the absence of
dissipation.

7.1.2  Continuous time dynamics

In the continuous time limit, the Kraus map defined by Eq. (7.2) reads

; T T
. i LhL, LhL
Ko (Eitar) = Erpar + ﬁ[H’ By yar]dt + Z dt(LLEt+dtL - 7Et+dt Eiva u2 £)
n
- (LI Eyrar + Erpar L)y, (t)dt.
V(L By tdt L) Yp
I

(7.8)

And since Tr(KZ(t) (Etgar)) =1+, 5 /np,Tr(LLEHdt + By arLyy)yu(t)dt. The normali-
sation factor can be approximated at order dt by

1
=1- Tr(LIE EiiaL t)dt
Tr(K? ) (Ersar)) Z\/% H ptde & B )4 (t)
y(t) w (7.9)
i 2 '
+ Z NuTr(Ly, Eyra + Evyarly)”dt.
“w

At first order in dt, the evolution of the effect matrix is ruled by a stochastic master
equation®

_Z _ 5 _ _ T
dE; = h[H Eydt ;D (Ey)dt ;\/mxl (B (yu( )t — Tr(L,E; — E,L )dt)

The adjoint of K is defined by Tr[AK(B)] = Tr[K"(A)B] for any hermitian operators A, B.

The notion of future and past is referred to the time ¢,, at which the record of the generalized
measurement is stored in the safe.

In [58] they use the backward time definition for the following equation (7.10). We use the forward
time £ > 0 instead.
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(7.10)

where the adjoint of Lindblad operator reads D} (E;) = L E;L; — (L1 L;E; — E,L{ L;) /2,
the innovation super-operator is M;(E}) = LIEt + By L; — Tr(L;rEt + E.L;) E;.

Po prediction P+ ;<& retrodiction Er

} } } >
0 t T

preparation post-selection

Figure 7.2: The state of the system can be predicted conditioned on past measurement records
using the density matrix p; provided by the stochastic master equation (see
Eq. (6.34) in chapter 6). Conversely the state of the system can be rectrodicted,
a posteriori, conditioned on the future measurement records by unravelling the ef-
fect matrix F; with Eq. (7.10). The past quantum state (p¢, F) uses the complete
measurement records to give an estimate of the distribution of any measurement
performed on the system at time ¢ according to Eq. (7.12).

In the case of unread measurements (7; = 0), we obtain the equivalent of the Lindblad
equation for the effect matrix with an adjoint Lindblad super-operator
7; m
— 5 [H, Byldt — > Di(Ey)dt. (7.11)
i=1

dE; =

When pre and post-selecting the evolution, we average a selected ensemble of realiza-
tions of the experiments. The recorded signal is thus impacted. On a large number of
realizations, the experimentalist acquires a mean smoothed measurement record 375 (t)
associated to a jump operator L, with an efficiency 7),, instead of the mean of the usual
record y,(t). The mean smoothed measurement records in presence of preparation and
post-selection reads [55, 58, 85]

TI'[Et\/TTM(Lupt + PtLL)]
Tr[Eypi

Tr[\/ nuPtEtLu]
Tr[pt Ey]

75 (t)dt = dt = 2Re] | = 2yRel(L,),,]

(7.12)

where (.),, denotes the expectation value conditioned on the full measurement record.

ptEt
Tr[pt Et]

quantum state’. Note that it is possible to defined a quantum smoothed state using the

The quantity plays the analog of a density matrix even if it does not define a

complete measurement record [213] but we will not need it in the rest of the manuscript.

The matrix ,ﬁ”[flgt] is not a density operator because it is not Hermitian or (even if symmetrized)

positive semi-definite.
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An important feature of the formalism is that Eq. (7.12) is proportional to the real
part of the weak value of the jump operator. The generalized weak value of an operator
A is defined as follows® [55]

_ Tr[ApiEY

(A = Tr[piEy]

(7.13)

The magnitude of the weak value given by Eq. (7.13) can in principle diverge as the
denominator can be very small and even reaches zero when the past (density matrix)
and future (effect matrix) quantum states are orthogonal. The conditioned measured
averages can lie outside of the unconditioned range. However as we will see, both the
density matrix and the effect matrix evolve into a statistical mixture between pre and
post selection owing to decoherence preventing a perfect orthogonality of the two states.
Therefore, decoherence sets an upper bound on the measured weak value.

This formalism is an extension of chapter 6. Indeed, we can recover the usual case
without post-selection by setting E' = 1/2 in Eq. (7.13) but we can also use exclusively
the backward estimate by setting p = 1/2. Now that we introduced the past quantum
state that uses the whole measurement records, let us confront it with experimental
results with preparation and post-selection.

7.2 PRE AND POST-SELECTED TRAJECTORIES

7.2.1 Time symmetric Rabi evolution

In the experiment, our qubit is driven with an Hamiltonian H = —%Uy. The average

evolution of the density matrix is given by the Lindblad equation (see section 3.4)

dpe 9 L

o = U5y p] + [0:](pt) + T1Dlo—](pt) (7.14)

where I'y is the inverse lifetime of the qubit, I'y is the measurement induced dephasing
rate and I', is the pure dephasing rate. The Lindblad super-operator is D[L|(p) =
LpLt — %(pLTL + LTLp). The qubit is prepared at time t = 0 in a state pg that gives
the initial condition of Eq. (7.14). Note that we neglected qubit excitation in Eq. (7.14)
since the excitation probability of the qubit in thermal equilibrium was measured to
be lower than 2%.

The unmonitored evolution of the effect matrix E evolves backward in time according
to Eq. (7.11). In our experiments, it reads (in the forward sense)

dE;, Q) Fq+Ty

at = Z[*Uya ‘]

> D*[o:](Er) — T D*[o-](Ey) (7.15)

where D} (E;) = LZTEtLi - (LZ-Lz‘Et - EtLILi)/Q-

This is a generalization to mixed states of the historical weak value (A) = (Yy|Ali) / (Yrlhi) envi-
sioned by Aharonov [59].
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Figure 7.3: a. Pulse sequence and measurement setup. The qubit is prepared in |g) or in a
statistical mixture of |g) and |e). During the experiment, the qubit is driven by a
continuous tone at f;. The state of the cavity is concurrently probed by sending
a tone at f, leading to the continuous measurement records w(t) in Eq. (7.16).
The spontaneous emission of the qubit is recorded at the same time yielding to
the records v and v in (7.16). At the end of the experiment we perform a pro-
jective measurement of the spin along a given axis of the bloch sphere. In this
experiment, we pre and post-select only on |g). b. e. h. Pre-selected trajectory.
The solid line is the solution of the Lindblad equation (7.14) with the parameters
Iy = (104 ps)™t, Ty + Ty = (22 ps)~!, Q/27 = (875 ns) ! while the dots are the
measured records u(t), v(t) w(t), here raw averaged on the selected ensemble out
of the 36 million realizations of the experiment. In this case 2Re[(c_)] = (04), and
2Im[(c—)] = — (o), corresponds to the Bloch coordinates. d. g. j. Post-selected
trajectory (without pre-selection meaning py = 1/2). The lines are the solutions
of the equation (7.15) with the above-mentioned parameters. The average mea-
surements records (dots) are superimposed. In this case, 2Re[(c_)] = (04) and
2Im[(oc_)] = — (0,)  are the Bloch coordinates of the retrodicted quantum state. c.
f. i. Pre and post-selected trajectory. The solid lines are the prediction of Eq. (7.16)
where the density matrix is calculated from the Lindblad equation (7.14) and the
effect matrix is obtained from Eq. (7.15) with the same parameters as in the other
plots. We observe a good agreement between these smoothed measurement records
and the experimental records (dots) raw averaged on the pre and post-selected
ensembles of trajectories.
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POST-SELECTED QUANTUM TRAJECTORIES

The system is post-selected at time 7" in a state Ep that defines the final condition
of Eq. (7.15). Note that Eq. (7.15) is not the exact time symmetric? of Eq. (7.14).
Although, the decoherence term is symmetric in time D*[0](E) = D[o](E), the energy
dissipation for the effect is D*[o_]|(E) # D[o_](F). This last term vanishes when E =
1/2 in contrast to the dissipation term of Eq. (7.14) D[o_](p) which cancels for p =
lg) (g] [85]. In this section, the Rabi rate  of the Hamiltonian evolution dominates the
decoherence rates of the system. The asymmetry induced by dissipation is therefore
not straightforwardly observable.

We can use both the density matrix and the effect matrix to predict the measurement
records averaged on a pre and post-selected ensemble of trajectories given in Eq. (7.12)

a®(t)dt = \/2n;T1Re[(o_),,]dt
7% (t)dt = —/2n;T1Im[(o_), ]dt (7.16)
@°(t)dt = /2140 aRe(0.), )t

where the weak value is defined as (A4),, = Tr[ApE]/Tr[pE] (see Eq. (7.13)).

A striking feature of the weak values in Eq. (7.16) is that the real and imaginary part
functions do not ‘commute’ with the average (.),,. For instance the real part of (oc_),, is
not (o), /2 = (Re[o_]),, because pE is not Hermitian. Let us denote p, = pE/Tr[pE],
we can write

Rel(o-),] = 5Re[Trlpy(0w — ioy)]
= %Tr[Re[pp]ax — Im[py|oy]- (7.17)

# SRel[Tx[pyo.]

In our detection setup (see Fig. 7.3 a), monitoring the fluorescence emitted by a qubit
will no longer be equivalent to obtaining information on o, = 2Re[o_] on one quadra-
ture and o, = —2Im[o_] along the other quadrature as it was the case in section 3.3. A
pre and post-selected homodyne detection of an electromagnetic wavepacket can thus
access the properties of both the real and the imaginary part of the field. This fact is
the basis of wavefunction tomography protocols based on weak values [204, 60]. The
pre-selected (resp. post-selected) measurement records can be recovered from Eq. (7.16)
by setting £ = 1/2 (resp. p = 1/2). In this case, u, v and w are proportional to the
expectation values of 0, 0y and o, for the quantum state p (forward estimation) or F
(backward estimation).

Pre-selection (resp. post-selection) is experimentally achieved by performing a projec-
tive measurement (see chapter 3) at the beginning (resp. at the end) of the experiment
along a given axis of the Bloch sphere. Trajectories are averaged conditionally on the
final and initial projective measurement outcome revealing the smoothed measurement
records (7.16).

In Fig. 7.3, we perform a pre and/or post-selection of a 30 us long Rabi oscillation.
In the pre-selected traces (Fig. 7.3 b e h), the qubit is initialized in |g) and then

The two equations are not time symmetric as soon as one of the jump operators is not Hermitian nor
skew-Hermitian.
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7.2 PRE AND POST-SELECTED TRAJECTORIES

experiences usual Rabi oscillations in the presence of weak decoherence. The Bloch
vector oscillates around the y axis in the z — z plane and converges toward the center of
the Bloch sphere. In the post-selected case (Fig. 7.3 d g j), the qubit state starts'? in
1/2 and then experiences time reversed Rabi oscillations before reaching its final state
Er = |g) (g]. Finally, when the trajectories are both pre and post-selectioned (Fig. 7.3
c f i), the amplitude of the oscillation starts to decrease because of the Lindblad
super-operator in Eq. (7.14) before increasing again under the action of the adjoint
Lindblad operator in Eq. (7.15). The time ¢ = T'/2 defines a plane of symmetry for
the trajectory enlightening the time symmetry of the past quantum state formalism
when the dynamics is dominated by a fast Hamiltonian evolution. In the middle of
this pre and post-selected average trace, the amplitude of the oscillation (Fig. 7.3 ¢
i) is greater than the one for the forward prediction (Fig. 7.3 b h) or the backward
retrodiction (Fig. 7.3 d j). We will demonstrate in the next section that this abnormally
high amplitude can even exceed 1.

7.2.2 "Anomalous" weak values

The denominator of the weak value (7.13) is just the probability for the sequence of
future measurement results

T'r'l:ptEt] = [P[{yT}t<T<T‘pt]/Tr[K;;(tn) O...0 K;;(tj\],l)(EtN)] (718)

If the future measurement records {y; },~; are very ‘unlikely’ given the density matrix
pr at time t, the weak value at this time will be ‘large’ because of the near orthogonality
of p; and F;. They can even surpass the extremal eigenvalues of the measured operator
leading to the ‘anomalous’ weak values predicted by Aharonov et al. [59]. The obser-
vation of these anomalous values has been claimed to contradict macro-realism when
using a non-invasive detector'! equivalently to the violation of Leggett-Garg inequality
[61, 199, 200, 201]. At a given time t orthogonality of the states p, and Ey is limited
by the Lindblad terms in Eq. (7.14) and Eq. (7.15) that reduces the purity'? of the
states for lengthy evolution. We thus reduce the duration of the experiment from 30 us
(Fig. 7.3) to 1.7 us (Fig. 7.4) to increase the combined effect of pre and post-selection
by reducing the effect of decoherence.

In Fig. 7.4, we pre and post-select a trajectory on a very unlikely future outcome
(Fig. 7.4 a). We observe again a good agreement between the calculated smoothed
records (7.16) and the experimental measurement records averaged conditionally on
the outcomes of pre and post-selection (Fig. 7.4 b d). We emphasize that the measure-
ment records do not correspond to the pre and post-selected expectation of the Pauli
observable (see Eq. 7.17) by representing Re[(0),,] as a solid line in Fig. 7.4 b. In con-
trast to Fig. 7.3, the measured signal reaches values beyond +1 that are not permitted
for only pre or post-selected averages. This is an illustration of the amplifying property

We artificially prepare an equal statistical mixture of |g) and |e) by averaging with the appropriate
weighting coefficients trajectories pre-selected in |g) and in |e).

Our detection setup can be considered as non-invasive as cryogenic circulator isolate the system from
the detection setup.

Only pure states can be perfectly orthogonal in the Bloch sphere.
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POST-SELECTED QUANTUM TRAJECTORIES

of weak values [202, 203, 60|. In this regions, the sensitivity of our detection on small

variation of the parameters'® of the system is increased as the weak values are inversely

proportional to the almost vanishing scalar product between p; and E;. This feature is

even more salient when the conditioned records are represented in 3D. As explained in

chapter 3, raw averaging the unconditioned measurement records amounts to directly

imaging the Bloch vector. When pre and post-selected, the imaged vector norm can

now exceed 1 and thus explore the outside of the unit sphere!® (see Fig. 7.5 a).

a.

2Im[(o )]

b. 3
preparation post — selection 2 A
]
0 N\~

A \bl/ N . : ¢ :
o
-2 “SRel(0a),,]
Po Er %0 0.5 10 15
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2 2 . :
N e | S . . 7SN
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Figure 7.4: a. We perform a pre-selection in the ground state py = |g) (g| and a post-selection

in an arbitrarily chosen state Ep such that (Tr[o,Er], Trlo,Er], Tr[o.Er]) =
(sin(#),0, — cos(f)) where 6 = 2387/180. The pre (dark blue), post (dark yel-
low), pre and post (purple) selected trace are observed through the measurement
records 2Re[(c_)] (Fig. b), 2Im[(o_)] (Fig. ¢) and Re[(c,)] (Fig. d). Similarly
to Fig. 7.3, the solid lines are predicted from the smoothed measurement record
(7.16) calculated from the density matrix and effect matrix obtained from Eq. (7.14)
and Eq. (7.15) with the parameters I'1 = (11 ps)™!, I', + 'y = (12.3 us)~! and
Q/27 = (850 ns)~!. Both Fig. b and d show values that exceed the range of pos-
sible unconditional average values delimited by the green dashed lines. The vector
obtained by raw averaging of the three measurement records lies outside of the
sphere of radius 1. We additionally represent Re[(c,), ] as a black line in Fig. b
illustrating the stark difference between this quantity and the measured record
2Re[(0_),,] = Re[(o; —i0y), ]| with pre and post-selection. Note that in the exper-
iment, the pre and post-selected trace exhibit an offset in the v(t) record (Fig. c)
that is not predicted by theory.

13 For instance, a small change in the Rabi rate or in the pre and post-selection fidelities changes dra-

matically the amplitude of the weak value.
14 This does not contradict the quantum theory as the pre and post-conditioned imaged vector does not

correspond to the Bloch vector of a quantum state.
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7.2 PRE AND POST-SELECTED TRAJECTORIES

Lastly, we notice that the experimental measurement record v exhibits an almost

constant value when pre and post-selected (Fig. 7.4 c¢). This constant offset is not

observable with only pre-selection or post-selection and it is not predicted by the past

quantum state theory. When pre or post-selecting the trace on states pg or Er with non

zero (oy), this constant offset remains on top of the observed oscillation of 2Im[(c_)]

that is well predicted. We have checked many possible sources of error for that offset

but we could not find any experimental mistake (see below).

7.2.3 Influence of the post-selection

2Im([(o)]

Re[(02)]

0.5 1 15 0 0.5 15

1
time (us) time (us)

Figure 7.5: Influence of the post-selection on the measured traces. The qubit is initial-

ized in the ground state |g) and post-selected on a state Ep represented
by colored Bloch vectors on Fig. a. The post-selected states are of the
form (Tr[ogE7], Tr[oyEr], Trjo.Er]) = (sin(f),0,—cos(f)) where 76/180 =
40,4, —32, —68. We superimpose a 3-dimensional representation of the pre and post-
selected measured records that exceed the unit sphere. The color encodes the post-
selected state. b. c. d. Measured (dots) and predicted (lines) measurement records
for the trajectories represented in Fig. a. We observe a good agreement with the
theory calculated with the parameters I'y = (10.4 pus)™!, Ty + 'y, = (22 ps)~* and
Q/2m = (875 ns)~! except for Fig. c. Fig. b and d exhibits measurement records
that exceed the normal eigenvalue range. Note that the experimental offset in Fig. ¢
component already noticed in Fig. 7.4 depends on the post-selected state.

The weak value "amplification" can be increased by an appropriate choice of param-

eters. In Fig. 7.5, we present 1.7 us long average traces conditioned on both pre and

post-selection for various post-selected states. We measure weak values that exceed the

normal range but they remain smaller than the one we obtain with the very unlikely
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post-selection of Fig. 7.4. Even larger weak values can be obtained by reducing the to-

tal duration of the experiment!® and by increasing the preparation and post-selection
fidelities.
Additionally, the constant value (see Fig. 7.5 ¢) already observed in Fig. 7.4 ¢ depends

on the post-selected state as well. In order to understand this offset that is not predicted

by our theory, we carried out several experiments. Here are our conclusion on the

behavior of the observed offset with respect to the experimental parameters.

The offset depends on pre and post-selection as depicted in Fig. 7.5 ¢ and it is not
observed with only pre or post-selection. For short durations of the experiments,
its amplitude seems inversely proportional to the scalar product Tr[pE] between
the past and future states revealing the weak value nature of this constant signal.

For a fixed ‘angle’ between the Bloch vectors encoding preparation and post-
selection, the offset does not seem to be significantly affected by the amplitude
of the drive at f, i.e. at fixed Tr[pE], Im[(0c_),,] seems independent on .

This feature cannot be modeled by an error on the preparation or post-selection
that would produce nonzero o,. A preparation and/or post-selection outside of
the x — z plane (Tr[po,] # 0 or Tr[Ero,] # 0) leads to an oscillating 2Im[(o_)]
smoothed record and not a constant offset.

Discarding the measurement records on the dephasing channel or canceling the
probe tone at the frequency of the cavity does not change the measured offset.

Initializing the system in a maximally mixed state py = 1/2 before preparation
does not prevent an offset when taking into account both pre-selection and post-
selection.

Moving the operating frequency of the quantum limited amplifier used to detect
the spontaneous emission (see Fig. 7.3 a) away from the frequency of the qubit
degrades the signal-to-noise ratio but the offset remains. The offset is not caused
by a spurious effect of the JPC.

Impressively, by inserting a unitary rotation that maps the y component of the
qubit onto the z component of the qubit amid the trajectory, the Im[(o_),, ] offset
usually picked up by the fluorescence signal can be detected in the dephasing
channel as well.

15 Or by increasing the coherence time and the lifetime of the qubit.
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7.3 CONCLUSION

In this chapter, we demonstrated

e that prediction and retrodiction of the evolution of a qubit that is prepared and
post-selected in chosen states using the past quantum state formalism describe

experimentally relevant situation.

e that our full quantum tomography method can lie outside of the Bloch sphere by
combining preparation and post-selection. This is an observation of a weak value.

e the apparition of an a constant signal on the imaginary quadrature of the fluo-
rescence signal when both pre and post-selecting. That offset is not predicted by

theory and it requires further investigation.

Weak values are at the heart of colorful theoretical debate as they are often mis-
understood [60]. A way to circumvent this difficulty is to define a smoothed quantum
state [213, 214, 215] using the complete available knowledge a posteriori. This smoothed
quantum state belongs to the operator space as opposed to the past quantum ‘state’
E: = (pt, Et) introduced by Gammelmark et al. [58]. Moreover, such a smoothed esti-
mate made from incomplete observations are predicted to outperform estimates made
using full knowledge of the causal quantum state [214]. This might be observed by un-
raveling quantum trajectories, not only for the density matrix as in chapter 6, but also
for the effect matrix [63], for both [64] and for the smoothed quantum state. Manifes-
tations of the interference between initial and final states can be revealed through the
statistics of pre and post-selected measurement records such as peaks or dips at half-
quantized value of the measurement outputs [216|. Finally, the time asymmetry induced
by dissipation could be studied by comparing the statistics of forward and backward
quantum trajectories. The arrow of time could emerge by comparing the likelihood of

the forward and backward propagation hypotheses [190].
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TRANSMON COUPLED TO A TRANSMISSION LINE

This appendix follows a lecture given by Pierre Rouchon at the CIRM school : Modeling
and Control of Open Quantum Systems in April 2018. It gives a prototypical derivation
of the dynamics of an open quantum system: a transmon qubit coupled to a trans-
mission line modeled as a collection of harmonic oscillators. Special care is given to
the treatment of the Markov approximation to obtain the Langevin equation. We also
bring to light the fact that the non linearity of the junction is distributed among all the
elements of the circuit including the coupling capacitance to the transmission line [82].
This problem is crucial in this thesis because it takes on the problem of relaxation and
measurement of an atom by spontaneous emission, which is central for the heterodyne
measurement of the energy relaxation of a transmon qubit in our experiments. We show
that extra higher order terms appear in the derivation of the input-output relation of
an anharmonic oscillator such as the transmon. However, the additional terms give rise
to a negligible non linear correction to the dissipation. This effect exactly vanishes for
a qubit but it might be of importance for high impedance circuits.

A.1l CLASSICAL EQUATION OF MOTIONS

We start by introducing the classical equations of motion of the system depicted in
Fig (A.1). In this description the transmission line was replaced by an infinite collection
of discrete IA, ¢A modes at positions x = 0, A, 2A, .... We also assume that the coupling
capacitance Cj satisfies C; < C'. Together with the Ohmic modeling of the semi-infinite
transmission line, this assumption plays the role of the so-called Markov approximation.

A.1.1  Dynamics of the system

The Lagrangian of the system reads

C

_ = (q>r+1 - (I)r)2
2

£ 2A

. C . . cA .
2 4 ?l(% — $)? +Z7q>3 + Ejcos(®/p0) — Y
r>0 r>0

(A.1)

where the reduced flux quantum is ¢g = h/2e. We have the associated conjugated

variables

oL . .
Q 5% 1 0)

oL . . .

= —— =)Dy — D) + cAD . A2

) 9%, 1(Po — @) + cAd (A.2)
qT:%:cACbT
\ 0P,
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Figure A.1: a. A transmon is capacitively coupled to a transmission line by a capacitor C;. The
transmon is composed of a Josephson junction of Josephson energy E; shunted by
a large capacitor C'. We neglect the intrinsic capacitance of the junction. We assume
that C; < C to ensure that the system can be treated as a well defined system
coupled to a zero memory bath. b. We decompose the electromagnetic modes of
the transmission line in discrete modes spaced by a distance A. We denote by [
and ¢ the inductance and capacitance per unit length of the transmission line. ®
is the voltage across the junction and ®, is the voltage across the ™" capacitance
of the transmission line.

A Legendre transform of the Lagrangian (A.1) gives the Hamiltonian
oL . oL .
H(P,Q,{P,,q}) = —D+ —d, — L
(@0 {Brar)) = grb+ 3o

Q@+ @)? @  (B1— Do)

= B/ 20 —F o A.
o tagt T ag g cos(®/ o) (A.3)
2 2
qr ((I)T+1 - q)r)
T2 AT T an
r>1
We can then write Hamilton’s equations of motion as
(d® Q-+ qo

a  C
dQ E;y .

=—— P
= —Lsin(@/s0)
% _ @ @+
dt C C (A4)
dgo _ 1= %o
dt IA
A, _ qr
dt — cA
dqr o (I)rJrl - 2(1)7“ + (I)r,1
dt IA

By combining two equations of (A.4), we have
P20, P, — 2P, + D,
_ ®ra1 + Py (A.5)

dt? lcA2
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A.1 CLASSICAL EQUATION OF MOTIONS

In the continuous limit (A < 1), we can write the flux as a function of position
®,.(t) = ®(t,rA) where the function ® (¢, z) satisfies Dalembert’s equation with velocity
1/Vle

9’®  10%®
Ot2 e Oz’
The flux along the transmission line can be decomposed into left and right propagat-

ing plane waves ®(t,z) = Pin(t + Viex) + ®oui(t — Viex) allowing us to recover the
usual input-output relation at z =0

(A.6)

Q)(t, 0) = q)in(t) + <I>out(t) = q)O(t)' (A7)

The derivative of the input-output relation (A.7) reads

. . . 1 1
Bnlt) + () =000 =0 (5 + ;) + (A3)
We can approximate the derivative of the charge at position z = 0 by

@ o (I’l - (I>0 o (I)in(t + \/EA) + (I)out(t - \/EA) - ((I)in(t) - (I)out(t))

. — IA [A

~ \/f((i)in(t) - (i)outt))

We end up with the following system of coupled equations

(A.9)

R+q | @

d)out (t) — _q')in(t) + C + C[

% _ \/f <2<i>in(t) - (Q gqo + g)) (A.10)

d® Q-+ qo

a  C

dQ  Ej .

E = 20 Sln((I))

Let us introduce the small parameter € = . We assumed in the situation depicted

C
C+lcl
on Fig. A.1 that € was very small with the so-called Markov approximation. We will
expand the solutions of the problem of Fig. A.1 up to the first non trivial order in e.

From (A.10), the method of ‘variation of constants’ gives

ezt/Ce .
O - (a0 - H ) e (A11)

where z = \/g is the impedance of the transmission line. An integration between 0 and
+o00 leads to

qo(t) =z /0 T <2<i>in(t’) - Q(Ct/)> g (t—t)/Ce

oo (A.12)
= 6/0 e 7 (20®,(t — eor) — Q(t — eo))do

where 7 = C'z.
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A.1.2  Asymptotic expansion in €
FIRST ORDER IN €

Let us expand Eq. (A.12) with respect to e. At first order,
qo(t) = e(20®i,(t) — Q(2)). (A.13)

By using this expression with Eq. (A.10), we get

. & @ Q
Pout = —Pin + 6C(l +O(e)) + o (A.14)

which leads to the trivial input-output relation
Doyt (t) = Pin(t). (A.15)

There is no information in the reflected signal at first order in € in (A.12), we must go
to the second order.

SECOND ORDER IN €

We can expand Q and ®;, with respect to €

Ejero

Q(t — o) = Q(t) — eraQ(t) = Q1) + sin(@(£)/ o)
. Yoo _ (A.16)
Dy (t) ~ / e 7Dy (t —eoT)do
0
The dynamics of the system is governed by
o 1- . E
9 _ =900+ e (20m(t) — TEL sin(a(1))
dt ¢ o (A.17)
4Q _ _EJ (@ /o) '
In the end, the input-output relation now reads
. . Ejer .
Doyt (t) = Pin(t) — sin(® /o). (A.18)
poC

We clearly see that this input-output is non linear and it gives us information on sin(®).
We will now transpose this equations in the quantum world to recover the input-output
relation used in our system and study the impact of the non-linearity of this relation.

A.2 QUANTUM DESCRIPTION

Following [217], the incoming modes propagating along the transmission line can be
decomposed as

1/4 poo '
Gin(t,z) = 1 l < > / Vwdw (ain(w)e_“"(““/ﬁx) + h.c.) . (A.19)
0

!
2V T \c
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A.2 QUANTUM DESCRIPTION

with the commutation relation [ai, (w), a;fn(w’)] = 0(w — w’). A difficulty arises in
this description because we cannot simply define the temporal mode operators of the

transmission line to be

ba(t) = 3/ (l)/ |7 Vadatanteye (4.20)

because with this expression the commutation relation is not preserved [biy (1), b;rn ()] #
d(t —t'). In order to respect the commutation relation and thus to get a Markovian
environment we need to focus around the resonant frequency of the oscillator w ~ Q

where 2 =, /CE—JQ and discard the rapidly oscillating terms.
0
LINEARIZATION OF THE OSCILLATOR

First, we consider the linearized oscillator and we reintroduce the non linearity af-
terwards as a perturbation. Let us introduce the variables ® = ®zppX and Q =
Qzpr P with the quadratures of the field X = a + al and P = “%“T with ®zprp =

1/4
VE = %(ﬁ) , Qzpr = \/4y = (e*CE;)Y/* and the dissipation rate k =

2
(Cilcl) \/% 1/ wﬁ. The linearized system behaves like an harmonic oscillator
0
with a dissipation rate x and a driving field Xj,

{ X = QP — kX + 2y Xin(t)

. . (A.21)

P=-QX

In the rotating frame oscillating at the frequency of the harmonic oscillator a —
ae~ ™ the equation of evolution of the modes reads

da

K iQt
-k X A22
7 50 + VEXin(t)e ( )

with the driving term
. +oo ' '
Xin(t)GZQt ~ / dw | ai, (w)eil(""*ﬂ)t + a;fn (w)el(w+ﬂ)t
0 -
rotates fast

+o0 -, )
~ / dw' ap, (W' + Q)e™™ t (A.23)
o)

400 -,

N/ dw' g, (W' + Q)™
—0o0

where we let the lower bound of the integral go to infinity —{2 — —oo because the

integrand oscillate very fast for these values of w. We finally arrive at the quantum

Langevin equation in the RWA of the form
da K
o2 (). A.24
7 5@+ Vrbin(1) (A.24)

But now, the commutation relation for the input [bi, (), b;fn(t’ )] = d(t —t') is preserved
by the application of the RWA

bout(t) = bin(t) + \/E(I(t) (A25)
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TRANSMON COUPLED TO A TRANSMISSION LINE

3'Y ORDER EXPANSION

We now expand the sine function at a higher order to see the effect of the first non
linear term of the sine on the input-output relation sin(®/yg) = (®/¢o) — %(@ /o) =
(®/p0)(1 — nX?) where n = %(@pr/tpo)Q. We obtain a modified Langevin equation

da K

i p ts | ova
P U Vkbin(t) + §(ZQ — )(3a'a + 2)a (A.26)

and the corresponding input-output relation
bout (t) = bin(t) + vVr(a + n(3ata + 2)a). (A.27)

The jump operator of the problem is L = v/k(a+n(3a’a+2)a) which is non linear in
the number of excitations in the transmon. This non linearity will affect both dissipation
and measurement as the measurement records and the measurement innovation are
calculated from the jump operators. In order to evaluate the impact of this term, let
us estimate n = %(@pr /p0)? = @%Z. The electromagnetic mode of a transmon with
parameters Ec ~ h x 200 MHz and E; ~ h x 20 GHz has an impedance Z ~ 30082
corresponding to a non linear correction of 17 ~ 2.3%. This correction is thus very small
unless if we reach higher impedances. Interestingly in the case of a qubit, this jump
operator is strictly equivalent to the linear jump operator (afa? = 0) so the non linear

dissipation only renormalizes the relaxation time of the qubit.

A.3 CONCLUSION

In this appendix, we derived the equation of motion of a transmon coupled to a trans-
mission line as well as the input-output relation required to calculate the response
function of the system to an external drive. A striking feature is that the non linearity
of the junction is distributed over the first modes that compose the transmission line
(in the discrete description). The coupling capacitance Cj inherits a part of the non lin-
earity of the junction that leads to a negligible non linear dissipation. This extra term
does not play a role for a qubit but it could be of importance for a high impedance

circuit.
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In this appendix, we detail the fabrication process of the samples used in this thesis.
We explain the fabrication of the 2D and 3D transmons introduced in chapter 2 and the
Josephson parametric amplifiers JPA and JPC explained in chapter 5. The fabrication
protocol of 3D transmon (resp. JPC) was previously developed in our group by Philippe
Campagne-Ibarcq [85] (resp. Emmanuel Flurin [40]). In a second section, we give details
about the measurement setups including the wiring inside the dilution refrigerator.

B.1 FABRICATION
B.1.1 Fabrication of JPA and JPC

B.1.1.1 Dolan bridges

The samples are made out of thin films of aluminum deposited on 10 x 7 mm chips
diced from a wafer of high resistivity silicon of thickness 500 pm. We designed the
JPA and JPC amplifiers out of resonators in the so-called microstrip geometry [75]. We
evaporate 500 nm of gold on the back side of the chip that constitutes the ground plane!.
The circuit is made of aluminum (Al5N). Its critical temperature T ~ 1.2 K is well
below the operating temperature of the fridge and it is easy to deposit reproducibly.
Crucially, aluminum oxide arguably the only material known to create reproducible
insulating barrier in Josephson junctions.

We prepare a resist mask composed of a tri-layer MAA/MAA/PMMA. We ‘draw’
the design of the amplifier with a focused beam of electrons produced by a Scanning
Electron Microscope (SEM), which can achieve sub 10 nm resolution. PMMA is a
positive electron-sensitive resist (the exposed part is dissolved during development) so
we expose the region of the chip where the aluminum will be deposited. MAA is more
sensitive than PMMA so it reacts to most of the back-scattered electrons at the interface
with the substrate and create an undercut around the exposed areas. This property is
used to fabricate a suspended bridge of PMMA with no MAA underneath. This bridge
is instrumental in creating an overlap between two layers of aluminum deposited with
different angles. We separate the two layers of aluminum by an oxide barrier made by
oxidizing the first layer as depicted on Fig. B.1. This method is known as the Dolan
bridge technique [218] or shadow evaporation technique. It is the most commonly used
technique to fabricate junction in one evaporation step?.

Before this step, we deposit a thin layer of PMMA on the upper surface of the substrate to protect it
from contamination.

Other techniques exist such as the ‘bridge-free’ fabrication [219] but they require a 100 kV e-beam
writer.
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b. Al5N ( AIBN (+35°)

lll. N MO%

Figure B.1: a. An electron beam exposes a Silicon substrate (in brown) covered with a tri-
layer MAA/MAA/PMMA (lightgreen/lightgreen/green). After development the
exposed region (weak opacity) is removed. b. We fabricate a suspended bridge.
The bridge is formed by insulating the MAA underneath the PMMA via back-
scattering of electrons on the surface of the substrate. A first 100 nm-thick layer
of aluminum is deposited with an angle —35°. c. This layer is oxidized by the in-
troduction of 20 mBar of oxygen inside the chamber of the evaporator for 7 min.
A second 130 nm-thick aluminum layer is deposited with an angle +35°.

In the rest of this section, we describe the exact protocols used to prepare the samples
of this thesis. A lot of these steps are crucial to ensure cleanliness of the device and
therefore a reliable fabrication with good quality factors.

B.1.1.2  Cleaning
We clean all impurities that are deposited of the substrate by the dicing saw.
e Rough acetone cleaning with a cotton swab

e 5 min sonicate in a clean acetone beaker.

IPA rinsing.

Ns drying.

e 10 min of reactive-ion etching (RIE) with an O2 plasma.

B.1.1.3 Resist deposition by spin coating
We deposit a tri-layer MAA/MAA/PMMA
e Pre-bake 2 min & 185°C on a hot plate.

Three drops of 8.5 MAA EL10.

Spinning at a speed of 4000 rpm and acceleration of 4000 rpm.s~! for 60 s.

Bake at 185°C for 3 min on a hot plate.

Wait for 1 min.

Three drops of 8.5 MAA EL10.

e Spinning at a speed of 4000 rpm and acceleration of 4000 rpm.s~! for 60 s.
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Bake at 185°C for 3 min on a hot plate.

Wait for 1 min.

Three drops of 950 PMMA A6.

e Spinning at a speed of 4000 rpm and acceleration of 4000 rpm.s~! for 60 s.

Bake at 185°C for 3 min on a hot plate.

Wait for 1 min.

B.1.1.4 E-beam lithography

We realize this crucial step with the Fei Magellan SEM available at ESPCI3. The
complete pattern is done in a single step lithography. We use two sets of parameters,
the first one is used to write the Josephson junction very precisely and the second one
is used to write the rest of the circuit with a lower precision.

e We write the junction (typically about 500 nm X 2 s in area) with an electric
current of 9 pA accelerated by a voltage of 25 kV. The magnification is set to 600
with write fields of 100 ym and the pattern is exposed with a dose of 283 pC/cm?.

e The resonators and coupling capacitances are written with an electric current of
23.5 nA accelerated by a voltage of 25 kV. The magnification is chosen to be 75
with write fields of 800 ym and the pattern is exposed with a dose of 283 pC/cm?.

B.1.1.5 Development

The development step aims at removing the exposed resist before an evaporation of
aluminum. A small quantity of resist remaining after development could lead to non
radiative loss in the device. The choice of the solution called developer used for this
step is thus crucial to prevent residues of resist. On the opposite, if the developer is
too agressive, large undercuts grow, and may jeopardize the robustness of the Dolan
bridge.

We used two different developers, a mixture of MIBK and IPA and a mixture of IPA
and HoO. The former is the most widespread. It leads to a fast but imperfect removal
of the resist (see Fig. B.2). In constrat, IPA/H»0 is slow which leads to variation in
the development time and it is also very sensitive to variations of temperature.

DEVELOPMENT MIBK/IPA
e 43 s of stirring in a solvent MIBK:IPA (1:3).
e IPA rinsing.

e Ny drying.

3 Ecole supérieure de physique et de chimie industrielles de la ville de Paris.
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Figure B.2: a. Optical image of an area with residues of resist after a MIBK/IPA development.
The resist leftovers prevent an homogeneous deposition of aluminum. b. Optical
image of the same area as in a but after a IPA/H50 development. The residues of
resist are gone.

DEVELOPMENT IPA/H20

e Between 3 min 30 s et 7 min of stirring in a cold* solvent IPA : HoO (1:3).
e [PA rinsing.

e Ny drying.

B.1.1.6  Fwaporation and lift-off

The shadow evaporation technique enables us to create reproducible Josephson junc-
tions by a successive deposition of two aluminum layers (100 nm and 130 nm respec-
tively) interleaved by an oxide barrier. We use University Paris-Diderot clean room
facility (see Fig. B.3 a) to deposit high purity aluminum. The chip edges are protected
with kapton tape to avoid a direct electrical contact between the aluminum and the
gold ground plane.

EVAPORATION

e pumping for 45min to reach an evaporation chamber pressure p < 3.10~% mbar.

e 2 s of ion etching under —35° (500 V, —100 V, 50 mA, 12 sccn ArOo).

2 s of ion etching under +35°.

Evaporation of the first 130 nm-thick layer of aluminum under an angle of —35°
at a rate 1 nm/s .

7 min of static oxidation in 20 mbar of Ar: Oz (80% Ar — 20% O2)

Evaporation of the second 100 nm-thick layer of aluminum under an angle of
+35° at a rate 1 nm/s .

e Introduction of 40 mbar of ArOg before venting.

4 Ideally, the temperature should be fixed at 4.5°C thanks to a temperature controlled water bath.
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LIFT-OFF  Finally, we remove the non exposed resist with acetone.

e at least 10 min in an acetone bath at 60°C.
e 2 s sonicate in a clean acetone beaker.

e IPA rinsing.

e N5 drying.

1o ——(0)

0— 2 k2

JJ

Figure B.3: a. Picture of a silicon chip before evaporation in a Plassys machine MEB550S. b.
Electrical scheme of a wafer prober. A ballast resistor of 1 k) protects the sample
by limiting the current flowing across the junction. The current is ramped up with
a potentiometer.

B.1.1.7  Wafer probing

The Ambegaokar-Baratoff relation links the normal state resistance of a junction at
zero temperature RY to the critical current of the junction I

A WA(p()
RO ™2 _ B.1
" 2ely  2eEy (B.1)

where e is the elementary charge, A is the superconducting gap, ¢o = h/2e is the

reduced flux quantum and Ej; is the Josephson energy. The superconducting gap is
of the order A ~ 180 peV for thin film of aluminum. We estimate the resistance at
zero temperature RV to be approximatively 20% smaller than the room temperature
resistance R,. Measuring the resistance of a Junction at room temperature with the
setup of Fig. B.3 b gives an estimate on the Josephson energy F;.

The wafer prober is an essential tool to select devices that are not shorted nor open®
and that display the closest E to the targeted valueS.

For a SQUID, measuring twice the expected resistance indicates that one of the junction is an open.
The Josephson energy plays an important role in the participation ratio of an amplifier (see chapter
5) or the resonant frequency of a transmon (see chapter 2).
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B.1.1.8 Measured amplifiers

We fabricated more than 20 JPA and 10 JPC during this thesis work. Some JPCs were
characterized and used by Nathanaél Cottet and Sébastien Jezouin for the quantum

Maxwell demon experiment [220]. Table B.1 summarizes the measured parameters of
the devices that were actually cooled down. The devices dubbed JPA18 and JPCXYZ2

were used to acquire quantum trajectories [221].

Name | fi(gext =0) (GHz) | p | Q | BW (MHz) | kioss(MHz) | R, (k)
JPA5 5.72 22%
JPA10 11.06 22%
JPA11 9.23 18% | 106 0.35
JPA14 9.42 90 58 46 0.21
JPA17 9.01 2.6% | 145 62 1 0.10
JPA18 8.35 2% | 190 44 <1 0.08
JPC39 5.40 126 43 <1
JPC48 5.385 168 32 <1

JPCXYZ2 5.390 180 30 <1

Table B.1: Measured amplifiers parameters. The measured parameters are the resonant fre-
quency a zero external flux f,(pext = 0), the participation ratio of the non-linearity
p, the quality factor of the resonator () at zero external flux, the bandwidth without

pumping, the internal loss rate k¢ and the resistance of the test junctions at room

temperature R,,. The constraints on the parameters of the amplifiers are explained

in chapter 5. Several trials and errors were needed to match the frequency of the
amplifiers with the frequency of the qubit and cavity. All the measurements shown
in this thesis were obtained with JPA18 and JPCXYZ2. The empty squares corre-
spond to parameters that were not measured nor extracted from the measurements.

B.1.2 8D transmons

The fabrication procedure of 3D transmons is very similar to the one used to fabricate

amplifiers. The main difference lies in the use of C-plane oriented 430 pm-thick sapphire

substrate instead of silicon. The substrate is diced into 10 x 4 mm chips before the

fabrication. Let us list the differences with the previously detailed fabrication process

e the bake times are increasing from 3 min to 4 min during spin coating.

e sapphire being an insulator, a 10 nm layer of aluminum is deposited on top of the

resist prior to lithography to evacuate charges during the e-beam lithography.
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e this thin aluminum layer is removed after e-beam writing and before development
by immersion of the chip in a KOH solution”.

e we deposit a first layer of 35 nm of aluminum (instead of 100 nm) followed by
oxidation and a second layer of 100 nm (instead of 130 nm) of aluminum during
the evaporation.

The other steps are unchanged. Luckily, the first transmon that we cooled down had suf-
ficiently good coherence times for our experiments. It was used for all the measurements
presented in this manuscript.

B.1.3 2D CPW chips

We also used 2D circuits composed of several microwave resonators and qubits. The
resonators and qubits are patterned in the coplanar waveguide geometry. The associated
experiments are still on-going and the results are not presented in the manuscript.
Nevertheless, we describe the fabrication process used to make our 2D chips. These
chips were fabricated by Théau Peronnin and Raphaél Lescanne at ENS Paris with a
process developed jointly with Danijela Markovié [149].

After cleaning the wafer, a 150 nm layer of of Nb is deposited on the entire upper
surface of the substrate by sputtering. The resonators, geometric inductances and ca-
pacitances are patterned by optical lithography with the laser writer available in the
clean room at Collége de France. After development, the niobium is dry etched using
SF6 to form the ‘gaps’ of the CPW. Aluminum Josephson junction are written at the
end by e-beam lithography. Let us briefly describe the fabrication process.

SPIN COATING
e One drop of S1813.
e Spinning at a speed of 4000 rpm for 60 s.

e Bake at 115°C for 1 min on a hot plate.

OPTICAL LITHOGRAPHY
e We use a microtech LW405-B-+ laser writer.

e Exposition at a dose 300 mJ/cm?.

DEVELOPMENT
o AZ726-MIF for 90 ns

e H5O rinsing.

The concentration of the KOH solution (KOH comes as solid pellets) and the immersion time are not
controlled carefully. We simply wait for the visible dissolution of the aluminum layer.
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ETCHING
e Reactive ion etching with SFg for 2 min.
e Dissolution of the remaining resist in acetone.
e [PA rinsing.
e N5 drying.

Josephson junctions are then written with the exact same protocol as the one used
for 3D transmons.

B.2 MEASUREMENT SETUP

Fig. B.4 is a picture of the inside of the dilution refrigerator used in during this thesis.
Our devices are shielded by aluminum foils and placed inside cryoperm boxes. They
are thermally anchored at the base plate of the dilution refrigerator at a temperature
of 20 mK. The signal coming from room temperature is heavily attenuated at every
stage of the refrigerator and filtered by XMA attenuators and home-made eccosorb
filters to prevent any thermal noise from reaching the base plate. A special care is
taken to thermally anchor all microwave components at every stage. Superconducting
NbTi coaxial cables are used on the return lines between base temperature and 4 K
to minimize the losses before the HEMT while reducing the heat exchange between
these stages. Twisted DC lines are used to current biais coils that are placed above the
amplifiers to enable us to match the frequency of the amplifiers with our qubit and
cavity.

Fig. B.5 is a diagram of the measurement setup. The qubit-cavity system described
throughout this thesis is probed via coaxial transmission lines whose central pin plunge
into the 3D cavity. Readout and qubit drive and gate are produced by mixing a few
GHz continuous wave with 50 MHz (readout) and 40 MHz (qubit) modulated pulses
generated by a Tektronix AWG® 5014C. At the output of the cavity, a commercial®
frequency diplexer routes output signal in the frequency range DC' —7 GHz (including
qubit frequency) toward a Josephson parametric converter (JPC). The signal in the
frequency range 7 GHz — 14 GHz is routed toward a Josephson parametric amplifier
(JPA). The JPA is double pumped by two side-bands generated by an 1Q mixing of the
readout frequency. The two spatially separated detection chains are further amplified
by a HEMT!? at 4 K and at room temperature before down conversion, digitization by
an Alazar 9351 ADC board and numerical demodulation. Several cryogenic circulators
are used to prevent amplified noise from entering the cavity from the output port and
thus degrade the qubit coherence time (see chapter 5).

Arbitrary waveform generator.
TIGER TGF-A4214-001.
Low Noise Factory high electron mobility transistor amplifiers.
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Figure B.4: Wiring of our BlueFors dilution refrigerator for several experiments. a. Wiring of
the fridge between 4 K and base temperature. The signal coming from room tem-
perature is heavily attenuated and filtered to prevent thermal noise from reaching
the base plate. b. Zoom on the 20 mK stage. Qubits and amplifiers placed inside
cryoperm boxes and thermally anchored to the base plate of the dilution refrigera-
tor with copper braids.
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Figure B.5: Schematics of the experimental setup for the quantum trajectories experiment. A
single RF source at f. — x/2+ 50 MHz is used to readout the cavity by single side
band modulation and to generate a two side-band pump for a JPA. The mixed
readout signal is sent through the input line which is heavily attenuated (XMA at-
tenuators) and filtered with home made ecosorb filters. At the output of the cavity
a commercial frequency diplexer routes the signal toward a Josphson parametric
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converter (JPC)(frequencies lower than 7 GHz including f,) or a Josephson para-
metric amplifier (JPA) (frequencies higher than 7 GHz including f.). The readout
pulse is further amplified by a HEMT routed out of the fridge before down con-
version, digitization and numerical demodulation. An additional tone is mixed at
40 MHz and used for qubit rotations and down conversion of the amplified fluores-
cence field at room. The fluorescence signal is also digitized and demodulated to
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extract the two associated measurement records.



Part IV

BIBLIOGRAPHY






BIBLIOGRAPHY

[1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

A Pais. “Einstein and the quantum theory.” In: Reviews of Modern Physics 51.4
(1979), pp. 863-914. arXiv: 0510180 [quant-ph] (Cited on page 1).

A Finstein, B Podolsky, and N Rosen. “Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete?” In: Physical Review 47 (1935),
p. 777. arXiv: 0701001 [quant-ph] (Cited on page 1).

David Bohm. “A suggested interpretation of the quantum theory in terms of
"hidden" variables. I.” In: Physical Review (1952). arXiv: 0208158 [quant-ph]
(Cited on page 1).

Stuart J Freedman and John F Clauser. “Experimental Test of Local Hidden-
Variable Theories.” In: Phys. Rev. Lett. 28.14 (1972), pp. 938-941 (Cited on
page 1).

Alain Aspect, Jean Dalibard, and Gérard Roger. “Experimental Test of Bell’s

Inequalities Using Time- Varying Analyzers.” In: Physical Review Letters 49.25
(1982), pp. 1804-1807 (Cited on page 1).

Erwin Schrédinger. The Present Situation in Quantum Mechanics. 1980. arXiv:
1206.6024 (Cited on page 1).

Zurek. “Decoherence, einselection, and the quantum origins of the classical.” In:
Reviews of Modern Physics 75.3 (2003), pp. 715-775 (Cited on pages 1, 32).

Max Jammer. The Philosophy of Quantum Mechanics. New York: Wiley, 1974
(Cited on page 2).

Lucien Hardy and Robert Spekkens. “Why Physics Needs Quantum Founda-
tions.” In: (). arXiv: arXiv:1003.5008v1 (Cited on page 2).

E. Schrédinger. “Are there quantum jumps 7: Part ii.” In: British Journal for
the Philosophy of Science (1952) (Cited on page 2).

Rainer Blatt and David Wineland. Entangled states of trapped atomic ions. 2008
(Cited on page 3).

Serge Haroche. “Nobel Lecture: Controlling photons in a box and exploring
the quantum to classical boundary.” In: Reviews of Modern Physics 85 (2013),
p. 1083 (Cited on pages 3, 13).

M. H. Devoret et al. “Superconducting circuits for quantum information: An out-
look.” In: Science 339.6124 (2013), pp. 1169-1174. arXiv: 0402594 [cond-mat]
(Cited on pages 3, 14).

Leo Kouwenhoven and Charles Marcus. “Quantum dots.” In: Physics World
(1998). arXiv: 1412.1667 (Cited on page 3).

Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt. “Cavity
optomechanics.” In: Reviews of Modern Physics (2014). arXiv: 1303.0733 (Cited
on page 3).

167



BIBLIOGRAPHY

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

168

John M. Martinis, Michel H. Devoret, and John Clarke. “Experimental tests for
the quantum behavior of a macroscopic degree of freedom: The phase difference
across a Josephson junction.” In: Physical Review B (1987) (Cited on page 3).

Y. Nakamura, Yu. a. Pashkin, and J. S. Tsai. “Coherent control of macro-
scopic quantum states in a single-Cooper-pair box.” In: Nature 398.6730 (1999),
pp. 786-788. arXiv: 9904003 [cond-mat] (Cited on pages 3, 13, 21).

Uri Vool and Michel Devoret. “Introduction to quantum electromagnetic cir-
cuits.” In: International Journal of Circuit Theory and Applications. 2017. arXiv:
1610.03438 (Cited on page 3).

Jens Koch et al. “Charge-insensitive qubit design derived from the Cooper pair
box.” In: Physical Review A - Atomic, Molecular, and Optical Physics 76.4
(2007), p. 042319. arXiv: 0703002 [cond-mat] (Cited on pages 3, 14, 23, 35,
40).

J. A. Schreier et al. “Suppressing charge noise decoherence in superconducting
charge qubits.” In: Physical Review B - Condensed Matter and Materials Physics
77.18 (2008), p. 180502. arXiv: 0712.3581 (Cited on pages 3, 14, 23).

John M. Martinis. Qubit metrology for building a fault-tolerant quantum com-
puter. 2015. arXiv: 15610.01406 (Cited on page 3).

A Wallraff et al. “Strong coupling of a single photon to a superconducting qubit
using circuit quantum electrodynamics.” In: Nature 431 (2004), pp. 162-167
(Cited on pages 4, 13).

P Campagne-Ibarcq et al. “Observing quantum state diffusion by heterodyne
detection of fluorescence.” In: Physical Review X 6.1 (2016), p. 11002. arXiv:
1511.01415 (Cited on pages 4, 6, 45, 98, 105, 115, 129).

M. Naghiloo et al. “Mapping quantum state dynamics in spontaneous emission.”
In: Nature Communications 7.May (2016), pp. 1-7. arXiv: 1512.02307 (Cited
on pages 4, 115).

M. Naghiloo et al. “Quantum caustics in resonance-fluorescence trajectories.”
In: Physical Review A (2017). arXiv: 1612.03189 (Cited on pages 4, 6, 98, 115,
132).

M Hatridge et al. “Quantum Back-Action of an Individual Variable-Strength
Measurement.” In: Science 339.6116 (2013), pp. 178-181 (Cited on pages 4, 6,
47, 98).

K W Murch et al. “Observing single quantum trajectories of a superconducting
quantum bit.” In: Nature 502.7470 (2013), pp. 211-214. arXiv: 1305.7270 (Cited
on pages 4, 6, 98, 100, 102, 115).

G de Lange et al. “Reversing Quantum Trajectories with Analog Feedback.” In:
Physical Review Letters 112.8 (2014), p. 80501 (Cited on pages 4, 6, 98, 103).

Steven J Weber et al. “Quantum trajectories of superconducting qubits.” In:
Comptes Rendus Physique 17.7 (2016), pp. 766-777 (Cited on pages 4, 6, 98).

P Facchi et al. “Quantum Zeno dynamics.” In: Physics Letters A 275.1-2 (2000),
pp. 12-19 (Cited on pages 5, 115).



BIBLIOGRAPHY

[31] J Gough. “Zeno dynamics for open quantum systems.” In: Russian Journal of
Mathematical Physics 21.3 (2014), pp. 337-347 (Cited on pages 5, 115).

[32] B Yurke et al. “Observation of parametric amplification and deamplification in
a Josephson parametric amplifier.” In: Physical Review A 39.5 (1989), p. 2519
(Cited on pages 5, 73, 75).

[33] M A Castellanos-Beltran and K W Lehnert. “Widely tunable parametric ampli-
fier based on a superconducting quantum interference device array resonator.”
In: Applied Physics Letters 91.8 (2007), p. 83509 (Cited on pages 5, 75, 76).

[34] T Yamamoto et al. “Flux-driven Josephson parametric amplifier.” In: Applied
Physics Letters 93.4 (2008), p. 42510 (Cited on pages 5, 75).

[35] Archana Kamal, Adam Marblestone, and Michel Devoret. “Signal-to-pump back
action and self-oscillation in double-pump Josephson parametric amplifier.” In:
Physical Review B 79.18 (2009), p. 184301. arXiv: 0902.0007 (Cited on pages 5,
75).

[36] J Y Mutus et al. “Strong environmental coupling in a Josephson parametric

amplifier.” In: Applied Physics Letters 104.26 (2014), p. 263513 (Cited on pages 5,
75).

[37] Christopher Eichler and Andreas Wallraff. “Controlling the dynamic range of a
Josephson parametric amplifier.” In: EPJ Quantum Technology 1.1 (2014), p. 2
(Cited on pages 5, 75).

[38] N Bergeal et al. “Analog information processing at the quantum limit with a
Josephson ring modulator.” In: Nature Physics 6.4 (2010), pp. 296-302 (Cited
on pages 5, 81).

[39] N. Roch et al. “Widely Tunable, Nondegenerate Three-Wave Mixing Microwave
Device Operating near the Quantum Limit.” In: Physical Review Letters 108.14
(2012), p. 147701. arXiv: arXiv:1202.1315v1 (Cited on pages 5, 81, 84, 86).

[40] Emmanuel Flurin. “The Josephson Mixer, a Swiss army knife for microwave
quantum optics.” Theses. ENS, 2014 (Cited on pages 5, 81-83, 90, 91, 155).

[41] N. Gisin and I. C. Percival. “The quantum-state diffusion model applied to open
systems.” In: Journal of Physics A: General Physics 25.21 (1992), pp. 5677-5691
(Cited on pages 6, 97).

[42] H Carmichael. An Open Systems Approach to Quantum Optics. Springer Berlin
Heidelberg, 1993 (Cited on pages 6, 97).

[43] Christine Guerlin et al. “Progressive field-state collapse and quantum non-demolition
photon counting.” In: Nature 448.7156 (2007), pp. 889-893 (Cited on pages 6,
97).

[44] Howard M Wiseman and G J Milburn. Quantum Measurement and Control.
Cambridge University Press, 2009 (Cited on pages 6, 36, 41, 97, 99).

[45]  Alberto Barchielli and Matteo Gregoratti. Quantum Trajectories and Measure-
ments in Continuous Time. Vol. 782. Springer-Verlag Berlin Heidelberg, 2009
(Cited on pages 6, 97).

169



BIBLIOGRAPHY

[46] Alexander N Korotkov. “Quantum Bayesian approach to circuit QED mea-
surement.” In: Les Houches summer school "Quantum Machines"” (2011). 2011.
arXiv: 1111.4016 (Cited on pages 6, 97).

[47] D Risteé et al. “Deterministic entanglement of superconducting qubits by parity
measurement and feedback.” In: Nature 502.7471 (2013), pp. 350-354 (Cited on
pages 6, 98).

[48] N. Roch et al. “Observation of measurement-induced entanglement and quan-
tum trajectories of remote superconducting qubits.” In: Physical Review Letters
112.17 (2014). arXiv: 1402.1868 (Cited on pages 6, 98).

[49] Shay Hacohen-Gourgy et al. “Dynamics of simultaneously measured non-commuting
observables.” In: Nature 538 (2016), p. 491. arXiv: 1608.06652 (Cited on pages 6,
8,92, 98, 115, 119, 129, 131, 132).

[50] Andrew N. Jordan and Markus Béattiker. “Continuous quantum measurement
with independent detector cross correlations.” In: Physical Review Letters (2005)
(Cited on page 8).

[51] Michel Bauer, Denis Bernard, and Antoine Tilloy. “The open quantum Brownian
motions.” In: Journal of Statistical Mechanics: Theory and Experiment 2014.9
(2014). arXiv: 1312.1600 (Cited on pages 8, 123).

[52] J von Neumann and R T Beyer. Mathematical Foundations of Quantum Me-
chanics. Investigations in physics. Princeton University Press, 1996 (Cited on
pages 8, 133).

[53] D Bohm. Quantum Theory. Dover books in science and mathematics. Dover
Publications, 1989 (Cited on pages 8, 133).

akir aronov, Peter Bergmann, and Joel Lebowitz. “'I'ime Symmetry in the

54| Yakir Ah P B d Joel Lebowitz. “Time S in th
Quantum Process of Measurement.” In: Physical Review 134.6B (1964), B1410—
B1416 (Cited on pages 8, 133).

[55] H. M. Wiseman. “Weak values, quantum trajectories, and the cavity-QED exper-
iment on wave-particle correlation.” In: Physical Review A 65.3 (2002), p. 32111.
arXiv: 0112116 [quant-ph] (Cited on pages 8, 133, 134, 137, 138).

[56] Mankei Tsang. “Optimal waveform estimation for classical and quantum systems
via time-symmetric smoothing. II. Applications to atomic magnetometry and
Hardy’s paradox.” In: Physical Review A 81.3 (2009), p. 33840 (Cited on pages 8,
133, 134).

[57] Mankei Tsang. “Time-Symmetric Quantum Theory of Smoothing.” In: Physical
Review Letters 102.25 (2009), p. 250403 (Cited on pages 8, 133, 134).

[58] S¢ren Gammelmark, Brian Julsgaard, and Klaus Mglmer. “Past Quantum States
of a Monitored System.” In: Physical Review Letters 111.16 (2013), p. 160401
(Cited on pages 8, 133, 134, 136, 137, 145).

[59] Yakir Aharonov, David Albert, and Lev Vaidman. “How the result of a measure-
ment of a component of the spin of a spin-1/2 particle can turn out to be 100.”
In: Physical Review Letters 60.14 (1988), pp. 1351-1354 (Cited on pages 9, 133,
138, 141).

170



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

BIBLIOGRAPHY

Justin Dressel et al. “Colloquium: Understanding quantum weak values: Ba-
sics and applications.” In: Reviews of Modern Physics 86.1 (2014), pp. 307-316.
arXiv: 1305.7154 (Cited on pages 9, 133, 134, 140, 142, 145).

Nathan Williams and Andrew Jordan. “Weak Values and the Leggett-Garg In-
equality in Solid-State Qubits.” In: Physical Review Letters 100.2 (2008), p. 26804
(Cited on pages 9, 133, 141).

Philippe Campagne-Ibarcq et al. “Observing interferences between past and
future quantum states in resonance fluorescence.” In: Physical Review Letters
112.18 (2014), pp. 1-5. arXiv: arXiv:1311.5605v1 (Cited on pages 9, 133).

D. Tan et al. “Prediction and retrodiction for a continuously monitored supercon-
ducting qubit.” In: Physical Review Letters 114.9 (2015), p. 6. arXiv: 1409.0510
(Cited on pages 9, 133, 145).

D. Tan et al. “Homodyne monitoring of postselected decay.” In: Physical Review
A (2017). arXiv: 1705.04287 (Cited on pages 9, 133, 145).

David J. Wineland. Superposition, entanglement, and raising Schridinger’s cat.
2013 (Cited on page 13).

S Haroche and J Raimond. “Exploring the Quantum: Atoms, Cavities, and Pho-
tons.” In: Ozford Graduated Text (2006), p. 616 (Cited on pages 13, 18, 36, 38,
A7, 48).

Hanhee Paik et al. “Observation of High Coherence in Josephson Junction Qubits

Measured in a Three-Dimensional Circuit QED Architecture.” In: Physical Re-
view Letters 107.24 (2011), p. 240501 (Cited on pages 14, 15).

Austin G Fowler et al. “Surface codes: Towards practical large-scale quantum
computation.” In: Physical Review A 86.3 (2012), p. 32324 (Cited on page 14).

Mazyar Mirrahimi et al. “Dynamically protected cat-qubits: a new paradigm
for universal quantum computation.” In: New Journal of Physics 16.4 (2014),
p. 45014. arXiv: arXiv:1312.2017v1 (Cited on page 14).

L. Dicarlo et al. “Demonstration of two-qubit algorithms with a superconducting
quantum processor.” In: Nature 460.7252 (2009), pp. 240-244. arXiv: 0903.2030
(Cited on page 14).

R Barends et al. “Superconducting quantum circuits at the surface code thresh-
old for fault tolerance.” In: Nature 508.7497 (2014), pp. 500-503 (Cited on
pages 14, 35).

Matthew Reagor et al. “Reaching 10 ms single photon lifetimes for supercon-
ducting aluminum cavities.” In: Applied Physics Letters 102.19 (2013), p. 192604
(Cited on page 15).

M Devoret. “Quantum fluctuations in electrical circuits.” In: Les Houches (1995)
(Cited on pages 14, 21).

S Girvin. “Circuit QED: superconducting qubits coupled to microwave photons.”
In: Quantum Machines: Measurement and Control of Engineered Quantum Sys-

tems, Lecture notes of the Les Houches Summer School: volume 96. Ed. by Michel
Devoret et al. Oxford University Press, USA, 2014, p. 113 (Cited on page 14).

171



BIBLIOGRAPHY

[75]
[76]

[77]

78]

[79]

[30]

[81]

[82]

[33]

[84]

[85]

[36]

[87]

[38]

[39]

[90]

172

D M Pozar. Microwave Engineering. Wiley, 2004 (Cited on pages 14, 155).

Matthew Reagor. “Superconducting Cavities for Circuit Quantum Electrody-
namics.” PhD thesis. 2015 (Cited on pages 14, 19).

John Preskill. “Preskills Lectures.” In: Quantum Computing - Physics 219 Lec-
ture notes (2001). arXiv: 01010256v2 [arXiv:quant-ph] (Cited on page 18).

Alexandre Blais et al. “Cavity quantum electrodynamics for superconducting
electrical circuits: An architecture for quantum computation.” In: Physical Re-
view A 69.6 (2004), p. 062320. arXiv: 0402216 [cond-mat] (Cited on page 19).

S Kuhr et al. “Ultrahigh finesse Fabry-Perot superconducting resonator.” In:
Applied Physics Letters 90.16 (2007), p. 164101 (Cited on page 19).

V. Bouchiat et al. “Quantum Coherence with a Single Cooper Pair.” In: Physica
Seripta TT76.1 (1998), p. 165 (Cited on page 21).

K. W. Lehnert et al. “Measurement of the Excited-State Lifetime of a Micro-
electronic Circuit.” In: Physical Review Letters (2003) (Cited on page 21).

Simon E Nigg et al. “Black-box superconducting circuit quantization.” In: Physi-
cal Review Letters 108.24 (2012), p. 240502. arXiv: 1204.0587 (Cited on pages 24,
25, 149).

Firat Solgun, David W. Abraham, and David P. Divincenzo. “Blackbox quanti-
zation of superconducting circuits using exact impedance synthesis.” In: Phys-
ical Review B - Condensed Matter and Materials Physics 90.13 (2014). arXiv:
1403.7341 (Cited on page 24).

Moein Malekakhlagh and Hakan E. Tiireci. “Origin and implications of an A2
-like contribution in the quantization of circuit-QED systems.” In: Physical Re-
view A (2016). arXiv: 1506.02773 (Cited on page 24).

Philippe Campagne-Ibarcq. “Measurement back action and feedback in super-
conducting circuits.” Thesis. ENS, 2015 (Cited on pages 24, 47, 61, 105, 137,
140, 155).

Kurtis Lee Geerlings. “Improving Coherence of Superconducting Qubits and
Resonators.” PhD thesis (Cited on pages 26, 61).

John David Jackson. Jackson - Classical Electrodynamics (3rd Ed.).pdf. 1962
(Cited on page 28).
Z Leghtas et al. “Confining the state of light to a quantum manifold by en-

gineered two-photon loss.” In: Science 347.6224 (2015), pp. 853-857. arXiv:
1412.4633 (Cited on pages 29, 71).

Z. K. Minev et al. “Planar Multilayer Circuit Quantum Electrodynamics.” In:
Physical Review Applied (2016). arXiv: 1509.01619 (Cited on page 29).

S. Touzard et al. “Coherent Oscillations inside a Quantum Manifold Stabilized
by Dissipation.” In: Physical Review X (2018). arXiv: 1705 . 02401 (Cited on
page 29).



BIBLIOGRAPHY

[91] J.-M. Raimond. “Exploring the quantum world with photons trapped in cavi-
ties and Rydberg atoms.” In: Quantum Machines: Measurement and Control of
Engineered Quantum Systems (2014), pp. 395-426 (Cited on page 29).

[92] M. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. 2010. arXiv: arXiv:1011.1669v3 (Cited on pages 31,
37).

[93] Nicolas Gisin and Ian C Percival. “The quantum state diffusion picture of phys-
ical processes.” In: Journal of Physics A 26 (1993), p. 2245 (Cited on page 32).

[94] David P DiVincenzo. “Fault-tolerant architectures for superconducting qubits.”
In: Physica Scripta T137 (2009), p. 14020 (Cited on page 35).

[95] M D Reed et al. “Fast reset and suppressing spontaneous emission of a super-
conducting qubit.” In: Applied Physics Letters 96.20 (2010), p. 203110 (Cited
on page 35).

[96] T. Walter et al. “Rapid High-Fidelity Single-Shot Dispersive Readout of Super-
conducting Qubits.” In: Physical Review Applied (2017). arXiv: 1701 . 06933
(Cited on page 35).

[97] Johannes Heinsoo et al. “Rapid High-fidelity Multiplexed Readout of Super-
conducting Qubits.” In: Physical Review Applied 10.3 (2018), pp. 1-13. arXiv:
1801.07904 (Cited on page 35).

[98] T. Picot et al. “Role of relaxation in the quantum measurement of a supercon-
ducting qubit using a nonlinear oscillator.” In: Physical Review B - Condensed
Matter and Materials Physics (2008). arXiv: 0808.0464 (Cited on page 35).

[99] Daniel Sank et al. “Measurement-Induced State Transitions in a Superconduct-
ing Qubit: Beyond the Rotating Wave Approximation.” In: Physical Review
Letters (2016). arXiv: 1606.05721 (Cited on page 35).

[100] T Siddiqi et al. “RF-Driven Josephson Bifurcation Amplifier for Quantum Mea-
surement.” In: Physical Review Letters 93.20 (2004), p. 207002 (Cited on pages 35,
74).

[101] F Mallet et al. “Single-shot qubit readout in circuit quantum electrodynamics.”
In: Nature Physics 5.11 (2009), pp. 791-795 (Cited on page 35).

[102] M D Reed et al. “High-Fidelity Readout in Circuit Quantum Electrodynamics
Using the Jaynes-Cummings Nonlinearity.” In: Physical Review Letters 105.17
(2010), p. 173601 (Cited on page 35).

[103] Th K. Mavrogordatos et al. “Simultaneous Bistability of a Qubit and Resonator

in Circuit Quantum Electrodynamics.” In: Physical Review Letters 118.4 (2017),
pp. 1-5. arXiv: 1611.10354 (Cited on page 35).

[104] I. Pietikédinen et al. “Multilevel Effects in a Driven Generalized Rabi Model.”
In: Journal of Low Temperature Physics 191.5-6 (2018), pp. 354-364. arXiv:
1710.00588 (Cited on page 35).

[105] Raphaél Lescanne et al. “Dynamics of an off-resonantly pumped superconducting
qubit in a cavity.” In: arXiv:1805.05198 (2018). arXiv: 1805.05198 (Cited on
pages 35, 56, 69).

173



BIBLIOGRAPHY

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

174

S. Touzard et al. “Gated conditional displacement readout of superconducting
qubits.” In: arXiv:1809.06964 (2018). arXiv: 1809.06964 (Cited on page 35).

Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloe. Quantum Mechanics
- Vol 1 - Cohen-Tannoudji.pdf. 2006 (Cited on page 36).

Magzyar Mirrahimi and Pierre Rouchon. “Dynamics and Control of Open Quan-
tum Systems.” In: 2015 (Cited on pages 36, 108).

A. Uhlmann. “Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in
an interpolation theory.” In: Communications in Mathematical Physics (1977)
(Cited on page 38).

A. Barchielli M. and M. Gregoratti. “Quantum Trajectories and Measurements
in Continuous Time: The Diffusive Case.” In: Springer (2009) (Cited on page 39).

Mark Fox. “Quantum Optics.” In: University of Ozxford (2013). arXiv: arXiv:
1011.1669v3 (Cited on pages 39, 45).

A. Wallraff et al. “Approaching unit visibility for control of a superconduct-
ing qubit with dispersive readout.” In: Physical Review Letters (2005). arXiv:
0502645 [cond-mat] (Cited on page 40).

Jay Gambetta et al. “Quantum trajectory approach to circuit QED: Quantum
jumps and the Zeno effect.” In: Physical Review A 77.1 (2008), p. 12112. arXiv:
0709.4264 (Cited on pages 41, 44, 57).

A. A. Clerk et al. “Introduction to quantum noise, measurement, and ampli-
fication.” In: Reviews of Modern Physics 82.2 (2010), pp. 1155-1208. arXiv:
0810.4729 (Cited on page 42).

Vijay, Slichter, and Siddiqgi. “Observation of Quantum Jumps in a Supercon-
ducting Artificial Atom.” In: Physical Review Letters 106.11 (2011), p. 110502
(Cited on pages 42, 67).

B Misra and E C G Sudarshan. “The Zeno paradox in quantum theory.” In:
Journal of Mathematical Physics 18.4 (1977), p. 756 (Cited on page 42).

H. J. Carmichael. “Quantum trajectory theory for cascaded open systems.” In:
Physical Review Letters (1993) (Cited on page 45).

R. Bianchetti et al. “Control and tomography of a three level superconducting
artificial atom.” In: Physical Review Letters (2010). arXiv: 1004.5504 (Cited on
pages 55, 57, 63, 64, 66).

Michael J. Peterer et al. “Coherence and decay of higher energy levels of a

superconducting transmon qubit.” In: Physical Review Letters (2015). arXiv:
1409.6031 (Cited on pages 55, 63, 64).

A B Klimov et al. “Qutrit quantum computer with trapped ions.” In: Physical
Review A - Atomic, Molecular, and Optical Physics 67.6 (2003), p. 7 (Cited on
page 55).

Helle Bechmann-Pasquinucci and Asher Peres. “Quantum cryptography with 3-
state systems.” In: Physical Review Letters (2000). arXiv: 0001083 [quant-ph]
(Cited on page 55).



BIBLIOGRAPHY

[122] Thomas Durt et al. “Security of quantum key distributions with entangled qu-
dits.” In: Physical Review A - Atomic, Molecular, and Optical Physics 69.3
(2004), pp. 1-11 (Cited on page 55).

[123] M Pechal et al. “Microwave-controlled generation of shaped single photons in
circuit quantum electrodynamics.” In: arziv:1308.4094 (2013). arXiv: 1308.4094
(Cited on page 55).

[124] Anatoly Kulikov et al. “Realization of a Quantum Random Generator Certified
with the Kochen-Specker Theorem.” In: Physical Review Letters 119.24 (2017),
pp. 1-5. arXiv: 1709.03687 (Cited on page 55).

[125] A. A. Abdumalikov et al. “Experimental realization of non-Abelian non-adiabatic
geometric gates.” In: Nature (2013). arXiv: 1304.5186 (Cited on page 55).

[126] Benjamin P. Lanyon et al. “Simplifying quantum logic using higher-dimensional
Hilbert spaces.” In: Nature Physics (2009). arXiv: 0804.0272 (Cited on page 55).

[127] Frederick W. Strauch. “Quantum logic gates for superconducting resonator qu-
dits.” In: Physical Review A - Atomic, Molecular, and Optical Physics (2011).
arXiv: 1108.2984 (Cited on page 55).

[128] Vincent Mourik et al. “Exploring quantum chaos with a single nuclear spin.” In:
arXiw:1703.04852 (2017). arXiv: 1703.04852 (Cited on page 55).

[129] A.R. Shlyakhov et al. “Quantum metrology with a transmon qutrit.” In: Physical
Review A (2018). arXiv: 1711.06172 (Cited on page 55).

[130] J. Wenner et al. “Excitation of superconducting qubits from hot nonequilibrium
quasiparticles.” In: Physical Review Letters (2013). arXiv: 1209.1674 (Cited on
page 59).

[131] K. Serniak et al. “Hot non-equilibrium quasiparticles in transmon qubits.” In:
arXiv:1803.00476 (2018). arXiv: 1803.00476 (Cited on page 61).

[132] Jian Li et al. “Pure dephasing in a superconducting three-level system.” In:
Journal of Physics: Conference Series 400.PART 4 (2012) (Cited on page 62).

[133] Z. Wang et al. “Cavity Attenuators for Superconducting Qubits.” In: arXiv:1807.04849
(2018). arXiv: 1807.04849 (Cited on page 64).

[134] M A Castellanos-Beltran et al. “Amplification and squeezing of quantum noise
with a tunable Josephson metamaterial.” In: Nature Physics 4.12 (2008), pp. 929
931 (Cited on page 71).

[135] N Bergeal et al. “Phase-preserving amplification near the quantum limit with a
Josephson ring modulator.” In: Nature 465.7294 (2010), p. 64 (Cited on pages 71,
85).

[136] C Macklin et al. “A near — quantum-limited Josephson traveling-wave parametric
amplifier.” In: Science 350.September (2015), p. 307 (Cited on pages 71, 86-88,
92).

[137] E. Flurin et al. “Generating Entangled Microwave Radiation Over Two Trans-

mission Lines.” In: Physical Review Letters 109.18 (2012), p. 183901. arXiv:
1204.0732 (Cited on page 71).

175



BIBLIOGRAPHY

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

176

M Pechal et al. “Microwave-Controlled Generation of Shaped Single Photons
in Circuit Quantum Electrodynamics.” In: Physical Review X 041010.4 (2014),
pp. 1-9 (Cited on page 71).

E Flurin et al. “Superconducting quantum node for entanglement and storage
of microwave radiation.” In: Phys. Rev. Lett. 114.Umr 8551 (2014), p. 90503.
arXiv: arXiv:1401.5622v1 (Cited on page 71).

K W Murch et al. “Cavity-Assisted Quantum Bath Engineering.” In: Physical
Review Letters 109.18 (2012), p. 183602 (Cited on page 71).

Greg Calusine. “Private communication: TWPA Data Sheet.” 2017 (Cited on
pages 71, 88, 92).

C M Caves. “Quantum limits on noise in linear amplifiers.” In: Physical Review
D 26 (1982), p. 1817 (Cited on page 72).

Ananda Roy and Michel Devoret. Introduction a l’amplification paramétrique de
signauz quantiques par les circuits Josephson. 2016 (Cited on page 73).

Samuel Boutin et al. “Effect of Higher-Order Nonlinearities on Amplification
and Squeezing in Josephson Parametric Amplifiers.” In: Physical Review Applied
(2017). arXiv: 1708.00020 (Cited on pages 74, 92).

Tanay Roy et al. “Broadband parametric amplification with impedance engineer-
ing: Beyond the gain-bandwidth product.” In: Applied Physics Letters 107.26
(2015), pp. 1-12. arXiv: 1510.03065 (Cited on pages 75, 80, 93).

A. Metelmann and A. A. Clerk. “Nonreciprocal quantum interactions and de-
vices via autonomous feedforward.” In: Physical Review A (2017). arXiv: 1610.
06621 (Cited on pages 80, 93).

Christopher Eichler and Andreas Wallraff. “Controlling the dynamic range of a
josephson parametric amplifier.” In: EPJ Quantum Technology 1.1 (2014), pp. 1—
10. arXiv: 1305.6583 (Cited on page 80).

A Palacios-Laloy. “Superconducting qubit in a resonator: test of the Leggett-
Garg inequality and single-shot readout.” PhD thesis. CEA Saclay: Universit{é}
Pierre et Marie Curie, Paris 6, 2010 (Cited on page 81).

Danijela Markovi¢. “Applications of the Josephson mixer : ultrastrong coupling
, quantum node and injection locking.” Theses. ENS, 2018 (Cited on pages 85,
161).

Byeong Ho Eom et al. “A wideband, low-noise superconducting amplifier with
high dynamic range.” In: Nature Physics 8.8 (2012), pp. 623-627. arXiv: 1201.
2392 (Cited on pages 86, 87).

O. Yaakobi et al. “Parametric amplification in Josephson junction embedded
transmission lines.” In: Physical Review B - Condensed Matter and Materials
Physics (2013). arXiv: arXiv:1308.2951v1 (Cited on page 86).

K O’Brien et al. “Resonant Phase Matching of Josephson Junction Traveling
Wave Parametric Amplifiers.” In: Physical Review Letters 113.15 (2014), p. 157001
(Cited on pages 86, 87).



BIBLIOGRAPHY

[153] J. A. Armstrong et al. “Interactions between light waves in a nonlinear dielec-
tric.” In: Physical Review (1962) (Cited on page 87).

[154] C. Bockstiegel et al. “Development of a broadband NbTiN traveling wave para-
metric amplifier for MKID readout.” In: Journal of Low Temperature Physics.
2014 (Cited on page 87).

[155] S Weinreb, M W Pospieszalski, and R Norrod. “Cryogenic, HEMT, low-noise
receivers for 1.3 to 43 GHz range.” In: 1988., IEEE MTT-S International Mi-
crowave Symposium Digest. IEEE, 1988, pp. 945-948 (Cited on page 90).

[156] Factory Low Noise. LNF-LNC/_8C datasheet (Cited on page 90).

[157] P. Campagne-Ibarcq et al. “Using Spontaneous Emission of a Qubit as a Re-
source for Feedback Control.” In: Physical Review Letters 117.6 (2016), pp. 1-6.
arXiv: 1602.05479 (Cited on page 91).

[158] X. Zhou et al. “High-gain weakly nonlinear flux-modulated Josephson parametric
amplifier using a SQUID array.” In: Physical Review B - Condensed Matter and
Materials Physics (2014). arXiv: 1409.5630 (Cited on page 92).

[159] A. Eddins et al. “High-efficiency measurement of an artificial atom embedded in
a parametric amplifier.” In: arXiv:1806.05276 (2018). arXiv: 1806.05276 (Cited
on pages 93, 127).

[160] N. E. Frattini et al. “3-wave mixing Josephson dipole element.” In: Applied
Physics Letters (2017). arXiv: 1702.00869 (Cited on page 93).

[161] Kamal, Clarke, and Devoret. “Noiseless non-reciprocity in a parametric active
device.” In: Nature Physics 7.4 (2011), pp. 311-315 (Cited on page 93).

[162] Archana Kamal, John Clarke, and Michel H. Devoret. “Gain, directionality, and
noise in microwave SQUID amplifiers: Input-output approach.” In: Physical Re-
view B - Condensed Matter and Materials Physics (2012). arXiv: 1206 . 4706
(Cited on page 93).

[163] A. Metelmann and A. A. Clerk. “Nonreciprocal photon transmission and ampli-
fication via reservoir engineering.” In: Physical Review X (2015). arXiv: 1502.
07274 (Cited on page 93).

[164] G. A. Peterson et al. “Demonstration of efficient nonreciprocity in a microwave
optomechanical circuit.” In: Physical Review X (2017). arXiv: 1703 . 05269
(Cited on page 93).

[165] Benjamin J. Chapman, Eric I. Rosenthal, and K. W. Lehnert. “Design of an on-
chip superconducting microwave circulator with octave bandwidth.” In: arXww:1809.08747
(2018). arXiv: 1809.08747 (Cited on page 93).

[166] Jean Dalibard et al. “Wave-function approach to dissipative processes in quan-
tum optics.” In: Phys. Rev. Lett. 68.5 (1992), pp. 580-583 (Cited on page 97).

[167] W G Teich and G Mahler. “Stochastic dynamics of individual quantum systems:
Stationary rate equations.” In: Phys. Rev. A 45.5 (1992), pp. 3300-3318 (Cited
on page 97).

177



BIBLIOGRAPHY

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

178

H M Wiseman and G J Milburn. “Interpretation of quantum jump and diffusion
processes illustrated on the Bloch sphere.” In: Physical Review A 47.3 (1993),
pp. 1652-1666 (Cited on page 97).

Areeya Chantasri et al. “Quantum trajectories and their statistics for remotely
entangled quantum bits.” In: Physical Review X 6.4 (2016). arXiv: 1603.09623
(Cited on pages 98, 115).

Areeya Chantasri et al. “Simultaneous continuous measurement of noncommut-
ing observables: Quantum state correlations.” In: Physical Review A (2018)
(Cited on page 98).

Pierre Rouchon and Jason F. Ralph. “Efficient quantum filtering for quantum
feedback control.” In: Physical Review A - Atomic, Molecular, and Optical Physics
(2015). arXiv: 1410.5345 (Cited on page 99).

Alain Sarlette and Pierre Rouchon. “Deterministic submanifolds and analytic so-
lution of the quantum stochastic differential master equation describing a mon-
itored qubit.” In: Journal of Mathematical Physics 58.6 (2017). arXiv: 1603 .
05402 (Cited on pages 102, 103, 105, 129).

John Gough. “An Introduction to Quantum Filtering.” In: arXiv:1804.09086v1
(2018). arXiv: arXiv:1804.09086v1 (Cited on page 108).

P Six et al. “Parameter estimation from measurements along quantum trajecto-
ries.” In: Decision and Control (CDC), 2015 IEEE 54th Annual Conference on.
IEEE, 2015, pp. 7742-7748 (Cited on page 113).

S. J. Weber et al. “Mapping the optimal route between two quantum states.”
In: Nature 511.7511 (2014), pp. 570-573. arXiv: 1403.4992 (Cited on pages 115,
132).

Steven J. Weber et al. “Trajectoires quantiques de qubits supraconducteurs.” In:
Comptes Rendus Physique 17.7 (2016), pp. 766-777. arXiv: 1506.08165 (Cited
on page 115).

Andrew N Jordan et al. “Anatomy of Fluorescence: Quantum trajectory statis-
tics from continuously measuring spontaneous emission.” In: Quantum Stud-
ies: Mathematics and Foundations (2015), p. 15. arXiv: 1511.06677 (Cited on
pages 115, 132).

Philippe Lewalle, Areeya Chantasri, and Andrew N. Jordan. “Prediction and

characterization of multiple extremal paths in continuously monitored qubits.”
In: Physical Review A (2017). arXiv: 1612.07861 (Cited on page 115).

Yunjin Choi and Andrew N. Jordan. “Operational approach to indirectly mea-
suring the tunneling time.” In: Physical Review A - Atomic, Molecular, and
Optical Physics (2013). arXiv: arXiv:1309.1710v1 (Cited on page 119).

Rusko Ruskov, Alexander N. Korotkov, and Klaus Mglmer. “Qubit state moni-
toring by measurement of three complementary observables.” In: Physical Review
Letters (2010). arXiv: 1006.2013 (Cited on page 119).

N G Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science, 2011 (Cited on page 123).



[182]

[183]

[184]

[185)

[186)

[187]

188

[189)

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

BIBLIOGRAPHY

E Guyon et al. Physical Hydrodynamics. Physical Hydrodynamics. OUP Oxford,
2001 (Cited on page 123).

Crispin W. Gardiner. Handbook of stochastic methods: For Physics, Chemistry
and the Natural Sciences. 1996. arXiv: arXiv:1011.1669v3 (Cited on page 124).

Lars Hormander. “Hypoelliptic second order differential equations.” In: Acta
Mathematica (1967) (Cited on page 128).

Hp Robertson. “The uncertainty principle.” In: Physical Review (1929) (Cited
on page 130).

V B Braginsky et al. Quantum Measurement. Cambridge University Press, 1995
(Cited on page 131).

Lorenzo MacCone and Arun K. Pati. “Stronger uncertainty relations for all
incompatible observables.” In: Physical Review Letters (2014). arXiv: 1407.0338
(Cited on page 131).

H. M. Wiseman. “Adaptive phase measurements of optical modes: Going beyond
the marginal ) distribution.” In: Physical Review Letters 75.25 (1995), pp. 4587—
4590 (Cited on page 132).

Eliska Greplova, Christian Kraglund Andersen, and Klaus Mglmer. “Quantum
parameter estimation with a neural network.” In: arXiv:1711.05238 (2017). arXiv:
1711.05238 (Cited on page 132).

Justin Dressel et al. “ Arrow of Time for Continuous Quantum Measurement.” In:
Physical Review Letters (2017). arXiv: 1610.03818 (Cited on pages 132, 145).

Antoine Tilloy, Michel Bauer, and Denis Bernard. “Spikes in quantum trajec-
tories.” In: Physical Review A - Atomic, Molecular, and Optical Physics 92.5
(2015), pp. 1-7. arXiv: 1510.01232 (Cited on page 132).

Michel Bauer, Denis Bernard, and Antoine Tilloy. “Zooming in on quantum tra-
jectories.” In: Journal of Physics A: Mathematical and Theoretical 49.10 (2016).
arXiv: 165612.02861 (Cited on page 132).

Philippe Lewalle, John Steinmetz, and Andrew N. Jordan. “Chaos in contin-
uously monitored quantum systems: An optimal-path approach.” In: Physical
Review A 98.1 (2018), pp. 1-23. arXiv: 1803.07615 (Cited on page 132).

M. Naghiloo et al. “Thermodynamics along individual trajectories of a quantum
bit.” In: arXiv:1703.05885 (2017). arXiv: 1703.05885 (Cited on page 132).

M. Naghiloo et al. “Information Gain and Loss for a Quantum Maxwell’'s De-
mon.” In: Physical Review Letters 121.3 (2018), pp. 1-6. arXiv: 1802 . 07205
(Cited on page 132).

Cyril Elouard et al. “Stochastic thermodynamics in the quantum regime: From
quantum measurement to quantum trajectories.” In: arXiv:1603.07266 [cond-
mat, physics:quant-ph] (2016), pp. 1-8. arXiv: 1603.07266 (Cited on page 132).

Yakir Aharonov and Lev Vaidman. The two-state vector formalism: An updated
review. 2007. arXiv: 0105101 [quant-ph] (Cited on page 133).

179



BIBLIOGRAPHY

[198]

[199]

[200]

[201]

[202]

203

[204]

205

[206]

207]

[208]

[209]

[210]

211]

212

180

N Ritchie, J Story, and Randall Hulet. “Realization of a measurement of a
weak value.” In: Physical Review Letters 66.9 (1991), pp. 1107-1110 (Cited on
page 133).

Agustin Palacios-laloy et al. “Experimental violation of a Bell’s inequality in time
with weak measurement.” In: Nature Physics 6.6 (2010), pp. 442-447 (Cited on
pages 133, 141).

J P Groen et al. “Partial-Measurement Backaction and Nonclassical Weak Values
in a Superconducting Circuit.” In: Physical Review Letters 111.9 (2013), p. 90506
(Cited on pages 133, 141).

M. E. Goggin et al. “Violation of the Leggett-Garg inequality with weak measure-
ments of photons.” In: Proceedings of the National Academy of Sciences 108.4
(2011), pp. 1256-1261. arXiv: 1504.02707 (Cited on pages 133, 141).

Onur Hosten and Paul Kwiat. “Observation of the spin hall effect of light via
weak measurements.” In: Science (New York, N.Y.) 319.5864 (2008), pp. 787—
790 (Cited on pages 134, 142).

P Dixon et al. “Ultrasensitive Beam Deflection Measurement via Interferometric
Weak Value Amplification.” In: Physical Review Letters 102.17 (2009), p. 173601
(Cited on pages 134, 142).

Jeff S Lundeen et al. “Direct measurement of the quantum wavefunction.” In:
Nature 474.7350 (2011), pp. 188-191 (Cited on pages 134, 140).

Y Aharonov and D Rohrlich. Quantum Paradoxes: Quantum Theory for the
Perplezed. Physics textbook. Wiley, 2008 (Cited on page 134).

Yakir Aharonov, Sandu Popescu, and Jeff Tollaksen. “A time-symmetric formu-
lation of quantum mechanics.” In: Physics Today 63.11 (2010), p. 27 (Cited on
page 134).

Christopher Ferrie and Joshua Combes. “Weak Value Amplification is Subop-
timal for Estimation and Detection.” In: Physical Review Letters 112.4 (2014),
p. 40406 (Cited on page 134).

Christopher Ferrie and Joshua Combes. “How the result of a single coin toss can
turn out to be 100 heads.” In: Physical Review Letters (2014). arXiv: 1403.2362
(Cited on page 134).

Yakir Aharonov and Daniel Rohrlich. “Comment on "How the result of a single

coin toss can turn out to be 100 heads".” In: Physical Review Letters 113.12
(2014), pp. 1-3. arXiv: 1403.2362 (Cited on page 134).

Aharon Brodutch. “Comment on "How the result of a single coin toss can turn

out to be 100 heads".” In: Physical Review Letters 113.12 (2014), pp. 1-3. arXiv:
1403.2362 (Cited on page 134).

H. L. Van Trees. Detection, Estimation, and Modulation Theory. Vol. 1. Wiley,
2001, pp. 1-687 (Cited on page 134).

P Six et al. “Quantum state tomography with noninstantaneous measurements,
imperfections, and decoherence.” In: Phys. Rev. A 93.1 (2016), p. 12109 (Cited
on page 134).



[213)]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

BIBLIOGRAPHY

Ivonne Guevara and Howard Wiseman. “Quantum State Smoothing.” In: Phys-
ical Review Letters (2015). arXiv: 1503.02799 (Cited on pages 137, 145).

Luis Pedro Garcia-Pintos and Justin Dressel. “Past observable dynamics of a
continuously monitored qubit.” In: Physical Review A (2017). arXiv: 1708.04362
(Cited on page 145).

Albert Franquet, Yuli V Nazarov, and Hongduo Wei. “Statistics of continuous

weak quantum measurement of an arbitrary quantum system with multiple de-
tectors.” In: arXiv:1804.07659 (2018). arXiv: 1804.07639 (Cited on page 145).

A Franquet and Yuli V Nazarov. “Probability distributions of continuous mea-
surement results for conditioned quantum evolution.” In: Physical Review B 95.8
(2017). arXiv: 1708.05662 (Cited on page 145).

Bernard Yurke and John S. Denker. “Quantum network theory.” In: Physical
Review A (1984) (Cited on page 152).

G. J. Dolan. “Offset masks for lift-off photoprocessing.” In: Applied Physics
Letters (1977) (Cited on page 155).

Florent Lecocq et al. “Junction fabrication by shadow evaporation without a
suspended bridge.” In: Nanotechnology (2011). arXiv: 1101 . 4576 (Cited on
page 155).

Nathanaél Cottet et al. “Observing a quantum Maxwell demon at work.” In:
Proceedings of the National Academy of Sciences 114.29 (2017), pp. 7561-7564.
arXiv: 1702.05161 (Cited on page 160).

Q Ficheux et al. “Dynamics of a qubit while simultaneously monitoring its re-
laxation and dephasing.” In: Nature Communications 9.1 (2018), p. 1926 (Cited
on page 160).

181



Résumeé

Au contraire de sa version classique, une mesure
quantique perturbe nécessairement I'état du sys-
téme. Ainsi, la mesure projective d’'un spin-1/2
selon une direction rend parfaitement aléatoire le
résultat d’'une mesure successive de la compo-
sante du méme spin le long d’un axe orthogonal.
Dans cette thése, nous discutons des expériences
basées sur les circuits supraconducteurs qui per-
mettent de mettre en évidence cette action en
retour de la mesure. Nous mesurons en particulier
la dynamique d’un qubit supraconducteur dont on
réveéle simultanément les trois composantes de
Bloch x, y et z.

Deux techniques récentes sont utilisées pour réali-
ser ces enregistrements simultanés. Les compo-
santes x et y sont obtenues par la mesure des
deux quadratures du champ de fluorescence émis
par le qubit. La composante z est quant a elle
obtenue en sondant une cavité non résonante
couplée de maniére dispersive au qubit. La fré-
quence de la cavité dépend de I'énergie du qubit et
la force de cette derniére mesure peut étre ajustée
in situ en faisant varier la puissance de la sonde.
Ces observations sont rendues possibles grace
aux avancées récentes dans I'amplification ultra-
bas bruit des signaux micro-onde grace aux circuits
Josephson. Cette thése détaille toutes ces tech-
niques a la fois théoriquement et expérimentale-
ment et présente différents résultats annexes
inédits.

En présence des mesures simultanées, nous mon-
trons que I'état du systéme diffuse a l'intérieur de
la sphére de Bloch en suivant une marche aléatoire
dont les pas obéissent aux lois de I'action en retour
de mesures incompatibles. Les trajectoires quan-
tigues associées ont des dynamiques allant du
régime diffusif au régime de blocage de Zénon
soulignant l'interaction non-triviale des actions en
retours des deux mesures incompatibles effec-
tuées. En conditionnant les enregistrements aux
résultats d’'une mesure projective finale, nous
mesurons également les valeurs faibles des com-
posantes de notre qubit et démontrons qu’elles
dépassent les valeurs extrémales moyennes. La
thése discute en détail de la statistique des trajec-
toires obtenues.

Mots Clés

Mécanique quantique, trajectoires quan-
tiques, circuits supraconducteurs

Abstract

In contrast with its classical version, a quantum
measurement necessarily disturbs the state of the
system. The projective measurement of a spin-1/2
in one direction maximally randomizes the outcome
of a following measurement along a perpendicular
direction. In this thesis, we discuss experiments on
superconducting circuits that allow us to investigate
this measurement back-action. In particular, we
measure the dynamics of a superconducting qubit
whose three Bloch x, y and z components are
simultaneously recorded.

Two recent techniques are used to make these
simultaneous recordings. The x and y components
are obtained by measuring the two quadratures of
the  fluorescence field emitted by  the
qubit. Conversely, the z component is accessed by
probing an off-resonant cavity dispersively coupled
to the qubit. The frequency of the cavity depends
on the energy of the qubit and the strength of this
last measurement can be tuned from weak to
strong in situ by varying the power of the probe.
These observations are enabled by recent advanc-
es in ultra-low noise microwave amplification using
Josephson circuits. This thesis details all these
techniques, both theoretically and experimentally,
and presents various unpublished additional re-
sults.

In the presence of the simultaneous measure-
ments, we show that the state of the system diffus-
es inside the sphere of Bloch by following a ran-
dom walk whose steps obey the laws of the back-
action of incompatible measurements. The associ-
ated quantum trajectories follow a variety of dy-
namics ranging from diffusion to Zeno blockade.
Their peculiar dynamics highlights the non-trivial
interplay between the back-action of the two in-
compatible measurements. By conditioning the
records to the outcome of a final projective meas-
urement, we also measure the weak values of the
components of the qubit state and demonstrate
that they exceed the mean extremal values. The
thesis discusses in detail the statistics of the ob-
tained trajectories.

Keywords

Quantum mechanics, quantum trajectories,
superconducting circuits
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