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Abstract The theoretical problem of establishing the cou-
pling properties existing between the classical and quantum
gravitational field with the Ricci and Riemann curvature
tensors of General Relativity is addressed. The mathemat-
ical framework is provided by synchronous Hamilton vari-
ational principles and the validity of classical and quantum
canonical Hamiltonian structures for the gravitational field
dynamics. It is shown that, for the classical variational the-
ory, manifestly-covariant Hamiltonian functions expressed
by either the Ricci or Riemann tensors are both admitted,
which yield the correct form of Einstein field equations. On
the other hand, the corresponding realization of manifestly-
covariant quantum gravity theories is not equivalent. The
requirement imposed is that the Hamiltonian potential should
represent a positive-definite quadratic form when performing
a quadratic expansion around the equilibrium solution. This
condition in fact warrants the existence of positive eigenval-
ues of the quantum Hamiltonian in the harmonic-oscillator
representation, to be related to the graviton mass. Accord-
ingly, it is shown that in the background of the deSitter space-
time, only the Ricci tensor coupling is physically admitted. In
contrast, the coupling of quantum gravitational field with the
Riemann tensor generally prevents the possibility of achiev-
ing a Hamiltonian potential appropriate for the implementa-
tion of the quantum harmonic-oscillator solution.

1 Introduction

This paper deals with a conceptual issue that lays at the
basis of the foundations of quantum gravity (QG) theory, and
specifically the manifestly-covariant quantum gravity theory
(CQG-theory), i.e., the massive-graviton and 4-tensor the-
ory of manifestly-covariant QG which pertains the Einstein
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Field Equations (EFE) and the related abstract 4-tensor clas-
sical Hamiltonian structure of General Relativity (GR) [1,2].
This concerns the coupling properties of the quantum gravita-
tional field with curvature tensors of the background space-
time. The latter are identified respectively with the 4-rank
Riemann curvature tensor Rμανβ and the associated 2-rank
Ricci tensor Rμν . In particular, the question addressed here
is whether the physical interaction of the quantum field with
the two tensors Rμανβ and Rμν exhibits the same qualitative
properties or if it corresponds to different quantum-gravity
dynamical realizations. The proper understanding of the mat-
ter is crucial because it permits us to unveil also the possible
quantum implications of such a coupling on the construction
of the global solution for the space-time metric tensor [3–8].
The issue is not a trivial one. In fact, the role of the two cur-
vature tensors, as we intend to show here, is not equivalent.
Apart their rank, the Riemann tensor is a fundamental cur-
vature tensor of differential geometry, while the symmetric
Ricci curvature tensor is derived by means of a suitable ”ten-
sor coupling”, i.e., by suitable tensor index saturation of the
Riemann tensor with a metric tensor [9]. The latter tensor,
however, in principle is not necessarily the extremal one, i.e.,
the background metric tensor solution of the classical field
equations, but can exhibit certain ‘ad hoc’ properties (i.e.,
for example being identified with an appropriate variational
metric tensor). Thus, specifically for this reason, a priori one
is not allowed to assume that the coupling occurs in the same
way for the two cases. As a consequence, it is not possible to
rule out the possibility that there exist fundamental physical
reasons for selecting a specific type of tensor coupling and
in turn the outcome on physical observables.

The problem becomes even more significant when quan-
tum gravity theory is concerned. In addition, in the same
framework there can be a quantum-indeterminacy character
to be attributed to Riemann and Ricci tensors. This depends
on whether they are regarded as purely classical background
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and possibly prescribed continuum tensors or if they possess
by themselves a quantum nature and how this can emerge
consistently. Therefore, the nature of the problem pertains
intrinsically both classical and quantum gravity theories [10–
12].

In this regard it is useful to recall what happens in the
case of the Einstein–Hilbert (EH) Lagrangian variational
approach (referred to for brevity as EH theory [13]), orig-
inally developed by Einstein himself to determine the actual
form of GR field equations. As shown in Ref. [14], EH-theory
relies on the adoption of an asynchronous variational princi-
ple. The latter is based on a Lagrangian density of the type
LEH = √−gR (with g denoting as usual the determinant of
the metric tensor, i.e., g ≡ |g|) and R is the Ricci 4-scalar,
which in terms of the so-called Ricci-tensor coupling, reads

R = gμνRμν. (1)

This means that in the framework of asynchronous principles
the variation of the invariant volume element d� = d4r

√−g
yields non-vanishing contributions, while correspondingly
the variational Lagrangian density is not a 4-scalar, namely
a frame-independent quantity. Because the variational con-
tribution of

√−g carried by d� is uniquely prescribed, EH
theory demands the aforementioned tensor coupling to be
prescribed in terms of the Ricci tensor, i.e., Eq. (1). In other
words, the Ricci 4-scalar in the previous functional must nec-
essarily be expressed as saturation of the symmetric Ricci
4-tensor in order to warrant the variational nature of the
Lagrangian density. The fundamental reason why in EH-
theory the same coupling is a privileged one is very simple.
As shown in the same reference indicated above, EFE are
formally obtained by requiring that the variational contribu-
tion to the corresponding Euler–Lagrange equations carried
by the variational Ricci tensor, i.e., the contributions car-
ried by its Frechet derivatives δRμν and δRμν , should vanish
identically.

Nevertheless, even if in the context of EH-theory a
Riemann-tensor variational formulation of EFE is not extant,
it is obvious that at the classical level the issue of the pos-
sible role of the Riemann-tensor coupling arises also in the
framework of the asynchronous variational theory of GR. In
fact, although the tensor coupling (1) is commonly regarded
as the simplest and the logically well-founded one for the
gravitational-field Lagrangian density [9], in principle a pos-
sible alternative exists. This is based on the Riemann-tensor
tensor coupling mentioned above, being represented by the
equation

R = gμνgαβ Rμανβ. (2)

Such a tensor coupling yields, however, via the Einstein–
Hilbert action principle, Euler–Lagrange equations which
are unavoidably different from EFE. A detailed derivation

of such equations, based on the EH asynchronous variational
principle, can be found in Ref. [15]. This kind of analysis
is, however, outside the scope of the present investigation,
which concerns primarily EFE and its quantum theory.

However, the adoption of a synchronous variational prin-
ciple, in place of the asynchronous one, changes matter
(see Ref. [16]). The synchronous variational approach in
fact is characterized by the use of a 4-scalar variational
Lagrangian function expressed in terms of superabundant
variables, namely in which the variational metric tensor is
distinguished from the prescribed background one, to be
ultimately determined consistently by the extremal Euler–
Lagrange equations. Thus, the invariant volume element d�

is represented in terms of a suitably-prescribed, i.e., extremal
and hence non variational, metric tensor ĝ ≡ {

ĝμν

}

, namely
defined so that its Frechet derivative δĝ vanishes identically.
Thus, letting d� = d4r

√

−ĝ, with ĝ ≡ |̂g| now denoting the
determinant of ĝ, it follows that d� does not contribute to the
variational calculus since by construction δd� = 0. From the
conceptual point of view, this kind of approach has similari-
ties with the theoretical formulation of GR based on the use of
a metric independent volume element, which is known as the
Non-Gravitating Vacuum Energy Theory [17–19]. The latter
is based on replacing

√−g by a non-Riemannian measure
density � for the volume element which does not depend
on the metric and is at the same time a total divergence.
This kind of formulation is implemented in the framework of
a non-Riemannian geometry, while validity of the standard
formulation of GR with Riemannian geometry is assumed
for the synchronous principle proposed in Refs. [1,16]. The
same synchronous variational principle adopts the custom-
ary identification of R in terms of the Ricci 4-tensor, a choice
inherited also by the related quantum Hamiltonian potential.
However, the advantage of the synchronous approach over
the asynchronous one is that the Lagrangian density is inde-
pendent of the factor

√−g and is therefore a 4-scalar. This
provides in principle the required freedom to investigate also
the variational role of the Riemann tensor in comparison with
the Ricci one. In fact, in such a framework, one can investi-
gate alternative expressions of the Lagrangian so that it con-
tains the Riemann tensor, circumventing the constraint placed
by the variation of d� which would provide instead always
the same contribution, independent of the precise realization
of the Lagrangian function.

Therefore, the synchronous setting and its realization in
terms of manifestly-covariant classical and quantum gravity
theories (CCG- and CQG- theories) provide the required free-
dom to reach the target. More precisely, given these premises,
the main goals of the paper are as follows:

(1) We first prove that adopting the synchronous approach
it is possible to construct two distinctive, but equivalent,
classical variational principles for EFE which are expressed
respectively in terms of either the Ricci or Riemann-tensor
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couplings, and in which the Ricci or the Riemann tensors
are considered extremal. Remarkably both variational prin-
ciples are found to recover correctly the same form of EFE
in terms of their extremal Euler–Lagrange equations. It is
shown, however, that – apart arbitrary gauge functions – the
prescription of the variational Hamiltonian represented in
terms of the Riemann-tensor coupling remains not unique.
Nevertheless, by suitable adoption of an appropriate physi-
cal criterion, the selection of a unique physically-meaningful
form is shown to be possible. The criterion states the require-
ment that the variational functional expressed via the Rie-
mann tensor must recover a posteriori the customary one
containing the Ricci tensor when the relationship between
the Ricci and the Riemann tensors is invoked. It is important
to stress, however, that such criterion is not mandatory by
any means. The conclusion it therefore that at classical level
both variational principles, i.e., expressed in terms of either
the Ricci or Riemann tensors, are in principle acceptable, as
far as they yield the same correct form of EFE among the
extremal equations.

(2) Second, we show that the selection of the appropriate
variational approach can (only) be established in the frame-
work of quantum theory. To do so, we consider a background
space-time realized by the vacuum deSitter solution gener-
ated by a non-vanishing cosmological constant (CC). In the
context of CQG-theory, considered here as a reference theory,
the presence of a non-vanishing (and strictly positive) CC is,
in fact, a mandatory consequence of the Bohm vacuum quan-
tum interaction occurring among gravitons, as predicted by
the same theory [20]. The validity of CQG-theory requires
however the existence of massive gravitons. The fact that the
gravitons should be massive implies, on the other hand, the
requirement that the quantum (4-scalar) Hamiltonian must
necessarily admit a universal harmonic oscillator form, i.e.,
positive-definite quadratic form, and a consequent spectrum
of discrete positive eigenvalues (determining the spectrum
of possible invariant rest masses for the gravitons) in the
presence of a non-vanishing Hamiltonian potential. Under
these circumstances, it is found that the realization of the
Lagrangian density is unique. In particular, this means that
the Riemann-tensor coupling must be ruled out, because it
violates the requirement of realizing a quadratic and positive-
definite harmonic Hamiltonian potential. It is proved that this
deficiency which characterizes the Riemann-tensor solution
with respect to the Ricci-tensor one is ultimately due to the
coupling between the quantum gravitational field and the
same non-symmetric Riemann tensor of the deSitter space-
time. This permits to conclude that the quantum gravitational
field (and in particular its stationary solution with discrete
eigenvalues) selects the coupling with the Ricci tensor. The
conclusion excludes the role of the Riemann tensor in CQG-
theory having a deSitter background solution, and in turn it
gives support to the same CQG formalism developed so far.

2 Physical requirements and mathematical setting

The question of the quantum coupling must be set in the
appropriate mathematical framework. This is identified with
the classical variational theory of GR for the continuum grav-
itational field and the corresponding canonical formulation
of quantum gravity theory. More precisely, the nature of the
problem demands to satisfy the following requirements:

1. The principle of manifest covariance (PMC). This states
that it should always be possible to cast the physical
laws of relativistic field theories in 4-tensor form with
respect to the group of local point transformations which
leaves invariant the differential manifold of the back-
ground space-time [13]. The validity of such a principle
provides strict guidelines on the formal representation of
mathematical relationships holding among the physical
laws. It provides constraints on the admissible realization
(and possible universal character) of the relevant equa-
tions, physical parameters, classical or quantum phase-
functions and observables. In this sense, PMC affects both
the classical and quantum descriptions of continuum fields
in relativistic field theories, for the search respectively
of appropriate variational formulations for classical field
theories and of canonical quantization methods [21].

2. The validity of a classical Hamiltonian theory of GR con-
sistent with PMC. This is realized by identifying an invari-
ant evolution parameter s, to be denoted proper-time, and
introducing the set {x, H}, formed by the canonical state
x(s) ≡ (g(s), π(s)) and a suitable classical Hamiltonian
density H . Here, g(s) = {

gμν(s)
}

and π(s) = {πμν(s)}
denote respectively the variational tensor field and the
conjugate tensor canonical momentum. The canonical
state x(s) must therefore fulfill a corresponding set of
continuum Hamilton equations

{

dgμν

ds = [

gμν, H
] = ∂H

∂πμν ,
dπμν

ds = [πμν, H ] = − ∂H
∂gμν

,
(3)

subject to the initial-value condition

x(so) ≡ (gμν(so), π
μν(so)). (4)

Here, gμν(so) and πμν(so) denote two initial conjugate
tensor fields, so is the initial proper-time and d

ds is a suit-
able covariant s-derivative operator to be properly defined
[1]. Then, the solution of the initial-value problem (3)–(4)
generates the Hamiltonian flow

x(so) → x(s), (5)

which is associated with the Hamiltonian structure {x, H}.
For the validity of the theory, the canonical equations
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(3) must recover correctly the form of EFE among their
extremal solutions, so that {x, H} effectively identifies a
Hamiltonian structure of GR.

3. The validity of a quantum Hamiltonian theory of GR.
Given the classical GR-Hamiltonian structure, this is rep-
resented by the set

{

x (q), H (q)
}

realized by the formal
map

⎧

⎪

⎨

⎪

⎩

gμν → g(q)
μν ≡ gμν,

πμν → π
(q)
μν ≡ −i� ∂

∂gμν ,

H → H (q),

(6)

where the dimensional 4-scalar H (q) identifies the quan-

tum Hamiltonian operator, x (q) ≡
{

g(q)
μν , π

(q)
μν

}

is the

quantum canonical state and π
(q)
μν is the quantum

momentum operator prescribed so that the commutator
[

g(q)
μν , π(q)αβ

]

= i�δα
μδ

β
ν applies. It is understood that

the actual realization of the mapping (6) requires also
the prescription of dimensional constants to warrant the
correct physical dimensions of the quantum Hamiltonian
function and quantum operators (see Ref. [2] and Sect. 5
below). Such a quantum correspondence must then imply
the realization of a manifestly-covariant Schrödinger-like
quantum-wave equation for a quantum wave function ψ

of the form

i�
∂

∂s
ψ(s) =

[

H (q), ψ(s)
]

≡ H (q)ψ(s), (7)

with ∂
∂s denoting a covariant s-derivative and [A, B] being

the quantum commutator [A, B] ≡ AB − BA. In the
present setting, the quantum wave function ψ must admit
a Madelung representation

ψ(s) = √

ρ(s) exp

{

i

�
S(q)(s)

}

, (8)

where the quantum fluid fields
{

ρ(s), S(q)(s)
}

iden-
tify respectively the quantum probability density func-
tion (PDF) and the quantum phase-function. As a con-
sequence, the acceptable quantum gravity theory must
preserve the probabilistic interpretation characteristic of
quantum mechanics, and in particular it must warrant
validity of the Born rule, so that the 4-scalar ρ(s) ≡
|ψ(s)|2 is a probability density on the 4-dimensional
space-time.

The requirement of consistency with prescriptions 1-3
selects the admissible type of framework for the investiga-
tion of the problem posed here. In particular, approaches
based on non-manifestly covariant and non-Hamiltonian the-
ories like ADM-formulation and the Wheeler–deWitt equa-

tion rooted on Loop Quantum Gravity remain excluded [22–
24] (see also discussion in Ref. [14]). The appropriate setup
which realizes the scheme proposed above is provided by
the manifestly-covariant classical and quantum theories of
the gravitational field (denoted in short-way respectively as
CCG- and CQG- theories). These are formulated based on the
validity of synchronous Lagrangian and Hamiltonian varia-
tional principles. Characteristic features of the synchronous
approach with respect to the customary asynchronous prin-
ciples widespread in the literature are the space-time repre-
sentation in terms of superabundant field variables (ĝ, g) and
the metric tensor background formalism. Accordingly, man-
ifest covariance is defined with respect to a continuum back-
ground metric tensor ĝ ≡ {

ĝμν

}

, which raises/lowers tensor
indices and defines the geometric properties of the space-
time, including its volume element. The same background
metric tensor is then determined self-consistently as a solu-
tion of quantum-modified Einstein field equations implied by
the same CQG quantum-wave equation. In contrast, the vari-
ational theory applies to the tensor field g ≡ {

gμν

}

, which
has generally a non-vanishing covariant derivative in the
action functional, so that ̂∇αgμν �= 0, where ̂∇α is the covari-
ant derivative whose connections are expressed in terms of
ĝμν . The field gμν is ultimately identified with the quantum
gravitational field of the quantum Hamiltonian theory. As
such, the quantum field gμν can evolve dynamically over ĝ
according to the quantum wave equation (CQG-wave equa-
tion), so that it can acquire correspondingly a non-vanishing
quantum momentum πμν . By definition the tensor gμν is
such that gμνgμν �= δ

μ
μ , while the normalization condition

ĝμν ĝμν = 4 applies to the classical metric tensor. A main
result to be mentioned here is the proof that CQG-theory pre-
dicts the existence of a discrete eigenvalue spectrum for the
quantum gravitational field. Its analytical treatment is permit-
ted by the formalism of manifest covariance and the imple-
mentation of the Dirac ladder method [25]. Thus, in vac-
uum configurations and provided there exists a non-vanishing
cosmological constant generating a curvature potential, the
eigenvalue spectrum recovers also in such a context the fun-
damental harmonic-oscillator solution [2].

The detailed derivation and the physical implications of
CCG- and CQG- theories is discussed in the following sec-
tions, for both Ricci and Riemann tensor coupling solutions.

3 Classical Hamilton variational principle: the Ricci
tensor

We recall the synchronous classical Hamilton variational
principle underlying EFE expressed in terms of the Ricci
tensor. Following the derivation reported in Ref. [1], we
denote by x(s)≡ (g(s), π(s)) the variational canonical state
expressed in terms of the generalized coordinate g(s) =
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gμν(s) and its conjugate reduced momentum π(s) =
πμν (s), and by x̂(s) ≡ (ĝ(s), π̂(s)) the corresponding pre-
scribed state. Then, in such a case the Hamiltonian density H
is identified with H ≡ Hh , with Hh ≡ Hh(x, x̂, r, s) being
expressed by the 4-scalar

Hh = T − Vh, (9)

where the effective kinetic and potential densities T ≡
T (x, x̂) and Vh ≡ Vh(g, x̂, r, s) are taken respectively of
the form

T (x, x̂) ≡ 1

2κ
πμνπ

μν, (10)

Vh (g, x̂, r, s) ≡ VGh (g, x̂) + VF (g, x̂, r, s) . (11)

Here κ is the dimensional constant κ = c3

16πG , while by con-
struction πμν = κtα̂∇αgμν , where tα is the dimensionless
unit 4-vector tangent to a subliminal geodesic trajectory of
ĝμν . Furthermore, the two contributions in the potential den-
sity are expressed as

VGh (g, x̂) ≡ κh
[

gμν
̂Rμν − 2


]

, (12)

VF (g, x̂, r) ≡ hLF (g, x̂, r) , (13)

where VGh (g, x̂) is the gravitational part of the potential,
while VF (g, x̂, r) identifies the external-field source con-
tributions, with LF being associated with a non-vanishing
stress-energy tensor due to external non-gravitational fields.
We notice in particular that the potential VGh contains the
Ricci tensor ̂Rμν , which in the framework of synchronous
variational principle is assumed as prescribed (i.e., it is non
variational). In addition, for completeness we have included
the contribution of a non-vanishing cosmological constant 
.
The variational weight-factor h = h (g, x̂, r), which appears
as a common factor in the potential part of the Hamiltonian,
Vh (g, x̂, r, s), has an important role. According to Ref. [16],
in fact, it is found that for the correct determination of EFE
the variational weight-factor h must be identified with the
function

h (g, x̂, r) =
(

2 − 1

4
gikgik

)

, (14)

and hence prescribed so that

h (ĝ, x̂, r) = 1. (15)

We stress that the choice of the variational weight-factor h
given here can be shown to be unique, i.e., provided it is
identified with a second-degree polynomial in gik . It is worth
recalling briefly here the physical meaning of the function
h [16]. This quantity in fact marks the connection between
the synchronous functional and the asynchronous one. More
precisely, in the synchronous variational principle, h replaces

the variational contribution of the metric tensor which in
the asynchronous principle originates from the variation of√−g. In fact, h is constructed in such a way that

δh (g, x̂, r) = δ
√−g. (16)

There are a few crucial points to stress here. First, although
h and

√−g yield the same variations, they have a different
tensor character. In fact, while

√−g is obviously not a 4-
scalar quantity, the function h realizes, instead, by construc-
tion a 4-scalar. Second, as stated in Eq. (13) above, we also
notice that the function h equally applies also to external-field
Lagrangians. Hence, it follows that the replacement of

√−g
with h holds consistently both in vacuum and non-vacuum
cases. The crucial implication of these two features is that the
Hamiltonian density H acquires indeed a 4-scalar character.

Such conditions realize therefore also a mandatory require-
ment for achieving a manifestly covariant variational prin-
ciple which is realized by the synchronous Hamilton varia-
tional principle in terms of the 4-scalar variational functional

Sh (x, x̂) ≡
∫

d�Lh (x, x̂, r, s) , (17)

with d� identifying the invariant 4-volume element of
the space-time. In addition, Lh (x, x̂, r, s) is the variational
Lagrangian density

Lh (x, x̂, r, s) ≡ πμν

d

ds
gμν − Hh (x, x̂, r, s) , (18)

to be identified with the Legendre transform of the cor-
responding variational Hamiltonian density Hh (x, x̂, r, s)
defined above, withπμν

d
ds g

μν denoting the so-called exchange
term. Here, d

ds is the covariant s-derivative

d

ds
= ∂

∂s
+ tα(s)̂∇α, (19)

while tα(s) and ̂∇α are respectively the tangent 4-vector to
the geodesics trajectory r(s) ≡ {rμ(s)} and the covariant
derivative evaluated in terms of the prescribed metric tensor
ĝμν . Then, the variational principle associated with the func-
tional Sh (x, x̂) is prescribed in terms of the synchronous-
variation operator δ, to be identified with the Frechet deriva-
tive according to Ref. [16]. According to such an approach the
4-scalar d� entering the action functional is considered inde-
pendent of the functional class of variations, so that it must
be defined in terms of the prescribed metric tensor field ĝ as
d� ≡ d4r

√− |̂g|, with d4r being the corresponding canon-
ical measure and |̂g| denoting as usual the determinant of the
metric tensor ĝ (r). In the context of the synchronous varia-
tional principle the prescribed field ĝμν(r) must determine,
besides d�, also the geometric properties of space-time. This
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requires in particular that ĝμν(r) must lower and raise ten-
sor indexes of tensor fields and determine also the standard
Christoffel connections which enter both the Ricci tensor
̂Rμν and the covariant derivatives of arbitrary variational
tensor fields. Therefore, the synchronous variational prin-
ciple to GR realizes the so-called ”background space-time
picture”, whereby the background space-time

(

Q4, ĝ (r)
)

is
considered defined “a priori” in terms of ĝμν(r), while leav-
ing unconstrained all the variational fields x = {g, π} and
in particular the Lagrangian coordinates g (r) ≡ {

gμν (r)
}

.
Thus, denoting

δSh (x, x̂) = d

dλ
Sh (x + λδx, x̂)

∣

∣

∣

∣

λ=0
(20)

the Frechet derivative of the functional Sh (x, x̂), the cor-
responding synchronous variational principle is realized by
means of the variational equation

δSh (x, x̂) = 0, (21)

namely obtained by keeping constant both the prescribed
state x̂ and the 4-scalar volume element d�. This delivers the
4-tensor Euler–Lagrange equations cast in symbolic form in
terms of the variational derivatives δSh(x ,̂x)

δgμν and δSh(x ,̂x)
δπμν

{

δSh(x ,̂x)
δgμν = 0,

δSh(x ,̂x)
δπμν

= 0,
(22)

which are equivalent to the Hamilton equations (3) upon let-
ting H = Hh .

In particular, we have that

δ
[

hgμν
̂Rμν

]

δgμν
= ĥRμν − 1

2
gμν

(

glm ̂Rlm

)

, (23)

so that invoking Eqs. (11)–(13) it follows that

∂VGh (g, x̂, r, s)

∂gμν(s)
= κh(s)̂Rμν

−κgμν(s)
1

2

(

glm(s)̂Rlm − 2

)

− κ
8πG

c2 Tμν, (24)

where ̂Rμν ≡ ̂Rμν(s) and Tμν ≡ Tμν(s) denote the Ricci
and stress-energy tensors. Then, the canonical equations (3)
reduce to the single equivalent Lagrangian evolution equation
for the variational field gμν(s) given by

d

ds

[

d

ds
gμν(s)

]

+ h(s)̂Rμν − gμν(s)

1

2

[

glm(s)̂Rlm − 2

]

− 8πG

c2 Tμν = 0. (25)

The connection of the canonical equations (3), and there-
fore of Eq. (25), with EFE can be obtained under the assump-
tion that the Hamiltonian density does not depend explicitly
on proper time s, i.e., it is actually of the form

Hh = Hh (x, x̂(r), r) , (26)

and by imposing the stationary initial conditions on the state
x(so) of the type

{

gμν(so) ≡ ĝμν(so),
πμν(so) ≡ π̂μν(so) = 0,

(27)

while requiring furthermore for all s ∈ I

π̂μν(s) = 0. (28)

Then, since the identities ĝμν(s)ĝμν(s) = δ
μ
μ and d

ds ĝμν(s) ≡
0 hold by construction, so that necessarily π̂μν(s) ≡ 0,
Eq. (25) reduces to

̂Rμν − ĝμν(s)
1

2

[

ĝlm(s)̂Rlm − 2

]

= 8πG

c2
̂Tμν, (29)

which coincides with the Einstein field equations solving for
the prescribed field ĝμν .

As a final remark, we stress that the presence of the func-
tion h is a unique characteristic feature of the synchronous
variational principle with respect to the analogous asyn-
chronous problem. From the physical point of view, the func-
tion h replaces the variational contributions arising from vari-
ations of the volume element d�. In the framework of a back-
ground space-time formalism and adoption of superabundant
coordinate field variables, the function h can also be inter-
preted as measuring the deviation of the variational field gμν

with respect to ĝμν . In fact, the extremal value of h is identi-
cally 1, since in this limit g coincides with ĝ. We also recall
that the adoption of the synchronous principle together with
the inclusion of the 4-scalar function h restores the correct
invariance gauge properties of the Lagrangian function, and
therefore of the Hamiltonian function too. In particular, in the
present case Hh is found to satisfy the principle of manifest
covariance, establishing a variational principle which does
not rely anymore on the variation of the non-covariant con-
tribution

√− |g| defining the volume element of the action
functional.

4 Classical Hamilton variational principle: the
Riemann tensor

In this section we investigate the possibility of formulating a
classical Hamilton variational principle such that the corre-
sponding Hamiltonian potential is expressed in terms of the
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Riemann tensor instead of the Ricci tensor. The same princi-
ple must be consistent with the principle of manifest covari-
ance and it must recover the correct form of EFE among its
extremal equations. We intend to prove that the task can be
consistently realized in the framework of synchronous vari-
ational principles. More precisely, we show that the solu-
tion for the Hamiltonian potential is generally non-unique.
However, by prescription of suitable physical requisites the
appropriate form of the Hamiltonian function is selected and
its relationship with Hh obtained above can be displayed.

To illustrate the issue, we start by recalling the relation-
ship between the Ricci and the Riemann tensors [9]. This is
defined as follows:

Rμν = gαβRαμβν ≡ Rα
μαν. (30)

The Riemann tensor Rαμβν satisfies the symmetry properties:

Rαμβν = −Rμαβν = −Rαμνβ, (31)

Rαμβν = Rβναμ, (32)

which means that it is antisymmetric with respect to each cou-
ple of indices α,μ and β, ν, while it is symmetric with respect
to the permutation of the two couples of indices together.
Hence, all diagonal components of Rαμβν for each couple of
indices α,μ and β, ν are zero.

In order to replace the Ricci tensor with the Riemann ten-
sor we must specify the character of their contribution in
the Hamiltonian density. In fact, in the synchronous varia-
tional principle associated with the action integral (17) we
implicitly assumed that ̂Rμν = ĝαβ

̂Rαμβν . This means that
the Ricci tensor was a prescribed tensor, since it was a func-
tion of prescribed metric tensor and Riemann tensor. Now,
in order to include the Riemann tensor but preserve at the
same time the functional form of the Hamiltonian density in
terms of the Ricci 4-scalar, we must assume the following
relationship to hold:

Rμν = gαβ
̂Rαμβν. (33)

This means that now the Ricci tensor is no longer assumed
as an independent prescribed tensor belonging to the back-
ground solution, but it is a composite tensor depending on the
variational tensor gαβ and the background Riemann tensor
̂Rαμβν . This distinction allows one to cast the synchronous
variational principle in terms of the Riemann tensor coupling
as required for the scope of the present study.

Since the contribution of the Riemann tensor enters in
the potential part of the Hamiltonian function, we can focus
initially our attention on determining the correct form of the
Hamiltonian potential alone. The solution to the question is
not unique. For example, a first possibility could be to search
for a 4-scalar potential of the form

VGw (g, x̂) ≡ κw
[

gμνgαβ
̂Rαμβν − 2


]

. (34)

This expression follows from Eq. (12) by replacing the Ricci
tensor with its definition by the Riemann tensor. In order
to account for the new quadratic functional dependence of
the potential on the variational tensor gμν , the variational
function h is replaced here with the new 4-scalar function w.
The latter must then be constructed in such a way to warrant
the recovery of the extremal equations in terms of EFE. A
direct calculation yields

w ≡
(

3

2
− 1

4
gikg

ik
)

. (35)

We notice however that by construction w = h − 1
2 , so

that the two variational functions w and h remain effectively
distinguished in this approach and therefore would gener-
ate corresponding different variational forms. In addition,
we have that also the extremal values of these functions are
different, since h (ĝ) = 1 while w (ĝ) = 1

2 . As a conse-
quence, the choice (35) appears against the physical mean-
ing of the variational function h (which, as recalled above,
establishes the relationship between synchronous and asyn-
chronous principles). Furthermore, the adoption of w in place
of h for the gravitational potential VGw (g, x̂) would place a
difference between the form of the gravitational part of the
potential, namely VGw (g, x̂), and the external-field poten-
tial VF (g, x̂, r) which instead carries always the function
h. These features suggest the inadequacy of the representa-
tion (34) and the necessity to look for another solution of the
problem.

In order to resolve the indeterminacy at classical level
and obtain the appropriate form of the classical Riemann-
coupling solution that is suitable for the subsequent study of
the quantum coupling and for a comparison with the Ricci-
tensor solution, we introduce the following requirement.
Namely, starting from the representation of the potential
expressed in terms of the Riemann tensor (i.e., the Riemann-
tensor potential, denoted here VG∗ (g, x̂) to distinguish it
from VGw (g, x̂)), it should be possible to recover the form
of the corresponding Ricci-tensor potential VGh (g, x̂) given
by Eq. (12) by means of the replacement/identification

gμνgαβ
̂Rαμβν → gμν ĝαβ

̂Rαμβν ≡ gμν
̂Rμν (36)

in the Hamiltonian. This means that, a posteriori, it should
always be possible to relate via Eq. (36) the two Riemann-
tensor and Ricci-tensor representations. In addition, the
Frechet derivative of the corresponding Riemann-tensor
potential VG∗ (g, x̂) should coincide identically with the
Frechet derivative of VGh (g, x̂), namely

δVG∗ (g, x̂) ≡ δVGh (g, x̂) , (37)
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or equivalent

d

dλ
VG∗ (g + λδg, x̂)

∣

∣

∣

∣

λ=0
≡ d

dλ
δVGh (g + λδg, x̂)

∣

∣

∣

∣

λ=0
,

(38)

so that both potentials should recover exactly EFE. The
implication of Eq. (37) is therefore that the two potentials
VG∗ (g, x̂) andVGh (g, x̂) should only differ by some suitable
gauge function (which, as such, therefore do not contribute
to the final Euler–Lagrange equations).

One can see at once that this criterion is sufficient to
exclude the validity of the potential (34) in the present frame-
work. In fact, if we promote gαβ → ĝαβ when it appears in
the coupling with the Riemann tensor in Eq. (34), we would
obtain for VGw (g, x̂) in such a limit

VGw (g, x̂) ≡ κ

(

3

2
− 1

4
gikg

ik
)

[

gμν
̂Rμν − 2


]

= VGh (g, x̂) − 1

2
κ

[

gμν
̂Rμν − 2


] �= VGh (g, x̂) . (39)

However, one can show that a possible alternate realization
of the potential which actually fulfills the requirement is pro-
vided by the following non-trivial representation:

VG∗ (g, x̂) ≡ κh
[

gμνgαβ
̂Rαμβν − 2


] − κgμν
(

gαβ − ĝαβ
)

̂Rαμβν,

(40)

where h preserves its original form given by Eq. (14). In
this case it is immediate to verify that VG∗ (g, x̂) is related
to VGh (g, x̂) by means of the transformation (36). Indeed,
when letting gαβ → ĝαβ both in the square and round bracket
terms in Eq. (39) one obtains that

lim
gαβ→ĝαβ

VG∗ (g, x̂) = VGh (g, x̂) . (41)

Furthermore, one notices that by construction

VG∗ (g, x̂) = VGh (g, x̂) + FG∗ (g, x̂) , (42)

where

FG∗ (g, x̂) ≡ κh
[

gμνgαβ
̂Rαμβν − gμν

̂Rμν

]−κgμν
(

gαβ − ĝαβ
)

̂Rαμβν .

(43)

Now, one can prove by straightforward algebra that identi-
cally

δFG∗ (ĝ, x̂) = 0 (44)

holds, so that FG∗ (g, x̂) indeed identifies a gauge function.
Consequently Eq. (37) applies too.

We now notice that the potential VG∗ (g, x̂) is made of
two contributions, both carrying a coupling with the back-
ground Riemann tensor. The first one is proportional to h and
measures how the product gikgik differs from its normalized
value, namely ĝik ĝik . The second term is proportional to the
difference

(

gαβ − ĝαβ
)

which measures the strength of the
coupling with Riemann tensor by the variational field gαβ

with respect to the same coupling realized by the background
tensor ĝαβ .

Given these premises, we can now identify the Hamilto-
nian function as H ≡ H∗, where H∗ ≡ H∗(x, x̂, r, s) is
defined as follows:

H∗ = T − V∗, (45)

where the effective kinetic and potential densitiesT ≡ T (x, x̂)
and V∗ ≡ V∗(g, x̂, r, s) are of the form

T (x, x̂) ≡ 1

2κ
πμνπ

μν, (46)

V∗ (g, x̂, r, s) ≡ VG∗ (g, x̂) + VF (g, x̂, r, s) .

We notice that the external potential VF (g, x̂, r, s) has here
the same representation given by Eq. (13) in terms of the
functionh given by Eq. (14). Then, the difference between Hh

and H∗ is only in the prescription of the potential VG∗ (g, x̂),
to be identified with the representation (40) given above.
Hence, the synchronous Hamilton variational principle in
the case of Riemann tensor dependence is realized by the
4-scalar variational functional

Sw (x, x̂) ≡
∫

d�L∗ (x, x̂, r, s) , (47)

with d� ≡ d4r
√− |̂g| identifying again the invariant 4-

volume element of the space-time, while L∗ (x, x̂, r, s) is
the variational Lagrangian density

L∗ (x, x̂, r, s) ≡ πμν

d

ds
gμν − H∗ (x, x̂, r, s) , (48)

which identifies the Legendre transform of the correspond-
ing variational Hamiltonian density H∗ (x, x̂, r, s) defined by
Eq. (45).

The corresponding synchronous variational principle is
realized as

δS∗ (x, x̂) = 0, (49)

which yields the 4-tensor Euler–Lagrange equations

{

δS∗(x ,̂x)
δgμν = 0,

δS∗(x ,̂x)
δπμν

= 0,
(50)
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that are equivalent to the set of Hamilton equations (3) when
H is identified with H∗.

The explicit calculation of the potential term VG∗ (g, x̂)
carrying the Riemann contribution gives

δVG∗ (g, x̂)

δgμν
= κ

[

−1

2
gμν

(

gikgαβ
̂Rαiβk − 2


)

+2hgαβ
̂Rαμβν − (

gαβ − ĝαβ
)

̂Rαμβν − gαβ
̂Rαμβν

]

.

(51)

As a result, the canonical equations (3) yield the follow-
ing Lagrangian evolution equation for the variational field
gμν(s):

d

ds

[

d

ds
gμν(s)

]

− 1

2
gμν

(

gikgαβ
̂Rαiβk − 2


)

− (

2 (1 − h) gαβ − ĝαβ
)

̂Rαμβν − 8πG

c2 Tμν = 0. (52)

The connection with EFE can then be established in the same
way as done for the Ricci tensor case, namely by setting
stationary initial conditions of the type (27), and recalling
that by definition ĝαβ(s)̂Rαμβν = ̂Rμν and h (ĝ) = 1. As a
consequence, the correct form of EFE given by Eq. (29) is
recovered.

We recall that the asynchronous variational approach to
EFE that is customarily implemented in the literature pre-
vents the possibility of expressing the variational Lagrangian
density in terms of the Riemann tensor. As a consequence,
only Lagrangian densities in which the Ricci scalar is repre-
sented in terms of the Ricci tensor are admitted for the correct
variational derivation of EFE. However, the theory reported
here proves that this obstacle can be consistently overcome in
the framework of synchronous variational principles. In par-
ticular, the requirement of satisfying the principle of manifest
covariance and the possibility of implementing a background
formalism provide the necessary freedom to handle the prob-
lem. In this way, the synchronous variational approach is
shown to permit the construction of 4-scalar Lagrangian and
Hamiltonian densities in which the gravitational potential
term can be expressed either in terms of the Ricci tensor or
the Riemann tensor. Both representations determine the cor-
rect form of EFE and are related to each other according to
the criterion given above.

We have therefore succeeded in providing two different
but equivalent classical variational Hamiltonian formulations
for EFE, which display the contributions of Ricci and Rie-
mann tensors. In both approaches these two curvature tensors
enter as prescribed background quantities, which are there-
fore to be determined a posteriori as consistent solutions of
the extremal field equations, namely EFE. In the classical
variational framework the two tensors are both coupled with
the variational field tensor gμν(s), but in different manner. As
shown below, this coupling is then inherited by the quantum

gravitational field. In particular, we stress that in the realm
of classical theory in principle both solutions are equally
admissible, since the difference pertains the variational (i.e.,
virtual) fields, while the extremal equations coincide in both
cases with EFE for a given initial condition on the canonical
state. This proves the convenience of adopting synchronous
variational principles instead of asynchronous ones. How-
ever, when passing to the quantum domain by means of
canonical quantization of the classical Hamiltonian structure,
the corresponding quantum Hamiltonian operators give rise
to different physical dynamics for the quantum field (which
recovers the variational field in the semiclassical limit). As
shown below, the selection of the correct coupling solution
between Ricci or Riemann tensors can be established based
on quantum gravity theory.

5 Stationary eigenvalue quantum-gravity wave equation

The classical synchronous variational principles expressed in
terms of manifestly-covariant Hamiltonian densities gener-
ate a corresponding quantum theory of the gravitational field.
The mathematical framework is provided by the manifestly-
covariant quantum gravity theory (CQG-theory) developed
in Refs. [1,2], which satisfies the requirement 3 set in the
Introduction. When the dimensional analysis is taken into
account, the mapping (6) requires specifically that πμν →
κ

αL π
(q)
μν and H → κ

αL H
(q), where αL is a suitable dimen-

sional constant related to the graviton mass and the cosmo-
logical constant, determined in Ref. [2].

In this context, the quantum-wave equation takes the form
of the Schrödinger-like equation (7) for the 4-scalar wave
function ψ(s) ≡ ψ(g, ĝ, r, s), where the evolution parame-
ter is represented by the invariant proper-time s. This wave
equation admits generally non-stationary solutions for ψ(s)
in which the proper-time dependence cannot be simply fac-
tored out. This occurrence is an intrinsic feature of CQG-
theory, and it follows because the CQG wave equation admits
generally solutions which are far from the classical one, i.e.,
the prescribed background solution ĝμν(r), which is instead
stationary by assumption.

However, for the purpose of the present study, we need
to evaluate the stationary eigenvalue form of the CQG-wave
equation in order to question whether the Riemann and Ricci
Hamiltonian potentials are both admissible. In particular, in
order to represent physical solutions, we require that both
potentials should define a positive-definite quadratic form
upon performing a quadratic expansion around equilibrium.
In the framework of CQG-theory, this requirement warrants
the existence of positive eigenvalues for the stationary spec-
trum of the quantum Hamiltonian and hence predicts in turn
a strictly-positive graviton mass.
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Hence, for definiteness we assume that the Hamiltonian
operator H (q) obtained by the quantum correspondence prin-
ciple from the classical potentials Hh or H∗ defined above
does not depend on s, at least in an asymptotic sense. It fol-
lows that ψ(s) must admit a separable particular solution of
the form

ψ(s) = exp

{

− i

�c
E(s − so)

}

ψo(g, ĝ, r), (53)

where E is a real constant 4-scalar independent of the proper
time s. As a result, E is the solution of the proper-time depen-
dent equation

i�
∂

∂s
ψ(s) = E

c
ψ(s). (54)

Then, ψo(g) ≡ ψo(g, ĝ, r) is necessarily a solution of the
asymptotic proper-time independent quantum wave equation

H (q)ψo(g) = E

c
ψo(g), (55)

to be referred to as stationary eigenvalue CQG-wave equa-
tion.

In order to proceed investigating the issue on quantum cou-
pling with Ricci and Riemann tensors we need to determine
the analytical representation of the eigenvalue equation (55)
for the two cases in which H (q) = Hh and H (q) = H∗ respec-
tively. We therefore introduce below the formalism required
for this task in terms of an appropriate perturbative approx-
imation scheme. To start with, we consider for the quantum
field gμν a decomposition of the form

gμν = ĝμν(r) + δgμν, (56)

with δgμν being the quantum displacement 4-tensor field, to
be assumed suitably small with respect to ĝμν(r). Hence, gμν

is required to belong to a suitable infinitesimal neighborhood
of ĝ(r) ≡ {

ĝμν(r)
}

, i.e., the subset Ug defined as

Ug(ĝ(r), ε) = {

gμν ≡ ĝμν(r) + δgμν, δgμν

� O(ε), gμν ∈ Ug
}

, (57)

such that for all displacements δgμν the asymptotic ordering

δgμν � O(ε) (58)

holds. Here ε is a suitable infinitesimal real parameter, while
by construction in such a set all components of δgμν are
of O(ε) or higher. The consequence of this assumption
is that ψo(g, ĝ, r) must be regarded suitably localized in
the neighborhood of the background equilibrium solution
ĝ(r) ≡ {

ĝμν(r)
}

so that possible additional classical sta-
tionary solutions can be effectively ignored.

In addition to the decomposition (56), we must also pre-
scribe the form of the background metric tensor ĝμν(r). Here
we assume for definiteness that VF = 0, so that this is iden-
tified with the vacuum deSitter solution of EFE in the pres-
ence of a non-vanishing cosmological constant 
 > 0. This
represents in fact the simplest curved space-time solution
characterized by absence of external fields other than the
gravitational one, and having a constant invariant curvature
generated by 
, so that both ̂Rμν �= 0 and ̂Rαμβν �= 0. More
precisely, the deSitter solution yields analytical representa-
tions for the background curvature tensors in terms of the
metric tensor, given by

̂R = 4
, (59)
̂Rμν = 
ĝμν, (60)

̂Rαμβν = 


3

(

ĝαβ ĝμν − ĝαν ĝμβ

)

. (61)

Given these premises, the strategy to be pursued is as fol-
lows:

(1) We consider the two quantum Hamiltonian solutions
corresponding to H (q) = Hh and H (q) = H∗ respectively.
For each of them we introduce the vacuum assumption and
then perturb the Hamiltonian potential of the gravitational
field by introducing the decomposition (56).

(2) We then assume to have a background deSitter solution
of EFE and we truncate the perturbative expression of the
potential to second order in the displacement δgμν , letting
the zeroth and first order terms to vanish identically in a
local minimum of the potential.

(3) We finally analyze whether the remaining terms of
the second-order Hamiltonian potential can admit a discrete
value of eigenvalues, to coincide with the fundamental quan-
tum harmonic-oscillator solution. This in turn demands the
possibility of implementing the Dirac ladder method to the
eigenvalue equation. For the validity of this approach, how-
ever, the Hamiltonian potential must represent a quadratic
and positive-definite form, in order to warrant existence of
corresponding positive eigenvalues.

(4) Depending on the resulting outcome of this analytical
analysis, it is concluded whether the two quantum configura-
tions H (q) = Hh and H (q) = H∗ can both represent quantum
gravitational descriptions in the deSitter background space-
time. In particular, this permits to answer the question about
the physical connotation and admissible character of the cou-
plings of the quantum gravitational field with the Ricci and
Riemann curvature tensors.

6 Quantum potentials with Ricci and Riemann tensors

In this section we consider the application of the asymptotic
approximation scheme reported above, to be implemented on
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the Hamiltonian potentials of the stationary eigenvalue CQG-
wave equation expressed respectively in terms of Ricci and
Riemann tensors.

More precisely, in the case of the Ricci tensor we inves-
tigate the analytical expression of the potential VGh ≡
VGh (g, x̂) given by Eq. (12), which is written explicitly as

VGh ≡ κ

(

2 − 1

4
gikgik

)

[

gμν
̂Rμν − 2


]

. (62)

Then, introducing the decomposition (56) one obtains

VGh ≡ κ

(

2 − 1

4

(

ĝik + δgik
)

(ĝik + δgik )

)

[(

ĝμν + δgμν
)

̂Rμν − 2

]

.

(63)

Recalling the definition of the Ricci tensor and making use
of the normalization ĝik ĝik = 4 gives

VGh = κ

(

1 − 1

2
δgik ĝik − 1

4
δgikδgik

)

[

δgμν
̂Rμν + ̂R − 2


]

.

(64)

Assuming to be in a local minimum of the potential, the
equation associated with the linear terms is identically satis-
fied. It is immediate to verify that this is the classical EFE,
which is consistent with the decomposition (56) performed
around the stationary background metric tensor ĝμν . Hence,
in Eq. (64) it is meaningful to retain only the quadratic terms
of the expansion. This yields the approximate expression

VGh = UGh + O(ε3), (65)

where the leading-order contribution UGh is found to be

UGh = −κ
1

2
δgik ĝik

(

δgμν
̂Rμν

) − κ
1

4
δgikδgik

(

̂R − 2

)

.

(66)

Then, for a deSitter background solution, invoking the rela-
tions (59) and (60) gives

UGh = −κ

1

2
δgik ĝikδg

μν ĝμν − κ

1

2
δgikδgik . (67)

Introducing the notation δg2 = δgμνδgμν we can finally
write the approximate potential as

UGh = −κ

1

2

[

(

δgμν ĝμν

)2 + δg2
]

. (68)

This result recovers the solution originally obtained in
Ref. [2]. We notice that for the deSitter space-time, UGh

defines a positive-definite quadratic form. This expression
is therefore consistent with the implementation of the Dirac

ladder method for the determination of the discrete eigen-
value spectrum associated with Eq. (55). In fact, it formally
recovers the functional form of the quantum potential driving
a quantum harmonic oscillator.

Let us now consider instead the analogous algebraic prob-
lem associated with the potential VG∗ ≡ VG∗ (g, x̂) defined
in Eq. (40), which is written explicitly as

VG∗ ≡ κ

(

2 − 1

4
gikgik

)

[

gμνgαβ
̂Rαμβν − 2


]

−κgμν
(

gαβ − ĝαβ
)

̂Rαμβν. (69)

Introducing the linear decomposition (56) one obtains

VG∗ = κ

(

2 − 1

4

(

ĝik + δgik
)

(ĝik + δgik)

)

× [(

ĝμν + δgμν
) (

ĝαβ + δgαβ
)

̂Rαμβν − 2

]

−κ
(

ĝμν + δgμν
) (

ĝαβ + δgαβ − ĝαβ
)

̂Rαμβν. (70)

Using now the definitions of the Ricci and Riemann tensors
and the normalization ĝik ĝik = 4 gives

VG∗ = κ

(

1 − 1

2
δgik ĝik − 1

4
δgikδgik

)

× [(

δgαβ ĝμν + δgμνδgαβ
)

̂Rαμβν + δgμν
̂Rμν + ̂R − 2


]

−κ
(

ĝμνδgαβ + δgμνδgαβ
)

̂Rαμβν. (71)

Again one can verify that the equation associated with the
linear terms is identically satisfied and coincides with EFE.
Hence, the quadratic terms of the expansion in Eq. (71) yield
the following approximate expression

VG∗ = UG∗ + O(ε3), (72)

where the leading-order contribution UG∗ is given by

UG∗ = −κ
[

δgμνδgαβ
̂Rαμβν

]

−κ
1

2
δgik ĝik

[

δgαβ ĝμν
̂Rαμβν + δgμν

̂Rμν

]

−κ
1

4
δgikδgik

[

̂R − 2

] − κδgμνδgαβ

̂Rαμβν. (73)

Substituting the relations (59)–(61) applying for a deSitter
background solution and simplifying the expression by intro-
ducing the notation δg2 = δgμνδgμν we then get

UG∗ = −κ



3
δgμν ĝμνδg

αβ ĝαβ + κ

1

6
δg2

−κ

1

2
δgik ĝik

[

4

3
δgαβ ĝαβ − 1

3
δgμν ĝμν +δgμν ĝμν

]

−κ



3
δgμν ĝμνδg

αβ ĝαβ, (74)

which reduces to

UG∗ = −κ

5

3
δgμν ĝμνδg

αβ ĝαβ + κ

1

6
δg2. (75)
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Finally, for a comparison with Eq. (68) we write the previous
expression in the form

UG∗ = κ


[

1

6
δg2 − 5

3

(

δgμν ĝμν

)2
]

. (76)

This expression however does not represent a positive-
definite quadratic form since the sign of the difference
between δg2 and

(

δgμν ĝμν

)2 cannot be established a priori.
It is interesting to point out that the reason for this failure is

due to the anti-symmetry properties of the Riemann tensor.
In the vacuum case for the cosmological deSitter solution
in fact the analytical representation (61) applies. Thus, the
coupling of the quantum gravitational field with the Riemann
tensor generates the corresponding difference between the
squared of the modulus of δgμν and the squared of its trace. In
contrast, the coupling with the Ricci tensor displayed above
is not affected by this antisymmetric property, and remains
therefore consistent with the requirements for constructing
the quantum harmonic solution.

7 Discussion and concluding remarks

From the conceptual point of view, the possibility of retaining
different dynamical couplings of the quantum gravitational
field, i.e., respectively both with the Riemann and Ricci cur-
vature tensors, is in principle admissible. In this paper the
issue has been addressed in order to elucidate the mathemat-
ical properties of such couplings and the physical reasons
behind the validity of either possible realizations. In particu-
lar, the analysis of the coupling of the gravitational field with
either Riemann or Ricci tensors requires, at classical level,
setting the problem by starting with the appropriate prescrip-
tions for the Hamilton variational principles in the two cases.
To reach the target requires setting the problem in the frame-
work of classical synchronous variational principles and the
corresponding realization of manifestly-covariant quantum
gravity theory. Accordingly, the identification of the classi-
cal Hamiltonian structure underlying the Einstein field equa-
tions (EFE) of General Relativity (GR) permits determination
of the quantum Hamiltonian structure and related quantum
wave equation in terms of standard canonical quantization
methods.

Concerning the classical theory, two different realizations
of the synchronous variational principle, both yielding EFE,
have therefore been proposed, whose Hamiltonian functions
express respectively the coupling of the classical variational
gravitational tensor with the Ricci and Riemann tensors.
It has been shown that, upon imposing a suitable physical
requirement, it is in principle possible to select a unique form
of the two synchronous classical principles. However, at the
classical level, such requirement remains not mandatory in

character. Thus, both Ricci- and Riemann-tensor couplings
appear admissible, since they recover the same form of EFE
as extremal field equations. On the other hand, such an out-
come appears of interest because it overcomes what may
appear a limitation characteristic of former literature varia-
tional approaches based on asynchronous variational princi-
ples, like the Einstein–Hilbert one. In such as context, in fact,
to achieve EFE only the Ricci-tensor coupling is admissible.

Nevertheless, the indeterminacy feature discovered here
represents also a possible issue at the quantum level, because
it implies a possible non-uniqueness feature of quantum the-
ory. A possible serious question of consistency therefore
arises in the formulation of quantum gravity theory. The pos-
sibility of representing two equivalent classical variational
principles in terms of either the Ricci or Riemann tensors
must therefore be solved in the framework of quantum Hamil-
tonian theory of GR, i.e., only provided the admissible char-
acter of the two possible solutions can be established at the
classical level. This means that also quantum theory must
be based on a synchronous variational principle. A quan-
tum theory with such a characteristic is indeed the covari-
ant theory of quantum gravity, referred to shortly as CQG-
theory. A precise physical requirement has been imposed in
this regard. This amounts to warrant that the functional form
of the quantum Hamiltonian operator must admit a quan-
tum harmonic oscillator solution in terms of a quadratic and
positive-definite Hamiltonian potential, upon performing a
quadratic expansion around equilibrium. From the physi-
cal point of view, this criterion warrants the existence of a
discrete spectrum of positive eigenvalues that is associated
with the prediction of existence of quantum gravitons having
strictly-positive non-vanishing mass.

However, from the physics standpoint, the above require-
ment has a deeper meaning. In fact, CQG-theory is the
massive-graviton and 4-tensor theory of manifestly-covariant
QG which pertains the Einstein Field Equations (EFE) and its
related abstract 4-tensor classical Hamiltonian structure. As
such, CQG-theory applies only provided it consistently pre-
dicts also a strictly positive spectrum of invariant (i.e., rest)
masses for gravitons. The conclusion is therefore that the
above requirement is nothing less than a consistency require-
ment for the validity of the whole quantum theory itself.

As discussed in the paper, the mathematical procedure
adopted for the task outlined above has consisted in the analy-
sis of the functional form of the quantum Hamiltonian poten-
tial for the two solutions separately. For this purpose, a suit-
able perturbative analysis has been performed, in which the
quantum state is expanded around the equilibrium station-
ary space-time configuration. The latter is represented by the
deSitter space-time in the presence of a non-vanishing cos-
mological constant. The vacuum deSitter geometry in fact
represents the simplest configuration characterized by a iden-
tified space-time with constant curvature, generating a uni-
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form potential well where the discrete eigenvalue spectrum
must be realized.

It has been proved that, contrary to the classical theory, at
quantum level the Ricci and Riemann tensor-couplings are
not equivalent even if they correspond to different realiza-
tions of the vacuum potential which are related via suitable
gauge-transformations. In fact, although both the Ricci and
Riemann potentials lead to the same Euler–Lagrange equa-
tions (i.e., EFE), the asymptotic behavior of the same poten-
tials differ. More precisely, the asymptotic potential UGh

containing the Ricci tensor yields a quadratic and positive-
definite form. In contrast, the Riemann tensor coupling occur-
ring in the potential UG∗ generates a quadratic but non-
positive definite form. This leads to a mandatory conclu-
sion which permits to identify a unique selection criterion
for the vacuum coupling-potential. Indeed the physically-
meaningful tensor coupling that leads to an acceptable solu-
tion occurs through the Ricci tensor, while the Riemann-
tensor potential is ruled out. The underlying physical moti-
vation is related to the non-symmetric properties of the Rie-
mann tensor. The conclusion confirms also the correctness
of the quantum-gravity solution obtained in Ref. [2] in terms
of the Ricci tensor dependence in the Hamiltonian poten-
tial. At the same time, the theory developed in this paper
can provide a convenient background for the investigation of
classical variational and quantum Hamiltonian descriptions
of space-time dynamics as well the tensor-coupling existing
between quantum gravitational field and the curvature ten-
sors of General Relativity.
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