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Abstract. Carroll’s group is shown as a group of transformations in a 5-dimensional space
(C) obtained from the embedding of the Euclidean space into a (4,1)-de Sitter space. Three of
the five dimensions of C are related to R3, and the other two to mass and time. A covariant
formulation of Caroll’s group is established in phase space. The Landau problem was studied.
Finally, the negative parameter of the Wigner function is calculated.

1. Introduction
The study of physical systems in different spacetime symmetries has been a subject of great
interest in modern theoretical physics. One such symmetry, known as the Carrollian symmetry,
provides a unique framework for understanding the behavior of particles and fields in a specific
spacetime setting [1, 2]. In recent years, the Carroll group has received increasing attention,
especially in the context of strings [3, 4, 5, 6, 7, 8, 9]. There is an intriguing duality between
these two limits which, in the context of Covariant Galilean formalism, was, to the author’s
knowledge, first highlighted by Saradzhev [10] where he coined it as non-Galilean transformation
and found that these transformations give us E′ = E and P ′

5 ̸= P5, but was only fully realized
for the first time by Petronilo et al. [11], where a physical interpretation of P5 was given.
In a recent paper [12] it was noted that made the following redefinitions Ci → Ki, where
Ci and Ki are the Carrolian and Galilean boost respectively, and P4 → −M , P5 → −H we
recover the extended Galilei group, as the groups are isomorphic, but it’s worth noting that
these redefinitions completely change physical meaning of the group one is working as showed
by [10]. The Carrollian symmetry is associated with a 5-dimensional de Sitter spacetime and is
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characterized by a distinct set of commutation rules that govern the algebraic structure of the
theory. This symmetry has been a topic of growing interest due to its potential applications in
various areas of physics, including relativistic quantum mechanics.

In this work, we explore the formalism of quantum mechanics in phase space within the
context of Carrollian symmetry. We investigate the representations of spin-0 and spin-1/2
particles, derive their corresponding equations of motion, and examine the properties of their
wave functions. Additionally, we study the effects of electromagnetic interactions on these
particles within the Carrollian framework. One of the key highlights of our study is the
calculation of the Wigner function for electrons in an external field under Carrollian symmetry.
We analyze the Wigner function’s behavior for different energy levels and delve into the concept
of non-classicality by introducing a negativity parameter. In summary, this paper aims to
provide a comprehensive exploration of quantum mechanics in phase space under the Carrollian
symmetry. We present theoretical developments, analytical solutions, and numerical results that
shed light on the intriguing properties of particles and fields in this unique spacetime framework.
The order in which this work will be presented is as follows. In Sec. 2 the construction of the
Carrollian covariance is presented. Sec. 3, a symplectic structure is constructed in the Carrollian
covariance formalism, and using the commutation relations, the scalar equation is constructed
in the light cone of five dimensions in phase space. In Sec. 4 we study the Carrollian spin 1/2
particle with an external field and solutions are proposed and discussed, after we calculated the
negativity parameter and discussed the physical meaning. The Sec. 5 presents some concluding
remarks.

2. The Carrollian Covariance
The following commutation rules describe the algebra associated with the formalism defined in
the light cone of a 5-dimensional de Sitter spacetime:

[Mµν ,Mρσ] = −i(gνρMµσ − gµρMνσ + gµσMνρ − gµσMνρ),

[Pµ,Mρσ] = −i(gµρPσ − gµσPρ),

[Pµ, Pσ] = 0,

(1)

where Mνσ are the generators of homogeneous transformations, Pµ of the non-homogeneous
and gi,j = 1, with i = j = 1, 2, 3 and g45 = g54 = −1. It is known that the Lie algebra of
the extended Carroll group in R3 ×R is a subalgebra of this algebra, with Ji, as generators of
rotations, Ci of the pure Carroll boosts, and Pµ spatial and temporal translations, being P4, in
this context, a Casimir invariant associated with the energy, P4 = −EI, where I is the identity
matrix [11]. The Casimir invariants of this algebra are

I1 = pµpµ, (2a)

I2 = p4, (2b)

I3 = W4µW
4
µ , (2c)

where Wµν is the 5-dimensional Pauli-Lubanski matrix. It should be noted that although p5
cannot be interpreted as an invariant mass, it nonetheless carries mass information [11].

For the scalar representation we take the invariants I1 (2a) and I2 (2b) and apply to a function
ψ, and using the correspondence relation pµ = −i∂µ we have{

∂µ∂
µΨ = k2Ψ

∂4Ψ = −iEΨ
, (3)
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where k and E are constants. These results reflect local properties. Then, the equation of
motion reads ∂2i Ψ + 2iE∂sΨ = k2Ψ. Making a compactification in the s coordinate, such that
φ(x, s) = φ(x, s+ 2πR), one can write a normalized solution as

Ψ(x, s) =
1√
2πR

∑
n

φn(x)e
−ins/R. (4)

Substituting solution (4) into Eq. (2), we get

∂2i φn(x) + 2
n

R
Eφn(x) = k2φn(x). (5)

or
R

2n
∂2i φn(x) + Eφn(x) =

R

2n
k2φn(x), for n ̸= 0. (6)

Making k =

√
2nmo

R
, we have ∂2i φn(x) + 2 n

REφn(x) =
2nmo

R φn(x). or
R
2n∂

2
i φn(x) + Eφn(x) =

moφn(x), for n ̸= 0.
Letting R → 0 we get ∂2i φo(x) = 0, for n = 0 and (E − mo)φn = 0, for n ̸= 0. Thus a

Carroll scalar field with a dimensional reduction has no dynamics. Note that, (E −mo)φn = 0
was deduced in many papers for the usual four-dimensional Carroll group [3, 4]. Therefore,
the extended 5-dimensional Carroll group in null coordinates, when a dimensional reduction is
applied, is reduced to the usual Carroll group for scalar fields.

3. Representation of Quantum Mechanics in Phase Space
In order to establish a connection between the Hilbert space denoted as H and the phase space
denoted as Γ, the set of square-integrable functions of complex value, ϕ(q, p), is considered in
Γ [13].

The following operators are defined to construct a representation of Carroll algebra in H(Γ):

P̂µ = pµ⋆ = pµ − i

2
∂qµ , (7a)

Q̂µ = qµ⋆ = qµ +
i

2
∂pµ , (7b)

where ⋆ is the Moyal product and we set h̄ = 1.

3.1. Scalar representation
Utilizing the Casimir invariant I1 = P̂µP̂µ and applying to Ψ, we obtain:

P̂µP̂
µΨ = k2Ψ, (8)

with P̂4 = −E, or, explicitly(
p2 − ip ·∇− 1

4
∇2 − k2

)
Ψ =

(
p4 −

i

2
∂t

)(
p5 −

i

2
∂5

)
Ψ,

a solution for this equation is Ψ = e−2i[(p5+mα)q5+(p4+E)t]φ(q, p). Therefore, we have

1

2mα

(
p2 − ip ·∇− 1

4
∇2

)
φ =

(
E +

k2

2mα

)
φ,
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with α a coefficient that depends on the reference frame [11], this is the Carrollian spin 0 equation

in phase space, with the kinetic energy term of k2

2mα added, that we can always use as the energy
zero point. The association between this representation and Wigner formalism is established
by fw(q, p) = Ψ(q, p) ⋆ Ψ†(q, p), where fw(q, p) is the Wigner function, that satisfies the 5-
dimensional Carrollian covariant Liouville-von Neumann equation in phase space as expressed
by

pµ∂qµfw(q, p) = 0. (9)

3.2. spinorial representation
In the context of Carrollian covariant formalism, the Lévy-Leblond equation takes on a similar
form of the Dirac equation.

γµ
(
pµ − i

2
∂µ

)
Ψ(p, q) = kΨ(p, q) (10)

In the case of the Lévy-Leblond equation, the association with the Wigner function is given

by fw = Ψ ⋆ Ψ, where Ψ̄ = ζΨ†, with ζ = − i√
2
{γ4 + γ5} =

(
0 −i
i 0

)
, with each component

satisfying Eq. (9).

4. Solution of the LL Equation with Electromagnetic Interactions
The expression that characterizes the behavior of a electric charged spin 1/2 particle within the
Carrollian covariant phase space is analogous as presented in Galilean covariant formalism [13]:

γµ
(
P̂µ − eÂµ

)
Ψ = 0, (11)

where Aµ is the 5-potential of the Carrollian electromagnetism [3].

Letting Ψ =
[
γν
(
P̂ν − eÂν

)]
ψ, we have[

γµγν
(
P̂µ − eÂµ

)(
P̂ν − eÂν

)]
ψ = 0, (12)

and making the following substitution γµγν = gµν+σµν , with σµν = 1
2

(
γµγν−γνγµ

)
= 1

2 [γ
µ, γν ],

Eq. (12) becomes(
P̂µP̂µ − e

(
P̂µÂµ + ÂµP̂µ

)
− eσµν

[
P̂ν , Âµ

]
+ e2ÂµÂµ

)
ψ = 0, (13)

Defining Âi as 1
2e

ijkBjQ̂k, where Q̂µ = (qµ + i
2∂pµ), with the constraints A4 = A5 = 0 and

specifying the magnetic field as B = (0, 0, B), while also ensuring the particle’s motion is

confined to a plane (q1, q2) by setting P̂3 = 0, and letting ψ =

(
Φ(qµ, pµ)
Θ(qµ, pµ)

)
, we possess

two independent equations,

−2

(
p4 − i

2∂t

)(
p5 − i

2∂s

)
Φ(qµ, pµ) +

(
p21 + p22 − 1

4

(
∂2

∂q12
+ ∂2

∂q22

)
− eB

[
i
2

(
p2∂p1 − p1∂p2

)
+1

4

(
∂2

∂q2∂p1
− ∂2

∂q1∂p2

)]
− i
(
p2∂q2 + p1∂q2

)
− eB

[
(q1p2 − q2p1)− i

2

(
q1∂q2 − q2∂q1

)]

+ e2B2

4

[(
q1 +

i
2∂p1

)2
+
(
q2 +

i
2∂p2

)2]
+ eσ3B

)
Φ(qµ, pµ) = 0. (14)
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Similarly, the equation for Θ is analogous.
Choosing Φ(qµ, pµ) = φ(qi, pi)ϕ(q4, q5, p4, p5). We obtain(

p4 −
i

2
∂t

)(
p5 −

i

2
∂s

)
ϕ = αmEϕ, (15a)

and (
p21 + p22 −

1

4

( ∂2

∂q12
+

∂2

∂q22

)
− eB

[
i

2

(
p2∂p1 − p1∂p2

)
+

1

4

( ∂2

∂q2∂p1

− ∂2

∂q1∂p2

)]
− i
(
p2∂q2 + p1∂q2

)
− eB

[
(q1p2 − q2p1)−

i

2

(
q1∂q2 − q2∂q1

)]

+
e2B2

4

[(
q1 +

i

2
∂p1

)2
+
(
q2 +

i

2
∂p2

)2]
+ eσ3B

)
φ = 2αmEφ. (15b)

The solution of Eq. (15a) is ϕ = C1e
−2i[(p5+αm)q5+(p4+E)t], where C1 is a normalization constant.

To solve Eq. (15b) we will make the following change of variables

w(q1, q2, p1, p2) = p21 + p22 + eB(q2p1 − q1p2) +
e2B2

4
(q21 + q22). (16)

After a long calculation, it is shown that the imaginary part of this equation is identically null,
which gives us

wφ− e2B2∂φ(w)

∂ω
− e2B2w

∂2φ(w)

∂w2
= (2mE − esB)φ(w), (17)

with sφ = σ3φ, with s = ±1. Taking ω = w/(eB), α = (2mE − seB)/eB and defining
f(w) ≡ ewϕ(ω), thus

ωf ′′(ω) + (1− 2ω)f ′(ω)− af(ω) = 0, (18)

where f ′(x) = ∂f
∂ω and a = (1 − α). The equation represented as Eq. (18) corresponds to a

confluent hypergeometric equation, specifically known as the Kummer equation. The physical
solutions are written as fn(ω) = AnU

(
1
2 − α

2 , 1, 2ω
)
, in this context, the functions U(a, b, x)

correspond to Kummer’s functions, and the constants are represented as An. Nevertheless,
it becomes evident that when the parameter a = −n, where n is a non-negative integer
(n = 0, 1, 2, . . .), the series U(a, b, x) transforms into a polynomial series in x with a degree
not exceeding n. Therefore, we express this as follows: α − 1 = 2n, we have the following
relation of eigenvalue E = ωc

(
n+ 1

2 + s
2

)
, with ωc = eB

αm , s = ±1, and corresponding the
following quasi-amplitudes are,

Φn = C1e
−2i[(p5+αm)q5+(p4+E)t]

(
AnU

(
−n, 1, 2w

eB

)
exp

(
− w

eB

))
. (19)

The analogy holds true for Θ. To compute the corresponding Wigner function, fw, simply
perform the Moyal product of ψn with its complex conjugate, denoted as ψn ⋆ ψ̄n. It is essential

to recognize that w = 2αmh, where h = 1
2αm

(
p21 + p22 + eB(q2p1 − q1p2) +

e2B2

4 (q21 + q22)
)
. As
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a result, the wavefunction ψ0 can be expressed as ψ0 = C0e
−2h/ωc . Hence, the expression for f0w

becomes:
f0w = C0e

−2h/ωc ⋆ ψ0 = C0e
−2ĥ/ωcψ0 = C0e

−2E0/ωcψ0

consequently, the ground state Wigner functions for spin particles with values of 1/2 and
−1/2 are as follows:

f0
+

w = (C0+)
2 1

e2
e−(p21+p22+eB(q2p1−q1p2)+

e2B2

4
(q21+q22))/eB,

while

f0
−

w = (C0−)
2e−(p21+p22+eB(q2p1−q1p2)+

e2B2

4
(q21+q22))/eB.

For the general case,

fn
±

w = (A±
n )
( 1

n!π

)
e−(p21+p22+eB(q2p1−q1p2))U

(
−n, 1, 2(p

2
1 + p22 + eB(q2p1 − q1p2))

eB

)
. (20)

it is worthwhile comparing with the case of Galilean covariance [13], as the solutions are very
similar due the fact of the group isomorphism. Due to this fact, the forms of the Wigner
function and its properties are strictly the same. For example, the negativity of the Wigner
function, which indicates the deviation of the solution from the usual Gaussian form, has the
same behavior as that observed in reference [13]. However, it should be noted that Carrollian
symmetry is distinct from Galilean symmetry and is therefore explored in this article.

5. Concluding Remarks
We construct the formalism of the quantum mechanics in phase space in the context of Carrollian
symmetry and we arrive at the representations of the spin 0 and spin 1/2 equations. We analyzed
the gauge symmetry for spin 1/2 particles in phase space and show that the minimal coupling, in
this case, is obtained by replacing the lagrangian density pµ⋆ by pµ⋆−iAµ⋆. We also calculate the
Wigner function for electrons in an external field. As an important result, we have shown that
the for this system Galilean and Carrollian symmetries the Wigner function and its properties
are strictly the same.
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