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Abstract. Carroll’s group is shown as a group of transformations in a 5-dimensional space
(C) obtained from the embedding of the Euclidean space into a (4,1)-de Sitter space. Three of
the five dimensions of C are related to R3, and the other two to mass and time. A covariant
formulation of Caroll’s group is established in phase space. The Landau problem was studied.
Finally, the negative parameter of the Wigner function is calculated.

1. Introduction

The study of physical systems in different spacetime symmetries has been a subject of great
interest in modern theoretical physics. One such symmetry, known as the Carrollian symmetry,
provides a unique framework for understanding the behavior of particles and fields in a specific
spacetime setting [1, 2]. In recent years, the Carroll group has received increasing attention,
especially in the context of strings [3, 4, 5, 6, 7, 8, 9]. There is an intriguing duality between
these two limits which, in the context of Covariant Galilean formalism, was, to the author’s
knowledge, first highlighted by Saradzhev [10] where he coined it as non-Galilean transformation
and found that these transformations give us E' = E and P, # P;, but was only fully realized
for the first time by Petronilo et al. [11], where a physical interpretation of P; was given.
In a recent paper [12] it was noted that made the following redefinitions C; — Kj;, where
C; and K, are the Carrolian and Galilean boost respectively, and Py — —M, P; — —H we
recover the extended Galilei group, as the groups are isomorphic, but it’s worth noting that
these redefinitions completely change physical meaning of the group one is working as showed
by [10]. The Carrollian symmetry is associated with a 5-dimensional de Sitter spacetime and is
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characterized by a distinct set of commutation rules that govern the algebraic structure of the
theory. This symmetry has been a topic of growing interest due to its potential applications in
various areas of physics, including relativistic quantum mechanics.

In this work, we explore the formalism of quantum mechanics in phase space within the
context of Carrollian symmetry. We investigate the representations of spin-0 and spin-1/2
particles, derive their corresponding equations of motion, and examine the properties of their
wave functions. Additionally, we study the effects of electromagnetic interactions on these
particles within the Carrollian framework. Omne of the key highlights of our study is the
calculation of the Wigner function for electrons in an external field under Carrollian symmetry.
We analyze the Wigner function’s behavior for different energy levels and delve into the concept
of non-classicality by introducing a negativity parameter. In summary, this paper aims to
provide a comprehensive exploration of quantum mechanics in phase space under the Carrollian
symmetry. We present theoretical developments, analytical solutions, and numerical results that
shed light on the intriguing properties of particles and fields in this unique spacetime framework.
The order in which this work will be presented is as follows. In Sec. 2 the construction of the
Carrollian covariance is presented. Sec. 3, a symplectic structure is constructed in the Carrollian
covariance formalism, and using the commutation relations, the scalar equation is constructed
in the light cone of five dimensions in phase space. In Sec. 4 we study the Carrollian spin 1/2
particle with an external field and solutions are proposed and discussed, after we calculated the
negativity parameter and discussed the physical meaning. The Sec. 5 presents some concluding
remarks.

2. The Carrollian Covariance
The following commutation rules describe the algebra associated with the formalism defined in
the light cone of a 5-dimensional de Sitter spacetime:

[M;wa Mpa] = _i(ngM;w - g,upMVa + guaMVp - guaMVp)a
[P/u Mpo] = _i(gupPU - g,uaPp)a (1)

[PWPJ]:Q

where M, are the generators of homogeneous transformations, P, of the non-homogeneous
and g;; = 1, with ¢ = j = 1,2,3 and g45 = gs4 = —1. It is known that the Lie algebra of
the extended Carroll group in R? x R is a subalgebra of this algebra, with J;, as generators of
rotations, C; of the pure Carroll boosts, and P, spatial and temporal translations, being Py, in
this context, a Casimir invariant associated with the energy, P, = —FEI, where [ is the identity
matrix [11]. The Casimir invariants of this algebra are

I = p'py, (2a)
I2 = D4, (2b)
Is = Wy W, (2c)

where W is the 5-dimensional Pauli-Lubanski matrix. It should be noted that although ps
cannot be interpreted as an invariant mass, it nonetheless carries mass information [11].
For the scalar representation we take the invariants I; (2a) and I5 (2b) and apply to a function

1, and using the correspondence relation p* = —i0* we have
0, 0"V = k*U (3)
0V =—EV 7’
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where k and E are constants. These results reflect local properties. Then, the equation of
motion reads 02¥ + 2iE9s¥ = k*¥. Making a compactification in the s coordinate, such that
o(x,s) = p(x,s + 2mR), one can write a normalized solution as

U(x,s) = \/2171'7R Z ©n (x)e*ins/R' (4)

Substituting solution (4) into Eq. (2), we get

n
07 on(x) + 2§Es0n(l‘) = kpn(x). (5)
or . "
Ry _ R,
5, 0 on(@) + Epn() = 5ok pu (), for n # 0. (6)
. 2nm, 9 " — R oo
Making k = —5 Ve have 07 pn(x) + 25 Epn(x) = 5 20n(x). or 5-070n(z) + Epn(z) =

Mown(z), for n # 0.

Letting R — 0 we get 92p,(z) = 0, for n = 0 and (E — my)¢, = 0, for n # 0. Thus a
Carroll scalar field with a dimensional reduction has no dynamics. Note that, (£ —m,)en, =0
was deduced in many papers for the usual four-dimensional Carroll group [3, 4]. Therefore,
the extended 5-dimensional Carroll group in null coordinates, when a dimensional reduction is
applied, is reduced to the usual Carroll group for scalar fields.

3. Representation of Quantum Mechanics in Phase Space
In order to establish a connection between the Hilbert space denoted as H and the phase space
denoted as I, the set of square-integrable functions of complex value, ¢(q,p), is considered in
T [13].

The following operators are defined to construct a representation of Carroll algebra in H(I"):

7

pro = phx = pH — 58%, (7a)
Q" = ¢'*=q¢"+ %8pu7 (7b)
where x is the Moyal product and we set h = 1.
3.1. Scalar representation L
Utilizing the Casimir invariant 1 = P*P, and applying to ¥, we obtain:
P,PrU = k20, (8)

with ﬁ4 = —F, or, explicitly

. 1 ) 7
<p2 —ip-V — ZVQ - kQ) V= <p4 - 2@) <p5 - 285> v,

a solution for this equation is ¥ = e~ 2il(Ps+ma)as+Pa+E)t] (g p). Therefore, we have

1 2 _ . l o2 _ k?
2moz( PV 4V>¢_(E+2moz>%
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with «v a coefficient that depends on the reference frame [11], this is the Carrollian spin 0 equation

in phase space, with the kinetic energy term of % added, that we can always use as the energy
zero point. The association between this representation and Wigner formalism is established
by fu(q,p) = ¥(gq,p) * ¥(q,p), where fu(q,p) is the Wigner function, that satisfies the 5-
dimensional Carrollian covariant Liouville-von Neumann equation in phase space as expressed
by

pyaqu fw(%p) =0. (9)

3.2. spinorial representation
In the context of Carrollian covariant formalism, the Lévy-Leblond equation takes on a similar
form of the Dirac equation.

ol (m - ;%) U(p,q) = k¥(p,q) (10)

In the case of the Lévy-Leblond equation, the association with the Wigner function is given

by fu = U U, where ¥ = (0T, with ¢ = —%{74 +7%} = < 0~

i 0 ) , with each component

satisfying Eq. (9).
4. Solution of the LL Equation with Electromagnetic Interactions

The expression that characterizes the behavior of a electric charged spin 1/2 particle within the
Carrollian covariant phase space is analogous as presented in Galilean covariant formalism [13]:

~H (]3“ — 61@) v =0, (11)

where A* is the 5-potential of the Carrollian electromagnetism [3].

Letting ¥ = ['y” (ﬁ,, — eg,,)} 1, we have

79" (B — eAy) (P, = e4,) | v =0, (12)

and making the following substitution y#~” = g"+o"”, with o* = 3 (’y“’y” —Y fy”) = 1",
Eq. (12) becomes

~

(13#13# e (PrA AR - e [ + 622@) v=0, (13)

Defining Al as %eijkBj@k, where Qu = (qu + % Opu), with the constraints A* = A% = 0 and

specifying the magnetic field as B = (0,0, B), while also ensuring the particle’s motion is
Bt

confined to a plane (q1,q2) by setting P3 = 0, and letting ¢ = ( gggu’ﬁug > , We possess

two independent equations,

—2 (m — ;&) <p5 - ;&) O (q", p") + <p1 +p3 — <8qlz + 8q2 ) —eB

1 9?2 0?2 .
ta <af12‘9p1 419, )] - ’L(anqz +p1(9q2> —cB

i <p23p1 —p1 5p2)

(q1p2 — q2p1) — %(fhaqz - QQaql)]

232
_|_

(Ch + 5p1)2 + (q2 + %8;,2)2 + 603B> D (g, pt) = 0. (14)
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Similarly, the equation for © is analogous.
Choosing ®(g*,p") = ¢(¢',p")d(q*, ¢°, p*, p°). We obtain

(p4 - ;@) <p5 - ;a> ¢ = amEg, (152)

7

3 (p23p1 - p13p2> +

and

92
(5.5

> =

1/ 0% 0?
2 2

Y (AN B
<p1+p2 4(aql2+aqg2> ¢

- aff;pg )] B Z'(an(D +p18¢12> —eB

e2 B2
4

7
(q1p2 — q2p1) — 3 (Q13q2 - Q23q1)]

/) 2 /) 2
* (a1 30m) "+ (@2 + 5.)

+ 603B> ¢ =2amEp. (15b)

The solution of Eq. (15a) is ¢ = Cye~2il(pstam)as+patEN]  where O is a normalization constant.
To solve Eq. (15b) we will make the following change of variables

e2 B2

L (a +a)- (16)

w(qi, g2, p1,p2) = Pi + P3 + eB(gap1 — qipa) +
After a long calculation, it is shown that the imaginary part of this equation is identically null,
which gives us
o 2
p(w) _ 62B2w8 p(w)
ow ow?

we — e B? = (2mE — esB)p(w), (17)
with sp = o3, with s = +1. Taking w = w/(eB), a = (2mFE — seB)/eB and defining
f(w) = e*é(w), thus

wf'(w) + (1 = 2w)f'(w) — af(w) =0, (18)

where f'(z) = g—i and a = (1 — «). The equation represented as Eq. (18) corresponds to a
confluent hypergeometric equation, specifically known as the Kummer equation. The physical
solutions are written as f,(w) = A,U (% - 5,1, 2w), in this context, the functions U(a,b, x)
correspond to Kummer’s functions, and the constants are represented as A,. Nevertheless,
it becomes evident that when the parameter a = —n, where n is a non-negative integer
(n = 0,1,2,...), the series U(a,b, z) transforms into a polynomial series in x with a degree

not exceeding n. Therefore, we express this as follows: a — 1 = 2n, we have the following

relation of eigenvalue F = w, (n+ % + %), with w, = %, s = %1, and corresponding the
following quasi-amplitudes are,
9% 2w w
B, = Cye~2llostam)as+(pitE) (AnU (—n, 1, eB) exp ( - eB)) (19)

The analogy holds true for ©. To compute the corresponding Wigner function, f, simply
perform the Moyal product of v,, with its complex conjugate, denoted as 1, x1,,. It is essential

to recognize that w = 2aimh, where h = ﬁ (p% + p3 + eB(qp1 — qip2) + 6252 (@ + q%)) . As
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a result, the wavefunction vy can be expressed as 19 = Coe 2"/« Hence, the expression for o
becomes:

£3 = Coe ™M sy = Coe 2 eqpy = Cpe2P0/ ey,

consequently, the ground state Wigner functions for spin particles with values of 1/2 and
—1/2 are as follows:

+ 1 2,2 _ 2B2, 2, o
1o = (Co+)2g€ (Pi+pyteBlapi—ap2)+ 5= (4i+43))/eB

while

2 p2
fz(}; = (C’O_)26—(27%4'17%4-63((121?1—q1p2)+8f (47 +43))/eB

For the general case,

f{;i - (Aril)(%)e*(p?+p§+e3(q2prq1pz))U <—n, 1, 2(p} + p3 + eBlgap1 — Q1p2))) ' (20)
nlm eB

it is worthwhile comparing with the case of Galilean covariance [13], as the solutions are very
similar due the fact of the group isomorphism. Due to this fact, the forms of the Wigner
function and its properties are strictly the same. For example, the negativity of the Wigner
function, which indicates the deviation of the solution from the usual Gaussian form, has the
same behavior as that observed in reference [13]. However, it should be noted that Carrollian
symmetry is distinct from Galilean symmetry and is therefore explored in this article.

5. Concluding Remarks

We construct the formalism of the quantum mechanics in phase space in the context of Carrollian
symmetry and we arrive at the representations of the spin 0 and spin 1/2 equations. We analyzed
the gauge symmetry for spin 1/2 particles in phase space and show that the minimal coupling, in
this case, is obtained by replacing the lagrangian density p,x by p,*—iA,*. We also calculate the
Wigner function for electrons in an external field. As an important result, we have shown that
the for this system Galilean and Carrollian symmetries the Wigner function and its properties
are strictly the same.
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