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Abstract
In this article we present greybody factors and Hawking radiation for tensor gravi-
ton modes (in seven dimensions and greater, n ≥ 3) from simply rotating (n + 4)-
dimensional Kerr black holes.

1 Introduction

The reduction of the graviton perturbation equations into master variable equations for higher-dimensional
rotating black holes has been one of the great challenges in recent years,[1, 2]. The method based upon
the gauge invariant formalism, developed in reference [3] has allowed for the separation of the tensor mode
decomposition of simply rotating Myers-Perry-(A)dS black holes [1, 4, 5], which has recently been used
for a stability analysis of Kerr-AdS black holes [6, 7]. In this work we shall focus on a simply rotating
black hole in (n+ 4)-dimensional Kerr spacetime.

The wave equation for the tensorial mode of the gravitational perturbation for n ≥ 3 is equivalent to
the wave equation of a massless free scalar field [1, 6] where the determinant is given by the product of
the base metric [6] and higher-dimensional spherical harmonics [10]. The separation of the wave equation
is implemented by making the ansatz:

Φ = eiωt−imφR(r)Sjlm(θ)Yj,i1,i2,...,in−1(θn−1, ϕ) , (1)

where Yj,i1,i2,...,in−1(θn−1, ϕ) are the hyperspherical harmonics on the n-sphere with eigenvalues −j(j+n−
1). This separation ansatz leads to a generalized hyper-spheroidal equation for the Sjlm(θ) functions and
an equation for R(r) with separation constant Aljm. These equations are coupled via ω. The restrictions

on m, j and l [8] are:l > j + |m| ; l−j+|m|
2 ∈ {0, 1, 2...}, with j = 2, 3, . . . , l and |m| = 0, 1, . . . , l − j.

The degeneracy for a traceless symmetric tensor on an n-sphere [9] is given by:

DT
j =

(n+ 1)(n− 2)(j + n)(j − 1)(2j + n− 1)(j + n− 3)!

2(n− 1)!(j + 1)!
. (2)

For dimensions n ≥ 3 we can parameterize the black hole mass, M , in terms of the horizon radius
rh: 2M = rn−1

h (r2h + a2)(1 − λr2h). By defining the transform: R(r) = r−n/2(r2 + a2)−1/2Φ(r), and

tortoise coordinates [6]:dy = r2+a2

∆r
dr , where ∆r

r2+a2 = 1− 2M
(r2+a2)rn−1 − 2Λ

(n+2)(n+3)r
2. After defining the

dimensionless variables: x = r/rh, ω⋆ = ωrh, y⋆ = y/rh, ∆⋆ = ∆/r2h, a⋆ = a/rh, λ⋆ = λr2h and Λ⋆ = Λr2h,
the radial equation takes the WKB form [6]:

d2Φ

dy2⋆
+Q(x)Φ = 0 , (3)

The CFM for the flat case was implemented using the input parameters described in reference [8].
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2 Graviton emission from simply rotating Kerr black holes

In the near the horizon limit, x → 1, the radial solution Φ has the following form (for IN modes
[6, 10]):

ΦNH = A
(H)
in e−iω̃⋆x⋆ +A

(H)
out e

−iω̃⋆x⋆ , (4)

where ω̃⋆ = ω⋆ − mΩ⋆, Ω⋆ = a⋆(1−λ⋆)
(1+a2

⋆)
. Imposing that there are no outgoing modes at the black hole

horizon A
(H)
out = 0, we obtain the IVP:

ΦNH(x0) = 1 , Φ′
NH(x0) = −iω̃⋆

x2
0 + a2⋆

∆⋆(x0)
, (5)

where x0 = 1 + ϵ with ϵ ∼ 10−5. The greybody factor can be determined numerically with the above
horizon IVP matched onto the appropriate far-field form. The solutions have a far field (FF) form at
spatial infinity, where x⋆ → x (for x → ∞):

ΦFF ≈ x−n+1
2

(
A

(∞)
in e−iω⋆x +A

(∞)
out e

iω⋆x
)

. (6)

The NH solution can then be matched onto the FF equation (6) [11], where the reflection coefficient is

then defined as the ratio |Rljm|2 = |A(∞)
out |2/|A

(∞)
in |2, and the relationship between the absorption and

reflection coefficient is:

|Aljmn|2 = 1− |Rljmn|2 = 1−

∣∣∣∣∣A(∞)
out

A
(∞)
in

∣∣∣∣∣
2

. (7)

Some typical examples of the absorption probability as a function of ω⋆ (=ωr2h) in the asymptotically flat
limit are shown in the top two panels of Fig. 1. Solutions with charge or rotation undergo super-radiance
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Figure 1: Various plots of absorption probabilities in the asymptotically flat case, where unless stated all
plots are for n = 3. Note that on the scale of these plots superradiance is too small to discern.

[12], where the condition for super-radiance to occur is that the absorption probability becomes negative.
Some plots of the superradiance regime are shown in Fig. 2. An interesting feature of black holes in Kerr-
dS spacetimes is that the superradiance effect is enhanced by the strength of the cosmological constant,
this can be seen from Fig. 2.

2 Conclusion

This note is based on our more expanded paper [13] which was the first time that the Hawking emission
of these perturbations was been calculated. Some of the results can be seen in Figs. 3. The results are
consistent with those of other works [10], where they considered the bulk emission of scalar spin-0 fields
on the Kerr-AF background. An important difference is that because the modes start from j = 2, 3, 4, . . .
the spectrum is shifted to the right (larger j corresponds to larger scattering energies ω). For spin-0 fields
the sums start from j = 0, which implies lower energy emissions. The lack of j = 0, 1 modes has another
effect, which can be seen from Fig. 4.
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Figure 2: Absorption probability plots in the superradiance regime for the asymptotically flat case. In
(b) superradiance plots for various choices of the cosmological constant (Λr2h), for the rotations a⋆ = 0.8
(blue) and a⋆ = 1.5 (red).

Perhaps the most interesting result from our investigation of the Kerr-dS case is the effect that
the cosmological constant has on enhancing superradiance a larger cosmological constant leads to more
superradiance and hence will cause the black hole to spin down more quickly. Hopefully, within this
decade, a separable set of Master equations for all the graviton perturbations will be obtained.

References

[1] H. Kodama, Lect. Notes Phys. 769, 427 (2009) [arXiv:0712.2703 [hep-th]].

[2] H. Kodama and A. Ishibashi, Prog. Theor. Phys. 110, 701 (2003) [arXiv:hep-th/0305147].

[3] H. Kodama, A. Ishibashi and O. Seto, Phys. Rev. D 62, 064022 (2000) [arXiv:hep-th/0004160].

[4] H. Kodama, Prog. Theor. Phys. Suppl. 172, 11 (2008) [arXiv:0711.4184 [hep-th]].

[5] R. C. Myers and M. J. Perry, Annals Phys. 172, 304 (1986).

[6] H. Kodama, R. A. Konoplya and A. Zhidenko, Phys. Rev. D 79, 044003 (2009) [arXiv:0812.0445
[hep-th]].

[7] H. Kodama, R. A. Konoplya and A. Zhidenko, arXiv:0904.2154 [gr-qc].

[8] E. Berti, V. Cardoso and M. Casals, Phys. Rev. D 73, 024013 (2006) [Erratum-ibid. D 73, 109902
(2006)] [arXiv:gr-qc/0511111].

[9] M. A. Rubin and C. R. Ordonez, J. Math. Phys. 26, 65 (1985); M. A. Rubin and C. R. Ordonez, J.
Math. Phys. 25, 2888 (1984), URL http://link.aip.org/link/?JMP/25/2888/1

[10] M. Casals, S. R. Dolan, P. Kanti and E. Winstanley, JHEP 0806, 071 (2008) [arXiv:0801.4910
[hep-th]].

[11] D. Ida, K. y. Oda and S. C. Park, Phys. Rev. D 71, 124039 (2005) [arXiv:hep-th/0503052].

[12] B. S. DeWitt, Phys. Rept. 19, 295 (1975).

[13] Doukas, Jason and Cho, H. T. and Cornell, A. S. and Naylor, Wade, Phys. Rev.D80(2009) 045021.



4 Graviton emission from simply rotating Kerr black holes
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Figure 3: Energy and angular momentum emissions in asymptotically flat space (Λ = 0) for different
dimensions n+ 4 with a/rh = 0.8 (top) and with a/rh = 1.5 (bottom).
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Figure 4: Contribution to energy and angular momentum emissions from the dominant l = m+2 = 3, . . .
modes for n = 3 and a⋆ = 1.2 (with Λ = 0).
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