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While the configuration of a static spherically symmetric distribution of
perfect fluid in an electric field has received extensive attention in the
literature, only a few works have investigated the conformally flat case. The
model exhibits a remarkable property being regular or singularity free is
proposed. This is unexpected given that Coulombic repulsion opposes the
collapse of a star to the center generally making the center unreachable. The
conformally flat geometry thus enables the approach to the center of a
charged star as shown in our model. Presently there is no known reported

and cosmology. Mathematically, the con-
dition for this to occur is the vanish-
ing of the Weyl conformal curvature ten-
sor thereby introducing an algebraic con-
straint on the gravitational field. Physi-
cally this isolates regions of the space-
time manifold where local effects due
to the fluid congruence only govern its
evolution and the effects of distant ob-
jects is negligible. For isolated stellar

exact model that satisfies all the elementary requirements for physical
acceptability. Some reported models that have claimed to be physically
reliable have been shown to be deficient. The conditions for the existence of
physically relevant models and show that exact solutions satisfying the
conditions exist is investigated. Then a model satisfying all the requirements
with isotropic particle pressure graphically for a carefully chosen parameter
space is exhibited. The model admits a barotropic equation of state. The
interior spacetime is successfully matched to the exterior Reissner-Nordstrom
metric. The causality criterion as well as the adiabatic stability lower bound of
Chandrasekar are shown to hold. The energy conditions are also valid within

the stellar radius. Other interesting models are considered.

1. Introduction

Algebraically special solutions of Einstein’s equations have at-
tracted considerable attention over the last few decades. Petrovl!?]
introduced a scheme to classify spacetimes according to the align-
ment of the principal null vectors that arise from studying the
eigenspaces of the Weyl conformal tensor. Six classes of metrics
are distinguishable with the most special being Type O or the
conformally flat case. Spacetimes that are conformally flat have
been extensively studied in the context of relativistic astrophysics
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systems this is a reasonable constraint.
In standard Einstein gravity all confor-
mally flat isotropic stars have been found.
They are either the Schwarzschild inte-
rior spacetimes!®! in the case of no expan-
sion or the Stephani stars(*l when expan-
sion is present. Since the Einstein field
equations for neutral isotropic spheres
comprise a system of three partial differ-
ential equations in four unknowns, there
is latitude in selecting one of the geomet-
rical or dynamical variables or to spec-
ify a relationship such as an equation of
state to close the system. The latter direc-
tion, barring some trivial cases, almost
always leads to an intractable system of
differential equations requiring numerical treatments with
approximation constraints. The problem may be drastically
simplified by admitting anisotropic stresses. Alternatively, a
geometric restriction such as requiring conformal flatness closes
the system and the unique solutions have been found for static
and nonstatic spacetimes as mentioned already.

When electric charge is introduced into the problem with a per-
fect fluid, the number of equations increase to four and the num-
ber of unknowns to six. Now there are two possible prescriptions
to be made. From a survey of the literature it is evident that only
sporadic attempts have been made to impose conformal flatness
as a geometrical constraint for a charged star. The question is in-
deed interesting given that in charged spheres Coulombic repul-
sion combines with the hydrostatic pressure to oppose the grav-
itational collapse of the object to a point singularity. For this rea-
son it is not surprising that the approach to the center of a spher-
ical distribution is impossible as shown in ref. [5] in general. An
irremovable central singularity is always present. In other words
charged spherical distributions are generally rings or shells pos-
sibly surrounding other physically acceptable matter such as a
neutral fluid. However, it is intriguing that if it is demanded that
the spacetime manifold is conformally flat then regular distribu-
tions are possible and the approach to the center is possible. We
show that such distributions exist such that all standard physical
demands are satisfied. The dynamical and geometrical quantities
are all well behaved at the stellar center.
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The charged star has had a long history from the discov-
ery of the exterior solution by Reissner!® and Nordstrom!’! in
1918. In fact Kaluzal® and Klein!®! introduced the idea of a
five dimension in gravity to explain the role of the electromag-
netic field tensor. The new proposal now had 15 components
compared to 10 in four dimensions and four of these were at-
tributed to the electromagnetic field, one to a scalar field called
a scalaron and the remaining 10 were the usual Einstein compo-
nents of neutral spheres. Moreover, in the study of black holes
which ostensibly originate from collapsing stars, the ‘no hair’
theorem!!%13) agserts that the only three defining characteristic
of a black hole are its mass, angular momentum and charge.
Consequently there are good grounds to interrogate charged
stars in gravitational physics. Exact solutions of the Einstein—
Maxwell field equations are crucial in modeling compact objects
such as white dwarfs, neutron stars and quark stars. Evidently
observational data has been shown to be discordant with stan-
dard neutron star models!'*! thus prompting further investiga-
tions along these lines. By generating exact solutions using the
Einstein—Maxwell field equations, the issue of gravitational col-
lapse of a spherically symmetric distribution can be studied.[>1¢]
The works of Ivanov!’’) and Sharma et al.'®! describe the effect
of the electric field on the luminosity, redshift and masses of
a star.

Conformal flatness has been prescribed to produce a realis-
tic anisotropic model for a compact star!*! with electric charge.
A study of conformally flat spherically symmetric spacetimes
in different coordinate systems has also been carried out by
Gren and Johannesen [20]. A polytropic equation of state was
used to produce a conformally flat model in ref. [21] assum-
ing anisotropic pressure stresses. Other solutions with static
conformal motions for anisotropic charged fluids were gen-
erated in refs. [22, 23]. Melfo and Ragol?*! tested the confor-
mal flatness case on an anisotropic but non-static charged fluid
sphere. It was noted that the solutions favor static configurations.
When imposing isotropic pressure, non-static solutions were
generated and inconsistent models resulted. Herrera et al. ] at-
tempted to find conformally flat, interior solutions to the Ein-
stein equations for anisotropic fluids. The focus was to com-
pare these with similar models that did not include the van-
ishing of the Weyl tensor in order to observe its effect on stel-
lar models. Ivanov!'”! treated conformal flatness and prescribed
the potential A which led to prescribing p effectively. The so-
lutions were examined analytically and then compared to a
real pulsar.

In this paper we first derive the Einstein-Maxwell equations of
motion for a charged spherical distribution of isotropic matter in
Section 2. In Section 3, we review some of the basic constraints
imposed on charged star models for physical applicability. There-
after in Section 4 we invoke the conformal flatness criterion and
reduce the field equations to a single master equation requiring
one more prescription. In Section 5, we prove rigorously that the
physical conditions permit the existence of physically viable con-
formally flat models provided certain restrictions are met. We
demonstrate explicitly a physically reasonable model satisfying
the elementary constraints in Section 6. Thereafter in Section 7,
we review a known conformally flat metric due to Wang/?®! and
show it to be deficient physically. In Section 8, we consider some
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well known metric ansatze based on historically well-behaved
models to find new classes of exact solutions. None of these mod-
els were able to satisfy all the physical requirements and were
consequently dismissed.

2. Einstein—-Maxwell Field Equations

The line element
ds’ = =0 dt? + 0 dr” + r* (d6” + sin” Odep” ) (1)

where the functions v(r) and A(r) are gravitational potentials, may
be used to study the interior of a spherically symmetric charged
star. Further a co-moving fluid four—velocity field u® = e7"§,*
is assumed.

The non-vanishing Weyl conformal tensor components may
be expressed as

C 1 e ¢ c
rord — Sil’lz 0 rgrep — ZCZV rirt T 2?’2 Sil’lz 9 0p0P
= - e,, = _et Chipe = f (1) ()
= 016t — sin2 P prpt —
where
fin= %(r(/l/ V)=t H 147 (V V=V A)). (3)

Following[?’! the Einstein—Maxwell field equations governing the
stellar structure in the presence of an electric field, is given by the
system

[r(1=e)] = rp+ 3P “
_(1 — e—zz) +2Vre M = prt — %rzEz 5)
eV =)+ (V V=V )] = prt %Ezrz (6)
¢’ = 46;2M (rzE’ + E)z )

where refers to differentiation with respect to the variable r. E is
the electrostatic field intensity and o is the proper charge density.
Note that the above system has four equations in six unknowns so
that two conditions will need to be specified for a unique model.
The conservation laws T%,, = 0 generate the condition

P+ ptpy = S [P ®)

also known as the equation of hydrodynamical equilibrium.
It may be observed that (8) includes four physical quantities
hence has limited use in exact solutions since we have only two
choices available.

A coordinate transformation due to Buchdahl!?®! defines x and
two metric functions y(x) and Z(x) as follows, x = Cr?, Z(x) =
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e, Y (x) = 21 convert (4) to (7) to the following equivalent
form

1-Z . _p , E

-27==+ = 9
x C+2C ©)
Z-1_ 42y _p P

=L - = 10

x * y c 2C (10)
2 sz
4* 7y + 2x* 7 + Zx—Z+1—? y=20 (11)
6’ _4Z 2
— xE+E 12
c = FE+E) (12)

where dots represent differentiation with respect to x. This ver-
sion has the distinct advantage that the equation of pressure
isotropy (11) is now linear in one of the potentials y and expo-
nential functions have been eliminated. This is bound to greatly
assist in the process of locating exact solutions.

The exterior gravitational field for a static, spherically sym-
metric charged distribution is governed by the Reissner—
Nordstrom!®”! solution. The Reissner—Nordstrom exterior line el-
ement has the form

2 2\ L
ds = <1—M+g>dt2+ <1_ﬂ+%) dr’
r r T
+r(d6* + sin® 0dgp?) (13)

where M and Q are associated with the mass and charge of the
sphere respectively as measured by an observer at spatial infinity.
For the Reissner—Nordstrom solution (13) the radial electric field
is described by

Q
E=r—2

(14)
outside a charged star and consequently the proper charge
density is 6 =0. Upon setting Q =0 in (13) the exterior
Schwarzschild®! solution is regained.

3. Elementary Conditions for Physical Admissibility

Customarily the following elementary conditions are imposed for
solutions of the Einstein-Maxwell system to be physically reason-
able.

(2) The metric functions ¢?” and ¢?* should be positive and non—
singular everywhere in the interior of the star.

(b) Positivity and finiteness of pressure and energy density ev-
erywhere in the interior of the star including the origin and
boundary: 0 <p<oo 0<p<o

(c) The pressure and energy density are usually monotonic de-
creasing functions of the coordinate r from the center of
the distribution and the pressure vanishes at the boundary
r=RZ<0 2<0 pR=0

(d) The interior line element should be matched smoothly to the
exterior Reissner-Nordstrom!® line element at the bound-
ary: 2R = 2R = 1 — % + %_22
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(e) The electric field intensities E of the exterior and interior

should also coincide at the boundary: E(R) = R%.
(f) The speed of sound should remain subluminal everywhere
in the interior: 0 < L <1

(g) The following energy condltlons should be satisfied: (i) Weak
energy condition (WEC): p — p > 0; Strong energy condition
(SEC): p + p > 0 and Dominant energy condition (DEC): p +
3p>0

(h) The Chandrasekhar!®] criterion for adiabatic stability de-
mands the constraint: (%)@ %.

Admittedly although the task of finding exact solutions for
charged fluid spheres is not difficult the caveat arises when the
physical conditions have to be met. Note that there are other con-
ditions imposed on charged spheres however they are obtained
under very specific conditions***2] and we shall not examine
them in this work.

4. Conformally Flat Charged Spheres

In order to solve the Einstein-Maxwell field equations, geomet-
ric restrictions based on physical considerations are customar-
ily imposed. Algebraically special solutions have been intensively
studied in the area of general relativity. The Petrov(!! scheme of
classifying metrics depends on the eigenspaces of the conformal
curvature (or Weyl) tensor and six independent cases arise. Con-
formal flatness is the most special case (type O) and requires the
vanishing of the Weyl tensor (3). This constrains the metric po-
tentials to obey the relation
4’ Zy+ 25" Zy— (Zx— Z+1)y=0 (15)
which is to be used in conjunction with the field equations.
Note that in the absence of charge, (15) and pressure isotropy
suggests that Zx — Z+ 1 =0 or Z = 1 + kx which is exactly the
Schwarzschild interior spacetime solution in the static case. Con-
formal flatness depends solely on the geometry or metric hence
charge does not feature in (15). It is also known that if expan-
sion is permitted then the unique conformally flat metrics are
the Stephani stars.[*]

With the aid of (15), Equations (9) to (12) reduce to the system

p .

L=232 16

C (16)
Zy+4Zj

p_zrriay (17)

¢ Y

E? Zx—Z+1

o= T 18

o222l 1s)

2

% 42 (s + F)? (19)

y= A\/Zcosh< /x”\lj_ > (20)

where (20) is the integrated version of (15).12°] This system consti-
tutes a set of five independent equations in six unknowns govern-
ing the behavior of charged conformally flat perfect fluids. One
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of the components may be specified initially to yield the remain-
ing five. Alternatively, some of the variables may be connected on
physical grounds such as an equation of state (p = ap) or o = +p
as demanded for stable equilibrium by De and Raychaudhuri.*!

5. Existence of Physically Reasonable Solutions

Before embarking on a search for exact solutions for conformally
flat charged spacetimes, it is prudent to analyze whether solu-
tions satisfying the elementary physical conditions exist. In other
words, there should be no impediment inherent in the field equa-
tions that rules out physically viable models. At the outset, it is
clear that Z(x) = e72*") > 0 as well as y(x) = ") > 0. Note that
without loss of generality we assume C > 0. Then the density
equation (16) suggests that Z < 0, which implies the metric po-
tential Z is always a monotonically decreasing function. Itis also
important to note that the conclusion Zy < 0 follows and will be
useful later. Positivity of the pressure demands that —4Zp < Zyas
a further restriction on the metric functions. By using the result
Zy < 0, we conclude Zj > 0 and hence y > 0 since Z > 0. Thus
the temporal metric potentials y must be monotonically increas-
ing functions. Additionally, since Z < 0 and y > 0 we also deduce
Zy < 0, which will be a useful result in the work to follow. Now
turning our attention to the weak energy condition

- . Zy+4Zj
PoD _ L, t4Zy
¢ )
the inequality
(Zy) <0 or Zy<-Zy

results, which is consistent with the result (V). Similarly the
strong energy condition

prr_

Zy+4Zyp
= >0
C + >

-3z

yields Zy < 2Zy which also harmonizes with (V). The dominant
energy condition

+3 . Zy+4Zj
TP =—3z+3<u) >0
¢ Y

leads to Zy > 0 which is not in violation of any of the restrictions
above. At this stage itis clear that spacetimes satisfying the energy
conditions certainly exist.

Next consider the sound speed. Requiring a causal sound
speed 0 < Z—i < 1 generates the condition

Z.. Z. Z.Z
Zy, 4 ZY 1

1< 4L 2 = (21)
Zy Zy Zy* 4

on the metric potentials. Recall that thus far we have established
that for a positive definite energy density and pressure satisfying
the weak, strong and dominant energy conditions we have Z < 0,
7> 0,0 < Z <1,y > 0. Presently, there are no means available to
constrain the second derivatives Z and j required in (21). For this
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reason we consider in turn all four possible signatures for Z and
y. For convenience we introduce the naming

zy 7y Z
h(x)=Ty+—Y——Y

- 22
Zy Zy Zy* 22

and we note from (21) that h(x) < 0.

® Case1: Z>0,7>0 _
In this case 2 > 0, 2 < 0 and Z—Yi > 0 so it follows from the
2y 2Zy Zy
negativity of h(x) that

Zy < Zy* — Zy (23)

Since both the left hand side and right hand side of (23) are
positive, we have the constraint

Zy
<P<v -+ (24)

for a causal solution. Hence a realistic solution exists provided
(23) is satisfied.

® Case2: Z<0,y>0
Now h(x) < 0 requires

vy Zy 7
g 2y~ (25)
Zy Zy 2y
But under the present hypothesis ;—: <0, i—: > 0and i—;’i <0.

Multiplying (25) by Z < 0 reverses the inequality

? + ? > Zy—)z'z (26)
and since the right hand side > 0, it follows that

Zy+Zp>0 (27)
that is

%(Zy)>0=>y>§ (28)

where k < 0 is a constant because y < 0. This suggests that a
solution satisfying (28), Z < 0, y > 0 will be physically reason-
able.
® Case3:Z<0,5<0
In this case i—: >0, % > 0and i_f; < 0 so that h(x) is the sum
of three positive quantities and is thus positive which is a con-
tradiction since h(x) < 0. Therefore, solutions satisfying Z < 0
and y < 0 are acausal and consequently not physically feasible.
® Case4:Z>0,y<0
Under these conditions we have 2 > 0, Z < 0 and Zr 5.
Zy Zy zy

This indicates that h(x) < 0 for all functions Z > 0 and y < 0.
So a physically realistic model may be generated under these
circumstances.

Turning attention to the electric field intensity formula (18) it
is clear that the right hand side should be positive. This leads to
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2 5 _Z But Z <0 so it follows that Z < 1. That is a mono-
tc;cnically decreasing function with upper bound of one should
be sought in finding a physically reasonable model. Finally, from
Zx — Z+1 > 0 then by Gronwall's Theorem!3*]

Z>14kx (29)

and by (16) we see that k < 0. These impose boundaries on our
choice for Z. To summarize, this analysis has demonstrated that
an exact solution that satisfies the energy conditions and the
causality requirements does indeed exist. In what is to follow, we
pursue such solutions mindful of the constraints we have estab-
lished here.

6. A Physically Viable Model

The choice Z = !

x+1)2
tential is inspire<(i b))r a model due to Ivanov!*! and immediately
meets the requirement of monotonic decrease of Z from the cen-
tral position x = 0. However, in the Ivanov paper the author as-
sumed the form Z = (x — 1) and reduced the problem to the
anisotropic case thus opening up a second choice of variables. In
our case this choice closes the model as the system of differential
equations is now fully determined. Substituting Z = (x + 1)7% in
(15) generates the potential

for the spatially directed gravitational po-

x
2

)= e : (30)
where A and B are constants of integration that can be settled by
matching of the interior and exterior geometries across a surface
of vanishing pressure.

With this combination of metric potentials, the thermodynam-
ical quantities density p and pressure p are given by

p 6
r_ 31
C  (x+1p G
2Ae¢*x — 2B(x* -2

r_ (-2) (32)
C (2 + 1)3(Ae* + Bx)
while the expressions
dp  A?¢”(2x—1) - 2ABe*x; + B’x, (33)
dp 9(Ae* + Bx)?
< p+p > dp

p Jdp

(Ae¥(x + 3) — B(x* — 3x — 2))(A%**(2x — 1) — 2ABe*x, + B’x,)
9(Ae* + Bx)?(Ae*x — B(x2 — 2))

(34)

where we have putx, = (x* — 2x — 4)and x, = (—=2x> + x* + 8x +
2) will be useful to study the sound speed and the Chandrasekar
adiabatic stability criterion respectively. The electric field inten-

sity E and the proper charge density o evaluate to
E2 2x(x+3)

=7 7 35
C~ (x+1) (33)
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o 2(x2+4x+9)2
C T (x+1)(x+3) (36)

for this geometry. The active gravitational mass may be computed
with the formula /" pv’dv and is given by

_ %(M +tan™ (ﬁ)) )

(¢ + 1)?

in our coordinates. The energy conditions are studied with the
help of the expressions

p—p 2B(¥?+3x-2) - 24" (x - 3)

c - (x + 1)’ (Ae* + B) (38)

p+p  2A¢°(x+3)+ B(-2x* + 6x + 4) 39

c = (x + 1)3(Ae* + Bx) (39)
6Ae* — 6B(x — 2

p+3p e (x—2) (40)

C 7 (x+1)2(Ae* + Bx)

and these are all expected to be positive and continuous within
the stellar radius.

To finalize the model, it remains to do the matching of the in-
terior and exterior spacetimes and to obtain the integration con-
stants in terms of the mass M, radius R and charge Q of the star.
The vanishing boundary pressure p(R) = 0 generates the equa-
tion

Ae“®' CR? = B(C*R* —2) =0 (41)

while the matching of the g,, components of the interior and ex-
terior metric tensors yields the condition

(ACCRZ/Z + Be—CRZ/Z)2 =1-2Z 4= (42)

through the Reissner-Nordstrom solution. Solving (41) and (42)
simultaneously gives

A= ie;(CRz)\/WMQZ(Z e c2R4> (43)

2(C2R* - 1) R

CR?
CRe > \/RZ—2MR + Q2

(C?R* —1)

B=7% (44)
for the two integration constants in terms of M, Q, R and C.
Equating the interior and exterior electric field intensities E—CZ with
E= R% provides the value of C in the form

1 \4 2

+ == (45)

C=me t ———
R2 " R2-QR) RV

where we have put

V= 1/2(-0'R* +4Q2R + QRV(QIRI — 2]} — 4)

Clearly on substituting (45) in (43) and (44) the values of A and B
emerge only in terms of M, R and Q. Having expressed all con-
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Figure 1. Density (p) with pressure (p) versus the radial coordinate r for different values of C with A = 0.085 and B = 0.085.
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Figure 2. Sound speed (j—f}) with Chandrasekhar adiabatic stability index (y) versus the radial coordinate r for different values of C with A = 0.085 and

B = 0.085.

stants in terms of the mass, radius and charge of the sphere com-
pletes the matching of the interior and exterior spacetime mani-
folds.

We now analyze graphical plots of the dynamical quantities.
These plots have been constructed using parameter values A =
0.085, B=0.085 and a range of values for C as indicated in
the plot. Note that this parameter space has been determined
through a process of fine-tuning and is by no means unique.
However, we have found at least one viable parameter space such
that all the physical requirements hold.

From the plots, in Figure 1 it can be observed that the density
and isotropic particle pressure are both monotonically decreasing
functions, which is expected. The pressure vanishes for a finite
radius thus establishing the boundary of the spherical distribu-
tion of charge. The left pane of Figure 2 confirms that the sound
speed squared index is less than one within the vanishing pres-
sure surface radius which verifies that the model is causal for the
choice of parameter space. The right pane of Figure 2 provides
an indication of the behavior of the adiabatic stability parameter
y which is expected to be %. This appears to be the case for most
of the sphere however there appears to be a slight drop below the
value 4/3 close to the boundary. This could be an indication that

Fortschr. Phys. 2024, 72, 2300180 2300180 (6 of 11)

the Chandrasekhar bound is influenced by the presence of charge
and may be in need of revision in this case. Figure 3 indicates that
the electric field intensity as well as the proper charge density are
well behaved within the interior and there are no discontinuities
or other pathologies present. For our choice of parameters, it can
also be checked from Figure 4 that all the energy conditions are
satisfied. Figure 5 depicts the behavior of the equation of state in-
dex f as well as the behavior of the pressure change against the

density variation. Both panes indicate smooth well behaved func-
tional forms that is expected of realistic stars. Note that it is a par-
ticularly pleasing feature of the model that an explicit barotropic
equation of state p = p(p) is realizable. With the help of (31) we
get x = 4§/ % — 1 which may be substituted in (32) to give p in

terms of p only.

7. Some Known Conformally Flat Charged Models

Although no systematic algorithmic treatment of isotropic con-
formally flat static charged stars has been undertaken, there
does exist isolated conformally flat solutions to the Einstein—
Maxwell equations reported in the literature using ad hoc
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Figure 3. Electric field intensity (E?) with charge density (62) versus the radial coordinate r for different values of C with A = 0.085 and B = 0.085.
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Figure 4. Energy conditions (p — p), (p + p) and (p + 3p) versus the radial coordinate r for different values of C with A = 0.085 and B = 0.085.

prescriptions. Banerjee and Santos!**! worked on anisotropic
models for a charged dust sphere and Shi-Chang®! obtained
some interior isotropic solutions for a charged stable static
sphere. These solutions however, are not free from singularities
and do not satisfy all the energy conditions.

Wang Xingxiang!?®l claimed to present an ostensibly physically
reasonable solution of the conformally flat Einstein—Maxwell
field equations by prescribing the form of the density as

6n(1 - x)

p_
C~ (1+(n—-1)x)} (46)

Fortschr. Phys. 2024, 72, 2300180 2300180 (7 of 11)

for an arbitrary parameter n. Note that this is analogous to pre-
scribing Z by virtue of Equation (16) and we obtain

=2n(1 —x)

T “7)
which in turn can be integrated to give
In(-2nx+n+2x—2)
= (48)

T 2(n=1)2((n - 1)x + 1)

as the spatial metric potential. At this point Wang’s solution
—x)2 .. . . .
Z= % is incorrect. However, this metric potential may be

© 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

85U80|7 SUOWWIOD 3AeaID 8|qed![dde a3 Aq pausenob are ssjolie YO ‘8sn JO Se|n. 1o} ArIqIT8UIUO 48] UO (SUORIPUCO-PUe-SWRY/W0D" A3 | M Afelq1jpulUO//:SANY) SUORIPUOD pUe SWie 1 8Ys 89S *[7202/T0/TT] Uo ARiqiauliuo A ‘Auewses aueiyood Aq 08T00£202 doid/z00T 0T/10p/wi00 A8 1w Areiqiul|uo//Sdny woiy papeojumoa ‘T ‘vZ0Z ‘8L6ET2ST


http://www.advancedsciencenews.com
http://www.fp-journal.org

ADVANCED
SCIENCE NEWS

Fortschritte
der Physik

Progress
of Physics

www.advancedsciencenews.com

0.8F

Q
a
Q
T
2]
©
c
K]
©
S L
w 02r

[— €=010  -e- - C=025

— C=0.20
O-Oi-.-‘.‘.‘CFO_']S““ P B C‘=0‘.30“ P
0.0 0.5 1.0 1.5 2.0 25 3.0
rin [km]

www.fp-journal.org

Pressure (p) in [km™]

0.00 0.02 0.04 0.06 0.08 0.10 0.12

pinkm2]

Figure 5. Equation of state (p/p) versus the radial coordinate r, and relation between pressure (p) and energy density (p) for different values of C with

A =0.085 and B = 0.085.

postulated and then the rest of Wang’s model can be rescued. In
other words his pressure profile would end up as different. This
impacts on the physical analysis and so the density and quanti-
ties depending on it such as the speed of sound will be affected.
When either form of Z is utilized to complete the model, it is
found that the basic physical conditions fail. In fact Wang does
not study the stability situation such as the causality and adiabatic
parameter of Chandrasekar. Hence the model is of only limited
use and its claim of being a physically reasonable conformally
flat charged static fluid sphere may be questioned. Consequently
there appears to be no physically valid conformally flat charged
spheres reported in the literature.

8. Other Physically Interesting Cases

From (15)—(19) it can be noted that to close the system any one of
the six variables may be prescribed and then the system solved for
the remaining five. Since the pressure and charge density equa-
tions contain two variables on the right hand side, it is not feasible
to prescribe one of these. It therefore remains to prescribe one of
the density p, electric field intensity E, the metric potentials Z or
y. We now consider some historically important cases of interest.

8.1. Equations of State

Amongst the more important questions to ask in stellar mod-
eling is whether the a priori imposition of an equation of state
leads to exact models of conformally flat charged spheres. Con-
sider the linear barotropic equation of state p = ap where a is a
real number and 0 < « < 1 in order not to violate causality. With
this prescription the relationship

43¢

Y: C127 4

(49)

where C| is an integration constant, arises with the help of (16)
and (17). Inserting (49) into (15) gives the differential equation

33> +4a+1)x° 2" —4Z((Ba+ V)X’ Z+xZ+1) +4Z> =0

(50)

Fortschr. Phys. 2024, 72, 2300180 2300180 (8 of 11)

which is second order but nonlinear. The general solution of (50)
is not available. However, some special cases for a are of interest.
The case @ = 1 corresponds to a stiff fluid such that the sound
speed and light speed are equal. The case a = * is related to in-
coherent radiation. Unfortunately neither of these cases permit
the integration of (50). In the instance where a > 1 this is known
as ultrarelativistic fluid and causality is violated. Setting a = —1
in a cosmological setting pertains to dark energy and in this con-
text equation (50) integrates as

Z=1+ayx+bx=1+ar+br’ (51)

where a and b are constants. With this combination of yand Z, the
pressure and energy density turn outtobep = —p = 3C (#; +b).

Hence we have the equation of state p + p = 0 which is identi-
fied with dark energy. In the event that a < —1 then the space-
time regime is termed phantom. To facilitate the accelerated ex-
pansion of the universe the requirement is a < —%. For the spe-

cial case a = —% the solution to (50) is Z = 1 + ax which is the
Schwarzschild interior potential however the remaining poten-
tial will have the form y = constant. This in turn implies a con-
stant density and pressure and is in fact the defective Einstein
universe model. No other cases for « yielded a closed form so-
lution to (50). This is a common occurrence when invoking an
equation of state at the outset in stellar modeling.

8.2. Isothermal Conformally Flat Sphere

The prescription Z = a constant is a necessary and sufficient
condition for isothermal behavior of static neutral spheres both
in Finstein gravity!®’! and its generalization Lovelock theory.l*®]
Isothermal behavior is characterized by an inverse square law
fall-off of the density and pressure in Einstein four-dimensional
gravity, as is the case in Newtonian physics. However, this case
is forbidden as inserting Z = k into (16) results in p = 0 which
is not acceptable for a stellar interior. Hence no conformally flat
charged isotropic spheres exhibit isothermal behavior. This can
also be seen directly. Requiring an inverse square law fall off of
density is tantamount to setting p = H/x for some constant H
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in (16). This gives Z = _3i log Kx where K is an integration con-
stant. The potential y may%e established via (20). While (20) inte-
grates it may be noted that this combination of Z and y does not
cause the pressure p to vary inversely to the square of the radius
according to Equation (17).

8.3. The Vaidya-Tikekar Superdense Star Ansatz

Vaidya and Tikekar®! constructed models of superdense static

stars with the metric ansatz equivalent to Z = izz, for a and b

being real constants. With this form, Equation (15) simplifies to

4(ax + 1)(bx + 1)p+ (a — b) + 2(a — b)y + b(a — b)y =0 (52)

with general solution
y = Cy(a(a—b)(bx + 1))3/2 2F1<1 -

vo n( Yo 11 Vb ) 1 abx+y) 5
2\/5 272 \/E

where , F; is the hypergeometric function and C, and C, are con-
stants of integration. The solution (53) is not suitable for model-
ing astrophysical objects in its current form. We are interested in
special cases of (53) that reduce to elementary functions.

Interestingly when b is an integral multiple of a, solutions in
terms of elementary functions result. Consider the case where
b = 9a. The solution for this case has the form

Y= C(27a’%* + 18ax — 1) + C,Vax + 1(9ax + 1)/ (54)

which is a smooth singularity-free curve. The dynamical quanti-
ties accordingly have the form

p__2a (55)
C  (9ax+1)2
p 8aC, (243a°x® + 324a°x? + 99ax + 10) Vax + 1
C ¢ (27a2x + 18ax — 1)\/ax + 1(9ax + 1) + C, (ax + 1)(9ax + 1)7/
24C,(27a%% + 48a%x? + 23ax + 2)\/9ax + 1
+
C,(27a2x? + 18ax — 1) Vax + 1(9ax + 1)2 + C, (ax + 1)(9ax + 1)7/2
(56)
2 2
E _  144a’x (57)
C  (9ax+1)?
o2 _ 12960’ (ax + 1)(3ax + 1) sg
c (9ax + 1) ' 8)

Observe that the model above is completely free of singularities
at the center of the stellar distribution. Despite this positive fea-
ture, empirical testing could not generate a suitable parameter
space such that all the basic requirements for physical accept-
ability could be met.
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8.4. The Finch—Skea Potential

The special case of Vaidya—Tikekar where a =0, b= 1 corresponds
to the Finch—Skeal*] metric which is known to have pleasing
physical properties. Equation (52) yields a solution in elementary
functions. The complete solution for this case has the form

y= cl<\/mcosh<\/m> —sinh(\/ﬁ))
+cz<cosh<\/m> - \/x_-i-lsinh<\/m>> (59)

and bears a strong resemblance to the Finch—Skea static neutral
star metric with trigonometric functions exchanged for hyper-

bolic functions. Putting u = cosh y/x + 1 and v = sinh v/x + 1,
the dynamical quantities have the form

L= (60)
C  (x+1)

P _ Vx+1(v— pu) + 2x + 3)(fv — u) (61)
€ w+1p \/x+1(ﬂu—v)+(u—ﬁv)>

E? 2%

T T ey ©2
o2 2(x+3) 3
C T (x+1p (63)

for a conformally flat star with Finch—Skea potential. Note we
have introduced g = % following Finch and Skea. The solution

also admits an equation of state

02 o ) (2 )4
3(ﬂ{/§+ 1) cosh({/%) —3(f +1)sinh <\/§>

P
p:

(64)

expressing the pressure as a function of the density.

To search for a viable parameter space a common strategy is to
examine the physical conditions at the stellar center. The central
pressure at x =0

(g) _ee-1
0

C f+1 -2 (65)

giving the constraint § < —1 or § > 1.7. The expressions for the
energy conditions are given by

2(\/x+ 1(2u — 25v) + (x + 1) (pu — v))

p—p= (66)
(x+ 1)5/2(\/mwu— V) + (u— ﬂv))
4(\/x+1<%u—%ﬁv)+(x+1)(ﬁu—v)) :

ptp= (©7)

(> + 1)5/2<\/x+ 1(pu—v)+ (u— ,Hv))
pt3p= Wu) (68)

(e 12 (p(uvr+1-v) + (u-vv/x+1))
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and at the center (x = 0) we have

_2-p)
(p—p)y = T +5 (69)
2(f—1
o+ply = 70
2(p—1
o+ 39, = S -2 o)

and these are all expected to be positive, giving the constrains
1.7 < p < 5.2. The speed of sound squared index is given by

dp ﬁZ(Zuz(x + 132 +uv(x + 1) — 2v2\/x_+1>
d_P=6 x+1 /3( —u\/x-|-_1>+<v\/m_u>>z
ﬁ(uz(x+ 1)+4uvx\/m+v2(x+l)>
—6 x+1(ﬂ<v—u\/x_+1>+<v\/m_u)>z

(—ZMZ\/x_-i-l+ uv(x + 1) + 203 (x + 1)3/2>
+6 X+ 1(ﬂ<v— u\/x_+1> + (V\/m_ u))z

and at the center

d (B — 1)?

<_P> - i(M_B) 73)
dr),” 24\ (pr1p

which constrains fto f < -1 U -1 < f<0.34 Up>2.9and fi-

nally the adiabatic stability index of Chandrasekhar y may be ex-
pressed as

<p+p>d_10
p Jap

- (\/x+ 1w — pv) +2(x + 1)(ﬂu—v))(x+ 1) (1 — pv)(v — up)

(72)

x(\/x+ (P (u(e+1) =) — (W =V (x+1)) - 2ﬁuvx)>/
(3 x+1(\/x+1(/3u—v)+u—ﬂv)2)
x(\/x+ 1(pv—u) + (x + 1)(ﬁu—v)> (74)

and at the center

1/e(B-1)7 3&(-1)
ﬁ((ﬁ“)z t T

27 1
- (8+1) 7)'

Cef-1)-2f+1)
(75)

Requiring y > ? restricts f to the intervals f< -1 U =1 < <
-0.02 U 14 < < 1.7 U p> 6.81. Finally, combining all these
constraints on f, it can be seen that no f value exists such all the
required conditions are satisfied. Consequently no Finch-Skea
physically reasonable model of conformally flat charged fluid ex-
ists. Atleast one of the physical demands fails at the stellar center.
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8.5. Conformally Flat Charged Dust (p = 0) Sphere

Charged dust is the simplest matter field to consider. Here,
Coulombic repulsion opposes the gravitational field to prevent
collapse to a point singularity. This case was analyzed by Hansraj
et al.*! in general without conformal flatness. Substituting p = 0
in (17) we obtain,

y=C2Z% (76)

for the temporal potential, where C, is a constant of integration.
Inserting (76) into (15), the differential equation

32 —4Z(x(Z+xZ) +1) +4Z° =0 (77)
results. The general solution of (77) is given by

G 2 2)2
Z= m((Q—Clx) — 64x7) (78)
where C, and C; are constants of integration. This is the unique
solution for all conformally flat charged dust spheres. We also list
the other physical quantities, with (C;)? = K; and (C,)? = K,

p 3G((C=8)x = C)((C+8)x = G) (K = 64) = K;)
c 128x3

(79)

Cy(Cxt+128K, 37 —2K; (3K +64x*)

E? +8C; C3x—3C3+4096x*) 2
c 128x° Ty (80)
c? 22 61
<= G ((C, — Cix)2 — 64x7)"(32768x°)

X(C;(3(K, — 64)%x* + (128 — 6K, ) K;x* + 3C}) + 256x%)°
x[Cy(Cix - 8x = C,) (Crx +8x = C;)] ™
x[((K, = 64)x*> +2C, C,x — 3K,) +256x%] (81)

The model above has a singularity at the origin as expected. As
there is no boundary as such we do not study this solution in
more detail.

9. Discussion

The gravitational field equations governing the behavior of
charged static fluid spheres in general relativity in a conformally
flat background spacetime have been studied systematically. As
the system is under-determined one more choice has to be made
of one of the geometrical or physical quantities to find an exact
solution and then to construct the complete model. At the outset
we reviewed the basic requirements for a distribution of charged
perfect fluid to be physically viable. We then analyzed the equa-
tions in general to determine whether any conflict arises in the
physical conditions. It was found that physically relevant solu-
tions are possible if conformal flatness was imposed on charged
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spheres. A simple postulate for one of the metric potentials gen-
erated a model that was found to satisfy all the physical require-
ments for a specified parameter space. The model was causal
and in agreement with the Chandrasekar adiabatic stability cri-
terion. Moreover all the energy conditions were met. A surface
of vanishing pressure exists to denote the boundary of the com-
pact object. The remarkable property of the model was the ab-
sence of a singularity at the stellar center. In other words the
center was reachable. Ostensibly the curvature due to the confor-
mally flat background allowed for the Coulombic repulsion to be
negated near the center. Some models earlier claimed to be phys-
ically satisfactory were shown to be deficient. A study was made
of some interesting cases in the context of charge and confor-
mal flatness such as an equation of state, isothermal fluids, the
Vaidya-Tikekar superdense star, the Finch-Skea star and finally
charged dust spheres. Of course the field equations for confor-
mally flat charged spheres admit many more solutions however,
we have succeeded in presenting a model that comports with the
elementary requirements for physical plausibility.
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