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Abstract

This note describes the calibration of electromagnetic clusters, as implemented in cur-
rent releases of the ATLAS reconstruction program. A seriesof corrections are applied to
calibrate both the energy and position measurements; thesecorrections are derived from
Monte-Carlo simulations and validated using test-beam data. The possibility of obtaining
inter-calibration energy corrections fromZ → ee data is also discussed.
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1 Introduction

In order to realise the full physics potential of the LHC, theATLAS electromagnetic calorimeter must
be able to identify efficiently electrons and photons withina large energy range (5 GeV to 5 TeV), and to
measure their energies with a linearity better than 0.5%. TheW boson mass measurement, not considered
here, will require better precision.

The procedure to measure the energy of an incident electron or photon in the ATLAS electromag-
netic (EM) calorimeter has been described in Ref. [1]. Each step of the energy reconstruction has been
validated by a series of beam tests over many years, both using only the calorimeter [2, 3] and also
combined with representative components from all detectorsub-systems. This has allowed considerable
refinement of the calorimeter simulation. This simulation is then used to model the behaviour of the full
detector.

One of the key ingredients for the description of the detector performance is the amount and position
of the upstream material. The understanding of the ATLAS detector geometry has also made progress
over the years; an overview of the present knowledge of the detector and its expected performance can be
found in [4]. The amount of material in front of the calorimeter for the as-built detector is significantly
larger than was initially estimated; this leads to larger energy losses for electrons and to a larger fraction
of photons converting (see Figs. 1 and 2).

The standard ATLAS coordinate system is used: the beam direction defines thez-axis, and thex-y
plane is transverse to the beam direction. The azimuthal angle φ is measured around the beam axis and
the polar angleθ is the angle from the beam axis. The pseudorapidity is definedasη ≡− ln(tan(θ/2)).

1.1 Electron and photon candidates

The “sliding window” algorithm [5] is used to find and reconstruct electromagnetic clusters. This forms
rectangular clusters with a fixed size, positioned so as to maximise the amount of energy within the clus-
ter. An alternate algorithm is available which forms clusters based on connecting neighbouring cells until
the cell energy falls below a threshold; this is not used by the default electron and photon reconstruction.
The optimal cluster size depends on the particle type being reconstructed and the calorimeter region:
electrons need larger clusters than photons due to their larger interaction probability in the upstream ma-
terial and also due to the fact that they bend in the magnetic field, radiating soft photons along a range
in φ . Several collections of clusters are therefore built by thereconstruction software, corresponding to
different window sizes. These clusters are the starting point of the calibration and selection of electron
and photon candidates.

One of the recent improvements in the calibration procedureis that electron and photon candidates
are treated separately. For each of the reconstructed clusters, the reconstruction tries to find a matching
track within a∆η ×∆φ window of 0.05×0.10 with momentump compatible with the cluster energyE
(E/p < 10 [6, 7]). If one is found, the reconstruction checks for presence of an associated conversion.
An electron candidate is created if a matched track is found and no conversion is flagged. Otherwise, the
candidate is classified as a photon.

This early classification allows applying different corrections to electron and photon candidates.
It is the starting point of a more refined identification basedlargely on shower shapes, described in
companion notes [6, 7]. Four levels of electron quality are defined (loose, medium, tight, and tight
without isolation). The available photon selection corresponds to the tight electron selection (excluding
tracking requirements). The medium and tight selections are used in some parts of the calibration analysis
described in this note. But the corrections derived are thenapplied to all electron and photon candidates.
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Figure 1: Average energy loss vs.|η | for E =
100 GeV electrons before the presampler/strips
(crosses/open circles), and reconstructed energies
before/after (solid/open boxes) corrections.
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Figure 2: Fraction of photons converting at a ra-
dius of below 80 cm (115 cm) in open (full) cir-
cles, as a function of|η | [4].
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Figure 3: Sketch of the accordion structure of the
EM calorimeter [8].

|η | range Cellη size
Layer 1 Layer 2

Barrel 0–1.4 0.025/8 0.025
1.4–1.475 0.025 0.075

end-cap 1.375–1.425 0.05 0.05
1.425–1.5 0.025 0.025

1.5–1.8 0.025/8 0.025
1.8–2.0 0.025/6 0.025
2.0–2.4 0.025/4 0.025
2.4–2.5 0.025 0.025

Table 1: Calorimeterη granularity in layers 1
and 2.

1.2 Calorimeter granularity

The electromagnetic calorimeter (Fig. 3) was designed to beprojective inη , and covers the pseudorapid-
ity range|η | < 3.2. Precision measurements are however restricted to|η | < 2.5; regions forward of this
are outside of the scope of this note. The calorimeter is installed in three cryostats: one containing the
barrel part (|η | < 1.475), and two which each contain the two parts of the end-cap (1.375< |η | < 3.2).
Its accordion structure provides completeφ symmetry without azimuthal cracks. The total thickness
of the calorimeter is greater than 22 radiation lengths (X0) in the barrel and greater than 24X0 in the
end-caps. It is segmented in depth into three longitudinal sections called layers, numbered from 1 to 3
outwards from the beam axis. These layers are often called “front” (or “strips”), “middle,” and “back.”
Theη granularity of the calorimeter for the front and middle layers is shown in Table 1. Theφ size of
cells is 0.025 in layer 2 and 0.1 in layer 1. Layer 3 has a granularity of ∆η ×∆φ = 0.050×0.025. For
|η | < 1.8, a presampler detector is used to correct for the energy lost by electrons and photons upstream
of the calorimeter. All these regions must be treated separately in deriving the individual corrections.

The effect of the choice of cluster size on electron and photon energy reconstruction has been studied
in Refs. [1] and [8]. These results are still the baseline of the present software. For electrons, the energy
in the barrel electromagnetic calorimeter is collected over an area corresponding to 3× 7 cells in the
middle layer, i.e.∆η ×∆φ = 0.075×0.175. For unconverted photons, the area is limited to 3×5 cells in
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the middle layer, whereas converted photons are treated like electrons. The cluster width inη increases
with increasing|η |; therefore, an area of 5× 5 cells in the middle layer is used for both electrons and
photons in the end-cap calorimeter.

1.3 Geometries and data sets

The present knowledge of the detector geometry, resulting from the detector survey, is described in [4]
(Sec. 9). But even before the final survey, it was known that the inner detector services located in the
crack region would be wider than originally expected, and that the end-cap electromagnetic calorimeter
would be shifted by about 4 cm, compared to the nominal (and pointing) geometry described in Ref. [1].
This is taken into account in the simulation, and is treated as a misalignment in the cell calibration
procedure described below.

High statistics samples of single electrons and photons, processed with the full detector simulation
based onGEANT 4.7 [9], were used to derive and study the corrections. Two detector geometries are
available. The first is the “ideal geometry,” which containsthe best knowledge of the dead material,
but which has no misalignments except for the 4 cm shift of theend-caps. The data sets based on
this geometry are used to derive the corrections and for mostof the performance studies. The second
available geometry is a distorted one, in which extra material is added between the tracking detectors and
the calorimeters, and in which misalignments are introduced. For example, the amount of material in the
inner detector has increased in some regions by up to 7% of a radiation length for positiveφ , and the
density of material in the gap between the barrel and end-capcryostats has increased by a factor of 1.7.
The distorted data-sets using this geometry are used to estimate systematic uncertainties and to check the
sensitivity of the methods to additional material. In addition to these single-particle data sets,Z → ee
decays are also available.

The standard calorimeter reconstruction for simulated data includes the effects of possible cell-level
miscalibrations by smearing the measured energy of each cell (by about 0.7%), therefore increasing the
constant term of the energy resolution. (The fractional energy resolution is conventionally parametrised
asσ(E)/E = a/E ⊕ b/

√
E ⊕ c, wherea is the noise term,b is the sampling term andc is the constant

term.) Unless otherwise stated, the results in this note do not include this additional smearing, and
therefore correspond to assuming a perfect cell-level calibration.

1.4 Energy and position reconstruction

The calibration of the LAr calorimeter is factorised into a channel-by-channel calibration of the electron-
ics readout and an overall energy scale determination.

The first step, often called “electronics calibration”, converts the raw signal extracted from each cell
(in ADC counts) into a deposited energy. The method used for this step, which is beyond the scope of this
note, was described in Ref. [1]. It was refined and validated when final barrel and end-cap modules were
studied in test beams [2, 3]. In the past two years, the experience gained and the algorithm developed
were integrated into the standard ATLAS calibration software [10].

The second step deals with clusters. The energies depositedin the cells of each individual layer of
a cluster are summed, and an energy-weighted cluster position is calculated for each layer. There are
several important effects which must then be understood:

• Due to the accordion geometry, the amount of absorber material crossed by incident particles varies
as a function ofφ . This produces aφ modulation of the reconstructed energy.

• The shower is not fully contained in theη window chosen for clusters, and the cells have a finite
granularity. This introduces a modulation in the energy anda bias in the measured position (“S-
shape”) which depend on the particle impact point within a cell.
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Figure 4: Cluster correction steps.

• A perfectly projective particle, coming from the origin of the coordinate system, intersects the cal-
orimeter at the sameη position in all layers. The luminous region, however, extends significantly
in z; a particle from a vertex away from the origin intersects thecalorimeter at slightly differentη
positions in each layer. Properly combining theseη measurements requires an accurate parametri-
sation of the shower depth within each layer.

An early study of these corrections, using both simulation and test beam data, can be found in [11].
The present prediction of these effects and their dependencies on the impact point and energy of the
incident particle are described in detail in this note.

The measured energy and position of EM clusters are corrected as described below (see Fig. 4).
The required scale of the correction is illustrated by the upper points in Fig. 1, which shows the recon-
structed energies ofE = 100 GeV electrons before and after calibration. It is about 10% over most of the
calorimeter, but is larger in the transition region betweencryostats.

• To start with, the energies in the cluster cells are summed, and an energy weighted(η ,φ) position is
calculated for each calorimeter layer. Before applying thecluster corrections, the energy resolution
has a constant term of about 0.65% (quoted for photons at|η | = 0.3).

• As the first step, corrections are applied to the cluster position, measured in each layer. These are
described in Sec. 2. The position measurements from the firsttwo layers are then combined to de-
fine the shower impact point in the calorimeter, which can then be used for energy reconstruction.

• The next step is to combine the energies deposited in each layer. Two separate procedures have
been developed to do this which are described in Secs. 3.1 and5. In the first one, per-layer energy
coefficients, called longitudinal weights, are adjusted tooptimise at the same time the energy
resolution and the linearity of the response. In the second one, the simulation is used to correct for
different types of energy loss one by one, by correlating each of them with measured observables.
The corrections are calculated separately for electrons and photons, and determined as a function
of |η |. This reduces the local constant term to about 0.61%.

• The third step, described in Sec. 3.2, uses the shower impactpoint to correct the total energy for
modulations inη andφ . This reduces the local constant term to about 0.43%.

In spite of the skill and care put into the detector construction, calibration, and operation, some local
or “medium range” inhomogeneities in the calorimeter response have to be expected: localised high-
voltage or temperature effects or unexpected additional dead material must be detected and corrected for
using data. It is planned to useZ → ee decays to measure and correct for such effects and to help fix the
absolute energy scale. The method developed and the precision expected are described in Sec. 6.

2 Cluster position measurement

The position of a cluster is measured inη andφ . The positions are first calculated independently for each
calorimeter layer as the energy-weighted barycenters of all cluster cells in the layer. (The barrel and end-
cap are also treated separately at this stage.) Secondly, the individual layer measurements are corrected
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Figure 5: Calorimeter depths versus|η | for layers 1 and 2 and for 100 GeV photons. The points show
the derived optimal depths, and the curves are piecewise polynomial fits to the points. For layer 2 of the
barrel, a single curve yielded an adequate fit across|η | = 0.8; this may be revisited in future versions.
From 100 GeV photons.

for known systematic biases. Finally, the position measurements from layers 1 and 2 are combined to
produce the overall cluster position. The position corrections are derived using single-particle electron
and photon data samples. Each sample is mono-energetic, andthe available samples span the range
5–1000 GeV.

The η positions that are calculated at this stage are “detector”-η , corresponding to the angle that
would be made by a particle originating from the origin of thedetector coordinate system. In order
to properly compare the calculated detector-η positions with theη of a generated incident particle,
which will in general have its production vertex offset inz from the detector origin, one must assume
a depth for each calorimeter layer. Here, “depth” refers to the radial distance from the beam axis for
the barrel calorimeter, and to the distance from thex− y plane passing through the origin for the end-
cap calorimeter. The depths used are those which optimise the η-position resolution; they are shown in
Fig. 5.

2.1 η position correction (S-shape)

The clusterη position is first calculated in each layer as the energy-weighted barycenter of the cluster
cells in that layer. (In layer 1, only the three strips aroundthe cluster center are used, regardless of the
specified cluster size.) Due to the finite granularity of the readout cells, these measurements are biased
towards the centers of the cells. For examples, see Fig. 6. This figure plots the difference inη between
the incident particle and the reconstructed cluster (∆η = ηtrue−ηreco) as a function ofv, the relativeη
offset of the cluster within the cell, which varies from−1/2. . .1/2 across the cell. (The sign of∆η is
inverted for negativeη , and in plots it is usually shown as a fraction of the cellη width.) The general
functional form shown in this figure is often referred to as “S-shape”.

Figure 6 shows the correction averaged over an|η | range. The actual correction, however, varies
continuously overη , due to changes in the detector geometry (the corrections change to a much greater
extent near discontinuities in the calorimeter). For example, the calorimeter cells are not perfectly pro-
jective (as the inner and outer cell faces are parallel to thebeam-line, rather than being perpendicular to a
line from the detector origin); this induces a bias away fromthe center of the calorimeter. The correction
will also depend on the cluster energy, as that affects the average shower depth.

To derive the correction, the calorimeter is divided inη into regions based on where the behaviour
of the correction changes discontinuously. Within each region, an empirical function is constructed to
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Figure 6:∆η versus v before and after correction for different regions and for 100 GeV electrons. Note
the small systematic offset in the end-cap due to a change in the end-cap geometry since the corrections
were derived. For comparison, the “v12” points show resultsreconstructed using the same geometry as
that used to derive the corrections.

describe the correction, and an unbinned fit is performed to simulated data for a particular cluster size,
type, and energy.

The function used for the empirical fit is of the form

f (v) = A tan−1Bv+Cv+ D|v|+ E, (1)

where−1/2 ≤ v ≤ 1/2 across a cell (for the actual fit, the parameters are redefined to reduce correla-
tions). To turn this into a function ofη , the fit parameters are written as polynomials (usually of second
or third degree) in|η |:

A = ∑
i

ai|η |i, (2)

and similarly for the other parameters. The fit parameters are then the coefficientsai, bi, etc.
One feature to note about this function is that, in general,f (−1/2) 6= f (1/2), so that it will be

discontinuous crossing a cell boundary. For layer 1, this isusually acceptable, since reconstructed cluster
positions cluster well away from the cell boundary (Fig. 7(a)). However, in layer 2, the distribution of
reconstructed cluster positions remains populated acrossthe cluster boundary (Fig. 7(b)). Therefore, for
layer 2, the function is modified so thatf (−1/2) = f (1/2).

In some cases, there is still a significant periodic residualafter fitting to this form; in such cases, an
additional general trigonometric term is added to the fit:

f ′(v) = f (v)+ α cos(βπv+ γ). (3)

Finally, a few regions near the calorimeter edges do not exhibit the S-shape form; a general polynomial
is used as the empirical function there.
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Figure 7:∆η versus |η | in layers 1 and 2 of the barrel, along with the empirical fit function.

The correction is evaluated separately for each cluster size and type (electrons, photons). The differ-
ence in the correction between electrons and photons is a fewpercent, and there is about a 10% difference
between 5×5 and 3×N clusters.

The correction also depends on energy; over the range 25–1000 GeV, the required correction varies
by ∼ 20%. To apply the correction for a given cluster, the correction is first tabulated for each of the
energies for which simulated data samples were available. The final correction is then found by doing
a cubic polynomial interpolation within this table. Note a subtlety here: the energies at which the cor-
rections are tabulated are the true cluster energies. However, when the correction is applied, only the
reconstructed cluster energy is known. Since the position corrections are done before the energy correc-
tions, the reconstructed cluster energy will be systematically lower than the true energy. If this were used
for the interpolation, this would bias the position measurements. So, for the purpose of this interpolation,
a crude energy correction is performed by scaling the reconstructed cluster energy by the ratio of the true
to reconstructed energy observed in a 100 GeV sample, parametrised as a function of|η |. This energy
correction is used only for the energy interpolation of the position corrections.

Plots of∆η before and after corrections for several regions are shown in Fig. 6. Note that since the
present corrections were derived, the simulated detector geometry was changed slightly in the end-cap,
in order to match more closely the as-built detector. This results in a small systematic offset ofO(10−4)
in these regions.

Theη position resolution for photons versus|η | is shown for the two main calorimeter layers (strips
and middle) in Fig. 8. The resolution is fairly uniform as function of |η | and is 2.5–3.5×10−4 for the
strips (which have a size of 0.003 inη in the barrel electromagnetic calorimeter) and 5–6×10−4 for the
middle-layer cells (which have a size of 0.025 inη). The regions with worse resolution correspond to the
barrel/end-cap transition region and, for the strips, to the region with|η | > 2, where the strip granularity
of the end-cap calorimeter becomes progressively much coarser.

2.2 φ position correction

The measurement of the clusterφ position must also be corrected. These corrections are applied only in
calorimeter layer 2 (theφ granularity is best in this layer). As opposed to theη direction, the accordion
geometry results in more energy sharing between cells in theφ direction, which washes out the S-shape
in this direction. There is, however, a small bias in theφ measurement which depends on the average
shower depth with respect to the accordion structure (and thus on|η |). A profile plot of∆φ = φtrue−φreco

before the correction is shown in Fig. 9. (The sign of the offset is flipped forη < 0, as the two halves
of the calorimeter are identical under a rotation.) The discontinuity at |η | = 0.8, where the absorber
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Figure 11: Resolution ofη position measurement
from layers 1 and 2 combined for 100 GeV pho-
tons.

thickness and the middle layer depth change, is clearly visible.
The correction derived here is symmetric inφ . In the real detector, the absorbers sag slightly due to

gravity, causing aφ -dependent modulation in theφ offset with a maximum value of about 0.5 mrad [8].
This has not been included in the present simulations, and itis therefore not taken into account in this
correction. Studies have shown, however, that the extra smearing of the position measurement from this
effect has a negligible contribution to the widths of the invariant mass distributions ofe+e− pairs. (These
studies were performed by generating decays of massive particles using a toy Monte Carlo, smearing the
decay products with energy and angular resolutions roughlyappropriate to ATLAS, and comparing the
widths of the resulting invariant mass distributions before and after shifting theφ positions byAcosφ .
No significant broadening was observed forA < 50 mrad.) The contribution of this effect to the constant
term of the energy resolution has not been studied quantitatively, but should also be small.

To produce a correction, the data are binned inη . The result for one sample is shown in Fig. 9. This
function is interpolated inη ; it is then also interpolated in energy as for theη position correction.

The φ position resolution versus|η | is shown for calorimeter layer 2 in Fig. 10. Electron clusters,
which get smeared in theφ direction as they radiate while propagating through the magnetic field, have
a worseφ position resolution than do photon clusters. A discontinuous step is seen in the resolution
at |η | = 0.8, where the absorber thickness changes, and the resolutionis worst in the transition region
between the cryostats.
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(b) Vertex resolution.

Figure 12: Angular and vertex resolution as functions of|η | (Gaussian fits), multiplied by
√

E.

2.3 Position measurement combination

The individual layerη andφ measurements are combined to produce the overallη andφ for a cluster.
For φ , only layer 2 is used, so the combination is trivial except inthe overlap region, where the energy-
weighted average of the barrel and end-capφ measurements is used. Forη , both layer 1 and layer 2 are
averaged. However, layer 1 is weighted three times as much aslayer 2 to roughly take into account the
better resolution in layer 1. This prescription, which doesnot use the actual position resolutions and does
not account for correlations, is known to be suboptimal and will be improved in future software versions.

Note that theη combination implicitly assumes that the incoming particleis projective. If its produc-
tion vertex is shifted from the origin, then the combinedη will be biased. This is illustrated in Fig. 11,
which shows the resolution of the combined clusterη measurement. Here, the measured clusterη is
compared to theη position of the calorimeter intersected by the true particle track at a depth correspond-
ing to the cluster barycenter. This is shown both for all clusters and for clusters with thez position of the
production vertex within 5 mm of the detector center.

2.4 Shower direction

At high luminosity, the inner detector cannot accurately determine the interaction vertex due to the large
number of additional interactions. This is an issue for the reconstruction of aH → γγ signal. For this
analysis, achieving the best possible resolution on the invariant mass of the photon pair is crucial for
separating the signal peak from the continuum background. If the z-position of the interaction vertex
is unknown, then there will be a large uncertainty in the polar angle of the photons and thus in the
pair invariant mass. We can, however, recover information about the incidence angle of the photons by
comparing the impact points that are reconstructed in the first and second layers of the EM calorimeter.
To do this, we need to know the photonη position and the shower barycenter in each of the two layers
(Fig. 5). We can then draw a straight line between these two(η ,depth) points; extending this line to the
beam axis gives an estimate of the position of the interaction vertex.

Here, this method is applied to single photons with energiescompatible with photons fromH → γγ
decays. FormH = 120 GeV, these photons are predominantly in the range 50− 100 GeV. Figure 12
shows the resolutions of the photon angle and the interaction vertex measurements as functions of|η |.
Figure 13 shows the same resolution as a function of the photon energy, for|η | < 0.5.

3 Cluster energy measurement

Most of the energy of an electromagnetically interacting particle is deposited in the sensitive volume of
the calorimeter, including the lead absorbers and the liquid-argon gaps. A small fraction is deposited in
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(b) Vertex resolution.

Figure 13: Angular and vertex resolution as functions ofE (Gaussian fits), for|η | < 0.5.

non-instrumented material in the inner detector, the cryostats, the solenoid, and the cables between the
presampler and the first EM calorimeter layer. Energy also escapes from the back of the calorimeter.

The cluster energy is calculated as a linearly weighted sum of the energy in each of the three calorim-
eter layers plus the presampler. The factors applied to the four energies are called longitudinal weights
and their purpose is to correct for the energy losses, providing optimum linearity and resolution.

The ATLAS longitudinal weighting method was first describedin Ref. [8]. However, recent ATLAS
test beam analyses [2, 3, 12] provided simple extensions of the technique. They also allowed validating
this method with real data.

The first section below describes the weighting correction that is performed in current versions of
the reconstruction, called the 4-weight method. This is followed by a description of the corrections for
η- andφ -dependent modulations in the energy. A more advanced energy-dependent calibration scheme,
called the calibration hit method, is described separatelyin Section 5.

3.1 4-weight method

The weighting method described in this section is is a modification of that described in Ref. [8] and is
currently the default in ATLAS reconstruction. The weightsused are functions only of|η |; no energy
dependencies are used. The method could be readily extendedto include φ - and energy-dependent
weights in order to minimise residual non-linearities. Thereconstructed energy is given by

Ereco= A(B +WpsEps+ E1+ E2+W3E3), (4)

whereEps and E1...3 are the cluster energies in the presampler and the three layers of the calorimeter
(including sampling fractions). The offset termB corrects for upstream energy losses for which the
corresponding electron has not reached the presampler (PS). In the limiting case of no energy in the
PS, this offset corresponds to the energy an electron loses before it undergoes a hard bremsstrahlung
for which the resulting photon passes through the PS withoutconverting (i.e., no energy recorded in the
PS). The parametersA, B, Wps, andW3 are calculated by aχ2 minimisation of(Etrue−Ereco)

2/σ(Etrue)
2

using Monte Carlo single particle samples, whereσ(Etrue) is a parametrisation of the expected energy
resolution. This minimisation is done for separate|η | bins, defined by the∆η = 0.025 granularity of
the second layer of the calorimeter. Equal-sized samples with energies between 10 and 200 GeV are
combined for the fits (the linearity of low energy points could be improved by using more events at those
energies.) The fits are done separately for each cluster sizeand particle type (electron and photon).

A special parametrisation is applied in the gap region between the barrel and end-cap calorimeters
(1.447< |η | < 1.55), within which the parametrisation of Eq. (4) is not adequate. Moreover, this region
is instrumented with scintillator tiles that can be used to recover some of the energy lost in the gap. The
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(d) Longitudinal weightW3.

Figure 14: Fitted longitudinal weights for electrons (solid) and photons (open) as functions of|η |.

parametrisation used in the crack is

Ereco= A(B + Eb + Ee +WscintEscint), (5)

whereEb andEe are the energies the cluster deposits in the barrel and end-cap calorimeters, respectively.
Escint is the scintillator energy, andWscint the weight applied to it. This parametrisation is found to perform
significantly better than that used in [1].

The longitudinal weights in Eq. (4) were extracted for electrons and photons and are shown as a
function of |η | in Fig. 14. In Fig. 14(a) one can see that the overall scaleA for electrons (solid) is larger
than that for photons. The reason is due to the fact that photons travel on average 9/7X0 before they
start losing energy. This effect is close to 1% in the middle of the barrel and increases with the increase
of upstream material. The offset termB is shown in Fig. 14(b); photons have a very small offset, as
expected. (Future versions of the correction will use larger statistics to reduce the scatter observed in the
fit results.) The PS weightWps shown in Fig. 14(c) is the usual factor applied to preshower/presampler
energy responses to correct for upstream losses. Finally, in Fig. 14(d),W3 is a weight applied to the last
calorimeter layer to correct for energy leakage behind the calorimeter.

Detailed studies have revealed that the physical meaning attributed to these weights is only approx-
imate. For example, the weights compensate for losses afterthe PS via the minimisation procedure. In
addition, the weights have a non-negligible energy dependence. However, this energy dependence does
not result in large non-linearities because the weights adjust their values to compensate. These effects
are more evident at low energiesE < 15 GeV, and with large amounts of upstream material. A more
rigorous treatment of the longitudinal weighting is presented in Sec. 5.

The performance of this method is shown in Sec. 4
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Figure 15: Energy modulation inφ for 200 GeV
3× 7 electrons with 0.2 < |η | < 0.4, along with
the modulation fit.
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Figure 16: Energy modulation inη for 200 GeV
3×7 electrons, along with the modulation fit [4].

3.2 Cluster energy modulation corrections

As theφ impact position of a particle shifts across the accordion structure of the absorbers, the amount of
passive absorber material it encounters and thus the ratioR≡Ereco/Etrue varies slightly, with a periodicity
equal to that of the absorber spacing. This effect is small, with a maximum value of about a half-percent.
Further, at lower energies, theφ position resolution becomes comparable to the absorber spacing; this
contributes to washing out the effect at these energies. Thereconstructed energy is corrected for this.

To derive the correction, the calorimeter is binned in|η |. The binning used is not uniform, but is
chosen so as to segregate regions of the calorimeter with non-uniform R. Within each|η | bin, R is
plotted versus theφ offset of the cluster relative to the absorber. These plots are divided intoφ bins, each
bin is fit to a Gaussian, and the means of the fits are plotted. The resulting plot is then normalised to
unity and fit to a two-term Fourier series:

f (φ) = 1+ A [α cos(Nφ +C)+ (1−α)cos(2Nφ + D)] , (6)

for fit parametersA, α , C, andD. Parameterα is restricted to the range 0–1.N is the total number of
absorbers in 2π (1024 in the barrel and 768 in the end-capend-cap). An example of such a fit is shown
in Fig. 15.

Fits are performed separately for each energy, cluster size, and particle type. To apply the correction,
it is calculated for eachη and energy bin. It is then interpolated both inη and in energy. This correction
reduces the constant term in the energy resolution (for photons at|η | = 0.3) from 0.61% to 0.50%.

Energy modulations are also observed along theη direction. The energy of a cluster is defined as
the energy within a rectangular window of fixed size inη ×φ . The window can only shift by an integral
number of cells; however, the impact point of a particle may be anywhere within a cell. Thus, on average,
a larger fraction of the cluster energy will be contained in the window when the particle hits at the center
of a cell than if it hits near an edge. The size of this effect isa few tenths of a percent, and is larger
for smaller cluster sizes. The modulation can be fit well witha quadratic; see Fig. 16. Note that this
modulation is very small,< 0.1%, in theφ direction, due to increased energy sharing between the cells;
this modulation is not presently corrected. (A larger modulation was seen in the test beam [13], which
used 3×3 clusters.)

The plots to fit are prepared in a similar manner as for theφ modulations, except that thex-axis
is taken to be theη offset within a cell. The plots from all bins where the detector is mostly uniform
are then combined into a single plot; that is, the|η | ranges 0.05–0.75, 0.85–1.30, and 1.70–2.50. The
resulting plot is then scaled so as to average to unity and fit to a quadratic. The correction is performed
separately for each energy, cluster size, and particle type. The final correction is then determined by
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(c) All photons,|η| = 1.075.
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(d) Unconverted photons,|η| = 1.075.

Figure 17: Difference between measured and true energy normalised to true energy atE = 100 GeV.

interpolating in energy. An example fit is shown in Fig. 16. Applying this correction further reduces the
constant term to 0.43%. A major contribution to the remaining constant term is from theφ -dependency
of the inner detector material distribution. (The present weighting correction is averaged overφ .)

4 Energy calibration performance

This section shows the performance of the calibration chainused in the current version of the ATLAS
reconstruction software used for all of the electron and photon reconstruction and identification studies
reported here and elsewhere.

4.1 Single electrons and photons

In Fig. 17, the energy response, plotted as the difference between measured and true energy divided by
the true energy, is shown for electrons with an energy of 100 GeV for two illustrativeη-positions in
the barrel electromagnetic calorimeter. The central valueof the energy is reconstructed with excellent
precision (∼ 3×10−4) if one assumes perfect knowledge of the material in front ofthe calorimeter. Both
the Gaussian core and the non-Gaussian component of the tailof the energy distribution are significantly
worse at the point with larger|η | due to the larger amount of material in front of the calorimeter. The
resolution and non-Gaussian tails are better for photons than for electrons, but are somewhat worse for
all photons than for photons that do not convert before leaving the volume of the inner detector.

The linearity (relative difference between the fitted mean energy and the true energy) and resolution
are shown in Fig. 18 for electrons and photons. The expected performance is very similar for electrons
and photons, with a somewhat larger degradation at larger values of |η | in the case of electrons, as
expected from the impact of upstream material. For electrons, the linearity is shown for|η |= 0.3 (barrel)
and |η | = 2.0 (end-cap). The deterioration of the performance seen in the end-cap is attributed to the
absence of a presampler (|η | > 1.8) and the relatively limited statistics of the simulated samples. The
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(b) Electron energy resolution.
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(c) Photon energy linearity.
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(d) Photon energy resolution.

Figure 18: Energy linearity (left) and resolution (right) for electrons (top) and photons (bottom).

resolution shown in Fig. 18(b) is given for three|η | points: |η | = 0.3 (inner barrel),|η | = 1.1 (outer
barrel), and|η | = 2.0 (end-cap). The resolution drop at larger|η | is attributed to the significant increase
of upstream material in front of the calorimeter with respect to the small|η | region. The extra material
causes increased early showering upstream of the calorimeter, which affects the lateral shower shape in
the calorimeter. Since Eq. (4) absorbs the corrections for lateral losses into the overall scale constantA,
an increase in lateral-loss fluctuations will result in a deterioration of the resolution. The fits in Fig. 18(b)
give a sampling term of(10.17±0.33)% at small|η |, and(14.5±1.0)% in the end-cap.

In Fig. 19, the energy resolution for electrons and photons is shown as a function of|η |. The photon
resolution is better than the electron resolution in regions with more material in front of the calorimeter.
The extracted constant term of the resolution is shown for photons in Fig. 20 after the weight and mod-
ulation corrections. This figure also shows the constant term observed when the standard simulation of
cell-level miscalibrations is enabled in the reconstruction program. In Fig. 21, the linearity and resolution
as a function of|η | is shown for a range of energies for single photons.

4.2 Mass resolution obtained inH → 4e and H → γγ final states

Figure 22 shows the reconstructed distribution, after calibration, of the invariant mass of the electrons
in H → 4e decays, withmH = 130 GeV. (Loose electron selection applied, as defined in [6].) A global
constant term of 0.7% has been included in the electromagnetic calorimeter resolution for the two plots in
this subsection. The central value of the reconstructed invariant mass is correct to∼ 1 GeV, correspond-
ing to a precision of 0.7%, and the expected Gaussian resolution is∼ 1.5%. The non-Gaussian tails in the
distribution amount to 20% of events lying further than 2σ away from the peak. They are mostly due to
bremsstrahlung, particularly in the innermost layers of the inner detector, but also to radiative decays and
to electrons poorly measured in the barrel/end-cap transition region of the electromagnetic calorimeter.

Figure 23 shows the reconstructed photon pair invariant mass forH → γγ decays withmH = 120 GeV
(tight photon selection applied and barrel/end-cap transition region excluded). The photon directions are
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Figure 19: Energy resolution for electrons and
photons as a function of|η |.
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(b) Energy resolution.

Figure 21: Energy linearity and resolution for photons (5×5 clusters).

derived from a combination of the direction measurement in the electromagnetic calorimeter described
above (see Section 2.4) with the primary vertex informationfrom the inner detector. The central value of
the reconstructed invariant mass is correct to∼ 0.2 GeV, corresponding to a precision of 0.2%, and the
expected resolution is∼ 1.2%. Most of the non-Gaussian tails at low values of the reconstructed photon
pair mass are seen to be due to photons which convert in the inner detector. The shift in the means comes
from the fact that the corrections to-date do not distinguish between converted and unconverted photons.

4.3 Study of systematic effects usingH → 4e

The energy linearity for electrons inH → 4e is shown in Fig. 24(a) for samples based on the ideal (full
triangles) and distorted (circles) geometries. The departure from linearity for the distorted geometry is
attributed to the presence of extra material in front of the calorimeter. The corresponding resolution is
shown in Fig. 24(b) for the distorted geometry.

The uniformity inφ andη observed in this sample is shown in Fig. 25. The non-uniformities seen
at higher|η | and at positiveφ are due to simulated extra material in these regions. In theφ -uniformity
plot (Fig. 25(a)) a residual modulation is observed. This ismost likely due to an artefact in the simulation.
The longitudinal weights used in the reconstruction dependonly onη , and are averaged overφ . Adding
a dependency onφ as well would make the energy scale alongφ more uniform and also improve the
mass resolution ofZ → ee.
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Figure 22: M(eeee) from Higgs boson decays
with mH = 130 GeV (energy from calorimeter
only, with noZ boson mass constraint).
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Figure 23:M(γγ) from Higgs boson decays with
mH = 120 GeV. The shaded plot corresponds to at
least one photon converting atr < 80 cm.
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Figure 24: Electron linearity and resolution inH → 4e for the ideal (full triangles) and distorted (circles)
geometries.
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(a) Energy uniformity inφ integrated overpT andη.
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Figure 25: Electron energy uniformity inη and φ , integrated over other kinematic variables, for the
ideal (full triangles) and distorted (circles) geometries.
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5 Energy correction using calibration hits

This section describes an alternate method for calculatingthe total energy from the energies in the in-
dividual calorimeter layers and the presampler. It is a development of ideas introduced in [14, 15] to
analyse test beam data and is described in some detail in [16]. Special simulations are used in which the
energy deposited by a particle is recorded in all detector materials, not just the active ones. Through these
simulations, the energy depositions in the inactive material can be correlated with the measured quanti-
ties. For example, the energy lost in the material in front ofthe calorimeter (inner detector, cryostat, etc.)
can be estimated from the energy deposited in the presampler. The result is a method which provides a
modular way to reconstruct the energies of electrons and photons by decoupling all the different correc-
tions. This approach eases comparisons between electrons and photons, and might be particularly useful
in the initial stages of the experiment.

The cluster energy is decomposed into three pieces, which will be treated separately below:

E = Ecal+ Efront+ Eback, (7)

whereEcal is the energy deposited in the electromagnetic calorimeter, Efront is the energy deposited in
the presampler and in the inactive material in front of the calorimeter, andEback is the energy that leaks
out the rear of the EM calorimeter.

This analysis uses simulated single-particle, mono-energetic electron and photon samples, with en-
ergies ranging from 25 to 500 GeV.

5.1 Reconstruction of the energy deposited in the calorimeter

The energy deposited by a particle in the EM calorimeter,Ecal, is estimated as

Ecal = Ccal(X ,η)(1+ fout(X ,η))Ecl, (8)

where

• Ecl = ∑3
i=1Ei, andE1...3 are the energies deposited in each of the three calorimeter layers in a given

cluster. In the following,Eps will denote the energy deposited in the presampler. The energiesEi

available at this stage of the reconstruction are the energies deposited in the liquid-argon ionisation
medium divided by a region-dependent sampling fraction.

• X is the the longitudinal barycentre or shower depth, defined by

X =
∑3

i=1 EiXi + EpsXps

∑3
i=1 Ei + Eps

, (9)

whereEi is as above andXi is the longitudinal depth, expressed in radiation lengths,of compart-
menti, computed from the centre of the detector. TheXi, which are computed using a geantino2)

scan, are functions ofη .

• η is the cluster barycentre, corrected for the S-shape effect(see Sec. 2.1).

• fout is the fraction of the energy deposited outside the cluster.

• Ccal(X ,η) is the calibration factor for the energy in the EM calorimeter.

2)A “geantino” is an imaginary non-interacting particle usedin the simulation. The properties of the material crossed bythe
particle are recorded.
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Figure 26: Correction factorCcal and fraction of out-of-cluster energy as a function of the shower depth
X , averaged over all energies, at two representative|η | points. The dashed lines show the results of the
parametrisation.

The calibration factorCcal is defined as the average ratio between the true energy deposited in the EM
calorimeter (both absorbers and ionisation medium) and thereconstructed cluster energyEcl. It is within
a few percent of unity, and takes into account effects such asthe dependence of the sampling fraction
on η and on the longitudinal profile of the shower. Once the correction factorCcal is expressed as a
function ofX it is fairly energy independent. The correction factor averaged over all energies is shown
in Fig. 26(a). Its dependence onX is parametrised with a second order polynomial. The fit is performed
excluding the bins with less than 0.5% of the total statistics. This criterion is also applied to all the fits
performed in the following.

Due to the presence of the magnetic field and bremsstrahlung radiation, the fraction of energy de-
posited in the calorimeter outside of the cluster is energy dependent. Since only single electrons and
photons with no noise or underlying event are simulated, this fraction is easily calculated. The profile of
the out-of-cluster energy is asymmetric with the tail on thehigh side. However the most probable value,
obtained with a Gaussian fit around the maximum of the distribution (−2σ , +1.5σ ), is energy indepen-
dent when plotted as a function ofX . The most probable value of the fraction of energy depositedoutside
the cluster averaged over all energies is shown in Fig. 26(b)for electrons and photons and the two|η |
values. Electrons and photons behave similarly in the central region but differently in the forward region.
This is due to the large difference in the amount of material present in front of the calorimeter (∼ 2.5X0

at |η | = 0.3 and∼ 7X0 at |η | = 1.65) combined with the presence of bremsstrahlung and the magnetic
field.

5.2 Energy deposited in front of the calorimeter

The energy lost in the material in front of the calorimeter (inner detector, cryostat, coil, and material
between the presampler and strips) is parametrised as a function of the energy lost in the active material
of the presampler (Eps):

Efront = a(Ecal,η)+ b(Ecal,η)Eps+ c(Ecal,η)E2
ps. (10)

An example of this relation is shown in Fig. 27. All coefficients are parametrised in terms of the
energy deposited by a particle in the calorimeter(Ecal) and η . The coefficientc is used only in the
end-cap, 1.55 < |η | < 1.8, and is set to zero otherwise. Note explicitly thatEfront includes the energy
deposited in the presampler and between the presampler and the strips. An alternate form forEfront,
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Figure 27: Energy lost in front of the EM calorim-
eter as a function of the energy measured in the
presampler at|η | = 0.3 for electrons of 100 GeV.
The dashed curve shows the parametrisation de-
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ter as a function of shower depthX , for electrons
of 100 GeV at|η |= 1.9, in a region where the cal-
orimeter is not instrumented with the presampler.
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Figure 29: Fraction of energy deposited behind the calorimeter, averaged over particle energies, as a
function of the shower depthX . The parametrisation used is superimposed.

which depends on the energy in the first calorimeter layer in addition toEps, was also tried. This did not
improve the resolution, so the simpler parametrisation above is retained.

In the region 1.8 < |η | < 3.2, not instrumented with the presampler, the energy deposited in front of
the calorimeter is parametrised as a function ofX with a second degree polynomial. Figure 28 shows
this correlation for electrons and photons of 100 GeV at|η | = 1.9. The coefficients of this polynomial
are parametrised in terms ofEcal.

5.3 Longitudinal leakage correction

The energy deposited by the showers behind the EM calorimeter is computed as a fraction of the energy
reconstructed in the calorimeter. This fraction, when parametrised as a function ofX , is fairly energy
independent both for electrons and photons. Averaged over the particle energies, it is parametrised by

fleak≡ Eback/Ecal = f leak
0 (η)X + f leak

1 (η)eX . (11)

Figure 29 shows the leakage and the result of the fit for|η | = 0.3 and 1.65.
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Figure 30: Total reconstructed energy profiles.
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Figure 31: Resolution versus particle energy.
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Figure 34: Linearity for various particle energies as a function of |η |.

5.4 Results

The total cluster energy is computed by adding these three contributions. Example distributions of re-
constructed energies are shown in Fig. 30. Mean values and standard deviations are found from a fit to a
Crystal-Ball function (a Gaussian with a low-side tail of the form(1− x)−n).

The resolution is shown in Fig. 31 as a function of the particle energy for electrons and photons at
two |η | values and in Fig. 32 for various photon energies and allη values. The sampling term is shown
in Fig. 33 as a function of|η | for electrons and photons.

For electrons, the sampling term increases from 8.7% at low|η | to 21% at|η |= 1.55. This worsening
of the energy resolution is related to the increase of the material in front of the calorimeter. This effect is
much less relevant for photons, which have a maximum sampling term of 12%. The constant term is in
general lower than 0.6% and is related to the energy modulation in a cell (see Sec. 3.2), not corrected at
this stage. The linearity, the ratio between the fitted mean value and the true particle energy, is shown in
Fig. 34. It is better than 0.5% over the full|η | range and in the energy interval 25–500 GeV.

The results from the calibration hits correction are comparable in terms of resolution and linearity
with the longitudinal weights method. However there are a few differences worth mentioning. The coef-
ficients of the longitudinal weights method are averaged over a range of energies, while the parametrisa-
tions of the calibration hits method are energy dependent. This means that it should be easier to extend
the calibrated energy range for the calibration hits methodwithout compromising energy linearity. An-
other important difference is that while the coefficients ofthe longitudinal weights method have no direct
physical meaning, the parametrisation of the calibration hits method allows isolating the different com-
ponents of the calibrated cluster energy: that deposited inthe calorimeter, inside and outside of the
cluster, and in front and behind of it. The knowledge of theseseparate contributions, which depend on
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accurate and detailed simulations of the tracker and the calorimeters, could be particularly useful in the
early stages of the experiment, for example to disentangle effects such as a miscalibration of the calo-
rimeter or an imperfect knowledge of the inner detector material. It is also worth noting that the estimate
of the energy lost in front of the calorimeter is crucial to obtaining a good resolution and linearity; at
low energies and large rapidities, a large fraction of the energy of an electron is deposited in front of the
calorimeter. The calculation of missing momentum could also benefit from this separation of effects.

6 In-situ calibration with Z → ee events

6.1 Motivation

In the EM calorimeter, the construction tolerances and the calibration system ensure that the response is
locally uniform, with a constant term< 0.5% over regions of size∆η ×∆φ = 0.2×0.4. This has been
shown with test beam data [13]. Electron pairs fromZ boson decays can then be used to intercalibrate
the 384 regions of such size within the acceptance of|η | < 2.4. These regions must be intercalibrated
to within 0.5% in order to achieve a desired global constant term of< 0.7%. The basic idea of this
calibration method is to constrain the di-electron invariant mass distribution to the well-knownZ boson
line shape. A second goal of the calibration is to provide theabsolute calorimeter electromagnetic energy
scale. This must be known to an accuracy of∼ 0.1% in order to achieve the ATLAS physics goals3).

6.2 Description of the method

Long-range non-uniformities can arise for many reasons, including variations in the liquid argon im-
purities and temperature, amount of upstream material, mechanical deformations, and high voltage (as
localised calorimeter defects may necessitate operating asmall number of channels below nominal volt-
age). For a given regioni, we parametrise the long-range non-uniformity modifying the measured elec-
tron energy asE reco

i = E true
i (1+αi). Neglecting second-order terms and supposing that the angle between

the two electrons is perfectly known, the effect on the di-electron invariant mass is:

Mreco
i j ≃ Mtrue

i j (1+
αi + α j

2
) = Mtrue

i j (1+
βi j

2
), (12)

whereβi j ≡ αi + α j.
The method to extract theα ’s is fully described in [17] and is done in two steps. First, the β ’s

are determined, then theα ’s. For a given pair of regions(i, j), the coefficientβi j and its associated
uncertainty are determined by minimising the following log-likelihood:

− lnLtot =
Ni j

∑
k=1

− lnL

(

Mk/

(

1+
βi j

2

)

,σM,k

)

, (13)

wherek counts all selected events populating the pair of regions(i, j), Mk is the di-electron invariant
mass of eventk, and L(M,σM) quantifies the compatibility of an event with theZ boson line shape
and is described below. Fits with only one event are removed.Once theβ ’s are determined from the
minimisation, theα ’s can be found from the overdetermined linear system given by βi j ≡ αi + α j. This
is done using a generalised least squares method, and gives an analytic solution.

TheZ boson line shape is modeled with a relativistic Breit-Wigner distribution [18,19]:

BW(M) ∼ M2

(M2−M2
Z)2 + Γ2

ZM4/M2
Z

, (14)

3)Except for theW boson mass measurement, which needs a much better knowledgeof the energy scale (∼ 0.02%).
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Figure 35: (a)Z boson mass distribution forPYTHIA events fitted with a Breit-Wigner distribution with
(solid line) and without (dashed line) the parton luminosity factor. χ2/NDOF is 1.09 and 3.96, respec-
tively. (b) Residual distribution fitted with a Gaussian.

whereMZ andΓZ are the mass and the width of theZ boson. They were measured precisely at LEP;
the values used are, respectively, 91.188± 0.002 GeV and 2.495± 0.002 GeV [20]. In proton-proton
collisions, the mass spectrum of theZ boson differs from the Breit-Wigner shape of the partonic process
cross section. The probability that a quark and antiquark inthe interactingpp system produce an object
of massM falls with increasing mass. In order to take this into account, the Breit-Wigner is multiplied
by the ad-hoc parametrisationL (M) = 1/Mβ . The parton luminosity parameterβ is assumed to be a
constant and is determined by fitting theZ boson mass distribution obtained with events generated with
PYTHIA version 6.403 [21]. Figure 35(a) shows theZ boson mass distribution fitted with a Breit-Wigner
with and without the parton luminosity factor. The fitted value of the parameterβ is 1.59± 0.10; this
will be used in the following. Since the photon propagator and the interference term between the photon
and theZ boson were not taken into account in the previous parametrisation, the parton luminosity term
also accounts for the effects of these two terms.

Finally, in order to take into account the finite resolution of the electromagnetic calorimeter, the
Breit-Wigner multiplied by the parton luminosity term is convoluted with a Gaussian:

L(M,σM) =

∫ +∞

−∞
BW(M−u)L (M−u)

e−u2/2σ2
M

√
2πσM

du, (15)

whereσM is the resolution of the measured mass. It is related to the electron energy resolution via

σM

M
=

1
2

√

(

σE1

E1

)2

+

(

σE2

E2

)2

. (16)

At |η | = 0.3, the sampling term of the electron energy resolution is equal to 10.0% and increases with
increasing|η |. Technically, the integral is converted to a discrete summation over the convolution pa-
rameteru which takes values between−5σM and+5σM.

6.3 Generator-level tests

The method is first tested on generator-levelZ → ee Monte Carlo events. These were generated using
PYTHIA 6.403 [21] withMZ = 91.19 GeV andΓZ = 2.495 GeV. Events are required to have at least one
electron withpT > 10 GeV and|η | < 2.7 and a di-electron invariant massMee > 60 GeV. To simulate
the detector resolution, generated electron energies are smeared to obtainσE/E = 10%/

√

E/ GeV.
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Figure 36: (a) Mean value of the Gaussian fitting the residualdistribution as a function of the number of
iterations for different mean values of the injectedα ’s; (b) Constant term as a function of the number of
events or as a function of the luminosity.

For each calorimeter regioni, a biasαi is generated from a Gaussian distribution with a meanµbias

and widthσbias. These will be called the “injected”α ’s, αinj .
For the first tests,µbias is fixed to 0 andσbias to 2%. The calibration method explained above is

applied to 50,000 events after selection. The residual distribution (αfit −αinj ) is shown in Fig. 35(b).
The mean value of the residual distribution corresponds to the energy scale, and its width to the energy
resolution. Thus it can be seen that the fitting method gives unbiased estimators of the injectedα ’s.

In the case whereµbias is different from zero, the mean value of the residual distribution will be
different from zero. For example, forµbias = −3%, 〈αfit − αinj〉 = 0.1%. This is a consequence of
neglecting the higher-order terms in the Taylor expansion of Eq. (12). Iterating the procedure twice
suffices to recover an unbiased estimate of theα ’s, as shown in Fig. 36(a).

Figure 35(b) also shows the resulting uniformity. After thefit, the RMS of the distribution has been
reduced from 2% to 0.4%. The RMS of the residual distributionis a measure of the expected long-
range constant term. Figure 36(b) shows the long-range constant term as a function of the number of
reconstructedZ → ee decays or of the integrated luminosity assuming an event selection efficiency of
25%. Therefore, by summing the local constant term of 0.5% with the long-range constant term of 0.4%
obtained here, a total constant term of about 0.7% could be achieved with∼ 100 pb−1. These results
assume perfect knowledge of the material in front of the electromagnetic calorimeter.

6.4 Results with distorted geometry

The previous section showed results based on generator-level Monte Carlo. The results in this section
usePYTHIA events with full detector simulation and reconstruction, using a geometry with additional
material in front of the electromagnetic calorimeter.

The number of events available is 349,450 corresponding to an integrated luminosity of∼ 200 pb−1.
Events with at least two reconstructed electrons are kept. The two leading electrons are required to be of
at least medium quality [6], to havepT > 20 GeV and|η | < 2.4, and to be of opposite sign. Finally, the
di-electron invariant mass is required to be within 80< Mee < 100 GeV. The total selection efficiency is
21.5%; the efficiency for finding two electron candidates within|η | < 2.4 is 50%.

The calibration method is applied first without injecting any biases (αinj = 0 for all regions). How-
ever, the presence of the misalignments and extra material means that there will be some biases intrinsic
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(a) αfit (solid) andαtrue (dashed).
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(b) Difference betweenαfit andαtrue.

Figure 37: Fit results with distorted geometry andαinj = 0.
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(a) αfit integrated overφ as a function ofη.
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(b) αfit integrated overη as a function ofφ , fitted in two
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Figure 38:αfit distributions withαinj = 0 and with distorted/ideal (full/open circles) geometry.
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(a) αfit (solid) andαtrue+αinj (dashed).
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(b) Difference betweenαfit andαtrue+αinj .

Figure 39: Fit results with distorted geometry and additional injected biases.
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to the simulation. These “true” biases can be estimated using generator information:

αtrue,i =
1
Ni

Ni

∑
k

preco,k
T − pgen,k

T

pgen,k
T

, (17)

wherek counts over theNi electrons falling in regioni, and preco,k
T and pgen,k

T are the reconstructed
and true transverse momenta of electronk. The distribution ofαtrue is shown in Fig. 37(a), as is the
results of the fit. The low-end tail corresponds to regions located in the gap between the barrel and end-
cap cryostats (Fig. 38(a)), where the density of material has been increased by a factor of 1.7. There
is fair agreement between theα ’s extracted using the data-driven method and those estimated from
generator information. Figure 37(b) shows the difference betweenαfit and αtrue; a Gaussian fitted to
this distribution has a mean of 0.1% and a width of 0.5%. The distribution ofαfit as a function ofη
andφ is shown in Fig. 38 for the ideal and distorted geometries. The asymmetry between positive and
negativeφ is due to the effect of the extra material in the inner detector at positiveφ . The difference
between positive and negativeφ values is about 0.6%.

The same exercise is also done by introducing, on top of the non-uniformities due to extra material, a
biasαinj generated from a Gaussian distribution with a meanµbias= 0 and widthσbias= 2%. Results are
shown in Fig. 39. The Gaussian fitted to this distribution also has a mean of 0.1% and a width of 0.5%.

One can conclude that, using∼ 87,000 reconstructedZ → ee events (which corresponds to about
200 pb−1), and with an initial spread of 2% from region to region, the long-range constant term should
not be greater than 0.5%.4) This should give an overall constant term∼ 0.7%. The bias on the absolute
energy should be small and of the order of 0.2%. If the exercise is repeated with only 100 pb−1 of data,
the Gaussian fitted to the residual distribution also has a mean of 0.2%, but the width is larger, leading to
a long-range constant term of 0.8%.

7 Estimation of the systematic uncertainty on the energy scale

The absolute energy scale has been obtained using electronsfrom Z → ee decays. It has been determined
on events simulated with the misaligned geometry while the longitudinal weights were found with the
ideal geometry. On top of the non-uniformities due to extra material, a bias modeling the calorimeter
non-uniformities is introduced and is generated from a Gaussian distribution with a meanµbias = 0 and
width σbias = 2%. The resulting bias on the energy scale can be assessed by comparing the fittedα ’s
with those from generator information; the bias is equal to 0.2%. This bias is understood and is due to
the fact that the model of theZ boson line shape doesn’t take into account the effects of bremsstrahlung.
Work is ongoing to improve this issue.

The background has been neglected but it has been checked that the contribution from QCD events
where the two jets are misidentified as electrons is small. Thus, it should have a negligible effect on the
determination on the energy scale.

Electrons fromZ boson decays have apT spectrum with a maximum value around 45 GeV. Care
will thus have to be taken to extrapolate the calibration obtained fromZ → ee decays to electron energy
regions not well populated by these events. Corrections determined withZ boson decays were applied
to single electron samples with different generated transverse momenta (20, 40, 120, and 500 GeV)
reconstructed with the misaligned geometry. Figure 40 shows 〈αtrue〉 after correction as a function ofpT

for four |η | bins. In principle,〈αtrue〉 should be equal to zero. This is true for the 40 GeV electron sample
at a level of 0.2% except in the bin (1.4 < |η | < 2.0) containing the crack region. For central electrons
(|η |< 0.6), the dependence versuspT is smaller than 0.5%. The effect is worse for non-central electrons.

4)Part of the RMS of the residual distribution is also due to uncertainties on the measurement ofαtrue.
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Figure 40:〈αtrue〉 after correction as a function ofpT for four η bins.

For instance, atpT = 120 GeV,αtrue after corrections varies from 1 to 1.6 percent. This non-linearity is
due to the presence of extra material in front of the calorimeter.

To conclude, at theZ boson energy scale, the estimate of the systematic uncertainty is around 0.2%.
At other energy scales, the systematic uncertainty is dominated by effects of extra material. For central
electrons, corrections can be extrapolated over the fullpT spectrum to a level of 0.5%. The linearity is
degraded for non-central electrons at a level of 1 or 2 percent except in the crack region where it is worse.
These numbers depend on the amount of extra material added tothe misaligned geometry compared to
the ideal geometry and will likely be different with real data.

The performance presented here corresponds to our current understanding of the determination of
the absolute energy scale. Improvements are expected to achieve systematic uncertainties smaller than
0.5%. For instance, including information from theE/p ratio measured for isolated high-pT electrons
from W → eν decays will compliment the direct calibration of the absolute scale withZ → ee events.
Photon conversions can also help to determine the amount of material in front of the calorimeter.

Conclusion

The methods and algorithms described in this note were already mentioned in Ref. [1] many years ago.
Over the years, they have reached a higher level of stabilityand maturity, and have been implemented in
the ATLAS reconstruction software. It is believed that, given the constraints of the ATLAS detector, in
particular the amount of dead material in front of the calorimeter, the performances described here will
not evolve much further.

The real challenge at the beginning of data-taking will be the detection and correction for additional
inner detector material or calorimeter inhomogeneities which would not have affected the somewhat
smaller-scale detectors used in the test beam. Discrepancies between data and simulation will have to be
understood prior to the use of the methods described above. The in-situ calibration withZ → ee events
described in Section 6 will play an important role, and refinements of the method presented here are
expected.
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