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Abstract

Linear and post-linear formalisms are generalized to incor-
porate gravitating Nambu and superconducting cosmic strings. The
collision of two straight non-parallel strings is analised. When strings
scatter at a sufficiently small angle the point of their minimal separa-
tion can move with a faster-than-light velocity, and a Cherenkov-like
radiation can be anticipated. However, it is shown that for Nambu
strings in the post-linear order the gravitational reaction is preci-
sely zero. It is argued that any "faster-than-light” crossed colliding
strings configuration is essentially equivalent to the parallel one which
is described by the 142 gravity while any ”slower-than-light” confi-
guration may be reduced to some static distribution of matter. Thus
in both cases we have no gravitational radiation. But we can obtain
a powerful source of a Cherenkov-like electromagnetic radiation if at
least one of the strings is a superconducting one. The same approach
can be used in many other applications. It is shown, that this forma-
lism provides a way to calculate vacuum polarization and to consider
the problem of topological self-action of a classical charged particle
in a multiconical space-time.

1 Introduction
A Complete understanding of different mechanisms of gravitational

and electromagnetic radiation by cosmic strings is important to incorporate
them into a realistic cosmological scenario [1]. The hypothesis of scaling
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solution [2] is intimately related to the conversion of the string network

energy into gravitational radiation. Electromagnetic radiation seems to be
one of the most important mechanisms of energy losses by superconducting
strings [3]. In most cases radiation emitted by excited strings may be
computed using the linearized theory. For example, the important case
of radiation produced by oscillating loops falls into this category. In the
case of long straight strings gravitational interaction seems to play a more
important role because straight strings freely moving in the Minkowski
space-time do not radiate.

We shall develop here a formalism that will allow to calculate electro-
magnetic and gravitational radiation from strings in situations in which
relevant accelerations are due to their dynamical gravitational interaction.
In such cases the linearized theory describes mutual gravitational interacti-
on of the strings and the produced electromagnetic radiation (if one of the
strings is a superconducting one), while gravitational radiation appears to
be the effect of the second post-linear order.

The Poincare-covariant perturbation theory developed here for gravi-
tating cosmic strings is similar to the scheme used some time ago to treat
gravitational and electromagnetic radiation from gravitationally interac-
ting point particles [4-7]. Our primary goal in reanimating this approach
was to examine the problem of collision of non-parallel straight strings.
When strings are parallel the problem reduces to 1+2 gravity interacting
with point particles. In this theory there is no room for gravitational wa-
ves at all and the space-time is flat everywhere outside the sources [8].

( Note, that we can not use the same arguments in the case of electro-

magnetic radiation, when superconducting strings are introduced in the
string network, because of the existence of electromagnetic waves in 142
-dimensional space-time!) For non-parallel strings the situation seems to
be much more interesting. In fact, when two such strings collide (but not
intersect) at a sufficiently small angle, the point of there minimal separa-
tion can move faster-than-light. Since it is around this point gravitational
stresses are most significant, Cherenkov-like radiation can be anticipated.
To check whether it is indeed the case we perform explicit calculations. It
turns out that in the case of two Nambu strings the corresponding post-
linear amplitudes vanish for both independent polarization states of emit-
ted gravitational wave. This result clearly indicates the presence of some
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hidden symmetry of the Einstein-Nambu action. .It may be shown [9], 'fga;
crossed strings configuration can be transform'ed into pal.:allezl m:f pr(cl)iwt‘e
the above Cherenkov condition holds. There is no gravitational radiation
in the case of two parallel Nambu strings. But if one of the strlxllll(gs 1151ka.
current-carrying one, we can obtain a powerful source of Chere : ov-m(:
electromagnetic radiation [10]. If the point of minimal separation ;
ves with a slower-than-light velocity the same s.ymmetry cfna.b.leslgni. o
transform the non-parallel strings configuration into a static d1§tr1d ublcgll
of matter, charges and currents [11]. Thu§ one can not obtained bo
gravitational and electromagnetic radiation in this case. . e
The smallness of the angle deficit pa:a.met‘er for GUT .strmgs ( izh
10~%) enables one to use the same p.erturbatlon ‘scheme in ma.lxllly ot hj:
applications involving gravitating infinitely long stn.ngs: In .partlcul:-.rm ,t -
formalism provides a way to calculate vacuum ?ola,nzatxon ina [::11 Thesi
space-time and to consider self-action of a po‘mt cha}'ged particle. e
two effects are quite different from the first pomt.of view, but neverInd -
have the same explanation and may be treated in 2 parallel way. e -
quantum and classical fields are both sensitive to .t1.1e global stbructtlure (c:;-
the space-time. Thus non-trivial boundary co.nchtlons alter ‘ oft{ : dzerf -
point fluctuations of a quantum field and 2 .cla,ssma] electrostatic field o
charged particle leading to the effects mentioned above.

2 Einstein - Nambu - Nielsen - Olesen action

Consider the system of infinitely thin strings interacting through thelvr
gravitational and electromagnetic fields. It is described by the action (we
omit indexes numerating the strings)

S = Syt Sem + SN+ Y S0+ ) Sints 1)

= — 14, _ is the Einstein action, Sem =
h S,.=——167rG)1fR,/gd:c is . : :
V—V(;g‘;)_yl | Fz\/(— g dz. Each of ordinary strings 1 described by the action

(Nambu action)

AB 32:“ 37}”

sw =2 [ V7" S ggmomds(O) €6 @)




308 D.V.Gal’tsov and Yu.V. Grats

For. a current- carrying (superconducting) string we choose the action
which was proposed by Nielsen and Olesen [12] ’

Sno = / /= AB( oy O* B 194 ¢
1Y ()] 3 94 _acgguv[x(C)]"' 5@@'] a*¢, (3)
where ¢ is a ‘scala.r field on the world-sheet of superconducting string. This
field determines electromagnetic properties of the string. In particular,

Interaction of the string with an external electromagnetic field is described
by the term

_ dz+ 9 |
Sont = —e / Ms“%%fiulz(cn &, (4)

where e48 = £22 _ {0 di i i i
= Wwo-dimensional antisymmetric tensor (€1 = —gl0 —

—1). In the expressions above A* is the 4-potential of the electroma, etic
field, g, is the space-time metric generated by the strings, R is the f::la.la.r
curvz?ture, G is the Newton constant, p is the string ten;ion parameter
Y4B is the metric on the two-dimensional world-sheet of the string From,
the constraints one obtains that for N ambu string this metric is the i1.1duced

one
— Jdz* 9z
AB = —haCA ﬁypu- (5)

Whlle in the case of superconducting string we must use some more com-
plicated expression

9, 042" 02" — _1 €D ;
K94, 02" 02" — 840050 27487 " (19apOcz®dpa” — dopdpe) = 0.
- - 3 . 6
;I}‘lhe gctll(cl)n h( 1)-(4) is invariant under an arbitrary repa.rametrizations(o}'
€ world-sheets, under diffeomorphisms of spac -t

transformations of A%, prene st v e

. The val:iatio'n of the action with respect to the space-time metric g
gives the Einstein equations with the energy-momentum tensor >

B dz* 9zv §4(a —
T _ AB ¢
Su [yl le eV T A

The Bianchi idfsnti’ties reproduce the equations of motion. In the confor-
mal gauge g, 34z = 0, gu(z*iv + x"‘rc"’) = 0 (coordinates on the
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world-sheets are specified as usual (° = 7,({! = o the and corresponding
derivatives are denoted by a dot and a prime respectively) they read

i — gk 4 T (38 — 20 ) = F*eABo,z,0p4, (8)
7

where e is the charge of current carriers. In the case of Nambu string the
right-hand side of the equation is equal to zero. For the scalar fields we

obtain the equations

§— ' = ~SFuetP0,0%052". ©)

Egs. (8) and (9) must be solved together with the Maxwell equations with
the current

j*(z) = Ze/\/:?EABan“aaqbﬁ(m\/—_——?O)d%-

Some exact solutions of the coupled Einstein-Nambu system for an arbitr-
ary number of parallel Nambu strings are known [13-14]. To construct
a perturbative scheme that would allow to analyze more general situati-
ons we break the general covariance of the Einstein-Nambu-Nielsen-Olesen
system and cast it into Poincare-covariant form. So we write

(10)

(11)

where 7, = diag(1,—1,—1,—1) is a flat-space metric in Cartesian coordi-
nates and h,, is a symmetric Minkowski-space tensor. Hereon the raising
and lowering of indices will be performed with 7),,. It should be empha-
sized that neither h,, is supposed to be small, nor the Minkowski metric
has to be considered as a metric of the physical space-time.

The next step is to impose the flat space-time de-Donder gauge

Guy = Mo t+ h’PV’

a9 =0, (12)

where ¥, = by, — 3hnu, b = hagn®?, and substitute the Eq.(11) into
the Einstein tensor. This gives

1" Badpp*” = ~167GTH, (13)
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where an effective stress-

. energy tensor consist i
A s of a material part and a

. BV v v
T =T# +S“ . (14)

In E(llw( 14) S, den?tes all non-linear terms coming from the Einstein ten-
sor. Maxwell equations can be rewritten in the same form

N 0adp A = dmit, i = \/=g(j# + S#), (15)
where |
o6 _ 1 8[(\/—— B\ ve uA_vo
g MV =99"9" — o) By, ). (16)

Recall again, that in spite of a linearized-like appearance, (13) and (15)

3 Iterative scheme

To proceed further we expend h,, and A* in terms of gravitational

constant G
- 1 -
b =) B0, 4 = 3 At (17)
=1 =0

In actl.la.l calculations involving strings dimensionless parameters in th

expansions tur.n out to be the Lorentz-enhanced conical deficit angles [9]e
The left ha.'nd sides of the Eqs.(13), ( 15) contain all orders of the expansions.
(17), and in order to build a series in terms of G one has to apply an

iterative scheme. This has to be don ;
. e together with th H
world-sheets variables o € expansion of the

o0
z# =3 " zlk(g), - (18)
=0
Combining both series we collect all terms up to a given order of G in the

right hand sides of Egs. ( 13) and (15) get i
' th
gravitational copstant (15) get the expansions m terms of the

o0 co
Frary ZT‘SQ, iy = Zzl(tl) (19)

I=0 =0
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Using this expansions we now rewrite the Einstein equations as an infinite
system of flat-space d’Alambert equations

1°P0,059() = 167GV, (20)
In the same way we can rewright the Maxwell equations
1°P8,05 AV = 4mi8 (21)

Non-linear terms in the strings equations of motion (8) have to be expanded
according to Eqgs.(17) and (18), and then by collecting all relevant products
of lower order terms of the metric, the electromagnetic field and the world-
sheet variables, the following set of non-homogeneous equations is obtained

(82 — 32)e = O, (22)

In the zero order the force terms in the right hand side vanish and we get
homogeneous equations for the input string world sheets which has to be
solved together with the constraints. )

4 Collision of two straight Nambu strings

In this section we briefly reproduce the results of our previous papers
[9-11]. Let us examine a collision of two non-parallel straight Nambu
strings moving with a non-zero impact parameter. For such kinematics of
the motion the question arises whether a Cherenkov gravitational radiation
is produced if the point of minimal separation between the strings movers
faster than light in the rest frame of one of them. We start with the
following input world-sheets, obviously satisfying the zero-order equations
of motion (it is necessary to introduce an index specifying the strings at
this point) ]
gt =dl f ubr +2ho, a=1,2. (23)

Here the constant four-vectors dj,u; and X5 are the impact parameter,
four-velocity and four-orientation vector of each string. It is convenient to
choose them as follows

ulll = (11 0,0, 0), EI{ = (Oa 0,0, 1)a
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uh = 7(1,0,—vcosa,vsina), %8 = (0,0, sina, cosa), (24)

2\-1/2

where Cartesian coordinates t, , y, z are understood and y = (1-v ) /2,

In this frame the velocity of the point of minimal separation can be written
vp =

as follows _ . @5
stno

It is also convenient to chose the impact parameters satisfying the ortho-
gonality conditions

v

(dotta) = 0 = (daa)- (26)

For the Fourier-transform of R{V# from the Eq.(20) we obtain

h(g) = TGl v itede) 5 u, ) 6(4 ), (27)
@ q

where (gd.), (qua), (qZa) are Minkowskian scalar products and

x = ubuf — BT~ o (uk — E2). (28)
We see that delta-functions in the Eq.(27) shift the momentum ¢ from the
pole g2 = 0. Physically this means that the amplitude of the gravitational
radiation in the first order of the perturbation theory is equal to zero.

The next step is to find corrections to the world-sheets of strings due
to there gravitational interaction. Substituting (27) into (22) we obtain
the following expression

diq
(2m)*’

(29)

m(l)p - / Fﬂ” (Q) e—i(qda+quar+q2¢.a)
¢ (420)? — (qua)?

where

3 -

Fi(q) = mef@“(%s"qﬂ — 728¢") (1015 — T1015)0(qu2)8(¢Z2)
q

(30)

and similarly for another string.

First order corrections to the strings world-sheets are used to build the
Fourier-transforms of the material contributions to the post-linear stress
tensor. To build the gravitational stress-energy temsor we must contract
two first-order Fourier-transforms (27) coming from different strings on the

e —
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graviton mass-shell and obtain the expression for 5#¥. We can present the
post-linear tensor amplitude in the form

By I
2

T””(k) - 167TGI1'1I"2/ ﬁ; 4 —2— 992 —19(g—Fk)dx D(Q)d‘lq; (31)
¢ (g-F)
Here D(q) is the product of delta-functions

D(q) = §((k — @)u1)8((k — ¢)Z1)6(qu2)8(q%>), (32)

and 64” are effective contributions from two strings. One can find the
explicit expression for 65 in our paper [9].

Now we can show how Cherenkov condition arises. Indeed, from the
conservation lows (32) one obtains following relation

k® = k*v/sina. (33)

Obviously it can be satisfied if and only if the following inequality holds

vp = v/sina > 1. (34)

Clearly it is just the Cherenkov condition for the angle at which gravitons
are emitted by a faster-than-light source.

We proceed as follows. First of all we perform three of the four in-
tegrations in (31) by means of the delta-functions (32). After that the
last integration on the 2 component of the momentum ¢ is performed by
closing the contour in the upper half-plane of the complex variable ¢*.

The calculation of the 4-momentum flux at the infinity associated with
the second order gravitational potentials ¢,(f.",) leads to the following expres-
sion for the total 4-momentum loss due to gravitational radiation

ap =S / EO(R)5(K) (rap ()72 (k) = (B} (B))d*,  (35)

where. 7,5(k) is the Fourier-transform of the second order effective stress-
energy tensor (19). The fourth delta-function which selects the Cherenkov
condition (34) will appear squared in the integrand in (35). An extra one
must be converted to the normalization length L,

w Lz . w
;);) - 5;5“ B 'vp)’

8 (k* - (36)

21 3akas 636
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and omitted giving the radiation loss per unit length of the string at rest.
After that only algebraic manipulations is needed to get the final result. We
calculated the projections of tensor amplitudes (31) onto two independent
polarization states of the emitted gravitational wave. The result was an
explicit zero [9)].

This result makes us suspect the presence of some symmetry of the
Einstein-Nambu action which reduces the system of colliding non-parallel
strings to the parallel ones which is described by 142 gravitational theory.
In fact, our system is symmetric under the Poincare transformations of the
embedding space as well as under independent reparametrizations of the
string world-sheets. From these symmetries one can construct some special
transformation which takes a crossed string configuration into a parallel
one provided the faster-than-light condition (34) holds. The proof is based
on the fact that one can use any transformations which i) leave invariant
our Poincare-covariant system (13) and (22), and ii) transform the input
configuration (23) into the parallel configuration. Since the solution is
supposed to be constructed up to an arbitrary order of the gravitational
constant starting from this input configuration, the existence of such a
transformation can be regarded as a proof of the above statement. The
explicit form of this transformation one can find in our paper [9].

We see that for the slower-than-light motion of the point of minimal
separation gravitational radiation was forbidden kinematically. This result
has a very simple explanation based on the same symmetry of the system
considered [11]. In this case one can perform the Lorentz transformation
from the initial frame to the frame moving along z-axis with the speed
equal to vp. After that, using the symmetry of the system under repara-
metrizations of the world-sheet, we obtain that in the new Lorentz frame
we have a static distribution of matter. If background geometry is a sta-
tic one, corresponding retarded, advanced and radiative Green functions
depend on the observer’s time t and the time of radiation t' through the
difference (t—1'). Therefor the retarded potentials of any static source are
independent of time. But the energy emitted is the function of the time
derivatives of the radiative potentials, and thus vanishes.

Thus the absence of gravitational bremsstrahlung under collision of
straight Nambu strings is an exact result for any their relative orientation.
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5 Cherenkov radiation of
superconducting cosmic strings

If one of the strings is a superconducting one the calculation can
be made by the same way. In the absence of gravitational interaction
the world surfaces of the strings are parametrized by the equations z =
d4 + ULC° 4+ SH¢. Tt is convenient to perform the calculations in the rest
frame of the ordinary (Nambu) string (a = 1) , so

Uy =(1,0,0,0), =% =(0,0,0,1).
And for the world-sheet of the superconducting string (a = 2) we obtain
Uy =~(1, vecose,0,vsin ), X = ¢(0,—sina,0cosa), (37)

where € can be found from the equation (6). These values are used as the
initial data for the next step of the iteration procedure. At first we must
calculate the retarded solutions for potentials yb,(‘,,l) and AE\O). At this
step the tensions S in the right parts of (13) and (15) are ignored. Then
one must calculate the supplementary deformation of the world surface of
the second (current-carrying) string and the corresponding perturbations
of the current z#.

Four-momentum loss due to electromagnetic radiation is calculated
with the help of the formula

APH = % ;3 / dtk KO(K)5(k) | ENRYK) |, (38)
A=0,¢

where A - polarization index, 3(k) - is the Fourier-transform of the first
order effective current. It may be proved, that f(k) nonvanishes if the
Cherenkov condition (34) holds only. In the rest frame of the Nambu
string photons wave vectors form the cone withe the angle 6:

sin «

cosf =

(39)

The total energy loss due to electromagnetic radiation with the polarization
A =0, ¢ is the following

dE®) 2,32, 3 € "
5 (ArGu112)* v°v* cos’ a —>

21%
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dE®)  tga., dEC)

i o e o (40)
where I is invariant current amplitude, d is the impact parameter. For-
mulae (40) describe the case of the space-like current, for the time-like
current one have to exchange the polarization indexes. This may be con-
nected with the symmetries of the action, in the same way as in the case
of nonsuperconducting strings [9]. The logarithmic infrared divergence in
the spectra can be eliminated by introducing length parameter R. It is a
distance, where collective gravitational effects of the string network begin
playing role. As a result for the full energy loss per unit length of the
ordinary string we obtain the expression

AE = (47Gu L) (v*y® cos® @ 4+ y cosasin? @) In ’Y;—dR :
If @ = 0 the Cherenkov condition is fulfilled for all v. In this case the
problem turns out to be 142 electrodynamics, so the nontrivial relation
between these two theories is found. Using the symmetries of the action
one can prove, that 142 interpretation can be expanded for the case of
nonparallel strings too [9].

When two parallel bosonic strings at v ~ 1 are taken into account, then
AE vI\?. 7R
— ~ 107" —) In(<=

p2Y
where I, = e\/p ~ 10224 is the critical current. So at high speed the
energy loss may be comparable with the string energy even at I < I,. -
If @ > 0, the stationary source appears. In this case the intensity of
radiation is proportional to the velocity of the point of minimal separation
vp = v/sina, as it must be expected,and we obtain

I N 7 | s 1R
= ~ 10 (~c—)(Icr 7111(%) [erg/sec].

We think that this new mechanism of radiation from cosmic strings is im-
portant to incorporate superconducting strings into cosmological scenario.
Moreover, it seems that electromagnetic radiation produced by current-

carrying strings can be used in a search for the observable manifestations
of superconducting strings.

(41)

(42)

(43)
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¢ Topological self-action and vacuum polariza-
tion in multiconical space-time

The aim of this section is to determine linear and post-linear c?r-
rections to the Euclidian Green function for a ma,ssles.s sca%a,r field with
arbitrary coupling in the space-time of N parallel cosmic strings. The co-
incidence limit of this terms and their derivatives enables one to calcu!a,te
the vacuum expectation values < ¢ >yac and < Too >vac and t? coPs1der
the problem of topological self-action of the point charged particle m‘ the
space under consideration. o o

Let us consider the n -dimensional generalization of the m}lltlstrmg
space-time [13] (in this section it is more convenient to make choice of the
metric with the signature (—, +,+,+))

ds® = —dt2+d:1:121_1 + 5 .+dm§+e—9(”°)6abdmadzb , @b, cy..= 1,2, (44)

where

N
zc) =Y 8Guilnri, (45)

=1

= [(z1—0s)?+ (22— ,3,-)2]% and p; - is a dimensionless parameter: Ifn=
4 p; become the masses per uhit length of the strings. Our space—.tlme has.
the structure M, _o X V,, where M,,_5 is the (n—2) - dimensional Mmkow.skl
space and V is the two-dimensional locally flat Riemanian space with
N conical singularities at the points (o4, B:). We will consider the case
Gp; << 1 because for the real cosmic strings Gu; is about 10"6.. .
Because of the certain advantages in working within the Euclidian ap-
proach let us replace ¢ by —iz, in the line element (44). The manifold is

now described by the Riemanian metric
ds? = do? + dz?_y + ...+ e )6, datda’ . (46)

Euclidian Green function is the fundamental solution of the Poisson equ-
ation in the space-time (46). For our choice of coordinates it takes the

form )
AZGg(z,2") = —6"(z — ') - VGE(z — 2'), (47)
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n __
:\}Ilhere AQ = 6‘1',,8“3", oy = 1,2,...,n - is the Laplacian operator in
e n - dimensional Euclidian space, and we introduce operator V

V= —(1 - e"Q(-""C)) 2": 0

92 ° (48)

#=3

If all Gu; << 1 this operator may be considered as a small perturbation
and one can write

Ge=Gp+GyVGY + GIVGLVGY + ... | (49)
N.ow we are in a Position to give the approximate expression for the Eucli-
dian G.reen function. Substituting (48) into (49) we obtain the first order
correction to the Green function

0 d'q 15 :
Gg'(z,2') = / @y HJ(qz') e@2q(q,) 1™ (q) , (50)
=3
where
o f: p?
I(n) — d Y4 t=3 —ip(z—2z'
D= ] Gy oz € By

To obtain the regularized value of G(El) in the coincidence limit z' — z it

is convenient to use the method of dimensional regularization. Using this
method one obtains that

N
2Gu;ln r;
GE(:L‘,:B): —Z% =92 (52)
i=1
and
2 _Tn/2) N G
G = L
e(z, ) 72 (n=2) T(n) ; = n> 3. (53)

We begin our treatment of classical and quantum effects in the multiconical
space-time with a study of the electrostatic field of a classical point charged
particle. Both classical and quantum fields are sensitive to the global
structure of the manifold. This means that a regularized value of a self-
energy of a charged point particle in the curved background must be a

i
:

1

|
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function of its coordinates. Indeed, the self-energy of a test charge is given
by the expression

U(z) = 27e? Gg(z, ) . (54)

Where GE is given by (53) Thus in 4-dimensional space-time the electro-
static self-energy has the form

N 2
we“Gu;
Uyeolz) = Z Te Wl

4r; {5%)

i=1

We see that in the first order of the perturbation theory the point charged
particle interacts with any string as it was a charge erGp /4 at the distance
r in the Euclidian space. Of cause this interpretation of the result is valid
in the lowest order only. If N = 1 our result coincides with that of the
papers [15].

It is well known that nontrivial boundary conditions alter the zero-
point fluctuations of quantum fields leading to the existence of a vacuum
polarization. The multiconical boundary conditions must lead to similar
effects. Expression of the Euclidian Green function enables us to evaluate
the vacuum average < ¢? >, in the case in which for all i Gu; << 1

<B% > 0= lim G;;g(z,z’) p (56)
Substituting (53) into (56), we obtain n = 4)
N
Gu;
2 _ 1
< B >pge= ; T (57)

Given the Euclidian Green function on the manifold under consideration
the vacuum energy-momentum tensor may be determined by

LT Syue= z];i DY Gg%(z,2) (58)
where operator DZI takes the form
U 1 v 1 '
Dy =[(1-26)V; - 26V}, + (26 - 5) §; V3], (59)
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fI‘he co%ncidence limits of the various derivatives of the function Gg(z, :z:')
in t.he expressions (58) can be obtained in the same manner as in determj.
nation of G;?(z,). One obtains

_ I 3(%) n 1 & G,u,-
/2 (n) {2(n +1) (=2 5)} z; e (60)
i=
If we consider only one string (N = 1) our result coincides with that of
the papers [16].

.A]l the effects considered before are the effects of the first order in gravi-
tational constant G. In this order of the perturbation theory contributions
from different strings add to each other, and superposition principle takes
place. If one goes to the second postlinear order some new effects are reve-
aled. Vacuum interaction of straight parallel cosmic strings is one of them
Ind.eed.it may be shown that postlinear contribution to GEe(z,2) and its:
derivatives consists of contributions of two different kinds. Contributions
of the first k.ind are proportional to p? and are simply the small corrections
to our previous results. Another terms are proportional to the products
Biltk, ¢ # k and are the functions of the distance between the strings. To

show it we start from the expression for th
3 e total vacuum ener er uni
length of the strings & per it

Eint = —/d(lflditz v 9(2) < T(?(-T) >vac -

In the postlinear order

< TOO >vac=

(61)

-Q(z. : ) ’
™) < TY(@) >pac= lim {0,07 [GP(a @) = Yz )P (', )]+

1 ' ' ’
(2 = )0u0" G - 2(20)2,0" 6 + 02)0u0” 6P} (62)

1) 2 .
v;here G B and Gg.) are the corrections of the first and the second order to
the Euclidian Green function, and one must take into account the terms

which are proportional to the products p;ur only. The function G’g) is

iven by the ex : ; (2) )
%V Y obt:j ! e expression (53), G g may be determined by the same way.

8 al'(n/2)T(2+ n/2)I(n/2 — 1) G?uyp,

Epy = —
B wn/2-2 (3 + n)

(63)

ar—2

!
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where a = [(1 — @2)? + (61 — 2)?]1/2 is the distance between the strings.
If n =4 (63) dives us the force per unit length between the strings. In
the case of the four-dimensional space-time we obtain

4 G’umps

157 a2 (64

Eint = —
We see that the multiconical boundary condition alter the zero point va-
cuum fluctuations of a scalar field leading to the existence of an attractive
force by the same way as in the case of two parallel plates in the wellknown
Casimir effect. In the 4-dimensional space-time this force decreases with a

distance between the strings as a 3.

7 Conclusion

The generalization of the fast-motion approximation scheme is given
for the cosmic strings that accounts for their gravitational interactions up
to the second order of the gravitational constant and allows to calculate
the gravitational and electromagnetic radiation ( if current-carrying strings
are taken into account ) in cases where the relevant accelerations are due
to the gravitational interaction. It has been shown that the space-time
of a network consisting of straight Nambu strings was flat outside the
strings and no gravitational radiation was produced. But if at least one of
the strings is a superconducting one, a powerful source of electromagnetic
radiation arises. We think, that this effect may be of great importance
from the cosmological point of view.

The same approach can be used to determine linear and post-linear
corrections to the Euclidian Green function. The expression for Gg enables
one to calculate the vacuum expectation values < ¢? >, and < Tog >vac
and to consider the problem of the topological self-action of a point charged

. particle. It is shown that multiconical boundary conditions lead to the

existence of an attractive force between Nambu strings.
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