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Abstract 

Linear and post-linear formalisms are generalized to incor­
porate gravitating N ambu and superconducting cosmic strings. The 
collision of two straight non-parallel strings is analised. When strings 
scatter at a sufficiently small angle the point of their minimal separa­
tion can move with a faster-than-light velocity, and a Cherenkov-like 
radiation can be anticipated. However, it is shown tliat for Nambu 
strings in the post-linear order the gravitational reaction is preci­
sely zero. It is argued that any "faster-than-light" crossed colliding 
strings configuration is essentially equivalent to the parallel one which 
is described by the 1+2 gravity while any "slower-than-light" confi­
guration may he r~duced to some static distribution of matter. Thus 
in both cases we have no gravitational radiation. But we can obtain 
a powerful source of a Cherenkov-like electromagnetic radiation if at 
least one of the strings is a superconducting one. The same approach 
can be used in many other applications. It is shown, that this forma­
lism provides a way to calculate vacuum polarization and to consider 
the problem of topological self-action of a classical charged particle 
in a multiconical space-time. 

1 Introduction 

A Complete understanding of different mechanisms of gravitational 
and electromagnetic radiation by cosmic strings is important to incorporate 
them into a realistic cosmological scenario [1]. The hypothesis of scaling 
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solution [2] is intimately related to the conversion of the string network · 
energy into gravitational radiation. Electromagnetic radiation seems to be 
on: of the most important mechanisms of energy losses by superconducting 
stnngs [3]. In most cases radiation emitted by excited strings may be 
computed using the linearized theory. For example, the important case 
of radiation produced by oscillating loops falls into this category. In the 
case of long straight strings gravitational interaction seems to play a more 
important role because straight strings freely moving in the Minkowski 
space-time do not radiate. 

We shall develop here a formalism that will allow to calculate electro­
magnetic and gravitational radiation from strings in situations in which 
relevant accelerations are due to their dynamical gravitational interaction. 
In such cases the linearized theory describes mutual gravitational interacti­
on of the strings and the produced electromagnetic radiation (if one of the 
strings is a superconducting one), while gravitational radiation appears to 
be the effect of the second post-linear order. 

The Poincare-covariant perturbation theory developed here for gravi­
tating cosmic strings is similar to the scheme used some time ago to treat 
gravitational and electromagnetic radiation from gravitationally interac­
ting point particles [4-7]. Our primary goal in reanimating this approach. 
was to examine the problem of collision of non-parallel straight strings. 
When strings are parallel the problem reduces to 1+2 gravity interacting 
with point particles. In this theory there is no room for gravitational wa­
ves at all and the space-time is flat everywhere outside the sources [8]. 
( Note, that we can not use the same arguments in the case of electro­
magnetic radiation, when superconducting strings are introduced in the 
string network, because of the existence of electromagnetic waves in 1+2 
-dimensional space-time!) For non-parallel strings the situation seems to 
be much more interesting. In fact, when two such strings collide (but not 
intersect) at a sufficiently small angle, the point of there minimal separa­
tion can move faster-than-light. Since it is around this point gravitational 
stresses are most significant, Cherenkov-like radiation can be anticipated. 
To check whether it is indeed the case we perform explicit calculations. It 
turns out that in the case of two N ambu strings the corresponding post­
linear amplitudes vanish for both independent polarization states of emit­
ted gravitational wave. This result clearly indicates the presence of some 
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hidden symmetry of the Einstein-Nambu action. It may be shown [9] ~hat 
crossed strings configuration can be transformed into pa:all~ one pr~v1~ed 
the above Cherenkov condition holds . There is no grav1tat1ona1 r_adia~1on 
in the case of two parallel N ambu strings. But if one of the strmgs l~ a 
current-carrying one, we can obtain a powerful source of Chere~ov-like 
electromagnetic radiation (10]. If the point of minimal separation mo­
ves with a slower-than-light velocity the same symmetry ':11a~les _one. to 
transform the non-parallel strings configuration into a static distribution 
of matter, charges and currents [11). Thus one can not obtained both 
gravitational and electromagnetic radiation in this case. . 

The smallness of the angle deficit para.meter for GUT strmgs (Gµ.,..., 
10-S) enables one to use the same perturbation ~cheme in ~any oth~r 
applications involving gravitating infinitely long stnngs. In _particul~ , t!ll5 
formalism provides a way to calculate vacuum polarization m a :Uult1stnng 
space-time and to consider self-action of a point charged particle. These 
two effects a.re quite different from the fust point of view but nevertheless 
have the same explanation and may be trea.ted in a parallel way. Indeed 
quantum and classical fields are both sensitive to :~e global structure of 
the spa.ce-time. Thus non-trivial boundary con.ditmns alter _both zero­
point fluctuations of a. quantum field a.nd a ~assical electrostatic field of a 
charged particle lea.ding to the effects mentioned above. 

2 Einstein - Nambu - Nielsen - Olesen action 

Consider the system of infinitely thin strings interacting throu~h their 
gravitational and electromagnetic fields. It is described by the action (we 

omit indexes numerating the strings) 

S = Sgr + Sem + L SN+ L SNo + L Sint1 
(1) 

h S = -(l611"G)-1 JR cg d4x - is the Einstein action, Sem = w ere gr V -y . . . h · · 
-(1611")-1 J p2H d4x. Each of ordinary strmgs is descnbed by t e action 

(Nam.bu action) 

µ J AB axµ. axv ( (I)) d2; (2) 
SN= -2 H'Y a(A &(BYµ.v x .,, .,,. 
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Fo~ a current- carrying (superconducting) string we choose the action, 
which was proposed by Nielsen and Olesen [12) 

S - J ..;CY AB(()[ µ fJxJJ. {}xv 1 8<P [)</> 
NO - 11 -2 {)(A o(B9µ.v[x(()] + 2 ()(A o(B] d2(, (3) 

where </>is a .scalar field on the world-sheet of superconducting string. This 
~eld de~ermmes electromagnetic properties of the string. In particular, 
mteraction of the string with an external electromagnetic field is described 
by the term 

S J r-= AB oxJJ. o<f> 
int= -e v-/E --A [x(()] d2( . o(A o(B µ. , (4) 

where EAB = ~ - two-dimensional antisymmetric tensor ( eOI = -e10 = 
-1). In t~e expression~ above AJJ. is the 4-potential of the electromagnetic 
field, 9µ.v Is th: space-time metric generated by the strings, R is the scalar 
cur~ture, G Is .the Newton constant, µ is the string tension parameter, 
I AB Is the ~etnc on the two-dimensional world-sheet of the string. From 
the constramts one obtains that for N ambu string this metric is the induced 
one 

oxJJ. OX 11 

/AB= {)(A o(B9µ.v· (5) 

~hile in the case of superconducting string we must use some more com­
plicated expression 

Jl9µv0AXµOBX
11 

- 0A</>0B</J - ~1AB/CD(µ9a{30CXcx0DX{3 - oc</>on</>) = 0. 

The action (1)-( 4) is invariant under an arbitrary reparametrizations (:~ 
the world-sheets, under diffeomorphisms of space-time and under gauge 
transformations of AJJ.. 

The variation of the action with respect to the space-time metric 
9 gives the Einstein equations with the energy-momentum tensor µv 

TJJ.11 - "' J AB oxJJ. ax 11 64
( x - x( () 

- 6µ 1 o(A o(B ~ v=:id2( + r:~. (7) 

The Bianchi identi
1
ties reproduce the equations of motion. In the confor­

mal gauge 9µvxJJ.x 
11 

= 0, 9µ.v(xJJ.xv + x'JJ.x'11 ) = 0 (coordinates on the 
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world-sheets are specified as usual ( 0 :::: r, ( 1 = u the and corresponding 
derivatives are denoted by a dot and a prime respectively) they read 

xµ - x"µ + f~,\(x"x,\ - x'vx',\) = i;_FJJ."eABOAXv8B</>, (8) 

where e is the charge of current carriers. In the case of Nambu string the 
right-hand side of the equation is equal to zero. For the scalar fields we 
obtain the equations 

•• 11 e AB £:i µ£:1 v </>- </> = -2F,_.11e VAX UBX · (9) 

Eqs. (8) and (9) must be solved together with the Maxwell equations with 
the current 

(10) 

Some exact solutions of the coupled Einstein-Nambu system for an arbitr­
ary number of parallel Nambu strings are known [13-14]. To construct 
a perturbative scheme that would allow to analyze more general situati­
ons we break the general covariance of the Einstein-Nambu-Nielsen-Olesen 
system and cast it into Poincare-covariant form. So we writ_e 

9µ11 = T/µv + hµv, (11) 

where T/µv = diag(l, -1,-1,-1) is a flat-space metric in Cartesian coordi­
nates and hµ.11 is a symmetric Minkowski-space tensor. Hereon the raising 
and lowering of indices will be performed with T/µv· It should be empha­
sized that neither hµv is supposed to be small, nor the Minkowski metric 
has to be considered as a metric of the physical space-time. 

The next step is to impose the flat space-time de-Donder gauge 

8v'l/Jµ11 = 0, (12) 

where 'l/Jµv = h,_.11 - !hTJµ,11 , h = haf3·T/0 f3, and substitute the Eq.(11) into 
the Einstein tensor. This gives 

(13) 
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whe~et ant· ealffective stress-energy tensor consists of a material part and a 
grav1 a 10n part 

. r'w = Tµv + sµv . (14) 
In E (14) S i1 llv den~tes all non-linear terms coming from the Einstein ten-
sor. axwe equat10ns can be rewritten in the same form 

'T/°'f3o°'of3Aµ = 47riµ, iµ = h(jµ + Sµ), 
(15) 

where 
sµ 1 

= 47r.,j=gov[(Hgµ>.gvu - '7µ>.'T/11u)F>.u]. (16) 

Recall again that in spit f Ii · d . 
are still ' . . e o a neanze -like appearance, (13) and (15) 

. texfi act Emstem and Maxwell equations written in a Minkowski­
covanan orm. 

3 Iterative scheme 

const::i ~oceed further we expend hµ11 and A>. in terms of gravitational 

00 00 

hµ11 = "'hµ<'t, A>.="' AU>>. . ~ ~ (17) 
l=l l=O 

In act~al calculations involving strings dimensionless parameters in the 
expans1011s turn out to be the Lorentz-enhanced conical a fi .t 

(~~e) left hd~d sides of the ~qs.(13), (15) contain all orders 0 ; t~: e:~::i!~~ 
' an m order to hmld a series in terms of G h t 1 · t · h one as o ap_p y an 

I erative sc eme. This has to he done together with the expansion of th 
world-sheets variables e 

00 

xµ = L x(I)µ((). (18) 
l=O 

~o;::b~nin; ~~th series we collect all terms up to a given order of G in the 
rig . ~ s1 es of Eqs. (13) and (15) get the expansions in terms of the 
grav1tat1onal co.p.stant 

00 

Tµ11 = "'T(l) 
~ µ11• 
l=O 

00 

i = "';(l) µ ~·µ. (19) 
l=O 
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Using this expansions we now rewrite the Einstein equations as an infinite 
system of fl.at-space d'Alamhert equations 

.,..p/3 {) 013•1•(!) = -167l"GT(l-l) 

., Ot 'l-'µ11 µ11 . 

In the same way we can rewright the Maxwell equations 

1/°'/3 Oa0(3A (I)µ = 47ri(I)µ, 

(20) 

(21) 

Non-linear terms in the strings equations of motion (8) have to be expanded 
according to Eqs.(17) and (18), and then by collecting all relevant products 
oflower order terms of the metric, the electromagnetic field and the world­
sheet variables, the following set of non-homogeneous equations is obtained 

(22) 

In the zero order the force terms in the right hand side vanish and we get 
homogeneous equations for the input string world sheets which has to be 
solved together with the constraints. 

4 Collision of two straight N ambu strings 

In this section we briefly reproduce the results of our previous papers 
[9-11]. Let us examine a collision of two non-parallel straight Nam.bu 
strings moving with a non-zero impact parameter. For such kin~matics of 
the motion the question arises whether a Cherenkov gravitational radiation 
is produced if the point of minimal separation between the strings movers 
faster than light in the rest frame of one of them. We start with the 
following input world-sheets, obviously satisfying the zero-order equations 
of motion (it is necessary to introduce an index specifying the strings at 
this point) 

x~ = d~ + u~r + ~~u, a = 1, 2. (23) 

Here the constant four-vectors d~,u~ and~~ are the impact parameter, 
four-velocity and four-orientation vector of each string. It is convenient to 
choose them as follows 

ui = (1,0,0,0), ~r = (0,0,0,1), 
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u~ = 1(1,0,-vcosa,vsina), E~ = (0,0,sina,cosa), (24) 

where Cartesian coordinates t, x, y, z are understood and/= (1- v
2
)-

1
l

2 
• 

In this frame the velocity of the point of minimal separation can be written 

as follows v 
Vp:: -.-. 

sina 
(25) 

It is also convenient to chose the impact parameters satisfying the ortho­

gonality conditions 

For the Fourier-transform of hP)µv from the Eq.(20) we obtain 

h~l)µv(q) = (41r~2Gµa1r~vei(qda)h(qua)6(q'Ea), 

where (qda), (qua), (qha) are Minkowskian scalar products and 

1 . 
,,,.µv - ul'u" - 'El''E" - -11µ"(u2a - 'E~). "a - a a a a 2 

(26) 

(27) 

(28) 

We see that delta-functions in the Eq.(27) shift the momentum q from the 
pole q2 = O. Physically this means that the amplitude of the gravitational 
radiation in the first order of the perturbation theory is equal to zero. 

The next step is to find corrections to the world-sheets of strings d~e 
to there gravitational interaction. Substituting (27) into (22) we obtam 
the following expression 

(1)µ J F/:(q) -i(qda+quar+q'.Eau) d
4
q (29) 

Xa = (qha)2-(qua)2e (27r)4' 

where 

Fi(q) = 327r3~Gµ2 ei(qda)(27r~a qi3 -11"~.B q")( U1aU113 - ~laE1,0)6( qu2)6( q'E2) 

q (30) 

and similarly for another string. 
Fi~st order corrections to the strings world-sheets are used to build the 

Fourier-transforms of the material contributions to the post-linear stress 
tensor. To build the gravitational stress-energy tensor we must contract 
two first-order Fourier-transforms {27) coming from different strings on the 

' I 

I 
I 
I 

I 
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graviton mass-shell and obtain the expression for siw. We can present the 
post-linear tensor amplitude in the form 

rµ"(k) = l67rGµ1µ2 j (O';" + O~" ) iqd2 -iq(q-k)di D(q)d4q. {31) 
q2 (q - k)2 

Here D(q) is the product of delta-functions 

and 6~11 are effective contributions from two strings. One can find the 
explicit expression for O~" in our paper [9]. 

Now we can show how Cherenkov condition arises. Indeed, from the 
conservation lows {32) one obtains following relation 

k0 = Pv/sino:. (33) 

Obviously it can be satisfied if and only if the following inequality holds 

vp = v/sina > 1. (34) 

Clearly it is just the Cherenkov condition for the angle at which gravitons 
are emitted by a faster-than-light source. 

We proceed as follows. First of all we perform three of the four in­
tegrations in (31) by means of the delta-functions {32). After that the 
last integration on the x component of the momentum q is performed by 
closing the contour in the upper ha.If-plane of the complex variable qX. 

The calculation of the 4-momentum flux at the infinity associated with 
the second order gravitational potentials ,,pi2J leads to the following ~xpres­
sion fOI the total 4-momentum loss due to gravitational radiation 

whel'.<~r0.13{k) is the Fourier-transform of the second order effective stress­
energy tensor (19). The fourth delta-function which selects the Cherenkov 
condition {34) will appear squared in the integrand in (35). An extra one 
must be converted to the normaliiation length Lz 

(36) 

21 3.,., 636 
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and omitted giving the radiation loss per unit length of the string at rest. 
After that only algebraic manipulations is needed to get the final result. We 
calculated the projections of tensor amplitudes (31) onto two independent 
polarization states of the emitted gravitational wave. The result was an 
explicit zero [9]. 

This result makes us suspect the presence of some symmetry of the 
Einstein-Nambu action which reduces the system of colliding non-parallel 
strings to the parallel ones which is described by 1+2 gravjtational theory. 
In fact, our system is symmetric under the Poincare transformations of the 
embedding space as well as under independent reparametrizations of the 
string world-sheets. From these symmetries one can construct some special 
transformation which takes a crossed string configuration into a parallel 
one provided the faster-than-light condition (34) holds. The proof is based 
on the fact that one can use any transformations which i) leave invariant 
our Poincare-covariant system (13) and (22), and ii) transform the input 
configuration (23) into the parallel configuration. Since the solution is 
supposed to be constructed up to an arbitrary order of the gravitational 
constant starting from this input configuration, the existence of such a 
transformation can be regarded as a proof of the above statement. The 
explicit form of this transformation one can find in our paper [9]. 

We see that for the slower-than-light motion of the point of minimal 
separation gravitational radiation was forbidden kinematically. This result 
has a very simple explanation based on the same symmetry of the system 
considered [11]. In this case one can perform the Lorentz transformation 
from the initial frame to the frame moving along z-axis with the speed 
equal to vp. After that, using the symmetry of the system under repara­
metrizations of the world-sheet, we obtain that in the new Loren.tz frame 
we have a static distribution of matter. If background geometry is a sta­
tic one, corresponding retarded, advanced and radiative Gr_een functions 
depend on the observer's time t and the time of radiation t' through the 
difference (t-t'). Therefor the retarded potentials of any static source are 
independent of time. But the energy emitted is the function of the time 
derivatives of the radiative potentials, and thus vanishes. 

Thus the absence of gravitational bremsstrahlung under collision of 
straight Nambu strings is an exact result for any their relative orientation. 
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5 Cherenkov radiation of 
superconducting cosmic strings 

315 

If one of the strings is a superconducting one the calculation can 
be made by the same way. In the absence of gravitational interaction 
the world surfaces of the strings are parametrized by the equations x~ = 
d~ + U/:r,0 + :E~(1 . It is convenient to perform the calculations in the rest 
frame of the ordinary (Nambu) string (a= 1) , so 

Uf = (1, 0, 0, 0), Ei = (0, O, 0, 1). 

And for the world-sheet of the superconducting string (a = 2) we obtain 

u: = 1(1, v cos a, 0, v sin a), E~ = c(O, -sina, 0 cos a), (37) 

where E can be found from the equation (6). These values are used as the 
initial data for the next step of the iteration procedure. At first we must 

calculate the retarded solutions for potentials 7/Ji,, 1) and A~ 0). At this 
step the tensions Sin the right parts of (13) and (15) are ignored. Then 
one must calculate the supplementary deformation of the world surface of 
the second (current-carrying) string and the corresponding perturbations 
of the current iµ. 

Four-momentum loss due to electromagnetic radiation i!> calculated 
with the help of the formula 

tiPµ = ~ L jd4k kµ0(k0 )6(k2
) I e{>.)(k)i(k) 1

2
, (38) 

27r )..=8,t/> 

where A - polarization index, i(k) - is the Fourier-transform of the first 
order effective current. It may be proved, that i(k) nonvanishes if the 
Cherenkov condition (34) holds only. In the rest frame of the Nambu 
string photons wave vectors form the cone withe the angle 0: 

sma 
cosO = -­

v 
(39) 

The total energy loss due to electromagnetic radiation with the polarization 
>. = 0, </> is the following 

21* 
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dE(<P) tg a dE(8) 
--( )2 
w..;--:y;;~' 

(40) 

where I is invariant current amplitude, d is the impact parameter. For­
mulae ( 40) describe the case of the space-like current, for the time-like 
current one have to exchange the polarization indexes. This may be con­
nected with the symmetries of the action, in the same way as in the case 
of nonsuperconducting strings [9). The logarithmic infrared divergence in 
the spectra can be eliminated by introducing length parameter R. It is a 
distance, where collective gravitatitonal effects of the string network begin 
playing role. As a result for the foll energy loss per unit length of the 
ordinary string we obtain the expression 

b.E = ( 47rGµ1I2) 2( v2-y3 cos3 a+')' cos a sin2 a) ln -yvR (41) 2d . 

If a = 0 the Cherenkov condition is fulfilled for all v. In this case the 
problem turns out to be 1+2 electrodynamics, so the nontrivial relation 
between these two theories is found. U sii:tg the symmetries of the action 
one can prove, that 1+2 interpretation can be expanded for the case of 
nonparallel strings too [9). 

When two parallel bosonic strings at v ~ 1 are taken into account, then 

(42) 

where Icr = e...fii ~ 1022 A is the critical current. So at high speed the 
energy loss may be comparable with the string energy even at I < Icr. · 

If a > O, the stationary source appears. In this case the intensity of 
radiation is proportional to the velocity of the point of minimal separation 
Vp = v/sina, as it must be expected,and we obtain · 

(43) 

We think that this new mechanism of radiation from cosmic strings is im­
portant to incorporate superconducting strings into cosmological scenario. 
Moreover , it seems that electromagnetic radiation produced by current­
carrying st rings can be used in a search for the observable manifestations 
of superconducting strings. 
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6 Topological self-action and vacuum polariza­
tion in multiconical space-time 

The aim of this section is to determine linear and post-linear cor­
rections to the Euclidian Green function for a massless scalar field with 
arbitrary coupling in the space-time of N parallel cosmic strings. The co­
incidence limit of this terms and their derivatives enables one to calculate 
the vacuum expectation values < </>2 >vac and <Too >vac and to consider 
the problem of topological self-action of the point charged particle in the 

space under consideration. · 
Let us consider the n -dimensional generalization of the multistring 

space-time [13] (in this section it is more convenient to make choice of the 
metric with the signature ( - , +, +, +)) 

ds2 = -dt2 +dx!_
1 
+ .. . +dx~+e-O(xc)15abdxadXb, a,b,c, ... = 1,2, (44) 

where N 

n(xc) = L 8Gµi ln Ti ' (45) 

i=l 

Ti= [(x1 -ai)2 +(x2 -,Bi)2]t and µi -is a dimensionless parameter. If n = 
4 µi become the masses per uhit length of the strings. Our space-time has 
the structure Mn-2 xV2, where Mn-2 is the (n-2)- dimensional Minkowski 
space and V2 is the two-dimensional locally fl.at Rlemanian space with 
N conical singularities at the points (ai,.Bi)· We will consider the case 
G µi < < 1 because for the real cosmic strings G µi is a.bout 10-

6
. 

Because of the certain advantages in working within the Euclidian ap­
proach let us replace t by -ixn in the line element (44). The manifold is 

now described by the Riemanian metric 

d 2 d 2 d 2 + + -O(xc) c d ad b S = Xn + Xn-1 . • • e Uab X X • (46) 

Euclidian Green function is the fundamental solution of the Poisson equ­
ation in the space-time ( 46) . For our choice of coordinates it takes the 

form 
(47) 
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where ~B = 8µ.vf)JJ.{)v, µ, v, ... = 1, 2, ... , n - is the Laplacian operator in 
the n - dimensional Euclidian space, and we introduce operator V 

(48) 

Hall Gµi < < 1 this operator may he considered as a small perturbation 
and one can write 

GE= G~ + G'};VG'}; + G'};VG'};VG'}; + ... , (49) 

Now we are in _a position to give the approximate expression for the Eucli­
dian Green function. Substituting ( 48) into ( 49) we obtain the first order 
correction to the Green function 

(50) 

where 
n 

J d
n LP[ 

J(n)( ) _ P i=3 -ip(x-x') 
q - (21r)n p2(p _ q)2 e · (51) 

To obtain the regularized value of G£) in the coincidence limit x' - x it 
is convenient to use the method of dimensional regularization. Using this 
method one obtains that 

and 

N 

G ( ) __ ~ 2Gµj}n Ti 
E x,x - ~ 

i=l 1r 

2 f 3(n/2) 
GE(x,x) = 1rn/2 (n- 2) f(n) 

N 

I: 
i=l 

n=2 (52) 

(53) 

We begin our treatment of classical and quantum effects in the multiconical 
space-time with a study of the electrostatic field of a classical point charged 
particle. Both classical and quantum fields are sensitive to the global 
structure of the manifold. This means that a regularized value of a self­
energy of a charged point particle in the curved background must he a 
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function of its coordinates. Indeed, the self-energy of a test charge is given 
by the expression 

U(x) = 21re2 GE(x,x). (54) 

Where GE is given by (53) Thus in 4-dimensional space-time the electro­
static self-energy has the form 

(55) 

We see that in the first order of the perturbation theory the point charged 
particle interacts with any string as it was a charge e1rGµ/4 at the d~stan~e 
r in the Euclidian space. Of cause this interpretation of the result is valid 
in the lowest order only. If N = 1 our result coincides with that of the 
papers [15]. 

It is well known that nontrivial boundary conditions alter the zero­
point fluctuations of quantum fields leading to the existence of a v~cu~m 
polarization. The multiconical boundary conditions must lead to s1m1lar 
effects. Expression of the Euclid.ian Green function enables us to evaluate 
the vacuum average< ¢2 >vac in the case in which for all i Gµi << 1 

2 Greg( ') < <T> >vac= lim E x,x . , 
x-x 

Substituting (53) into (56), we obtain n = 4) 

N 
2 L Gµi < <T> >vac= 

6 
2 2· 1r T· 

i=l i 

(56) 

(57) 

Given the Euclidian Green function on the manifold under consideration 
the vacuum energy-momentum tensor may be determined by 

I I 

< yv >vac= lim Dµ.,,, ar;9 ( x, x ) µ , (58) 
x-x 

I 

where operator D~ takes the form 

(59) 
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!he co~ncide~ce limits of the various derivatives of the function GE(x, x') 
m the express10ns (58) can be obtained in the same manner as in determi­
nation of Ge9 (x,x). One obtains 

r3rn) { n 1 N Gµi 
11"n/2f(n) 2(n+l)+(n-2)(2(-2)} L r!t. (60) 

i=l • 

<Too >vac= 

If we consider only one string (N = 1) our result coincides with that of 
the papers [16). 

. All the effects considered before are the effects of the first order in gravi­
tat10nal constant G. In this order of the perturbation theory contributions 
from different strings add to each other, and superposition principle takes 
place. If one goes to the second postlinear order some new effects are reve­
aled. V~cuum interaction of straight parallel cosmic strings is one of them. 
lnd:ed .1t may be shown that postlinear contribution to GE( x, x) and its 
derivatives consists of contributions of two different kinds. Contributions 
of the first ~d are proportional to µl and are simply the small corrections 
to our P_rev10us results. Another terms are proportional to the products 
µiJtk,. i =f. k and are the functions of the distance between the strings. To 
show it we start from the expression for the total vacuum energy per unit 
length of the strings 

Eint = -! dx1dx 2 G;g(2) < T.0(x) > V gi•i O vac · (61) 

In the postlinear order 

e-n(xc) < Tg(x) >vac= Vm {onfr
1

[G~>(x 1 ,x)- !1(xc)G£>(x1 ,x)]+ 
x -+x 

( 1 I (2) I ( I 2( - 2)[0µ8µ GE - !1(xc)OµOµ c;> + !1(xc)Oa0a c£>n (62) 

where c¥>. and G~) are the corrections of the first and the second order to 
the Euclid1an Green function, and one must take into account the terms 

~hich are proportional to the products µiµk only. The function G~) is 

given by_ the expression (53), c~> may be determined by the same way. 
We obtam 

E;nt = - 8 nf(n/2)f(2 + n/2)I'(n/2 - 1) G2µ1µ2 
11"n/2-2 f(3 + n) an-2 (63) 
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where a= [( a 1 - a 2 ) 2 + ((31 - ,62)2)112 is the distance between the strings. 
If n == 4 (63) dives us the force per unit length between the strings. In 
the case of the four-dimensional space-time we obtain 

(64) 

We see that the multiconical boundary condition alter the zero point va­
cuum :fluctuations of a scalar field leading to the existence of an attractive 
force by the same way as in the case of two parallel plates in the well.known 
Casimir effect. In the 4-dimensional space-time this force decreases with a 
distance between the strings as a-3 • 

7 Conclusion 

The generalization of the fast-motion approximation scheme is given 
for the cosmic strings that accounts for their gravitational interactions up 
to the second order of the gravitational constant and allows to calculate 
the gravitational and electromagnetic radiation ( if current-carrying strings 
are taken into account ) in cases where the relevant accelerations are due 
to the gravitational interaction. It has been shown that the space-time 
of a network consisting of straight Nambu strings was flat outside the 
strings and no gravitational radiation was produced. But if at least one of 
the strings is a. superconducting one, a. powerful source of electromagnetic 
radiation arises. We think, tha.t this effect tna.y be of great importance 
from the cosmological point of view. 

The same approach ca.n be used to determine linear and post-linear 
corrections to the Euclidian Green function. The expression for GE enables 
one to calculate the vacuum expectation values < 4>2 >vac and < Too >vac 
and to consider the problem of the topological self-action of a point charged 

. particle. It is shown that multiconical boundary conditions lead to the 
existence of an attractive force between Nambu strings. 
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