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Abstract

Gauge theory on fuzzy CP 2 can be defined as a multi-matrix
model, which consistently combines a UV cutoff with the classical
symmetries of CP 2. The degrees of freedom are 8 hermitian matrices
of finite size, 4 of which are tangential gauge fields and 4 are auxiliary
variables. The model depends on a noncommutativity parameter 1

N ,
and reduces to the usual U(n) Yang-Mills action on the 4-dimensional
classical CP 2 in the limit N → ∞. The quantization of the model is
defined in terms of a path integral, which is manifestly finite.

1. Introduction

Fuzzy spaces are a nice class of noncommutative spaces with finite-dimensional
algebras of “functions”, and the same symmetries as their classical coun-
terparts. This means that field theory on fuzzy spaces is regularized, but
compatible with a geometrical symmetry group unlike lattice field theory.
A large family of such spaces is given by the quantization of (co)adjoint
orbits O of a Lie group in terms of certain finite matrix algebras ON . They
are labeled by a a noncommutativity parameter 1

N , and the classical space
is recovered in the large N limit. The simplest example is the fuzzy sphere
S2

N , which has been studied in great detail; see e.g. [1, 2, 3, 4, 5, 6] and
references therein.

The simplest 4-dimensional fuzzy spaces are S2
N ×S2

N and CP 2
N . While

the former is technically easier to handle, CP 2
N (see e.g. [7,8,9,10]) has an 8-

dimensional symmetry group SU(3), which is larger than that of S2
N × S2

N

or e.g. that of non-commutative tori. This leads to the hope that CP 2
N

should be most suitable for analytical studies, once the appropriate tools
are developed.

In the present notes we give a brief review of the definition of gauge
theory on the 4-dimensional fuzzy space CP 2

N given in [11]. The definition
is given in terms of certain multi-matrix models, generalizing the approach
of [4, 6]. The basic requirement is that it should reduce to the usual U(n)
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Yang-Mills gauge theory on classical CP 2 in the commutative limit, but it
should also be simple and promise advantages over the commutative case.
The model is similar to certain matrix model which arise in string theory,
notably the IKKT matrix model [12] and effective actions for certain D-
branes [13]. These models lead to a picture where the space (a “brane”)
arises dynamically as solution of a matrix action, and can be interpreted
as submanifold of a higher-dimensional space. The gauge fields are then
fluctuations of the tangential coordinates, while the transversal coordinates
become scalar fields on the brane. All matrices are finite-dimensional for
fuzzy spaces.

The formulation of gauge theory as multi-matrix model has at least 2
notable features, which are not present in the classical case: First, it leads
to a very simple picture of nontrivial gauge sectors such as monopoles,
which arise as nontrivial solutions in the matrix configuration space. This
was noted in [14] and further explored in [6] for the fuzzy sphere. The
concepts of fiber bundles are not required but arise automatically, in an
intrinsically noncommutative way. Second, the matrix-model formulation
allows a nonperturbative quantization in terms of a finite “path” integral,
which in the case of U(n) Yang-Mills on S2

N can be carried out explicitly
in the large N limit [6]. We want to see if these features can be extended
to CP 2

N . It turns out that one can indeed find monopole and (generalized)
instanton solutions on CP 2

N , generalizing the approach of [6].
The guiding principle in this construction of gauge theory is to find an

action in terms of “covariant coordinates” Ca, which has a unique “vac-
uum” solution Ca = ξa which defines the space, i.e. fuzzy CP 2. Fur-
thermore, the fluctuations Ca = ξa + Aa should describe the gauge field
with the correct classical limit. The nontrivial part is to make sure that
the “transversal” fluctuations become very massive scalars and decouple.
We can then test the model by looking for non-trivial solutions. Using a
purely group-theoretical ansatz, we find indeed such solutions correspond-
ing to both monopoles (which do exist on CP 2) and certain instantons. The
latter should be viewed as connections on quantized rank 2 bundles over
CP 2 with non-trivial first and second Chern class. The fact that all these
monopole (and instanton) solutions arise in the same configuration space is
a remarkable simplification over the commutative case, and provides further
support for this approach.

The quantization of this gauge theory is straightforward in principle,
in terms of a “path integral” which is convergent. As opposed to the 2-
dimensional case [6], it can no longer be performed analytically.

2. Classical CP 2

For our purpose, the most useful description of CP 2 is as a (co)adjoint orbit
in su(3),

CP 2 = {gtg−1; g ∈ SU(3)} (1)

for a suitable t ∈ su(3) which will be determined below. Such a conjugacy
classes is invariant under the adjoint action of SU(3). In fact, CP 2 can be
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viewed as a homogeneous space:

CP 2 ∼= SU(3)/SU(2) × U(1) (2)
where SU(2) × U(1) is the stabilizer of

t = τ8 =
1√
3

( 2 0 0
0 −1 0
0 0 −1

)
. (3)

Here τa are the “conjugated” Gell-mann matrices1 of su(3), which satisfy
tr(τaτb) = 2δab,

τaτb =
2
3
δab +

1
2
(ifab

c + dab
c)τc. (4)

One can use (2) to derive the decomposition of the space of functions on
CP 2 into harmonics i.e. irreps under the adjoint action of SU(3) [7, 15],

C∞(CP 2) =
∞⊕

p=0
V(p,p). (5)

Here V(n,m) denotes the irrep of su(3) with highest weight nΛ1 +mΛ2, and
Λi are the fundamental weights of su(3).

It is convenient to work with an over-complete set of 8 global coordinates
defined by the embedding CP 2 in the Lie algebra su(3) ∼= R

8. We can then
write any element X ∈ CP 2 as

CP 2 = {X = xaτa = g−1tg; t = τ8, g ∈ SU(3)}. (6)
It is characterized by the characteristic (matrix) equation

XX =
1√
3

X +
2
3

(7)

which is easy to check for X = τ8. In component notation, this implies

gabxaxb = 1, (8)

dab
c xaxb =

2√
3

xc. (9)

One can show that (8) is a consequence of (9). Observe that the matrix

P =
1√
3
(X +

1√
3
) (10)

satisfies
P 2 = P, Tr(P ) = 1 (11)

as a consequence of (7), hence P is a projector of rank 1. Such projectors
are equivalent via P = |zi〉〈zi| to complex lines in C

3, which leads to the
more familiar definition of CP 2 as C

3/C
∗. An arbitrary radius R can be

introduced by rescaling xa → xaR.
1We follow the conventions in [11] using τa instead of the standard Gell-mann matrices
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Some geometry. The symmetry group SU(3) contains both “rotations”
as well as “translations” in the intuitive sense. The generators La act on
an element X = xaτa ∈ CP 2 as

LaX = [τa, X] = ifabc xbτc. (12)

In terms of the coordinate functions on the embedding space R
8, this can

be realized as differential operator

La =
i

2
fabc(xb∂c − xc∂b). (13)

Now we can identify the rotations: consider the “north pole”

Xnp = τ8 = xaτa ∈ CP 2 with xa = δa,8.

The rotation subgroup is its stabilizer subalgebra r ∼= su(2)× u(1) ⊂ su(3)
generated by the “rotation” generators

r = {τ1, τ2, τ3, τ8} (14)

resp. the corresponding2 Lr. It is clearly a subalgebra of the Euclidean
rotation algebra so(4) = su(2)L × su(2)R. The translations of Xnp are
generated by the “translation generators”

t = {τ4, τ5, τ6, τ7}. (15)

CP 2 is a symplectic (even Kähler) space. The symplectic form is given
by3

η =
1

2
√

3R
fabcxadxbdxc (16)

which is clearly invariant under SU(3). Here η is normalized such that
〈η, η〉 = 2 where 〈, 〉 is the obvious inner product for forms. The volume
form is then given by dV = 1

2η2. In particular, note that η is selfdual: By
su(3) invariance it suffices to check this at the north pole xa = δa,8. There
fab8 is manifestly selfdual, and so is ηf(x) for any function f(x). In fact
any self-dual 2-from on CP 2 can be written in this form.

3. Fuzzy CP 2
N .

In general, any (co)adjoint orbit (1) on a compact semi-simple Lie group G
can be quantized in terms of simple matrix algebras EndC(VN ), where VN
are suitable representations of G. The appropriate representations VN can
be identified by matching the spaces of harmonics, i.e. the decomposition

2we will sometimes denote the indices 1, 2, 3, 8 with r, etc
3to see that it is closed, note that dη ∝ fabcdxadxbdxc = 0 on CP 2
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into irreps under the symmetry group G as in (5). For CP 2, the correct
harmonics are reproduced for4 VN = VNΛ2 = V(0,N), which is the irrep of
su(3) with highest weight NΛ2. Then the space of “functions” on fuzzy
CP 2 decomposes as

CP 2
N := End(V(0,N)) = V(0,N) ⊗ V ∗

(0,N) = ⊕N
n=0V(n,n). (17)

under the (adjoint) action of SU(3). This matches the decomposition (5)
of functions on CP 2 up to the cutoff. To identify the fuzzy coordinate
functions, we denote with ξa the representation of an ON-basis of generators
of su(3) acting on VNΛ2 , with dimension DN = (N + 1)(N + 2)/2. It is
easy to show that they satisfy the relations

ifab
c ξaξb = −3 ξc, [ξa, ξb] =

i

2
fab

c ξc (18)

gabξaξb =
1
3
N2 + N, (19)

dab
c ξaξb = (

2N

3
+ 1) ξc. (20)

One then defines the rescaled variables xi = (x1, ...x8) of CP 2
N as

xa = ΛN ξa, ΛN = R
1√

1
3N2 + N

(21)

which satisfy [8]

ifab
c xaxb = −3ΛN xc = −3

R√
1
3N2 + N

xc, (22)

gabxaxb = R2, (23)

dab
c xaxb = R

2N/3 + 1√
1
3N2 + N

xc. (24)

They reduce to (8), (9) in the large N limit. Here R is an arbitrary radius,
which will usually be 1 here. Hence the algebra of functions on fuzzy CP 2

N
is simply Mat(DN , C).

The decomposition (17) of functions into harmonics defines an embed-
ding of the spaces

CP 2
N ↪→ CP 2

N+1 ↪→ ... ↪→ C∞(CP 2) (25)

4alternatively one could use VNΛ1 = V(N,0), which gives an equivalent algebra but a

different embedding of CP 2 ⊂ R
8.
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by matching the harmonics of su(3). This allows to measure the “differ-
ence” between fuzzy and classical functions using the operator norm resp.
supremum norm, and statements like f ∈ CP 2

N → f ∈ C∞(CP 2) as N → ∞
are understood in this sense throughout this paper.

Additional structure. We can easily identify a “north pole” in the fuzzy
case5. Indeed ξ8 and ξ3 can be simultaneously diagonalized, and the high-
est weight state |NΛ2〉 of V(0,N) has eigenvalues ξ8|NΛ2〉 = N√

3
|NΛ2〉 and

ξ3|NΛ2〉 = 0. This is the unique vector in V(0,N) with this maximal eigen-
value of ξ8. It is therefore natural to identify the delta-function on the north
pole with the projector |NΛ2〉〈NΛ2|, i.e. to consider 〈NΛ2|f(x)|NΛ2〉 as
value of f(x) ∈ CP 2

N “at the north pole”. For large N , the eigenvalue of
x8 approaches R as it should.

The “angular momentum” operators (generators of SU(3)) become now
inner,

Laf(x) = [ξa, f ], (26)

because then Laxb = [ξa, xb] = i
2fabcxc, as classically. The integral on CP 2

N
is defined by the suitably normalized trace,∫

f(x) =
1
DN

Tr(f) (27)

and is invariant under SU(3).

4. Multi-Matrix Models for Yang-Mills on fuzzy CP 2

4.1. Degrees of freedom and field strength
Our basic degrees of freedom are 8 hermitian matrices Ca ∈ Mat(DN , C)
transforming in the adjoint of su(3), which are naturally arranged as a
single 3DN × 3DN matrix

C = Caτ
a + C011 (28)

where C0 = 0 in much of the following. The size DN of these matrices
will be relaxed later. We want to find a multi-matrix model in terms
these Ca, which for large N reduces to (euclidean) Yang-Mills gauge theory
on CP 2. The idea is to interpret the Ca as suitably rescaled “covariant
coordinates” [16] on fuzzy CP 2

N , with the gauge transformation

Ca → U−1CaU (29)

for unitary matrices U of the same size. The Ca can also be interpreted as
components of a one-form if desired [11]. Following the approach of [6], we
look for an action which has the “vacuum” solution

Ca = ξa (30)
5for V(N,0) there would be a south pole
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corresponding to CP 2
N , and forces Ca to be at least approximately the

corresponding representation VNΛ2 of su(3). Then the fluctuations

Ca = ξa + Aa (31)
are small, and describe the gauge fields. By inspection, these gauge fields
Aa transform as

δAa = i[ξa + Aa, Λ] = iLaΛ + i[Aa, Λ] (32)

for U = eiΛ, which is the appropriate formula for a gauge transformation.
Since the Ca resp. ξa correspond to “global” coordinates in the embedding
space R

8, we can hope that nontrivial solutions such as instantons can also
be described in this way.

A suitable definition for the field strength is then given by

Fab = i[Ca, Cb] +
1
2

fabcCc = i(LaAb − LbAa + [Aa, Ab]) +
1
2

fabcAc. (33)

We will also need
Fa = ifabcCbCc + 3Ca = 1

2fabcFab,

Da = dab
c CaCb − (2N

3 + 1) Cc.
(34)

Under gauge transformations, the field strength transforms as

Fab → U−1FabU. (35)
F can also be interpreted as 2-form

F = dA + AA (36)
if one considers the fields Ca as one-forms C = Caθa = Θ + A, using the
differential calculus introduced in [11]. Furthermore, one can show that Fab
is (approximately) tangential if Ca satisfies (approximately) the constraints
of CP 2. Assuming that Aa tend to well-defined functions on CP 2 in the
large N limit, this implies that Fab are the components of the usual field
strength 2-form in the commutative (large N) limit. This justifies the above
definition of Fab, and it is a matter of taste whether one works with the
components or with forms.

4.2. Constraints
In order to describe fuzzy CP 2, the fields Ca should satisfy at least approx-
imately the constraints (19), (20) of CP 2

N ,

Da = 0, (37)

gabCaCb =
1
3
N2 + N (38)

which are gauge invariant. These constraints ensure that Ca can be inter-
preted as describing a (“dynamical” or fluctuating) CP 2

N . However, notice
that they are not independent: (9) implies (8) at least in the commutative
limit. These constraints are analyzed in considerable detail in [11] in the
non-commutative case.
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4.3. The Yang-Mills action
Assume that the Ca satisfy the constraints (37) (and therefore also (38)) of
CP 2

N exactly or approximately. This implies that Fab is tangential in the
commutative limit, as shown in [11]. Then one can define the “Yang-Mills”
action as

SY M =
1
g

∫
FabFab =

1
gDN

Tr(−[Ca, Cb]2+2ifabcCaCbCc+3CaCa). (39)

It reduces to the classical Yang-Mills action on CP 2, because only the
tangential indices contribute in the commutative limit. The corresponding
equation of motion is

2[Cb, Fab] − iFa = 0 (40)
We now have to impose the constraints (37), (38) either exactly or approx-
imately, and there are several possibilities how to proceed. Imposing both
of them exactly seems too restrictive; recall that they are not independent
even classically. One can hence either

1. consider all 8 fields Ca as dynamical and add something like

SD =
1

gDN
Tr

(
μ1(dCC − (

2N

3
+ 1)C)2 + μ2(C · C − (

N2

3
+ N))2

)
(41)

to the action. This will impose the constraint dynamically for suitable
μ1 > 0 and μ2 ≥ 0, by giving the 4 transversal fields a large mass
m → ∞. Or,

2. impose the constraint D = dCC− (2N
3 +1)C = 0 exactly, or a slightly

modified version.
In the second approach, it is not clear whether there are sufficiently many
solutions of D = 0 in the noncommutative case to admit 4 tangential gauge
fields. This concern could be circumvented by modifying the constraint,
which is discussed in [11]. However we have not been able to find instanton-
like solutions in this case (which may just be a technical problem). There-
fore we concentrate on the first approach here, where we do find topolog-
ically nontrivial instanton solutions. It offers the additional possibility to
give physical meaning to the non-tangential degrees of freedom.

Therefore our action is

S = SY M + SD. (42)

It is shown in [11] that this reproduces the classical Yang-Mills action on
CP 2 in the large N limit provided

μ1 = o(
1
N

), and μ2 ≤ o(
1

N3
). (43)

Here o( 1
N ) stands for a function which scales exactly like 1

N . These con-
straints on the scaling of μ1,2 ensure that the vacuum which defines the
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geometry of CP 2
N is stable (note that the geometry is determined dynami-

cally in noncommutative gauge theories!), and the monopole-and instanton
solutions which will be discussed below survive. Imposing e.g. μ1 = 0
strictly would suppress the instanton solutions, hence in some sense fix the
topology of the gauge fields. These issues certainly need further investi-
gations; similarly, one may or may not fix the size of the matrices to be
exactly DN , which also has some influence on the existence of certain non-
trivial solutions. Our choices are such that the conventional Yang-Mills
theories emerge in the large N limit. These issues are discussed in more
detail in [11].

We proceed to find the “vacuum”, i.e. the minimum of the action.
Assume first that the size of the matrices is DN . Then the absolute minima
of the action are given by solutions of Fab = 0 and Da = 0, which means
that Ca is a representation of su(3) with Da = 0. The latter implies that
the only allowed irreps are VNΛ2 or the trivial representation. Ignoring the
latter (it has a smaller “phase space” of fluctuations), the vacuum solution
is therefore

(Cvac)a = ξa (44)

in a suitable basis. These arguments go through if we allow the size of the
matrices Ca to be somewhat bigger that DN , say

Ca ∈ Mat(DN + N, C) (45)

(anything much smaller that 2DN will do), which is needed to accomo-
date all the nontrivial solutions found below. Any configuration with finite
action is therefore close to (44), and can hence be written as

Ca = ξa + Aa (46)

in a suitable basis, with “small” Aa. This justifies the assumptions made
in the beginning of Section 4.3.

It is quite straightforward to include scalar fields in this construction.
Assume that we have an additional complex scalar field φ. Without gauge
coupling, a natural action would be

∫
([ξa, φ])†[ξa, φ] = − ∫ φ†Δφ. If we

assume that φ is charged and transforms under gauge transformations as

φ → Uφ, (47)

then a natural gauge-invariant action would be

S[φ] =
∫

(Caφ − φξa)†(Caφ − φξa). (48)

This reduces to
∫

(Daφ)†Daφ where Da = [ξa, .] + Aa. Fermions are much
more difficult to handle since CP 2 is a spinc manifold but not spin, and a
fully satisfactory treatment in the fuzzy case is still lacking; see [8] for a
possible approach.
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4.4. Decoupling of auxiliary variables

As discussed above, we impose the constraints of CP 2
N by adding the term

(41) to the action. We will now show that this amounts to giving the 4
transversal fields a large mass m → ∞ which therefore decouple, leaving 4
massless tangential gauge fields (in fact one can put μ2 = 0, since (38) is
not an independent constraint). Note that

Dc = dabc{ξa, Ab} + dabcAaAb − (
2N

3
+ 1)Ac

CaCa − (
N2

3
+ N) = ξaAa + Aaξa + AaAa. (49)

using Ca = ξa + Aa. Assuming that Aa and [A, A] are “smooth”, this gives

Dc

2N
=

1
2N

dabc{ξa, Ab} − 1
3

Ac + o(1/N). (50)

To understand the meaning of this, consider the “north pole”, where xa ≈
δa,8. Then At = A4,5,6,7 are tangential, and A1,2,3 and A8 are “transversal”
with

Dt

2N
= o(1/N),

D1,2,3

2N
= −A1,2,3 + o(1/N),

D8

2N
=

1
3
A8 + o(1/N),

1
2N

(CaC
a − (

N2

3
+ N)) =

1√
3
A8 + o(1/N). (51)

This shows explicitly how Da separates the tangential from the transversal
fields. Therefore the term μ1DaDa gives the transversal modes Ar a mass
term of order μ1N

2, while the tangential modes are affected by terms of
order at most μ1. In particular for μ1 = 1/N this is

μ1DaDa = 4N(A2
1 + A2

2 + A2
3 +

1
9
A2

8) (52)

(at the north pole), and similar for term with μ2. This extends to any point
on CP 2 by SU(3) covariance. Therefore the action (42) indeed approaches
the classical Yang-Mills action for N → ∞.

Additional terms in the action. Based on su(3) invariance, one should
also allow other terms such as∫

a1 C · C + a2 fCCC + a3 dCCC (53)
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etc in the action. However, note that such su(3) singlets may not be invari-
ant under local so(4) rotations in the commutative limit, i.e. they are not
covariant in the usual sense. Nevertheless, they turn out to be harmless:

The terms dCCC and C · C are clearly related to the constraints (37)
and (38), hence they are essentially constants. They are in fact covariant in
the usual sense, which can be seen using the explicit form of dabc. The term
fCCC is less obvious at first sight, since it is not covariant in the usual
sense. However, one can show [11] that it essentially reduces to the first
Chern number (plus a constraint) in the classical limit, which is topological
and does not affect the local physics as long as a2 = o(1/N). The breaking
of covariance is due to the existence of a symplectic form on CP 2, which
can be interpreted as some kind of background field.

4.5. Nonabelian case: U(n) Yang-Mills
The generalization to a U(n) gauge theory is straightforward, by consider-
ing the same action (42) for larger matrices6 Ca ∈ Mat(n(DN ), C). The
absolute minima of the action are given (for μ2 = 0) by solutions of Da = 0
and Fab = 0, which means that Ca is a representation of su(3) with Da = 0.
The latter implies that the representation decomposes into a direct sum of
either VNΛ2 or the trivial rep. Ignoring again the trivial representations, C
takes the form

(Cvac)a = ξa 1n×n, (54)

which is a block matrix consisting of n blocks of the fuzzy CP 2 solutions.
Any configuration can then be written as

Ca = ξa + Aa,α λα. (55)

where Aa,α carries an additional u(n) index, λα denote the Gell-Mann ma-
trices of u(n), and λ0 = 1 is the n×n unit matrix. The rest of the analysis of
the previous sections goes essentially through, in particular the transversal
components of Aa,α will be very massive and decouple due to SD. Since all
non-tangential components are suppressed, we recover the usual Yang-Mills
theory on CP 2 with gauge group U(n) in the commutative limit.

4.6. Quantization
The quantization of these models is straightforward in principle, by a “path
integral” over the hermitian matrices

Z[J ] =
∫

dCae
−(SY M+SD+TrCaJa) (56)

Note that there is no need to fix the gauge unless one wants to do pertur-
bation theory, since the gauge orbit is compact. The gauge-fixing terms
required for perturbation theory will not be discussed here. One can show

6see [11] for some subtleties: one should replace DN by e.g. DN + N
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that the above path integral is well-defined and finite for any fixed N pro-
vided μ1 > 0 and μ2 ≥ 0. The nontrivial question of course remains
whether the model is renormalizable, i.e. whether there exists a suitable
scaling of the coefficients in the action such that the limit N → ∞ defines
a meaningful quantum field theory on fuzzy CP 2.

5. Topologically nontrivial solutions

In [11], some explicit solutions of the equations of motion with finite ac-
tion are found, which in the classical (large N) limit become topologically
nontrivial solutions such as monopoles and instantons. The idea is to iden-
tify the solutions of the gauge theory with certain irreps of the symmetry
group SU(3). Recalling that the “vacuum” solution Ca = ξa of our ac-
tion SY M + SD is obtained as irrep V(0,N), it is natural to consider other
representations with highest weight Λ close to (0, N). It seems plausible
that they should give rise to nontrivial saddle-points of the action. This
idea essentially works, with some modifications which are necessary in the
nonabelian case. In particular this allows to find explicitly the monopole or
U(1) instanton solutions (which exist on CP 2 since the second cohomology
is nontrivial), and also a particular U(2) instanton solution with nontrivial
first and second Chern number. The corresponding gauge fields are com-
puted explicitly in [11] using the Gelfand-Tsetlin basis. The value of the
action is

SY M =
1
g

∫
FabFab =

1
g

∫
12m2 (57)

for the monopole solutions in the large N limit, and

SY M =
1
g

∫
FabFab =

1
g

∫
tr(1 − m + m2). (58)

for the SU(2) instanton. Here m is an arbitrary integer which coincides
with the first Chern number for the U(1) bundle, and is related to the total
Chern character for the U(2) solution by

ch = 2 + c1 +
1
2
(c1 ∧ c1 − 2c2) = 2 + (2m − 1)ω + (m2 − m − 1

2
)ω2, (59)

where ω is the generator of H2(CP 2, Z). The instanton hence contains also
a monopole part, and is in particular not self-dual.

6. Discussion and outlook

The main merits of this type of gauge theories on fuzzy spaces are 1) they
are completely “regularized” so that that the quantization is well-defined
and finite, and 2) topologically nontrivial configurations arise simply as
solutions of the matrix equations of motion. In particular, we do not have to
sum over disconnected topological sectors; they are included in the “path”
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integral over all matrices. One may hope that the formulation as matrix
model will provide useful new insights to 4-dimensional gauge theory.

There are many open issues which deserve further investigations. One is
the inclusion of fermions, which is nontrivial due to the fact that CP 2 has no
spin but spinc structure. There are several papers where this is investigated,
but the appropriate coupling to a gauge field in our formulation is not clear.
Another open problem is to find “localized” instantons and their moduli
space. This is complicated by the apparent lack of a Hodge-star (with
correct classical limit) on CP 2

N . In particular, our instantons contain a
nontrivial U(1) sector, and are neither selfdual nor anti-selfdual. The U(1)
monopole part seems to be related to the spinc structure on CP 2, and
may be important for the coupling to fermions. Finally, it would be very
desirable to get some insight into the large N behavior of the quantized
model.
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