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Abstract: The relativistic positive-energy wave equation proposed by P. Dirac in 1971 is an old but

largely forgotten subject. The purpose of this note is to speculate that particles described by this

equation (called here Dirac particles) are natural candidates for the dark matter. The reasoning is

based on a fact that the internal structure of such particles simply prohibits their interaction with

electromagnetic fields (at least with the minimal coupling) which is exactly what is required for

dark matter. Dirac particles have quite unusual properties. In particular, they are transformed by an

infinite-dimensional representation of the homogeneous Lorentz group, which clearly distinguishes

them from all known elementary particles described by finite-dimensional representations and hints

to a physics beyond the Standard Model. To clarify the topic, a brief review of the main features of

the above-mentioned Dirac equation is given.

Keywords: dark matter; infinite-dimensional representation; new Dirac equation

1. Introduction

A tremendous number of various astrophysical observations collected during the last
century are explained by postulating the existence of invisible (i.e., not interacting with
electromagnetic fields) matter. Such a hypothetical substance goes under the name of dark
matter, and according to different estimates, it constitutes ∼ 85% of the total matter content
of the universe (see, e.g., reviews [1–3] and references therein). Though dark matter is a
predominant ingredient of the universe, its composition remains unknown. A great number
of different candidates have been proposed [1–3], but none have of course been confirmed
so far.

The purpose of this short note is to suggest a (seemingly unexplored) possibility that
dark matter is made up of particles obeying the so-called new Dirac equation proposed
by P. Dirac [4] 40 years after his famous (old) equation [5]. Both equations are relativistic
wave equations. The usual (old) Dirac equation describes particles with positive energy
as well as antiparticles with negative energy and is one of the best known equations in
physics. The principal feature of the new equation is that all its solutions have only positive
energies (thus, antiparticles are absent or, at least, not described by the same equation).
For relativistic equations, such property is unusual. The relativistic invariance implies
that E2 = p⃗ 2 + m2, and in general, there exist solutions with positive as well as negative
energies: E = ±

√

p⃗ 2 + m2. Though today negative energy solutions simply indicate the
existence of antiparticles, the search for relativistic equations with only positive energies
continues to persist (see, e.g., [6] and references therein).

It was E. Majorana [7,8] who first constructed a relativistic wave equation with only
positive energy solutions. It appears that it becomes feasible provided one considers
particles transformed by an infinite-dimensional representation of the homogeneous (i.e.,
without translations) Lorenz group. Usual relativistic particles (scalars, spinors, vectors,
etc.) realise finite-dimensional representations of the Lorentz group, and their equations
necessarily have positive and negative energy solutions. The positive-energy Majorana
equation formally has form of the usual Dirac equation:

(

Γ
µ∂µ − m

)

Ψ(x) = 0 (1)
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but with the difference that its eigenfunctions Ψ(x) have an infinite number of components
(labeled by two non-negative integers) and matrix Γ

µ is an infinite-dimensional matrix
derived from the requirement of the relativistic invariance (whose explicit form could
be obtained from expressions in Section 4). This equation explicitly describes an infinite
number of particles with all integer and half-integer spins and masses decreasing with
spin: m(j) = m/(j + 1/2) [7,8]. Equation (1) should not be confused with another much
better-known Majorana equation for self-conjugate particles with spin- 1

2 [9].
The distinction between finite-dimensional and infinite-dimensional representations

of a group is that for the former, the action of group generators mixes a finite number
of wave components (e.g., four for the usual spinors) but for the latter, such action re-
quires an infinite number of components. Mathematically, it is well established that the
homogenous Lorentz group has both finite and infinite-dimensional representations (see,
e.g., [10,11] and references therein). All known elementary particles are classified accord-
ing to finite-dimensional representations of this group, yet particles associated with its
infinite-dimensional representations are not usually taken into account.

In the new equation, Dirac found an elegant way (see below) to select one state from
an infinite tower of Majorana solutions. Particles described by the new Dirac equation are
also transformed by an infinite-dimensional representation of the Lorenz group, which
markedly differentiates them from all known elementary particles. Such particles can be
called positive-energy Dirac particles, but for the sake of brevity, in this note, they are
referred to as Dirac particles.

Another characteristic feature of these Dirac particles is a nontrivial fact that they
cannot interact with electromagnetic fields (at least with the minimal coupling). Such a
no-interaction theorem is related with the internal structure of the new Dirac equation
and is not imposed by simply postulating that the charge of Dirac particles equals zero.
This propriety emerges as a byproduct of Dirac’s construction, and in the past has been
considered as a serious defect of the new Dirac equation, but it is exactly what makes
Dirac particles a natural candidate for dark matter, which by definition is a substance not
interacting with electromagnetic fields.

In the literature, there are articles that relate Dirac particles and dark matter (see,
e.g., [12], besides others), but in these papers, the term ’Dirac particles’ indicates solely
spin- 1

2 particles obeying the usual Dirac equation [5]. Dirac particles discussed here are
of a different nature as they satisfy the new Dirac equation [4] and are transformed by an
infinite-dimensional representation of the Lorentz group. To the author’s knowledge, such
particles were not considered previously as candidates for dark matter.

The purpose of the paper is to attract wider attention to this potentially important
subject and to serve as a brief introduction to Dirac particle properties. As such issues are
largely undeveloped, the discussion below is restricted only to principal features of Dirac
particles leaving aside many important questions.

The plan of the paper is the following. In Section 2, the main properties of the new
Dirac equation are discussed. Section 3 is devoted to the investigation of the relativistic
invariance of this equation and to the meaning of the infinite-dimensional representation
of its solutions. By construction, the new Dirac equation is an overdetermined system of
equations, and consequently, one can derive additional equations that are indicated in
Section 4. Section 5 deals with the no-electromagnetic-interaction property of the new Dirac
equation, which is of primary importance for the conjectured relation of Dirac particles
with dark matter. In Section 6, the interaction of Dirac particles with gravitational fields
is shortly treated. Section 7 gives an overview of the discussed topics. For clarity, certain
useful formulas are presented in Appendix A, and for completeness, the tetrad formalism
is recalled in Appendix B.

2. New Dirac Equation

The usual Dirac equation [5] describes relativistic fermions with spin 1
2 and mass m

and is one of the most important and the best-known equations of mathematical physics.



Universe 2024, 10, 222 3 of 15

Much less attention has been attracted to another Dirac work [4], written about 40 years
after the famous paper [5], in which a different relativistic equation (called the new Dirac
equation) was proposed and analysed.

The new equation has the functional form similar to the usual Dirac equation:

(

γµ∂µ − m
)

Ψ = 0 (2)

but with an important difference in that column-vector Ψ depends on two sets of variables:
four space-time coordinates xµ with µ = 0, 1, 2, 3 and two ’internal’ (auxiliary) variables q1

and q2, arranged in the following manner:

Ψ(x, q) = Q Φ(x, q) , Q =









q1

q2

q3

q4









(3)

where components q3 and q4 are the momenta in the ’internal’ space

q3 = −i
∂

∂q1
, q4 = −i

∂

∂q2
. (4)

The choice of such column-vector Q corresponds to the following commutation rela-
tions:

[qj, qk] = iβ jk , β =

(

0 1
−1 0

)

. (5)

As for the usual Dirac equation, γµ are 4 × 4 matrices obeying γµγν + γνγµ = 2ηµν

with the metric tensor of the Minkowski space ηµν = diag(−1, 1, 1, 1) (cf. (A1)).
Function Φ(x, q) in (3) depends on both sets of coordinates (i.e. on six variables), and

it is the only one unknown function. Thus, the new Dirac equation corresponds to an
overdetermined system of four equations in one unknown function:

P̂j Φ(x, q) = 0 , P̂j = (γµ∂µ − m)jkqk . (6)

To ensure the consistency of these equations, it is necessary that the commutator of
any two P̂j equals zero. Using (5) one finds

[P̂j, P̂k] =
(

(γµ∂µ − m)iβ(γµ T∂µ − m)
)

jk
(7)

where γµ T are the transposed gamma-matrices. In the new Dirac equation, these matrices
have to be chosen to fulfil the requirement

β γµ T = −γµ β . (8)

By construction, matrix β is an antisymmetric matrix (cf. (5)), and this requirement
means that βγµ are symmetric matrices.

Under these conditions, the above commutator becomes

[P̂j P̂k] = iβ jk

(

− ηµν∂µ∂ν + m2
)

(9)

which implies that all four equations (6) are consistent iff Φ(x, q) as a function of x obeys
the Klein–Gordon equation:

(

− ηµν∂µ∂ν + m2
)

Φ(x, q) = 0 . (10)

It is this additional relation that differs the new Dirac equation from the Majorana
Equation (1) [7] and permits us to select one state from an infinite number of
Majorana solutions.
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It is plain that (10) is a necessary condition for the existence of a solution of the
new Dirac equation. It could be obtained by, e.g., the multiplication of (2) with (3) by
QT β

(

γν∂ν + m
)

and using the fact that QT β Q = 2i (see (A4)). The sufficiently of this
equation is more subtle. Usually, one refers to the Frobebius theorem (see, e.g., [13] and
references therein), which (in the simplest setting) states that in order for a system of
linear differential equations to have a solution, it is necessary and sufficient that their
commutators (more general, Lie brackets) lie in the their span. The important ingredient of
this theorem is the fact that commutators cancel second derivatives, which is not valid for
the considered problem. Therefore, the statement that (10) is the sufficient condition for the
existence of solutions of the new Dirac equation requires additional investigations.

It has been proved in [4] that these equations determine massive relativistic particles
(the Dirac particles) with only positive energy and zero spin in the rest frame. In the next
publication [14], Dirac showed that when the noncommutativity of different variables
is ignored, Dirac particles could be considered as vibrating spherical shells similar to
Zitterbewegung of particles obeying the usual Dirac equation.

The simplest solution of the new Dirac equation is the plane wave of the following
form [4]:

Φ(x, q) = C exp

(

−1

2
aq2

1 −
1

2
bq2

2 + cq1q2 + ipµxµ

)

(11)

where p0 =
√

p2 + m2 > 0, C is a normalisation constant, and coefficients a, b, c are

a =
m + ip1

p0 + p3
, b =

m − ip1

p0 + p3
, c =

ip2

p0 + p3
. (12)

The positivity of Dirac particles’ energy is attested by the fact that negative energy
solutions with p0 = −

√

m2 + p2 lead to non-normalised functions and have to be excluded.

3. Infinite-Dimensional Representation

The relativistic (co)variance of the new Dirac equation means that a linear Lorentz
transformation x′µ = Λ

µ
ν xν (ηµν = ησρΛ

µ
σΛν

ρ) of a solution

Φ(Λx, q) = U(Λ)Φ(x, q) (13)

is also a solution of the same equations. Here, U(Λ) is an operator acting on q variables.
The inspection of Equation (3) shows that it will be the case if the following two

conditions are fulfilled:

U−1 Q U = V Q , V γ V−1 = γ Λ (14)

where matrix V ≡ Vjk(Λ) acts on spinor indices. Indeed, under such changes, Equation (3)
transforms linearly; thus,

P̂ Φ(Λx, q) = U V P̂ Φ(x, q) = 0 . (15)

The explicit expressions of V and U can easily be obtained from the infinitesimal
Lorentz transformations

Λ
µ
ν = δ

µ
ν + a

µ
ν = δ

µ
ν +

1

2
acd

(

Icd
)µ

ν
(16)

where 4× 4 antisymmetric matrix acd describes six parameters of the Lorentz transformation
and matrices Icd are generators of Lorentz transformation

(

Icd
)µ

ν
= ηcµδd

ν − ηdµδc
ν . (17)
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These generators obey the commutator relations of the Lie algebra of the Lorenz group

[

Icd, Ikr
]

= ηdk Icr + ηcr Idk − ηdr Ick − ηck Idr . (18)

It is plain that V and U should be of the following form:

V = exp
(1

2
acdΣcd

)

, U = exp
( i

2
acdScd

)

. (19)

In the first order of a, unknown Σ and S are determined from the following commutators:

[Σ, γ] = γI, i[Q, S] = ΣQ (20)

whose solutions are

Σcd =
1

4

(

γcγd − γdγc
)

, Scd =
1

2

(

Q Σcd Q
)

(21)

where Q = QT β. Because β ΣT = −Σ β one has

βVT = V−1β (22)

which implies that Q′ = VQ also obeys the commutation relations (5) and U−1 Q U =
Q V−1.

It is well known that Σcd obey Equation (18), thus realising the four-dimensional
(spinor) representation of the Lie algebra of the Lorenz group. As matrices βΣcd are
symmetric (cf. (5)), it follows from (A5) that spin operators iScd from the above equation
obey the same commutator relations (18), i.e., they also realise a representation of the Lie
algebra of the Lorentz group.

The explicit form of these operators is presented in (A8). These operators are a distinct
feature of the new Dirac equation. When acting on an L2 function Φ(x, q) depended on
auxiliary variables q1 and q2 (i.e.,

∫ ∞

−∞
|Φ(x, q)|2dq < ∞ for arbitrary x), they lead to an

infinite-dimensional representation of the homogeneous Lorentz group. A simple way to
see it explicitly is to write the function as an infinite series in suitable functions of q1 and
q2. A convenient choice is eigenfunctions of the harmonic oscillators Ĥ1 = 1

2 (q
2
3 + q2

1) and

Ĥ2 = 1
2 (q

2
4 + q2

2) (the Hermite functions): Ĥiφm(qi) = (m + 1
2 )φm(qi) (cf. (A19))

Φ(x, q) =
∞

∑
n,m=0

Amn(x)φm(q1)φn(q2) . (23)

(Due to a symmetry of the new Dirac equation, integers m and n are of the same parity.)
Coefficients Amn(x) form an infinite number of wave function components of Dirac

particles. The action of operators Scd on functions φm(q1) and φn(q2) induces a trans-
formation of Amn corresponded to an infinite (and unitary) representation of the homo-
geneous Lorenz group (see, e.g., [7,8,10,11,15]). Its explicit form can be obtained from
Equation (A21). In a sense, an infinite ladder of coefficients Amn is hidden in the de-
pendence of an eigenfunction on variables q1 and q2, and function Φ(x, q) is a concise
generating function of these coefficients.

Spin matrices Σcd equal the commutator of two γ-matrices: Σcd = 1
4 [γ

c, γd]. Similarly,

spin operators Scd also can be written as the commutator of two operators (cf. (A5), (A6)):

Scd = i
[

Γc , Γd
]

, Γc = −1

4

(

QγcQ
)

. (24)

Operators Scd together with Γc form a representation of the group SO(3, 2) [16,17] (see
also Appendix A).
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From (13), it follows that

Φ(x, q) = U(Λ)Φ(Λ−1x, q) . (25)

This invariance leads to the conservation of the total momenta [4] Jcd = Mcd − iScd.
Mcd = xc∂d − xd∂c are the usual momenta and Scd represent the spin momenta.

4. Additional Equations

The new Dirac equation (6) is an overdetermined system of equations and any lin-
ear combination of these equations is also a valid equation; thus, MP̂j Φ = 0 with any

4 × 4 matrix M. Multiplying this equality by Q and summing over spin indices, one obtains
16 equations quadratic in Q: QM(γµ∂µ − m)QΦ = 0. When M = γ5, one obtains identical
zero and the remaining 15 equations (corresponded to M = 1, γµ, Σµν, γ5γµ, respectively)
take the following form [4,18]:

(

Γµ∂µ +
i

2
m
)

Φ = 0 , (26)

( i

2
∂µ + Sµν∂ν + mΓµ

)

Φ = 0 , (27)
(

Γµ∂ν − Γν∂µ + mSµν
)

Φ = 0 , (28)
(

eµναβSνα∂β
)

Φ = 0 . (29)

The first of these equations is (up to a notation) the positive-energy Majorana
Equation (1) [7], and the last one coincides (up to a factor) with the Pauli–Lubanski
(pseudo)vector, indicating that field Φ has zero spin.

The Majorana Equation (26) is a characteristic feature of positive-energy equations.
All solutions of such equations, in a way or another, obey this equation. Though the form
of the Majorana equation is similar to the usual Dirac Equation (2), they lead to different
conclusions. The main point is that, contrary to the usual γ0 matrix, which has positive
and negative eigenvalues (see (A1)), operator Γ0 has the form (cf. (A8))

Γ0 =
1

4

(

(−∂2
q1
+ q2

1) + (−∂2
q2
+ q2

2)
)

. (30)

When acting on L2 functions of q1, q2 invariant over inversion, as in (23), it has only
positive eigenvalues equal to 1

4 (2j + 1) with integer j ≥ 0. It is this property that implies
that particles described by the Majorana equation have masses decreasing with the spin:
m(j) = m/(j + 1/2).

In Dirac’s approach, the above equations are just consequences of Equation (6). It
was argued in [18] that Equation (27) may be chosen as the fundamental one, leading to
the same plane wave solution as in (11). A more general equation has been considered in
that reference:

(

iκ∂µ + Sµν∂ν + mΓµ
)

Φ = 0 (31)

with a parameter κ. It has been shown that this system of equations is consistent only
for two values κ = 1

2 and κ = 1. The first one corresponds to the Dirac Equation (27),
and the second one gives a new equation describing particles transforming by an infinite-
dimensional representation of the Lorentz group but with spin 1

2 in the rest frame. Contrary

to the Dirac particles described in this note, such spin- 1
2 particles permit the interaction

with electromagnetic fields.

5. No-Interaction Theorem

The principal goal of the new Dirac equation was the construction of a relativistic
equation with only positive energy solutions. But for the relation with dark matter advo-
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cated here, the most important is another unusual fact: that Dirac particles cannot interact
with electromagnetic fields.

Usually, the interaction of a particle with an electromagnetic field Aµ is introduced
within the so-called minimal coupling by the substitution ∂µ → Dµ = ∂µ + ieAµ(x) into
the wave equation. The remarkable propriety of the new Dirac equation is that this
standard procedure leads to the inconsistency of resulting equations, which means that
that Dirac particles cannot interact with electromagnetic fields (at least with minimal
coupling). This fact had been briefly mentioned in the very end of the Dirac paper [4]
and has been discussed in detail in [19] (see also [20]). For completeness, that reasoning is
presented below.

Let us consider the new Dirac equation with minimal coupling:

(

γµDµ − m
)

QΦ(x, q) = 0 , Dµ = ∂µ + ieAµ(x) . (32)

Applying the operator
(

γµDµ + m
)

to this equation, one finds

(

(

ηµνDµDν − m2
)

+ ieΣµνFµν

)

QΦ(x, q) = 0 (33)

where Fµν = ∂µ Aµ − ∂ν Aµ and Σµν = 1
4 (γ

µγν − γνγµ).
To remove the first term in (33), (which corresponds to the Klein–Gordon equation

with the minimal coupling), let us multiply (33) by an antisymmetric matrix G such that
Tr(Gβ) = 0 and convolute the result with QT . According to (A4), it will cancel the Klein–
Gordon term. Besides 16 independent products of the above γ matrices, there are five
matrices with such proprieties: βγ5γµ and βγ5. Let Gj be one of these five matrices. After
the indicated transformations, Equation (33) takes the form

Fµνh
µν
j Φ = 0 , h

µν
j = QTGjΣ

µνQ (34)

where h
µν
j are certain operators constructed from ten possible symmetric bilinear combina-

tions of qj. Using properties of γ-matrices (cf. (A9) and (A10)), one obtains

(

Qγ5γλΣµνQ
)

=
1

2
eλµνρΓρ ,

(

Qγ5ΣµνQ
)

=
1

8
eµνλρSλρ (35)

where Sµν are antisymmetric spin operators introduced in (21), and Γµ is defined by (24).
Therefore, the above equations take the form

F̃µνΓνΦ = 0 , F̃µνSµνΦ = 0 . (36)

Here, F̃µν = 1
2 e

ρδ
µν Fρδ is the dual electromagnetic tensor.

In [19], it was argued that from (36), it follows that if Fµν ̸= 0, all operators Γµ and
Sµν = i

[

Γµ, Γν
]

annihilate Φ(x, q), which means that Φ(x, q) is independent on q, and
consequently, the new Dirac equation with the minimal coupling of electromagnetic fields
has no nontrivial solution. In other words, Dirac particles cannot interact with nonzero
electromagnetic fields.

Practically all works on this subject have stressed this ’drawback’, and many papers
have been devoted to generalisations of the new Dirac equation, which would permit
the electromagnetic interaction. It appears that it can be carried out only by considerable
complications of the equation, e.g., by considering higher-order momentum terms [18,19],
or by increasing the number of ’intrinsic’ variables [21] or by introducing parabosonic
constituents [17,22].

The no-electromagnetic-interaction theorem has been considered in the past as a
serious disadvantage of the new Dirac equation, and to a great extent, it was responsible for
the loss of interest to this subject. But it is exactly what is required for dark matter, which,
by definition, is a substance whose characteristic property is that it does not interact with
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electromagnetic fields. Dirac particles cannot be connected to electromagnetic fields not
by simply postulating that they have zero charge but because their relativistic equation is
inconsistent in the presence of the fields. It is this property that makes Dirac particles an
ideal and natural candidate for the illusive dark matter. In a sense, merely the existence
of particles transforming by an infinite-dimensional representation of the Lorenz group
implies the existence of dark matter.

6. Gravity and Dirac Particles

The interaction of elementary particles with gravitational fields has attracted a certain
attention from the very beginning of wave mechanics [23,24]. Due to the smallness of the
gravitational interaction, only very special experiments are possible at the present time (see,
e.g., [25]), and such a subject is mostly of a pure theoretical interest. But for Dirac particles,
this problem is more fundamental, as they seem to interact directly only with the gravity
(as some other dark matter candidates).

A usual way to describe spinors in gravitational fields (i.e., in a curved space) is the
tetrad formalism (see, e.g., [23,26]). In a nutshell, it consists to introduce tetrads (vierbeins)
ta
µ(x) instead of (symmetric) metric tensor gµν(x), such that

gµν(x) = t a
µ (x)t b

ν (x)ηab , η = diag(−1, 1, 1, 1) . (37)

For completeness, the main formulas of the tetrad formalism are presented in Appendix B.
Using the indicated rules, any given relativistic equation in a flat space (without gravity) can
be transformed in a covariant manner to a curved space (with gravitational fields).

However, the new Dirac equation is not just one equation but an overdetermined
system of equations, and it is not clear which of the many (almost) equivalent equations
in a flat space (cf., (2), (3) and (26)–(29)) have to be converted to a curved space. Different
equations may and will lead to different answers. For example, it is claimed in [27] that
the use of Equation (31) with κ = 1 (i.e., for spin- 1

2 particles) leads to a consistent theory in
gravitational fields.

A natural way of introducing gravitational fields into the new Dirac Equations (2) and (3)
consists of transforming these equations themselves to a curved space. Using formulas
from Appendix B, it is easy to check that the transformed equations can be written in two
equivalent forms:

(

γ̂µQDµ − m Q
)

Φ = 0,
(

γ̂µD′
µ − m

)

QΦ = 0 (38)

where

Dµ = ∂µ +
i

2
ωµabSab , D′

µ = ∂µ +
1

2
ωµab

(

Σab + iSab
)

. (39)

As ΣQ = i[Q, S] (cf. (20)), these two expressions are consistent. (For clarity, covariant
derivatives acted on different quantities are denoted here by different symbols.)

As above, one can derive many consequences of that equation. In particular, by acting
on this equation by

(

γ̂νD′
ν + m

)

, one concludes that

(

Q
(

gµνDµDν − m2
)

+ ΣνµQ
[

Dν, Dµ

]

)

Φ = 0 . (40)

Using (A38), it can be rewritten as follows:

(

Q
(

gµνDµDν − m2
)

+
i

2
Σµν Q RνµabSab

)

Φ = 0 . (41)

where Rλρab is the Riemann curvature tensor.
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This equation has a form similar to (33), and the same arguments can be applied
to cancel the first (scalar) term. Therefore, the necessary conditions for the existence of
solutions require that the following two expressions are zero (cf. with Equation (36)):

eµνλρΓνRλρabSabΦ = 0 , eµνλρSµνRλρabSabΦ = 0 . (42)

Contrary to the interaction with electromagnetic fields, these equations may have
nontrivial solutions. The point is that RλρabSabΦ is an antisymmetric tensor of the second
degree. When the metric is without torsion, there is only one such tensor, Sλρ. It means that

RλρabSabΦ = Sλρ ŴΦ (43)

where Ŵ is a scalar operator. By convoluting the above equation with Sλρ and using (A14),
one obtains

ŴΦ = −2

3
SλρRλρabSabΦ . (44)

Substituting (43) into (42) and using identities (A15) shows that all Equation (42)
become automatically zero.

Multiplying (41) by Q, one finds that

(

gµνDµDν − m2 +
1

2
SµνRνµabSab

)

Φ = 0 . (45)

It is plain that the same equation can be obtained directly by the transformation
Equation (27) to the curved space and applying the covariant derivative to the result.

The corresponding equation for the usual Dirac equation has been derived in [24], and
it has the similar form:

(

gµνDµDν − m2 +
1

2
ΣµνRνµabΣab

)

Ψ = 0 (46)

with the difference being that Ψ is a usual four component spinor, and due to (A24),
(A35) and (A36), the term with the Riemann tensor can be reduced to a scalar curvature
R = gνλgµρRνµλρ

1

2
ΣµνRνµabΣab = −1

4
R . (47)

The above arguments demonstrate how the main obstacle to the interaction of Dirac
particles with electromagnetic fields can be overcome in gravitational fields, but unfor-
tunately, they do not prove the existence of its solutions. The author is not aware of
mathematical results, which could be applied for such overdetermined equations, and
further investigations are desirable.

7. Conclusions

The relativistic invariance implies that elementary particles are transformed by irre-
ducible representations of the Lorenz group. All known elementary particles correspond to
finite-dimensional representations. But infinite-dimensional representations of the homoge-
neous Lorenz group do exist, and it is natural to conjecture that particles related with such
representations exist as well.

The new Dirac equation describes the simplest of such particles with zero spin in the
rest frame. Originally, this equation has been developed as an example of a relativistic wave
equation whose all solutions have only positive energies. Similar to all known positive-
energy equations, solutions of the new Dirac equation obey also the infinite-dimensional
Majorana equation. But the latter has too large a spectrum of possible solutions. To select a
single solution, the new Dirac equation is constructed to be not an isolated equation but an
overdetermined system of equations such that one of its consequences is the Klein–Gordon
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equation with a fixed mass. This construction necessarily requires that all these different
equations are consistent (i.e., have the same solutions), which is a nontrivial statement.

A Dirac particle is described by one function depended on four usual space-time
coordinates and two additional variables. The later are only dummy variables introduced
in such a way that the expansion over them generates an infinite number of particle wave
components corresponding to the infinite-dimensional representation of the Lorenz group.

It was proved that the resulting equations have no common solution when electro-
magnetic fields are introduced into the new Dirac equation within the minimal coupling. It
means that Dirac particles cannot, in principle, interact with electromagnetic fields (with
the minimal coupling) but it comes as a consequence of their internal structure and has not
been imposed ad hoc. Consequently, if Dirac particles exist they will automatically have
dark matter properties.

The distinctive property of Dirac particles is that they have only positive energy which
infers the absence of Dirac antiparticles. Thus, Dirac particles break the CPT theorem but
without violating any fundamental law. It signifies that such particles might be a new
source of observed matter–antimatter asymmetry.

Dirac particles (as well as other particles transformed by infinite-dimensional repre-
sentations of the homogeneous Lorentz group) are unusual, interesting, and potentially
important objects, which may be a clue to a new physics. Their characteristic properties are
peculiar, and to a large extent, counterintuitive. To summarise:

• They have spin zero (in the rest frame) but are not scalars.
• They obey covariant relativistic equations but have only positive energies, and conse-

quently do not have antiparticles.
• Their equations are linear in the momenta but do not permit the minimal coupling to

electromagnetic fields.

Unfortunately, Dirac particle investigations are undeveloped. No usual textbooks have
mentioned their existence, no standard models incorporate them, and many important
questions remain unanswered. At the present stage of the study, it seems that Dirac
particles are sterile and can interact directly only with the gravity. Detailed examinations
of the interaction of Dirac particles with usual matter through gravitational loops and
their production during the Big Bang are essential to give them the status of established
elementary particles capable of explaining dark matter.

Such inquiries are not straightforward and require the development of new methods,
but the possibility that Dirac particles could dominate the universe clearly stresses the
importance of the topic and the necessity to investigate it seriously.
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Appendix A. Useful Relations

• The choice in [4] is equivalent to the following gamma matrices obeying (8): γ0 = β,

γ1 =
( −σ3 0

0 σ3

)

, γ2 =
( σ1 0

0 −σ1

)

, γ3 =
( 0 −1

−1 0

)

, (A1)

and

γ5 = γ0γ1γ2γ3 =
( iσ2 0

0 −iσ2

)

(A2)
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where σi are the usual 2 × 2 Pauli matrices

σ1 =
( 0 1

1 0

)

, σ2 =
( 0 −i

i 0

)

, σ3 =
( 1 0

0 −1

)

. (A3)

• When working with quadratic operators in Q, the following two formulas are useful.

(a) For an antisymmetric matrix Gjk = −Gkj there is an operator identity

QTGQ ≡ qjGjkqk = − i

2
Tr(Gβ) . (A4)

(b) Let us consider the following transformation of a 4 × 4 matrix A (see, e.g., [17]):

D : A → D(A) =
i

2
QAQ , Q = QT β . (A5)

If βA and βB are symmetric matrices, then the direct calculations prove that this
transformation preserves commutator relations

[D(A),D(B)] = D([A, B]) . (A6)

• The spin operators, which realise the infinite-dimensional representation of the Lorentz

group, are defined in (21): Scd = 1
2 QΣcdQ. Rewriting them by components gives

S01 =
1

4
(q2

1 − q2
3 − q2

2 + q2
4) , S02 =

1

2
(q3q4 − q1q2) ,

S03 =
1

2
(q1q3 + q4q2) , S12 =

1

2
(q2q3 − q1q4) , (A7)

S13 =
1

4
(q2

2 + q2
4 − q2

1 − q2
3), S23 =

1

2
(q1q2 + q3q4) .

• The components of vector operator Γc = − 1
4 QγcQ are

Γ0 =
1

4
(q2

1 + q2
2 + q2

3 + q2
4) , Γ1 =

1

2
(q2q4 − q1q3) , (A8)

Γ2 =
1

2
(q1q4 + q2q3) , Γ3 =

1

4
(q2

1 + q2
2 − q2

3 − q2
4) .

• In the calculations, the following identities are also helpful (see, e.g., [17]):

γ5
(

γµγν − γνγµ
)

= e
µν

ρσγργσ (A9)

and
1

2
γλ

(

γµγν − γνγµ
)

= ηλµγν − ηλνγµ + e
λµν

ργ5γρ . (A10)

Here, eµνρσ is the completely antisymmetric tensor with e0123 = 1.
• For convenience, the commutators of spin operators S and Γ are listed below:

[

Scd, Skr
]

= i
(

ηckSdr + ηdrSck − ηdkScr − ηcrSdk
)

, (A11)
[

Γc, Γd
]

= −iScd , (A12)
[

Scd, Γb
]

= i
(

ηcbΓd − ηdbΓc
)

. (A13)

These commutators are the periphrases of the corresponding relations for the usual
γ-matrices.
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• The above operators obey a number of identities (see e.g., [18]):

Sab Sab = −3

2
, Γa Γa =

1

2
, (A14)

eabcdSab Scd = 0, eabcdSab Γc = 0 , (A15)

Γa Sab = −3i

2
Γb, Sab Γb = −3i

2
Γa, (A16)

Sa
b Sbc =

1

2

(

ηac − 2Γa Γc − 3iSac
)

. (A17)

• Let us introduce a 5 × 5 metric tensor ηAB = diag(−1, 1, 1, 1 − 1) with A, B = 0, . . . 4

and denote S4 a = Γa. Ten antisymmetric operators Sab and S4 a with a, b = 0, . . . 3
form a representation of the group O(3, 2) as the above commutation relations can be
rewritten in the form (cf. with Equation (18))

[

SCD, SKR
]

= i
(

ηCKSDR + ηDRSCK − ηDKSCR − ηCRSDK
)

(A18)

where majuscule letters are from 0 to 4.
• The Hermite functions used in the expansion (23) have the form (see, e.g., [28])

φn(q) =
(

2nn!
√

π
)−1/2

Hn(q)e
−q2/2 (A19)

where Hn(q) are the Hermite polynomials. These functions are orthogonal:

∫ ∞

−∞
φm(q)φn(q)dq = δmn (A20)

and obey the following relations:

qφn(q) =

√

n

2
φn−1(q) +

√

n + 1

2
φn+1(q) , (A21)

φ′
n(q) =

√

n

2
φn−1(q)−

√

n + 1

2
φn+1(q) .

The use of these identities permits one to rewrite any equation in auxiliary variables
qj in the form of infinite-dimensional matrices without these variables.

Appendix B. Tetrad Formalism

A tetrad (vierbein) is, by definition, a set of (usually orthogonal) vectors t
µ
a (x) defined

in all space points x which transform the true symmetric metric tensor of a curved space
gµν(x) locally into the flat Minkowski metric tensor η = diag(−1, 1, 1, 1) (see, e.g., [26])

ηab = t
µ
a (x)tν

b(x)gµν(x) . (A22)

Here Latin, (resp., Greek) letters indicate flat (resp., curved) coordinates.
The curved-space gamma matrices are determined as follows:

γ̃µ(x) = t
µ
a (x)γa . (A23)

These 4 × 4 matrices obey the relation

γ̃µ(x)γ̃ν(x) + γ̃ν(x)γ̃µ(x) = 2gµν(x) . (A24)
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For clarity, all quantities multiplied by tetrads will be indicated by the same letter as
in the flat space but with a tilde:

Γ̃µ(x) = t
µ
a (x)Γa , Σ̃µν(x) = t

µ
a (x)tν

b(x)Σab , S̃µν(x) = t
µ
a (x)tν

b(x)Sab . (A25)

At a fixed point, a (symmetric) metric tensor is determined by ten components, but
there exist sixteen tetrads. The remaining six free parameters correspond to six-parameter
local Lorentz transformations, which preserve the Minkowski metric tensor.

It is well known that to conserve a local invariance, it is necessary to change the usual
derivatives to covariant ones:

∂µΨ(x) −→ DµΨ(x) =
(

∂µ + Cµ)Ψ(x) (A26)

where Cµ is a connection whose explicit form depends on a quantity Ψ(x) on which
the derivative acts. In general, if under the infinitesimal local Lorentz transformations
xµ = xµ + a

µ
ν (x)xν (cf. (16)) a field Ψ(x) transforms in the following way Ψ(x) → Ψ(x) +

aab(x)ŝabΨ(x), then
Cµ = ωµab ŝab (A27)

with certain coefficients ωµab depending on quantities considered. It is common to denote a
covariant derivative by Dµ, but a care should be taken when its explicit expression is used
in calculations. For vector (and tensor) fields, ωµab = Γµab, and it is called the Christoffel
symbol. Different cases are indicated in Table A1.

Table A1. Covariant derivatives of different quantities.

Contravariant Lorentz vector Vµ → Vµ + a
µ
λ(x)Vλ DνVµ = ∂νVµ + Γ

µ
νλVλ

Contravariant tetrad vector Vb → Vb + ab
c(x)Vc DνVb = ∂νVb + ω b

νc Vc

Usual Lorentz spinor Ψ → Ψ + 1
2 aab(x)ΣabΨ DνΨ =

(

∂ν +
1
2 ωνabΣab

)

Ψ

Dirac particle Φ → Φ + i
2 aab(x)SabΦ DνΦ =

(

∂ν +
i
2 ωνabSab

)

Φ

For covariant quantities, the connections change the sign. When tensors are considered,
it is necessary to add the corresponding connections for each index. For matrices (and
operators) such transformation corresponds to the commutator with the connections.

Covariant derivatives transform in the same way as the corresponding quantities in
the flat space. In particular, they have to commute with the rising and lowering indices
with the metric tensor. Therefore,

Dνgµλ = 0 , ∂νgµλ − Γ
β
νµgβλ − Γ

β
νλgµβ = 0 . (A28)

This relation implies that

Γ
µ
νλ =

1

2
gµρ

(

∂νgρλ + ∂λgρν − ∂ρgµν

)

, Γ
µ
νλ = Γ

µ
λν. (A29)

Similarly, it is convenient to require that

Dνt a
µ = 0 , ∂νt a

µ + Γλ
νµ + ωνct c

µ = 0 (A30)

which leads to
ω b

νc = t
µ
c

(

− ∂νtb
µ + Γλ

νµtb
λ

)

, ωµcb = −ωµbc . (A31)

The same answer can be obtained from

Dνγ̂µ(x) = 0 , ∂νγ̂λ(x) + Γ
µ
νλγ̂λ(x) +

[

gν, γ̂µ(x)
]

= 0 , gµ =
1

2
ωµabΣab . (A32)
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In the same way,

DνΓ̂µ(x) = 0 , ∂νΓ̂λ(x) + Γ
µ
νλΓ̂λ(x) +

[

Gν, Γ̂µ(x)
]

= 0 , Gµ =
i

2
ωµabSab . (A33)

By definition, the commutator of two covariant derivatives acting at a covariant vector
is determined by the Riemann curvature tensor R λ

νµρ

[

Dµ, Dν

]

Aρ = R λ
νµρ Aλ , R λ

νµρ = ∂νΓλ
µρ − ∂µΓλ

νρ + Γσ
µρΓλ

νσ − Γσ
νρΓλ

µσ . (A34)

It is known that the Riemann tensor obeys the symmetry relations (see, e.g., [26])

Rνµλρ = −Rµνλρ = −Rνµρλ = Rλρνµ (A35)

and the Bianchi identity
Rνµλρ + Rνρµλ + Rνλρµ = 0 . (A36)

As Dνt a
ρ = 0 it follows that

[

Dµ, Dν

]

t a
ρ = 0, from which one proves the validity of

the following identity:

∂µωa
νb − ∂νωa

µb + ωa
µcωc

νb − ωa
νcωc

µb = −R λ
νµρ t a

λ t
ρ

b . (A37)

Using this expression, one obtains

[

Dµ, Dν

]

Φ =
i

2
RνµabSabΦ . (A38)
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