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Abstract In this article, we introduce a new compact stel-
lar model by deriving simple, exact analytical solutions to
the Einstein field equations in the presence of anisotropy.
We focus on an anisotropic star, employing the quasi-local
method suggested by Horvat et al. (Class Quantum Gravity
28: 025009, 2011) to describe fluid anisotropy within a spher-
ical symmetry using quasi-local variables, whose values are
determined from physics within a very small region around a
spacetime point. We then ensure smooth matching between
the interior spherically symmetric spacetime and the exterior
Schwarzschild spacetime. To confirm the physical validity of
our model, we analyze various parameters both analytically
and graphically. To further support our solution’s applica-
bility to compact stellar objects, we use observational data
from the well-known pulsar 4U1608 − 52 in our graphical
analysis.

1 Introduction

Compact objects are objects of interest in astrophysics which
can be used to test the theories in high energies. The equation
of state of matter in a compact star is unknown, as the condi-
tions inside cannot be recreated on Earth. We use Einstein’s
general theory of relativity to understand compact objects
[2–4]. The left side of Einstein’s field equation comes from
the geometry it allows, while the right side is based on the
interior matter content.When the equation of state of mat-
ter is unknown, an alternative approach to understanding
the object is by specifying its geometry. The methodology
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is being employed for a long time to predict the EoS of
matter assuming a given geometry [5–7]. Certain compact
objects, such as the X-ray pulsar Her X-1, X-ray burster, X-
ray sources 4U 1728-34, PSR 0943+10, RX J 185635-3754,
4U 1820-30, and the millisecond pulsar SAX J 1808.4-3658,
have estimated masses and radii that differ from predictions
of standard neutron star models. Li et al. [8], Bombaci [9],
Dey et al. [10,11], Li et al. [12], Kettner et al. [13] analyzed
the observed data of the compact objects and predicted that
these stars are different from neutron stars and made up of
strange quark matter. The compact objects are classified in the
strange star (SS) category. Strange stars (SS) typically have
matter densities exceeding nuclear matter density, with both
their maximum mass and radii smaller than those of neutron
stars. However, their compactification factor (ratio of mass
to radius) is found more than the neutron stars. For highly
compact objects with matter densities typically exceeding
nuclear matter density, the properties of matter, especially
in the central core, are not well understood, making reli-
able information about the equation of state (EOS) unavail-
able. Consequently, an alternative approach was adopted by
Mukherjee et al. [14] to study pressure (p) and energy den-
sity (ρ) inside the star. The geometry proposed by Vaidya
and Tikekar [5] and Tikekar [15] have been considered as a
suitable geometry for the 3-space associated with the inte-
rior space-time of such configuration. As a result it makes
the Einstein’s field equations tractable, and a solution can be
obtained which leads to physically viable models of super
dense stars in equilibrium.

Understanding the matter composition of a compact star
requires linking its theoretical model with observational data
through the equation of state (EOS), which relates pres-
sure and density. In stellar modeling, the EOS can serve as
either an input. One approach assumes a known EOS and
uses the Tolman–Oppenheimer–Volkoff (TOV) equations to
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determine the star’s structure. By specifying a central energy
density or pressure, the equations are solved radially until the
pressure becomes zero, revealing the mass and radius. Alter-
natively, when the EOS is unknown, models may assume the
behavior of pressure, density, or mass or adopt a geometric
form for the metric potentials. Such alternative methods have
been found to be useful for the development of stellar mod-
els as shown by Vaidya and Tikeker and Finch-Skea. These
solutions can also provide insights into the EOS by defining
the pressure–density relationship.

In this context the physical possibility of Vaidya-Tikekar
approach have been also discussed by Knutsen [16]. In the
relativistic framework, it is thus important to explore an
alternative approach suitable for the description of compact
SS objects. Accordingly, suitability of the ansatz consid-
ered by Tikekar and Thomas [17–19], prescribing 3-pseudo-
spheroidal geometry for the 3-space of the interior space-time
of compact SS objects studied. In the literature [20] spheri-
cally symmetric solution of Einstein’s field equation are used
to construct stellar model.

There are several reasons why a strange star may not be
spherically symmetric, and the pressure may vary in different
directions. However, if there is deviation from the spherical
symmetry an anisotropic star results. In an anisotropic ultra
compact star, Herrera and Santos [21] predicted that it may be
possible to exist a star with two different types of pressures,
namely, the radial pressure and the tangential pressure which
are different incorporating the anisotropy. In the literature a
volume of papers appeared where anisotropic fluid sphere
configuration has been explored [22–42]. Bondi [43] studied
the link between the surface value of the potential with its
highest occurring ratio of the pressure tensor to the local den-
sity. Mak and Harko [44] obtained an exact stellar model of
quark star, using relativistic solutions of a static spherically
symmetric anisotropic quark matter distribution. The stel-
lar model is obtained assuming an EoS where radial pressure
obey a linear equation of state but the tangential pressure vary
differently. An anisotropic star corresponding to the gravita-
tional field equations is found to exist for interior solution
satisfying the required general physical condition inside the
star.

In compact stellar models, quasi-local anisotropy refers to
the variation in principal pressures within a star that depends
on the star’s local geometry and structure, rather than being
uniform throughout. This pressure anisotropy can arise due
to several factors, including strong magnetic fields, rota-
tional forces, or phase transitions in the stellar material [45–
56]. Quasi-local variables, which capture information from
a small region around a spacetime point, are used to develop
the equation of state (EoS) for anisotropic fluids in spher-
ical symmetry. Research on quasi-local anisotropic models
seeks to clarify how these factors impact the stability, struc-
ture, and evolution of compact objects like neutron stars or

strange quark stars. By accounting for anisotropic effects,
these models offer a more precise view of the internal dynam-
ics and physical properties of such stellar remnants, poten-
tially shedding light on observable characteristics like mass,
radius, and surface temperature.

The Quasi-Local EoS is not universally applicable to all
compact objects but is particularly suited for anisotropic
compact stars, where anisotropy plays a significant role. Its
generality depends on the specific assumptions regarding the
local matter distribution and geometry of the star. While it
has been successfully applied to certain models, its general-
ity would be further validated through comparison with other
established anisotropic models, such as those proposed by
Bowers-Liang and Herrera-Santos. A broader applicability of
the Quasi-Local EoS could be achieved by testing it in differ-
ent stellar environments, including both static and dynamic
cases, as well as in stars with different mass ranges and inte-
rior structures. The validity of the Quasi-Local EoS depends
on its ability to accurately describe the physical properties
and behavior of compact stars. This profile has been shown
to yield physically consistent results, particularly when it
comes to modeling anisotropic effects in the interior of com-
pact objects. While the Quasi-Local EoS shows promise due
to its flexibility and physical consistency, its generality and
validity need to be further explored by testing it in various
contexts and comparing it with other models. This would
provide a more comprehensive understanding of its potential
as a tool for modeling compact anisotropic stars.

In the literature a number of stellar models are obtained
considering a given geometry [57,58], the present study
is different from that of the earlier approach as the form
of anisotropy is considered different which can be used to
explore the star satisfactorily. Considering an anisotropic
star describe by a new form given by Horvat et al. [1] we
study the physical features of a star. Earlier, the well-known
Quasi-Local (QL) type EoS were taken into account by
the authors [59,60] to model the compact stellar structures.
When comparing the approach of the Quasi-Local EoS to
other anisotropic models in the field, several key differences
and similarities emerge in terms of their formulation, appli-
cability, and the physical insights they provide. The Quasi-
Local EoS models anisotropic stars by directly linking pres-
sure anisotropy to the star’s local geometry, such as com-
pactness and radial pressure. This contrasts with the Tikekar-
Vaidya geometries, which focus on a specific geometric con-
figuration, making the Quasi-Local EoS more flexible and
applicable to a broader range of anisotropic effects. Unlike
the Bowers-Liang model, which provides general solutions
with less local constraint, the Quasi-Local EoS incorporates
local geometric properties, offering a more physically consis-
tent approach, particularly for addressing variations in pres-
sure and compactness. Similarly, while the Herrera-Santos
model emphasizes internal dynamics, the Quasi-Local EoS
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provides a more adaptable framework for modeling stars with
complex structures, without assuming a specific form for the
equation of state. This flexibility makes it a more suitable
tool for stars with varying internal properties.

The quasi-local model can be applied to gravastars, which
are proposed as alternatives to black holes. The model would
describe the anisotropic pressure within the star, especially
in the transition from the stable core to the surrounding
exotic matter shell. The model can be extended to exotic
stars, including boson stars, composed of scalar fields, and
dark energy stars, where dark energy dominates the interior.
The quasi-local model can account for varying pressure pro-
files, helping to describe anisotropy within these objects more
accurately, particularly for stars with unconventional inter-
nal compositions. The model is useful for modelling neutron
stars with exotic features, such as quark stars or stars with
superfluid cores. It can describe the anisotropic pressure in
these high-density environments, making it suitable for stars
where the equation of state varies drastically. The quasi-local
model can also be adapted to wormholes, objects with exotic
structures that challenge traditional black hole theories. The
model could help describe the anisotropic pressure in these
objects and explore how it affects their stability and interac-
tions with spacetime.

The objective of the present paper is to obtain an exact
analytical model for compact stars with anisotropy based
on Finch-Skea background geometry [61]. The radial pres-
sure (pr ) is different from the tangential pressure(pt ) and the
effect of anisotropy will be probed to study stability of the
star.

The quasi-local anisotropy model is primarily designed
for static, equilibrium configurations of compact stars, where
the pressure and density gradients remain steady over time.
While it provides valuable insights into the internal struc-
ture and stability of anisotropic stars, its direct application
to dynamic scenarios, such as stellar collapse or accretion, is
limited. During these dynamic processes, the time-dependent
variations in density, pressure, and anisotropy are signifi-
cantly more complex and require a fully relativistic treatment
of evolving spacetime metrics and fluid properties. For such
scenarios, anisotropy models would need to be extended to
include temporal terms and account for factors like shock
waves, intense energy fluxes, and rapidly changing gravita-
tional fields. Although the quasi-local model’s adaptability to
local physical conditions suggests potential for refinement in
dynamic contexts, its current form does not explicitly incor-
porate the time-dependent behavior essential for describing
processes like collapse or accretion.

This paper is organized as follows: in Sect. 2, we discuss
the basic Einstein field equations of a compact star corre-
sponding to the anisotropy. In Sect. 3, by considering Finch
Skea metric potential corresponds to grr and using quasi local
anisotropy profile for the interior matter distribution the rele-

vant field equations have been solved. We have discussed all
the essential physical criteria for a realistic compact model
in Sect. 4. The exterior Schwarzschild space-time is matched
with the interior solution over the boundary of the star and
the corresponding parameters of the model are determined
in terms of mass and radius of the star in Sect. 5. In Sect. 6,
we have investigated various model parameters like gravita-
tional potential, density, equation of state parameter etc. In
Sect. 7, Considering the pulsar 4U 1608 52 as a standard
source of observational mass and radius data, the developed
model has been validated by analyzing the various physical
features and conditions with some graphical representations.
Several other pulsars are analyzed to validate the proposed
model by presenting their physical parameters in tabular form
as well as by graphical representation. In Sect. 8, The stabil-
ity analysis of the model has been confirmed under several
conditions. Finally, discussion have been made in Sect. 9.

2 Einstein field equations

We write the line element describing the interior space-time
of a spherically symmetric star in standard coordinates x0 =
t , x1 = r , x2 = θ , x3 = φ as

ds2 = eν(r)(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (1)

where eν(r) and eλ(r) are the radially dependent gravitational
potentials to be determined in our model. The stellar interior
has matter distribution which has different pressures along
radial and transverse directions i.e., anisotropic in nature and
the corresponding energy-momentum tensor assumed to be
of the form

Tαβ = (ρ + pt )uiu j + pt gi j + (pr − pt )χiχ j , (2)

where ρ is the the energy-density, pr and pt , respectively
radial and transverse fluid pressures, ui is the 4-velocity of
the fluid and χ i is a unit space-like 4-vector along the radial
direction so that uiui = −1, χ iχ j = 1 and uiχ j = 0.

The Einstein field equations for the line element (1) can
be writen as (8πG = 1 and c = 1)

8πρ =
(
1 − e−λ

)

r2 + λ′e−λ

r
, (3)

8πpr = ν′e−λ

r
−

(
1 − e−λ

)

r2 , (4)

8πpt = e−λ

4

(
2ν′′ + ν′2 − ν′λ′ + 2ν′

r
− 2λ′

r

)
, (5)

where primes (′) denote differentiation with respect to the
radial coordinate r .
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The pressure anisotropy (pt − pr ) of the stellar fluid is
then

�(r) = e−λ

4

(
2ν′′ + ν′2 − ν′λ′ − 2

r
(ν′ + λ′) + 4

r2 (eλ − 1)

)
.

(6)

The system comprises of four equations Eq. (3)–(6) in 5
independent variables, namely eλ, eν , ρ, pr and pt .

The total mass of a star within a radius r of the sphere is
defined as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (7)

3 Developing a novel model

Following Horvat et al. [1] we have used the Quasi-Local
(QL) model to describe the quasi local nature of the the
anisotropy. This approach stands out due to its flexibility,
physical consistency, and compatibility with observational
data, making it a powerful tool for investigating stars with
complex internal structures. Unlike other EoS models, such
as those by Bowers-Liang and Herrera-Santos, the quasi-
local model offers a more direct and consistent method,
especially when dealing with boundary conditions and local
variations in anisotropy. The model’s ability to predict such
observable characteristics helps deep understanding of com-
pact objects, which are difficult to study directly due to their
extreme conditions.

According to this model the quasi-local nature of anisotropy
is as following

� = (pt − pr ) = β

3
pr (1 − e−λ), (8)

where β measures the degree of anisotropy inside the matter
fluid. The parameter β represents the extent of anisotropy in
the quasi-local anisotropy model used for describing compact
stars. It determines how the difference between the radial and
tangential pressures depends on the compactness (2m(r)/r)
and the radial pressure (pr ). A positive β corresponds to con-
figurations where the star’s radius and mass increase, creating
a more expansive structure. A negative β results in a reduc-
tion of the radius and mass, leading to more compact stellar
models. Negative values of β enhance the radial stability of
quark stars, making it possible for stable configurations to
exist even slightly beyond the maximum mass threshold. At
the center of the star, the anisotropy vanishes because the
compactness reduces to zero. Similarly, at the star’s surface,
the anisotropy also vanishes since radial pressure drops to
zero. The parameter β plays a critical role in understanding
how anisotropic pressures influence the structural and stabil-
ity properties of interacting quark stars, providing insights
into their physical behavior under extreme conditions.

To develop a physically reasonable model of the stellar
configuration, we assume Finch and Skea [61] metric poten-
tial corresponding to grr

eλ = 1 + r2

R2 , (9)

where R is the curvature parameter. In literature, Finch and
Skea ansatz has been used to develop realistic stellar models
by many authors [62–65]. Using Eq. (8) and Eq. (9) we have

� = βprr2

(r2 + R2)
, (10)

Now to solve the system we assume a particular anisotropic
profile given as

�(r) = r2(b2 − r2)

(r2 + R2)3 , (11)

where b is the boundary of the star determined from the con-
dition of vanishing radial pressure across the surface. The
selection of anisotropy is particularly intriguing, as it starts
at zero at the center, reaches a maximum at some point within
the stellar configuration, and then diminishes to zero at the
surface. A similar form of pressure anisotropy has been pre-
viously explored [66].

Based upon the above assumption we have now the radial
pressure profile as

pr (r) = 3(b2 − r2)

β(r2 + R2)2 . (12)

Clearly from Eq. (12) we can check that r = b is the boundary
of the star where radial pressure drops to zero. From Eq. (8)
we can have the form of tangential pressure

pt (r) = pr (r)

[
1 + βr2

3(r2 + R2)

]
. (13)

On substitution of pr on the above Eq. (13) we have

pt (r) = (R2 − r2)[3(r2 + R2) + βr2]
β(r2 + R2)3 . (14)

Now to obtain the functional form of the other metric poten-
tial corresponds to gtt coefficient we use the Eq. (4) to obtain

ν′ = r
(
3b2 + βr2 − 3r2 + βR2

)

2βR2
(
r2 + R2

) . (15)

On integration we have

ν =
3
2

(
b2 + R2

)
log

(
r2 + R2

) + 1
2 (β − 3)

(
r2 + R2

)

2βR2

+C1. (16)

Finally we can write

eν = Ae

(
3(b2+R2) log(r2+R2)+(β−3)(r2+R2)

4βR2

)

, (17)
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where A(eC1) is integration constants will be obtained from
the boundary conditions. While comparing the quasi-local
model with others, the current approach to study anisotropic
stars is more advantageous. The quasi-local model connects
anisotropy to compactness and pressure, ensuring it naturally
vanishes at the center and surface. Its adjustable parameter β

allows control over anisotropy, with positive values leading
to larger, less compact stars and negative values enhancing
stability.

In comparison, the Herrera-Santos model associates
anisotropy with density and pressure gradients, making it
adaptable to gradual variations. However, it may require addi-
tional conditions to achieve smooth boundary behavior. This
model provides insight into the microphysics of anisotropy
and produces a wider range of tidal deformabilities. While
the quasi-local model is ideal for high-compactness scenar-
ios, the Herrera-Santos model excels in exploring anisotropy
influenced by density and pressure changes, making them
complementary in their applications.

Finally we now have the matter density, radial pressure,
transverse pressure and mass are obtained as

ρ = r2 + 3R2

(
r2 + R2

)2 , (18)

pr = 3(b2 − r2)

β(r2 + R2)2 , (19)

pt = (R2 − r2)[3(r2 + R2) + βr2]
β(r2 + R2)3 , (20)

�(r) = r2(b2 − r2)

(r2 + R2)3 , (21)

m(r) = r3

2
(
r2 + R2

) . (22)

4 Essential physical criteria

For a physically viable stellar model, should satisfy the fol-
lowing conditions throughout the stellar configuration:

4.1 Regularity and singularity-free conditions for
gravitational potentials and matter variables

The gravitational potentials eν , eλ and the matter variables
ρ, pr , pt should be well defined at the center and regular as
well as singularity free throughout the interior of the star.

The energy density ρ should be positive throughout the
stellar interior i.e., ρ ≥ 0. Its value at the center of the
star should be positive finite and monotonically decreasing
towards the boundary inside the stellar interior, mathemati-
cally dρ

dr ≤ 0.
The radial pressure pr and the tangential pressure pt must

be positive inside the fluid configuration i.e., pr ≥ 0, pt ≥

0. The gradient of the pressure must be negative inside the
stellar body, i.e., dpr

dr < 0, dpt
dr < 0. At the stellar boundary

r = b the radial pressure pr should vanish but the tangential
pressure pt may not zero at the boundary.

At the centre both the pressures are equal which means
the anisotropy should vanish at the centre, �(r = 0) = 0.

The interior metric functions should match smoothly to
the exterior Schwarzschild space-time metric at the boundary
with radial pressure to vanish at the boundary.

4.2 Energy conditions

For an anisotropic fluid sphere fulfillment of the either of
one energy conditions refers to the following inequalities in
every point inside the fluid sphere are required:

(1) Weak Energy Condition (WEC): pr + ρ > 0, ρ > 0,
(2) Null Energy Condition (NEC): pr +ρ > 0, pt +ρ > 0,
(3) Strong Energy Condition (SEC): ρ + pr ≥ 0; ρ + pt ≥

0; ρ + pr + 2pt ≥ 0,
(4) Dominant Energy Conditions (DEC): ρ ≥ pr and ρ ≥

pt ,
(5) Trace Energy Conditions (TEC) [67,68]: ρ − pr −2pt ≥

0.

4.3 Causality condition

Causality condition has to be satisfied for a realistic model
i.e. the speed of sound must be smaller than 1 (assuming the
speed of light c=1) in the interior of the star, i.e., 0 ≤ dpr

dρ ≤ 1,

0 ≤ dpt
dρ ≤ 1.

4.4 Stability conditions

(1) For a stable model, the adiabatic index should be greater
than 4

3 .
(2) Herrera [69] cracking method to study the stability of

anisotropic stars suggests that a viable model should also
satisfy −1 < v2

t − v2
r < 0, where vr and vt are it’s radial

and transverse speed respectively.

5 Exterior spacetime and boundary conditions

The exterior space-time for a not radiating star is empty and
is described by the exterior Schwarzschild solution which is

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2

+r2
(
dθ2 + sin2 θdφ2

)
, (23)

where r > 2m, m being the total mass of the stellar object.
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The interior spacetime metric (1) must be matched to
the exterior Schwarzschild spacetime metric Eq. (23) at the
boundary of the star. The continuity of the metric functions
across the boundary r = b yields

eν(b) =
(

1 − 2M

b

)
, (24)

eλ(b) =
(

1 − 2M

b

)−1

. (25)

The above boundary conditions determine the constants
which are

R = b
√
b − 2M√

2M
, (26)

A =
(

1 − 2M

b

)
e
− (β−3)(b2+R2)

4βR2
(
b2 + R2

)− 3(b2+R2)
4βR2

. (27)

Radial pressure vanishes at a finite value of the radial
parameter r , defined as the radius of the star. Hence the

radius of the star can be obtained by utilizing the condition
pr (r = b) = 0 which is b. In this model we can tune the
model parameter β.

6 Physical analysis and constraints on model
parameters

1. The gravitational potentials in this model satisfy, eν(0) =
A exp

(
3
2

(
b2+R2

)
log

(
R2

)+ 1
2 (β−3)R2

βR2

)
= constant , eλ(0) =

1, i.e., finite at the center (r = 0) of the stellar con-

figuration. Also one can easily check that (eν(r))′r=0 =
(eλ(r))′r=0 = 0. These imply that the metric is regular at
the center and well behaved throughout the stellar inte-
rior.

2. The central density, central radial pressure and cen-
tral tangential pressure in this case are: ρ(0) =

3
R2 , pr (0) = 3b2

βR4 , pt (0) = 3b2

βR4 . All these quanti-
ties should be positive. So β must be a positive quantity
mathematically, β > 0.

3. The gradient of energy density, radial pressure and tan-
gential pressure are respectively obtained as:

dρ

dr
= −2r

(
r2 + 5R2

)

(
r2 + R2

)3 , (28)

dpr
dr

= 6r
(−2b2 + r2 − R2

)

β
(
r2 + R2

)3 , (29)

dpt
dr

= 2r
(
b2

(
(β − 6)R2 − 2(β + 3)r2

) + (β + 3)r4 − 2βr2R2 − 3R4
)

β
(
r2 + R2

)4 . (30)

The gradient of the density, radial pressure and tangential
pressure are negative inside the stellar body and zero at
the centre. It is evident from the above equations that at
centre (r = 0) gradients are zero. This conditions put
restriction β < 6b

(b2+R2)2 .
4. The radial and transverse velocity of sound (c = 1) are

obtained as

v2
r = dpr

dρ
= 6b2 − 3r2 + 3R2

βr2 + 5βR2 , (31)

v2
t = dpt

dρ
= b2

(
2(β + 3)r2 − (β − 6)R2

) − (β + 3)r4 + 2βr2R2 + 3R4

β
(
r2 + R2

) (
r2 + 5R2

) . (32)

In this model the speed of sound are smaller than 1 in the
interior of the star, i.e., 0 ≤ dpr

dρ ≤ 1, 0 ≤ dpt
dρ ≤ 1 which

has been shown graphically in the next section. We have the
following bound 3b2 + 3R2 − βb2 < 5βR2; 6b2 + 3R2 <

5βR2;

7. Equation of state parameter is given by

ωr = pr
ρ

; ωt = pt
ρ

(33)

To be non-exotic in nature the value of ω should lie within
0 and 1. Therefore, b2

βR2 ≤ 1 i.e., β ≥ b2

R2 .
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Fig. 1 Matching of the matrices across the surface

Fig. 2 Gradient

Figure 2 shows the variation of gradients which are neg-
ative throughout the stellar configuration except zero at
the centre confirms the monotonically decreasing nature of
energy density, radial and transverse pressures.

7 Alignment with observational data

7.1 The specific pulsar 4U1608 − 52

The physical acceptability of this model has been verified
by observed values of the masses and radii of pulsars as
input parameters. For this purpose, we have considered the
pulsar 4U 1608 − 52 having mass = 1.57+0.30

−0.29 M� and
radius = 9.8 ± 1.8 km [70]. Using these values of mass and
radius as an input parameter along with β = 3, the bound-
ary conditions have been utilized to determine the constants
as A = 0.000022174, R = 10.352. Making use of these
values of constants and inserting the values of G and c in
the expressions, various physical variables have been plotted
graphically.

Non singular and well-behaved nature of all the relevant
physically meaningful parameters imply that all the require-
ments of a realistic star are satisfied in this model. Figure 1
depict the regularity and smooth matching of the interior
and exterior metrices at the boundary considering the pulsar
4U 1608 − 52.

Figure 3 describes the energy density profile in two dif-
ferent visual representations to highlight its spatial variation.
Radial Variation representation (left) illustrates the variation
of energy density as a function of the radial distance from
a central point or origin. The profile typically begins at the
center, where the energy density is maximum, and decreases
as the distance from the center increases. The contour shad-
ing (right) on the right provides a two-dimensional view of
the energy density profile.

Variation of radial and tangential pressures has been plot-
ted in Figs. 4 and 5, which are radially decreasing outwards
from its maximum value at the center and drops to zero at the
boundary. For both figures, the left panel presents a detailed
radial perspective, illustrating the variation of pressures as
a function of radial distance from a central point. The right
panel provides a broader surface or contour analysis, using
shading or contour lines to represent the spatial distribution
of energy density across a two-dimensional plane.

The radial variation and contour analysis of anisotropy has
been shown in the left and right panels of Fig. 6 respectively,
which is zero at center and increases to a certain peak near
6 km around, then decreases to zero at the surface.

Figure 7 shows the sound speed in radial and transverse
directions remain well below of the given limit to ensure the
non-violations of causality condition in the interior of the
star.

All the energy conditions are plotted in Fig. 8, which are
non-negative throughout the stellar interior as required for a
physically realistic star. NEC, WEC, SEC in the left panel
and Trace Energy condition (TEC) in the right panel.

The relationship between the thermodynamic parame-
ters energy density and pressure that inferred the nature
of the equation of state (EoS) of the matter distribution
of this model is plotted in Fig. 9a. The nature shows an
non-linear relationship from the best fit curve shown in
Fig. 9b. The corresponding best fitted non-linear equation
is pr = −26.30 + 0.000396092 ρ2.

The mass function is monotonically increases as the func-
tion of r and m(0) = 0 as shown in Fig. 10.

We can study the effects of the parameter β on the relevant
physical parameters in this model. The energy density does
not have any effect on the parameter β. On varying the β

parameter physical quantities like radial pressure, transverse
pressure, EoS are found to vary. As β increases the peak
values of radial and transverse pressures shifted to a lower
values. Also, EoS gets stiffer as β takes small values. In
Figs. 11 and 12 these variations are plotted with β. This
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(a) (b)

Fig. 3 Energy density profile: a radial variation (left), b contour shading (right)

Fig. 4 Radial pressure profile: a radial variation (left), b contour shading (right)

(a) (b)

Fig. 5 Transverse pressure profile: a radial variation (left), b contour shading (right)
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Fig. 6 Anisotropy pressure
profile: a radial variation (left),
b contour shading (right)

(a) (b)

(a) (b)

Fig. 7 Sound speed profile: a radial (left), b transverse (right)

(a) (b)

Fig. 8 Energy conditions: a NEC, WEC, SEC (left), b TEC (right)

ensures the model accurately reflects the behavior of compact
stars under extreme conditions and is broadly applicable to
various astrophysical scenarios.

Following our model, we have generated the mass–radius
(M − b) relation assuming the surface density of value ρb =
4.2 × 1014 in Fig. 13. Some well-known pulsars, namely
SAX J1748.9 − 2021 (M = 1.81+0.25

−0.37 M�; b = 11.7 ±

1.7 km), 4U 1820 − 30 (M = 1.46 ± 0.21 M�; b = 11.1 ±
1.8 km), Vela X-1 (M = 1.77 ± 0.08 M�; b = 10.654 km),
Her X-1 (M = 0.85±0.15 M�; b = 8.1 km), 4U 1608−52
(M = 1.57+0.30

−0.29 M�; b = 9.8 ± 1.8 km), 4U 1724 − 207

(M = 1.81+0.25
−0.37 M�; b = 12.2 ± 1.4 km), EXO 1745 − 268

(M = 1.65+0.21
−0.31 M�; b = 10.5±1.6 km) and K S 1731−260
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(a) (b)

Fig. 9 EoS: a nature of profile (left), b best fit curve (right)

Fig. 10 Mass function

(M = 1.61+0.35
−0.37 M�; b = 10 ± 2.2 km) are found to predict

their masses and radii to a good agreement with our model,
as shown in the diagram.

7.2 Additional pulsars as input data

To show that this model has a wide ranges of predictabil-
ity for compact stars, we have considered some well-known
observed pulsars namely, Cen X-3, SAX J 1748.9, Vela X-1,
PSR J0030+0451, Her X - 1, K S 1731−260, EXO 1745−
268 and 4U 1724 − 207.

The measured data corresponding to masses and radii of
these pulsars have been used to determine the corresponding
model parameters as given in Table 1. Using of these values,
in Table 2, we have determined the values of the physically
reasonable parameters. All these parameters are sufficient to
justify the requirements of a physically realistic star. Here
we assign ()|0 and ()|b to denote the calculated values of
the physical parameters at the center and surface of the star,
respectively (Figs. 14, 15, 16).

We use the notation P1=Cen X-3, P2=SAX J1748.9 −
2021, P3=Vela X-1, P4=PSR J0030 + 0451, P5=Her X-1,

(a) (b)

Fig. 11 Variation of pressure with β. a Radial pressure (left), b transverse pressure (right)

123



Eur. Phys. J. C           (2025) 85:275 Page 11 of 16   275 

Fig. 12 EoS with β

Fig. 13 Mass–radius (M-b) plot

P6=KS 1731−260, P7=EXO 1745−268 and P8=4U 1724−
207. Additionally, by including a few more pulsars data as
input namely LMCX − 4, 4U1820 − 30, SMCX − 4, and
GW170817 − 1 event, we conducted a detailed graphical
analysis that effectively characterizes the physical features of
our model. This analysis further validates the model’s accu-
racy and applicability, demonstrating its relevance to real
astrophysical systems.We have shown the graphical analysis
in Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 and 27.

8 Model stability assessment

8.1 Tolman–Oppenheimer–Volkoff (TOV) stability analysis

In static equilibrium a star maintain its equilibrium under the
combined effects resulting from gravitational force, hydro-
statics force and anisotropic force. This condition is mathe-
matically formulated TOV equation given by

− ν′

2
(ρ + pr ) + 2

r
(pt − pr ) = dpr

dr
. (34)

The Eq. (34) can be written as,

Fg + Fh + Fa = 0, (35)

where the simple analytical expression for Fg, Fh and Fa are
obtained as:

Fg = − r
(
3b2 + (β − 3)r2 + βR2

) (
3b2 + (β − 3)r2 + 3βR2

)

2β2R2
(
r2 + R2

)3 ,

Fh = 6r
(
2b2 − r2 + R2

)

β
(
r2 + R2

)3 ,

Fa = (2(b − r)r(b + r))/(r2 + R2)3. (36)

The different forces are plotted in Fig. 14 where the pos-
itive joint effects of hydrostatics and anisotropic force are
counter balanced by the negative gravitational force to keep
the system in static equilibrium.

8.2 Adiabatic index

The adiabatic index which is defined as


 = ρ + p

p

dp

dρ
, (37)

is concerned to the stability of a anisotropic star. The related
condition is 
 > 4

3 . In Fig. 15, we have plotted 
r , 
t , γ

respectively. clearly, it can be seen from graph that 
r and 
t

are greater than 4/3 throughout the stellar interior satisfying
the stability condition.

Table 1 Model parameters corresponding to different known compact stars

Compact Star Mass (M�) Radius (km) β R A

Cen X-3 [70] 1.49 ± 0.08 9.17 ± 0.13 5 9.55 0.0006264

SAX J1748.9 − 2021 [70] 1.81+0.25
−0.37 11.7 ± 1.7 4 12.76 0.0001312

Vela X-1 [70] 1.77 ± 0.08 9.56 ± 0.08 3 8.71 5.688 × 10−6

PSR J0030 + 0451 [71] 1.44+0.15
−0.16 13.02+1.24

−1.06 3 18.70 0.0000627

Her X-1 [70] 0.85 ± 0.15 M� 8.1 3 12.09 0.0002950

KS 1731 − 260 [71] 1.61+0.35
−0.37 M� 10 ± 2.2 4 10.51 0.0001561

EXO 1745 − 268 [70] 1.65+0.21
−0.31 M� 10.5 ± 1.6 4 10.50 0.0001602

4U 1724 − 207 [71] 1.81+0.25
−0.37 M� 12.2 ± 1.4 5 13.82 0.0005492

123



  275 Page 12 of 16 Eur. Phys. J. C           (2025) 85:275 

Table 2 Numerical values of the matter variables

Matter Variables P1 P2 P3 P4 P5 P6 P7 P8

ρ|0 995 554 1150 257 620 825 715 476

ρ|b 350 210 350 135 337 295 265 189

v2
r |0 0.33 0.4 0.7 0.40 0.37 0.42 0.41 0.30

v2
r |b 0.19 0.24 0.38 0.26 0.25 0.24 0.23 0.14

v2
t |0 0.16 0.23 0.42 0.29 0.28 0.23 0.38 0.18

v2
t |b 0.34 0.38 0.50 0.36 0.34 0.39 0.38 0.32


r |0 > 4
3 > 4

3 > 4
3 > 4

3 > 4
3 > 4

3 > 4
3 > 4

3


r |b > 4
3 > 4

3 > 4
3 > 4

3 > 4
3 > 4

3 > 4
3 > 4

3


t |0 > 4
3 > 4

3 > 4
3 > 4

3 > 4
3 > 4

3 > 4
3 > 4

3


t |b > 4
3 > 4

3 > 4
3 > 4

3 > 4
3 > 4

3 > 4
3 > 4

3

(ρ + pr + 2pt )|0 1530 920 1850 381 895 1370 1177 688

(ρ + pr + 2pt )|b 350 224 350 133 349 297 265 191

Fig. 14 Contribution of different forces for the static equilibrium of
stellar object

Fig. 15 Adiabatic index

Fig. 16 Difference of sound speeds

Fig. 17 Radial variation of density for few pulsars

8.3 Herrera’s cracking method

Study of cracking method to check the stability of a star
was introduced by Herrera [72] where a small perturbation
was made from its equilibrium position of a self-gravitating
spheres. Latter, Abreu et al. [73] derived a simple mathemat-
ical bound on the differences of sound speeds that defines
the stability region of a star. It was found that (v2

t − v2
r < 1)

indicated potential stability whereas (v2
t −v2

r > 1) was unsta-
ble. Figure 16 shows that the sound speed stability factor is
negative up to a radius 5.5 km.

v2
t − v2

r = b2
(
2r2 − R2

) − r4 + 2r2R2

r4 + 6r2R2 + 5R4 . (38)

Also, the stability factor was independent of the factor β.

9 Discussions

In this paper, we present physically viable solutions to the
Einstein field equations for compact stars, meeting essential

123



Eur. Phys. J. C           (2025) 85:275 Page 13 of 16   275 

Fig. 18 Radial variation of radial pressure for few pulsars

Fig. 19 Radial variation of transverse pressure for few pulsars

Fig. 20 Radial variation of anisotropy for few pulsars

criteria such as the satisfaction of various general relativity
energy conditions, subluminal sound speed in the fluid, and,
crucially, the stability of the stellar configurations. To model
the anisotropic structure of compact stars in spherical sym-
metry, we adopt a quasi-local equation of state (EoS), which
relies on quantities derived from the spacetime geometry at
specific points. This quasi-local approach enables us to mea-

Fig. 21 Radial variation of mass for few pulsars

Fig. 22 Radial component of sound speed for few pulsars

Fig. 23 Transverse component of sound speed for few pulsars

sure Riemann tensor components in an infinitesimally small
region around a point, defining quasi-local variables like the
curvature radius and compactness.

The Quasi-Local Anisotropy model provides a flexible
framework for incorporating pressure anisotropy to capture
deviations from isotropic behavior, which is especially rel-
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Fig. 24 Energy conditions for various compact stars

evant for highly dense stellar objects. Unlike conventional
approaches that depend on a predefined equation of state
(EoS) or assume specific metric potentials, this model nat-
urally accounts for anisotropic stresses and allows macro-
scopic parameters, such as mass and radius, to serve as inputs.
Its versatility makes it particularly well-suited for modeling
ultra-compact objects, including neutron stars, strange stars,
and highly magnetized stars, where anisotropic pressures are
prominent.

Anisotropy is incorporated using a free parameter, denoted
as β, which quantifies the level of anisotropy within the stel-
lar structure. The advantage of this quasi-local model is its
ability to ensure isotropy at the star’s center, while remain-
ing applicable only to relativistic configurations where high
densities may induce anisotropy. Our study finds that both
radial and transverse pressures depend on β, decreasing as β

increases.
The quasi-local EoS offers a unique advantage in mod-

eling anisotropic compact stars as it relates the anisotropic
pressure to the local compactness and radial pressure of the

star. This ensures that anisotropy vanishes at both the center
and surface, which is consistent with physical expectations
for such stars. The model adapts to local conditions, pro-
viding smooth transitions between the interior and exterior,
and includes a free parameter (β), that allows fine-tuning
of anisotropy. This EoS has been shown to match well with
observational data, including mass–radius relations and tidal
deformability measurements, making it valuable for inter-
preting real astrophysical phenomena. When compared to
other models, such as those by Bowers-Liang and Herrera-
Santos, the Quasi-Local EoS stands out for its physical con-
sistency, as it directly connects anisotropy to local compact-
ness and pressure, ensuring smooth boundary conditions and
offering a more realistic description of stellar structures.

The quasi-local anisotropy model has several cosmologi-
cal implications, particularly in understanding compact stel-
lar objects and their role in the universe. The quasi-local
anisotropy model enhances our understanding of compact
stars, gravitational waves, and high-density matter, with
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Fig. 25 Variation of Adiabatic Index for few pulsars

Fig. 26 Difference of sound speeds for few pulsars

Fig. 27 TEC for few pulsars

broader implications for dark matter, the early universe, and
gravitational lensing.

We further demonstrate that the quasi-local EoS allows
for the generation of static anisotropic spheres with a broad
range of radii and masses, aligning well with recent pulsar
measurements. These models are presented on a mass–radius
plot, confirming that the quasi-local EoS is a valuable tool

for constructing realistic models of compact astrophysical
objects, such as neutron stars, that align closely with obser-
vational data.

This quasi-local model has certain limitations under which
the model might fail. To apply the quasi-local model to
exotic objects, modifications are required, such as adjust-
ing equations of state and gravitational field equations for
extreme conditions. Additionally, the model doesn’t account
for anisotropy under dynamic conditions like rotation, mag-
netic fields, or shock waves. It is also designed for high-
density stars and static configurations, making it less suitable
for lower-density stars or dynamic processes like collapse or
accretion.

However, while our current study focuses on modeling
anisotropic pressure in static, spherically symmetric stars,
future work will incorporate rotation, magnetic fields, and
phase transitions to provide a more comprehensive under-
standing of compact star.
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