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Abstract. Starting from the content of the shell model space and using a simple symplectic as
a weight Hamiltonian, the relative positions of different symplectic irreducible representations
are deduced. Applying a geometrical mapping leads to a microscopically derived Potential-
Energy-Surface. After smoothing this surface and fitting a mass parameter to the first excited
6+-state in the ground state band, the spectrum of a nucleus can be reproduced qualitatively.
The method is also used to obtain a first estimation of the quadrupole Potential Energy Surface
of any nucleus, allowing to obtain information about the structure of the nucleus in question. Of
special interest is the prediction of the structure of nuclei away from the valley of stability and
of super-heavy nuclei. The method will be illustrated at 184W. One objective is to show that
the Pauli Exclusion Principle is the main driving force for the structure of a nucleus, though
some further microscopic input has to be used.

1. Introduction
The main objective is to show that by a minimal number of assumptions the Potential Energy
Surface (PES) of quadrupole deformations of a nucleus can be guessed and that the resulting
spectrum is near to the observed one. This enables us also to obtain a first hint to the collective
quadrupole structure of super-heavy nuclei and of nuclei not measured yet.

The minimal assumptions are:
1) The use of the shell model space, sub-divided into irreducible representations (irreps) of the
symplectic group [1]. The result is the consequence of the Pauli Exclusion Principle and up to
here the procedure is fully microscopic.
2) The use of a simple test-Hamiltonian, which traces the relative distance in energy of the
symplectic irreps. Here enters the importance of the quadrupole.quadrupole interaction, which
drives the deformation. This test-Hamiltonian only serves to set the relative weight, position
in energy, for each symplectic irrep. The test-Hamiltonian by no means is a microscopic
Hamiltonian with all possible contributions needed for a full treatment. As we will see, some
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important microscopic information will be hidden in two parameters, namely in the experimental
deformation of the nucleus and in the mass parameter.

This alone will enable us to get a first guess on the PES. Further steps are:
3) Because we have not the possibility to diagonalize the Hamiltonian with an arbitrary potential,
one has to obtain a PES within the General Collective Model (GCM) [2, 3], fitting it to the
microscopically derived PES, which will introduce errors.
4) If a state within the ground state band is known, fitting the mass parameter B2 [2] to this
state, if possible with a large angular momentum. The parameter B2 will adjust the moment of
inertia. This parameter hides the contribution from, e.g., the nucleons in the intruder levels.

One main objective of this contribution is that the observation of the Pauli Exclusion
Principle is the most important ingredient to obtain the information about the structure of
a nucleus. Knowing the number of protons/neutrons in their valence shell determines which
SU(3) irreps are possible and, thus, the structure of the nucleus.

In this contribution we will illustrate the method at the example of 184W and at 252No.
The paper is organized as follows: In Section 2 we will present the sketch of the procedure,

in section 3 it will be applied to 184W and in Section 4 conclusions will be drawn.

2. The procedure
An important ingredient is the symplectic model of the nucleus [1] and its contracted version
(see, for example [4]). More details can be retrieved in [5] on which also this contribution is
based. In [6] the main steps on how to obtain the microscopically derived PES is explained for
the first time and applied to 238U .

The main points are that for heavy nuclei the symplectic irreps for the proton and neutron
part are obtained separately. After that, it suffices to use a linear coupling of the proton
and neutron irreps, because those are lower in energy as the non-linear coupled ones (which
correspond to giant resonances). As a Hamiltonian, which provides a relative weight to each
irrep, we use one from the contracted symplectic model [4]:

H = ~ωÑ − 1
2
χ [Qc ·Qc − (Qc ·Qc)shell] , (1)

where Ñ is the phonon number operator of the protons plus the neutrons, ~ω is 45A1/3-
25A2/3 MeV for light and 41A1/3 MeV for heavy nuclei. The tilde refers to the use of the
pseudo-SU(3)-model [7, 8], see also further below. The Qc

m is the physical quadrupole operator
and (Qc · Qc)shell is the trace equivalent part of the quadrupole-quadrupole interaction, which
guarantees that even for large deformation in average the shell structure is conserved [9]. The
nucleons are filled into the Nilsson orbitals at a deformation given by [10] or by experiment,
thus, microscopic information enters which is treated here as a black box. The χ-parameter is
determined such that the lowest symplectic irrep has its minimum at the deformation value used
as an input.

The symplectic Hamiltonian alone works well when the nucleus is well deformed, i.e., there
is one dominant symplectic irrep to which one can restrict. However, for a general nucleus there
are strong mixing of the symplectic irreps, which have to be taken into account, when a full
microscopic treatment is applied. Here, we want to show by the results that the test-Hamiltonian
is sufficient to get an estimate of the relative influence of the symplectic irreps. The mixing will
be implicitly taken into account, as will be mentioned further below.

The mapping to a geometrical potential is performed defining first a vector coherent state
[11] | Φ(α2µ)〉, which is given by an operator being an exponential function in the symplectic
operators which raise the number of phonons by two, applied to a lowest weight state of an
S̃U(3) irrep within the valence shell. The α2µ defines the quadrupole variable. The geometrical
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potential is the obtained through the expectation value of the Hamiltonian with respect to this
vector coherent state. Note, that the shell model space is well defined and is subject to the Pauli
Exclusion Principle. The content is only determined by the number of protons and neutrons,
distributed along the shell model orbitals. The number of active nucleons for light nuclei is
represented by all the nucleons, while for heavy nuclei the pseudo-SU(3) is used [7, 8]. In the
pseudo-SU(3) shell model the orbitals are divided into unique and normal ones, where the unique
orbitals are all those with the largest spin in each shell and the normal ones are all others. The
angular momentum l = j± 1

2 , within the standard shell model, are redefined to l̃ = j∓ 1
2 and the

content of a former shell with η oscillation quanta is mapped to a pseudo shell η̃ = η−1. In order
to obtain the information of how many protons and neutrons are occupying the normal orbitals
one needs the information on the deformation (which contains microscopic information) and fill
in the nucleons at this deformation within the Nilsson diagrams from below. This division into
two different kinds of orbitals is by no means sufficient. The intruder orbitals are important,
for example, to get the moment of inertia right. However, this we treat as a parameter and the
effects of the intruder orbitals are implicitly taken into account.

Restricting to only one symplectic irrep, in lowest order the potential is given by

V ≈ 65
16π

(χN2
s )β̃2

s +
5
4π

Ns

(
~ω − 7

6
χNs

)
(β̃ − β̃s)2

− (χN2
s )

5
π

β̃sβ̃ +
5
2π

Ns

(
~ω +

5
6
χNs

)
β̃sβ̃ (1− cos(γ − γs)) , (2)

where β̃s is related to a particular pseudo-SU(3) irrep (λ̃, µ̃) via

β̃s =
[(

4π

5N2
s

)(
λ̃2 + λ̃µ̃ + µ̃2 + 3λ̃ + 3µ̃

)] 1
2

. (3)

The Ns is the total number of phonons in the lowest pseudo-SU(3)-state plus 3 (Ã−1)
2 and β̃ = β

κ

(β̃s = βs

κ ). (In [6] the factor 1
κ was omitted for βs for heavy nuclei, which does not lead to

significant deviations for prolate nuclei but being important for the case of oblate nuclei.) The
value κ is approximately given by 1

2( η̃p+1.5
η̃p+0.5 + η̃n+1.5

η̃n+0.5) with η̃p and η̃n being the pseudo valence

shell number for protons and neutrons respectively. (β̃s, γs) in (2) is related to the deformation
of the symplectic band head in the 0~ω [4] (see also Eq. (3)). The total PES is then obtained
by the envelope of all potentials related to the sum of all symplectic irreps. Note, that the
determination of the microscopic potential has no free parameters. By taking the envelop, we
implicitly assume that the system can change from one potential of the type (2) to another
one, when the last becomes lower. In the symplectic model as such, there are no transitions
between different potentials. This means that the procedure proposed implies a more general
Hamiltonian.

For the GCM collective potential we use [2]

V =
C2√

5
β2 −

√
2
35

C3β
3cos(3γ) +

C4

5
β4 −

√
2

175
C5β

5cos(3γ)

+
(

2
35

)
C6β

6cos2(3γ) +
D6

5
√

5
β6 . (4)

The potential parameters are approximately deduced by fitting (4) to (2).
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β0 [12] κ Ñvp Ñvn η̃p η̃n Ãp Ãn Ã Ns

-0.2344(17) 1.25 14 20 3 4 34 60 94 381.5

Table 1. The values of quantities used in the calculation of microscopic PES 184W. The κ is a
scale factor appearing in the mapping of SU(3) to pseudo-SU(3). Ñvp are the number of valence
protons in the pseudo-valence shell η̃p and similar for the neurons. Ãpis the number of protons
in the normal orbitals and Ãn the same for the neutrons. Ã is the total number of nucleons in
normal orbitals. Finally, Ns is the number of quanta of the normal orbitals in the pseudo-SU(3)
plus 3

2(Ã− 1).

C2 C3 C4 C5 C6 D6 B2

-521.77 -337.80 14306.01 -502.64 1902.26 -60439.94 112.697

Table 2. The values of the phenomenological potential parameters for 184W, determined by
fitting.
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Figure 1. Comparison of microscopic and phenomenological potential energy surfaces of 184W.
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Figure 2. Comparison of the calculated energy levels 184W with experimental data.

Lgs → L′gs B(E2) Lβ → L′β B(E2) Lγ → L′γ B(E2)
Calc Exp Calc Exp Calc Exp

0+ → 2+ 1.95 3.78(6) 0+ → 2+ 1.68 - 2+ → 3+ 0.75 -
2+ → 4+ 1.06 1.86(5) 2+ → 4+ 0.07 - 2+ → 4+ 0.59 -
4+ → 6+ 1.01 1.63(5) 4+ → 6+ 0.55 - 3+ → 4+ 0.38 -
6+ → 8+ 1.03 1.5(3) 6+ → 8+ 0.78 - 3+ → 5+ 0.66 -

4+ → 5+ 0.29 -
4+ → 6+ 0.83 -
5+ → 6+ 0.18 -
5+ → 7+ 0.85 -
6+ → 7+ 0.14 -
6+ → 8+ 0.94 -
7+ → 8+ 0.10 -

Table 3. Calculated intraband B(E2) values in e2b2 unit with experimental data for 184W.
Units are in e2b2.
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Lgs → Lβ B(E2) Lgs → Lγ B(E2) Lγ → Lβ B(E2)
Calc Exp Calc Exp Calc Exp

0+ → 2+ 29.4 - 0+ → 2+ 222.3 - 2+ → 2+ 0.9 -
2+ → 2+ 0.7 - 2+ → 2+ 175.0 - 2+ → 4+ 134.8 -
2+ → 4+ 1.6 - 2+ → 3+ 114.0 - 4+ → 4+ 245.7 -
4+ → 4+ 2.9 - 2+ → 4+ 17.0 - 4+ → 6+ 23.2 -
4+ → 6+ 1.1 - 4+ → 4+ 165.5 - 6+ → 6+ 262.4 -
6+ → 6+ 2.7 - 4+ → 5+ 60.0 - 6+ → 8+ 8.9 -
6+ → 8+ 0.8 - 4+ → 6+ 5.9 - 8+ → 8+ 256.3 -
8+ → 8+ 2.6 - 6+ → 6+ 154.5 - -

6+ → 7+ 40.2 - -
6+ → 8+ 3.1 - -
8+ → 8+ 145.5 - -

Table 4. Calculated interband 103·B(E2) values in e2b2 units for 184W. Units are in e2b2.

The procedure dos not provide us within information on ground state energies and related
observables of the ground state of a nucleus. However, it can provide information on stability:
A spherical PES hints to a particular stable configuration.

3. Applications
Due to lack of space, we simply resume the main results, as the energy spectrum, the structure
of the PES and some transition values. The parameter values can be retrieved from the Tables
1 and 2 .

In the presentation of the conference the results for 182W, 184W and 186W were presented.
In this written version, only the 184W-isotopes is considered. Experimental data were taken
from [12]. This contribution serves to show the basic procedure. Applications to other known
nuclei and super-heavy nuclei are published in [5]. The deduced microscopic potential has
an immediate consequence on stability considerations of super-heavy nuclei: When the PES
is spherical it clearly indicates stability. As can be seen from Figure 1, the GCM potential
reproduces satisfactorily the microscopic derived one. In Figure 2 the spectrum is comparable
to the experimental one, though the staggering within the sidebands is exaggerated. This was
also observed in [5], where many different isotope chains were considered, including in the range
of super-heavy nuclei. The agreement to the B(E2) transitions within bands (see Table 2) are
quite well predicted. A general feature is the exaggerated staggering within the vibrational
bands.

Also a better agreement can be obtained using the deduced microscopic potential and not
the approximation to the GCM-potential. However, in this case one needs a numerical routine
[13], which is not available anymore.

An improvement in reducing the staggering within the vibrational bands can be achieved
introducing a 1/β2 interaction as done in the Davidson potential [14], which implies however an
additional parameter. Currently, we are including this interaction.

Finally, in Fig. 3 we present an example of a super-heavy nucleus. Only the PES is shown,
while the spectrum can be retrieved in [5]. Many more have been considered in [5]. The
particular example chosen is due to the knowledge of the states within the ground state band,
which helps us to determine the mass parameter.
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Figure 3. Comparison of microscopic and phenomenological potential energy surfaces of the
super-heavy nucleus 252No.

4. Conclusions
We estimated the structure microscopic PES with a minimum of physical assumptions and no
free parameters, leading to the prediction of the collective quadrupole structure of nuclei in a
wide range of heavy nuclei. The driving force for the structure is the Pauli Exclusion Principle,
though further microscopic input are hidden in the information of the deformation (taken from
experiment or the tables [10]) and the use of a weight Hamiltonian whose origin is the symplectic
model. The symplectic model Hamiltonian is only used as a weight to obtain the order of
the relative distance of the symplectic irreps, a difference due to the quadrupole-quadrupole
interaction.

Finally, for the spectrum one fits the mass parameter to the energy of the first 6+ state, or
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one assumes a reasonable value. This also contains information on the microscopic structure,
because it fits the moment of inertia.

As an illustrative examples we discussed the 184W-isotope. The spectrum and B(E2)
transitions were calculated with a quite good agreement to experiment. A more complete
presentation of the procedure was presented in the talk and especially can be found in [5].
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