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Kurzfassung

Diese Arbeit befasst sich mit der transversalen Dynamik paketierter Ionenstrahlen in
Kreisbeschleunigern. Ausgehend von analytischen Modellen zur Beschreibung der
transversalen Dynamik gleichférmiger Ionenstrahlen werden analytische Modelle
zur Beschreibung der Strahltransferfunktionen (Beam Transfer Functions, BTFs)
paketierter Ionenstrahlen im Grenzfall relativistischer Energien entwickelt.

Im Kontext von Colliderringen wird auf Strahltransferfunktionen von Strahlen
unter Einfluss der durch den zweiten Strahl verursachten nichtlinearen Felder
eingegangen. Aulerdem wird der Einfluss von Raumladung im Zusammenhang mit
chromatischer Frequenzverbreiterung auf die Strahltransferfuntkion diskutiert.

Die Ergebnisse der entwickelten analytischen Modelle der Strahltransferfunktio-
nen stimmen mit den Ergebnissen eines parallel entwickelten Simulationsmodells
iiberein. Einer der wichtigsten Anwendungsfélle von Strahltransferfunktionen ist
die Bestimmung der transversalen Oszillationsfrequenz (Betatronfrequenz) der Io-
nen. Aus diesem Grund werden die Implikationen des Modells fiir die Bestimmung
der mittleren Betatronfrequenz der Teilchen im Zusammenhang mit Raumladung
untersucht. Des Weiteren wird die Bestimmung der Betatronfrequenzverteilung an-
hand der Strahltransferfunktion im Zusammenhang mit Strahl-Strahl Interaktionen
néher diskutiert. Dabei wird auf den erwarteten Giiltigkeitsbereich der analytischen
Modelle eingegangen und dieser anhand der Simulationsergebnissen validiert.

Abschliellend werden die erzielten Simulationsergebnisse und die analytischen
Modelle fiir Strahltransferfunktionen von Strahlen unter Einfluss lokaler Nichtlinea-
ritdten aufgrund von Strahl-Strahl Interaktionen mit im Rahmen dieser Arbeit am
Brookhaven National Laboratory erhobenen Messdaten verglichen. Es zeigt sich,
dass die im Rahmen dieser Arbeit entwickelte Methode zur Bestimmung der Beta-
tronfrequenzverbreiterung auf Mef3daten anwendbar ist, vorausgesetzt kohérente
Schwingungen spielen kein Rolle.







Abstract

Transverse beam dynamics of bunched beams in synchrotrons are the subject of
this work. Building on analytic models of transverse beam dynamics of coasting
beams, analytic models for the description of Beam Transfer Functions (BTFs) of
bunched beams in the limit of relativistic energies are derived. Specifically, the BTF
of bunched beams under the influence of a local transverse nonlinearity arising from
interactions between beams in colliders as well as the BTF of beams dominated by
space charge in combination with chromatic frequency spread are discussed.

The resulting analytic models for the BTF are presented and agree with a simu-
lation model developed for the purpose. One of the primary applications of BTFs
is the measurement of the transverse oscillation frequency (betatron frequency)
of the ions. For this reason this work elaborates on the implications of the model
for the determination of the betatron frequency in the presence of space charge.
Furthermore the determination of the betatron frequency distribution from the BTF
in connection with beam-beam interactions is discussed. The expected regime of
validity of the analytic models is validated on simulated BTF data.

Finally, simulated and analytic BTFs of beams under the influence of beam-beam
interactions are compared to BTFs measured at the Brookhaven National Laboratory
as part of this work. Analytic expectation and simulated BTFs agree with the
measurement outcome. A method for obtaining the betatron frequency spread from
BTFs of bunched beams with beam-beam interactions developed in this work is
successfully applied to measured BTFs.







Contents

1 Introduction

2 Synchrotrons and Colliders
2.1 Brookhaven National Laboratory. . . ....................
2.1.1 The Relativistic Heavy Ion Collider . . . . .. ...........
2.2 SIS100and GSI . . . . . it e

3 Beam Dynamics and Intensity Effects
3.1 Single Particle Dynamics . . . . . ..o oot i
3.1.1 Coordinate System for Beam Dynamics . .............
3.1.2 Transverse Beam Dynamics . ....................
3.1.3 Longitudinal Dynamics . .. ... ..................
3.1.4 Combined Longitudinal and Transverse Effects ... ... ...
3.2 SpaceChargeFields ............ ... . ...,
3.2.1 Incoherent Transverse Space Charge Tune Shift . . .. ... ..
3.22 Beam-BeamEffect ... .......... ... ... .. .. ...

4 Beam Transfer Functions
4.1 Direct Diode Detection for Bunched Beams . ...............
4.2 BTFs of Coasting Beams with Chromaticity ................
4.3 BTFs in Presence of a Local Transverse Nonlinearity . . . ... ... ..
4.4 BTFswith SpaceCharge . . ... ..... ... ... . ... . .....
4.4.1 CoastingBeams. .. .......... ... ... ... ... ...
4.42 BunchedBeams. ...............uuunnnnn...

5 Simulation
5.1 SimulationModel . ... ... ... ... .. .. .. .. .. . .. ... ...
5.1.1 General Description of Particle Tracking for Synchrotrons . . .
5.1.2 TransverseFields ... .........................
5.1.3 SpaceCharge . ... ... .. ...
5.1.4 Beam-Beam Effect . .. ... .....................
5.1.5 ElectronLens . ... ... ... ...,
5.2 Beam Transfer FUNCtionS. . . . . . . . . . vt i vttt i it e i

1
11
12
13
17
19
22
24
27

33
34
36
37
40
41
42

45
45
46
47
50
52
55
56




5.3 Validation . . .. ... ... ... .. ... e 57
5.3.1 Beam Transfer Function. . .. ... ................. 57

5.3.2 SpaceCharge .. ..... ... ... . ... .. 57

5.3.3 Beam-BeamEffect . ... ... ... ... ... ... .. 57

6 BTFs of Bunched Beams with Space Charge 61
6.1 BTFs of Bunched Beams with Frozen Synchrotron Motion . ... ... 61
6.1.1 Implications for Tune Measurements . . . . . . . ... ...... 64

6.1.2 Simulation............. ... . .. .. 64

6.2 Finite Synchrotron Frequencies. . . . . . ... ............... 67
6.3 Determining the Space Charge Tune Shift . ................ 68

7 Using BTF to Measure Tune Spread 71
7.1 BTFPhenomenology . ........ ... ... . iiiieeeneneno. 71
7.2 Recovery of Tune Distributions . . . ... .................. 73
7.2.1 FlatBeams. . . . . . .. ittt e e 73

7.3 Thresholds . ... ... ... .. .. 75
7.3.1 Choice of Thresholds . ........................ 76

7.3.2 Recovered Tune Spreads and Beam-Beam Parameters . . . . . 77

7.3.3 Thresholds and Coherent Beam-Beam Modes . ......... 77

8 Measurement with the Threshold Method 81
8.1 Weak-strong Beam-Beam Interaction as a Stand-in for the Electron Lens 81
8.2 Influenceof Bunching ............................. 82
8.3 Experimental SEtup . . . . . . . . . e 84
8.4 ExperimentalResults . ... ........ ... ... ... .. ... 86
8.5 Threshold Method Applied to an Actual Electron Lens . . . ...... 93
8.6 Threshold Method in Presence of Coherent Beam-Beam Modes . . . . 93
8.7 Conclusions from the Measurements . .. ................. 95

9 Conclusion and Outlook 97
Acknowledgements . . .. ... ... ... 99
Listof FIgures. . . . . . . . it e e 101
Listof Tables . . . . . . . 103
Listof Symbols . . . . . . . .. 105
ListOf ACTONYIMS . . . . o v v e e e e e e e e e e e e e e e e e 109
Bibliography . ... ... .. . . ... 110
Curriculum Vitae . . . . . . .. e e 118

Vi Contents



1 Introduction

Particle beams have proven to be a flexible tool for basic and applied science
for the last century. After the discovery of cathode radiation with the following
discovery of the electron in the 1860s [1] and the discovery of a-particle radiation by
Ernest Rutherford in 1911 [2], particle accelerators for increasingly higher energies
were developed in the first half of the 20th century. The limitations of electrostatic
accelerators due to the finite breakdown voltage [3] led to parallel development of
oscillating field linear particle accelerators [4]. Additionally, circular accelerators
were developed. In these, charged particles are guided on a circular orbit by means
of a magnetic field. The particles are repeatedly accelerated when passing the
same oscillating electric field. Their increasing velocity is accounted for by either
allowing the radius to increase (in cyclotrons) or by synchronous adjustments to
the frequency of the accelerating electric field and the amplitude of the guiding
magnetic field (in synchrotrons) [5].

Courant and Snyder [6] were the first to develop and mathematically describe
strong focusing, a technique used for transverse confinement of beams in all syn-
chrotrons since the 1950s. Strong focusing leads to transverse oscillation (betatron
oscillation) with a location-dependent amplitude defined by the beta function. A
longitudinal potential imposed on the beam by means of radio frequency cavities
causes longitudinal confinement of the particles in bunches. The cavities are tuned
to a multiple of the particle revolution frequency. When confined by radio frequency,
particles oscillate longitudinally in the imposed potential (synchrotron oscillation).
Both betatron and synchrotron oscillations are characterized by the number of
oscillations of a particle per revolution. This quantity is called betatron- or syn-
chrotron tune, respectively. The velocity-dependence of the transverse focusing,
characterized by the chromaticity, couples the transverse and longitudinal plane
resulting in momentum-dependent particle tunes.

The development of increasingly higher energy accelerators allowed new types of
nuclear physics experiments which led to discovery and detailed measurements of
new particle species. Thus, the development of accelerators fueled the new field
of high energy particle physics. Concurrently, accelerators found use in medicine,
material sciences, and industry [7]. This work focuses on beam diagnostic methods
for strong focusing high energy synchrotrons, which find their primary use in the
particle and nuclear physics communities.




As technology advances, physicists demand higher beam qualities and energies
to observe increasingly rare processes with maximum precision. To reach higher
collision energies, physics experiments observe collisions between particle beams
of equal energy to avoid wasting a large amount of energy on the motion of the
centre of mass [8]. Special storage rings called colliders [9] such as the Relativistic
Heavy Ion Collider (RHIC) [10] provide counter-circulating beams, often traveling
in separate magnet systems to produce these collisions. The beam size scales
with the emittance, a quantity characterizing the volume of the beam in phase
space. Emittance is related to entropy and as such can only grow or be conserved
(for the beams of interest for this work). Many physics experiments indirectly
require minimization of emittances via requirements for luminosity or beam intensity.
Acceleration from the source to top energy in today’s highest energy machines takes
up to an hour [11, 12]. Beams have to be stored for the experiments for up
to approximately a day. In order to maximize the usable time span before the
machines need to be re-filled, the preservation of emittance is a key objective of
accelerator physics research. Optimization of machine parameters requires detailed
measurement and control of beam parameters. One important method of beam
diagnostics is the Beam Transfer Function (BTF) [13, 14]. The BTF quantifies the
ratio of the beam response to excitation as a function of frequency. BTFs have been
shown in the past to allow measurement of the betatron tune [11], the betatron
tune spread of coasting beams, and other machine parameters. With tune spread
among the primary quantities determining emittance growth, this work focuses on
the diagnostic properties of the transverse BTF with respect to the transverse tune
spread in bunched beams. In practice, BTFs are often measured for a number of
equidistantly spaced excitation frequency samples in a frequency region of interest.
The finite measurement time for such a sample determines its frequency resolution.

One of the main factors responsible for emittance growth in modern-day accel-
erators is the electromagnetic interaction between the particles. The collisions in
colliding beam experiments, aside from producing the nuclear and particle physical
effects for investigation by experimental physicists, allow the particles of each beam
to interact with the electromagnetic field of the other. The amplitude dependent
force and resulting spread in particle betatron tunes arising from this so-called
beam-beam effect [15] can lead to a deterioration of emittance. In recent years
so-called electron lenses [16, 17, 18] were developed for its partial compensation.
The analytic expectations for the BTF of a beam experiencing tune spread due to
a transverse nonlinearity from this work were successfully applied to develop a
method for determination of the tune spread directly from the BTE One application
of this work with respect to beam-beam interactions was the development of a
method for quantification of the tune spread introduced by the new electron lenses
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at RHIC. In 2015, the method was successfully employed during the commissioning
of the electron lenses at RHIC and the results indicate its utility for tune spread
measurement in absence of coherent modes.

Especially at low and intermediate particle energies (below 10 GeV for protons),
the electromagnetic interaction between the particles of a single beam becomes
significant. It leads to a position dependent force on each particle. This so-called
space charge force [19] originates from the beam distribution itself and on its own
has no influence on the centre of charge motion of the beam. It would not be
detectable by BTF measurements but for the interplay with other effects. Due to
interaction of the bunches electromagnetic potential with the beam surroundings
and due to interference with other sources of tune spread, space charge nevertheless
produces a characteristic signature in BTFs for both non-bunched beams [20] and
bunched beams [21, 22, 23]. This work investigates BTFs of bunched beams with
space charge in a new intermediate regime between the previous theories for
coasting beams and for bunched beams with fast synchrotron motion. The results
are relevant for conditions as they can commonly be found at intermediate to high
energy synchrotrons such as the Schwerionensynchrotron 100 (SIS100).

Only a small amount of beam time is available for accelerator physics experiments
in the main rings of large facilities (e.g. RHIC). The priority is the provision of
beams for regular physics experiments. Additionally, predictions for machines
which are still under design, such as the SIS100 at GSI Helmholtzzentrum fiir
Schwerionenforschung (GSI), are substantial. Furthermore, some beam properties
are neither accessible by measurement nor by analytic considerations. For these
reasons, computer simulation by means of particle tracking algorithms became a
primary tool of accelerator physics research already in the 1960s [24]. Simulations
of beams with beam-beam interactions began in the 1970s [25, 26], employing
simplified models for the expression of the electromagnetic fields present during
the interaction. In the 1990s, computing power became sufficient to allow self-
consistent numerical field computations in synchrotron particle tracking simulations
on supercomputers [27]. Self-consistent field calculations became more and more
commonplace with the rise of computer performance. Today they are part of a variety
of particle tracking codes [28, 29]. For this work, a preexisting particle tracking
code [30] was extended with modules for simulation of electron lenses, the beam-
beam effect, the beam transfer function and chromaticity. Their implementation
was successfully validated against well-known analytic results. The code was then
used to validate analytic results derived in the course of this work and to validate
the applicability of the methods for measurements outside the domain of the narrow
prerequisites of the analytic models. Results concerning BTFs of beams under
influence of the beam-beam effect and electron lenses were applied to measurement
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from the RHIC accelerator proving their applicability for their primary use cases.
Simulations of BTFs of bunched beams with space charge in high energy machines
were discussed in the framework of analytic results derived for this work.

In this Thesis, Chapter 2 makes the reader familiar with the two machines the
work focuses on, namely the SIS100 planned in the framework of the Facility for
Antiproton and Ion Research (FAIR) at GSI in Darmstadt and RHIC at BNL in Upton,
New York, in the United States. Crucial quantities for the rest of the work are
given and the effects of concern are named. Chapter 3 introduces the theoretical
framework for the description of ion beams in synchrotrons that is used throughout
the remainder of the work. Chapter 4 presents analytical models of BTFs of beams
under influence of selected beam dynamics effects. Building on these preparations,
Chapter 5 makes the reader familiar with the necessary details of the simulation
model. Modules for effects that were introduced to the code in the course of this
work are validated against the previously introduced analytic expectations. With the
necessary framework in place, Chapter 6 draws conclusions about BTFs of bunched
beams in the presence of space charge and explains important consequences for the
measurement of machine tune. Furthermore it examines possibilities for recovery of
the tune spread from the BTE With beams under the influence of electron lenses or
the beam-beam effect at RHIC in mind, a method for measurement of the transverse
tune spread due to a local nonlinearity via the BTF is investigated in Chapter 7. It is
argued analytically that recovery of the distribution itself is not possible. Instead, a
novel method for the recovery of only the width of the distribution is introduced.
Finally, Chapter 8 shows the application of the method to measured BTF of beams
with beam-beam interactions and an electron lens. Results show that the method
can be used to directly quantify the magnitude of the tune spread introduced by
an electron lens and, under special conditions, the beam-beam effect. Chapter 9
concludes with a summary of the results and an outlook.
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2 Synchrotrons and Colliders

The focus of this work is on particle dynamics in circular accelerators at intermedi-
ate to high energies (above a few GeV/u). Specifically, transverse BTF are discussed
on the example of the Relativistic Heavy Ion Collider operating at Brookhaven
National Laboratory and the future SIS100 which is to be built in the framework of
the FAIR project at GSI. This chapter familiarizes the reader with the two machines
and names the key parameters required in the remainder of the work.

2.1 Brookhaven National Laboratory

Brookhaven National Laboratory is a large-scale research facility operated by
the U.S. department of energy. Its current research topics range from nuclear and
high energy physics over material science and energy research to environmental
and neuroscience and biology. Soon after its founding in 1947 the construction of
the worlds first synchrotron began, the Cosmotron [31] started operating in 1952.
In 1962 the Alternating Gradient Synchrotron (AGS) [32] with a circumference of
807.10 m [33] started operation. To increase the available intensities, the accelerator
chain was expanded by a 200 MeV linear accelerator (linac) in 1971. In 1986 the
commission of the 201.78 m circumference [34] AGS booster synchrotron increased
the available intensities by raising the available injection energy and reducing
dynamic vacuum and space charge effects. Until today, besides delivering beam to
other experiments, AGS and AGS booster serve as injector to the second-highest
energy hadron collider in the world, the 3833.85 m circumference RHIC [33, 10].
To date, RHIC is the only machine in the world to provide polarized proton beams
for high energy physics experiments [35]. Ion species from protons up to lead
ions can be accelerated for use in RHIC. This work focuses on beams in RHIC and
therefore the numerous BNL accelerators unrelated to RHIC proton operation are
not mentioned. Detailed descriptions of the booster, AGS and RHIC parameters, can
be found elsewhere [34, 10, 36].

A schematic of the accelerator chain used for RHIC proton operation is shown in
Figure 2.1. The provision of protons for RHIC proceeds as follows: Polarized proton
beams for RHIC are produced by the optically pumped polarized H™ ion source [37].
The source delivers about 10'2 H- ions in a single pulse. After preacceleration in the
200 MeV linac, the H™ are injected into the booster by means of charge-stripping
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Figure 2.1: The proton-related parts of the RHIC accelerator chain. The rings in this
schematic are to scale, but their relative positions are not. The numbers
given to the interaction points are indicated. Protons are accelerated by
the linac to 200 MeV and accumulated in the booster for up to 20 pulses.
After acceleration in the booster to 1.5 GeV they are transferred to AGS
and accelerated to 20.58 GeV or more for injection into RHIC. Each of
the two separate rings (colored after their names blue and yellow) can
be filled with a train of up to 92 proton bunches.

injection. The beam intensity is increased by accumulation of up to 20 pulses.
Subsequently, protons are accelerated as a single bunch to about 1.5 GeV [38]. The
particles are transferred from the booster to AGS which accelerates the proton bunch
up to the RHIC injection energy of (between 20.58 GeV and 28.3 GeV) [39]. Finally,
they are injected into RHIC which accumulates up to 92 bunches in each of its two
rings.

2.1.1 The Relativistic Heavy lon Collider

As an ion collider, RHIC consists of two separate synchrotrons allowing beams
of the same charge sign' to circulate in opposite directions [36]. The two rings for
the clockwise and counter-clockwise circulating beams are arbitrarily named blue

T As opposed to a particle-antiparticle collider in which both beams travel in the same magnet

system but have opposite charge signs.
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and yellow, respectively. They intersect in six interaction points (IPs) numbered
according to the hands of the clock, allowing for up to six collisions of the bunches
per turn (see Figure 2.1).

At the time of writing and during the experiments of this work, in normal RHIC
operation the beams are only brought into collision in two IPs, namely the ones at
IP 6 (in the STAR experiment) and at IP 8 (in the PHENIX experiment). At the other
IPs they pass each other with a transverse offset of about 30 o (with o the root
mean square width of the Gaussian bunches).

After filling, RHIC provides proton beams with 2 - 10! protons per bunch and
equal or similar emittances? in both transverse planes between 10 and 20 um. They
can be accelerated to energies up to 250 GeV. After acceleration, focusing functions
are adjusted for collision and the beams are brought into collision in the experiments.
The beta functions at the experiment IPs, a measure for the focusing strength and
an important parameter for the luminosity available to the experiments, are then in
the range of 0.8 m in both transverse directions.

Past experience at RHIC indicated that the amplitude dependent force due to
electromagnetic interactions in the beam-beam collisions was leading to beam
quality deterioration. This was determined as limiting factor for the luminosity
available to the experiments. Electron lenses as a counter measure for the nonlinear
amplitude dependent force were commissioned and installed in 2013. Figure 2.2
shows one of the RHIC electron lenses. They began operation on gold beams in
2014, and operated with proton beams for the first time in 2015. The electron
lenses are installed in IP 10. They are set up to compensate the nonlinear force due
to one of the two beam-beam interactions.

The nonlinear transverse force introduced by the electron lenses leads to a
characteristic amplitude dependent change in the particles betatron frequencies.
The measurement of the BTF with driving frequencies in the baseband below the
beam revolution frequency of 78.2 kHz is one of the standard beam diagnostic
methods at RHIC [40]. At RHIC the betatron tune Q,, isin the regime of 30, while
the synchrotron tune Q, is about 0.0003. The key quantity of interest in this work,
the tune spread introduced by the electron lens and/or beam-beam interactions, is
up to 0.02. An additional source of tune-spread is quantified by the chromaticity
& chrom Which is compensated in RHIC and under normal operating conditions has
a value between 0 and 6. The meaning of these parameters is discussed in detail
in Chapter 3.

2 Normalized 6 o emittances are indicated adhering to convention at RHIC.
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Figure 2.2: Sketch of one of the RHIC electron lenses. The electron beam is produced
at the gun which can deliver up to 10 keV electrons at a current of up to
1 A. The beam is guided towards the proton beam and confined on the
proton beam axis for 2.1 m by means of solenoid magnets before being
guided away from the proton beam and being dumped on the electron
collector. The gun design is optimized to deliver Gaussian transverse
beam profiles, the beam diameter can be adjusted by manipulating the
solenoidal magnetic fields. (Figure from [41])

2.2 SIS100 and GSI

The GSI Helmholtz Centre for Heavy Ion Research is a multipurpose research
facility founded in 1969 [42] in Darmstadt, Germany. GSIs first (linear) accelerator,
the Universal Linear Accelerator (UNILAC), saw first beam in 1975 and is still in
operation today. It can accelerate ions of all species up to uranium to an energy of
11.4 MeV/u. In the early 1990s, GSI was extended by two synchrotrons, the Schwe-
rionensynchrotron (SIS18) and, further downstream, the Experimentierspeicherring
(ESR). With a circumference of 216 metres, SIS18 is able to accelerate heavy ions
up to 1 GeV/u and protons up to 4.5 GeV [43]. The existing facilities at GSI are the
basis for the construction of a large amount of additional machines in the upcoming
years: The Facility for Ion and Antiproton Research (FAIR) [44] will greatly extend
the research capabilities at GSI. The layout of the planned facility is shown in Fig-
ure 2.3. The current GSI accelerators will serve as injectors to the new accelerator
complex, the main ring of which is the 1083 m long SIS100 Synchrotron [44].

For the FAIR project, transverse space charge is considered one of the key factors
limiting beam intensities [46]. For this reason investigations into direct measure-
ments of the space charge tunes shift appear to be worthwhile. A transverse BTF
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SIS100
SIS300

== Existing facilty
== FAIR project
== Experiments

Figure 2.3: Original layout of the FAIR project. lon beams relevant for this work
are produced in sources connected to the UNILAC, accelerated to the
SIS18 injection energy of 11.4 MeV/u and injected into SIS18, where they
are further accelerated to ion species specific SIS100 injection energies
of typically between 200 MeV/u and 4 GeV/u. In SIS100 they can be
accelerated to energies of up to 28 GeV/u (for protons) and can be
extracted towards the various experiments indicated to the lower right
of the picture. (Figure from [45])
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system similar to the one installed at RHIC is available at SIS18 and will be available
at SIS100 [47]. Previous research at GSI discussed the influence and measurement
of space charge on BTF of coasting (DC) beams [48]. Additionally, the influence of
space charge on the BTF of bunched beams and the observation of head-tail modes
as they appear for SIS18 working conditions was discussed [21, 22, 47]. This work
focuses on an intermediate regime: BTF with slow synchrotron motion as they will
be observed in SIS100. The various research accelerators downstream of SIS100
(including SIS300) will not be described further and the remainder of the section
focuses on the supply chain for SIS100.

Beams for SIS100 are produced in different ion sources connected to the UNILAC
and accelerated to the SIS18 injection energy of 11.4 MeV/u. At this energy, space
charge limits the reachable proton intensity to 8.7 - 10! particles per bunch [46].
Originally, a specialized proton linac was foreseen for FAIR to inject protons at a
higher energy (70 MeV with a space charge limit of 5.8 - 10!2 particles per bunch)
into SIS18 and thereby be able to reach a higher intensity. Currently injecting
protons accelerated by UNILAC to an increased energy of 20 MeV (space charge
limit: 1.5 - 10'? particles per bunch) as an alternative to building a proton linac is
discussed [46]. This would result in a corresponding reduction of intensity. After
injection into SIS18, the particles are accelerated to 0.2-4 GeV and transferred to
SIS100, where they are further accelerated to their individual extraction energies
between 1 GeV/u (ions) and 28 GeV (protons). The various storage rings and
experiments downstream of SIS100 are not mentioned explicitly here.

In SIS100, the typical synchrotron tunes lie between® Q, = 0.001 and* Q, =
0.0001. When the excitation time for the measurement of one BTF frequency
sample is shorter than the synchrotron period (less than 1000-10000 turns for
the beams under consideration), the transverse BTF cannot resolve the effect of
synchrotron oscillation [21, 22, 47]. At the same time the beam cannot be described
as BTF of a DC beam [48]. When the synchrotron motion becomes slow compared
to the measurement time of the BTE it seems intuitive to model the beam as
longitudinally frozen and explore the range of validity of this model in simulation.
This model is developed in this work and its range of validity and implications for
BTF measurements with space charge in SIS100 are discussed in Chapter 6.

Protons at injection, Ey;, = 4GeV,y; = 17.48, Vs = 310 kV,h =10
4 For high energy protons, Ey;, = 28.8 GeV, vy = 17.48, Vgr = 250 kV,h =5
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3 Beam Dynamics and Intensity
Effects

The complexity of modern-day accelerators has led to the development of a
common theoretical framework for the description of transverse beam dynamics.
This chapter introduces the framework to the extent needed as a basis for the
following chapters. Section 3.1 begins by presenting the basics of single particle
beam dynamics. The coordinate system commonly used for description of particle
motion in synchrotrons and storage rings is introduced in Subsection 3.1.1. The
concept of transverse betatron motion and the resulting machine parameter tune are
established in Subsection 3.1.2. Subsection 3.1.3 introduces the necessary elements
for the description of longitudinal motion. Finally Subsection 3.1.4 discusses the
interplay between longitudinal and transverse dynamics.

Section 3.2 focuses on the beam dynamics that arise from electromagnetic in-
teractions of particles with one another. It begins by discussing transverse electric
fields that arise from a particle distribution and their effect on the tune. The results
are first applied to the electromagnetic self-fields of the beam (space charge) and
subsequently the interaction of beams with one another (beam-beam effect) or with
an electron lens.

3.1 Single Particle Dynamics

Particles in accelerators are guided and accelerated via electric and magnetic
fields by means of the Lorentz force. The Lorentz force F on a particle of charge ¢
with velocity ¥ as a result of the electric field E and magnetic flux density B is given
by:

F=q(E+7xB) (3.1)

and is found in this form in introductory phy51cs text books such as [49]. In vacuum,
B depends on the magnetic field strength H via B = u,H with u, the vacuum
permeability. In this work the particles typically travel in vacuum. Therefore in this
work the field B is referenced to as the magnetic field for the sake of simplicity. The
force on the particle due to a magnetic field scales with v, making it the field of
choice for deflection of particle beams when the particle motion becomes relativistic.

1



The Lorentz force due to a homogeneous magnetic field of strength B acting on a
particle of charge g and rest mass m,, is perpendicular to the direction of motion.
The field leads to a circular trajectory of bending radius p which satisfies the relation

_ myyfc
q

Bp (3.2)

With ¢ the speed of light and y and f the relativistic factors. Bp is called the
magnetic rigidity. The maximum magnetic rigidity reachable in a storage ring or
synchrotron is called its bending power and sometimes given to quantify its energy
range. The names SIS18 and SIS100 refer to the magnetic bending power of 18 Tm
and 100 Tm of the two machines. Dipolar magnets are used to guide the beam
around the machine, quadrupoles are used for focusing. Even higher multipoles are
used for Landau-damping, interplane coupling and emittance exchange and are not
discussed in this work.

3.1.1 Coordinate System for Beam Dynamics

The coordinate system used in circular accelerators is co-moving with a so-called
reference particle. The reference particle is a particle defined by the design of an
accelerator. It is commonly chosen to travel with velocity 7, around the machine in
the centre of all magnets, such that its trajectory is determined solely by the fields
of the dipole magnets (the fields of multipolar magnets of higher order are zero on
the trajectory of the reference particle). The reference orbit has a length of C,. and
is closed. The reference particle travels along the same trajectories in subsequent
revolutions (turns) in the machine. At any given time, the current position of
the reference particle on the reference trajectory is given by sq(t) = f Ot vpdt. The
co-moving coordinate system in which the beam is described is chosen with the
reference particle as its origin. An illustration can be found in Figure 3.1. The unit
vector in z direction €, of the system points along 7j,. The unit vectors €, and €], in
the x and y direction are chosen perpendicular to ¢, and point in the horizontal
and vertical direction respectively. The coordinate system is curved such that €, and
¢, are perpendicular to the reference trajectory. Thereby a particles z coordinate
always relates to a time advance At= z/u, with respect to the reference particle .
At is then the time the reference particle will need to move from its present location
5o to the longitudinal position of the offset particle at s = sy + z). The description of
transverse beam dynamics often allows to apply the same equations in €, and €,
direction. Where this is the case in this document either the indices are discarded or
only give the equations for the x are given direction to aid readability. In the first
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Offset orbit

/ Reference particle

Figure 3.1: lllustration of the co-moving coordinate system used to parametrize the
particle position with respect to the reference particle. The reference
coordinate system moves with the reference particle such that its origin
is always found at sy (t).

case adding an index x or y gives the equations valid for the respective plane, in
the second exchange of x and y yields the equation for the other plane.

The coordinates of particles offset with respect to the reference particle are
described by a vector 7:

=

><\

=
Il

3.3)

~

SIS

wherein x’ = dx/ds and y’ = dy/ds are the derivatives of x and y with respect to
s.6=(p— po)pg1 is the relative momentum deviation with respect to the reference
momentum p,.

3.1.2 Transverse Beam Dynamics

Particles with transverse momentum offsets (x’, y’) # 0 need to be focused back
towards the reference trajectory to prevent x and y from growing ad infinitum and
the resulting particle loss. Quadrupolar magnets are used to provide the focusing.
The focusing force in typical machines is a function of the local quadrupole strength
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k(s). Following [50] and assuming a particle with z = 0 and 6 = 0, the particle
motion is then determined by Hills differential equation:

x"(s)—k(s)x(s)=0. 3.4)

x(s) describes a transverse oscillation that is commonly referred to as betatron
oscillation. k(s) is periodic such that k(s) = k(s + C,.) holds. The equation can be
solved using Floquets theorem. After some transformations which can be found in
standard textbooks [50, 51], the solution is of the form:

x(s)=14/2JB(s)cos(T(s)+ ¢) (3.5)
x'(s) = %[a(s)cos ((s) + ¢) +sin (¥(s) + ¢) | (3.6)

with B (s) the so-called beta function, J the action of the particle, a quantity solely
dependent on the particle coordinates and discussed in detail below, ¢ a particle-
dependent phase,

N

ds
o BGB)
the betatron phase and a(s) = —f’(s)/2 an optical function. a(s), B(s) and y(s) =
(1 + a2(s))B(s)™! make up the so-called Twiss parameters or betatron functions
characterizing transverse particle motion in a synchrotron [51, 52]. For readability
x-indices were omitted from each quantity in the above. Of course a, 3,7, ¥ and
¢ are all valid for the x direction and a similar set of parameters exists for the y
direction. Where explicit separation between the two planes is necessary an index x
or y is appended to the corresponding symbols for the lattice functions.

The number of oscillations of a particle around the reference trajectory per
revolution is called tune and can be calculated by integrating the phase change
around the machine [51, 52]:

U(s) = 3.7

— lI’(Ccirc) - ‘I’(O)

Q 271

(3.8)

Like the other quantities related to betatron motion it can be given independently
in x and y direction.

The choice of the tunes Q,,Q,, also called working point, is one of the primary
parameters influencing beam lifetime and beam quality in a synchrotron. The
working point is identical to the tune of the reference particle and sometimes also
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referenced as Q,, other particles’ tunes may be different. Certain choices for the
working point can lead to fast beam loss. The mechanism is easiest to understand
for integer Q, which lead to beam loss in presence of a small dipolar magnetic field
error: With an integer tune, particles return to each location in the machine with
the same betatron phase ¢. Suppose a small, dipolar magnetic field error influences
particle at one lattice location. Upon each passage of the location, the particle
experiences a change of its x’ coordinate. Upon subsequent passes, the changes
happen in phase (the particle always returns with the same phase) and therefore
add up, resulting in amplitude growth and particle loss. Higher order magnetic
field errors result in amplitude growth and losses for working points fulfilling the
condition [53]:

nQ, +mQ, =o (3.9

with n,m,o0 € Z and |n| + |m| = [ the order of the resonance. [ gives a measure
for the destructiveness of a resonance, where higher orders are less problematic.
Figure 3.2 shows the so-called resonance lines, on which Equation 3.9 is fulfilled for
[ < 1. In this diagram and in the following, frequently the only the fractional part of

(]
2
3
)
g1
=2
o4
1
3
0
0 112 1
3 2 3
erac,x

Figure 3.2: Resonance diagram, the resonance condition (Equation 3.9) is fulfilled
on the lines for order [ < 3. The ticks are located at rational fractions
corresponding to resonances, for example at 1/3 one finds a 3™ order
resonance. The line thickness is scaled with [”'. A working point of
Q,=0.8,Q,=0.75is indicated.

the tune Qg,. is indicated instead of Q. The reason for this choice is that the pattern
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of resonance lines is identical independently of the integer part of Q. Depending
on the required lifetime of the beam and the machine linearity, resonances above a
machine dependent minimum between 4™ and 10™ order resonances are considered
safe for the beam.

With the quantities defined above, the translation of one transverse coordinate of
a particle between two locations s; and s, can be written as a transfer matrix [51]:

(3.10)

\/E 0 )( cos AW sinA\I!) \/%

M(syls1) = ( L) 1 ; a
—_—= = —sin A¥  cos AW 1
T B2

VB2 B2
Here, a4, a,, B, B, the values of the Twiss functions a(s), B(s) at the respective
locations and AW = ¥(s,) —¥(s;). The particles transverse phase space coordinate,
here in x direction, changes according to: (x, x")"(sy) = M(x, x")?(s;). The transla-
tion of particle coordinates between any two points in an uncoupled lattice is then
written as:

X X
x’ _{ M,(s1]s5) 0 ) x’
ey —( NN | I (ORI CREY
Y’ Y’

With M; the transfer matrix in the direction i (with i either x or y). In a real
machine, the off-diagonal matrices become nonzero but usually small and M; may
slightly deviate from Equation 3.10.

Emittance

The action J is an important quantity. In a linear machine as the one discussed
above, it can be given separately in the two transverse dimensions x and y and
is proportional to the area of the phase-space ellipse depicted in Figure 3.3. A
single particle in an ideal machine will always pass an observer with phase-space
coordinates on the ellipse. J is a constant of motion in a perfect machine, sometimes
the single particle emittance €y, = 2J is used instead. The beam emittance &
is given by the root mean square (RMS) value of the single particle emittances.
Beam properties important to physics experiments (e.g. luminosity, total achievable
beam current, flux density on a target) frequently require minimization of . For
this reason the emittance is used to quantify the beam quality. ¢ is conserved
when particle motion is governed by Equation 3.4. Liouvilles theorem states that
in the presence of conservative forces as assumed above, infinitesimal phase space
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volumina are conserved, so one might naively assume that in presence of static
electromagnetic fields emittance does not change. Unfortunately, even neglecting
possible time-dependence of fields, Liouvilles theorem only holds for infinitesimal
volumina. As a result, the emittance is not necessarily conserved even for static
electromagnetic fields acting on the beam, the resulting beam dynamics may lead
to increase in emittance. In connection with nonlinear electromagnetic fields, the
resonances introduced above can lead to amplitude growth of particles and as a
result, RMS emittance growth.

When a particles transverse oscillation amplitude increases, for example due
to an excited resonance (Equation 3.9), its J grows. As it contributes to ¢ via its
contribution to the RMS J, the beam emittance grows accordingly.

During acceleration, the beams are only accelerated in longitudinal direction. This
leads to a decrease in transverse emittance because the conserved transverse momen-
tum only allows for a smaller transverse velocity with the increasing relativistic mass.
To reflect this fact, for accelerated beams it makes sense to introduce a normalized
emittance €,,malized Which is conserved under ideal acceleration conditions:

€normalized = €Y (3.12)

X/ 4

Epart,x Vx
spart,x/ﬁ/>

2N

% 4

/ 1/./5x€part,x
4/ €part,x /7x

Figure 3.3: lllustration of the betatron phase space ellipse. During betatron motion
on a linear lattice a particles phase space coordinates are always found
on this ellipse. &, is proportional to the area of the ellipse.

3.1.3 Longitudinal Dynamics

Two types of beams are mentioned in this work, coasting and bunched beams. In
coasting beams, the particles are not confined longitudinally and therefore circulate
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around the ring with constant longitudinal velocity corresponding to their momenta.
Each particles betatron frequency is modified due to the machine chromaticity
(see Subsubsection 3.1.4). For coasting beams a constant (in time) transverse
density profile is assumed. It is solely defined by the beam emittance and the Twiss
functions.

In bunched beams, the particles are confined longitudinally by an RF field. Assum-
ing a sinusoidal longitudinal voltage applied to the particle by means of an RF cavity
The resulting longitudinal motion is called synchrotron motion. The equations of
synchrotron motion can be found in standard textbooks, for the necessary parts,
this discussion follows the approach of [51] closely. The longitudinal equations of
motion can be derived from a Hamiltonian, the assumption being that the particle
longitudinal motion is sufficiently slow to approximate the discrete kicks at the
locations of the RF cavity by an RF potential:

:.JMM 5+ ﬂzE(am¢—xnaﬁ' +(p— (mhmhﬁ’o). (3.13)

In the equation h is the harmonic number, w, the revolution frequency, 0 the slip
factor, & the relative momentum deviation, g the particle charge, 8 the relativistic
parameter and E the beam energy. ¢ = hz/C,. is the particle synchrotron phase.
In Hadron synchrotrons the reference particle phase ¢, is ¢, = 0 for beams at
constant energy. Because this discussion assumes constant beam energy the resulting
simplifications are marked.

The resulting equations of motion can be linearized and result in sinusoidal oscil-
lations for small amplitude particles. The oscillations are referred to as synchrotron
oscillations. They are characterized by the small amplitude angular oscillation
frequency w,

hqVn

W, = W 2mpE =2nf,. (3.149)

For easy comparison with the betatron frequency one often gives the synchrotron
tune indicating the number of synchrotron oscillations per turn:

Wy hqVn
=—=\|—= 3.15
R wg J 271 32E (3.15)

Typical synchrotron tunes in intermediate to high energy ion synchrotrons are Q, <
1073 [51], justifying the initial assumption that synchrotron motion is sufficiently
slow to approximate the RF by a smooth potential. The sinusoidal RF force is
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not a linear function of the longitudinal particle coordinate and therefore higher
amplitude particles will show a lower synchrotron frequency than low amplitude
particles. In the theoretical treatment the synchrotron frequency spread is neglected
under the assumption that the bunch length justifies the linearization of the RF
potential. A treatment including synchrotron frequency spread can be found in [54].
In the simulation model the full sinusoidal RF kick is used.

Synchrotron Satellites of Revolution Harmonics

Particles oscillate longitudinally, therefore the time 7 a particle needs for one
revolution is modulated with the synchrotron oscillation. For the ith particle [55]
with a synchrotron amplitude (in time) of 7 it

T;(t) = 1;sin(w,t + ;). (3.16)

to a local idealized current measurement device, the particle current presents itself
as a train of & functions yielding a signal [55]:

Ij(t) — qf() + ZCIfORe (Z e—inwo(t+%j Sil’l(a)st-{—\lfj))) . (3‘17)
n=1

By means of the Jacobi-Anger-Relation [56] this can be rewritten as:

I,(t) =qfo +2qfoRe » 1, (3.18)
n=1
with
1,(t) =2nq fORe( Z Jp(nwO%j)e—"("wOHP%”e—iP*f). (3.19)
p=—00

From I, follows the frequency distribution of the signal of the particle: A signal
is to be expected at nf, = pf, with p € Z. The signal power at the corresponding
frequencies will be proportional to J,(nw,t j)z with J,, the Bessel function of order
p- The signal clusters around multiples of the revolution frequency f;, (revolution
harmonics). The individual lines are called Synchrotron satellites of the revolution
harmonics. An example spectrum is shown in Figure 3.4.

3.1.4 Combined Longitudinal and Transverse Effects

Some effects depend on both longitudinal and transverse beam properties. There-
fore they cannot be described by a purely longitudinal or purely transverse picture
of the beam dynamics.
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f1fo

Figure 3.4: lllustration of the longitudinal spectrum of the synchrotron oscillation
of a particle. The particle produces harmonics at nf, with sidebands at
pf, of intensity Jp(nwO%j)z. The sidebands are shown as vertical lines
and J,_, is indicated in the figure. The inset magnifies the 3" harmonic.
7 =0.1f,,Q, = 0.05 was chosen for this illustration.

Synchrotron Satellites of Betatron Sidebands

The synchrotron motion also affects the betatron oscillation of the particles.
Measuring the dipole current d;(t) = a;(t) - i;(t) of particle j at a fixed position
returns a train of 6 functions with the same time distribution as in Equation 3.17.
The amplitude of the pulses is follows the betatron oscillation of the particle, the
timing is defined by the longitudinal motion of the particle.

The modulation of the dipolar current is given by the particles betatron oscillation
via

aj(t) = Qpetatron COS(erac,ijt + ¢]) (3.20)

. Combining with the timing known from the synchrotron oscillation (Equation 3.17)
the dipole signal reads [55]:

oo

d](t) = Qpetatron COS(eraC,ja)Ot + ¢])qf0R€ ( Z e—inwo(t+’f'j Sin(w5t+‘llj))) , (321)

n=—oQ
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which can be rewritten as:

di(t) = afo +2qfoRe ) d,. (3.22)
n=1
With [55]
o0 .
d,= qfoabetatronRe( Z Jp(Un)e_l((nierac,j)w0+Pa)s))te—lp‘l/j—l¢j) (3.23)
p=—00
wherein:
(n £ Qprac)wot; without chromaticity )
U = ((n + Qpac) — Qf) wo?;  with chromaticity (3.24)

The results are derived and discussed at length in [54]. The primary result necessary
for this treatise is in the frequencies of the emerging satellites. They can be found
at:

Qi =1 Qpac +kQ,  withk,l €7, (3.25)

now expressed in terms of tunes. Here, the signal at Q, , is called the I betatron

sideband and Q  is the k™ synchrotron satellite of the respective betatron sideband.

The betatron sidebands and their synchrotron satellites appear at their expected
positions in simulated and measured transverse beam transfer functions [21, 22].
Simulation results are also discussed in Chapter 6.

Momentum Compaction

Off-Momentum particles follow an orbit different from the reference particle due
to dispersion. For beams with finite momentum spread, the momentum deviation
of the individual particles leads to a momentum dependent revolution frequency f
different from the revolution frequency of the reference particle f,. The revolution
frequency of the i™ particle behaves as[51]

fi=@+86m)fo, (3.26)

with 7 the so-called slip factor, a machine- and energy-dependent quantity calculated

as

1 1

Yr 7
Here, v, the transition y, is the relativistic y for which all particles share the
same revolution frequency!. y; is a parameter that can be adjusted via the magnet

strengths.

1 neglecting the small change in 1 due to the momentum deviation
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Chromaticity

Particles with a nonzero momentum deviation 6 have a magnetic rigidity (Equa-
tion 3.2) different from the reference particle and consequently they experience a
different focusing strength k*(s) in (3.4). For a linear lattice, the resulting error in
focusing strength is proportional to the momentum deviation [51]:

Ak(s)
,_/\
k*(s) = k(s)—6k(s). (3.28)

The subsequent tune change can be computed by integration of the gradient errors
around the machine [57]. Commonly this behaviour is characterized by indicating
the chromaticity & 4., of a machine:
AQ 1
gchrorn == ﬁ(s)Ak(s)ds (3.29)
o 47

The tune change due to the momentum deviation of a particle can then be computed
as AQ = 6 - & yrom- Generally the chromatic tune change is a nonlinear function of
&, but in this work the small contribution of higher order chromaticity is neglected.
With respect to chromaticity, AQurom = Orus * &chrom references the RMS tune
spread of the beamAQ 1o -

3.2 Space Charge Fields

The dynamics that have been described so far are so-called single particle dynamics.
This means that they take place regardless of how many particles are contained in
the beam. Particles were described without accounting for their interaction with
other particles. The single particle picture holds well for beams with low particle
number, but as the beam current rises, the electromagnetic interaction between
particles needs to be taken into account.

The electric potential of a particle bunch of a given density p(x, y, z) travelling in
vacuum can be computed by solving the Poisson equation. In the frame of reference
of the beam, the particles are in good approximation stationary. For some particle
distributions, an analytic solution for the electric fields exists. Most notably this is
true for the round Gaussian charge density distribution [15] and the elliptic Gaussian
charge density distribution [58]. Both frequently emerge in particle accelerators.
Commonly, the interaction of the beam with its surroundings is taken into account
via impedances. Impedances describe the frequency dependent coherent self-fields
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of the beam via its surroundings in terms of a multipole expansion of the beam
signal (usually truncated at the beams dipolar moment)[59]. In this document
we assume to be dealing with beams in vacuum and neglect the influence of the
surroundings.

Calculating the direct space charge for a coasting beam, the beam is usually
modelled as an infinitely long cylinder, the reasoning being that the variation of
the beam diameter is sufficiently slow to approximate it by a cylinder slice at a
chosen location of the machine. It makes sense to define cylindrical coordinates such
that the longitudinal coordinate points in the beam direction. Defining the radial
coordinate r and angular coordinate, a normalized transverse circular Gaussian
charge density distribution p(r) takes the form

2
o(r)= ! exp( : ) (3.30)

2 T 952
o221 202

The electric potential ¢ corresponding to a line density n of particles with charge g
with an RMS distribution width of o, is then given as [15, 6012

r2
o e,
q.
0

4me, 202+q

e(r,o.)= (3.31)
The electric potential shows radial symmetry, for this reason the gradient of the
potential will point in the radial direction. The magnitude of the field can be
computed as:

E, = —irtp(r, o,)= (3.32)

d

rZ
nq ijw eXp(_Zcr%%z)dq
0

_477:80 ar 202+Q

following [15] and taking the derivative first, the radial field simplifies to

1 2
E=—"9 21 exp[ -] (3.33)
2mey 1 202

It can be verified that this field is consistent with the initially assumed p: The
divergence V - E must be equal to %. In this case a long cylinder of radial symmetry
was assumed and E,. is the only finite component of the electric field. Thus

. 120 2
V-E=—-——rTE, =— nq exp - )= Q(r). (3.34)
ror o22mg, 2072 £
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3.2.1 Incoherent Transverse Space Charge Tune Shift

This section discusses space charge for coasting beams. As already mentioned,
this assumption demands the beam to have the same transverse charge density distri-
bution everywhere, and, especially that there are no significant current fluctuations
over time. When referencing to the self-fields of a beam one uses the term space
charge. The term incoherent in this context refers to the fact that different particles
experience a different space charge force, and therefore the transverse dynamics
due to space charge is particle dependent. Consequently, when one talks of effects
affecting the bunch as a whole one speaks about coherent effects.

The magnetic fields observable in the laboratory frame are sourced by a current
density proportional to the aforementioned charge distribution. The current density
points in the &, direction by virtue of the particles moving in good approximation in
parallel, resulting in a current density of j = e, Bco. As a result, the magnetic field
B is perpendicular to the electric field, lies in the transverse plane and its amplitude
is proportional to the electric field. For the round beam the magnetic field points in
azimuthal direction. Its transverse components are given by [15]

B,=—BE,c" B,=pE.c" (3.35)

The Lorentz force F;, on the particles from the electric and magnetic fields com-
bined reads [19]

E, —pcB,
F,=q(E+7xB)=q|| E, |+&x| PBcB, =qE(1—p*) =qEy?
0 0

For the round Gaussian beam the resulting force is
FL = qEr‘)/_z (337)

accordingly.
This force on a particle at a radius r corresponds to a change in the particles
r'=0r/ds:

2%r i 1 ng? 1 2
r’=—= = —|1—exp| —=|]. 3.38
ds2  P2c2 B2c2ydmy2mey 1 P 202 ( )

2
Frequently, it is expressed in terms of the classical particle radius ry, = m and

with n = l% it simplifies to

2Ir r2
" __ 0 _ _
r’'= Biyicr (1 exp( —202)). (3.39)
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Taylor expansion around r = 0 gives:

7 IrO

Noting that r”/ o< r and corresponding to a change of k in Equation 3.4 of Ak =
—r"/[r, the resulting tune change AQ in €, direction for a low amplitude particle
can be computed [57] as:

1 Ceirc 1 Ceirc Ir
AQS = —— Ak(s)ds = —— —2 4 3.41
Q; 4nf0 By (s)Ak(s)ds 4nf0 /5x(5)/33cy302 s (3.41)

which, with constant f(s)o ™2 = ¢! simplifies to:

AQ® = IrgR _ roN
X 2B3y3ce,  4mP2yde,’

(3.42)

Here, N = C. Iy~ c! is the total particle number. Interestingly the tune shift
is independent of the beta function. Additionally it should be emphasized that
since the net force is defocusing, AQY is a negative value. Due to its change of the
focusing strength, space charge will also result in a change of the beta function
which for the cases of interest here is small and its inclusion is beyond the scope of
this discussion.

When replacing r” by its Taylor expansion to first order around 0 in Equation 3.40,
the applicability of the solution is restricted to low amplitude particles. For higher
amplitude particles the tune shift is amplitude dependent. Particles in the centre of
the beam experience the highest change in tune, and particles far from the centre
the lowest. Equations for the amplitude dependence in round or elliptic Gaussian
beams are derived in the literature [61, 62]. Here, mostly the formula for round
beams is used [61]:

L (Z2Yy = (&2 T Iy2
Qx(Jx,Jy)=Qg+AQ§ff (o(5) = h ) (5 )dz (3.43)

o exp(z(J,+J,)/2)
Q. (Jy,J,) gives the tune of a particle with transverse actions J,,J, as a function of
lattice tune Qg and the maximum space charge tune shift |AQ,|. The scaling of Q,,,
E, and p as a function of r is illustrated in Figure 3.5.

The effect of space charge is amplitude dependent, therefore particles in a beam
affected by space charge differ in tune. This makes it more difficult to find a working
point far from resonance. An example is shown in Figure 3.6. The space charge tune
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Figure 3.5: Density p, field strength (E o< B) and tune shift (averaged over time)
AQ,(r,0) for particles as a function of maximum betatron amplitude
r along €. As visible in the plot the largest tune shift is experienced
by particles in the centre of the beam. With increasing maximum beta-
tron amplitude, the tune shift experienced by the particles due to the
nonlinear electric fields decreases.

spread has a diamond-shape, with particles in the centre of the beam falling onto
the lower-left tip of the diamond-shaped tune spread and particles of the highest
amplitudes at the other three corners. The working point was chosen such that
with the expected space charge the particles would not fall onto the second order
resonance (diagonal of the square) or the half order resonance at Q, = 1/2. The
working point and space charge used for the figure correspond the working point
for protons at injection in one of the envisioned SIS 100 lattices for the FAIR facility
(S. Sorge, personal communication, October 10t 2014).

In ion operation, incoherent space charge tune shifts are highest at the beginning
of the accelerator chain. Incoherent space charge tune shifts of up to 0.25 are
tolerated in everyday operation [63], but higher tune shifts of up to 1.9 have been
realized in beam experiments at AGS [64] and above 4 in the University of Maryland
Electron Ring [65] (UMER, a machine specialized for investigation of space charge
effects).
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Figure 3.6: Resonance diagram showing resonances up to [ = 3. The fractional parts
of the horizontal and vertical tunes are given as: Q¢ = 0.8, Qfracx =
0.75. The distribution of the particle tunes due to a space charge tune
shift of AQS = O.111,AQS; = 0.228 is indicated, the particles in the
center of the beam are found on the lower left point of the diamond-
shaped tune distribution. The working point was chosen to avoid overlap
of the space charge tune spread with the Q, =2/3 orQ, =1/2.

3.2.2 Beam-Beam Effect

The only two currently operational hadron colliders, the Large Hadron Collider
(LHC) and RHIC, rely on two separate magnet systems to collide positively charged
ion beams. In colliding beam experiments in these hadron accelerators, physics
experiments primarily measure products of head-on collisions: the bunches of the
two oncoming beams collide with each other head-on to produce the physical effects
to be investigated. In each collision, only very few particles (of the order of 10 to
100) interact with the strong force and produce particle physics. The vast majority
of particles of each bunch® only experience an undesired electromagnetic interaction
with particles of the colliding bunch leading to an amplitude dependent defocusing.
Furthermore, the interaction allows coherent motion of the bunches against each
other [66]. Depending on the design of the interaction region and the longitudinal
spacing between the bunches, additional long range interactions can occur before

3 At RHIC for proton beams: typically about 2 - 10! protons per bunch
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and after the bunches collide head-on [15]. In these interactions the bunches
see each other from afar, that is to say a few o of separation. In this work long-
range interactions are neglected. The developed methods are employed primarily for
diagnosis of electron lenses where no long range interactions occur. Furthermore, the
approach focuses on RHIC, where the contributions from long range interactions to
the beam-beam effect are small because the separation during long range interaction
in noncolliding interaction points is with 300 rather large [67].

Incoherent Head-on Beam-Beam Effect

The incoherent effects of the beam-beam interaction show strong similarity to the
treatment of space charge. The transverse electric field for a circular Gaussian bunch
was given in Equation 3.33. For the description of the beam-beam effect, commonly
one starts by assuming electric fields arise from a head-on collision between two
circular beams of equal emittance at one IB with equal beta functions for both
beams. Comparing with the treatment of space charge in Subsection 3.2.1, the
current giving rise to the magnetic field is now in the opposite direction, the sign
of B and its contribution in Equation 3.37 changes [15]. Equation 3.36 is modified
accordingly and gives

F,=qEQ1+p>). (3.44)

Corresponding to an amplitude dependent force of

2 2 2 2 2
;_szl(l_exp(_ r ))QM (3.45)

- or2 Yymy2mey T 202 B2yo2

for the particles in both beams. With the line charge density n as a function of
longitudinal position and time (both bunches move with velocity v = S¢ in opposite
directions, resulting in a velocity difference in the laboratory frame of Av = 2f¢)

G +2[5ct)2)

- 3.46
V2no, exp ( 2052 ( )

n(s,t) =

With N the particle number and o, the length of the oncoming bunch. Integration
of #* over the full collision time under the assumption of constant transverse position
yields the kick a particle experiences due to one collision. # is time independent
apart from n, and so only the integration over n is of interest:

= N
Jloo n(s, t)dt = % (3.47)
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Inserting this into Equation 3.45, taking into account 8 ~ 1 for modern-day hadron
colliders and Taylor expanding to first order in r, the total momentum change Ar’
for small amplitude particles during the interaction becomes:

1 Nror
AF=—2

Ar = = .
B2c2 yo?

(3.48)

Computing the change in k and with it the beam-beam analogue of Equation 3.42
results in:

C,
circ Nr Nr
=—— J Sa(s —s0)B; —° = —ﬁ (3.49)

with 64 the Dirac delta function, s, the collision location along the ring and, adhering
to convention 37 the value of 3, (s) at the collision point. &, is called the beam-beam
parameter. || gives the maximum tune shift due to a beam-beam interaction.
As already observed for incoherent space charge, the beam-beam tune shift is
independent of f3;.

For asymmetric (elliptic) beams with ¢, # €, the horizontal beam-beam parame-
ter becomes [68]:

Nroﬁ;:
& =— , (3.50)
2my /e By(y/ e+ /ey By)

wherein exchange of x and y yields the beam-beam parameter in the vertical
direction. As discussed in the treatment of space chage, the defocusing nature of
the interaction results in a negative tune change.

Coherent Beam-Beam Effects

In beam-beam interactions, oscillations of bunches with respect to each other as
a whole becomes possible [66]. These oscillations are called coherent oscillations. In
the most simple case, two bunches collide with each other once per turn in rings
with identical tunes, two coherent modes arise. Firstly the 0 mode which can be
grasped intuitively: The bunches oscillate in phase, therefore each turn they collide
exactly head-on. Since their centres of charge are not offset with respect to each
other, no force acts on the centre of charge. This mode is found at the lattice tune
Q. Secondly the m mode, where the bunches return to the IP out of phase. It is
shifted in frequency with respect to the bare tune by AQ, ,. Extensive numerical
computations for the frequency shift were undertaken by Yokoya and Koiso. In
[66] they give an phenomenological polynomial fit to their numerical results for the
frequency shift of the © mode: for beams with arbitrary but matching aspect ratio
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and Taspect = U;‘, /(0% + 0;) (with o7, 0; the beam size at the collision point) the 7
mode is shifted by:

AQx,n
Ex

For round beams r = 1/2 and thus A = 1.215.

For interaction schemes where bunches interact head-on with more than one
collision partner (e.g. colliders with multiple interaction points), the calculations
become more complex and apart from 7 and o mode additional modes appear. This
thesis focuses on interaction schemes where only two bunches interact. Empirically,
for n collisions per turn of bunches of equal aspect ratios and intensities, the highest
incoherent frequency shift is found approximately at Q, —n& and the coherent ©
mode at Q, —n&A.

If the tunes in the two rings or the bunch intensities differ, the coherent modes
may fall together with the incoherent spectrum and be sufficiently damped to not
distort the beam spectrum. This scenario is discussed in detail in Chapter 8.

= AFagpect) = 1.33 = 0.377 4gpeec + 0.2797°2 (3.51)

aspect”

Electron Lens

Contemporary high energy colliders typically have refill times of the order of an
hour. To produce required statistics for physics experiments, the beams need to
be kept in collision on a time scale of several hours up to a day while preserving
emittance as good as possible. The incoherent beam-beam tune spread can, on
these time scales, become a problem for emittance preservation: As even high order
resonances can lead to emittance increase, the incoherent tune spread limits the
number of resonances that can be avoided and thus decreasing the tune spread
becomes desirable. In recent years so-called electron lenses have been discussed
as a means of compensating the amplitude dependent beam-beam tune shift. In
electron lenses, an electron beam of typically a few keV is generated by means of an
electron gun, guided in parallel to the proton- or ion beam for a short distance and
then disposed of in a collector. A cartoon of an electron lens is shown in Figure 3.7.
Typically the beam profile is matched to that of the ion beam at the location of
the lens. In this work the transverse shape of the electron beam is assumed to be
Gaussian, corresponding to the shape of the proton- or Ion beams. The calculation
of the field strength can be done following the same steps as for the beam-beam
effect and space charge. The transverse fields for the electron lens can be found
in Equation 3.33. Finally the amplitude dependent tune shift experienced by the
proton beam due to the interaction follows the same shape as for space charge and
the beam-beam effect and can be found in Equation 3.42. A plot of the amplitude
dependent tune shift together with the radial electric field was shown in Figure 3.5.
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Figure 3.7: Cartoon of an electron lens. An electron beam is guided in parallel
to the proton (ion) beam inside a solenoid. The resulting transverse
force is amplitude dependent and defined by the chosen electron beam
shape. A picture of the electron lens in operation at RHIC can be found
in Figure 2.2.
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4 Beam Transfer Functions

Beam Transfer Functions are the diagnostic method central to this work. This
chapter discusses the BTFs of beams under the influence of the effects introduced in
the previous chapter. The chapter begins by defining the BTE After a short introduc-
tion into the most common detector system in Section 4.1, analytic expectations for
BTFs of coasting beams with tune spread due to momentum spread and chromaticity
are introduced in Section 4.2. In this special case the tune distribution can easily be
measured using the BTE, finding a similarly powerful method for recovery of tune
spread from transverse sources was a key motivation for this work. In Section 4.3 the
analytic expectations for BTFs of coasting beams interacting with a local transverse
nonlinearity such as an electron lens or a beam-beam interaction in absence of
coherent modes are introduced. Space charge is not localized but instead moves
with the beam. Expectations for BTF of coasting and bunched beams in the presence
of space charge are introduced in Section 4.4.

The primary method of beam diagnostics investigated in this work are transverse
beam transfer functions. A schematic of a BTF measurement is shown in Figure 4.1.
The BTF represents the response of the centre of charge (x)(t) of the beam to a
transverse excitation a(t). The BTF is then given as the fraction of complex response
amplitude and complex driving amplitude and as a function of frequency. The hat
over the x and a denotes their Fourier transform with respect to time.

(%))

R(Q) = aQ)

4.1)

It is understood that the BTF is meaningful when taken at small excitation am-
plitudes where (%)(£2) scales linearly with 4(2). While some measure only the
absolute value of the BTE for this work the complex value of the BTF is of interest.

In the cases where the beam exhibits coherent modes like the synchrotron satel-
lites and the coherent beam-beam modes in Chapter 3, the BTF will generally show
a high amplitude response at an angle of 7t/2 at the position of the coherent mode.
Primarily cases where no coherent modes are visible to the BTF are of interest
as these cases are most likely to show a direct correspondence between the tune
distribution inside the beam and the BTE In the application of the BTF in Chapter 6
and Chapter 8, the circumvention of coherent modes in measurements and under
what conditions they may be neglected are discussed.
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Figure 4.1: Measuerement of a transverse BTF: The beam is excited by means of a
transverse excitation signal of amplitude a(t). The responding motion of
its center of charge (x)(t) is recorded. The BTF R(£2) can be calculated
from x and a as a function of frequency Q.

4.1 Direct Diode Detection for Bunched Beams

Pickup signals of bunched beams provided by transverse pickups typically contain
a lot of energy at high frequencies corresponding to the beam current changes over
the length of one bunch (up to the GHz regime, corresponding to current changes
on a few centimetres length of bunches approaching the speed of light) [69]. In
transverse BTFs one is frequently only interested in the fractional part of the machine
tune. This is due to practical considerations: With a pickup in only one position of
the machine, an observer can only determine the fractional part of the number of
oscillations per revolution. Additionally many effects do not depend on the absolute
value of the tune, just on its fractional part. Finally, the integer part of the tune is
normally known from the machine design, allowing to compute the absolute value
of the tune once the fractional tune is measured. For these reasons it is sufficient
to measure tune at baseband, that is to say below the revolution frequency of the
beam. In large accelerators baseband frequencies are typically very low (78 kHz in
RHIC, 11 kHz in LHC).

To provide a low noise signal in the baseband, a measurement method recently
introduced at many facilities [40] is the direct diode detection (DDD), now com-
monly used for base band tune (BBQ) and BTF measurements. BBQ based beam
oscillation monitors were used for the BTF measurements at RHIC and are available
at GSI [40].

To prepare for the modelling of the BTF system in Chapter 5, a brief introduction
of the concept of direct diode detection is shown in Figure 4.2: compared with
regular beam oscillation monitors where V., is measured, DDD connects a diode
and an RC circuit to each of the pickup output electrodes. The diodes allow the
pulses from each bunch to charge the capacitor. After the bunch has passed (and
V,on decays to zero, leading to strong high frequency components in V), Vppp only
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Figure 4.2: Simplified schematic of the direct diode detection circuitry, from [69].
Conventional BTF systems used the voltage V,,, direct diode detection
provides a smooth signal in the basbeand by adding the right half of the
circuit. The quantity of interest is then Vppp

decays slightly through the resistor. The next bunch recharges the capacitor. This
method allows to boost the signal amplitude in the baseband frequency range at the
cost of the (unwanted) signal amplitude of the higher harmonics. Vppp retains very
little of the initial high-frequency content, and is passed through additional filters
and amplified before being read out digitally by low frequency equipment. Vppp is
assumed to follow the centre-of-charge oscillation of a passing bunch.

Using direct diode detection, the signal to noise ratio of BTF measurements can
be boosted significantly by using the low frequency output of the direct diode system
as the signal component (%)(£2) (see Equation 4.1). R(Q2) can then be determined
in connection with the driving amplitude a(Q2). The absolute value of the BTF is
commonly not required but instead only the shape is of interest (as can be seen upon
revisiting Equation 4.1, any changes in amplitude can be absorbed in the constant
).

In BTF measurements commonly the exciter and the pickup are located at different
locations of the ring. The phase shift due to signal propagation time in the cable
and the beam oscillation between exciter and pickup needs to be accounted for by
calibration. In absence of exact knowledge of all cable lengths and electronic delays,
the BTF phase ¢ can be shifted such that ¢ outside the betatron peak is 0 or
respectively and the BTF peak is found at 7/2.
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4.2 BTFs of Coasting Beams with Chromaticity

BTFs of coasting beams have been investigated at length and some examples are
discussed in textbooks such (see e.g. [70]). One example of interest to us is the
BTF of a beam with a tune spread originating solely from momentum spread in
connection with chromaticity. In this case all the particles have a fixed transverse
(betatron-) frequency, and can be treated as harmonic oscillators. The transverse
coordinate x of a particle therefore behaves according to:

x" + w?x =AcosQt (4.2)

with w the particles eigenfrequency and Q and A the driving frequency and ampli-
tude respectively. This section follows [70] in the derivation of the analytic result
for the BTE

The general solution for the driven harmonic oscillator can be written as:

sin wt

A
x(t) = xgcos(wt) + xq 2 (cosQt — cos wt) “4.3)

w2 —
Assuming the oscillation starts from the equilibrium (x, = X, = 0) this simplifies
to:
A
(w—2)(w+Q)
By decomposing into the contributions of sum and difference frequency this can be
written as a product of a fast sine function representing the oscillation and a slow
sine function representing the beating over time.

2A +Q -0
PRCRrY) sin(w2 t)sin(a)z t) 4.5)

From the Tailor expansion it can be shown that the fraction from the first term
cancels with the slow sine and the result is finite even for w = Q. Expanding the
denominator and making the assumption that the system is observed at w ~ Q so
that (w + Q) ~ 2Q this can be rewritten to

(wfmsin(w;rﬂt)sin(wgﬂt). (4.6)

In the case of tune spread due to chromaticity alone, the density of particles
in the beam 1) is known as a function of the betatron frequency w, the BTF R at
frequency Q can be calculated by integrating over the particle peak amplitudes:

(cosQt — cos wt) 4.4)

R(Q)=C J Lw(w)dw “4.7)
w—0

—00
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wherein C a normalization constant. This work focuses on the BTF shape and not
the overall amplitude of the BTE Therefore make no effort is made to explicitly
calculate C. The pole at 2 = w can be accounted for by adding a small imaginary
term to the denominator or by means of the residue theorem. Finally one arrives at:

oo

R(Q), =—iCry(Q)+C- P.Vf Lv,b(co)dw (4.8)
w—0

—0Q

Wherein PV. denotes Cauchys principal value integral. For BTFs described by Equa-
tion 4.8, the betatron frequency distribution is proportional to the imaginary part of
the BTE Measuring the imaginary part of the BTF of a beam with tune spread solely
from tune spread and chromaticity yields the betatron frequency distribution in the
plane of the BTE

For certain distributions v Equation 4.8 can be solved analytically. In this work
beams are assumed to be Gaussian in longitudinal direction. For a corresponding
Gaussian distribution of betatron frequencies around the betatron tune w, with
width o ,:

1 _(w—wzo)z
w)=———=e 0 (4.9)
v()= =

Equation 4.8 solves to:

(ﬂ wo) (2 —wy)
R(Q)——\/> 7% (1+erﬁ( 1/_0' )) (4.10)

As mentioned before the imaginary part is proportional to 1(£2), thus the frequency
distribution can directly be read from the imaginary part of the BTE An example
of R(Q2) for Gaussian beams is shown in Figure 4.3. The hope for establishing a
similar relation for BTFs with tune spread due to a transverse nonlinearity motivates
investigation of the BTF of a beam with a transverse nonlinearity in the following
section.

4.3 BTFs in Presence of a Local Transverse Nonlinearity

Since the tune distribution due to momentum spread and chromaticity can be
readily read from the BTE one might assume that the same is the case for the tune
spread from other sources. Such a method would make it easy to obtain the tune
distribution caused by the beam-beam effect or electron lenses by means of BTF
measurements. In the following, the theory of BTFs in presence of a transverse
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Figure 4.3: Real and imaginary part of a BTF R of a beam with momentum spread
and chromaticity (Equation 4.10) as a function of frequency normalized
by the RMS frequency deviation o.

nonlinearity is reviewed with this in mind. The nonlinearity giving rise to the tune
spread for the beam-beam effect and electron lenses lies in the plane of the BTF
measurement. The particles changing amplitude caused by the BTF excitation results
in a change in their frequency, therefore a treatment different to the case of constant
betatron frequenc is required. This section neglects the influence of synchrotron
motion and the formulae are a priori only valid for coasting beams. Chapter 8 will
investigate the limits in which they can nevertheless be applied to bunched beams
in the limit of frozen synchrotron motion. Furthermore, application of the BTF as
modelled in this section to beams under the beam-beam effect assumes that no
coherent beam-beam modes are observed. This is possible under specific machine
conditions also discussed in Chapter 8.

An extensive discussion can be found in [71], the core of which is repeated here:

Up to now each particle was assumed to correspond to a linear driven harmonic
oscillator, with a Hamiltonian given by:

q* —p?

2

H(qx:px: t): w —Qf(t) (411)

wherein the normalized betatron coordinates q and p can be calculated from the
transverse actions J and phases ¢ (introduced in Subsection 3.1.2) via

q=v2J cos(¢) p = vV2J sin(¢). 4.12)
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The Hamiltonian for linear betatron motion in one of the transverse planes is given
via Equation 4.12 and Equation 4.11 by inserting the respective J and ¢ in the plane.
In the linear system the Hamiltonians in the x and y directions are uncoupled.

Now the beam distribution can be written as the sum of the initial distribution
4, and a perturbation due to the BTF excitation 1) :

1.0( x> y) 11[)0( x> y)+€¢1( X y:¢x, ) (413)

4, is independent of the betatron phase space angles ¢, because it has a constant
density in the ¢ direction. After excitation in x direction, the phases in x direction,
¢, are correlated, therefore v; is ¢, dependent.

The BTF can then be obtained by solving the Vlasov equation for the transverse
degrees of freedom. Using the phase space flow obtainable from the Hamiltonian,
the Vlasov equation reads [71]:

5—w+¢'xj;’b Ja_¢+¢.ya_¢+J M _y (4.14)

o¢, TaJ,
In presence of a nonlinearity, a Hamiltonian H,(J,,J,, ¢, ¢,) of an integrable
system is assumed. In presence of a horizontal driving force the Hamiltonian is [71]:

HZHO(JX’ y ¢x1 ¢y) xfx(t) (415)

which under the assumption that still x = 4/2J, cos ¢, leads to [71]:

. OH
$. = - C;Sﬁ‘fx( ) (4.16)
J,= —+/2J, sing, f.(t) 4.17)
with
w. (J,, y)— aH" (4.18)

X

the amplitude dependent betatron frequency.
Introducing an infinitesimal excitation:

fi(t) = eBe™™ (4.19)

and inserting Equation 4.17 and Equation 4.13 into Equation 4.14, after expanding
to first order in €, one arrives at [71]:

Y, it 9%o
W+wx(Jx, ) 3¢x L _By/2J sin(¢,)e mB_Jx

=0. (4.20)
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The ansatz:
Yy = g(J,,J, )elx—0 (4.21)
substituted into Equation 4.20, and averaged over ¢ yields:
FV2T 5
(2-w,0,.J,))
which can be used to calculate the response amplitude to the excitation [71]

= ffff dxdydp,dp,x(x) (4.23)
v

e 27
= EJ\J dedJy ff d¢xd¢y vV 2"])( COS ¢X¢l (4.24)
0 0
oo 21 .
:znf"(t)” dedJyf A6 V3T cos( ) s KPP P
0 0

Z(Q - wx(Jx’Jy)) a‘JX
(4.25)

g Jy) = (4.22)

and finally the BTF R:

R.(Q) =2n? f f A dJ, — wJ’(‘ )z;quo (4.26)
b'e x’ y

It is obvious that this result is sufficiently different from Equation 4.8 to demand
further discussion. In Chapter 7 the implications for the tune spread recovery from
BTFs are discussed . Figure 4.4 shows Equation 4.26 for an electron lens, modeled
by using the tune spread due to a round Gaussian charge distribution matched to the
beam size (Equation 3.43) for w,(J,, y) Note that for the BTF with chromaticity
(Figure 4.3) the tune distribution was exactly proportional to Im(R) and therefore
not displayed separately. In the case of the electron lens, the tune distribution differs
from Im(R) as shown in Equation 4.26.

4.4 BTFs with Space Charge

Unlike a localized transverse nonlinearity, transverse space charge as a source of
tune spread alone is not visible in the BTE When the beam is excited by an external
signal, the excitation acts on all particles. As a result, the centre of charge of the
beam and with it the incoherent space charge moves together with the excitation.
The centre of charge responds to the excitation at the frequency of the lattice tune
and the beam is indistinguishable from the BTF of a beam without space charge.
Nevertheless space charge produces a specific signature in BTFs when considered in
combination with other sources of tune spread in both coasting and bunched beams.
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Figure 4.4: Real and imaginary part of the BTF of a round Gaussian beam interacting
with a transverse nonlinearity caused by a matched defocusing round
Gaussian transverse charge distribution. As can be seen Im(R) is not
proportional to the tune density ¥ as was the case for the tune spread
from out-of-plane sources (Equation 4.8).

4.41 Coasting Beams

In the presence of space charge, chromaticity and transverse impedances, BTFs of
coasting beams show characteristic deformations [20, 72]. An extensive description
of the processes can be found in [48]. Here only the results needed as a starting
point for the following considerations for bunched beams are quoted.

Assume a coasting beam of Gaussian velocity profile and chromaticity as the
source of tune spread, the BTF R(Q2) can be found in Equation 4.10, which is
revisited here for convenience:

2
C (Q—wq) Q _
R(Q)=— Te 22 [i+erfi “o (4.10 revisited)
Ouw 2 \/E(Tw
In presence of space charge on top of the chromaticity, the BTF modifies to [20]:
R(Q2
Ry ()= () (4.27)

1—(AUgp — AU + 1AV 1 )R(Q)
with the so-called space charge parameter
AQye
AQchrorn

4.4 BTFs with Space Charge a1

AU, = (4.28)
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Figure 4.5: Deformation of the BTF of a coasting beam due to space charge. The
imaginary part of the BTF R(f2) is shown for different space charge
parameters AU,.. The curves displayed with an offset indicated in the
plot. Note that for increasing space charge, the peak becomes narrower
and moves away from the bare tune Q,.

corresponding to the incoherent space charge tune shift (Equation 3.42) in units
of the RMS chromatic tune spread AQ rom and AUy, + 1AV, the coherent tune
shift due to coherent space charge and impedances, also in units of the chromatic
tune spread.

In absence of a space charge and impedances, R, = R. In the resulting BTE,
the peak shifts and deforms depending on the space charge related parameters.
Examples are shown in Figure 4.5. The model is validated against measured and
simulated BTFs [20, 48] and will later be employed to the BTF implementation
carried out for this work.

4.4.2 Bunched Beams

For bunched beams with significant contributions of synchrotron motion to the
transverse spectra (see Chapter 6), transverse spectra of the betatron sidebands split
into the well-known synchrotron satellites (Subsubsection 3.1.4). In the presence of
space charge, these spectra experience deformations. For a simplified model of the
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beam assuming constant density and square beam pipe, the tune shift AQ; of the
k™ synchrotron satellite with respect to the lattice tune is given by [62, 22, 23]:

AQsc + AQcoh + (AQSC B AQcoh)2
2 4

AQy =— + (kQ,)? (4.29)

with AQ,. the incoherent space charge tune shift and AQ,,, a real coherent tune
shift representing image current effects. The + is used for k > 0. It can be easily
validated that Equation 4.29 simplifies to Equation 3.25 in absence of space charge
and coherent tune shifts.
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5 Simulation

This chapter introduces the computational model used for particle tracking
simulations in accelerators. Section 5.1 begins with a general description of a
particle tracking code as it is used for simulation of particles in ynchrotrons. In the
following, the models for key effects are described in detail, namely space charge,
the beam-beam interaction and an electron lens. Section 5.2 presents the modelling
of the BTE Finally the code is validated on analytic expectations in Section 5.3.

5.1 Simulation Model

In particle tracking simulations of synchrotrons, a large number of macroparticles,
(typically 10° — 107) are represented by their respective coordinates x,x’,y,y’,z
and 6. Each of these macroparticles corresponds to a number of real particles.
For this work, simulations were carried out in a simulation code forked from the
particle tracking code Parric [30]. The simulation code was written in the C++
programming language [73]. In the simulation the accelerator is approximated by a
set of linear transfer matrices (Equation 3.10) corresponding to the properties of
the accelerator elements. The set of matrices used to represent the machine is often
called the lattice. The lattice of an actual machine can be computed from simulated
or measured magnet data by means of the software MAD-X [74]. Lattices used to
represent real-world machines often incorporate matrices representing beamline
elements of different lengths s;. Application of a matrix of an element of length
s; corresponds to a time step of duration t; =s;/(fc) with the speed of light c. In
modelling of space charge, the lattice is often replaced by a constant focusing model,
as is the case in this work. A constant focusing model replaces the lattice by an
alternative lattice of constant focusing strength k (Equation 3.4) in both spatial
directions. The beta functions on that lattice are constant and as a result a(s) is 0.
The elements of a constant focusing lattice are commonly chosen to be of uniform
length and thus their transfer matrices are identical and the time stepping is uniform.
The alternative lattice is chosen such that quantities of interest, most importantly
the (fractional) tune, are identical to the machine lattice.

45



5.1.1 General Description of Particle Tracking for Synchrotrons

The general workflow of the particle tracking code is shown in Figure 5.1. For
this work the basic beam dynamics for particle tracking in synchrotrons available
in Patric [30] was used. In the beginning of the simulation, the lattice is loaded
from a file or generated according to simulation input data. Then, the particle coor-
dinate vector is initialized by an matched particle distribution randomly generated
according to simulation input. In this context, matched means that the probability
density function is chosen such that it stays constant for in absence of effects causing
emittance growth.

At a lattice element n, the particle tracking code determines the beam physics
effects that have to be applied at the element, and applies them by modifying the
particle coordinate vectors accordingly. Some of the effects used in simulation
are explained in detail in the rest of this chapter. Subsequently beam properties
for simulation output are calculated and the particles are translated to the next
cell via the linear transfer map M(s,,s,1)- The process is repeated until a desired
number of simulation steps has passed. The lattice is periodic with the machine
circumference, therefore the transfer map M(s,,s,,;) repeats every turn in the
machine, M(s,,sp+1) = M(s,, + Ceire>Sns1 + Ceire)-

( Initial distribution )

Apply beam physics:
one or all of:

chromaticity, space - -
Machine 1y, Sp Simulation
lattice charge, beam-beam, i
| electron lens, BTF exci-

tation.

Y

Translation to next lattice]
location via transfer map J <

M(s s 5+1)

[Calculate required beam
properties

U et

Figure 5.1: Flowchart of the particle tracking simulation. Prior to simuation an
initial matched particle distribution for the desired beam parameters
is generated. Additionally a machine lattice is either obtained from an
input file or generated as a constant focusing lattice reproducing desired
machine parameters (primarily the tune).

46 5 Simulation



5.1.2 Transverse Fields

In an ideal world, it would be feasible to derive the beam fields by solving
the full Maxwells equations for the bunch and its surroundings. Unfortunately
the computing power required to do so is not available. Nevertheless simplifying
assumptions allow simulation of particles including transverse self fields with good
accuracy. As discussed in Section 3.2 the transverse self fields originating from the
charge distribution of the beam are typically derived from the density distribution
by means of solving the Poisson equation to derive the transverse electric field of the
particles in vacuum and making use of the proportionality of magnetic and electric
field in the transverse direction (Equation 3.36). In simulation, several methods can
be used to calculate the transverse fields. Effects of the bunch wake fields acting back
on the bunch can be taken into account by means of impedances. Here the influence
of impedances is neglected and the transverse fields are calculated assuming beams
are travelling in vacuum (neglecting the beam pipe and any other surroundings).
For the case of BTF with the beam-beam effect, this simplification can be justified by
the good agreement between analytic expectation, simulation and the measurement
results. In the case of space charge, if necessary, the underlying theory already
allows for integration of impedances, which, however, were neglected for this first
feasibility study.

Analytic Fields

For several beam shapes (among others circular or elliptic Gaussian beams), the
transverse fields can be calculated analytically. Modules for this calculation were
implemented in the framework of this thesis. In simulations where the beams are
Gaussian and the beam-shape is assumed to be stable, whenever transverse fields
are needed for the simulation, one has to compute the location of the beam centre
of charge, i.e. in x-direction:

N

,usz_lzxi (5.1)

and the standard deviation

N
o, = \JN_lz(X—Hx)Z- (5.2)
i=1

The values y direction, u, and o, are defined accordingly. Then one can use the
analytic equations to calculate the beam fields, the results for round beams (u, >~ u,)
can be found in Equation 3.33, the more computationally heavy equations for elliptic
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beams can be found in the literature [62]. This technique was frequently used in
the past but is now more and more replaced by self-consistent field calculations for
discretized particle densities derived from the particle distribution. Wall geometries
can be taken into account by modelling the appropriate image charges and image
currents [19].

Self-consistent Fields

The assumption that the beam shape stays constant is not always justified. For
example the centre of a transversely Gaussian beam might oscillate against the
beam edges upon excitation, leading to a deviation from Gaussian shape. Modern-
day computer systems make it possible to calculate the transverse self fields by
evaluation of the Poisson equation for the discretized two-dimensional transverse
density distribution of a beam for arbitrary boundary conditions [75]. To do so
the particles are interpolated onto a grid, a set of spatial coordinates on which the
density is approximated. Codes using this approach are referred to as Particle in
Cell codes [76, 77]. The calculation of the field is carried out for the discrete grid.
The resulting fields are subsequently interpolated back onto the particles resulting
in a change of the particle momenta. The technique does not account for direct
collisions between particles, but this is not an issue only the macroscopic field is of
interest.

In Patric such a discretization is used, Figure 5.2 shows a graphical representation
of the process: A square grid of length lg,;q with N4 cells in both spatial directions
is used. The grid spacing Axgg, AYgrg is therefore given by

l .
grid
AXgnd A.ygrld (53)

Ngrid -1

The particle coordinates x;, y; are interpolated onto a two dimensional grid with
discrete coordinates x,, y,,. The local density p at a grid point is then given by [77]

N-1
9macro S (xj_xm yj_yn)
AZAxgrldA.)’grld Axgrid ’ A.ygrid

P (X, Yn) = (5.4

The function S, is introduced for the purpose of distributing the particle charge
onto its neighbouring grid cells. It can be thought of as the macroparticle shape and
needs to be chosen such that

grld —1N, grid™ -1

Az AXgrig A
grld Ygrid Z Z
p(xn:ym) - (5'5)

q macro
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Figure 5.2: lllustration of the particle to grid interpolation. The particle distribution
function (Equation 5.7) is shaded in red. The dotted red line marks the
border where S = 0. The example particle contributes to the cells with
n =4,5and m = 1,2. The horizontal and vertical component of the
two-dimensional triangle function S, =S ((xj — xm)Axg_r}d) and S, are
also shown.

In Parric typically triangle functions are used for S,
SO =@Q—[th-HA -, (5.6)

wherein H denotes the Heavyside step function. For interpolation on the two-
dimensional grid, the two dimensional unit triangle function is used for S,p:

SZD(dx: dy) = S(dX)S(dJ/) (57)

is used, Sy then corresponds to a linear interpolation of the particle charge onto
the neighbouring 4 grid points.

Having discretized the two-dimensional charge density on the grid, the corre-
sponding electric potential on the same grid can be obtained by solving the Poisson
equation discretely. In Patric, the electric potential is obtained by means of spectral
methods [77]. Fourier transforms are done using the fast Fourier transform algo-
rithm. Boundary conditions for free space or arbitrary beam pipe geometries can
be introduced by adding a pseudopotential calculated by means of an appropriate
Greens function to the boundary of the simulatory domain [75]. The x and y com-
ponents of the electric field corresponding to the obtained potential are obtained by
numerical differentiation of the discretized potential.
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With the discrete electric fields on the grid, the electric field for a given particle
location x;, y; can be obtained. The field grid is projected back onto the particle
coordinates by means of the same interpolation function S,

grld 1N, grid— -1
X—Xm Y—Yn
E.(x,y)= E (Xm, Y )S( ) (5.8
Z Z e Axgnd Ay, grid

and the resulting force on the particles can be calculated via the proportionality
between the electric and magnetic fields (Equation 3.36). The y component of
the electric field at a particles location can be obtained by replacing E, with E, in
Equation 5.8.

5.1.3 Space Charge

For the simulation of beams under the influence of space charge, the transverse
fields of the particle distribution need to be taken into account. In this work,
the longitudinal force components of space charge are neglected. The transverse
dynamics differ depending on whether coasting or bunched beams are simulated.
The general workflow valid for both cases is shown in Figure 5.3. For this work,
pre-existing modules for space charge effect were bugfixed and optimized for
efficiency.

'Macroparticle ) Update coordi/nates:
= | coordinates > Axn’ Ay, e
Vi qE(xn Yns[2n])
(x,y,z,;,y 6)n | T A
Calculate p, [, ) _ (Calculate )
O L,y (2] Txy[s] | - { E(x,y,[2])

Figure 5.3: Flowchart of the space charge module of the simulation. Longitudinal
fields are neglected, the [z] is needed for bunched beams to take the
transverse field variation over the bunch length into account.

Coasting Beams

For coasting beams, the calculation of transverse space charge is reduced to a
2D problem: In absence of longitudinal current fluctuations, the beam profile is
independent of the longitudinal coordinate. For simulations with analytic fields, the
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beam position u; and transverse dimensions o; are computed independently of the
longitudinal coordinate of the macroparticles.

For simulations with self-consistent fields, the transverse density of the beam
is interpolated onto the grid independently of the longitudinal particle position.
The transverse fields on the grid are calculated as described above and the particle
momentum coordinates are modified accordingly. In space charge simulations
for this work, the space charge effect is calculated about 12 or more times per
betatron period to ensure that the average field seen by the particles during betatron
oscillation is giving a reasonable value.

Bunched Beams

In bunched beams, the transverse density depends on the longitudinal position
of the particles. Generally for the beams of interest in this thesis, the longitudinal
motion is very slow (the frequency of betatron oscillations is typically 10° as high as
the synchrotron frequency, allowing to separate the two). Furthermore, the bunches
are long compared to their width. For use of analytic equations for the space charge
force, one can compute u; and o; as well as the local longitudinal density p, as a
function of z. Space charge can then be taken into account by applying the analytic
electric field corresponding to a bi-Gaussian charge density with corresponding
parameters.

The code for bunched beams relies on self-consistent simulation: The particles are
interpolated on a three dimensional grid consisting of a number of two dimensional
grids as described above aligned equidistant in the z direction with a spacing of
Azgyq at positions z, (see Figure 5.4). These transverse grids are commonly called
slices. For calculation of particle density one modifies Equation 5.4 to include the
longitudinal direction:

= X;—X Z2;—3%
P (Xms Y %0) = Grmaore ZSZD( ) =m0 y")s(f ) (5.9)

B
Azgrid Axgrid A.ygrid j=0 Axgrid A.ygrid AZgrid

The transverse fields are then calculated individually for each slice. The interpolation
back onto the particles is done following a version of Equation 5.8 extended to three
dimensions analogous to Equation 5.9. This approximation neglects longitudinal
components of the fields which, due to the length of the bunch, only weakly depend
on the transverse dimensions and can therefore be included by an impedance
approach.
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Figure 5.4: lllustration of longitudinal slicing. The actual slice number chosen in
simulation for this work was between 16 and 512. For each of the
particles in the bunch, its transverse density is linearly interpolated on
the two neighbouring slices.

5.1.4 Beam-Beam Effect

For this work, a model of the beam-beam effect was implemented and added to
the code. In the simulation code the beam-beam effect was modelled as a single
interaction between the particles of each beam and the two-dimensional transverse
fields of the interacting bunch. The reduction to two dimensions is justified by the
bunch length in RHIC o, ~ 0.45 being smaller than of the beta function at the IP
f3* ~ 0.85, thus only neglecting a betatron phase advance of £0.0857 (Equation 3.7)
during the collision. This was common practice in beam-beam simulation codes
for a long time [78, 79]. More modern codes [28] allow the simulation of the full
three dimensional interaction, but the additional computational effort is primarily
introduced to allow the reproduction of the hourglass effect and crossing angle
effects on the beam-beam parameter [80]. The influence of both of these can be
considered negligible for the purpose of this work due to the small crossing angle
and matched round Gaussian distributions with nearly equal * in both planes and
both rings at RHIC. For this reason the substantial effort needed for implementation
and simulations with a full three-dimensional model was deemed too high for the
application in this work, especially after good agreement with experimental data
could be shown early on for the two dimensional model.

For the implementation of the beam-beam effect, the simulation code was paral-
lelized on a bunch level. Each of the processes simulating the particles of a bunch
tracks the particles belonging to the bunch around the ring. When the simulated
bunch arrives at the location of a beam-beam interaction, the transverse charge
density of the bunch is discretized as described above. Attention is paid to choose
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the same discretization in both bunches. The discrete electric fields corresponding to
the transverse charge density are computed and exchanged with the partner bunch
via MPI. A diagram of a beam-beam interaction in simulation is shown in Figure 5.5
The contribution of the magnetic field due to the relative velocity of the bunches is

'Macroparticle \ Update coordinates:
Ax' Ay =
== | coordinates E—— X BYn
q (Xrn Y n) .

(x,y,2,x",y',8),

Y
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{ Or y,y>Ox,y ) E(x,¥) 2 E
9]
=
p N J
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Macroparticle
coordinates

E

\. J

Figure 5.5: Flowchart of the beam-beam effect module of the simulation. Two
processes (symbolized by yellow and blue color for the two rings in
RHIC) arrive at an interaction point and exchange field data via MPI for
simulation of the beam-beam effect. After the beam-beam interaction,
both processes continue simulation independently. The interaction is
reduced to a 2D-interaction between the transverse charge distributions
of the bunches.

taken into account according to Equation 3.44. The particle momentum coordinates
are modified according to the colliding bunches’ electric fields interpolated at the
particle location. The beam-beam effect and the electron lenses respectively present
the major nonlinearity to beams interacting with them. For this reason, the particle
transport between beam-beam interactions is modelled as a single transfer matrix
obtained from the numerical model of RHIC (S. Tepikian, personal communication,
April 2012) with the help of the MAD-X [74] code. The beam pipe diameter at the
IPs in RHIC in the STAR and PHENIX detectors, 76.2 mm [81] and 40 mm [82]
respectively, is orders of magnitude larger than the beam size (& 0.15 mm) justifying
vacuum boundary conditions for the computation of the fields.
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Figure 5.6: lllustration of the geometry of RHIC with the collision points at IP 6 and
IP 8 (where STAR and PHENIX are located) marked. The electron lenses
are located at IP 10. Depending on the filling scheme, sets of either two
or six bunches are coupled by the beam-beam interaction.

Multiple Beam-Beam Interactions

In RHIC, the particles can interact at six equidistant possible interaction points
as indicated in Figure 5.6. In normal operation, the beams only interact in two
of the possible interaction points, namely in the STAR and PHENIX detectors. As
a result of the geometry for normal operation, bunches form groups of six (three
from each beam) such that the bunches from a group only interact with other
bunches from the group via the beam-beam interaction. The geometry of RHIC and
with the two interaction points in question indicated shown in Figure 5.6. In the
simulation, the interaction between these bunches was implemented by running sets
of six simulation processes exchanging electromagnetic field data upon interaction
according to the scheme in Figure 5.7. The primary computational effort of the
simulation is spent on the Beam-Beam interaction, therefore after every second
interaction, the processes spend some time waiting until the next partner bunch
arrives at the same time step. The simulation with six bunch processes can therefore
be run on only three times the number of cores needed for one process without
notable increase in wall clock simulation time.
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Figure 5.7: lllustration of the order of the collisions during one turn. Note that each
bunch always meets the same partner in the same interaction point.

5.1.5 Electron Lens

For this work, the model of the electron lens was added to the simulation code:
The electron lens is designed to deliver a Gaussian charge distribution. In simulation
it is implemented by adding the total momentum change due to the fields of a
Gaussian charge distribution (Equation 3.33) to the x’ and y’ coordinate of the
particles respectively. The momentum change is applied once per turn at the
location of the lens. For elliptic beams, the Bassetti-Erskine formula [58, 62] for
the transverse forces F,, F), by a two-dimensional elliptic Gaussian distribution with
0,0, the RMS widths in the two transverse directions is used:

F +iF nro 27 w x+iy
iF, = —
YT oZ+o? /2(03_05)

9y : Ox
XZ yZ U—){X+lay

with w the complex error function:
w(z) = e (1 —erf(—iz)). (5.11)

LIBCERF [83] was used to provide a fast implementation of the complex error function
for use in the simulation code.
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5.2 Beam Transfer Functions

This work focuses on investigations of baseband beam transfer functions, which
can be measured with exceptional signal to noise ratio using direct diode detection
systems (see Section 4.1). For this work, models of the BTF were added to the
simulation code. In RHIC, typical bunch lengths are below 1 metre. With a machine
length of 3.8 km, the phase of an excitation signal of a kicker driven in the baseband
at Qg = 0.68 only changes by less than 0.68 - 3800 < 0.00017 over the length
of the bunch and can be neglected. Similar arguments can be made for other
high energy machines. Therefore in the implementation of the BTF the kicker is
implemented as a lattice element that changes the momentum coordinate of the
particles as a function of time,

Ax' =A-a(t), (5.12)

wherein A is an arbitrary excitation amplitude and a(t) is the BTF driving amplitude.
a(t) can either be chosen as an excitation at a specific frequency 2 = 27Qg,. SO
that:

a(t) = sin(Qt) (5.13)
or as a band-limited white noise excitation such that

N; freq

a(t)= > sin(t + ). (5.14)

i=0

with Q; random frequencies from the frequency interval of interest and ¢; random
phases from [0,27]. Each turn the offset of the transverse centre of charge of
the bunch with respect to the reference trajectory (x)(t) is stored together with
the kick amplitude a(t). In postprocessing, d(2) and (;c)(Q) are calculated by
means of a discrete time Fourier transform [84], yielding the BTF via Equation 4.1.
We implemented both methods but in this document only simulations with single
frequency excitation are presented because experience showed them to be less noisy
at the same computational cost.

In simulations with fixed excitation frequencies, the particle distribution is reset
between subsequent excitation frequencies to avoid transient effects from the pre-
vious excitation [28, 85]. In measurement, similar behaviour can be achieved by
waiting for the previous excitation to decohere. In this work the BTF were simu-
lated with equidistant steps in excitation frequency. Since the particle distribution
is reloaded before each frequency step, this allows for code parallelization: the
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excitation at different frequencies can be parallelized such that several frequency
samples are simulated at the same time on different CPUs.

One has to avoid changing the particle distribution as a result of the BTF excitation
while still obtaining a good signal to noise ratio. As a rule of thumb in this work the
response amplitude of the motion of the beam centre of charge was kept smaller
than 1% of the RMS width of the unperturbed beam to avoid perturbing the particle
distribution.

5.3 Validation

The various approximations necessary to make the code run on a manageable
amount of computing power require careful validation of the implemented effects
by means of comparison to analytically accessible scenarios. For this work, the
implementation was validated against well-known results from literature, all of
which were presented in Chapter 3 and Chapter 4. Validation examples can be
found in the following subsections.

5.3.1 Beam Transfer Function

The perfect validation example for the BTF implementation are coasting beams
with a Gaussian velocity profile and chromaticity as the sole source of tune spread.
The case was discussed analytically in Chapter 4, the analytic expectation for the
BTF shape can be found in Equation 4.10. For beams with betatron tune spread from
chromaticity, the frequency spread o, is given by the RMS momentum spread 6 and
the chromaticity & jrom @S O = 270 * & chromfo- Simulation and analytic expectation
agree as shown in an exemplary BTF in Figure 5.8.

5.3.2 Space Charge

BTFs with space charge and can be validated on the analytic expectation for
BTFs with coasting beams: In the presence of space charge, coasting beams result
in BTFs as described in Section 4.4. Figure 5.9 shows exemplary simulated BTFs
in comparison to the analytic expectation for beams with different space charge
parameters Ug.. Simulation and analytic expectation agree.

5.3.3 Beam-Beam Effect

For head-on beam-beam interactions of two bunches in one interaction point, the
positions of the © and o modes are known analytically [66] and were discussed
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Figure 5.8: Comparison between simulated BTF (dots) and analytic expectation (line)
for a beam with Gaussian velocity profile and chromaticity as the sole
source of tune spread. The small discrepancy can be attributed to the
granularity of the macroparticle distribution.

in Subsection 3.2.2. Furthermore, the tune shift of the 7 mode with respect to the
o mode is known to depend on the implementation of the interaction: BTFs in
simulations using the assumption of a transverse Gaussian distribution using the
analytic equations from Equation 3.33, are expected to show a mode separation A =
1.103¢& [86]. Simulations using transverse fields corresponding to the discretized
beam particle distribution arrive at a mode separation consistent with Equation 3.51
of A = 1.215. Validating plots for both scenarios can be found in Figure 5.10.
Additional quantities used for validation of the implementation of both the beam-
beam effect and the electron lens but not shown explicitly in this chapter were the
tune distribution of the particles, and analytic expectation for the transverse field
strengths. The implementation was in agreement with the analytic expectation for
all of these.
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Figure 5.9: Imaginary part of simulated BTFs (dots) showing good agreement with
analytic expectation (continuous line) for beams with different space
charge parameters. The real part (not shown) also agrees. Deviations
can be attributed to the granularity of the macro particles and decrease
with increasing macroparticle number.

5.3 Validation 59



P [a.u.]

10—135 . —
0.680 0.685 0.690 0.695  0.700

erac

(a) Self-consistent fields

1077 T
1078
107°
10—10
10—11
10712 : é

1077 . :
0.680  0.685  0.690  0.695  0.700

Q frac

P [a.u.]

(b) Stiff transverse Gaussian

Figure 5.10: Validation of the beam-beam implementation: Power spectral density P

of transverse beam oscillations over 4000 in simulated beams with one
beam-beam interaction in RHIC. The = mode position is analytically ex-
pected to be shifted by 1.215& with respect to the o mode for a model
with self-consistent fields [66] and by 1.103¢& for a stiff transverse Gaus-
sian model [86]. The dashed line indicates the beam-beam parameter
&, the left limit of the incoherent particle distribution. Both models
replicate the analytic expectation for the coherent mode frequencies.
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6 BTFs of Bunched Beams with Space
Charge

For bunched beams interacting with transverse nonlinearities such as an electron
lens, there is no dependence of the interaction strength on the longitudinal particle
coordinate. However, when discussing space charge, the transverse field amplitude
at the location of the particles scales with the local bunch current density.

Previous discussions of BTFs of beams with space charge focused on coasting
beams. In coasting beams, the magnitude of the transverse space charge is constant
along the beam. Secondly, BTFs show peaks for coherent modes such as the
synchrotron satellites introduced by bunching. Previous research shows that in the
presence of space charge the coherent mode frequencies shift in a characteristic
way [21, 22, 23].

For this investigation an intermediate regime was chosen: In high energy ac-
celerators, the synchrotron period is frequently several thousand turns long (e.g.
between 10° and 10* turns in SIS100). When measuring the BTF for a time span
shorter than one synchrotron revolution, the BTF is unable to resolve the coherent
modes and one might expect a more coasting-beam like behaviour.

To asses this assumption, an analytic expectation for the beam transfer functions
of bunched beams with frozen synchrotron motion in the presence of space charge
is presented in Section 6.1. Its implications for tune measurements are discussed
and it is validated against simulation data. Section 6.2 shows the breakdown of
the assumption of frozen synchrotron motion on simulated BTFs with increasing
synchrotron frequency and argues that the model is applicable to BTF measurements
taken over a timespan below the synchrotron period. Section 6.3 discusses the
feasibility of recovering the magnitude of space charge from BTF measurements of
bunched beams.

6.1 BTFs of Bunched Beams with Frozen Synchrotron Motion

The analytic expectation for BTFs of coasting beams with space charge (Equa-
tion 4.27) is the starting point for the treatment of a bunch with frozen synchrotron
motion. For this reason it makes sense to revisit it here:

R(2)
1-— (AUcoh - AUsc + iAVcoh)R(Q) )

Ry () = (4.27 revisited)
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For frozen longitudinal motion (Q, = 0) the BTF of the whole bunch can be described
as a superposition of the coasting beam BTFs of longitudinal slices of the beam of
length dz. The longitudinal slices have a local space charge parameter AUy, which
is defined by the space charge parameter AUy ¢ at maximum bunch current j,,,
and the local bunch current j(z) via:

AUSC(Z) = AUsc,rnax].(_Z) . (6.1)

max

With this local space charge the BTF of a bunched beam with frozen synchrotron
motion can be expressed as an integration over the contribution of the longitudinal
slices with their individual transverse space charge parameters.

() ;
Rsc,bunched(ﬂ) =C f Ry (Q; AUsc,rnax-]’-_ ](z)dz, (6.2)

Zmin max

with C being a normalizing factor. For practical purposes this discussion is restricted
to the case of beams in absence of transverse impedances whereby AU, = AV, =
0. This is permissible without loss of generality as their influence on the BTF
(Equation 4.27) is identical to that of AUj.. The resulting BTFs are similar to the
ones for the coasting beam. Figure 6.1 shows a comparison between the analytic
expectation Ry pynched fOr bunched and R, for coasting beams. The stronger the
space charge the more obvious the difference: While in the bunch the maximum
space charge parameter varies between 0 and AUy .y for different longitudinal
locations, all the particles in the coasting beam see the same space charge parameter
AUyg.. This results in narrower peak for the coasting beam BTFs when compared to
the bunched beam BTFs.

As can be seen in Figure 6.1, the peak in the BTF becomes narrower as the space
charge (and with it the tune spread from longitudinal sources) increases. At the
same time the peak width increases with increasing tune spread from chromaticity.
Unlike for the case of tune spread from localized transverse sources such as an
electron lens (Chapter 7), there is no direct correlation between the peak width and
the total tune spread.
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Figure 6.1: Comparison between BTFs for coasting beams with transverse space
charge (Equation 4.27) and bunched beams with transverse space charge
(Equation 6.2) for different transverse space charge parameters of
the coasting beam AU, and the bunched beam U, ,.x respectively
and otherwise identical beam parameters. The example beam has
Q = 0.32,AQchrom = 0.01 and AQq may € [.01,.02,.03] in the dif-
ferent plots.
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6.1.1 Implications for Tune Measurements

In everyday operation, BTFs are frequently used to measure the tune: often the
peak of the betatron sideband is assumed to coincide with the tune for automated
tune measurements. With increasing space charge, the peak of the BTF shifts
away from the actual tune distribution within the beam. Using the BTF peak to
control the machine tune without accounting for this difference can result in particle
tunes accidentally crossing a resonance line. Emittance growth and particle losses
can be the result. For beams without space charge, the peak position in the BTF
and the tune distribution coincide. BTFs with and without space charge together
with the expected tune footprints are shown in Figure 6.2. As can be seen for
a moderate space charge parameter of AU, n.x = 1 one already misjudges the
position of the tune distribution by AQ 4,m When assuming the particle tunes to
be centered around the BTF peak. As a guide to the eye, the peaks of the BTF and
the tune distribution v(Q) are indicated. Note how with increasing space charge
parameter the assumption that the peak in the BTF coincides with the peak of the
tune distribution breaks down. It should also be noted that the tune distribution
and the BTF peak are shifted in opposite directions with respect to the lattice tune
Qo - This shift should be taken into account when measuring the lattice tune via the
BTE

6.1.2 Simulation

For validation of the analytic prediction with the help of simulated BTFs, the
energy of the simulated beam is set to the transition energy. On transition 1 =
0 (Equation 3.27) and consequently the synchrotron frequency (Equation 3.14)
becomes zero, synchrotron motion freezes. For a beam under these conditions BTFs
can be expected to be described by Equation 6.2. Figure 6.3 shows simulated BTFs
and the analytic expectation for different space charge parameters. The results are
in good agreement for typical space charge parameters. For space charge parameters
higher than AUy ¢ > 3, a slight broadening of the peak in simulation with respect
to the analytic expectation was observed. This is likely an effect of limited simulation
resolution and could be overcome by increasing the resolution of the space charge
simulation by introducing more longitudinal slices and simultaneously increasing
the particle number.
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Figure 6.2: The imaginary part of the BTF Im(R) and the tune distribution 1 for
different values of the bunches charge parameter AU ,.x- For a bunch
with no space charge (AU max = 0) the Im(R) o< ). For increasing
space charge parameters, the two move away from each other. To cor-
rectly judge the location of the tune spread with respect to the working
point, one has to account for the tune difference AQ between the BTF
peak and the peak of the betatron tune distribution.
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Figure 6.3: Simulated BTFs (dots) and analytic expectation (line) for bunched beams
with frozen synchrotron motion and different space charge parameters.
The space charge parameter AU . is given in the figure. The BTFs for
different AU .« are offset with respect to each other. Offsets are given
in the plot. The colour code and offsets are the same for both plots. The
simulation agrees with the analytic expectation.
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6.2 Finite Synchrotron Frequencies

In a real machine beams cannot survive for long on transition energy [6, 62], and
efforts are taken to cross transition energy as fast as possible during acceleration or
avoid crossing it altogether [87, 88]. For beams that are not exactly on transition,
but with reasonably small 7 as is the case in high energy machines, synchrotron
motion is still slow. In real life BTF systems the time for taking a frequency sample
is often of the order of magnitude of the synchrotron frequency. For example in
RHIC with a synchrotron period of about 30 ms the measurement time for one BTF
frequency sample is also about 30 ms. In SIS100 with synchrotron tunes between
103-10%, the synchrotron period can be as long as 10* turns. The BTF will not
be able to resolve the synchrotron satellites if their tune difference is less than the
number of turns corresponding to the measurement time of a BTF frequency sample
! N;%ns. Furthermore aside of the resolving power of the BTF in terms of frequency
the synchrotron motion leads to a periodic oscillation of the individual particles
betatron frequencies. The combination of these effects was studied in simulated
BTFs. The goal of these simulations being to assess the range of parameters for
which the model of frozen synchrotron motion can be used to describe the BTE In
doing so the assumption that BTFs measured with a measuring time per frequency
sample of less than one synchrotron period will not show synchrotron satellites of
the betatron sidebands to can be tested.

Validation for Bunched Beams with Chromaticity

As a first validation example, simulated BTFs of a bunched beam with chromaticity
and no other effects were chosen. For the simulation a tune of Q = 0.32 was chosen
for a bunched beam with a Gaussian velocity profile and a tune spread due to
chromaticity of AQ om = 0.005. To investigate the limit of the frozen bunch model,
the BTF of a beam on transition with Q,, = 0 is compared with that of a beam
of Qg = 0.001. The two BTFs can be expected to show negligible difference as
long as the simulated measurement time per frequency sample is shorter than the
synchrotron period of 1000 turns. Starting from a measurement time per frequency
sample of 1000 turns the synchrotron satellites should be resolved by the BTE The
results are shown in Figure 6.4. They confirm the expectation: As soon as the BTF
measurement time exceeds the synchrotron period of 1000 turns, the synchrotron
satellites show up in the simulated BTFs. Until then, the simulation with frozen
synchrotron motion, the analytic expectation for the coasting beam (black line)
and the simulation with synchrotron motion agree. To reproduce these results in

L This is because the frequency resolution of the discrete time Fourier transform is fsamplingN -1

with fiampling the sampling frequency and N the number of samples.[84]
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measurements one has to make sure that sufficient time for the coherent excitation
to decohere is left between measurements of subsequent BTF frequency samples.

Validation for Bunched Beams with Chromaticity and Space Charge

Simulations for BTFs of bunched beams with chromaticity and space charge show
that for example beams with moderate space charge with BTF measurement times
above the synchrotron period? when the synchrotron satellites should in principle be
resolvable, the BTF can still be described by Equation 6.2 with no coherent modes
appearing. The reason is likely that in the case of chromaticity as the only source
of tune spread, particles return with the same betatron phase after completing one
synchrotron oscillation. Thus, after one synchrotron revolution particles excited
upon the previous passing oscillate in phase with the BTF driving signal and their
contribution to the coherent signal is observed in the BTE The phenomenon is
called recoherence [89, 90]. With an amplitude dependent tune shift such as the
one from space charge, the decoherence of the particles with respect to each other
reduces the signal amplitude of the recoherence signal over time. This reduces the
effect of recoherence and likely accounts for the fact that even for relatively long
measurement times of the BTF no appearance of coherent synchrotron satellites is
observed in simulations with moderate synchrotron frequencies.

As a result we consider it safe to assume that for BTF measurement times below
the synchrotron period the BTF should resemble Equation 6.2.

6.3 Determining the Space Charge Tune Shift

For bunched beams with frozen synchrotron motion and space charge in com-
bination with chromaticity as the source of tune spread, the BTF shape strongly
depends on both space charge and chromaticity. There seems to be no simple
relation between the BTF and the tune spread introduced by the combination of
space charge and chromaticity. The only method left to us to determine the space
charge tune shift from the BTF under these conditions is fitting of BTF data against
analytical expectation. For practical purposes this means parametrizing Equation 6.2
via the variables AUy jax, C and Q4 and determining AUy ., by means of a least
squares fit. This method was used by others in the past for evaluation of BTFs of
coasting beams with space charge [48].

Equation 6.2 was fitted against simulated BTF data under the assumption of
Gaussian beams (Gaussian distributions in both the transverse and longitudinal
directions). The fits undertaken using the Levenberg-Marquardt method available

2 Example beam: AUge max = 1, AQchrom = -0032,Q, = 0.001, simulated BTF measurement time

3T,
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Figure 6.4: Transition between the validity of the frozen synchrotron motion model
and the appeareance of the synchrotron satellites in simulated BTFs. The
black line is the analytic expectation for a beam with frozen synchrotron
motion. The positions of the synchrotron satellites for the beam with
Qqyn = 0.001 are marked by the dashed vertical lines. When the BTF
covers more than one synchrotron period (more than 1000 turns for the
chosen synhrotron tune), the synchrotron satellites appear, for longer
BTF measurement times they are resolved with increasing resolution.
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in the python package scipy [91] recover the space charge parameter used for
simulation input with an accuracy of about 10%. The error is attributed to the noise
introduced by the particle granularity in simulation.

Nevertheless this cannot be considered a promising method for everyday mea-
surement of space charge. To derive the space charge tune shift from the AUy ax
recovered by fitting, one needs to know & ,.om, @ quantity which is frequently not
known with sufficient accuracy in everyday operation. Furthermore the analytic
model is restricted to beams where single particle tunes are dominated by space
charge and chromaticity. No difficulty is expected for extension of the model for
other sources of tune spread. However, for recovery of the magnitude of space
charge effects from a BTF one would have to have knowledge about the magnitude
of all other sources of tune shift to disentangle their influence on the BTF from
the influence of space charge. It is much easier to calculate the space charge tune
shift directly from beam current measurements in connection with the emittance
measurements via Equation 3.42.
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7 Using BTF to Measure Tune Spread

As a possible application of the measurement of the transverse BTF in presence of
an electron lens, the recovery of the tune distribution of a beam interacting with an
electron lens was chosen. With this in mind the BTF of a of a beam interacting with a
local transverse nonlinearity as the primary source of tune spread had to be studied
in detail. This chapter presents the results of these studies. First the properties of the
BTF are investigated phenomenologically in Section 7.1. Subsequently it is shown
that the recovery of the tune distribution is not possible in Section 7.2. Finally, it is
discussed how instead of the shape of the tune distribution at least the width of the
tune spread can be recovered in Section 7.3.

7.1 BTF Phenomenology

For this application of the expected the beam transfer function, the goal was
the recovery of the tune distribution lp(Qx,Qy) with Q,,Q, the horizontal and
transverse betatron tunes in presence of a transverse nonlinearity. Alternatively, the
determination of y(Q,) and ¥(Q, ), the projections of the tune distribution onto the
x and y axes, seemed desirable. To better understand properties of the transverse
beam transfer functions it makes sense to revisit Equation 4.26:

IR I Y Jy 3y .
RX(Q)_fx(t) =C JL dJXdJyQ—wx(JX,Jy) o, (4.26 revisited)

1 is a density and therefore 1) € Ry. Also, Y, = 0 for J,,J, = 00. w,(J,,J,) ~ Q
is continuous. In Equation 4.1 a similar integral in absence of transverse nonlinearity
was solved. If R, has an imaginary part it stems from the denominator of the fraction

e 7.1
Q - wx (Jx’ J )

going to zero for J,,J, where w,(J,,J,) = Q. Furthermore unlike in the case with
an out-of plane source of tune spread, not the density 1 but its derivative d/9J,
times the particle action J, contribute to the integral. Therefore regions with a high
derivative can be expected to contribute strongly to Im(R) and the contribution of
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Figure 7.1: Example of the relations between phase space density and the resulting
BTF: A hypothetical particle distribution in J,,J, space is shown as a
density plot. The density distribution 2 is that of a Gaussian beam of the
form exp(—J, —J, ) in terms of J . It was modified by setting v to zero
for3 <J,+0.6-J, <5in order to generate a hole in phase space. Green
and red lines denote contours of equal tune shift in x and y direction.
Their tune shift values can be found via the connection to the tune axes
of the BTF. The resulting BTF in x and y for the beam interacting with a
Gaussian charge distribution of the same size are calculated numerically
and are shown to the bottom and to the left of the density plot. Figure
published in [92].
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particles to scale with their action J,.. A visualization of the phase space density
which was published in the framework of this thesis in [92] is shown in Figure 7.1.

The figure shows the expected properties: BTF for the distribution with hole
(blue) and the normal Gaussian distribution (grey) are shown in comparison: For
the maximum tune shifts found at very small J,., the pole contributes only little to
Im(R). The imaginary part of the BTF resulting from this is very small as can be
seen in the plots of the horizontal and vertical BTE The edges of the hole contribute
differently to the horizontal and vertical BTF: In the horizontal BTE the edges are
parallel to equitune lines and therefore the large derivative at the edge of the hole
leads to a sharp peak in the resulting BTE In the area corresponding to the hole,
the BTF becomes zero. At the right edge of the hole the derivative in the opposite
direction leads to a negative peak in Im(R). The BTF then follows the BTF of a
normal Gaussian distribution again. The vertical BTF is influenced differently. In a
tune shift range of AQ, /AQ,,,x € [—0.2,—0.3], the contribution of the derivative
at the right edge of the hole cancels the contribution of the distribution further
to the right. Then in AQ,/AQ,x € [—0.3,—0.55], one edge of the hole partly
compensates the other and from AQ, /AQ,,,x = 0.55 on only the centre of the beam
with Gaussian particles distribution contributes, the BTF is identical to that of a
beam with Gaussian distribution.

7.2 Recovery of Tune Distributions

Further investigating the relationship between BTF and the particle tune distri-
bution, it became apparent that the knowledge of only the BTF is insufficient to
determine the tune distribution: This is easiest to understand for a beam of constant
density in J,.,J, phase space: For such a beam, d+/3dJ, is O everywhere but at the
edge. Thus no conclusion on the tune distribution apart from its edge is possible.
It was first shown in the framework of this thesis in [92] that the reconstruction
of the tune distribution is impossible for the case of flat beams, the arguments are
repeated in this section.

7.2.1 Flat Beams

To escape the complications of the full 2D nonlinear case, a very flat beam distri-
bution vy(J,.,J, ) that is introduced. The real world equivalent could for example be
a beam of very low vertical emittance. Let the flat beam be defined by

-1
Y(Ux,J )={ (g) el ?ZE (7.2)
3 y =

7.2 Recovery of Tune Distributions 73



and assume ¢ to be sufficiently small that w,(J,,0) — w,(J,, &) < Aw or in words,
that the horizontal amplitude dependent frequency shift on the interval J, € [0, ¢]
is much smaller than the total tune spread in x direction (and the same for the y
direction). In the following the horizontal and transverse BTF are calculated.

Horizontal BTF

The integrand does not show J, dependency, therefore Equation 4.26 directly
simplifies to:

RO | dy
R.(Q)= Jo—dJ 3
X( ) CL Q_Cl)x dex X (7 )

Substituting w, — u and assuming invertible w, (J,) wherever di/dJ, # 0 and
therefore the existence of J,(w, ). Inserting dJ, = (dJ,./du)du yields:

Q—ow, “du

RX(Q)=cf - J %du (7.4)

®min

An equation of this form was already encountered in Equation 4.8 and therefore
can be simplified directly to:

P.V.
R.(2)=c LJX ﬂdu +im- ch(Q)ﬂ(Q) (7.5)
o Q—u " du dw

with PV. the principal value integral. Attention should be given to the imaginary
part of R:

(R, () = 1, (2) T2 (2) 7.6)
dw

If J,(w,) is known, this allows us to recover ¢ by integration of % over w. Un-
fortunately J,.(w, ) is normally unknown, especially in machines with transverse
nonlinearities from different sources. Furthermore, in cases where w(J,.) is known,
the horizontal frequency distribution can be assessed without measuring BTFs, by
just measuring v(J,.) for example by means of an ionization profile monitor and
translating it to frequency by means of w(J,.) .
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Vertical BTF
The vertical BTF is given by:

o
1 dy
R,(Q)=c Jf —_—J,—dJ dJ,. 7.7)
4 0o Q—w,(,,J,) Y,
It can be solved with similar ease. Equation 7.2 results in:
dy

with & the dirac delta function. The J, integration therefore gives:

° 1
Ry(ﬂ) = SC‘[0 m‘l’(Jx)de (79)

which finally results in

dJ,
dw,

ImR, () = ecyp () —= (). (7.10)

With knowledge of J,(w,) this result would be useful. Unfortunately the same
arguments as above apply and J, (w, ) is not known. These considerations show us
that even for a flat beam, it is not possible to reconstruct the tune distribution solely
from the BTE Consequently a method of recovering the tune distribution from BTF
applicable without prior knowledge can be excluded.

7.3 Thresholds

Having established that reconstruction of the tune distribution is not possible, it
makes sense to revisit Equation 4.26

e Jx 31!’0
R.()=C- dJj dJ
() JL - w,(,,J,) dJ,

2Ty

(4.26 revisited)

to see what useful information might still be extracted. It is important to stress the
argument first put forward in the framework of this thesis in [92]: Since all involved
functions are real and their integrals are finite, R, (2) will be real if for all J,,J,
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either J, dvy/dJ, = 0 or w,(J,,J,) —Q # 0, because in these cases no singularity
contributes to the integral. Thus:
dy

Wody : - V=@, y) # 0= Im(R () =0 (7.11)

negating this expression one arrives at:

dy(Jy,Jy)

IM(R)(Q) #0=> 3, J, 1T, —

#0Aw(Jy,J,) = 0. (7.12)

Therefore it can be concluded [92]: Wherever the Im(R,(2)) # 0, there must
be particles with w, = Q and J;dy/dJ, # 0. Neglecting points with ¢) = 0 and
Jidp /dJ, # one can say: Wherever ImR,(£2) # O there are particles at J,.,J, with
w,(J,,J,) = Q. However it does not follow that there are no particles where
Im(R) = 0, it might just be that the phase space derivative at J,,J,, is zero but the
density is not.

An additional complication arises in the case of measured or simulated BTE even
BTF calculated numerically with finite accuracy: Im(R) will never be exactly zero:
in simulation the granularity of the macroparticle distribution presents a source of
noise, in measurements the electronics add noise to the signal. To accommodate
for this fact one can introduce a threshold t and instead of demanding Im(R) = 0
be satsified with [Im(R)| < t. This allows to adjust t to compensate for unwanted
contributions from noise. Depending on the BTF to be examined, it can be beneficial
to modify the condition to demand |Im(R)| < t|R|.

7.3.1 Choice of Thresholds

To make thresholds comparable, it makes sense to normalize the BTF with
their peak value and apply the threshold to Rmax(|R|)™! instead of R. As a result
thresholds used can be compared directly independent of the arbitrary amplitude of
the input BTF and are always indicated as a fraction of the maximum BTF value at
the betatron peak.

Noise in Measurement

In measured BTF the noise is introduced by the electronics: Even with the
improved signal to noise ratio due to the direct diode detection method, a noise
background is observed in measured BTE Furthermore damping from sources other
than the tune spread may play a role, for example damping coupled in from the
other transverse plane, or via the beam-beam interaction from the other beam. A
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method for determination of the threshold was developed in this thesis and first
introduced in [92]: To determine a reasonable threshold one chooses a frequency
interval of the BTF which can safely be considered as noise dominated, in the most
cases this is just a frequency interval in a region that can safely be considered as not
containing any single particle tunes. One then calculates

Apoise = maX(|Im(R)|) (7.13)

as the noise amplitude. The threshold t can then be set to a chosen multiple r of
that value, in this work r = 1.5 is used. Increasing r leads to a smaller proportion
of the actual particle tune spread being recovered (because for some frequencies,
the Landau-damping from the particle tunes that is present still falls short of the
threshold). Decreasing r increases the risk of mistakenly considering part of the
noise as particle tunes. In simple terms, r adjusts the sensitivity of the threshold
method.

7.3.2 Recovered Tune Spreads and Beam-Beam Parameters

While other methods recover the beam-beam parameter &y, (the peak tune shift
due to the beam-beam effect), the threshold method recovers frequencies with
incoherent particle tunes. As a measure for the tune spread, the width of the region
where the threshold condition is satisfied can be used. Furthermore with a nonzero
threshold the condition only becomes true for a part of the actual tune spread. The
aim is to translate between the tune spread recovered from the threshold method
(the width of the area where Im(R) > t or Im(R) > t|R|) and the corresponding
beam-beam parameter &y;,. Since tune spread will primarily be arising from matched
transverse Gaussian distributions for the case of the beam-beam effect and electron
lenses, Equation 4.26 can be calculated numerically, and from it the threshold
dependence of the recovered tune spread. Putting it together one arrives at what
can be seen in Figure 7.3. Figure 7.2 shows the threshold method applied to the
analytic BTF (Figure 4.4). Figure 7.3 shows how the detected tune spread changes
as a function of the used threshold. To make the factor determined using the
relation representative, normalized BTF can be used (R/max(|R|)), whereby the
thresholds become comparable and are always represented as a fraction of the peak
BTF amplitude.

7.3.3 Thresholds and Coherent Beam-Beam Modes

A prerequisite for the application of the threshold method for the detection of
tune spread is that the distribution of incoherent particle tunes dominates the BTF
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Figure 7.2: The threshold method applied to the BTF from Figure 4.4. The chosen
threshold was 0.0015, the tails visible in the magniefied plot of Im(R)
stem from the numerical solution with a, ;s set to the numeric accuracy
of the integration in MATHEMATICA [93] of 0.001. The integral was solved
on0<J,, <20.

as is the case for a beam interacting with a localized electron lens. This is not the
case anymore when dealing with beam-beam interactions which produce coherent
beam-beam modes (section 3.2.2). While a priori it is clear that the BTF of a beam in
presence of coherent beam-beam modes will differ from the analytically accessible
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Figure 7.3: The threshold dependence of the tune spread AQ returned by the thresh-
old method for the BTF of a round Gaussian beam interacting with a
round Gaussian charge distribution of matched transverse dimensions
(as shown in Figure 4.4 and Figure 7.2 respectively).

case of a beam dominated by the incoherent tune spread, this does not necessarily
mean that the threshold method is useless. From the discussion of the incoherent
BTF above it is known that a nonzero imaginary part to the BTF is expected in the
regions of incoherent particle tunes. At the frequencies of the coherent modes a
response of the beam can be expected and correspondingly Im(R) > 0. However
there is no reason to expect that the coherent modes suppress the imaginary part
of the BTF given rise to by the incoherent tune spread. Therefore the incoherent
tune spread might still be visible in the BTE The main motivation in proposing
the second variant of the threshold method above (JIm(R)| < t|R|) was to limit the
influence of the coherent beam-beam modes by normalizing the imaginary part of R
by the absolute value of R everywhere. It could then become possible to identify the
coherent modes and gain knowledge about the tune spread from the remaining BTE
Simulation results were promising, an example is shown in Figure 7.4. Note how
even in presence of the dominating coherent modes, the incoherent tune spread
is clearly visible in Im(R)/|R|. After identification of the m and o modes the tune
spread seems to correspond well to the shaded region where Im(R)/|R| > t.
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Figure 7.4: Threshold method applied to simulated BTF of a beam with nominal RHIC
tunes and coherent beam-beam oscillations. The analytically expected
positions for the 7w and o modes as well as for the left edge of the tune
spread are indicated by dashed lines. Im(R)/|R| and the tune distribution
2(Q) calculated from particle trajectories are shown. The threshold used
was 0.07.
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8 Measurement with the Threshold
Method

The threshold method introduced in Chapter 7 was successfully applied to sim-
ulated BTFs of electron lenses and seemed promising for application in real-life
measurements. This chapter discusses its application to measured BTFs obtained
in experiments designed to replicate the beam dynamics in presence of an electron
lens. The first measurements for this work at RHIC took place in the proton runs
2012 and 2013. This was prior to the installation of the electron lenses. To replicate
the conditions seen by a beam interacting with an electron lens in absence of the
actual device, the beam-beam effect was used as a stand-in for the electron lens. As
discussed in Subsection 3.2.2, unlike the electron lens, the beam-beam effect causes
coherent modes through interaction between the bunches of the two rings. For
typical RHIC conditions these modes dominate the BTF because of their amplitude.
In this chapter, Section 8.1 discusses the measures put in place to avoid coherent
modes. Section 8.2 discusses the effect of synchrotron motion for the experiment
and argues that it can be neglected based on simulation data for the planned
measurement conditions. With the prerequisites outlined, Section 8.3 emphasizes
additional constraints by the RHIC accelerator and discusses the setup and expected
results of a BTF measurement taken in the 2013 RHIC proton run. Section 8.4
discusses the results of the measurement and discusses them with respect to the
expectation. The application to an actual electron lens is shown in Section 8.5 with
promising results. Finally the application of the threshold method to beams with
coherent beam-beam modes can be found in Section 8.6 and indicates that the
method is not applicable in presence of coherent beam-beam modes.

8.1 Weak-strong Beam-Beam Interaction as a Stand-in for the Electron Lens

To better approximate the transverse dynamics of a beam interacting with an
electron lens by means of the beam-beam effect and get rid of beam-beam specific
results, two measures seemed promising:
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Tune Splitting

By operating the two rings on different working points, the bunches can be
made to return to the interaction points with different betatron phase changes. The
resulting offset in transverse phase results in a shift of coherent modes. Predictions
by Alexahin [94] showed that the shift can be sufficient to Landau damp the coherent
modes inside the incoherent spectrum. However the Landau-damping can result in
a deformation of the BTE

Intensity Splitting

When beams of different intensity collide, the intensity difference leads to a shift
in the © mode towards the incoherent spectrum. For beams with an intensity ratio
larger than about two, [94] predicts that the 7-mode enters the incoherent spectrum
and becomes Landau damped.

To assess the effect of a combination of tune and intensity splitting on the BTE,
the situation was first studied in simulation. To minimize the influence of the weak
beam on the strong beam, an intensity ratio of 1:10 was chosen. Simulation for
the measurement conditions showed BTFs for two beams interacting head-on were
in agreement with BTFs of beams interacting with the transverse Gaussian charge
distribution corresponding to the electron lens and the analytic expectation for the
same machine conditions as shown in Figure 8.1. This made us confident that the
measurement conditions would be suitable to reproduce BTFs as are to be expected
for an electron lens.

8.2 Influence of Bunching

The theory in Equation 4.26 is valid for coasting beams, it only takes into account
transverse motion. Its application for bunched beams in RHIC is justified by the fact
that the sampling time of the BTF system roughly equals the synchrotron period and
therefore the BTF should barely be able to resolve synchrotron motion. Furthermore
the tune spread due to chromaticity is very small in comparison to the beam-beam
tune shifts: with &, =2-107* and &,,,m = 0 — 6 as typical values for RHIC at
high energy, the maximum tune shift due to chromaticity is less than 1 - 10~ while
the tune shift due to the beam-beam effect is typically of the order of 1072. To
validate this simplification, simulations for coasting beams and bunched beams with
synchrotron motion were carried out and the resulting BTFs were compared. For
the parameters given in Table 8.1 no significant deviation of the BTFs of coasting
and bunched beams were observed. Therefore it can be considered safe to use
Equation 4.26 to describe bunched beams in typical high energy synchrotrons with
compensated chromaticity and the resulting low chromatic tune spread. In presence
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Figure 8.1: Simulated BTFs: BTFs of the weak beam in interactions of two beams with
an intensity ratio of 1:10 with split tunes are compared to simulated BTFs
of a beam interacting with an electron lens and the analytic expectation
according to Equation 4.26.

of higher chromatic tune spread or significantly higher synchrotron frequency it is
recommendable to check the validity of the coasting beam theory for the bunched
beam in question on simulated BTFs. The findings are also consistent with simulation
results for space charge, where no synchrotron satellites of the betatron sidebands
for BTF measurement times up to about 4 synchrotron periods were observed.

Table 8.1: Simulation parameters for the evaluation of the assumption of coasting
beams in beams with low synchrotron frequency and low chromaticity.
For these parameters no notable dependence of the shape of the BTF in
dependence of synchrotron frequency was observed. Typical RHIC high
energy proton parameters are shown for comparison.

RHIC Simulation
Chromaticity ~0—6 0-6
Momentum spread ~2-107* 2—-8-107*
BTF sample time ~30 ms 30-50 ms
Synchrotron period ~30ms 15 ms, 30 ms, coasting
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8.3 Experimental Setup

The experiment had to adhere to peculiarities of the RHIC system and was
planned as follows: Each ring was filled with 28 bunches. The blue ring was filled
with bunches of nominal intensity. The yellow ring was filled with 22 bunches of
1/10 of the nominal intensity and another 6 bunches of nominal intensity. A cartoon
of the filling scheme can be found in Figure 8.2. The bunches of nominal intensity
in the yellow ring were necessary in order to permit acceleration without beam loss:
The tune feedback system that is needed for acceleration is not sensitive enough to
operate reliably on the low intensity bunches. Failure of the tune feedback likely
causes dumping of the beam by the interlock system. The small amount of beam
time shared by the beam physics experiments does not permit for unnecessary beam
dumps and thus the six safety bunches were added to the setup.

Furthermore to reach a good signal to noise ratio for the BTF in normal operation
at RHIC, the BTF system measures the combined BTF of all bunches. As a result
the BTF given by the system is the sum of the BTFs of all bunches combined (BTF
are additive). Standard mode BTFs on the yellow beam for this setup will therefore
present us with a superposition of the BTFs of the weak bunches and the BTFs of
the strong bunches. There would be no way for us to disentangle the incoherent
signal of the weak bunches from the strong bunches. To avoid this problem after an
initial BTF on all bunches of the yellow beam the operating mode of the BTF system
was changed such that a time gating only allowed the signal from the weak bunches
to contribute to the BTF signal.

Some more thought has to be spent on the superposition: The injector chain does
not perfectly reproduce the beam parameters for the injected bunches. Therefore the
intensity of the bunches in both beams varies by 10%. As a result, the beam-beam
parameter of the individual bunches of the blue beam varies by the same amount
(which defines the tune shift seen by the bunches of the yellow beam).

After filling both rings, the beam was accelerated to 100 GeV. The beams were
brought into collision in the interaction points of the STAR and PHENIX experiments.
BTF 1 was measured. The transverse beam profile of the strong beam was measured
and the emittance was calculated from it. The BTF system was switched into gated
mode, such that only the BTF of the weak bunches in the yellow ring were measured.
BTF 2 was measured. The beams were moved out of collision in the interaction
point at the PHENIX experiment. BTF 3 was measured. The tunes of the machines
were separated. BTF 4 was measured.

The expected results are as follows

BTF 1 Is not gated. It is dominated by the strong-strong bunches and as a result
it should show coherent beam-beam modes. The positions of these modes
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surement for electron lens like conditions was done using gated BTF on
the low intensity bunches in the yellow ring. The 6 high charge bunches
are necessary to provide intensity for tune feedback on the ramp. They
were also used to determine the beam-beam parameter via the = and o
mode positions for the strong-strong collisions.

can be used to determine the beam-beam parameter. The o-mode position is
independent of the bunch parameters and should therefore be quite exactly
at the lattice tune for all bunches, the © mode might vary slightly with bunch
intensity. The peak at the 7 mode will be broadened accordingly.

Includes only weak bunches interacting in two interaction points. The expec-
tation is that the beam-beam parameter matches the one from BTF 1. The o
mode might be visible at the lattice tune.

The weak bunches are now interacting only in one interaction point. It can
be expected that the beam-beam parameter is half that observed in BTF 1
and BTF 2. The o mode might be visible at the lattice tune.

The tunes are now split. The beam-beam parameter can be expected to match
that of BTF 3. All coherent modes should have moved inside the incoherent
spectrum.

Intuitively and in accordance with simulation and experience at BNL, one expects
the BTFs of beams interacting in two interaction points to exhibit twice the tune
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spread and beam-beam parameter of beams only interacting in one interaction
point.

8.4 Experimental Results

The experimental results obtained in measurements at RHIC on fill #17355
and #17356 (the latter being a virtual fill number) to a good extent match the
expectation.

Determination of the Beam-Beam Parameter from Coherent Mode Positions

In BTF 1 coherent modes in the vertical plane are observed. This is common
at RHIC [95] and explained by coupling of Landau-damping between the planes.
Figure 8.3 shows the BTF in the yellow ring in the vertical plane. The beam-beam
parameter corresponding to the tune difference of AQ = 0.19 between the 7w and o
modes corresponds to a beam-beam parameter of

_AQ _
Epb = A =0.17 8.1)

when assuming round beams. The result stays accurate even for elliptical beams:
The change of A (Equation 3.51) for beams of aspect ratios between 0.3 and
0.7 only results in a maximum change of 3% in A and consequently in A&y,
therefore the determined beam-beam parameter can be expected to be quite accurate.
Broadening of the © mode due to bunch current variation was observed within the
expected limits, taking into account the fact that sets of six bunches couple in each
measurement. If the relative error of the charge of one bunch is 10% , the average
charge in these sets only varies by 4%. The frequency source of the BTF system is
sufficiently accurate to disregard the possible error in frequency.

Determination of the Beam-Beam Parameter via Emittance Measurement
Measurements of the transverse emittances of the blue beam by means of beam
profile monitors suggest a round beam (¢, = 14.3 um and ¢, = 13.1 um) emit-
tances!. The beta function at the location of the beam profile monitor at the time
of this measurement is inaccurate because no measurement of the beta beat (the
deviation of the beta function) for the measurement conditions was available, the
uncertainty of the 8 function dominates the uncertainty of the transverse emittance

measurement. The beta function eznters calculation of the emittance from the trans-

verse profile according to ¢, = g—)’: Consequently with an uncertainty of 20% of

! Normalized 6 o emittances, see Equation 3.12
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the B, at the beam profile monitor, the resulting emittance also has an expected
error of 20%, which propagates to the beam-beam parameter inaccuracy. The beam-
beam parameter calculated via the emittance and the particle number by means
of Equation 3.50 is: £, = 0.0094 in the horizontal and £, = 0.0098 in the vertical
direction. When the beams are interacting in two IPs, the beam-beam parameter
during the two interactions accumulates to 2&, = 0.0189, 2&, =0.0197.

The error is dominated by the systematic error of the emittance measurement and
assuming uncorrelated errors in ¢, and ¢, of 20%, the total error of the resulting
beam-beam parameters is inaccurate by about 16%. In presence of additional
error sources, the beam-beam parameter would become even more inaccurate.
Within the given accuracy, the value for the beam-beam parameter calculated from
the blue emittances agrees with the one from the coherent mode positions. The
more accurate value for the beam-beam parameter determined via the coherent
beam-beam modes will be used for the following consideration.

Determination of the Beam-Beam Parameter by Means of the Threshold Method

With two estimates for the beam-beam parameter, the threshold method can
be applied to BTF 2—-4 and the results can be compared. Because the beams in
RHIC are assumed to be Gaussian, a third possible method is to try to determine
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Figure 8.3: Coherent beam-beam modes as observed in the BTF on the yellow ring
in the vertical axis. The indicated beam-beam parameter was calculated
using the Yokoya factor (Equation 3.51) A for round beams, plausible
aspect ratios result in g;gAgbb < 3%
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the beam-beam parameter by fitting Equation 4.26 for Gaussian beams against the
BTE The results in the horizontal plane (Figure 8.4) agree with the expectation:
For BTF 2 both the threshold method and the fit return a beam-beam parameter of
0.0179 and 0.0178 respectively, in good agreement with the beam-beam parameter
determined from the coherent mode positions (0.017+ 0.0017). After separation,
the beam-beam parameter determined from BTF 3 and BTF 4 (Figure 8.6) is still
consistent with the expectation: The recovered tune spread is about half the value it
was before reflecting the reduction of collisions in two IPs to only one IP The values
for the beam-beam parameter as determined by the different methods are listed in
Table 8.2. The fits for the beams before separation were using a superposition of
Equation 4.26 for two and one IP because the filling scheme above leaves two of the
yellow bunches without a second collision partner. Whether or not a superposition
is assumed does not significantly affect the recovered tune spread.

The weak BTFs (yellow beam) in the vertical axis (Figure 8.5) do not match the
expectation: A total beam-beam parameter as high as 0.027 is unlikely in RHIC.
Furthermore the yellow vertical BTF exhibits a multi-peak structure the origin of
which is not clear. Nevertheless nearly the expected halving of the tune spread upon
separation of the beams is observed, indicating a relation of the phenomenon to
the beam-beam parameter. Furthermore the BTFs seem to be independent from the
tunes of the blue beam, they do not change significantly upon splitting of the tunes
(compare Figure 8.5b and Figure 8.6b). One possible explanation of the unexpected
width of the peak in the imaginary part of the BTFs in the vertical direction is
interplane coupling: Looking closely at the BTFs one notices that the BTFs in the
vertical direction usually overlap those in the horizontal direction. Assuming part
of the damping in the vertical plane is coupled in from the horizontal plane would
explain both the broadening and the halving of the total width of the recovered tune
spread.
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(b) Horizontal BTF 3 in the yellow ring and threshold tune width for beams colliding in one IP

Figure 8.4: Horizontal results for the width of the tune spread from the thresh-
old method are given in the respective plots. The green area is where
the threshold condition is fulfilled, the chosen threshold is 0.1. The
blue line denotes the horizontal tune of the machine at the time of the
measurement, the green line is a fit of Equation 4.26 to the data.
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(a) Vertical BTF 2 in the yellow ring and threshold tune width for beams colliding in two IPs. No

coherent o mode is visible because the separation of the beams already split the tunes of the two
beams by 0.02, sufficient to damp the coherent o mode.
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(b) Vertical BTF 3 in the yellow ring and threshold tune width for beams colliding in one IP

Figure 8.5: The green line is a fit of Equation 4.26 to the data. The green area is

where the threshold condition is fulfilled, the chosen threshold is 0.1. The
tune spread measured using this threshold is indicated in the plots. The
blue line denotes the horizontal tune of the machine at the time of the
measurement.
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(a) Horizontal BTF 4 in the yellow ring and threshold tune width for beams colliding in two IPs and
split tunes
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(b) Vertical BTF 4 in the yellow ring and threshold tune width for beams colliding in one IP and split
tunes

Figure 8.6: Horizontal and vertical results for the width of the tune spread from the
threshold method are given in the respective plots. The green area is
where the threshold condition is fulfilled, the chosen threshold is 0.1. The
blue line denotes the horizontal tune of the machine at the time of the
measurement, the green line is a fit of Equation 4.26 to the data.
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Table 8.2: Beam-beam parameter calculated for the BTFs obtained using either fits
against analytic expectation or the threshold method. £, determined
from coherent mode positions was 0.017 £0.003. £, determined from
emittance and beam current measurements is £, = 0.019 £ 0.004. That
& determined for BTF 2 should be equal & for BTF 1 and the & in BTF 3
and BTF 4 are to be expected to show half that value.

BTF2 BTF3 BTF4
Ex threshod  0.0179 0.095 0.093
& fit 0.0178 0.0093 0.0086
&y threshola  0-0273  0.0170  0.0157
&y fit 0.0275 0.0171 0.0156
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8.5 Threshold Method Applied to an Actual Electron Lens

During 2015 RHIC proton, shortly before finalization of this document, first BTFs
of proton beams interacting with the electron lenses were observed. The BTFs
allow to validate the method in operation on an actual electron lens. BTF data
measured on fill 18886 to determine the tune spread introduced by the electron
lens were kindly provided by X. Gu and W. Fischer. The BTFs of beams in the yellow
ring interacting with the electron lens were measured without electron lens (zero
current) and with different electron lens currents. The tune spread introduced
by the electron lens scales linearly with the electron lens current. The threshold
method can be used to determine the tune spread introduced by the electron lens.
The expected result is that the recovered spread increases linearly with the electron
current. The BTFs are shown in Figure 8.7a. The evaluation using the threshold
method to determine the tune spread was complicated by the fact that the zero
current measurement also showed a significant spread. Since the source of the
zero current spread is unknown it is unclear cannot know if it adds to or subtracts
from the tune spreads of the electron lens or if the electron lens dominates the
tune spread entirely. For that reason it is assumed assume that the tune spread for
the zero current measurement represents an upper estimate for the error of the
electron lens tune spread. The tune spreads recovered by the threshold method
are shown in Figure 8.7b. Judging from the linearity of the three electron lens
measurements, the zero current measurements as upper bounds for the electron
lens peak width likely overestimates the error of the tune spread measurements.
For the used threshold t = 0.1, the total tune spread seems to be dominated by
the electron lens tune spread and the recovered tune spreads are quite linear, thus
matching the expectation.

8.6 Threshold Method in Presence of Coherent Beam-Beam Modes

In Subsection 7.3.3 it was shown (Figure 7.4) that even in presence of coher-
ent beam-beam modes, the tune spread could still be recovered from simulated
BTF by means of the threshold method. Validation on BTF measured in 2015 on
from fill 18771 unfortunately shows that the conditions in the real machine are
not sufficiently perfect to replicate the simulation result. While it is possible to
distinguish the features seen in the simulation (the 7 and o modes and the incoher-
ent tune distribution), the clear separation between the coherent modes and the
incoherent tune spread is not observed. The exemplary BTF measurement on two
beams colliding in IP 8 is shown in Figure 8.8. To allow comparison both Im(R)
and Im(R)/|R| are shown. Neither of the two allows a reliable identification of the
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(b) AQ(I) recovered from the BTFs for different electron lens currents with a threshold of 0.1, the
blue line is a fit against a - I, the error bars of the peak widths are equal to the zero current peak
width, which was the only measure available for the actual error. The linearity of the fit suggests
that this error greatly overestimates the actual error of the measurement.

Figure 8.7: Measurement of the BTF of a beam in the yellow ring interacting with an
electron beam of constant width and different electron beam currents.
The peak width scales linearly with electron beam current. (BTF data
courtesy of X. Gu and W. Fischer.)
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Figure 8.8: Measured BTF of the yellow beam in collision with the blue beam in
IP 8. The m and 0 beam-beam modes are marked. The beam-beam
parameter calculated from their distance is marked by a dotted line. The
tune distribution 1 calculated analytically under the assumption that
the beam-beam effect and Gaussian beams are the primary source of
tune spread is indicated. Compare with the simulated BTF for similar
conditions (Figure 7.4). (BTF data courtesy X. Gu and W. Fischer.)

incoherent tune distribution. The tune distribution expected for Gaussian beams
with the beam-beam parameter recovered from the coherent mode positions is
shown in the bottom for comparison. While the coherent modes are easily identified,
the incoherent tune spread cannot be separated by a threshold method from either
Im(R) or Im(R)/|R|.

8.7 Conclusions from the Measurements

The measurements results indicate applicability of the threshold method to beams
in absence of coherent beam-beam modes. The theory does not rely on the specific
shape of the single particle tune distribution and any sources of single particle

8.7 Conclusions from the Measurements 95



tune shifts contribute to the imaginary part of Equation 4.26. For this reason one
can expect the threshold method to be applicable for any BTF dominated by the
incoherent beam distribution. The simulations both in Section 4.4 and the parameter
study in this chapter suggest that slow synchrotron motion with synchrotron periods
of the order of the time for measurement of a single BTF frequency sample can be
neglected, justifying a coasting beam model for the BTE

In presence of coherent beam-beam modes the threshold method does not give
a good estimate for the beam-beam tune spread any more. It can be considered
reasonable to assume that the presence of coherent modes from other effects in the
frequency range of the incoherent tune spread has a similar detrimental influence
on the recovery of the incoherent tune spread from the BTE
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9 Conclusion and Outlook

Previous research allowed analytic description of BTFs of coasting beams in
presence of space charge, chromaticity and other sources of tune spread [48, 71]
and made it feasible to directly measure these quantities by means of the BTFs of
coasting beams [48, 20]. Also BTFs of bunched beams with fast synchrotron motion
were well understood, showing characteristic coherent modes with a space-charge
dependent frequency distribution [21, 22, 23].

This work focuses on a new intermediate regime: in high energy hadron syn-
chrotrons with bunched beams, both of the previously available descriptions break
down for real-life BTF measurements: The coasting beam description assumes a DC
beam and therefore fails to correctly describe effects due to the time-varying current
of a bunched beam. The coherent modes arising from the longitudinal synchrotron
motion are observable, but real-life BTF frequency samples are often measured for a
time below or of the order of magnitude of the synchrotron period and therefore do
not resolve the coherent mode frequencies.

This work closes a gap between the two regimes: For exemplary effects, the beam-
beam effect, space charge and electron lenses, BTFs for bunched beams with slow
synchrotron motion, commonplace in high energy synchrotrons, were described
analytically.

The analytic expectation for the BTF of a beam with tune spread caused by a
local transverse nonlinearity was presented in this work and shown to be adequate
for the description of bunched beams with slow synchrotron motion interacting
with an electron lens or another beam. The analytic result was validated against
both simulation and measurement. As a possible application for the model, the
determination of the betatron tune distribution, an important quantity determining
beam life time, was chosen. On theoretical grounds it could be shown that the
betatron tune distribution induced by transverse sources cannot be recovered from
the BTE However, while the shape of the distribution remains inaccessible, it was
shown how by means of a chosen threshold at least its width can be recovered. This
method was then applied to simulated and measured BTFs and it was shown that it
yields an easy-to-automatize method for tune spread measurement in absence of
coherent modes [92]. It was successfully applied for the measurement of the tune
spread induced by an electron lens recently installed at RHIC.

For bunched beams with tune spread caused by space charge and chromaticity,
the coasting beam model of the BTF was extended for this work to account for
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the local variation of the magnitude of transverse space charge over the length of
the bunch. The model was validated on simulated BTFs of bunched beams with
frozen synchrotron motion. The breakdown of the model for increasing synchrotron
tunes was investigated with the help of the simulation model. It was estimated
analytically, and shown on simulated BTFs that coherent modes due to synchrotron
motion appear when the sampling time for a BTF excitation frequency exceeds
the synchrotron period. Below that measurement time, the presented analytic
expectation holds. The model can therefore be considered applicable for most ion
species in high energy synchrotrons (e.g. SIS100).

The description of the BTF in presence of space charge as was presented in this
work is necessary for the correct interpretation of measured machine parameters:
BTF measurements are the method of choice to determine the tune. In presence of
space charge, the peak of the BTF does not coincide with the tune of the majority
of particles but instead is found with an offset, depending on the magnitude of
space charge. For beams with the incoherent space charge tune shift known from
other sources such as beam current and emittance measurements, the offset can be
predicted by means of the analytic model. This allows to account for the distortion
introduced by the space charge tune shift and subsequently improves the accuracy
of tune measurements. As a result the working point can be adjusted to avoid
resonance lines and thereby preserve beam quality.

Further research could focus on the influence of impedances on the BTFs of
bunched beams with space charge. The analytic results for BTFs of coasting beams
with space charge, used as a starting point for the investigation of BTFs of bunched
beams with space charge in this document, allow for its inclusion, but were here
used in a simplified version by neglecting the influence of impedances.

Another possible starting point for future research is the investigation of the
interplay between different sources of transverse tune spread, for example by
investigating the BTF in the combined presence of both space charge, momentum
spread, chromaticity and local transverse nonlinearities such as an electron lens.
A possible application would be the prediction of the offset between the peak in
the BTF and the tune distribution of the beam, allowing for a better choice of the
working point.
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RMS tune shift due to momentum spread and chro-
maticity

Tune shift of the k™ synchrotron satellite

A time difference

Real part of the coherent space charge tune shift
in units of AQ rom

Incoherent space charge tune shift in units of
AQchrom

Imaginary part of the coherent space charge tune
shift in units of AQrom

The electric field

Units
1

1
1
T

83 ~

~~238388

Page
14
14
14
11

12
29

29
14
14
14
12
12
13
22, 62

43
12
41
41
41

11
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Symbol Description Units  Page
£ An emittance, RMS-emittance unless otherwise m 16, 21
noted
€ The unit vector in the horizontal direction of the m 12
co-moving coordinate system
€ The unit vector in the vertical direction of the m 12
co-moving coordinate system
e, The unit vector along the trajectory of the refer- m 12
ence particle in the co-moving coordinate system
F A force N 11
fo The revolution frequency st 21
o, A phase 1 19
fo The synchrotron frequency s 18
@ An electric potential \% 23
1
y Relativistic factor y = (1—p2) 2 1 12
r(s) A gamma function m! 14
Yy The horizontal gamma function m™! 14
Yy The vertical gamma function m! 14
Yr Transition y 1 21
H The magnetic H field Am™ 11, 18,
38
J The particle action m 14
k A focusing strength m 14
A Yokoya factor 1 30
m Rest mass kg 12
Lo The vacuum permittivity Fm! 11
wy The angular revolution frequency st 21
Wy The angular synchrotron frequency s 18
p A momentum kgms™' 13
p Normalized betatron coordinate (in Section 4.3) 38
v A phase 14
Y A density 36
v, A phase 1 19
Q A tune 1 14
q A charge C 11
Qo A tune 1 15
q Normalized betatron coordinate (in Section 4.3) 38
Qfrac The fractional part ofQ 1 16
Q, The synchrotron tune 1 18
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Symbol Description Units  Page
R A beam transfer function 33
Taspect Aspect ratio of a beam for the calculation of the 1 30
Yokoya factor

Jo) Bending radius in magnetic field m 12

o Particle density 23

o A o width of a distribution 23,37
] A velocity vector ms! 11

7 The velocity of the reference particle ms! 12

& chrom The chromaticity 1 22
&y The horizontal beam-beam parameter 1 29
&y The vertical beam-beam parameter 1 29
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List of Acronyms

AGS Alternating Gradient Synchrotron.

BNL Brookhaven National Laboratory.

BTF Beam Transfer Function.

DC Direct current.

ESR Experimentierspeicherring.

FAIR Facility for Antiproton and Ion Research in Europe.

GSI GSI Helmholtzzentrum fiir Schwerionenforschung GmbH.
IP Interaction point.

LHC Large Hadron Collider.

RHIC Relativistic Heavy Ion Collider.

RMS Root mean square.

S| International system of units (Systeme International d’unitées).
SIS100 Schwerionensynchrotron 100.

SIS18 Schwerionensynchrotron 18.

UNILAC Universal Linear Accelerator.
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