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Abstract

The "theory of dark matter superfluidity” [1] is reproduced in SI units with the inclusion
of intermediate, and precise, steps in the calculations. By use of another measure of the
mean interparticle separation, the bound on dark matter particle mass is less stringent
than in [I], though the sub-eV mass range is still found. Using the conjectured superfluid
phonon effective field theory, the equation of state is found to be polytropic P o< p3.
Due to the increased precision in calculations, the resulting condensate halo radius
is found to be less than in [I]. The proper acceleration needed is derived in higher
precision than in [I], though, when compared to standard gravitational acceleration, is
not dominant on large scales (~ 100 kpc). Superfluid phonons are generated in galaxies,
and breakdown of coherence within the fluid occurs closer to the source than in [I],
though dark matter is still found to exist in its normal phase within the Solar System.
A relativistic theory that produces proper dynamics in the non-relativistic, weak-field
limit is considered, and a starting point for the inclusion of coupling to baryonic matter
is suggested. Cosmological dark matter is found in the superfluid state, and the theory
is altered to account for this in order to obtain "cold dark matter” on these scales. In
addition to this, the evolution of the condensate mass density is found to reveal a finite
(non-zero) scale factor for which it diverges. Finally, consequences to this theory, mostly
considering Bose-Einstein condensate theory, is discussed in short, as well as the same
points regarding astrophysics discussed in [1J.
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Chapter 1

Introduction

This thesis serves as a review of the theory of dark matter superfluidity, as presented in
Berezhiani and Khoury’s paper "Theory of Dark Matter Superfluidity” [1], and hence
follows the general layout of [I]. The key difference is the inclusion of more intermediate
steps of the calculations, and that they are done in SI-units (as opposed to natural units
given in [I]). Other things that [I] did not mention are brought up, mostly with regards
to the consequences of the theory.

This introductory chapter differs from [I] by giving a more detailed history and mo-
tivation of astronomical dark matter, based on [2]. The section about Modified Newto-
nian Dynamics (hereby denoted MOND) is mostly the same. The third is about recon-
ciling the two phenomena, and goes through the concept of how this is accomplished
in [I]. Included in this thesis is some background information about Bose-Einstein
condensates and superfluidity to make it a little more understandable.

1.1 Dark Matter

The observed velocity dispersion of galaxies in the Coma Cluster far exceeded what was
inferred from the virial theorem [3]. The conclusion was that there was a significant
amount of non-luminous matter present in the system, a result further backed by much
higher mass-to-light ratios than inferred from observed baryonic matter in the form of
luminous stars [4]. This "dark matter” was, at the time, believed to be baryonic - it
was thought to be in the form of cold stars, solid bodies, and gas - an interpretation
much akin to that of the Massive Compact Halo Objects model (MACHO). Multiple
waveband surveys, [5l [0 7], [§], eventually ruled out gas in the intergalactic space within
the cluster - intracluster gas - as dark matter, seeing it was not nearly enough. Based
on optical spectrography [9] and radio measurement of the 21 cm-line [I0], along with
later observations [I1], it was determined that more matter in the outer regions of spiral
galaxies was needed to explain the asymptotically flat rotation curves that had been
observed - the rotational velocity of stars moving in circular orbits are expected to
decline as veipe o< 7 1/2 according to Newtonian mechanics, but were observed to reach
a constant value.
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As for what constitutes dark matter, baryonic sources in the form of MACHOs -
planets, dwarf stars, neutron stars and black holes - and primordial black holes were
considered. Interest in the latter has been dwindling since it was discovered that the
formation rate of such black holes is cosmologically negligible [2], and that in order
to generate a necessary abundance of dark matter a large degree of non-gaussianity in
the primordial power spectrum would have to be postulated [2]. The others could be
identified through microlensing events, but were found to not contribute enough [12} [13].
In addition, the cosmic baryon content as measured by the Planck Collaboration from
analysing the Cosmic Microwave Background was found to be Qh? = 0.0222540.00016
[14], a value which may also be inferred from Big Bang Nucleosynthesis coupled with
observations of light element abundances - see e.g. [15]. Since baryonic matter thus
make up only ~ 20% of the total matter density, there is left little room for MACHOs
as dark matter.

Further indications for dark matter came from numerical simulations, one of which
showed that rotationally supported galaxies with stellar disks are unstable [16} [17]. This
contradicted observations, and a solution was presented where the disk was enveloped
within a massive spherical halo [I8]. Later cosmological simulations, which included a
significant amount of dark matter, showed that the initial velocity distribution of dark
matter did impact structure formation [19, 20]. Though the large-scale structures were
insensitive to the velocity distribution, small-scale structures were not: if the thermal
motions of dark matter particles were high ("hot” dark matter), small structures would
be washed out, whereas low thermal motions (“cold” dark matter) would allow small
structures to grow. The CfA survey revealed significant sub-cluster structures [21],
much in opposition of "hot” dark matter simulations [22].

Thus cold dark matter (CDM) as a constituent of the cosmological Standrad Model
ACDM seem to work very well on cosmological and extragalactic scales.

Dark matter candidates

As simulations and observations have ruled out "hot” candidates and baryons as con-
stituents of dark matter, other candidates were considered. One which was quickly
discarded was Standard Model neutrinos. Though not being baryons, they are very
light thermal relics and are predicted to emerge form the early universe (decouple from
the primordial bath) as highly relativistic particles, and would therefore be considered
"hot” 23] 24].

Other candidates may be found within the frameworks of

e the minimal supersymmetric standard model (MSSM) in the form of neutralinos
- the lightest, stable of which could be produced abundantly in the early universe,
and with a mass in the GeV range would be very "cold” [25] 26]

e Peccei-Quinn theory in quantum chromodynamics - originally introduced to solve
the strong CP problem (the problem of why QCD does not seem to break under
the discrete charge-parity transformations when it is expected to from theory
[27]), it brought with it the axion, a Goldstone boson of a spontaneously broken
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U(1) symmetryﬂ Its mass has been limited by astrophysical and cosmological
observations to be in the sub-eV range [30], and can be considered "cold” only if
they are produced from a misalignment mechanism in the early universe [31}, 32}, 33|

e Weakly Interacting Massive Particles (WIMPs) - for thermal relics to become cold,
cosmological constraints on the mass (no less than 1 - 100 keV) combined with how
such a species can match the observed dark matter density, the self-annihilation
cross-section must be ov ~ 10726cm3 /s, v being the relative particle speed. This
is similar to that which arise in from the weak force, and when combined with
theoretical arguments for new physics at the electroweak scale further bolster the
WIMP as a dark matter candidate [34].

Failures of the cold dark matter paradigm

Though successful on very large scales, ACDM is not flawless. Cosmological simula-
tions favors “collisionless” cold dark matter (for the purpose of structure formation,
the relevant scales leave any fundamental force other than gravity ineffective), though
the predicted abundance of dark subhalos orbiting Milky Way-sized galaxies is much
more than observed [35]. Even though baryonic physics and other phenomena can be
applied to bring down the predicted number, and the discovery of ultra-faint dwarf
galaxies [36], 37, 38, [39] do increase the observed number, the discrepancy is still large.
Along with this "missing satellite” problem, there is also the "too big to fail” problem
[40, [41) [42]: the most massive simulated dark halos are too dense to host the brightest
Milky Way satellites.

ACDM also predicts the distribution of dark satellites of Milky Way-sized galaxies to
be isotropic, however the observed Milky Way satellites [43, 44 45| [46] and Andromeda
satellites [47) 48, [49] lie within vast planar structures and are co-rotating within these
planes. This can be explained away if the Milky Way satellites are old tidal dwarfs
created in an merger event early in the Milky Way’s lifespan, as opposed to them
being primordial subhalos [50]. This arise form the fact that the baryons within the
galaxies are on nearly circular, coplanar orbits, whereas dark matter particles are on
predominantly radial orbits in a quasi-spherical distribution. This corresponds to a
difference in phase-space which leads to tidal tails which contain next-to-no dark matter
[51] and thus exhibits no mass discrepancy, but do appear to contain dark matter [51]
as well as fall within the Baryonic Tully-Fisher Relation (BTFR) [52].

This is an empirical relation in which the observed baryonic mass of a system is
related to its circular velocity by a power law, or as a linear relation in log-log space,

In My, o< o In e - (1.1)

!Goldstone’s theorem states that for every spontaneously broken continuous symmetry, a given
theory must contain a massless particle [28]. These are called Goldstone bosons. Massive Goldstone
bosons can be generated if the continuous symmetry is also explicitly broken - e.g. within the Lagrangian
formalism there are terms of the Lagrangian that breaks the symmetry, as opposed to spontaneous
symmetry breaking where a solution to the equation of motion is not invariant under the breaking of
a symmetry [29]
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In the standard collapse model, the “spherical top-hat”, matter is distributed in a sphere
with uniform density, thus M « R3 = R o« M'3. For a rotationally supported self-
gravitating distribution of matter the radial net force is zero, and centripetal acceleration
is balanced out by Newtonian gravity,

M o v (1.2)

and the slope of the BTFR (in log-log space) is thus expected to be equal to 3. However,
the observed slope (in log-log space) appears with very little scatter around 4, as can
be seen in the Figure 3 in [53].

1.2 Modified Newtonian Dynamics

It therefore seems that ACDM works very well on the largest scales, but has problems
on galactic scales. One proposition that works well on galactic scales is that of Modified
Newtonian Dynamics (MOND). It completely does away with dark matter, so there are
only baryons contributing to gravity.

First presented in [54], 55 56| as an ad hoc modification of the traditional Newtonian
inertial law in the limit of small acceleration, the acceleration experienced by a test mass
changes with relation to some critical acceleration scale ag =~ 1.2 x 107 m/s,

an , GN > ag
aMOND =~ { (1.3)

v/ aoaN aN < ag

where ay is the standard Newtonian expression. With this, a rotationally supported self-
gravitating distribution of matter is analyzed here in the context of MOND emerging
as a consequence of an overlying theory of modified gravityﬂ Assuming dynamical
equilibrium, the resulting expected BFTR slope (in log-log space) is precisely 4:

CLOGiM — Ugirc
R2 R
VaoGM = vZ, .
’04-
M= e (1.4)

Thus the BTFR favors MOND since its framework only consists of baryonic matter
and is able to reproduce BTFR. As can be seen from eq. , the circular velocity
is also independent of radius, which then reproduces the observed flat rotation curves
in the outer regions of galaxies. However, two of the Milky Way dwarf spheroidals

2MOND therefore only affects Newtonian gravity.
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[57, 58|, and nearly all of the ultra faint dwarfs [59], are inconsistent with the BTFR,
and the globular cluster NGC2419 also poses a challenge for MOND [60]. In opposition
to the Milky Way satellites, MOND does well with the Andromeda satellites [61, [62],
and it has been proposed that the discrepant dwarfs are undergoing tidal disruption
[59] (this would bring the system out of equilibrium), or that the velocity estimates are
complicated by interlopers [63]. It seems clear that more observations are in order as
to not fall prey to a "sample size fallacy”.

One situation where MOND succeeds is in explaining the planar structures in which
the Milky Way and Andromeda satellites reside in, where they resulted due to a tidal
stripping in an earlier fly-by event. With the MOND law a close encounter between the
two galaxies has been estimated to have occured some 10 billion years ago with 55 kpc
being the smallest distance between the two [64]. In ACDM, both galaxies would be
enveloped in dark matter halos which would extend so far that in such a close encounter,
dynamical friction would lead to a rapid merger of the two. In MOND there is only
stellar dynamical friction, and a merger can be avoided [65] 66l [67]. MOND also predicts
tidal dwarfs to fall within the BFTR, in agreement with the observed NGC5291 dwarfs
mentioned above [51], 52].

In its earlier days, MOND faced challenges in not leading to conserved momentum,
angular momentum and energy, and could not be generalized to general relativity [2].
The matter distribution of the merging "bullet cluster” [68], inferred from weak lensing
observations, did not coincide with the observed baryon distribution, and thus meant
even more trouble for MOND. The first realistic relativistic version of MOND, "Tensor-
Vector-Scalar” theory (TeVeS) [69] predicts gravitational lensing due to baryonic matter
alone to agree with observations as well as regular general relativity with a cold dark
matter component does. Despite its successes, TeVeS cannot explain the observed lens-
ing [70] of the "bullet cluster”. Massive neutrinos and the theory’s own vector field
has been argued to alleviate this mismatch of prediction and observation [2]. TeVeS
also predicts the wrong ratio between the second and third peaks in the CMB angular
power spectrum, though this failure may be averted if some of the degrees of freedom
of the theory behaved similarily to cold dark matter in the early universe [71, [72]. As
a final note, numerical simulations of MONDian gravity with massive neutrinos fail to
reproduce the observed cluster mass function |73} [74].

1.3 Reconciling CDM and MOND - Bose-Einstein Con-
densation and Superfluidity

As has been presented, the cold dark matter paradigm fits well on the largest of scales,
whereas MOND fits well on galactic scales. It would appear that cold dark matter and
MOND are mutually exclusive on their respective astronomical scales. This has promp-
ted some hybrid models which includes both cold dark matter and MOND phenomena
[75L [76], (77, [78, [79, [80), 81, [82].

The purpose of this thesis is to give more precise calculations and try to fill in some
missing parts in one such hybrid model, first presented in [I]. In their proposal, dark
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matter halos goes through Bose-Einstein condensation and forms a superfluid core with
a coherence lengthﬁ the size of galaxies, and the MONDian behaviour of baryons within
this halo arise from a "fifth force” which occurs due to the baryons interacting with the
dark matter superfluid phonons.

There will first be a short introduction to Bose-Einstein condensation and super-
fluids. Conditions for the onset of condensation are determined, a short but detailed
derivation of the effective field theory that governs the superfluid phonons in included,
then the superfluid phase itself is explored. The interaction theory is investigated and
the "fifth force” acceleration is calculated in the context of zero- and finite temperature.
Lastly, consequences of the theory are investigated.

Following is a short summary of Bose-Einstein condensation and superfluidity, as
given in Pethick and Smith’s book on Bose-Einstein condensation [83]. The purpose
here is to provide the theoretical background necessary to work with dark matter in a
superfluid context.

Bose-Einstein condensation

A key property of identical bosons is that they do not follow Pauli’s exclusion principle.
It follows that two or more particles can then occupy the same quantum state. For
a system of many particles in thermal equilibrium, the mean occupation number of a
state ¢ with energy ¢; is given by the Bose-Finstein ditribution

1
He) = Gemmmr — 1

where p is the chemical potential and T is the temperature.

Above a critical temperature T, all particles are in excited states, and as the tem-
perature is lowered the ground state can become macroscopically occupied. The system
is then said to have a Bose-Einstein condensate (BEC).

Superfluidity

One property a BEC can exhibit is that of superfluidity. It is the ability to flow around
obstacles without dissipation (up to a limit):

e In the rest frame of the fluid: a moving obstacle in the fluid has a speed smaller
than some critical value, there is not enough energy to create excitations in the
fluid.

e In the rest frame of the moving obstacle: the fluid flows past without creation of
excitations.

The obstacle can therefore be thought of as a time-dependent potential. Thus, for
relative speeds between the fluid and the obstacle less than some critical value, no
kinetic energy is lost since excitations are not created. Creation of an excitation is only

3The radius at which the condensate reaches its average value.
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possible if its phase velocity equals that of the fluid velocity relative to the object. The
lowest velocity for which this can occur, the Landau critical velocity, is given by the
lowest phase velocity in an excitation spectrum €, for momentum p:

Verit = Min <€p> ) (15)

p

for excitation momentum parallel to the relative velocity between the fluid and the
object. Since this relative velocity is the superfluid velocity, there will not be created
excitations if the fluid velocity is less than the Landau critical velocity,

Vs < Verit (1.6)

and the system will exhibit superfluidity. Eq. is therefore a criterion that must
be satisfied for the superfluid to be stable, and is called Landau’s stability criterion for
superfluid flow.

It is clear that the lowest energy excitations that can be created are those with the
lowest phase velocity. These are sound waves/ phononsﬁ SO

Vs < Cg, (17)

where vg is the superfluid velocity and c¢s the sound speed (propagation rate of the
lowest energy excitation in the fluid).

A superfluid at finite temperature is usually described in Landau’s two-fluid picture.
The fluid is thought of as having two interpenetrating components - the superfluid,
which is described as a T' = 0 condensate, and the normal fluid which is described by
the excited particles [83]. This is used in Chapter

A peculiar property, that went unmentioned by [I], with such a picture is that the
additional degrees of freedom associated with the superfluid yields a secondary sound
mode. It rises from oscillatory solutions to the wave equations - which are derived
hydrodynamically in [83] - yielding two coupled equations, for which a solution exists
if the determinant vanishes. It becomes a second-order equation for the square of the
phase velocity of the oscillation, and as such has two solutions - the "+ solution referred
to as first sound and the ”-” solution referred to as second sound.

A specific example provided in [83] is that of a uniform, interacting Bose gas. The
first sound is a regular oscillation in density and thus propagates at sound speed cs,
while second sound corresponds to a temperature wave which propagates at cs/v/3.
This is mentioned simply by the virtue that this happens only for superfluids, and
that it may have some impact on the theory of dark matter that is the subject of this
thesis. As such, it is not taken into proper consideration, though it is mentioned when
appropriate.

4If the excitation spectrum is that of a Bogoliubov one - see [83]



Introduction

Superfluidity and Dark Matter

In the context of superfluid dark matter [I], the obstacle that generate superfluid phon-
ons is the gravitational potential set up by stars. The condensate remains coherent
only when the gravitational potential is sufficiently weak. Close enough to the baryonic
source (a star), the gravitational potential is so strong it brings the superfluid out of
coherence and dark matter exists in its normal phase - i.e. the energy is sufficient to
excite particles out of the ground state. This is studied in Chapter [5| with the Sun as
an example.



Chapter 2

Conditions for Dark Matter
Condensation

Since the model relies on dark matter particles existing in a condensed state, the con-
ditions for condensation is, as in [I], here investigated.

For simplicity, [I] considers non-interacting particles, as is done here. This means
that the dark matter particles are non-interacting in the normal phase. As will be shown
in Chapter [6] the condensate requires significant three-body interactions in order to give
MOND.

The estimation of the mean interparticle separation differs, in this thesis, from that
used in [I]. This leads to a different bound on the particle mass, as well as the calculated
condensed fraction of particles in a halo.

Virialized parameters are calculated using the standard collapse model, as opposed
to simply mention this in passing as done in [I].

2.1 The first condition

The first condition is that the de Broglie wavelength of the dark matter particles
be larger than the mean interparticle separation, the reason being that the individual
particles enters a single, coherent quantum state when this is satisfied. The de Broglie

wavelength is given as

h 2mh
A= — = —, (2.1)

myv  mu
and the mean interparticle separation, here estimated by the Wigner-Seitz radius,

1
4 3m \3
Lot =m0y = () 2.2
o0 =m = (0= (1) (22)
The radius itself is defined by the volume of a sphere that corresponds to the volume per
particle of the system. These are different than in [I] by the inclusion of 27h in (2.1)),
and that [I] used p(¢)> = m as the interparticle separation which is the volume of a

cube that corresponds to the volume per particle of the system.
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Conditions for Dark Matter Condensation

Taking the first condition into consideration, equations (2.1)) and (2.2)) gives an upper
bound on the mass of the dark matter particles:

orh _ (3m\? Bt p\ 1
™ m \ 3 ™ P
—_— > — < — . 2.3
mv (477/)) —ms < 3 v3> (2:3)

Here the difference in (2.1 and (2.2) from [I] by the factor (2°7*/3)1/4 ~ 5.68.

Virialization

The bound is applied at virialization in [I], which only lists the virialized para-
meters. In this thesis they are derived from the standard non-linear spherical top-hat
collapse model as presented following the lecture notes [84] and [85].

For a spherically symmetric perturbation of uniform density p = po(1+4), the radius
evolves as

.. GM A7
-7 M= gpiR?, (2.4)

where p; denotes the average (unperturbed) density of the Universe at some early time
t; - when the density contrast between the perturbation and the Universe was still very
small (i.e. initially). Multiply by R and integrate over t to obtain

R =F, (2.5)

with E an integration constant. When considering the LHS it is clear the RHS denotes
the total energy per unit mass for a mass element at R. The following parametrized

solution obeys (2.5):

R = A(1 — cosf)
t = B(f —sinb)
A3 =GMB?. (2.6)

The sphere reaches its maximum radius at 8 = 7 and time ¢ = wB, and is collapsed
completely at # = 27 and time t = 27 B.
The system is gravitationally bound, and thus has total energy

3G M?

E—=—
5RII]8.X

(2.7)

where Rpax = R(0 = m) = 2A, and virializes when it satisfies the virial theorem, which
in turn mean the system is stable, and can be considered a halo. When R = %Rmax,

the potential energy is U = —ggiﬁ i and the kinetic energy T = g’gi\i i, and the virial
theorem, U = —27T, is satisfied. The virial radius is therefore Ry; = %Rmax, and since

the system is now stable, so is the density - it is considered uniform throughout the
entire collapsing process, and when the process stops the density also stops changing.
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The density contrast between the collapsed sphere and the unperturbed Universe is
then

pcoﬂ pVhi1

coll __ sphere __ Fsphere

6non—lin - pcoll —1= pcoll -1, (28)
m m

where p,, = W in the model Universeﬂ which is ©,,, = 1 and 25 = 0. The density

of the sphere is uniform,

vir 3M 3M 3M

sphere 47TR\31ir Ao (%Rmax)?) 47TRg1ax

= 8102?)?1)21‘6 . (29)

At collapse t = 27 B, whereas at maximum radius ¢ = 7B. Thus

coll __ 1 _ 1 _ 1 1 _ 1 max (2 10)
P = GG |~ 6rG(2tma)?  A67GE, AT '
so we find
Spmix pm?lx N
Srontin = T — 1= 32208 — 1 = 32(6y, + 1) — 1. (2.11)
1Pm m
An overdensity in this model may be written as
M 9GM
§=Pohee 4 grG? 1= 1
Pm ?’ﬂ']%:3 2R
_ 9GM B*(0 —sin6)? L= 9(0 — sin H)? (2.12)
2 A3(1 —cosf)3 ~ 2(1 —cosh)3 '
To get dma%. | evaluate eq (2.12) at 6 =
9(m — sin)? 92
max o MR R 1T, 2.13
non-lin ™ 91 _ cos )3 16 (2.13)
Thus the system virializes when
9 2
geoll = 321—7; —1=1872 1. (2.14)

In terms of the present dark matter density, the virialized density is
Pvir = ( ggg—lin + 1)p¥7izr = 187T2pm0a;i§ = 187T2Qmopco(1 + ZVir)3a (2'15)

where the 2015 Planck results [14] found Q,,0h? ~ 0.1188 and pe ~ 8.62x 1072 kgm 3.
From this, the radius of the virialized halo if it has a mass M:

47
M = ?pViI‘R?/ir

31 )é. (2.16)

= Rvir = (47Tp .

!The choice of model is due to the simple analytic form of a(t) - it is matter-dominated = a
23 = pm o t~2. Tt provides an excellent description of a flat universe at high redshifts (with non-zero

Qn).
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To find an expression for v in eq (2.3) while in this model, consider the speed of
infalling particles at viralization:
A
BR(0) 0=0,;, )

dt\ !
= Asinf <>
0="0ir d9
(2.17)

Uyir is reached at parameter value 6 > 7 such that R(0yiy) = Ryir = %Rmax = A=
Ovir = 37” Then

_dR

4R _ dRdp
Uyir = dt

= = Asinf

0=0yir

R=Ryir

A [aM

B Rvir .
The minus sign implies radially inward motion, and is discarded as it is the magnitude
that matters. With the virial radius (2.16)) inserted, the virial velocity is

N\ /6
Uy = iM = (472’;”) G2 A3 (2.18)

Uyir = —

Particle mass bound

Insert into eq (2.3)) and find the bound on the particle mass,

(05,473 N\ —1/2 1/4
m S 2 7;71 Pvir (47T§V1r) G73/2 M1]

207810\ Bpc \ V2
|5 ) v

_ <287r7h6>1/2 <18W2§2m0pco(1+zvir)3>1/2 M1]

1/4

1/4

3 G3

2 6\ 1/2 1/4
= (3 x@2m*)"? (ngh Pl ) h_lM_ll (14 2vir)*®

G3
_ Qm h2 . h6 1/8 M —1/4
= |3 x (21)? x OGB”O ] <h_1> (14 2yir)3/8
T 3x(2n) Qnoh2peoh®]® M L s
Sl < @ o) e
= m é 11.2 (M) (1 + Zvir)3/8 eV/CQ . <219)

The numeric factor is about 4.87 times that in [I], and is therefore less stringent. The
point of this condition is to show that the particle mass m has an impact on whether or
not a collapsed halo of mass M can form a BEC, which has been visualized in Figure [2.1]
with Zvir — 2.
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Figure 2.1: The colored area shows the particle mass m and halo mass M for which
dark matter can form a BEC, assuming the condition (2.3]) and zy;, = 2.

2.2 The second condition

The second condition is that the dark matter particles thermalize (enters thermody-
namic equilibrium with itself), with the temperature set by the virial velocity. For this
to be the case the time-scale of thermalization must be less or at least comparable to
the halo dynamical time. The former is taken to be the inverse of the self-interaction
rate [86],

I' ~ Nvgisno (2.20)

p (2mh)?
N ~ T

o (2.21)
3 is

The factors that goes into this are the self-interaction cross-section o, the particle
number density n = p/m, the dispersion velocity vgis, and the Bose enhancement factor
N. The needs for the three first factors are intuitive - increasing either should yield
an increased rate. The last one occurs since bosons do not follow the Pauli exclusion
principle - if there are N bosons in a given state, the probability of an additional boson
to enter this state (over others) is “enhanced” by the factor N.

The halo dynamical time can be thought of as a measure of the time-scale on which
dynamical processes occur within the halo. A common expression for it is that of
the free-fall time [87] tqyn = /37/32Gp, which corresponds to the time it takes for a
uniform sphere of density p to collapse due to gravity alone. This is also the expression
used in [I]. When represented by the virialized parameters (2.16)), (2.17) and (2.18)),
the dynamical time is proportional to the time it would take to travel R, at constant
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speed wvyir. It is represented as such in this thesis to make calculations regarding the

condition a little easier:
¢ o ™ Rvir
dyn = 93/2

o (2.22)

The contition is then that the time-scale of thermalization of dark matter particles
is less than, or equal to, the halo dynamical time. If this is satisfied, thermalization
will occur, and the dark matter particles are able to enter BEC. Since the virialized
structures are those of galactic halos, it follows that, if this condition is satisfied, the
condensate is coherent throughout the halo. As stated in [1], this is important for the
phonons to act coherently throughout the a galaxy such that the MONDian behaviour
can occur.

As for the mathematical side, the equations , and yields a bound
on the self-interaction cross-section o/m. This is considered at virialization, with the
dispersion velocity set by the infall velocity, which is just the virial velocity, vgis =
Vinfall = Vyir in the non-relativistic limit, n = p/m,

T2t
-1
= = 2 W Uvirpvirtdyn]_l = [W N pvierir:| B = [W i zfﬂiﬁp Pvir Ryir
m V8 V8 m X (muy)3
(@rhpn pE, i ps2| 3m B 4 pse]
- VRAT GBI2MB/? m Ry - {\/5 a2 sr™ Rvir}

_ —1 -1
REGR AN - < M )5/6] :[ 311/6,3  p3 7/6m_4M_2/3]

V2 G3/2 M3/2 AT Pyir V2(47)5/6 G3/2 Pyir
-1

_311/67r3(18ﬂ_2)7/6 h3(9m00c0)7/6
\/5(47r)5/6 G3/2(1eV/c2)4(1012p-1 M®)2/3

o () ()
w leV/c? 10121 Mg,

4 2
m M e
<1w2> (1012th@> om'/e. (2:23)

The numerical factor is about 50 times less than that in [I], and is therefore a less
stringent bound.

In line with [I], this is evaluated for halo mass M ~ 10"2h~' M), at virialization
Zvir = 2 to find a lower bound

4 2
o m cm
— 2003 | ————= | —- 2.24
m "~ <1e\//02> g (224)

In a comparison to self-interacting dark matter (SIDM), [I] inserts a test-mass m =
0.6 eV /c? and checks whether or not their bound lies within the upper bound ~ 1.25cm? /g

X

NI~

= L >142(1 + 2y)”
m
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found by [88]. This turns out to be the case, and subsequently is so for (2.24]) in this
thesis. As a little extra, the upper bound ~ 1.25cm? /g is here inserted into (2.24)), and
the upper bound on the particle mass m < 2.54eV/c?. Thus eV, and possibly even
sub-eV, particles are of interest. As mentioned by [I], the phenomenology of superfluid
dark matter is found to be considerably different from that of SIDM, and so this result
must be re-evaluated at a later point.

2.3 Critical temperature

When the dark matter condensate has thermalized, the temperature can be readily
obtained by assuming equipartition of energy,

1
ngT = 5m<v2> , T<T,, (2.25)

where d represent the number of translational degrees of freedom; here d = 3 for the
three spatial dimensions. The RHS is the average kinetic energy. As soon as T > T,
all condensed particles become excited, breaking thermodynamic equilibrium, and so
this description no longer holds. The critical temperature, T, would then be associated
with a “critical” speed, v., which saturates ,

1
kT, = §mvz , (2.26)
with v, given by ([2.3)),
2
2574 ph3\ 3

Again evaluating at virialization, we find that

wlo

T, ~ 565(1 + 2yir)2 (16;/”/02> mK . (2.28)

It is about 100 times that in [I], which is due to the additional factor 2°7*/3 in (2.3).
The temperature in a given halo, in units of T,, is given by considering the velocity

dispersion at virialization (divide ([2.25]) by ([2.26])),

T (va)?_123x107% ( m
T. \ v, T+ 2y 1eV/c?

which is a factor ~ 100 less than in [I].

wloo

M 3
—_— 2.2
<1012h—1M®> ’ (2.29)

Condensate fraction

For the purpose of calculating the condensate fraction, [I] now neglect interactions, and
consequently the particles are considered free - they are not confined in a potential.
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Figure 2.2: Fraction of condensed particles in halos with mass M for various particle
masses m, assuming free particles and z,;,. = 0.

In the temperature range T' < T,, the fraction of number of normal components to
all components in the fluid is Nyor/N = (T/T.)3/?, and necessarily for the condensed
components

3 - 4
Neond T\?2 4.32 x 10~5 m v

“\z) 7 T<T,, (230
N (Tc) (1 + 2)32 \1eV/2 ) 1012h~ 1M, <T., (2.30)

which, as expected by now, has a numerical factor smaller by ~ 100.

As mentioned in [I], the exponent 3/2 in the temperature term is only valid for free
particles; a detailed reasoning behind this can be found in e.g. [83]. Since a halo will
set up its own trapping potential - a gravitational potential - the exponent is subject
to change. Figure shows how the particle mass is a deciding factor in whether
or not a collapsed object can form a condensate, here with zy;; = 0 as in [1E| The
numerical factor reduction by ~ 100 resulted in a slight shift towards smaller halo
mass in Figure . It is made clear that, for dark matter particles in the sub-eV
mass range, galaxies (M < 1012h_1M@) has a significant fraction of particles in the
condensate whereas massive clusters (1012~ 'Mq < M < 10h7'Mg) can have a
significant fraction, if not all, of their dark matter particles in the normal phase. This
can be consider a reason behind the choice in [I] of the particle mass m = 0.6eV/c?
- in the sub-eV range; galaxies can condense and exhibit MONDian behaviour, while
clusters does not condense and do not exhibit MONDian behaviour.

2Reasoning behind this change in virial redshift is unclear, and has not been provided by .



Chapter 3

Dark matter superfluid phase

As found in Chapter [2] in order for MONDian behaviour to occur on galactic scales,
dark matter particles must form a BEC with coherence length the size of galaxies -
specifically, the condensate exhibits superfluidity. In the superfluid phase, [I] argues
dark matter is better described as collective excitations in the superfluid, in stead of
collisionless particles. At low energies, these collective excitations are phonons (sound
waves), as was mentioned in Chapter

[1] claims these phonons are, in the non-relativistic limit, described by an effective
field theory (EFTs are a kind of low-energy approximation to the full theory). The
relativistic EFT was derived in [89], with the non-relativistic limit studied in [90].

In this chapter, the superfluid phonon EFT in the Newtonian limit is derived, based
on [89] for the relativistic EFT at finite temperature, [91] for the Newtonian limit, and
[90] to apply the non-relativistic limit. All this is just mentioned throughout [I] where
needed. The EFT Lagrangian is exact to lowest order in derivatives, and corrections
from higher-order derivatives are studied in Chapter

Then, in both [I] and this thesis, the condensate properties are explored for a specific
form of the superfluid effective Lagrangian chosen such that MONDian behaviour follows
when dark matter superfluid phonon-baryon interactions are considered in Chapter
Subsequently, the halo profile is studied under the assumption of hydrostatic equilib-
rium, the result of which is also used in Chapter

3.1 Finite temperature effective field theory for relativistic
superfluids

The relevant relativistic superfluid EFT is derived following the steps, and serves as a
summary of section 2, in [89]. This is subsequently taken to the Newtonian limit to fit
the superfluid dark matter model.
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3.1.1 Relativistic superfluids

The most general finite-temperature EFT Lagrangian is derived following the steps in
[89]. It considers the long-distance degrees of freedom and the symmetries acting on
them.

The two components of the fluid is parametrized by ©, the zero-temperature re-
lativistic superfluid field, and ¢/(#,t) for I = 1,2,3, the comoving (or "Lagrangian")
coordinates of the normal fluid component [92, [03]. The Lagrangian is constructed as a
derivative expansion of the field © and coordinates ¢/(#,t) and are combined in a way
such that the Lagrangian is compatible with the internal symmetries - they are Lorentz
scalars and Poincaré invariance is thus implemented.

The superfluid state is considered as a system that carries a U(1) charge - corres-
ponding to invariance under U(1) transformations (shift symmetry). Its here denoted
by the field ©, which can be thought of as the phase of the superfluid. The U(1)
transformation is

O —0+a (3.1)

for constant a - 7.e. the dynamics of the field are invariant under this transformation.
Taking only the superfluid component into account for now, the only Lagrangian
that can be constructed from © with (3.1]) in mind is

L = P(X), where X = 0,00"0, (3.2)
where P(X) is a generic scalar function. The associated Noether current is
" = 2P (X)0"e, (3.3)

and since the superfluid state has finite charge density, © # 0, one possible form ex-
pression for © is
O = ut, (3.4)

where p is the chemical potential (if the spatial derivatives vanish). The spontaneous
breaking of the U(1) symmetry admits gapless excitations ¢,

O = ut + ¢, (3.5)

which are the phonons.

To remind us of the task at hand, the idea is to first isolate the low-energy degrees
of freedom and the symmetries acting upon them. It is then possible to construct the
most general Lagrangian from the degrees of freedom which is also compatible with
the symmetries, organized as a derivative expansion. The zero-temperature superfluid
state was considered above, but since a fluid can inhibit superfluid properties for all
temperatures less than the critical temperature T;, the normal component must also
be considered. As previously stated, the normal component has degrees of freedom
parametrized by &/(Z,t) for I = 1,2,3, and their dynamics should be invariant under
the internal symmetries

¢ el va, al = const. (3.6)
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¢ — Rrj¢, R € SO(3) (3.7)
el = ol(e), det (&'J> = 1. (3.8)

The first one is the familiar shift symmetry, and it states that the dynamics of the
normal component should not change under U(1) transformations. The second is that
for rotations in 3-space, where R:’, is the 3-dimensional rotation matrix in comoving
space. The last one is that of volume-preserving diffeomorphism, and implies on the
most basic level that particles can move independently of each other such that the
normal component behaves like a fluid. Finally, Poincaré invariance is also imposed.

As for the Lorentz scalars related to the normal component, the shift symmetry
implies that the fields &/ enters the Lagrangian in the same fashion as © - with a first
derivative acting on each ¢!. Imposing Poincaré invariance forces the fields to enter the
Lagrangian in the matrix form

B = (9,¢")(9"¢”) (3.9)

The rotational symmetry (3.7) forces only SO(3) invariant matrices B/ to be con-
sidered, and the last condition (3.8) selects the determinants among these. The normal
component Lagrangian is therefore of the form

Luiormal = F(B), where B = y/det (B17). (3.10)

With this, a stress-energy tensor may be calculated as a functional derivative,

-2 5(\/ _gﬁnormal)
el ogh

where g = det g,,,, and g, is the space-time metric, which, for our purposes, will later
be taken in the Newtonian gauge. Once calculated, it may be compared to that of a
perfect fluid T, = (p + p)uuuy + pguv, and the normal fluid four-velocity is identified
as

Ty =

W = ek (0a)(0567)(0,6F). (3.11)

By the symmetry condition (3.8)), u* is a vector field along which comoving coordinates
do not change
uwdel =0, 1=1,2,3. (3.12)

This leaves a last invariant scalar at this order in derivatives, Y = v#9,,0, and, just to
collect them all in one place:

X = 9,00"0 (3.13)

B = \/det 9, &lorg’ (3.14)

Y =4"0,0, (3.15)



20

Dark matter superfluid phase

with u* is given by . Only (3.13)) and (3.15) will be considered, since they will be
applied in the Newtonian limit, in which u# ~ (¢, ¥).

It is not included here, but [89] shows that this result does yield first and second
sound modes, so this description can then be used in future work to properly investigate

the effect of the second sound mode.

3.1.2 Newtonian limit

A collapsed halo is non-relativistic, thus the scalars (3.13)) and (3.15)) must be taken to
the Newtonian limit - "non-relativistic with gravity”, as will be shown. The purpose of
this derivation is really just to find the normal component four-velocity in this limit.
The calculations closely follows those in [91].

The Newtonian limit is defined by the requirements that i) particles move slowly
(v < ¢), that is

dxt dzt dt
— Nl
7 Lc= dT<<ch, (3.16)

i) the gravitational field is weak and so the metric may be expressed as a perturbation
from the Minkowski metric,

uv = NMuv + h,uy, |hy,l/’ < 1, (3.17)

and iii) the metric is static, which implies 9yg,., = 0.
The condition (3.16) means for the geodesic equation

P, da da’
dr2 — 9B dr dr
d2zh dt\?
W:_&rgo <dT) : (3.18)

and the relevant Christoffel symbol I'f), is

1
Il = B 9" [0agsr + 05gra — Orgas)
1
T = 59“ MBogro + Bogox — agoo]
1

= —59“’\3,\900- (3.19)

By combining (3.17) and (3.19)) to first order in hy, one find
1
I = —577“)‘8>\h007 (3.20)

and the geodesic equation

d2gH 2 dt 2
= ZEnMAaAhOO (dT> ) (3.21)
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For the temporal component, x4 = 0, the third condition implies dphgyp = 0, so only
the spatial components contribute. Recall that this part of n*¥ is the (3 x 3)-identity

matrix, so
2zt 2 fdt\?
—— == <> 0;hoo

dr? 2 \dr
dr\* d®t
il I v N
<ﬁ)ch2 5 Vhoo
2z A

By comparison to Newton’s second law that connects the acceleration to the gradient
of a gravitational potential ®,

d*z
— =_V9, 3.23
it is clear that Newtonian physics is restored if
)
hop = —2—. 3.24
0=-25 (3.24)

The full metric is then,
goo =— (1+23%)
Guv = § 90i = 0 . (3'25)
Gij = 0ij
Since the metric differs from the Minkowskian case (special relativity), the

corresponding Lorentz factor will also differ. It can be identified through the time-like
line-element

cdt = /=g drtdx?

P S
= \/<1 + 202> c2dt? — (5ijd:(}ld.%']

¢ dxtdxi
C

c2dt?
dr d 2
—J142o -
dt + 2 c?
so it is i@t )
M= = ———. (3.26)
T 14+2% v

c? c?
By the first requirement in the Newtonian limit, the term quadratic in v/c may be

discarded, and the second requirement enables the expansion of ~; to first order in
r=>®/c

dyn

2
I x4+ O(z?)

=0

Y (2) = Yz = 0) +
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~]1—zx
o

The four-velocity, u* = (ync,v,7), in the Newtonian limit, takes the form

e
:c(l—;{;,f), (3.28)

where the quadratic terms ®||]|/c? are discarded following the conditions of this limit.

3.1.3 Superfluid EFT in Newtonian limit

The phonons are described by the field 8 which, in the non-relativistic limit, enters into
the effective Lagrangian through the scalar X as [90]
(V)2

where V(t,Z) is the external trapping potential: a gravitational potential set up by
the halo itself. Phonons at constant chemical potential p are described by 0 = ut + ¢,
which, according to [1], yields

(Vo)?
2m

The gravitational potential ®(r) - gravitational potential energy per unit mass - satisfies
Poisson’s equation and is sourced by dark matter and baryons: V2® = 47G(ppy + pb)-

As for the scalar Y, [I] takes © = mc?t + 6 and subtracts the rest energy, and
imposes the Newtonian limit on the four-velocity

Y =v"0,0 — me?

[

X:u—mé—i—(ﬁ—

(3.30)

duo + (%9] — mc?

cot

P o\ 06 il 9
~e1-= - — | = +4c¢-Vo—
c( 02>mc+c< 02>c6t+cc VO — mec
—p—mP+p—7-Vo, (3.31)

where the term ®6 /c? is negligible, and ¥ is the normal component three-velocity.

3.2 Condensate and phonon properties

In line with (3.2) and (3.29) the phonons are described by the scalar field 6. The
superfluid effective Lagrangian is for free particles (V = 0),

(VO)?

L=PX), X=0-"

: (3.32)
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To describe phonons at constant chemical potential u, expand
0 = ut + ¢. (3.33)
[1] conjectures that dark matter superfluid phonons are governed by

m)3/2
P(X) = 2/\(;3))(\/@, (3.34)

which, when baryons are included, reproduces MONDian behaviour (Chapter [4)). The
additional factor A~3 is included to make sure (3.34) has units of pressure (energy
density) - the inclusion of potential energy in implies X has unit of energy, and
since the "effective theory scale” A also has unit of energy. Hence i3 is necessary to
make the units add up.

3.2.1 Condensate equation of state

The purpose for now is to investigate the condensed state, so 8 = ut for free particles.
Thus X = pu, and
2A(2m)3/%
P(p) = ——— 32 3.35
(1) s K (3.35)

Differentiating w.r.t. chemical potential u yields condensed particle number density,

_ 0P _A@m)¥?
ou h3 '

n

(3.36)

In the non-relativistic limit, p = mn, which is reasonable for our purposes. The chemical

potential may then be related to the mass density, which can be inserted back into (3.35))

to yield an equation of state,

1/2 1 3/233 h’

=nA""(2m) R = ———

a nA™ (2m) mA(2m)3/2p

2A(2m)3/2 K3 R I
33 |mA(2m)P2’| T 12AZms”

P = (3.37)

As pointed out by [I] this is a polytropic equation of state, P = K pl‘*‘% with index
n=1/2.

3.2.2 Phonons

In order to consider phonon excitations on top of this condensate, expand (3.34) to
quadratic and higher order in phonon perturbations ¢, 8 = ut + ¢, neglecting gravita-
tional potential,

2A(2m)3/?

L=—33

XVIX|, X=p+o—- > =
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)32 i -
_ 2A(§h3) (u+ X))/ |+ X]|. (3.38)

Consider small perturbations such that the root expression, f(X) = 1/|p+ X| = |p +

X ]1/ 2 can be Taylor expanded for small X, and evaluate said expansion about X = 0.
We will need up to the third order in derivatives, so the expansion will look as follows,

2 d’f

- df - 1 d*f 1
t oz 6 4X3
X=0 6 dX

f(X):f(O) dX X70X+§d)22

X roXY) (3.39)
X=0

The first term is easily found to be y/|u| = p'/2. As for the rest,

df  df  dp+X|dp+X) p+ X
dX dp+X|dp+X) dX 2+ X|1V/2|u+ X|
1 - -

= S+ X)|u+ X2 (3.40)
<f li( + X))+ X732 = 1( +j()d|“+—j(|_3/2 + 1‘ + X732
ax2  2qx T 2/ 5% 2

2 XP -3+ X)) u+ XP?

A+ X7/ A+ X 2|+ X3
1

- T X (3.41)

dx3 44X C8lu+ X[/ '

In the second-to-last equality in 1) we used the fact that since u, X € R = ] u+)~( |2 =
(1 + X)2. And when evaluated at X = 0,

X3 2 dX?[3o 4 iX3|5o 8"
so the expansion is
> 12 b e 13050 3 5003 >4
FX) = @2 4 57 PX = o7 PXE 4 e PXT 4 O(X). (3.44)

With this, the Lagrangian can be written as follows with the coefficient C' =
2A(2m)3/2 /3K,
5 1 = 1 ~ 1 - -
L=Cu+X) <u1/2 + 5/,fl/QX - g/f?’/2X2 + ﬁ/f5/2X3 + (’)(X4))

3 ~ 3 _1/95 1 a5 ~
:C<u3/2+2ul/2X+8,U/ 1/2X2_EIUI 3/2X3> +O(X4)
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Within the power expansion of first-order derivatives, the contributions to Lqyaq comes
from terms containing X and X?

EQuad =C (3M1/2X + :M_1/2X2>

2
o 3 0p(VO) 3 e
- O( M o Tl
_3C (o 2p 2
_ A(zm)s/Q 2 2 2 _ ]2
= W [Cb — (Vo) } R D Vel (3.45)
The sound speed by the usual thermodynamic expression:
opP
2 2
= — =3Kp". 3.46
<=9 p (3.46)

This may be combined with eq.s (3.36) and (3.37) to find the relation between ¢? and
Fs
2m2A 2 I 4m*A? 2
2 _ /2 _ _ 4
=3K 2 = 2 = —. A4
€ =3 [ h3 (2mp) ] s [12A2m6} [ hb ( mu)] m (3:47)

It can also be argued for by inserting the quadratic Lagrangian (3.45)) into the Euler-
Lagrange equation, which yields the equation of motion for ¢. The Lagrangian (3.45))
is only dependent on derivatives of ¢, so

aﬁquad (aﬁquad>
— o; —0
0 Z.:;y’z 2(9;¢9)
0 aﬁquad) (aﬁquad>
g : e —0
ot ( o) ) Y \awe)
% (2&) — V- (222V¢) =0
é - C§V2¢ = 07

which is a wave equation.

Contributions to Lyigher-order are from terms containing powers of O(X 2) and greater.
Here, only a few terms are included, indicated by the ”D” sign - it means that the terms
on the RHS make up a small part of the LHS. Only terms containing X2 and X* are
considered, as no more is necessary in order to notice a trend,

3 1 1 a)oe
‘Chigher—order o <8,LL 1/2X2 — E[u 3/2X3>

—1/2 —-3/2 —-3/2 .
=C <3“mQ(V¢>4 + 55 (V) - F ¢3)

2Tm3 24



Dark matter superfluid phase

3¢ v, K K
= W(CSV¢) 210 9/2 (CSV¢) 24 3/2 (at¢)

_ ,5/2 (—274019)® + 2737 (e V) + 2710073 (e, V) )

A(2m)3/?
3 x 23133 43/2

A(2m)3/?
(&gqb)?’ + 22];;35/2(CSV¢)4 +

3
A /m)\2 .- B -
=B <u> (a3~ + a4 (e V) + ag® (e, V0)°)

3
=a,h3A <T,Z> i 3 (09)™, n>3

s e 22 )

= A e A A 0
= e A e 0

= A TR0, be= MmN g, (3.48)

where 0 denotes either 0; or ¢;V, a,, is some numeric factor, and with ¢. as a canonical
variable (it can be used in Hamiltonian mechanics). When expressed like this, we can
identify the strong coupling scale as the scale suppressing the higher order terms,

Ay = [A(mc?)3/2 324 (3.49)

3.3 Halo density profile

With an equation of state, we can now attempt to find the density profile of the con-
densate component of a halo, assuming hydrostatic equilibrium. The reason this is
done is that actual dark matter halos may be inferred either from dynamical properties
of its contents or by gravitational lensing of background galaxies/clusters, providing a
consistency check between theory and observation.

Focusing on a static, spherically symmetric halo, pressure and acceleration are re-
lated as usual,

1 G,
p(r)dr — dr

47 4
/ / Q' p(r") = “gN /0 d'r2p(r) . (3.50)

Differentiate on r to obtain the Poisson equation

d (1dP de
dr pdr - dr r?
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=T
2dP 4AnrG d [T
__e%r A a dr' 2 /
rp dr r2 dr Jy ()
2 dP
=——— —4nGp
rp dr
d (1dP 2 dP
| == =Y 2
dr(,odr>+rpdr mGp [
d (1dP 2rdP
2 2
— == —— = —4nG
dr(pdr>+pdr T
d (r?dP
Sl e 2
dr <,0 dr> mGpr
1 d (r?dP

This can be brought unto a dimensionless form: the n = 1/2 Lane-Emden equation.
The polytrope has pressure P = K p?, see equation . Let pg be the central density
of the halo, and y a dimensionless variable. The density can now be expressed in terms
of these as p = poy'/2. This brings the pressure to the form P = Kp8y3/2. Insert into

equation (3.51)) and find

1 d T2Kpg dy>/?
— 20T ) = 4nGonyt/?
r2dr <p0y1/2 dr POy

Kpp d <3T2y1/2dy> — 4Gy

r2 dr \ 2yY/2 dr
i 2| == . .52
r2 dr <T dr> 3Kp0y (3.52)

Now, let 7 = roax where r¢ is some characteristic length and z is a dimensionless variable.

Then dr = rodz, and equation (3.52)) is found to be

1 d d
(7“25172 Y > _ 3G 1/2

r3x? rodz rodx B 3K po y
— =)= . 3.53
z? dx <$ dac) 3K po ro¥ (3:53)

Isolate the characteristic length, as the r.h.s. must be unitless,

2= 3K po
0 8rG
3K 1/2
=4/ — . 3.54
To 87er0 ( )
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To summarize: for a static, spherically symmetric mass of polytropic fluid with
pressure P = Kp? in hydrostatic equilibrium, the density and radius when expressed
with dimensionless variables y and =,

p = poy"/?

_ [ 3K i
e /st”O . (3.55)

gives the n = 1/2 Lane-Emden equation for the dimensionless variables,

L d (:c?dy> S (3.56)

22 dx dzx

This do not have an analytical solution, and must be solved numerically. The initial
conditions are y(0) = 1, and 3/(0) = 0. It solved on the following form using the
Euler-Cromer method,

2
e (3.57)
y(x) = cos <72T;1> (3.58)

with the solution plotted in Figure alongside the analytical approximation (3.58)).
The value x1 = 2.7526986755 =~ 2.75 is determined as the value where the solution
vanishes such that the cosine approximation vanishes also at x1. The difference between
the two is shown in Figure 3.2

Using x = r/r¢ and 1 = R/r¢, equation allows equation to be written
as

p(r) = poy/cos (g%) , (3.59)

where R = rgz1 is considered as the radial extent of the condensate component of the
halo. Equation is plotted in Figure alongside the numerical solution, with the
offset from the numerical solution shown in Figure [3.4] These also includes an ellipse
in the strictly positive quadrant of the (r, p)-plane as comparison.

Using equations and , the central density pg can be determined, follow-
ing [94], through the average density p

3K
R =rox; =4/ %p})pxl, (3.60)

1 1
M :/ Bap(r) = 47r/ rodz r3z?p(x) = 47‘(‘7’8,00/ dx 22y
v 0 0

1 d dy dy ]|~
= 47r7“8p0/0 dz |:CZZL‘ (1:2(11:)] = 47713 po [m2dm} . (3.61)
_ M Amrypo 2dy —3,2. 1 3poy' (1)
=p= —x“—= = —3poz; 27y (1) = —————=
p TR Ayl [ dz ||, poxy w1y (1) -
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-~ Analytical approximation (cosine)
0 I 1 1 1
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v

Figure 3.1: Numerical solution (blue solid line) to the n = 1/2 Lane-Emden equation.
The red dotted line is the analytical approximation to the numerical solution, and is a
cosine-function.

p_x1 M =
L, P _ _ 3.62
po 3y (z1) A R3 y/ (1) (362)
From the numerics it is found that y'(z1) = —0.499997663911809 ~ —1/2, which give
y(z1) ~ 10714, Inserting this, z1 = R/rg and also ro from (3.55) into (3.62) gives
M R/ro M
= — = 3.63
PO TImR3 T1)2  2mroR? (3.63)
o M o M G 3/2 -3/2
- 2mrda? 2mad \ 3K Po
M \? (87G\®
5
=|=—= — 3.64
Po 2m;§> (3[() (364)
AN 2/5,.18/5 A6/5
S po= h%) M2/ 18130/

2/5 /
1 2\18/5
1012M@> (1eV/c?)
m 18/5
X

6/5
leV/c? (LmeV)*? (A>

1 meV
2B7G3 (102 M )% (eV/c?) 18 (meV)S

2137TG3 1/5 M
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%10

— Cosine

0.5 1 1.5 2 25 3

Figure 3.2: Difference between the analytical approximation and the numerical solution
to the n = 1/2 Lane-Emden equation.

) M 2/5 ;0 \18/5 /A N\6/5
1012 M eV/c? meV

M 2/5 m \18/5 7 A \6/5
> notm 0= (o) (72)  (aw) (3.65)

where p. = 0.6466008797382706 x 10724 gcm™> ~ 0.65 x 10724 gcm ™3 is the charac-
teristic central density based on the normalization factors in the denominators. This
is different from that in [I] only by a factor 0.65, and has repercussions for other de-
rived quantities compared to [I]. The Milky Way halo mass is estimated [95] to be
~ 10'2 Mg, and is hence used as a scale.

From the definition R = rgx1 one finds from that the condensate radius when
inserting the central density from ,

3K 1/2
R =Tox1 = (87TG> .’Elp(l)/Q

3K\ /2 1/2
- G 1P

SKNY2 7/ ar \Y5 /8rc\ 310
-0 (i) (=) (GR)

s (3K 5/10 M 15 7 afc \ —3/10
- 8rG 2 rG
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— Numerical solution

- Analytical approximation (cosine)
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Figure 3.3: Numerically calculated density profile corresponding to the n = 1/2 Lane-
Emden equation (blue solid line). The analytical approximations (red and black dotted
lines) are the square root of a cosine and the (z,y) = (+, +) quadrant ellipse respectively.

a5 [ 3K 15 7\ /5
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Here R. = 35.793009118045520 kpc =~ 35.793 kpc is the characteristic radius based on
the normalization factors in the denominators. The numeric factor is about 0.8 times
that in [1], which is due to the factor +/0.65 that comes with the factor ,0(1)/2 on the first
line of the calculation of the radius. Finally, just as in [I], m ~ eV/c? and A ~ meV
yields realistic condensate radius. With the fiducial values

m=0.6eV/c* & A =0.2meV, (3.67)

which will be used from now to test the theory, the condensate radius for a halo of mass
M = 10" Mg is about 125 kpc. This is less than the virial radius ~ 200kpc of a halo
with the same mass, as stated in [I].
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Figure 3.4: Logarithmic absolute difference between the analytical approximations and
the density profile corresponding to numerical solution to the n = 1/2 Lane-Emden
equation. The solid and dotted lines are the cosine and ellipse approximations respect-

ively.

From the non-relativistic relation used earlier to express pressure in terms of density
- see ([3.37)) - one finds that the density profile fixes X (),

dP dp? 5 dp
= = m-— = mK—— K22
p=mn=m=mhkoe=3mkp=re
dX = 3mKpdp
3mK 3mK
X(r)=——p(r)’ = Poy(r)
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S

(
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M A5 e \YP oA N\ )
X [ PR
1012 M eV meV yir

M 4/5 m 15/ A \2/5
X(r; M, m, A) = X, <1012M@> <eV/02> <me\/> y(r). (3.68)

Here X, = 48.14231453320181 x 10~ % eV is the characteristic energy scale based on the
normalizations in the denominators, and y(r) is the solution for the n = 1/2 Lane-

Emden equation - see (3.56]).
As stated in (3.38)),

. 3mK , R

2
- 3.69
5P = Azl (3.69)

and since only the condensate is considered in this case, the phonon excitations X
are set to be zero. This give a chemical potential that varies with radius. However,
phonons will be considered at a later time, so the chemical potential may be fixed as

p=max {X(r)} = X(0):

3mK o (hc)8 9
9 M0~ 8A2m2(m62)3p0'

w (3.70)

The factors of ¢ are kept since the strong coupling scale (3.49)) depends on the particle
rest energy:

3/8

20

)
8A2”(”ZC():%2> ( 012M@> 5< C >36/5(mev>12/5 p3r/8
(

[/ (he)18c128 M 12/5 108/5 36/57 /8
- |Grmare) (o) (%) (o)

3/10 ax 6/5 2/5
As = (Ay)e M me- A (A
1012M® eV meV

The subscript ¢ means the usual, and the numerical value of the characteristic strong
coupling energy scale is (Ag). = 0.9889767067172432meV ~ meV, and so is of same
order as A.

- 1/4 1/4
As = _A(mc2)3/2,u3/2} = [A(mc2)3/2 <

r 2/8
= A(mc2)3/2] /

(he) 18128 1/8
[29 x 10~ 12(eV) 6} ‘
(3.71)
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Chapter 4

Including Baryons: Phonon
Mediated Force

The structure of this chapter differs a little from [1J.

The purpose of this chapter is to include baryons to the theory in order to obtain
a suitable acceleration. This is done first in the zero-temperature limit, then non-zero
temperatures are considered.

In both [I] and this thesis, the acceleration of baryons due to the superfluid phonons
is found to depend on the radial gradient of the phonon field, hereby referred to as the
”phonon gradient”.

The phonon gradient depends on whether or not the scalar X is of positive or
negative value. [I] explores both cases, and their stability is determined through an
alternative Poisson’s equation - the argument in the Laplacian operator depends on X,
not on just P.

This is done differently in this thesis, mainly by not using an alternative Poisson’s
equation. The sign of X is first determined in order to obtain an acceleration comparable
to that of MOND. Then the stability of the quadratic order Lagrangian for phonon
perturbations is probed w.r.t the sign of X.

The baryon distribution is considered a static, spherically symmetric localized source
for simplicity, which entails that the baryon distribution My (r) has uniform density py,
throughout the volume V (r) that it spans.

Finally, the section in [I] regarding the sound speed is here moved to Chapter

4.1 Zero-temperature analysis
The EFT Lagrangian in question is on the form £ = L7—g + Lcoupling, Where

2A(2m)3/2
treg = 22O m

£coupling = _mepb ’
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of which is of interest as it considers interactions between superfluid phonons,
described by €, and the density distribution of baryonic matter, described by pp. As
stated by [1], the interaction (4.2]) represents the breaking of the global U(1) symmetry
of the condensed state due to the presence of the baryons.

4.1.1 Determining the acceleration of baryons

An acceleration on the baryon distribution due to the superfluid phonons can be de-
termined by treating the EFT Lagrangian £ = L7r—g + Lcoupling i the classical sense,
L =T — V, which yields a "force density”

F=-VV. (4.3)
By identifying V = —Lcoupling We find

—

F

= aMpth(Qpb)

~ “Mpih

(VO)py, . (4.4)

As we are also using the static spherically-symmetric approximation 6 = 6(r) = ut +

o(r), eq ([£.4) is

q A
F=ag (Vo

= aMp]h(arqb)pbgT . (4'5)

The scalar force F = || F]| is then
Fp = ppag (4.6)

where the scalar acceleration is identified as

_ alA I
4= Vb

al
= m(&»éf?) : (4.7)

As per eq (4.7) we need to find an expression for (9,¢), the phonon gradient, to
determine the acceleration. Recall the zero-temperature phonon Lagrangian is on the
form £ = £0 + ‘Ccouplingv

Vol

2A(2m)3/?

A0

In the static, spherically symmetric approximation, § = ut + ¢(r), the equation of
motion of the phonon field is found through the Euler-Lagrange equation,

B

50 5 =" (4.9)
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The scalar X is

With this, the terms of (4.9)) are,

oL  2A(2m)3/% X \/|X] A B0

9 33 o6 " Mph %pb(ﬂ
A
= _aMplhpb
oL 2A(2m)3/2 0X /| X]| A 00
Vo Y ( . ove)  “Mmhave))
_28empPP o OVIXP
3R (Vo)
_2A(2m 3/2v o|X]P 0X
- 3R3 0X 9(Vo)

- A (/).

The identity |X|?> = X2 was used, and in the last equality

OVIX]P  oVIXPolx| 31X|V? X 3X
oxX ~ 9X| ax 2 |X| 2/X|\"
3xX1/2 3
_ /2 _ °© 1/2+1/2 _
= 2|X|1/2X = 2sgn(X) X =

The equation of motion is then

28(2m)12 (\/|Yv¢) W

h3

hﬁb( r)

v (VamXIve) = ).

This is integrated in spherical coordinates, and as this is in a spherically symmetric

approximation, then

2

e (PVERIXIT0) = agtp)

3|X’1/2

d

(4.10)

(4.11)

(4.12)

(4.13)
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d h?
p (r2\/2m|X]V¢> =oag 412 py (1)

P1

2 T
XV = M) _ ey (4.14)

a
StMp, 1?2

This implies a second-order polynomial for (V¢)?2. First insert for X:

2
x =) - T2

= 2m|X| = 2msgn(X)X
=sgn(X) [2mi — (Ve)?] .

Let z = (V)2 = ||V9¢||? = (Vo) (V) = (0,¢)?, and take both sides of equation (4.14])
to the second power:

2m|X|z = k(r)?
sgn(X) [2mji — 2] z = K?
22 — 2mjiz + sgn(X)x? =0
2mji & \/4m242 — 4 X)kK?2
L, 2mi \/m/; sgn(X)k

(0r0)% = mfi £ /m2[12 — sgn(X)x2 (4.15)

With the phonon gradient (4.15]), the acceleration is

B al
4= Nmh

1/2
[m/l + \/m2i2 — sgn(X)mz} / :

2 1

The function k o< r~
VK2, thus ag o r~! and is comparable to MONDian acceleration. This is achievable
only in the case X < 0, for k2 > m?2fi?, hence (9,¢) ~ \/k and the acceleration

, 50 ag o< 11 is recovered if there exists a limit such that (9,¢)? ~

al

ap = m(aréf))

_aA ah?  My(r)
© Mph\ 87TMp 12

[ a2A?2 ah? GNMy(r)
-\ MAR2 8nGNMp  1?

o3 A2
_ /7(hC)MP1 ax . (4.16)
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By comparing this to the MONDian acceleration

a3A2
= 4.1
ap =1/ (o) M, aN , AMOND = 1/Q0aN , (4.17)

the coupling parameter o can be fixed to the scale A,
a3 A?
(he)Mpy
o®A?% = ag(he) Mp,
o = [ag(fic) Mpy)/3A—%/3

- [W] N (1 ﬁv) h (4.19)

» AN 23
@0\ Tiev ’

where by = 0.811717960744417 ~ 0.82, with ap = 107° ms™2 as in [I]. The fiducial
value A = 0.2 meV yields a = 2.5 in galaxies.

ap (4.18)

4.1.2 Stability of phonon perturbations

This was only briefly mentioned in [I] in order to explain the origin of an instability
in their alternate Poisson’s equation. In this paper, the quadratic order Lagrangian for
phonon perturbations is derived. It is found to depend on the sign of the scalar X,
which corresponds to the scalar X in the absence of phonon perturbations. As in [1f,
the consequences of the dependence on sgn(X) are discussed.

When checking the behaviour of quadratic order phonon perturbations (7,0, x) =
é(r,0,x) — ¢(r), in which case only is of interest as it is the only contributor.
Denote the prefactor of by C, then

Lr_o=CXf(X) (4.20)
where f(X) = +/|X]|, and
2
X=[+¢— <Z¢) . (4.21)
m

Insert for ¢ the perturbation ¢(7,t) = (7, t) + ¢(r),

N+ o)
2m
— - (Ve)* + (Vﬁf_’);:: 2(Vy) - (V9)
(Vo) . (Vo)* 2(Ve)-(V9)
2m 2m 2Mm
= X(T) + ’Y(F? t) ’ (4_22)

X=ji+¢-
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where X is identified as the phonon energy in the absence of perturbations and ~y the

perturbed phonon energy. Eq (4.22)) may be inserted into eq (4.20)), and (X) = f(y) =
| X + 7| may be expanded for small ~, in the same manner as eq 1D though only
terms up to O(7?) are needed, yielding the same result,

- X) 1
et L s o). 4.23
F0) = X2 4 S — s+ 00 (1.23)
The Lagrangian is therefore
_ % 1/2 sgn(X) _ 1 2 3
=C (X +7)X["* + sgn(X) (X +7)7 = == (X +7)7? + (X +7)0(%)
2’)(’1/2 8’X’3/2 '

(4.24)

We only keep terms proportional to v and 72, as the terms of 7 are ¢, (V)?/2m and
2(Vy) - (V¢)/2m. Thus

1/2 sgn(X) o sgn(X) 2 A2
Lop— ()DC|:|X| 2’X‘1/2X’7+2’X‘1/2’7 8|X|3/2X’}/

_ C{ [IXIW N ;z;(fig)—(] [sb _ (Z:;)Q - 2(V902)T;L(W_>)]

o[ | [ G2 Q(WQ@(W)]Q} |

The prefactors may be expressed as

o sen(X) o K] sea(X)
X2+ 2‘X|1/2X - | X[1/2 2‘X|1/2X
sgn(X) o sgn(X) -
= ]X](l/Q)X+ 2|X(|1/2X
3sgn(X)
- 2[X|1/2
=qX,
sgn(X) 1 % sgn(X) 1 z

2[X[1/2 SIXPP2T T 2[X['2 8X[1/2[X]
sen(X)  sgn(X)
= 8| X1/ - 8| X |1/
3sgn(X)
=X

4
1
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As for the perturbations, in the first term we only need to keep —(V¢)?/2m. The
second when written out as terms on the form

(a4 b* 4 cd)? = a® + 2ab* + 2acd + b* + 2b%cd + (cd)?,

of which the terms contributing to Lqyaq are

a? = ?
.2(Ve) - (Vo)

2acd = —2@T
_[2(Ve) - (V9)]”

(cd)* = [Qm} .

When inserted this yields

V)2 1
(90)+7¢2

2m 4

2Ve) - (V) <2<w> - <w3>>2

= -X —2
Equad Cq { ¥ m m

} . (4.25)

The gradient of any differentiable function f is in spherical coordinates (r, 6, x) given

_os, 1or, 1 of,
vi= 8r€r+ r8966+ 7“sinc98xex7

so the inner product of any two gradients V f and Vg is
_3f@+18f89 1 9f dg

T oror  r20000 ' r2sin200x 0x

as

(V1) -(Vg)

Let f = ¢, and g = ¢, and denote the radial derivative with just 0., then

— O0p 0o
(Vo) (vh) = 2292

= (3r80)(8r<2_5) ) (4'26)

since ¢ is spherically-symmetric. As for the term in (4.25) proportional to (V)2 =

(Vo) - (Vo)
oo\? 1 [(0p\? 1 oo\ ?
oo (2 (5) e ()
= (9r9)° + %2(8990)2 (4.27)

where Jq denotes the gradient along the angular directions:

(Bap)? = (Oap) - (Oay)

) )
\ 06 sin?0 \9x /)
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Thus (4.25) is

Lauad = = { [ :2(8990)2] +¢? - 2(67;?%(@@ + W}
2 \2
—i{ ) 0.0 2002 [ O] ;j;%m}
_ 3/2 N 27 N2

(4.28)

At first glance, positive X yields correct sign for the kinetic term oc 2. However, for
MONDian behaviour to occur, x? > m?fi? which for positive X has complex phonon
gradient - see . This is not the case for negative X - as shown in (4.16) - though
the kinetic term has the wrong sign, which indicates the presence of an instabilityﬂ

4.2 Finite-temperature effects

The only difference between [I] and this thesis is the inclusion of more calculations,
which are more accurate.

At non-zero temperatures the Lagrangian is built from the the three scalars X, B,
and Y described in Chapter 8] The analysis is done in the normal component’s rest
frame, 7 = 0.

[I] provides an example on how to fix the faulty sign of the kinetic term of
by supplementing the zero-temperature Lagrangian with

AL = M?*Y? = M%(ii + $)2. (4.29)

This contributes to the quadratic Lagrangian an amount M?2?, and thus fixes the sign
if

. A(2m)3/2 .
2.2 2
M7g" > 4h3|)—(|1/290
o A(2m)3/? Am?

> — = —.
Am|X[V2 0 p3/2m|X]|

If MONDian behaviour is to be reproduced, eq. ([4.15) for X > 0 must be inserted into
2mX = 2mji — (V¢)?, and this must be taken in the limit #(r) > mji, in which case

2mX| = [2mf — (V§)?*| = [2mfs — mft = /(mf1)? + k(r)?| = | £ k()| = K(r).

! As an example, consider the state of a system to be an unstable equilibrium; if the state is perturbed,
it will not return to its original configuration. In other words: if a needle is balanced on its tip on a
surface in a uniform gravitational field, giving it a small push in any direction parallel to the surface
will make the needle fall over until it lies parallel to the surface.
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The constraint on M becomes

1 meV) A

M2 ( i 2

” WB2mX |12 <1me\/) "
S (1 meV) A 2
~ B3k(r)t/2 \ 1meV

> (1 meV) 87['Mp1 _1/2
~ R ah?

1 meV>

o (1meV)(10kpe)(10' M) ~*/2 /877Mp1 Mb 2 r Y, o
~ h3 1011 M 1 meV 10kpc

S (1meV)(10kpc) 87 Mp) My, —1/2 A 2
~ h* 1011 aM@ 1011 M@ 1meV ) \ 10 kpc

(lmeV 10kpc 87 Mp, V2N Ny )

\/ 1011M®bg 1011 M@ (lme\/) (10 kpc> "

1.7856 x 1055 /10 M\ V* 2/3 1/2

kg J m3 ( > <1me\/> (mkpc) "
011M 1/4 A 2/3 , 1/2 m

() () (o) ()

1011 M 1/4 2/3 1/2 .
M > o A T m 0.443 7 (4.30)
M, 1 meV 10 kpc 1eV/c? ) ev1i/21p3/2

of which the numerical factor is about the same as in [I]. However the particle mass
is scaled as shown, and the dependence of « on A is implemented; the latter changing
M ~ AY? (in [I]) to M ~ A%/ here.

By supplementing with , the condensate pressure also get a con-
tribution AP = M?u?, which would alter the condensate equation of state . The
scaling of the baryonic mass to the estimated [96] total baryonic mass ~ 10*! M), will
also be a fiducial value M}, = 3 x 10'! M.

Vv

vV

Vv

[3.1416 x 1072° Jm

4.2.1 Toy theory

As is the case in this thesis, the finite-temperature theory that [I] actually goes for is the
ad hoc addition of —BY into the absolute-valued root expression in the zero-temperature
Lagrangian,

2A(2m)3/2
Lr—g— ET;,gO = (3;;))(\/ ’X — 5Y’
2A(2m)3/2 N
_ 2T v X - B+ ), (431)

3h3
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where this is also taken in the normal fluid rest frame. The dimensionless parameter 3
is taken to vary with 7'/T. in some way. It is determined later in this Chapter that

B> (4.32)

| W

reproduces MONDian behaviour with stable perturbations, in which case the absolute
value-function has a negative argument. As such, the case will be considered
throughout this thesis, as with [I], and the fiducial value 8 = 2 is used for calculations.

Now consider the dark matter density profile in the absence of baryons. Setting
phonons and gravitational potential to zero, X — p and Y — pu, the condensate
pressure is

2A(2m)3/2
P(p,T) = (?)Z;)Mv | — Byl

2 (2m)3/2
2

VB L,

577 (4.33)

and it is exactly the same tot he zero-temperature case, except for the replacement
A — A/ — 1. This is carried through the rest of the zero-temperature analysis - for
instance, the halo radius (3.66)) is now

B Mpu 1/5 m —6/5 A —-2/5 R,
R(T) = (1012 M@) <1e\//c2> <1me\/> (B—1)/5 (4.34)

Note that the choice § = 2 leaves the pressure and halo radius unchanged w.r.t. the
zero-temperature scenario.

Phonon equation of motion

The arguments in absolute value-functions are negative, so the full EFT Lagrangian is
then

2A(2m)3/? . al

As in the zero-temperature analysis, the equation of motion is found under the static
spherically-symmetric approximation 6 = ut + ¢(r) for X = 6 — m® — (V0)2/2m by
solving the Euler-Lagrange equation,

E:

oL oL
— V.- ——=0 4.36
¢ (Vo) (4.36)
oL alA
T (4.37)
oL

P) :
5w ~ Carwa ¥V 0 - me) - X
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0 ~
= o VR X

_Cax/ﬁﬂXZ—X?’
(Vo)
OVBRX? — X3 ox
0X d(V9)
_C2ﬁﬂx=—3x2(V¢>
m o
__ O3
VB X
C 281 =3 — (Vo)*/2m

_ v
2m /B — fi— (V$)2/2m i

30 (Vo) am+ (¥ - )ﬂv
2 o+ (U ¢

:—%WW, BVS, (4.38)
and the equation of motion for @ is
Vo8~
V- (~ae FUVOIR.8)V6) =
VYOI 818 = o 2 = 2,
;
V- VIR (IV6IP. 676 = g
Vamf IVl A1Vl = oMo — )
(Vo)2/2m+ (% —
m¢<q;¢/> 2T (3< 1> el =
T

The phonon gradient is taken to only vary radially ||Ve|| = 0,¢, so instead express
the eqution of motion as

(0r0)* +2m (% - )ﬂ(

Ord) = K. )
N T I CED 439)
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This implies a cubic equation for (9,¢)? which will be solved numerically to obtain the
¢-mediated acceleration shortly.

First consider two extremal cases; ¢) sufficiently close to the baryon source, such
that (9,¢)? > mji, the equation of motion takes the form

09 o .
00 =

(Or) ~ Vi

where the solution scales as 1/r and the MONDian profile form the zero-temperature
analysis is recovered, and i) in the absence of baryons, such that (9,¢)? < mj, the
equation of motion takes the form

m 26 (i
SRy
m(B8—1)p

2m(B—1) f
@) = V2=
o (E-1)s
3 8—1
~ K
V2mp 26 — 3
where the solution now scales as 1/72 since ji is kept approximately constant. This
is different from [I] in that the factor 3/(28 — 3) is also in the square root. The

transition between these two behaviours is at the radius 7, defined by the radius at
which mfi = k(r,) where f1 is approximated constant with a value defined by the central

density (3:70) and (3:69),

Orp) = K

ﬁ6 2 CVFL2 Mb
8A2m AP0 = 8w Mp) 12
2 @ 2 2, 4
~ MpA
Ty ﬂMPlh4pO b m
-2
bo 213G\ /5 A\ 28
~ M 2/5,,18/5 7\6/5 M A2 m
7 Mp it [( R8T " 1 meV b
_ bo(meV)*/3 /2837 G3 e /5y —36/5 \=12/5 A—2/3 1p A2 4
 wMpht hi8xd b
—2/5 -
_ bo(meV)*/3 (237 G3 / Ik 4o = 16/5 A—16/15
T aMpht \ RSzl My Mb
_ bo(meV) 2/3 2137rG3 —2/5 1/5 _ _
o 7(rMP1h4 hi8zd 1012 )/ (eV/CQ) 16/5(meV) 16/15
My, O\ —4/5 —16/5 ;A N\ —16/15
1012 M, e\//c2 meV
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1/10 —2/5 —8/5 —8/15
Ty o~ A % _m L 25.721 kpc.
1012 M, My, eV/c? meV

(4.40)

With fiducial values M, = 3 x 10" Mg, m = 0.6eV/c?, A = 0.2meV, with dark
matter-to-baryon ratio set by cosmology M /My = Qpn/, ~ 6, the transition radius
is ry ~ 59.4952kpc, which is greater than the upper bound on the Milky Way halo
radius [97] at 24.5kpc (this corresponds to a diameter of ~ 160000 light-years). This
implies that the phonon gradient is (9,¢) ~ \/k and the acceleration is subsequently
MONDian at least throughout the stellar disk. To summarize, assuming 5 > 3/2, the
expected phonon-gradient behaviour is

K, rr
Opp =~ \/; = * (4.41)
J2mA 253 Ky, T T,

with r, set by (4.40).

The equation of motion for ¢, eq. (4.39), implies a cubic equation for z = (9,¢)?,
23 + 2527 + [32 - HQ] z—tk? =0, (4.42)

which is guaranteed to have at least one real solution at all radii except » = 0. The
parameters in the coefficients are

s:2m(2§3—1)ﬂ

t=2m(B—1)p
OéhQ Mb

R = — .
87TMP1 7“2

This is solved numerically with 8 = 2 and all the fiducial values mentioned under ,
with the result shown in Figure . As can be seen, the two accelerations are on top
of each other, with a smaller difference than in [I].

Their ratio may be calculated by expressing as equation for A = ays/amonD.-
This is done by first multiplying in awA/Mpihi such is now an equation for ay,
then scaling the equation by ayonp The equation for A in the likes of (4.42)) is

AS 254" + [5% — R?] A% — tR? =0, (4.43)

where the parameters in the coefficients are

~ ( al 1 )2
S = S
Mpih anvionD

- ( al 1 >2
t= t
Mpih anionD
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Figure 4.1: The ¢-mediated acceleration plotted with fiducial values alongside the MON-
Dian expression on a test baryonic particle. The yellow star represents the transition
radius 7.
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Figure 4.2: The ratio between ¢-mediated acceleration with fiducial values and MON-
Dian acceleration on a test baryonic particle. The yellow star represents the transition
radius 7.
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~ < al 1 )2
R = K.
Mpih anionD

It is solved numerically with fiducial values, and the result is shown in Figure . As
can be seen, they are indistinguishable down to 10~ ratio, so MONDian dynamics do
apply - e.g. "asymptotic" velocity, BTFR, and so on. This, too, shows smaller difference
than in [1J.

Comparing to gravitational acceleration

The acceleration due to the phonon interaction on a test baryonic particle should be
compared to that of dark matter through Newtonian gravity. The former is defined
in , and the latter is defined by Poisson’s equation sourced by dark matter alone:
the acceleration of a test baryonic particle due to dark matter in the Newtonian picture
is dpm = — V@, therefore Poisson’s equation may be expressed as

V- ‘_iDM = —47TGpDM . (4.44)

The density is found by the usual thermodynamic identity, where in the pressure the

replacement A — Ay/B — 1 is applied to (3.34)),

_ 4P
PDM = de
_ 2mAB —1(2m)*/? d X| X |2
B 3h3 dX
_ 3/2 2
_%mw%£@m> O“W+m§wﬁ
_ 2mAVB —1(2m)3? [ X2 X2
- 3K3 ]X\3/2 + 2\X\3/2
_ 2mAVB—1(2m)3? 3X?
B 3h3 2|X|3/2
~ mAVB — I1(2m)3/? X2
- h3 |X]3/2
- /2

where the identity X? = | X|? was used.
Since X varies with 9,¢, its behaviour at radii much less and much greater than r,

makes the acceleration easier to analyze analytically. Take first the domain r < r, such
that (9,¢)? > mji and 0,¢ ~ \/k. Here [2mX| ~ (9,¢)? and

2m2A/B — 1
mM:——7§1f¢a (4.45)
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The scalar acceleration apy = ||@pwml||, eq. (4.44)), is then

1d [TZCIDM] _ 8TGm2AV/B — 1\/E

72 dr h3
d 2 2 /R _
[TdazDM] _ 877Gm;}3 B 1 W’r
T
2 — 2
apy = 8TGm ;;\/ﬁ 1 /7%;(7')7’2 %

_ 47TG'I7’L2A\/B -1 \/W

apm - (4.46)

and is thus independentﬂ of radius. The dark matter-to-¢ acceleration ratio is therefore

T 2 —
apm % V-1 /H(T)TQ
ag I\?;th k()
_ 47TGm2Mp1\/ﬁ -1
N ah? "

~ 01179 -, r<r, (4.47)
Ty

with fiducial values inserted. The numerical factor is within the same order of magnitude
as [I] - it is six times smaller here. It is clear that the gravitational acceleration due to
dark matter is subdominant in the MONDian regime, and becomes comparable to a4
at r ~ ry.

In the other regime, (0,¢)? < mji so X ~ i and the equation of state that follows
from the calculations in Chapter . In [I] apym is approximated by the scale of radial
derivative |0,X|/m ~ X/mR, and their a4 has that factor 3/(28 — 3) in the square
root. In this thesis, apy is derived from the the calculations in Chapter @ and ag is as
it has been presented.

The calculation is exactly as in Chapter and the dark matter density is therefore

given by (3.59),
T™r
PDM == P04/ COS (5?) . (448)

Through hydrostatic equilibrium, the acceleration is easy to find,

1 dP _d<I>
pDM dr - dr
dppm d®
3K = ——
DM dr dr
d 3K d
&2 -7
dr ( 2 pDM) dr

Integration would yield a constant term, further yielding an extra term apy O Cr~2. This is the
baryon contribution to Newtonian gravity, and since baryons are neglect, so is also this Cr~2 term.
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and by the arguments in radial derivatives it is clear that ®(r) = —3K pppm(r)?/2 where

K is now the proportionality factor of (3.37)), again with the replacement A — A\/B — 1.
The acceleration is then

apag = 3K ‘dPDM(T)2
2 dr
_ 3Kpj

# e G7)
-2 o 57

Y

Keep in mind that the density (4.48) is discontinuous at » > R which implies that apy
is undefined at these radii. However, if the case r > r, implies the limit r — R, the
sine-function approaches the numeric value 1. Recall that for large radii

o = 5 5_1%;
T \2mp 26 -3
3
= A/§'17
2mji

where 5 = 2 has been inserted. The acceleration ratio is

37er%
abpMm _| iR
a - _alA 3
¢ Mp\h /2mfp k
371',0% KO
4R 12A2mS
al 3 K
Mp\h /2mfp

i E 6 7rp(2) Mp1hn/2mfi SWMpli
16 \m /) RAZ 3aA ah? M,

1/ h\° P23 ME2mi o (72
~— =) — a1 | —
6 \m o?NSRhM,, 7 \r,

2
~ 0.0334 <T> L TS, (4.49)

Tx

12

~

with fiducial values. This is two order of magnitude less than in [I], though this has been
calculated with the central density found in Chapter [3.3]- finite-temperature effects and
baryon interactions may change the central density significantly. The two accelerations
are comparable at radii » ~ 107, &~ 600 kpc, which is far outside the extent of the halo
R ~ 140 kpc. Consequently, the gravitational acceleration is not dominant for r > ry,
in opposition to [I].
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Stability of phonon perturbations
The stability of the phonon background should be checked - eq. (4.31)) is expanded to

quadratic order in first-derivatives for the perturbations ¢ = ¢ — ¢. By insertion of
o(r) = ¢(r,t) = p(r,t) + ¢(r), the scalar X becomes

) 2
X=0—-—m®— (V6)
2m
. V)2
2m
v V¢)?
At (Vo +V9)
2m
. (Vo) (Vo) (Vo) (V
:M+@_(2<P) (Vo))" (Ve)-(V9)
- m 2m m
=X +m, (4.50)
where
e _ . (Vo)
X=ji—y (4.51)
) V)? Vo) - (Vo
m m
Throughout the calculation, let ¢ = (V)2 /2m for aesthetics. Thus
L=C(X+m)\IX 43— B+ (4.53)
and since the arguments absolute values are taken to be negative,
X+ —Ba+@)=-[X+mn-p+¢)
=pp+pp—X—m
S . L, (Vo) (Vo) (Ve
=B — o+ g+ [Bso—wr (2@ + Vo) (Vo)
m m
where
Z=B-Da+q (4.55)
, Vi)? V) - (Vo
725(5—1)¢+(2¢) + Vo) (Vé) (4.56)
m m

The Lagrangian is then expressed as

L=C(X+m)\/Z+ (4.57)
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same result as in the zero-temperature case,

— - 1
VZ+7=2"+

so eq. (4.57) has terms

where the square root is expanded to second order in perturbations o, and has the

_ _ 1 1
1/2 2
C (., XZ X
= 57 {XZ o

_ Z 1
2 2
7 = _
9 3 Y2+ 47+ B Y172

Smg} S (ss)
From (4.52)) and (4.56)) it is clear that the only contributors to Lquaq are the terms
proportional to v1, Y2, Y172 and 3,

m

LS Zg/Q {XQZW - fv% + 2% + f’mz}
- {X2Z {(ﬁ ypr T <w>n-1<v&>]
L2 [¢ _ (Z:Z)Q _ (Vso)r;l(veﬁ)]
N g [ (Z:L)z (w)m(vé)} [(61>¢ N (V2<p)2 N (vgo)ﬂ;(w)
X [(5_ g+ TV, (o) <v¢>r} |

In both the terms proportional to XZ/2 and Z2? only (V)2/2m is kept, and the
contribution is

(4.59)
In the term proportional to Z/2 the contribution is

1\2 2 n _
Lopad O me{;z [(ﬁ—l)ﬁ— (8::1:) (a:;f) N (35%(& )_(ﬁ_l)(aj)sb(w)]}
2\2 2
= Z(;ﬂ {;Z {(/3 _ 1)@2 _4(8r¢) (Or)

om om P Q)WMWP)” . (4.60)
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As for the last term, the contribution is

c Lo 2.2 (8@5)2 (3r90)2 (5r¢_5) .
Cauna 2 573 { 5% (8- 0292 + 4G Gy ) O o)) 1
(4.61)
The quadratic Lagrangian is then
¢ o B-1.7(8-1)¢
~ -1 (ar(g) i
— -7+ —X .
[(/3 )Z+— } 5 $(0r0)
7\2 2
. 2Z—|—1X (0r9) + Z—EX 7z (Orp)
2 2m 2 2m
- 121 Z(9ayp)”
— | Z—-=X| — ;. 4.62
[ 2 ] 2mr? (4.62)
The expressions in square brackets may be calculated as well. Starting with the angular
term,
_ 1 1 1
Z—=-X=B-Dp+q—=p+=q
sX=(B=Da+a—50+57
3 . 3_
= <ﬂ - 2> @+ 5‘]7
then the radial term,
S I T
274 + §Xq+ <Z — 2X> Z
a9 11 3\ . 3_
=28 - 1)pg+20" + 5 - 50 + Kﬂ— 2) fu+ 261] [(B—1Di+d

::@6—Z)m+§f+wﬁ—n<ﬁ—§>ﬁ+§f+(5—%%w+2m—1Mq

—(3-1) (55 ) i+ 3 + 505 D

the temporal-radial mixing term,

B-22+7 x=-296-vi+@-21+ 20T
-1 (5-3)a+ 250
and finally the kinetic term,
Z——53X=%6—Dﬂ+6—5;1ﬂ+ﬁllq
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M-V, 843,

With the factor 2(2m)/3 multiplied in from C, the quadratic Lagrangian is then

%{[ﬂ_l)WF(?H)q} m(ﬁ;l)sb2
50 (Z1)is (2-1) S ety

1\2 \4
o= (3 -1) i+ 2T - vas T @

ﬁquad =

|
| Y — | —~

[(251)3A (V)? Z(Qa:w? N
3 Q-+ Qm} = } (4.63)

It is clear that the kinetic term oc ¢? is healthy if 3 > 1, and the radial and angular
terms oc (9,¢)? and o (Ogp)? are healthy if 8 > 3/2. Therefore, the bound 8 > 3/2
guarantees a healthy Lagrangian.
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Chapter 5

Validity of EFT and the Solar
System

The purpose here is to check whether or not the theory holds any ground with respect to
the superfluid stability criterion and contributions to the EFT from higher-order
derivatives.

The structure of the chapter follows that in [1], though with more calculations at
higher precision. Some numerical factors are found to be smaller than in [I]. Also the
section on sound speed is included in the beginning.

5.1 Superfluid stability

As discussed in Chapter [1} a superfluid is stable as long as its velocity is strictly less
than the sound speed. Consequntly these are derived in order to check whether or not
Landau’s stability criterion (1.7]) holds.

Sound speed

The speed of sound is calculated by the traditional formula ¢? = dP/dp, where the
equation of state is given by (3.37) and goes as P = Kp3. Thus, with density given
by (4.45) and the replacement A — Ay/B — 1, the speed of sound is

RS 4mAA?(p -1 -
= 31223 = 1)m h(G jpm|
_ [12mX]
mQ
2m X |/2
s — m .

In the MONDian regime, (V)2 > mji, so 2mX ~ (V¢)? = (9,¢)?, and the sound
speed -
Vo
L= ol 5.1
o = ¢ (5.1
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[1] uses the zero-temperature, no-baryon sound speed ¢; = /2pu/m, while this thesis
uses . The result is nonetheless similar in the regard that stability is broken.

Second sound, which was briefly mentioned in Chapters[I]and [3] is here brought up:
the MOND force between baryons are mediated by the phonons (first sound), so this is
where effects of second sound could be important.

The criterion

In the theory presented here, the superfluid is the Bose-Einstein condensed of dark
matter particles in the halo, and baryons are the obstacles. Therefore, the Landau
critical velocity is the sound speed (j5.1]), presented here with the bar removed

| \Y%
Verit = Cls\/IOND = |m¢’ 5

where ¢ is the field that describes the phonons. Consequently, the theory presented is
invalid if the superfluid velocity is less than this sound speed - no phonons are generated,
and MONDian behaviour cannot occur.

Going from a relativistic Lagrangian to the one in is the subject of Chapter @
which succeeds this chapter. The relativistic field introduced is expressed in terms of
amplitude p and phase x = (6 + mc?t)/h. The superfluid velocity is then

o .

h
vs = —|[Vx|| =
m
With the scalar 6 given in (3.33)) inserted, it is clear that the superfluid velocity and
the phonon sound speed are exactly equal:

o Vol _1vell L 653
m m
Therefore, the stability criterion dictates that phonons will be generated.
With regards to second sound, if it propagates at cs/ V/3, the stability criterion is
still broken. However, whether or not it has any lasting impact on the theory needs to
be studied.

5.2 Higher-order derivatives

The EFT was made in terms of first-derivatives in order to account for the global U(1)
symmetry - see Chapter [3] This is, however, not limited to first-derivatives, since n-th
derivatives are also consistent with the symmetry, and the EFT is effectivle a sum of all
orders of derivatives [08]. In order to have only first-order derivatives on the relevant
scales, the higher order contributions must be negligible on those scales.

Higher-order contributions are negligible provided that the ratio between those of
order n and n—1 are negligible. The strong coupling scale identified in suppresses
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higher-order contributions, henceﬂ

hedto e
As O Agr

<1, (5.4)

since the ratio of derivatives of orders n to n — 1 scales as 1.
With the fiducial values, the strong coupling scale (3.71) is ~ 1 meV, hence higher-

order derivatives are suppressed if

r> 1 meV

> 0.2mm, (5.5)
Which is clearly the case on the astrophysical scales the EFT is relevant, as found in
1.
5.3 Local breakdown of coherence

If the superfluid velocity, eq. ((5.2)) exceeds the BEC critical velocity, eq. (2.27]), coherence
will be lost and dark matter particles become excited. Thus a condition for no loss of
coherence is obtained,

Vg & Ve (5.6)

5.4 13\ 3
@) (Zxtor)
m

3 mi

This is applied to the MONDian regime where the density p is given by. (4.45]) with
g =2and (0,¢)/2m > p = X ~ (0,¢)/2m, and the phonon gradient is (0,¢) ~ /k.
The two velocities are

Ve

1
5.4 153 92
(2 h2mA\/E>

mé

1/3
(26 A A [ an Mb( )
3

m2 87TMP1
1/3
[ 2x 4b1/2 1meV)(101 M)H2 | p2
B (1eV/c?)?(1kpe) 87 Mp)
—2/3 1/6 2/9 1/3
" m My (r) A 1kpc (57)
1eV/c? 10M M, 1meV r
VE
m

!The addition of the Ac factor is necessary to have the units make sense.
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1 [ ah® My(r)
“m\ 87 Mp; 12

(10Mby M)'/? | B2

(1eV/c?)(1kpe) \| 87 Mp)

-1 1/2 -1/3
" m My (r) A 1kpe , (5.8)
1eV/c? 10M M 1 meV T

where ¢ is the speed of light. The numeric factor of is 7.66 x 10"ms~!, and that
of (5.8) is 2.4 x 105ms~!,

Due to the difference in power dependence on the radius from the origin, the condi-
tion can be expressed as a bound on the radius from the galactic center,

23 1/6 2/9 1/3
ve ~ 0.2554¢ | — 1 My(r) A Lkpe (5.9)
1eV/c? 101 M, 1 meV r

1 1/2 ~1/3
m My (r) A 1kpc
vs 22 0.008¢ <1eV/c2> <1011 M®> <1meV r (5.10)
—1/2 1/2 —5/6
m My () A
. — —_— — kpc. A1
r>0.005 <1eV/c2> <1011M®> <1me\/ pe (5:11)

The numeric factor in is greater than in [I] by one order of magnitude, where the
increase w.r.t. is expected due to the additional factor (257%/3)'/3 ~ 10. Hence the
superfluid can reach higher velocities than in [I]

The condensate therefore remains coherent down to the central regions. The numeric
factor in is one order of magnitude less than that which is presented in [I] -
0.005/0.2 = 1/40. This is due to the increased critical velocity (5.9).

It is important point out that this critical velocity is the same as in Chapter |2l That
case was analyzed in the context of non-interacting dark matter particles. Also, the
numeric factor in implies that coherence break down when the superfluid velocity
is of order 0.1c - i.e. lightly relativistic. This suggests that this test must be properly
reconsidered taking into account these points - something [I] did not mention.

MOND and the Solar System

As mentioned by [I], MOND has problems within the Solar System - the additional
acceleration ag gives an unacceptably large correction to Newtonian gravity. In other
words: the observed dynamics within the Solar System does not fit with predictions
from MOND. The condition of coherence can be applied to the Solar System; if
coherence is broken, dark matter exists in the normal phase, and MONDain behaviour
will not occur.

The local superfluid velocity in the vicinity of the Sun is given by replacing My, =

Mg in (5.10)

oo 000 () (Mo NP (A T Lk
tT 1eV/c? 1011 M, 1 meV r
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1 -1/3
_ m A 1kpc
~ 2. 1078 [ ———— - 12
53¢ x 10 <1e /62> <1 e"> . (5.12)

where r now represents the distance from the sun. The critical velocity is here found
by evaluating (5.9) at  ~ 8 kpc (the distance of the sun from the galactic center) with
My =3 x 10! Mg

~ 0.9554 m —2/3 3><1011M@ 1/6 A 2/9 1kpc 1/3
Ve =1 ¢ 1eV/c? 10M M 1 meV 8kpc

02554(3) Y5 m \THR A N (5.13)
- 2 1eV/c? 1 meV ' '

The superfluid remains coherent down to
ro 253ex107 m A T
lkpe ~ 0.2554¢ x (3)1/6/2 \1eV/c? 1 meV

~1/3 -5/9
_7 m A
r > 1.6497 x 10 <1eV/62> <1me\/> kpe

m -1/3 A -5/9
7> 34.028 <W> ( 1meV> AU. (5.14)

This is also one order of magnitude less than in [I]. For reference, the numeric value
~ 34 AU lies just beyond the orbit of Neptune [99]. With fiducial values inserted the
boundary is r > 98.65 AU, which lies beyond the termination shock [100] - the first
point at which the solar wind collides with interstellar medium.

Thus the result is in agreement with [I] - coherence of the condensate is broken
within the Solar System, so dark matter particles are excited into the normal phase.
MONDian behaviour does not occur, and standard Newtonian gravity applies.

Since the dark matter particles are in the normal phase and has mass range coin-
ciding with axions, standard axion detection experiments can be used to directly detect
dark matter particles - [I] lists [I0I] as an example.
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Chapter 6

A relativistic completion

A relativistic theory, in the weak-coupling regime, is proposed by [I], of which the
Lagrangian is built from a self-interacting complex scalar field with a global U(1) sym-
metry. It is taken in the non-relativistic, weak-field regime, the MOND limit (which is
identified) and the superfluid Lagrangian is recovered.

This thesis provides the full calculation, done in SI-units.

6.1 The theory

As mentioned by [1], a superfluid in the weak-coupling regime can be described by a
self-interacting complex scalar field with a global U(1) symmetry. With this in mind,
the dynamics of the field can be determined from a Klein-Gordon Lagrangian,

1
Lxg = —5 10,22 +V (|®%)] ,

where V (|®[?) is the self-interaction potential.
Initially [I] proposes a simple self-interaction potential, the free-particle potential
~ |®|? and an additional hexic term ~ |®|°,

m2C2
14 (\‘I)|2) = ?"I’F + \@[°,

which does reproduce (3.34]) in the appropriate limit, though the MOND regime is not
stable. This calculation is not included here.

Instead [I] opts for a Lagrangian built from a combination of free-particle Klein-
Gordon Lagrangians,

1 m?2c?
L = (6.1

of different powers. Specifically, it is (6.1) with a term cubic in Lkg added to it:

A4 m2c? 3
- [yaﬂcp%hﬂq)ﬁ] : (6.2)

1 m2c?
L=—= 8<I>2—|—<I>2}—
5 ||0u®] 2|2l 6 (ALt D)
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This has terms hexic in |®|, which implies three-body interactions (as opposed to the
two-body interaction a quartic term implies). The fraction of the cubic KG term is
included to ensure the theory reduces to in the non-relativistic, weak-field and
MOND limits; the latter of which is explained later. Accordingly, the scale A, is included
to admit a ® = 0 vacuum.

This is taken in the non-relativistic regime, with the field ® expressed in terms of
amplitude and phase:

(7, t) + mc*t

&7, 1) = p(M)eN D, x(7, 1) = =IO (63)

thus |®|?> = p?. However, p is not to be considered as mass density, since, according
to , the units/dimensions of |®|? is that of [Energy][Length] . Hence (6.3) could
instead be considered a "polar coordinate” representation of the complex quantity that
is the scalar field ®, keeping in mind p and x are not physical coordinates.

The inner products are done over the metric in which &g now denote the
gravitational potentiall] Thus the kinetic term is

10,@* = (0,2)*(0"®) = g™ (8,2)* (9, P)
= ¢"(90®)* (0o®) + 9°*(0a®)* (0, ®) -

The contravariant time-time component for the metric is determined by the condition
!
that g"" g, = 4:

20¢ !
9" 9w = 9”900 + 9" gap = —g* [1 + 62] +324.

Thus g% is simply (goo)~*. In the weak-field limit is the case &g < 2, so ¢°° may be
Taylor expanded for small ®¢/c?:

2071 7" 29 dq1? 2
00 G G G G
=— |1+ —= =—|1-—=4+0||—= ~—|1-—"].
e[ ] o ([R]) - b
In the non-relativistic, weak-field limit, the field ® is given by (6.3, and the kinetic
term is then

oot == 1= 2] (G ) (™) + 17 o] 19 ).

where the differentials are

o . ] O ) ) )
apeﬂx = +ipeTN =L \V4 (peilx) = (Vp)etX 4 p (Veizx)

!Since gravity is included, the partial derivatives should be replaced with covariant derivatives.
Luckily, this is unnecessary here as the covariant derivative of a scalar field is equal to its partial
derivative.
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= A [(Tp) £ ip (V)]
8)(_9—}—77102 VX:@-

ot h h

This inserted yields for the Lagrangian (/6.1))

1 20 2 70y \2 m2c?
Lkc=—5 {— [1 - CQG] L ((;;) +(Vp)? +p* (VX)* + 12 ,02}

\V]

c2

_ _% {(Vp)2 n f—; [(V&)Q n mzcﬂ B [1 _ Q(S;G] hg; [92 + (mc?)? + 2mc26}}
Rt G B | )
ST OAT L G}

o 2 e

= —% {(Vp)2 - 27;;2 [é_mq)G - (ng }

- —% {(Vp)2 - ngpQ} ’ o

where the scalar X from Chapter [3 has been identified, and the terms 62 /c2, 2362 /ct
and 4mf®q/c? are neglected following the applied limits. Hence the full Lagrangian is

(6.5)

2mX p? A? 5 2mXp? 3
S (Vo - - (Vo) -

_ = 2

To leading order in derivatives, contributions from (Vp)? can be ignored. The
equation for p is found by the Euler-Lagrange equation, which here reduces to

oL o 1 2m X p? A* 2m X p? 5 1o
dp  Op 2 h? 6 (A2 + p2)° h? B
2mXp N SA*m3X3 0 { P8 } B

h2 616 dp | (A2 + p2)6
2mX p N 8A4m3 X3 6p° 127 B
h? 61 (AZ+p%)¢  (AZ+p?)T
2mXp A (2mX)3pd
(A2 4 27 + ACIETP 2 4 2y )= 0

hﬁ
A'(2mX)*p* (A2 - p?) }
o =0.

2mXp {(Az +p%)" +
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The MOND limit p > A, is now applied, and subsequently justified by the result. The
equation is solved for p?:

7 AMEmX)?(p?)°

(p2) = =0
AY(2mX)?
(p2)4 (h4 )
A[(2mX)2]/4 Al2mX|1/2
p2 = I - )] = | " | . (6.7)

The use of absolute values is necessary since, as shown in Chapter 4] the sign of X must
be negativeﬂ to obtain a stable MOND regime in galaxies.
Now, (6.7) is inserted into (6.4) under the MOND limit, ignoring (Vp)?,

ro 1 _2mXp2 B Al _2mXp2 s
21 ® 6(p2)" L B2

_12mX 5, 1AY(2mX)?
9 2 P 16(p2)3

1 A(2m)?/2 1 AY2mX)3

2 h 6 AS[A3|2m X |3/2 /h3]

3/2 3/2 3

_ 1A(2m) XX+ 1A(2m) X

2 nd 6 n | X|1/2

The cubed fraction in the last term is
X ’ sgn(X)|X]| ’ 1/2 3 31v13/2
(|X|1/2) = <\X\1/2 = <sgn(X)\X\ ) = sgn(X)°[X]|
= sgn(X)|X]| X [/? = X|X['/2.

The second-to-last equality used the fact that the sign of a real quantity when raised
to an odd power is unchanged. Thus

2A(2m)3/2
L= (?)Z;L)X\/\XL (6.8)

and the action (6.2) in the non-relativistic, weak-field, MOND limit recovers the ac-
tion (3.34) conjectured back in Chapter .

The scalar acceleration ay

As claimed, the conjectured MOND action ([3.34)) is reproduced from assuming
p > A, though [I] lists a less stringent bound p 2 A., the so-called "MOND limit”.
This is further bolstered by realising that if the MOND limit corresponds to p 2 A,

2X? yields a positive value regardless of the sign of X, but (Xz)l/4 = X2 does depend on the
sign. Hence the absolute value function must be applied.
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then implies a direct relation between the scalar acceleration a, and A., since
2m|X| ~ (0,¢)* in the MONDian regime and ay o (9,¢), as discussed in Chapter .
The MOND limit thus yields
PPz A
Al2mX |12
h

H2A4
2mX| 2 A2

B2
(ard))Q Z ? )

where the acceleration (4.7)) is inserted for (9,¢),

2 274
<Mp1ﬁ CL¢> > he A7

Z A

C

al A2
al?
> C
0~ My,
and (4.18) is inserted for a/Mpy:
A2
ap 2 he (04A> ap . (6.9)

The content of is that the RHS represents the breakdown acceleration scale of
MOND, given A..

This is a bit different than in [I], namely in the extra factor ficA./A with respect to
[1]. Tt was found that |®|?> must have units of [Energy][Length] !, and so must also the
units of A2, This means that the units of A2 and A differ, whereas in [I] they have the
same unit. The extra factor hc makes sure the units on both sides are equal.

The real point of having ay bounded by A. is that, observationally, as mentioned
in [I], MOND works well for accelerations down to ~ ap/10. For instance, the fiducial
value for A can also be inserted:

A2

> he 6.10
9 < 198936V m-1 0" (6.10)

which can be used to infer a value on A2 such that MOND breaks down for accelerations
< ap/10. This implies A2 ~ 0.12893 eV m~!, so MOND is valid provided

ao
a9 2 75 (6.11)

[1] also suggest that A. can be fixed such that the breakdown occurs at the acceler-
ation scales of the Milky Way dwarf spheroidals, which have caused some problems for
MOND [57, 58]
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Additional terms in £

It is claimed [I] that a quartic term oc gL%, may added to (6.2)), provided MOND is
recovered for vanishing coefficient g after the non-relativistic and weak-field limits have
been applied, and that the corresponding condensate Lagrangian has correct sign for
finite g. This can be further generalized to any k, Ly addition.

This is only briefly mentioned here, though [I] does delve into calculations briefly.

6.2 Future considerations

The next step would be to implement finite-temperature effects, since this was deemed
necessary in Chapter 4| To find a relativistic Lagrangian that reduces to (4.31)), it must
properly accommodate the new degrees of freedom that comes with the normal compon-
ent of the fluid, with respect to their internal symmetries (as was done in Chapter (3)).

In order to actually get MOND in galaxies, the scalar field that describes the phonons
must couple to the baryon distribution. When considered in terms of particle physics
and quantum field theory, this is reminiscent of the Yukawa interaction.

Yukawa interaction

In this theory, fermions interact through the exchange of virtual bosons [28]. More
specifically, there is a force between two fermions, mediated by a meson. The similarity
with superfluid dark matter is obvious: a MOND force is mediated between baryons by
the Goldstone bosons of the superfluid.

Though phenomenologically different, the mathematics of the Yukawa interaction
could possibly provide a starting point for the implementations of baryons within the
context of this chapter.

Intriguingly, the force between fermions can be described by the Yukawa potential
[28] (here presented within the context of quantum field theory, thus also in natural
units):

V(T) = _E r )

where g is a coupling parameter, and m, is the mass of the force mediating boson. The
corresponding force is then

dv(r) g% [mge™me"  emmeT

Fr) = - dr  4rm r * r2

This has one termE| ~ r~1 precisely that which is needed to analytically reproduce the
BTFR.

3Sans the exponential in the numerator. As of now, this is mentioned purely as an example.



Chapter 7

Cosmology

The superfluid dark matter is considered in cosmological context. Dark matter is found
to condense on cosmological scales, and as such the equation of state is investigated. A
way to recover superfluid dark matter in form of non-relativistic dust, a temperature
dependence on A is suggested by [I]. It is here compared on cosmological and galactic
scales, and is found to be satisfactory.

Not done in [I] is the evolution of the condensate mass density in the expanding
universe, but is done here.

Subsequently baryons are included, and to obtain dark matter as cosmological dust,
the value of the superfluid phonon-baryon coupling parameter must be different than
in galaxies. It is presented in [I] as dependent on temperature. It is here compared on
cosmological and galactic scales, and is found to not be satisfactory as it is off by one
order of magnitude. Consequently, the critical acceleration depends on on temperature.

As in all other chapters in this thesis, calculations are done in SI units.

7.1 Cosmological dark matter condensate

As found in Chapter [2| as in [1], the particle mass being in the sub-eV/c? range, axions
(or at least axion like) and must have been produced by a displacement mechanism
early in the universe. Unfortunately not reproduced here, [I] found that this must have
happened when the corresponding baryon-photon temperature was at T; ~ 50 TeV, here
presented in natural units, around the weak scale as pointed out by [I]:

M 2
TS i 2 RS ~ 107K
B

where the fiducial particle mass has been inserted. What is meant by how this is related
to the weak scale is that, when the temperature of the universe exceeds ~ 10'° K, the
electromagnetic and weak nuclear forces combine into the electroweak force according
to [1].

The density redshifts cosmologically as 1/a3, and the velocity 1/a, then considering
the first dark matter condensation condition it is clear it is independent of cosmic
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time. Consequently, if it is satisfied at any time, it is satisfied at all times: as soon as it
is generated cosmologically - dark matter enters, and remains in, the condensed state.
Not derived here, [I] found the temperature of the cosmological condensate to be

T/T. ~1028, (7.1)

to within a factor m®/3 (which would be in natural units). The temperature in collapsed
structures is given by , and (to within a factor m®/3) is ~ 10~7 for dwarf galaxies
(M ~ 10°h~'My,)) and ~ 1073 for massive galaxies (M ~ 10'2h ™' M,)). Therefore, the
cosmological superfluid is very well approximated as a T' = 0 superfluid.

7.2 Equation of state

Since cosmological dark matter is at a temperature much less than that needed for
condensation to occur, it is well approximated by a T' = 0 superfluid. Also, the equation
of state P = K p? was found in Chapter

Cosmologically, the equation of state of any fluid is given by P = wpc?, where w = 0
for non-relativistic dust (CDM and baryons) and w = 1/3 for relativistic particles.
Assuming the universe expands adiabatically, the time-evolution of the mass density is
given by

. a P a
p——3a <p+c2>——3ap(1—l—w). (7.2)

For cosmological superfluid dark matter, the parameter w varies quadratically with the
cosmic mass density, the pressure given by (i3.37))

P RS pQ_Kp2_lc§ (7.3)
S op o 1203mS 2 2 32 '

where Ay denotes the cosmological value for the theory scale parameter, and an ad-
ditional factor ¢? in the denominator is added to make w unitless. The sound speed
c2 = 3Kp? found in has been recognized, and it does seems that a relativistic
sound speed cg ~ ¢ reproduces a relativistic equation of state, while ¢y < ¢ reproduces
the non-relativistic dust equation of state.

It is interesting that /wec = cg/ V/3, which is precisely the propagation rate of
second sound as mentioned in Chapter [l Whether or not this is anything else than a
coincidence is unclear.

Temperature-dependent theory scale A

The non-relativistic dust description of dark matter, cold dark matter”, is cosmologic-
ally preferable due to its successes on cosmological scale - see Chapter [I With the
equation of state , this can be achieved by having the theory scale A depend on
temperature. Its cosmological value is denoted Ag, and a bound on it can be obtained
by constraining w ~ 0.
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This is achieved in [I] by having A depend on the temperature, subject to the
constraint that the superfluid component behaves like CDM at least throughout the
matter-dominated era - i.e.

R3p m \ !
A 4~ 0. - V
0> m3c 0-3688 <6V/62> ¢

Ao > 1.7074 eV, (7.4)
where peq =~ 8.556 x 10717 and with the fiducial particle mass inserted. Thus the scale

is at least three orders of magnitude large cosmologically than in galaxies, A = 0.2 meV.
It is suggested in [I] to fix A in terms of temperature,

Ao
AT =
(T) 1+HA(T/TC)1/4’

(7.5)

where kp ~ 10% and 7, the BEC critical temperature.

As a check (without regards to the particle mass factor), compare the cosmological
temperature to that found in galaxies of mass M ~ 10'2p~1 Mg, found in .
Cosmologically, the temperature term is of order ~ 10% x 10728/4 = 10~3 and therefore
negligible, and A takes its cosmological value Ag. For galactic temperatures given
by , the temperature term is of order ~ 104x1073/4 = 103+1/4 ~ 103x 10'/4 ~ 103,
and A in galaxies is ~ 1073 Ay, as it needs to.

Another way to ensure w ~ 0 is to consider the last equality in in terms of the
superfluid sound speed for dark matter only. This was done in Chapter [3| where it was
found that ¢ = 2p/m, which leads to p < 3mc?/2 and is thus of order the particle rest
energy.

Evolution of the condensate density

Here I will solve the adiabatic equation for the condensate density, with the pres-
sure P = Kp3c? where K is the proportionality constant of . The purpose is to
check the deviation form the familiar pgyst(a) o a3, while not considering the imposed
temperature dependence of A for now. Equation is solved for the density by integ-
ratingﬂ from the present values, denoted by a subscripted ”0”, to some arbitrary values
in some other time,

p:—3gp(1+Kp2)
rdp @ da

(1+ Kp?) w @

>

=

0

[m (p) — % In(1+ K[)Q)] .

P 1+Kp(2)_(a>_3
po | 1+Kp>  \ag '

ntegration variables are denoted with a “hat”.

p=p
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Setting ap = 1 and taking both sides to the second power, p(a) can be obtained:

pP(1+ Kpp) = p(1+ Kp?)a™®
p*(1+ Kpp) — p*Kpga® = pga™®
p*(1+ Kpj — Kpga™®) = pga™®

-3

pla) = for
V1+ Kpf — Kpga~®

Po
= ) 7.6
V{1 + Kpp)a — Kpj 7o)
As expected the superfluid behaves as dust if the condition (7.4]) is satisfied - p
a—3. However, the temperature dependence of A must, in some way, vary such that a
divergence at

Kpj
1+ Kp?
is avoided. This could provide an extra condition on the temperature dependence of A.

Finally, if there for some cosmic time the denominator is not comparable to a3, the
dark matter superfluid should be treated as its own contributor to the universe energy
density. This leads to an additional term in the Friedmann equations, and therefore has
an impact on the evolution of the scale factor a throughout cosmic time.

a = (7.7)

7.3 Coupling to baryons

The evolution of the cosmological superfluid is carried through its phase 8 = 6(t), where
t represents cosmic time. The governing equation is the Euler-Lagrange equation for 6.

In an expanding universe, the metric is that of the Friedmann-Lemaitre-Robertson-
Walker kind, which, in matrix representation, is

guw = diag(—1,a% a* a%), (7.8)

where a = a(t) is the scale factor of the universe.
To find the equation of motion for the superfluid phase, consider the action

S:/d4:1:\/—g£

where the factor /=g, g = det (gu), is necessary to ensure correct transformation
properties [01]. Redefine the integrand,

S = / dz L', (7.9)

where £ = \/—gL, then the Euler-Lagrange equation for 6 follows from the principle of
least actionﬂ The variation is not done here, but the result for is the Euler-Lagrange

2When any system discribed by the integrand in (7.9) evolves from any time ¢; to any other given
time o, it does so such that the action S is an extremal value (out of all possible values) [28§].
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equation for # with the Lagrangian £ = \/—gL as the argument:
i 8(v _gﬁ) _ (\/ _gﬁ) (7 10)
dt 90 00 '

With the Lagrangian including baryons £ = L1—g+ Lcoupling given by (4.1)) and (4.2))
respectively is inserted, and

-3

The RHS is constant, since p, o< a™° cosmologically,

2m)3/2 .
7( ﬂ;g a?0/? = —]\;Oha3pbt+ C

Pl
(Qm)3/ 2 1
M g2 =
hs MPlh pb + 37
where C' is an integration constant. The LHS can be expressed by the mass density
since p = mn = m(dP/dX) with X =0,

3/2 3/2
dpP dP d <2Ao(2m)93/2) :mMW? (7.12)

pmn=moe=ms =M\ T &

3/2
N (2m) / §1/2 — P

h3  mAo’
Then A AoC
aplg mi\g
p=— Mpih m ppt + Pdust » where pausy = T : (713>

In the limit of vanishing baryon density, the density must reduce to the
density used in the previous Chapter, hence the latter term is identified as the dust
contribution as discussed earlier. Note also that when 6 ~ mc? implies that
reduces to p ~ Agm3c/h3, which is precisely the transition region between a relativistic
and non-relativistic equation of state.

It should be noted that with (7.12)) inserted into yields a LHS ~ d(a®p)/dt =
3a%a+ ap, and so M or @ should be compared to the adiabatic equation .

Temperature-dependent interaction parameter o

Ultimately, we want the superfluid to behave as dust on cosmological scales. The
conditions for this can be obtained by having the second term in eq. dominate
the first. This is done in [I] throughout the matter-dominated era, in which ¢ o a3/
and the baryon contribution pyt redshifts as a~3/2 while the dust contribution Pdust
redshifts as 3. This dust domination is carried through all the way to today, in which
case the present time is the age of the universe ty = 13.8 Gyrs = 4.352 x 10'7 s,

A
2020 m Py to < Pdust -
Mpih
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This can be expressed as a boundary on the cosmological value of «, denoted by a
subscripted 70",

< Pdust Mp\h
~ . mAoto
6Mplc 2
5 m
Peql“to

&)

<

(7.14)

where we have used the cosmological Ag in ((7.4]) and the dust-to-baryon ratio is pgust/pn =
6. Thus

2 2

2
m m m
= =6x107° . (715
@0 18857 x 10 7 kg?  1.6688 x 104 (V)22 <1eV/02> (7.15)

Compared to the value found for galaxies, a =~ 2.5 ~ 1, a temperature dependence
of « is suggested in [I],

o(T) = ag [1 + na(T/Tc)l/ﬂ Ko ~ 10 (7.16)

As done with Ay, compare the cosmological temperature to that found in galaxies
of mass M ~ 102p~1 Mg, found in to within factors of particle mass. Cosmolo-
gically, the temperature term is of order ~ 10*x10728/4 = 10~ and therefore negligible,
and « takes its cosmological value . For galactic temperatures given by , the
temperature term is of order ~ 10% x 1073/4 ~ 103, and « in galaxies is ~ 103, which
is off by one order of magnitude.

In contrast to [I] the cosmological «y is not the same, though this may be fixed by
setting ko ~ 10° or greater. This theses will nonetheless use as in [1J.

Consequently the parameter aA, with their temperature dependence given by
and , is nearly temperature independent on cosmological and galactic scales.

Velocity-dependent critical acceleration

An immediate consequence of the temperature dependence of o and A is that the MOND
critical acceleration (4.18)) is also dependent on temperature. As pointed out in [I]

ao(T) ~ a(T)(al)?. (7.17)

Thus by the condition ([7.15]), and the definition (4.18)), the critical acceleration takes
a different value on cosmological scales than in galaxies:

ag™™m° < 104§ . (7.18)

For galaxies, this temperature dependence implies that the galactic ag varies with the
virial velocity of the halo, since the temperature is set by the virial velocity: T = Ty, =
muv_/2kg. Specifically, ap decreases with the velocity, and therefore also the mass. [I]
mentions that low-surface-brightness galaxies (LSBs) - low brightness dwarf galaxies
with most of their baryonic matter in neutral gaseous hydrogen - have been observed

to favor lower values of ag [102].



Chapter 8

Other consequences

This chapter takes up consequences of superfluid dark matter pertaining to Bose-
Einstein condensate theory and astrophysics. Some new points regarding Bose-Einstein
condensate theory is brought, while others points in general are either a explained little
or kept as a summary if nothing is added with respect to [1].

8.1 Bose-Einstein condensate theory

The Gross-Pitaevskii equation

A BEC is a quantum state, and its attributes must therefore be studied in the context of
quantum mechanics. The wave-function ¢ (which is normalized to the particle number
density) of a BEC state is that which solves a non-linear form of the Schrodinger equa-
tion; the non-linearity comes from an inter-particle interaction term which contributes
to the energy of the state. Usually this is done by the Gross-Pitaevskii equation, here
given in the time-independent form,

2
L) + V) + Vol (P PlR) = (), (1)

in which the interactions are considered to be between two bodies, and are modeled as
a contact interaction. In the G-P equation, Uy is the effective interaction - a measure
of the strength of the interaction - p is the chemical potential, and V is the external
potential energy.

The presented model [I], as was shown in Chapter [, must have significant three-
body interactions in order to obtain the wanted result. Therefore, the interaction term
in the corresponding Gross-Pitaevskii equation must accommodate this. The potential
term in the equation is that of gravitational potential energy, of which the potential
itself also abide by Poisson’s equation. This three-body interaction may also yield a
different collective excitation spectrum, which means the sound speed would be different
than what is traditionally calculated - see [83].
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The Thomas-Fermi approximation

The non-linearity comes from the two-body interactions between particles in the con-
densed state, which are modeled as a contact interaction and goes as N2. Thus for
large particle number, the kinetic contribution may be neglected in what is called the
Thomas-Fermi approximation. The resulting particle distribution is then, here in the
context of standard condensate theory (two-body interactions),
2 p=V
i =n = (8.2)
In the context superfluid dark matter, here without baryons, the interaction contri-
bution to the G-P equation is that of three-body interactions. Hence the G-P equation
must accommodate this, while V' = m® is the gravitational potential energy set up by
the halo. The T-F approximation is very well applicable, since halos of this size have
most of their particles in the condensed phase: The total number of particles in a halo
of mass M ~ 1012 Mg is N~ M/m ~ 1078, where m ~ 1073 kg is the fiducial particle
mass.

Dark-bright solitons

This part is briefly mentioned in [I], and is also here, though with some background on
solitons.

Solitons are exact, solitary wave solutions to the non-linear G-P equation that main-
tains its shape throughout propagation. They come in variations of two overlying kinds.

One kind is that of dark solitons, which have density minima. As an example con-
sider a uniform medium in one dimension with a Gaussian depression with a minimum
at some point xg: it is a dark soliton if it propagates while keeping its Gaussian shape
throughout.

The other is bright solitons, which have density maxima. As an example, consider
a standard Gaussian with a maximum at some point xg: it is a bright soliton if it
propagates while keeping its Gaussian shape throughout. A more intuitive example
would be the particle number density itself, in which case it would be a bright soliton
with zero rate of propagation. The book [83] goes further in-depth than this thesis.

With respect to solitons, [I] mentions so-called dark-bright solitons - a form of
interference pattern that have been observed in counterflowing BECs at supercritical
velocities [103]. The interest is whether or not they can be used to explain the shell
structure seen around elliptical galaxies - [104] for a study on this for NGC7600 in the
context of CDM.

Vortices

When condensates rotate, or are confined in a rotating external potential, they pick
up angular momentum provided the angular frequency of the rotation is above some
critical value. This critical value marks the lowest angular frequency for which it is
energetically favorable for the condensate to enter a state with angular momentum
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vs. staying in the ground state. In simpler terms: the rotation must be high enough
to excite the condensate into a state with angular momentum (this does not excite
individual particles into the normal phase). However, the angular momentum is carried
by vortices in the condensate plane of rotation. This is also due to an energy preference:
it is preferable for the condensate to have N, vortices of a single quanta of angular
momentum, as opposed to a single vortex with N, quanta of angular momentum - seeE|
[83].
The critical angular frequency is, as in [I], given in [105]

Werit = mLRQ In <§> (8.3)

Disregarding the logarithmic factor, [I] applies this for halo radius R ~ 100 kpc and
particle mass m ~ eV/c2 which yields wepit ~ 10~4 s~ and they use w ~ 107181
for a halo with mass density p ~ 1072 gem™2. Thus w >> werit and vortex generation
occurs.
In fact, [I05] has the vortex number density in the plane be n, = 2mw/h, and thus
the total number of vortices
2rmR? w

N, = w = , 8.4
v h Werit ( )

which, with the values above, yields N, ~ 1023 neglecting the logarithmic factor in .

As discussed in e.g. [83], when many vortices are present, they tend to settle in
a lattice configuration. Given certain conditions, the lattice can mimic rigid-body ro-
tation, and have collective modes (sound- and shear waves) propagate through them.
Whether or not this has any effect on a galaxy is not clear at this point, but could be
of interest for further investigation of the dark matter superfluid theory.

Vortices also tend to move toward the outer regions of the rotating condensate,
when the system is acted upon by a mechanism that dissipates angular momentum.
This could, e.g, occur during fly-by events due to dynamical friction.

Superfluid surface tension

This was mentioned in context of "Tri-axial halos” in [I]. These are halos in which their
extent in the three axes are not equal - they have ellipticity [106].

Superfluids have surface tension, and so the superfluid core tends to be isotropic
Thus the ellipticity must be sourced by the normal component. This could, as [I] claims,
provide bounds on the self-interaction cross-section between dark matter particles in the
normal phase, which is only mentioned here in passing.

An other property pertaining to surface tension is that of surface modes. As a most
basic interpretation, they are analogous to normal waves in water. Mechanism that
generate these modes, and whether or not they are significant, could be considered in
future work.

IThis is done in terms of quantized circulation about the axis of rotation. However, in terms of
vortex states, circulation and angular momentum are (somewhat) related.



78

Other consequences

Finite sound speed

In the MOND regime, the sound speed varies inversely with distance from a baryon
source. For an already collapsed halo the MOND behaviour can be obtained by having
a static, spherically symmetric effective potential that accounts for this. For a halo in
the process of collapse, this may not be the case and other methods to accommodate
this must be employed when considering (small-scale?) structure formation.

Again, the property second sound is mentioned, though only as a reminder seeing
as its effect on the theory presented is still uncertain.

8.2 Astrophysics

General Relativity

The only exploration that [I] did into general relativity was a comparison to gravita-
tional lensing in the weak-field, quasi-static regime within the context of TeVeS [69].

In TeVeS, there is no dark matter, and to obtain proper gravitational lensing the
baryon distribution must couple to a scalar field, which itself couples to a time-like
vector field. Within the weak-field, quasi-static regime, the gravitational potential ® is
sourced by only baryons.

In the superfluid dark matter framework, the theory provides a scalar field in the
superfluid phase 6, as well as the time-like vector field that is the dark matter normal
component four-velocity u#. In the appropriate regime, the gravitational potential is
then sourced by both dark matter and baryons.

Superfluid dark matter can then be thought of as providing the necessary scalar
and vector fields that make TeVeS yield correct inferred mass density with respect to
gravitational lensing.

Mergers - e.g. the "Bullet” and ”Counter-Bullet”

It is brought up [I] how infall velocity viptan for merging galaxies with respect to the
phonon sound speed ¢ can affect the following events.
If vintan 2 ¢s the halos will be driven out of equilibrium, and dark matter particles
are excited into the normal phase. Thus, dynamical friction leads to a rapid halo merger.
If vintan S ¢s the superfluid cores will pass through each other, and the dynamical
friction between the halos is reduced due to the superfluid cores. Thus, halo merger
will take longer, possibly resulting in multiple encounters.

The ”Bullet” and ”Counter-Bullet”

The "Bullet” Cluster consists of two colliding galaxy clusters, and has been studied
with regards to dark matter - see e.g. [107,[68] - due to the inferred matter distribution
from weak gravitational lensing surveys. The lensing places the mass peak (highest
concentration of matter) centered at the galaxies as opposed to the X-ray luminosity
peak (gas from the two clusters collide and are shock-heated). As [I] mentions, this is
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expected from CDM, where the weakly interacting dark matter particles pass by each
other.

This has been used to calculate bounds on the self-interaction cross-section [8§],
the very one that was used in Chapter 2| It was, however, pointed out in [I] that the
superfluid dark matter framework should be considered on its own, since it has two
components as opposed to self-interacting dark matter’s one.

Instead [I] focuses on whether the relative velocity between the two cluster is sub-
sonic or ultra-sonic. Specifically, in the sub-sonic case the superfluid components are
expected to flow through each other. Two distinct features from lensing surveys are
subsequently expected: mass peaks that coincide with the superfluid cores, and one
mass peak coincident with the X-ray peak due to the normal component.

This is not only the case for the "Bullet” cluster, but [1] also claims that this phe-
nomenology can explain the "train wreck” Abell 520 merging system - see e.g. [108] [109]
- also known as the "Counter-Bullet”. The differing property from the "Bullet” cluster
is that Abell 520 has a ”dark core” centered on the X-ray louminosity peak. This means
that, in addition to the peaks at bright galaxies away from the X-ray emitting gas (as
it is in the "Bullet” case), there is also such a peak located around the gas without any
corresponding bright galaxies.

In the context of superfluid dark matter, [I] attributes this "dark core” to the peak
corresponding to the normal component.

Dynamical friction

A simple understanding of this concept is gained by imagining an incident object (either
a globular cluster or a small galaxy) enters larger collection of gas, stars and dark matter
at a constant density (e.g. a galaxy cluster). Upon entering, the object will lose kinetic
energy due to gravitational interactions with the constituents of the collection gaining
kinetic energy through conservation of energy[110].

It is pointed out [I] that the reduced dynamical friction due to the superfluid can
help alleviate some minor problems with CDM, and lists some examples.

A counter-example in the form of the Fornax dwarf spheroidal is also brought up,
leading to the conclusion that more work is necessary.

Vast planar structures and tidal dwarfs

As explained in Chapter [I} the tidal dwarfs of the Milky Way and Andromeda could
have been generated following an ancient fly-by event. This works in MOND as there
is only stellar dynamical friction, but not in ACDM as the dynamical friction within
their dark matter halo would would yield a rapid halo merger.

Again, the reduced dynamical friction comes to the rescue, given the infall velocity at
fly-by is subsonic. As mentioned in [I], if the fly-by stripped a tiny amount of superfluid
dark matter from the host galaxies, the dynamics of the tidal dwarfes will be governed
by MOND. This automatically leads to rotation curves that fall on the BTFR [51], 52].
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Other consequences

Globular clusters

A globular cluster is a collection of stars in a spherical distribution that exists within
the galaxy (paraphrased from [110]).

Stated in [I], these have negligible amounts of dark matter and their dynamics are
very well described by Newtonian physics using only baryons, which spells trouble for
MOND [60]. This is not a problem within the framework of superfluid dark matter, as
dark matter is needed to obtain MOND in the first place.

Extragalactic structures

The imposed temperature-dependence of the theory parameters A and « could have an
impact on the boundary of a collapsed object and the rest of the universe, as opposed
to just within the collapsed object. This could even be important to consider when
studying the cosmic web (walls and filaments between clusters).



Chapter 9

Summary

This thesis has reformulated [I] in ST units with the inclusion of intermediate, and more
precise, steps in the calculations.

Initially the introductory chapter is similar, though including more history of dark
matter as a concept and the need for it, as was a short description of superfluidity as
a property of Bose-Einstein condensates. It was pointed out that phonons within the
superfluid are generated by gravitational potentials sourced by baryons.

In Chapter 2] a different model of the mean interparticle separation was used, yield-
ing a higher bound on the dark matter particle mass. This lead to a lower critical
temperature on the onset of Bose-Einstein condensation, as well as an ever-so-slightly
lower condensed fraction of particles in virialized halos. Consequently, the dark matter
particle mass was taken to be in the sub-eV/c? range.

The groundwork for the relativistic effective field theory of superfluids at finite
temperature was summarized from [89)], and subsequently applied to the Newtonian
limit. Following this, the zero-temperature, pure condensate was investigated, and the
scale Ag suppressing higher-order contributions of the theory was identified. The dark
matter halo profile was studied, and, due to the more precise calculations, a smaller
radial extent of the condensate was found. Subsequently, A; was found to be in the
meV range within galaxies.

Starting at zero temperature, the acceleration of baryons due to the superfluid phon-
ons was derived and compared to the critical acceleration of MOND. However, the theory
is not stable to perturbations. Including baryons, the scalar acceleration was found to
be closer to the MONDian one at all radial distances than in [I]. It was found that
the standard gravitational acceleration due to dark matter is not negligible at large
radii, in contrast to [I]. Finally, the theory is stable to perturbations, given appropriate
conditions.

The speed of sound with the finite-temperature, baryon-including framework was
derived, and further applied in the following chapter. This was in opposition of [I], where
the sound speed derived in Chapter[3] the condensate-only scenario, was used. Landau’s
stability criterion for superfluid flow was found to not be satisfied, meaning generation
of phonons is guaranteed. Higher-order contributions to the theory are suppressed



82

Summary

down to millimeter scales, ensuring the theory is applicable on galactic scales. The
higher bound on the dark matter particle mass found in Chapter [2] lead to an increased
critical (thermal) velocity for Bose-Einstein condensation, yielding an even lower bound
on coherence breaking with respect to radial distance from the baryonic source. As
an example, coherence was found to be broken within the Solar System, meaning dark
matter particles are in the normal phase. It is pointed out that coherence breaking
occurs when the superfluid reaches lightly relativistic speeds, indicating that this needs
to be re-evaluated in a relativistic context.

A relativistic theory was suggested, which was shown to reduce to the proper con-
densate theory in the non-relativistic, weak-field regime. It implied a significant con-
tribution from three-body interactions. A lower bound on the MONDian regime, with
respect to the scalar acceleration, was found, and a starting point for the inclusion of
coupling to baryonic matter was suggested.

Dark matter was found to be very well approximated as a zero-temperature su-
perfluid on cosmological scales. By constraining the superfluid to behave like dust, a
temperature dependence on the theory scale A was suggested. The evolution of cos-
mological condensate density was calculated, revealing an interesting point in cosmic
time. Inclusion of baryons lead to suggesting a temperature dependence of the coupling
parameter «. This further implied the critical acceleration within MOND depends on
temperature, which for halos correspond to the mass of the halo.

Consequences of such a theory is investigated briefly within the context of standard
Bose-Einstein condensate theory and astrophysics. For the former, it was pointed out
that the three-body interactions must be properly accounted for, if the theory is to be
investigated in the context of Bose-Einstein condensate theory. In case of the latter, the
proposed framework provide an origin for the scalar and timelike vector field postulated
in TeVeS, the inferred mass peaks in cluster mergers has a natural explanation within
the framework of superfluid dark matter, given the relative velocity between clusters is
less than that which excites dark matter into the normal phase, as well as how tidal
dwarfs fall within the BTFR.
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