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Despite previous attempts1 to understand the inelastic reaction «N - n«N, our knowledge of
this interaction in the resonance region is still very crude. This is enough of a justification to
study further a process which accounts for one half of the total =N cross section. Furthermore,
the branching ratios of the main resonances into various quasi-two-body channels (rA, pN, oN)
should shed some light on their origin.

Three papers have been submitted on this subject, covering different center -of-mass energy
ranges:

- a Riverside-LBL collaborai:ion2 with 40,000 events, 1r+p (1.8 = 2.1 GeV)
- a Dubna gr‘oup3 with ~6,000 events (1 energy) = p (~1.45 GeV)
- a LBL-SLAC collaboration® ~200,000 events w*p (1.3 - 1.9 GeV).

In this discussion, I shall rely almost entirely on the last work which covers a wider range, and
with which I am more familiar as a co-author. In fact, the results given by all groups are com-
patible. The data used in the LBL-SLAC study has been gathered from several experiments listed

in Table I. Most of these laboratories are pursuing their own analysis.
Table I

Experiments Used in the LBL-SLAC Analysis

Energy Range Number of Events
Laboratory ’\/s_ (GeV) T T n n np
1.47 - 1.50 1010 648
SLAC-LBL {65 ~ 1. 97 41175 27946
Oxford 1.31 - 1.54 12502 5892
Saclay 1.39 - 1.53 13340 7314
Total 1.31 - 1. 97 74027 41800

Energy Range

Laboratory ’\[5 (GeV) 1r+1r op 1r+rr +n
Oxford 1. 43 - 1.56 7262 1374
Riverside-LBL 1. 82 - 2.09 41412 17255
Saclay 1. 64 - 1.97 11522 3382
Total 1.43 - 2. 09 60196 22011

Model and Assumptions

The description of the final states involves the isobar approximation, in which the reaction

is considered as the superposition of several quasi two-body processes. We can have production
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ofad, p,or ofmm) To each of these "particles" is associated a final stete enhancement

factor f = elsl sin 61/ 111! Jw}(:ere § is the appropriate phase shift and { the angular momentum. We
now define the partial waves Ta for the inelastic reaction by the set of numbers a: LL'J { g
(see Fig. 1) and parametrize these matrix elements at a fixed incident energy as
L'
Ta = AaQ Q'fat’

where Q is the momentum of the resonant subsystem in the overall center of mass, Aa a smooth
function of the mass of the subsystem, and fa the final-state factor. We approximate Aa by a
constant: the partial wave amplitude. Several approaches are possible from here on:

1. Without any other hypothesis, one can select a slice of the Dalitz plot involving one
specific process and perform a standard quasi two-body analysis. Such a me;hod was used by the
LBL-Riverside groupzwith the advantages of simplicity, and possibly a lesser sensitivity to those

1
2. One may further assume that the different quasi-two-body amplitudes may be added into

final -state interactions which are neglected in the following approaches (such as N* /2 isobars).

T = T‘l + T, + T3. Some double counting is present, but small in this expression, and all the

2
events are now used in the fit.

3. Bunyatov et al. introduoe as a correction term to the previous description,the rescat-
tering associated with the triangle graph. Such a contribution induces small variations in the Aa

N
m
La
N T
which we have neglected, but when added as a separate term, it obscures the meaning of the

partial wave amplitudes. In particular, the comparison with unitarity becomes difficult.

The Fitting Method
The LBL -Riverside group performed energy-dependent fits to the data, but most of the

2
other analyses are done energy by energy. Various binnings of the events together with a x  test

minimization (as in Ref. 1) do not take correlations into account as efficiently as the maximum
likelihood method chosen by the LBL-SLAC collaboration. A special optimization routine is,
however, needed in the latter case. The program was able to treat up to 60 waves. We shall now
briefly describe how a "unique" solution is obtained using the likelihood technique, while other
analyses were left with ambiguities.

We started from a set of 60 partial waves representing all possible sets of quantum numbers
with an orbital angulat momentum of the final subsystem L' = 3. At each of the 17 energy bins,
with ~14,000 events at each energy, the 15 best from a set of 2,000 random searches were
chosen ag starting values in the optimization program. By eliminating waves that were compatible
with zero at several adjacent energies, checking for continuity and comparing the likelihoods, we
obtained a small subset of significant amplitudes. The number of "necessary' waves increases
from 10 (at ~1.3 GeV) to 24 (at 1.9 GeV) and the solution is unique within this subset. We checked
that no major wave could be removed without a dramatic worsening of the fit. On the other hand,
when an amplitude which is within 1 or 2 standard deviations from zero is taken out or replaced

by another one, other waves change by leas than a standard deviation.
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How Good Are The Fits ?

1. Histograms of Masses and Angles

The Nw, mr mass spectra are well reproduced. Small systematic shifts are, however,
present in Fig. 2, which we were unable to cure by adjustments of the isobar mass.

The production angle of the nucleon, 8, is shown in Fig. 3. As the energy increases, so
does the backward peak. We do not account fully for this peripheral effect within our waves:
higher partial waves would be needed at the end of our energy range.

2. Cross Sections

The cross sections for = p ~ 1r+1r-n, 1r-p - w-wop, 1r+p - 1r+1r0p are included in the fitting
procedure. The predicted mrovr0 cross section shown in Fig. 4 is also in agreement with the
measured values over the whole energy range. The fit fails completely, however, for mr+1r+,
finding less than 1/2 of the measured cross section. This is probably tied to the strong presence
of N*, _(1520), N',_(1680) in this channel.

1/2 1/2
3. Comparison with Elastic Phase Shift Analyses (EPSA)

Below 1.55 GeV, the total inelasticity of each wN wave is accounted for by our results for
Nmw, except in the case of Si1 where the 7N - nN channel is important. At higher energies, we
always satisfy the unitarity bound, but miss a large part of the inelastic cross section in some
isospin 3/2 amplitudes such as F37 and D35. This difficulty may again be related to the omission

of N’l" /2 resonances in the final-state interactions.

Argand Plots

At each energy, the inelastic waves are only defined up to an overall phase. A K matrix
fit described belowyielded this phase which allows us to display the various amplitudes on
Argand plots. We show the behavior of the channels coupled to the wN waves P11, P13 on Fig. 5(a)
and 5(b). D13 is described in the talk of C. Lovela(:e.5

We see clearly resonant-like loops which are not always as apparent in the elastic ampli-
tudes: D13 with the second resonance around 1700, P13 and the broad effect in pN at ~1800 are
striking examples, but a K-matrix analysis is necessary to have quantitative information about

the pole position.

K-Matrix Parametrizations

Once 1;he energy -independent solutions have been obtained, we perform in a second stage of
the analysis a multichannel K matrix fit in each subspace of IJP (isospin, total angular momentum,
parity).

Seven channels* are possible in principle: =N, "Ai‘ "Az' Npi/Z' (Np3/z)1, (Np3/2)2. o
No, but we never have to deal with more than five in practice. The reduced K matrix is param-

etrized as

*
«xTWO T4 (or Py 2N) waves, with L! differing by 2, can be present in each I,JP subspace.
Py/27 P3j2 re!er to the two possible couplings of p and N spins.
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poles of T whenever the K matrix description ig satisfactory. Table II summarizes the masses of

where Ki;‘ = Yiry The amplitude T is then computed and resonance positions are defined by the

a few resonances found in this fashion.

Table 1T
Pole Position

{MeV) Pi1 P13 D13 D15 F15 F35 F37
K Matrix Pole 1497 1800 1754 1520 1848 1685 1682 1933 1930

*2 +6 *7 x5 +30 +5 *15 +30 +4
T Matrix Pole 1564 1738 1746 1506 1613 1691 1667 1802 1900
-i(150) -i(125) -i(175) -i(78) -i(67) -i(80) ~-i(82) -i(438) -i(178)

Error on Real 5 7 30 4 13 10 8 113 2

Part of Pile

The gystematic study accomplished shows that smooth partial wave representations of the
inelastic reactions can be achieved. Coupling constants to the quasi two-body channels are also
being obtained. These results are by no means final. Two defects of the work must be stressed
again: a lack of high partial waves and a poor description of n1r+1r+ caused by the neglect of Ni*IZ
isobars.

Other groups (Oxford, Riverside, Saclay, . . .) have contributed not only to the data used
by the LBL -SLAC collaboration, but also to the checks of the programs. They are completing
similar analyses, and it is clear that the agreement of several experiments is necessary to

establish the results.

I also want to thank all the other authors of the LBL-SLAC collaboration who have helped me
‘in the presentation of this material and especially Professor A. Rosenfeld whose interest in the

subject provided a constant stimulation.

References

1

M. DeBeer et al. , Nucl. Phys. B12, 599 (1969); M. G. Bowler et al., Nucl. Phys. B17, 331
(1970); W. Chinowsky et al., Phys. Rev. _123, 1790 (1970); A. D. Brody et al., Phys. Letters
34B, 665 (1971).

-34-



24, Mehtani et al., A Partial Wave Analysis of n'p — noa*t, UCR 34 P107 B-146 (1972), #666.
3S. Bunyatov et al., #871.

4D‘ Herndon et al., Lawrence Berkeley Laboratory Report LBL-1065, SLAC-PUB-1108 (1972);
Cashmore et al., #289.

Z. Lovelace, these Proceedings.

-35-



I: Isospin
J: Total

angular
momentu

Notation for wave Q: LL IJ

Fig. 1. Definition of the partial waves used in the isobar approximation.
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Fig. 2. Dalitz plot and its projections at four energies for the reaction m p =~ v = n. The dotted
line is the data in the projected spectra while the solid line is the fit. The side of the little

squares in the Dalitz plot is proportional to the computed population density.
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Fig. 3. Distribution of the production angle of the proton in the overall center of mass (with
respect to the incoming pion. The dotted line is the data, the solid is the fit.
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Fig. 4. Comparison of the fitted cross sections (x) with the experimental values.
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Fig. 5. On the left, Argand plots for "N - «N, «N ~ (w4, pN, oN) are shown. Letters are the results of the maximum likelihood fit (or
EPSA). The curve is the K matrix fit. On the right: inelastic contribution of Nww in the wave, and partial contribution of each chan-

nel (r&, pN, . . . etc.) to the cross section. a) P11; b) P13,





