
THE INELASTIC REACTION 1rN - mrN IN THE RESONANCE REGION*{#'g 289, 666, 871) 

Presented by G. Smadja� 
Lawrence Berkeley Laboratory� 

Berkeley, California� 

1
Despite previous attempts to understand the inelastic reaction nN - lI"TTN, our knowledge of 

this interaction in the resonance region is still very crude. This is enough of a justification to 

study further a process which accounts for one half of the total1TN cross section. Furthermore, 

the branching ratios of the main resonances into various quasi-twa-body channels (1r~, pN. aN) 

should shed some light on their origin. 

Three papers have been submitted on this subject, covering different center -of-mass energy 

ranges: 
2 

- a Riverside-LBL collaboration with 40,000 events, 1T+ p (1.8 - 2.t GeV) 
- a Dubna group3 with - 6 .000 events (i energy) 'If - P (- t.45 GeV) 
- a LBL-SLAC collaboration4 -200,000 events 1T~ (1.3 - 1.9 GeV). 

In this discussion, I shall rely almost entirely on the last work which covers a wider range, and 

with which I am more familiar as a co-author. In fact, the results given by all groups are com­

patible. The data used in the LBL-SLAC study has been gathered from several experiments listed 

in Table I. Most of these laboratories are pursuing their own analysis. 

Table I 

Experiments Used in the LBL-SLAC Analysis 

Laboratory 
Energy Range

-r; (GeV) 
Number 

+ -
11' 11' n 

of Events - 0 
11" 11' P 

SLAC-LBL {1.47 - 1. SO 
1. 65 - 1. 97 

1010 
41175 

648 
27946 

Oxford 1.31-1.54 12502 5892 

Saclay 1. 39 - 1. 53 13340 7314 

Total 1.31-1.97 7402.7 41800 

Laboratory 
Energy Range

-y; (GeV) + 0 
'If 'If P 

+ + 
'If 'IT n 

Oxford 1. 43 - 1. 56 7262 1374 

Rivers ide-LBL 1. 82 - 2. 09 41412 17255 

Saclay 1. 64 - 1. 97 11522 3382 

Total 1. 43 - 2.09 60196 22011 

Model and Assumptions 

The description of the final states involves the isobar approximation, in which the reaction 

is considered as the superposition of several quasi two-body processes. We can have production 
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of a a, p,.or a(1T1T)I=J=O' To each of these "particles" is associated a final state enhancement� 
l� 

factor f = e 6J. sin 61./ q1 where 6 is the appropriate phase shift and 1 the angular momentum. We 

now define the partial waves T for the inelastic reaction by the set of numbers a: LLtIJ {~ 
a a 

(see Fig. f) and parametrize these matrix elements at a ilXed incident energy as 

L' 
Ta=AaQ afa' 

where Q is the momentum of the resonant subsystem in the overall center of mass. A a smooth 
a� 

function of the mass of the subsystem. and fa the final-state factor. We approximate A by a� 
a 

constant: the partial wave amplitude. Several approaches are possible from here on: 

1. Without any other hypothesis., one can select a slice of the Dalitz plot involving one 

specific process and perform a standard quasi two-body analysis. Such a method was used by the 
2 . 

LBL-Riverside group with the advantages of simplicity. and possibly a lesser sensitivity to those 

final-state interactions which are neglected in the following approaches (such as N:/2 isobars). 

2. One may further assume that the different quasi-two-body amplitudes may be added into 

T =T1 + T 2 + T 3· Some double counting is present. but small in this expression. and all the 

events are now used in the fit. 

3. Bunyatov et a1. introduGe as a correction term to the previous description. the rescat­

tering associated with the triangle graph. Such a contribution induces small variations in the A 
a 

-----~.". 

N .". 
which we have neglected, but when added as a separate term. it obscures the meaning of the 

partial wave amplitudes. In particular. the comparison with unitarity becomes difficult. 

The Fitting Method 

The LBL-Riverside group performed energy-dependent fits to the data, but most of the 

other analyses are done energy by energy. Various binnings of the events together with a X Z test 

minim.ization (as in Ref. 1) do not take correlations into account as efficiently as the maximum 

likelihood method chosen by the LBL-SLAC collaboration. A special optimization routine is, 

however. needed in the latter case. The program was able to treat up to 60 waves. We shall now 

briefly describe how a 'unique II solution is obtained using the likelihood technique. while other 

analyses were left with ambiguities. 

We started from a set of 60 partial waves representing all possible sets of quantum numbers 

with an orbital angula:t momentum of the final subsystem L' :s 3. At each of the i 7 energy bins, 

with -1.4.000 events at each energy. the i5 best from a set of 2,000 random searches were 

chosen as starting values in the optimization program. By eliminating waves that were compatibl{. 

with zero at several adjacent energies. checking for continuity and comparing the likelihoods. we 

obtained a small subset of significant amplitudes. The number of "necessary IL waves increases 

from 10 (at "'1.3 GeV) to 24 (at 1.9 GeV) and the solution is unique within this subset. We checked 

that no major wave could be removed without a dramatic worsening of the fit. On the other hand. 

when an amplitude which is -within 1 or 2 standard deviations from zero is taken out or replaced 

by another one. other waves change by less than a standard deviation. 
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How Good Are The Fits? 

1.� Histograms of Masses and Angles� 

The N1T, 1T1T mass spectra are well reproduced. Small systematic shifts are, however,� 

present in Fig. 2, which we were unable to cure by adjustments of the isobar mass. 

The production angle of the nucleon, 8, is shown in Fig. 3. As the energy increases, so 

does the backward peak. We do not account fully for this peripheral effect within our waves: 

higher partial waves would be needed at the end of our energy range. 

2.� Cross Sections� 
O�

The cross sections for '11' -p - '11'+ 1T -n, 1T p - 1T -1T p, 1T+P - f/11'°p are included in the fitting 

procedure. The predicted n'11"°11'° cross section shown in Fig. 4 is also in agreement with the 

measured values over the whole energy range. The fit fails completely, however J for n1T+11'+, 

finding less than 1/2 of the measured cross section. This is probably tied to the strong presence 

of N:,z,(1520), N;/2(1680) in this channel. 

3.� Comparison with Elastic Phase Shift Analyses (EPSA)� 

Below 1.55 GeV, the total inelasticity of each '!TN wave is accounted for by our results for� 

N11'1T, except in the case of S11 where the lrN - T)N channel is important. At higher energies, we 

always satisfy the unitarity bound, but miss a large part of the inelastic cross section in some 

isospin 3/2 amplitudes such as F37 and D35. This difficulty may again be related to the omission 

of Nt/2 resonances in the final-state interactions. 

Argand Plots 

At each energy, the inelastic waves are only defined up to an overall phase. A K matrix 

fit described belowyielded this phase which allows us to display the various amplitudes on 

Argand plots. We show the behavior of the channels coupled to the 1TN waves Pii, Pi3 on Fig.5(a) 
5 

and 5(b). D13 is described in the talk of C. Lovelace. 

We see clearly resonant -like loops which are not always as apparent in the elastic ampli­

tudes: Di3 with the second resonance around 1700, Pi3 and the broad effect in pN at -1800 are 

striking examples, but a K-matrix analysis is necessary to have quantitative information about 

the pole position. 

K -Matrix Parametrizations 

Once the energy-independent solutions have been obtained, we perform in a second stage of 

the analysis a multichannel K matrix fit in each subspace of Ir (isospin. total angular momentum, 

parity). 

Seven channels * are possible in principle: -rrN. 1Taf, lr.6.2 , Np1/2' (Np 3/2)1' (NP3/2)2' **� 
Ncr. but we never have to deal with more than five in practice. The reduced K matrix is param­�

etrized as� 

*:TwO '11'.6. (or P3/2N) waves, with LI differing by 2, can be present in each I, JP subspace. 
Pt 12' P3/ Z, re fer to the two passible couplings of P and N spins. 
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K-K 

where K. ~ ="{.r"( ~. The amplitude T is then computed and resonance positions are defined by the 
1J 1 J 

poles of T whenever the K matrix description is satisfactory. Table II summarizes the masses of 

a few resonances found in this fashion. 

Table II 

Pole Position 
(MeV) Pit P13 D13 D15 ~ F35 F37 

K Matrix Pole 1497 1800 1754 1520 1848 1685 1682 1933 1930 
±2 ±6 ±7 ±5 ±30 ±5 %15 ±30 ±4 

T Matrix Pole 1564 1738 1746 1506 16i 3 169t 1667 1802 1900 
-it t 50) -i( t 25) -it 175) -i(78) -i(67) -i(80) -i(82) -it 138) -itt 78) 

Error on Real 5 7 30 4 13 10 8 113 2 
Part of Pile 

The systematic study accomplished shows that smooth partial wave representations of the 

inelastic reactions can be achieved. Coupling constants to the quasi two -body channels are also 

being obtained. These results are by no means final. Two defects of the work must be stressed 

again: a lack of high partial waves and a poor description of n,/,/ caused by the neglect of N:/2 

isobars. 

Other groups (Oxford, Riverside, Saclay, ... ) have contributed not only to the data used 

by the LBL-SLAC collaboration, but also to the checkG of the programs. They are completing 

similar analyses. and it is clear that the agreement of several experiments is necessary to 

establish the results. 

I also want to thank all the other authors of the LBL-SLAC collaboration who have helped me 

'in the presentation of this material and especially Professor A. Rosenfeld whose interest in the 

subject provided a constant stimulation. 
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~---------

Notat ion for wave a: L L' I J 
Fig. i. Definition of the partial waves used in the isobar approximation. 

,,-p .. ""-II'. ,.90 (If_y) ..-p .. _-.. U'!IO 0I1I-y) 

.-. .. ....-... \930 (WeVj 

- +­
Fig. 2. Dalitz plot and its projections at four energies for the reaction 11' p - 11' 11' n. The dotted 

line is the data in the projected spectra while the saUd line is the fit. The side of the little 
squares in the Dalitz plot is proportional to the computed population density. 
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Fig. 3. Distribution of the production angle of the proton in the overall center of mass (with 
respect to the incoming pion. The dotted line is the data, the solid is the fit. 
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Fig. 4. Comparison of the fitted cross sections (x) with the experimental values. 

-38­



I.~ ..N PII 

12( • iii i i )... 
;: 10 I 1-,0GO 

I 
~  

-.0 
I 

.".6~- ~PPII  

i) 
"!780 

... ~ 

o 
I 

II 
1470 

vN~~PSIJ  

1IiO 
1.10 
U'O 
H30 
\770 
UtO 
18'0 
U.O 
lUO 
1870 
2010 

~~:~  ... 
US5 
1310 
1340 
1370 
'400 
1440 
un 
'4'0
lIl0 .. _."".0 

Dda 'or 

».••0 

'S'O 
151& 
UH 

1/1'" 
tlf 

• • Z:ITJ" from ",.a.", 

!I' III ttl 
t tf tt f 

8 

8 If ~rr rr 
4 II 

2 ~ tt'·'~'r  .., 
O....................................o.J......o..o....a............L.o...r....................l 

1.3 1.4 1.& 1.6 1.7 1.8 1.9 2.0 

.../S (GeV) 

0.2, iii i , , I 

0.2, iii , j j i 

f 
+ +ff 

t+
f0.011: I , I ' I I I 

1.3 1.4 1.& 1.6 1.7 1.8 1.9 2.0 

";5 (GeV) 

~ 0.1 

~ 0.1 

... 
~ 

... 
~ 

N 

E 

E0.0 l,I, , , , , I 1 
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

.../5 (GeV) 

j 
! 

UlP 

~;~~  

1310 
U4D 
U70 
1400' 
1440 
1470 
l4'0 
1520 
1540 

110 MirY 

P.ta tor 

1'•••0 

nao 
'Ufo 
UIP 

1$50 
UTO 
IUO 
H30 
17'"'0 
l810 
18S0 
18'0 
U30 
1970 
2010 

.". N 

PIN 

PI3 

~  

L'+ ~  

• 1860 .. 

: \ ~P13  

0.3 

:u~  pili 
t 

0.1 

Eo.o! I ,.',. ,,', ' j 
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

.../S (GeV) 

I~t vN PI3 

8 
C")

i : ::~~~ 1\lttrl 
t 2 1'1 
] 1 t 
b 0 • 

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

.../5 (GeV) 

Fig. 5(a) Fig. 5(b) 

Fig. 5. On the left, Argand plots for 1TN - 'ITN, 'ITN - (11'6, pN, aN) are shown. Letters are the results of the maximum likelihood fit (or 
EPSA). The curve is the K matrix fit. On the right: inelastic contribution of NlI''IT in the wave. and partial contribution of each chan­
nel (1TA. pN, ... etc.) to the crOBS section. a) Pit; b) Pi3. 




