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Introduction 

This is a review talk on joint work with R.Haag and J.E. Roberts 

(see [1,2,3] and references given there to previous works). 

Let us start with the question: why is there an alternative between 

the Bose and the Fermi type of particle statistics? 

This brings in succession two other questions: what are the 

possible statistics compatible with general principles; and: how is 

formulated the concept of statistics in terms of general principles. 

The usual description in terms of field operators cannot be entirely 

satisfactory since fields are not observable in general, (e.g. as soon 

as they do not commute with one another at spacellke distances) and 

also because you have to introduce from the outset into the formalism 

the type of statistics appearing in your theory, by assuming specific 

commutation relations at spacelike distances. 

These comments apply also to the superselection structure of a 

theory. For the sake of strong interaction physics with short range 

forces, that structure is customarily embodied into the field formalism 

requiring that the exact internal symmetries of the theory are described 

by a compact group, the gauge group of the theory. The choice of this 

group is in practice suggested by the empirical patterns of elementary 

particles and resonances. This group acts locally on fields but leaves 

the observables uneffected since they are by definition gauge invariant. 

Now first principles ought to be formulated precisely in terms of 

observables -- if you start from there? no special commutation property 

nor gauge invarlance is built in explicitly. 

Our input is the algebra of all local observable ~, acting on the 

Hilbert space ~0 they generate on the vacuum state vector ~: i.e. 

the vacuum superselection sector alone is given. 

Equivalently you might think as given the abstract C*-algebra Y& 

and a pure state ~0 on ~ , the vacuum expectation functional. 

This means: ~ is an irreducible C*-algebra acting on ~0" 

The main postulate is locality. To each nice bounded region ~ in 
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space-time (double cones) a subalgebra ~(~) of ~ is assigned, in a 

way which preserves inclusions; by definition ~(~) is generated by 

the local observables which can be measured within the space-time limita- 

tions of ~ . The closure of the union of all ~(~)'s is ~. 

Einstein causality together with Quantum Mechanics say that observ- 

ables affiliated with spacelike separated double cones commute. This 

locality postulate in turn defines what Is meant by "local observables" 

So it is natural to strengthen it by the so called duality requirement, 

so that the postulate becomes: 

(i) ~(~) is the set of all bounded operators on ~0 commuting 

with every observable spacelike located to the double cone 0-. 

In other words: B ~ 0Z(~) iff for each double cone in the spacelike 

complement ~' of ~ and each A E 0Z(~ I) we have 

AB = BA . 

By recent work of Bisognano and Wiehmann the duality requirement 

appears necessary for the existence of a suitable underlying Wightman 

field theory. 

Another requirement of this nature, which is actually used in a 

very limited way, is the additivity assumption saying that any small 

region in space time contains sufficiently many local observables to 

build up any local algebra: if ~I v... v ~n~ - (all double cones) 

then 

(i,) ( ~ (~) v • • .v~(~) }" ~ ~-(~-) • 

A detailed analysis of the possible superselection structures can 

be done on the basis of postulate (I). The statistics can be defined 

as a property of each superselectlon sector and Classified in a simple 

way. 

To relate this to properties of one particle states and scattering 

states one needs in full the general assumptions of relativistic quantum 

theories, namely 

(ii) relativistic ~varlance of the local algebras 

(iii) the vacuum is Poincar@ invariant and is a ground state in ~0" 

As mentioned this is not needed for most of the general analysis; 

to be quite careful, an algebraic consequence of (i'), (ii), (iii) is 
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freely used as a technical assumption, when needed [i]. 

Superselection Sectors and Statistics. 

Let ~0 be the set of vector states on ~ coming from ~0 and 

y(~) the set of all states on 6%. Since ~ is irreducible on 

~0 is a collection of pure states among which the superposition 

principle holds, and forms the vacuum superselection Sector. 

How does the structure of 0% determine the collection of all 

superselection sectors? 

We want a universal recipee to select from #(0%) the subset 

of "elementary" states which in the end will carry each a finite number 

of elementary "charges". 

The main criterion is that ~ ~ ~ should describe a deviation 

from the vacuum state which becomes negligible in far away regions of 

space. In general: 

The superselectlon sectors are then the coherence classes of pure 

states in ~r : 

superselection sectors = ~ ~ Pure states of ~%/~ 

where for pure states ~i,~2 on O~, ~i ~ ~2 means equivalently a. 

or b.: 

~I = m2 

b. there is BI2E ~% s.t., for all A ~ 0%, 

~2(A) = Wl(B~2AB12) 

i.e. ~2 results from ~i by a physical operation BI2 , which typically 

creates pairs but no single charge; a. and b. being equivalent by the 

theorem of Kadison. 

As you see the criterion to select ~ is of central importance. 

By making the foregoing precise, one can prove that, in theories describ- 

ing only short range forces, ~ is the vector states of the representa- 

tions of a special type, the localized morphisms. [i]. 

These are , isomorphisms P of ~ into 01, each localized in some 

double cone ~P ' i.e.: 
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p(A) = A if A e ~(@) and 6u is a double cone 

spacelike to 
P 

Let A be the collection of those localized morphlsms which up to 

a unitary equivalence can be localized everywhere ( a less stringent 

condition suffices, see [I]). This initial result implies 

i. each sector contains a strictly localized state ~p: here p ~ A and 

if A ~ ~r~ 

Up(A) = m0op(A) e ( ~ , p ( A ) n )  

so that Up = e0 on observables spacelike to ~p (in electrodynamics 

this would imply absence of electric charge by the law of Gauss). 

2. if ml' ~2 are such states, el = e0°Pi ' localized in mutually 

spacelike double cones, we can define an 9x act product state 

(1) el x e2 = ~0°P lP2 

i.e. ml x ~2 = m2 x ~o I and 

~I x m2(A ) = ~I(A) 

if A is an observable localized in a double cone spacelike to the 

localization region ~p of ~2' and conversely. 

Then we have the Theorem: if ml' m2 are strictly localized states in 

the same sector, and p~ & is any morphism in the class of that sector, 

(2) ~i x ~2 is pur e iff p(~) = ~. 

Now the product (i) composes the "charges" of the two sectors; such 

"charges" are labelled by the equivalence class of irreducible pe A • 

Allowing mixtures, as seems appropriate by (2), we can see that the 

equivalence classes of our representations are Just the elements of the 

quotient 

(3) z~/# 

of the semigroup ~ modulo inner localized automorphisms. The generaliz- 

ed charges (3) form a commutative semigroup; those corresponding to the 

localized automorphisms F(i.e. p E F if p ~ A and p(~g) =07-) form 

an abelian group F/~ in A/~, the group of "simple" charges. 
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The generalized charges A/J of a theory are found so far by 

classifying a subset of the states J (~) of 0%. It is however 

possible to construct them at least in principle from the vacuum sector: 

if ~ Is a strictly localized state with charge ~ and ~n is a 

sequence of double cones moving off to infinity In a spacelike direction, 

there is a sequence ~n ~ J0 of states with no overall charge s.t. 

mn(A) = ~(A) if A is an observable 

(4) associated to any double cone specelike to ~n ~ 

~n(A) ÷ ~(A) , A E ~. 

Thus ~ is the limit of states with the same charge ~ in the locali- 

zation region of ~ and with a compensating charge in ~n" If ~ is 

a simple charge i.e. ~ ~/~ , the compensating charge is ~-I If all 

charges are simple, the dual G of the discrete abelian group r/~ is 

the gauge group of the theory and is compact abelian. In theories with 

non abellan gauge groups there are conversely non simple charges as seen 

by the physical example of single nucleon states in a fully SU 2 in- 

variant theory: if ~i' ~2 are such states the product state ~i × ~2 

is a mixture of siSglet and triplet (compare (2)). 

Simple sectors can also characterized by the fact that the duality 

condition holds in the associated representations of ~ . 

A deeper characterization is: the simple sectors obey an ordinary 

(Bose or Fermi) statistics; the other sectors obey a parastatistics. 

This brings us to our second question: what is the statistics of 

a sector? 

The product operation (I) allows us to define quite generally such 

a notion without referring to one particle states. 

Let { be a sector and p~A a representative. 

Let ml,...,~n be mutually spacelike localized states of the same 

charge ~ . The product state 

(5) ~ i  x oj 2 x . . .  x c~ n 

is symmetric; it is a vector state in the representation pn Now 

p(~) is irreducible but pn(~) is reducible for n > 2 unless ~ is 

simple. In that case there are several linearly independent state 

vectors for (5) and they can change from one another under permutation 

of the factors. Indeed let ~l,'..,~n be state vectors for ~l,...,~n 

resp. in the representation P; ~i is unique up to a phase and given by 

~i = U~ 
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where U i is a local unitary in g~. To the product (5) corresponds a 

product 

(6) 

where U I x U 2 = UIP(U2) is an associative composition law between all 

pairs of intertwining operators (see Ill). 

One gets easily from this the permutation behaviour 

(7) W x...x W = (n)(p) ~IX... x 
p_l(1) p_l(n) ep n 

where e(n)(p) is a unitary in Cr~ commuting with pn(~) and p is an 
P 

" ~n)~) could depend upon element of the permutation group P(n). The 

the choice of el,...,Wn; however: 

Theorem. 0E P(n) + e~n)~) is a representation of P(n) depending upon 

(n) depends upon the sector ~ alone. p alone; its equivalence class E~ 

This result makes it possible and natural to define the statistics 

of the sector ~ to be the sequence {c~n); ~ n=l,2 .... } . Each s~n)" is 

specified by a set of irreducible representations each with infinite 

multiplicity. 

Which are the possible statistics? A priori, continuously many. 

However 

Theorem. To each sector ~ is associated a number X(~), the statistics 

parameter of ~, with values inverse integer or zero, which determines 

entirely the statistics of ~ as follows: 

if X(~) = O, c~ n)" contains all representations of P(n); 

(n) contains all representations 

of ~(n) with at most d(~) antisimmetrizations resp. 

symmetrizations for I(~) > 0 resp. X(~) < O. 

We see here that ~ obeys the ordinary statistics if ~ is a simple 

sector; the converse holds too i.e. ~ is simple iff d(~) = i. 

We say that ~ is a finite sector if X(~) # 0 and call Ix(~)1-1 

= d(~) the order of the parastatistics; ~ is paraBose resp. paraFermi 

if X(~) > 0 resp. X(~) < 0. 

Let E be the smallest set in A/~ containing the finite sectors, 

their products and their subrepresentations (but not all direct sums!). 

Then: 

Theorem. Each ~ Z is a finite sum of irreducible elements of Z; to 

each ~eE there is a statistics parameter i(~) as above and 
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Is a hom~orphi~m of the commutative semigroup Z into the multiplicative 

semigroup I. If ~e ~ and ~ = ~i~2 then 

,(8) 
d(~) = d(~ I) + d(~ 2) 

sign ~(~) = sign X(~i) 

It was mentioned before that each state in a sector ~ A/y is 

the limit of bilocalized states carrying the charge ~ and a compensat- 

ing charge which makes them neutral (i.e. in the vacuum sector). If 

is finite this compensating charge can be found by the the apposite 

process on such states, of removing ~ far away to spacelike infinity. 

The resulting state belongs to the conjugate sector ' characterized 

by: 

Theorem. Let~ be a finite sector; there is one and only one sector 

such that 

(9) ~'~ ~ vacuum representation ~)--. ; 

the sectors ~,~ have then the same statistics 

and the vacuum charge appears only once in (9). 

Note that this charge conjugation of superselection quantum numbers 

exists, as the statistics of the sectors and its classificatio~ solely 

on the grounds of the locality postulate (i), without use of space-time 

covariance principles. 

Note also the analogy between the structure of Z and that of the 

dual object of a compact gauge group. 

We call also attention on the fact that, in theories of short range 

forces, by the results of this section superselection charges appearing 

in compounds must also appear isolated, with a compatible statistics in 

the sense of the preceding theorems. 

Gauge sroups and parastatistics 

Statistics has been analyzed irrespectively of field commutation 
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properties, actually in a formulation where no field at all is given 

to transfer charge quantum numbers. 

If however you do deal with a theory specified by a field algebra 

~g and a gauge group G acting on it so that the observables are 

precisely the fixed points 

(io) ~. =/~(G)' 

then you can relate the superselection structure of grg and the statis- 

tics intrlnslcally defined by it to properties of G and of the field 

algebra ~. 

Firstly there is a one to one correspondence from the set of all 

classes of irreducible representations of G into the irreducible 

elements of Z; let 

(Ii) u ~G + ~u ~ Z 

be this correspondence; we have the theorem 

(12) dim u = d(~ u) 

that is parastatistics appear necessarilY as soon as the exact symmetry 

group is not abelian. 

Actually the relations (ii) and (12) are particular cases of a full 

correspondence between the dual structure of the gauge group G and 

the intertwining operators between the representations in Z (see [2]). 

This indicates that a compact gauge group should always be associat- 

ed with finite sectors, although the solution of this problem is not 

compelling for the physical interpretation of a theory: the "dual gauge 

structur@'is determined by the observables and gives all the informations 

usually derived from the gauge group itself: reduction of products, 

"Clebsh-Gordan coefficients" etc. (see [2,3]). 

About the theorem expressed by (12) we stress the fact that 

parastatistics might appear also if all fields obey ordinary commutation 

or anticommutation properties; the only relevant hypothesis is that 

fields should commute with observables at spacelike distances. In turn 

the statistics of the sector ~u determines partially the commutation 

properties of fields transforming like ~ (i.e. carrying the charge 

~u): if ~,~' are irreducible tensor field operators of type u, 

respectively which are spacelike located, then necessarily 

f ~g(~'~'W)dg = 0 
G 



272 

where ¥ = -sign(k(6u)). 

Statistics and Particles 

If you assume full Lorentz invariance, axioms (i), (ii), (iii) 

above, we have that: 

a. the spectrum condition P P~ > 0 follows from convariance in all -- 

finite sectors. 

b. if there is a one particle state [m,j,~] in the finite sector 6, 

s.t. there are finitely many descrete irreducible representations 

of the Poincar@ group with mass m in the sector ~, then there are 

antiparticle states [m,J,~] and the multiplicities are the same: 

v([m,J,6]) = v([m,J,~]) 

c. in the previous hypothesis, 

(-i) 2j : sign(k(~)). 

This expresses the generalized connection of spin and statistics; note 

that here none of these concepts is mediated by algebraic or eovariance 

properties of fields [2]. 

If particles [m,J,6] appear isolated from the continuum in the 

sector 6, by additivity of the spectrum [2] there is necessarily a 

mass gap in the vacuum sector and scattering theory can be developed. 

Indeed the exact product operation we defined between strictly localized 

state vectors can be used to deduce, by the usual limiting PrOcedure , an 

asymptotic product between one particle state vectors [2]. The resulting 

T. scattering states Wl ..e~w n are state vectors in a representation 

given by a localized morphism. 

Since scattering states describe assembly of asymptotically 

free particles we can ask what is the statistics of these particles. 

For this sake we study n identical particles of "charge" ~ each in a 

state specified by a vector ~i and a common reference morphism p. 
ex ex 

Then ~i × "'" × Sn is a state vector of pn and we find: 

ex ex (n) ex ex 
(13) W -i( x "If X ~ -i = ep (P)YI x''' x Yn 

p i) p (n) 

namely the statistics of the sector 6 defined in terms off strictly 

localized states coincides with that of the asymptotically free particles 

of charge 6. 
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The state vectors (13) have natural tensor product metric properties 

and can be used to calculate transition probabilities for scattering 

processes 

in in in in 
~out ~a I x... x ~ > = ... , ~ 

wag <~al x x ~an n 

~out where ~ is t~appropriate support projection for the outgoing 
v~v OUL 

state vector ~B x ... x ~B in the weak closure of the algebra ~L 

of quasilocal observables, de~criblng the possible final configurations 

contained in the (generally non pure) outgoing state. 

Problems 

Of the many open problems related to the subject, ! mention only 

three. The following statements should become theorems under same 

natural additional postulate besides (i) to (iii) above. 

1. Each localized isomorphism of 07- into itself is in A. 

2. Each 0 e A is covariant under Polncar4 transformations (from 

the covering group). 

3. Each irreducible element in A/J has finite statistics; 

i.e. no sector with infinite statistics occurs; see also [2, Appendix]. 

I hope that the relevance of these problems is clear from the content 

of this talk. 
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Discussion 

Kamefuchi (Question): Have you got anything to say about the CPT 

theorem within your formalism? 

Doplicher (Answer): Starting with local algebras generated by locally 

commuting or anticommuting bounded field operators, Henrl Epstein proved 

in 1967 that, if you assume asymptotic completeness, the S-matrix is 

CPT invariant. 

You can formulate asymptotic completeness in our scattering theory, 

and this assumption should imply quite in the same way CPT invariance of 

the S matrix. 


