
NLO CALCULATION OF f1/f IN QCD AND QED 
WITHIN THE LATTICE QCD FRAMEWORK. 

L. Reina 
Service de Physique Theorique, Universite Libre de Bruxelles, 

Campus Plaine - CP 225, Boulevard du Triomphe 
B-1050 Brussels, Belgium. 

Abstract 
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We present1 the results of our recent calculation of £' /E at the Next-to-Leading (NLO) 
order in QCD and QED, in the framework of D.S = 1 Effective Hamiltonians. The operator 
matrix elements are taken from lattice QCD, at a scale µ = 2 GeV. NLO corrections seem 
to lower the value of E1 /E, favouring the experimental result of E731. Contributions from 
different operators are analyzed and dependence on m . ,  µ and AqcD discussed. 

1 Work done in collaboration with M. Ciuchini, E. Franco and G. Martinelli 
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Introduction 

We have calculated the Effective Hamiltonian for t!.S = 1 decays at NLO in QCD and QED 
[8, 9]. The Wilson coefficients of the t!.S = 1 Effective Hamiltonian have been derived from the 
( 10  x 10) anomalous dimension matrix, which includes corrections at orders a., a! , a, , _ a,a,. 
The matrix elements for the corresponding operators have been taken from lattice QCD . 

The knowledege of the t!.S = 1 Effective Hamiltonian at NLO in QCD and QED is 
important for several reasons: 1) heavy mass (like m,) effect8 are indeed a NLO effect; 2) the 
stability of the perturbative calculation can be checked and a limit on its reliability can be 
fixed; 3) the Aqcv parameter can be used in a proper way, taking it from different experiments; 
4) the effect of different operators in the OPE (QCD-penguins, QED-penguins, etc.) can be 
better determined. 

We finally present our results for the t'/t parameter of direct CP-violation in K-decays. 
The effect of QCD and QED corrections at NLO seems to lower the value of t'/ t, favouring the 
experimental value of E731 [ 1 1] . 

.0.S = 1 Effective Hamiltonians at NLO:  general results 

The Effective Hamiltonian for t!.S = 1 decays is given by: 

H�l! A. �[(1 - r) (C, (µ) (O, (µ) - o;(µ))  + C,(µ) (O, (µ) - o;(µ))) 
+ T I: O, (µ)C, (µ)] ( 1 )  

•=3, . .  ,10 

where A. = V •• v:, and similarly we can define A, and A,. T = -A,/ A. and V., is one of the 
elements of the CKM mixing matrix. 

We have used the following complete basis of operators when QCD and QED corrections 
are taken into account: 

Vertex-type -+ I 
0, = (�adalcv-A)(�pup)(V-A) 

0, = (s0dp)(V-A)(upua)(V-A) 

O; = (sada lcv-•1 (cpcp)cv-•) 

QCD-Penguins 

QED-Penguins 

o; = (sadp)(V-A)(CpCalc v-A) { 03.5 = (sada)(v-•) L,=•.•.• (ijpqp)(v�A) 
--+ 04,6 = (Sadp)cv-A) Lq=u,d,. (q,eqa)(v=J=A) 

-+ 

{ 0, .• = � (s.da)(v-A) L,=•·•·• e,(ijpqp)(vH) 

Os.10 = Hsadp)(V-A) Lq e,(ijpqa)(v±A) 

where the subscript (V ± A) indicates the chiral structure and a and fl are colour indices. 

(2) 

The operators O, (µ) are renormalized at the scale µ < Mw in MS in some given regu­
larization scheme (e.g. HY ('t Hooft-Veltman) or NDR (Naive Dimensional Reduction) ) .  The 
corresponding coefficients, C. , a.re a.lso scheme dependent . 

We ha.ve matched the full and the effective theory at µ = Mw. This gives the initial 
conditions for the evolution of the coefficient functions. It's here that the main dependence 
on the heavy top mass enters. Then, at a generic scale µ < Mw, the NLO evolved coefficient 
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function can be expressed as [8, 9, 2, 4, 5] :  

C(µ) = W[µ, Mw)C(Mw) (3) 

where C(µ) is a vector, whose components are the corresponding Wilson coefficients. C(Mw) 
is the vector of the initial conditions at µ = Mw and W[µ, Mw) the renormalization group 
evolution matrix. The matrix W[µ, Mw) depends on the one-loop and two-loop coefficients of 
the Anomalous Dimension Matrix (ADM) "t for the operator basis in (2): 

' " - � " (0) + O'e " (0) + � " (l)  + a. O'.e " (1)  
/ - 411" /, 411" /, (47r)' /, 411" 411" /, 

(4) 

Both C(Mw) and W[µ, Mw) are regularization scheme dependent . We have computed C(Mw ) , "f�1l and "f�1l both in HY and NDR scheme and verified the scheme independence of the final 
result ( 1 ) .  Moreover, we have checked our results both at the matrix level and at the diagram 
by diagram level. 

In ref.[9] we discuss all the technical details of our calculation and the differences between 
our results and those obtained in ref. [2, 4, 5] by the Munich group. 

Results for E1 / E 

In the expression for €1 (e'6·A, = (7r7r(l = i ) IH��Jl=1 j[{)) : 
(5) 

the real parts ReA0 and ReA2 are taken from experiments (w = ReAo/ReA2 = 0.045), while 
the imaginary parts ImA0 and ( ImA2)' can be derived from 1i�5J' in the following form: 

(6) 

and 

(7) 

where we have introduced (ImA2)' defined as: 

(8) 

018 = 0.25 ± 0.10 represents the isospin breaking contribution, see for example ref. [3] . 

The Wilson coefficients have been calculated at the NLO in QCD and QED as explained 
before. The matrix elements of the corrisponding operators have been expressed in terms of 
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Bi-2 Bs,s 

0.8 ± 0.2 1 .0 ± 0.2 

B(1/2) 7-8-9 B(3/2) 7-8 

1 .0 ± 0.2 

Table 1: Values of the B-parameters. Entries with a <-> are educated guesses; the others are 
taken from lattice QCD calculations. 

quantities X, Y and Z (see [7, 8]) and B-parameters taken (whenever possible) from lattice 
QCD. We recall that the B-parameter for a given operator is defined as the ratio of its matrix 
element to the same matrix element evaluated in the VIA (Vacuum Insertion Approximation). 
The values of the still missing B-parameters are guessed on the basis of some reasonable argu­
ments. In particular, o:';,, turn out to have negligible coefficients; while O�,, and O,,, have very 
large coefficients. Thus we have fixed B;�', to their VIA value (= l ) ; while we have allowed 
B;,2 and B3,'l to vary in a quite large rang�· around their VIA value (0 and l respectively) .  For 
a more detailed discussion and full references on recent lattice calculations see ref. [7, 8]. We 
report the values used for the B-parameters in Table 1 .  

Writing t '  / t in terms of relative contributions of different operators with respect to the 
0, penguin operator, i .e.: 

(9) 

where !1; = C;B;/C6B6, we get that terms !1�, !14, !1�'.�.9 give the main contributions. A detailed 
discussion of the phenomenological analysis performed is presented in ref. [8]. 

Our results can be summarized as follows: 

• Fixing m, = 140 GeV, µ = 2 GeV and allowing B-parameters, m,, AqcD, !118, CI<M 
parameters, etc. to vary around their central values (see Table 2) ,  we get an idea of the 
theoretical incertainty and of the influence of NLO corrections. The main observation is 
that, the sums !12 + !14 and !1Y' + !1�1' + !1�1' (despite significant individual variations from 
LO to NLO in the last case) are almost stable with respect to NLO corrections. Therefore 
the behaviour of the central value of t' / t is still governed by the contribution of 0, and 
the decreasing of C6 with NLO corrections lowers the central value of t'/ t, favouring the 
E731 result (see Fig. (2 ) ) .  

• Varying m, between 100 GeV and 200 GeV, we find that NLO corrections are much more 
important for higher va.lues of m,. Thus the central value of t'/ t decreases with increasing 
m, (see Figs. ( (2 ) - (3 ) ) .  

• Varying µ and Aqco (see Table 2) , we note that below µ � 1 GeV the perturbative 
approach is not reliable anymore; while the behaviour of the Wilson coefficients is quite 
stable for higher values of I' (see Fig . ( 1 ) ) .  This observation greatly supports the use of 
lattice results, which allows to match matrix elements and Wilson coefficients at a scale 
µ � 2 GeV. 



parameter 

Aqcv 
m,(2 GeV) 
m,(2 GeV) 
m,(2 GeV) 

A>.2 
� = v.b/(>.Vcb) 

f�xp 
ReA0 

value 

340 ± 120 GeV 
(170 ± 30) MeV 

1.5 GeV 
4.5 GeV 

0.04 7 ± 0.004 
0.50 ± 0.14 
2.28 . 10-3 

2.7 · 10-1GeV 

Table 2: Values of experimental parameters used in this work. 
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Figure 1: CG and Cs as a function of µ for AQcD = 220 (dotted),340 (solid) and 460 (dashed) 
MeV. 
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Figure 2: Band of allowed values for <'/< at m, = 100 GeV at LO and NLO. The dashed lines 
represent the experimental results of NA3 1 ,  (2.3 ± 0.7) · 10-3 [10] and E731, (O. 74 ± 0.59) · 10-3 
[ ll ] .  
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Figure 3: Same as in Fig.(2), only at NLO, for m, = 140 and m, = 200 GeV. 


