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Preface

There are four fundamental interactions in nature. The electromagnetic
force describes not only electric and magnetic fields, but also optical phe-
nomena and other forms of radiation. The strong force, active in atomic
nuclei, keeps the quarks together in protons and neutrons. Finally, the
weak force is responsible for phenomena such as the beta decay of neutron
into a proton while emitting an electron and a neutrino in some radioactive
nuclei.

These first three forces dominate small scales from millimeters to 10716
millimeters. Together they describe the dynamical features of the so-called
Standard Model. This theory requires a full use of quantum mechanics,
which is very different from classical physics, like Newtonian mechanics,
Maxwell’s electromagnetism or general relativity. For example, it is an es-
sential feature of quantum mechanics, that simultaneous measurement on
all observables of a system cannot be made with arbitrary precision, even
in principle. A classical theory is deterministic: knowing all initial condi-
tions of a system enables us to predict its state in a later time exactly. A
quantum theory is non-deterministic, it predicts probabilities for the state
of a system at a later time.

For the fourth force, that of gravitation, we only have a classical the-
ory called General Relativity. General relativity is an extremely success-
ful model of gravitation in four dimensions agreeing with all experimental
data from cosmological distances to millimeter scales. So there is a classical
theory describing gravitation on macroscopic scales and a quantum theory
describing matter on microscopic scales. No deviations from their predic-
tions have ever been observed, however, this situation cannot be logically
consistent. There is one scale, called the Planck length, where effects com-
ing from all theories are expected to be important. At this scale all forces
should act together and therefore be in harmony with one another. It has
been a long-standing open issue to unify the standard model and general
relativity or to find the quantum theory of gravitation, which would predict
new physics at that scale. The value of the Planck length is 10732 millime-
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Preface

ter, which is 16 orders of magnitude smaller than the best resolution we
can achieve in modern particle physics, where large underground particle
accelerators are being used to probe small scales using particles with the
highest available energy. The Planck regime is therefore inaccessible using
today’s technology. It may seem that we do not need a quantum gravity
theory and there is no experimental evidence for its existence. However,
we do have theoretical evidence that such a theory should exist.

In quantum mechanics the position x and the momentum p of a particle
cannot be measured with arbitrary precision. The more accurately its posi-
tion is determined, the less precise our knowledge is about its momentum
and vice versa. The uncertainty around a sharp, exact value of the location
of the particle is Ax and the uncertainty of its momentum is Ap. Accord-
ing to quantum mechanics the product Ax - Ap cannot be smaller then £,
a fundamental constant in quantum mechanics. On macroscopic scales it
is a tiny number: for an object of weight 1 kg moving with 1 meter/s, the
uncertainty is around 1073* meter. Classical general relativity nevertheless
can be used to measure both x and p precisely which would be a contradic-
tion. This indicates that there is an inconsistency of the combined theory
of quantum mechanics of matter and classical general relativity as a funda-
mental theory of nature. There has to be a quantum gravity theory, which
reduces to general relativity on macroscopic scales. Among others it should
explain the formation and evaporation of black holes and the physics of the
early universe.

Physicists have been trying to construct quantum gravity since the 60’s.
The situation is a bit different from the birth of fundamental theories of
physics in the last couple of centuries. At that time, modifications about the
current view about nature were forced upon us by numerous experimental
observations. Now, for quantum gravity, the only guiding principle in the
construction of the theory is that it must reduce to general relativity in the
macroscopic regime. We can guess a great deal about features of quantum
gravity, but the full theory itself has not yet been not found. To summarize
the fundamental difficulty: the conventional quantized particle theories are
formulated in a given spacetime, whereas in general relativity spacetime is
an outcome of the dynamics of the theory. In general relativity, spacetime
is determined or created by the type and the distribution of matter. How
to reconcile these two fundamentally different approaches is a deep and
fundamental problem.

In modern science, if a problem turns out to be too difficult to solve,
one can try to solve a simpler model of similar nature, with the intention
to generalize it to the original later. In this thesis, we have chosen to re-
duce the dimensionality of spacetime from four to three. That is to say,
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Preface

the number of space dimensions went from three to two. We studied grav-
itating point-like particles moving in two space dimensions. For example,
we have a sheet of paper, or a surface, like the surface of the Earth or a
donut. The point-like particles have no size, but they have masses so they
interact gravitationally. There are no such objects in the four dimensional
world, since, if we try to “squeeze” matter in a too small region, it becomes
a black hole. A black hole, however, is an extended object with a horizon
separating its “inside” from the rest of the world. In other words, black
holes have a finite size. This, however, cannot happen in three dimensions,
where particles can be truly point-like.

Furthermore, what is peculiar about particles living in three dimen-
sions, is that they do not really feel each other in a way planets do in
nature, they follow straight lines. Both space and time surrounding a point
particle in three dimensions are locally flat. However, a particle creates a
“cone” around itself. Consequently, the locally straight trajectory of a parti-
cle may seem to be bent when regarded from a distance. This phenomenon
is illustrated in the figure on the top of this page. The right side of the
figure can be reproduced from the left with scissors and glue as indicated.
We are at point O in the “two dimensional sea” and look to the left towards
a small ship A. There is a heavy tanker at point B. We see that the ship is
going straight and we see it from behind, but looking to the right we see
the front of the ship far away coming towards us! This was an illustration of
the effect caused by a point-like massive particle B when Einstein’s general
relativity is applied in three dimensions.

An important motivation for studying three dimensional quantum grav-
ity is that this theory is classically soluble. Quantization of classical systems
has been studied and a general experience is that if the classical system
is exactly solvable, then so is the quantized system. One can say, that if
the space of classical solutions is known, then quantization becomes easier.
This is a motivation to study the space of the solutions of three dimensional
gravity. Apart from conventional physical motivations, it is also highly in-
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Preface

teresting by itself as a mathematical problem.

Given some initial configuration, the Einstein equations of general rela-
tivity determine all of spacetime. There is a great arbitrariness in choosing
this initial configuration, because there is no absolute notion of time in
relativity. Suppose that the initial system were a disc with a circle at its
boundary. Then spacetime would be similar to a solid cylinder as we view
how the disc evolves in time. In other words, every slice of the cylinder
which is parallel to the initial disc, shows the disc at different moments of
time. However, one could slice this cylinder not only parallel to an initial
disc but also slightly askew. This would correspond to a different choice
of the time coordinate. Then the same spacetime would be represented as
a collection of ellipses. One feature remains universal. The notion of an
event A being before B means that A can send a message to B and this
signal can travel at most with the speed of light. We then say that A and B
are causally connected. Whenever we give an initial slice, it is not allowed
to have any pair of points in it that are causally connected. Apart from this
restriction, we are free to choose the initial slice. It does not have to be an
ellipse, it can be a complicated surface sliced from that cylinder.

In the polygon representation of three dimensional gravity, the time
slice is a collection of polygons in such a way that every edge of a polygon
is identified with another edge of another (or the same) polygon. In other
words, if an observer leaves a polygon, she reappears in another. The par-
ticle we described in the beginning easily fits in this picture: a corner of a
polygon is a point particle if the two edges it separates are identified. Then,
there would be a cone around that corner if we glued the identified edges
together as it was shown in the beginning. This simple model is the main
topic of this thesis. It can be simulated on a computer. It contains strik-
ing features: big bang, chaos and mathematical richness. Furthermore,
constructing and studying this simple system made physicists come to im-
portant qualitative conclusions concerning real four dimensional quantum
gravity. For the brave and the expert, a notable reference is [1].



Chapter 1

Introduction to 2+1 gravity

The quest for a theory of quantum gravity has been pursued in many ap-
proaches in mathematical physics. Apart from direct proposals, which may
be tested in the future by experiments, numerous branches of research fo-
cus on certain problems in formulating the theory in simplified settings.
Results and experience coming from toy models often generalize to the
physically more interesting cases and help us to identify methods and gen-
eral features of the system that we wish to understand.

241 gravity is one important example of such a toy model. It is much
simpler than the realistic four dimensional case. It teaches us that discrete-
ness can result from quantization without breaking Lorentz invariance. It
gives us an indication how, at least in principle, a quantization procedure
for the gravitational force might be set up.! It teaches us that timelike and
spacelike quanta of geometry can have different spectra, see section 3.3.

The reason why gravity in three dimensions is much simpler than in
four is the absence of local degrees of freedom. We can see this by means
of a counting argument. The number of phase space degrees of freedom
is given by the number of independent components of the dynamical vari-
ables, the spatial metric and its conjugate momentum, minus the sum of
the number of independent constraints and symmetries of the theory. For
gravity in d dimensions, both the spatial metric and its conjugate momen-
tum have d(d — 1) /2 independent components. d components of the (Ein-
stein) equations of motion contain no time derivatives, they are constraints
among the independent variables, and there are d reparametrization sym-
metries of the coordinates also known as diffeomorphism invariance. The
number of local degrees of freedom is thus

d(d—-1)—-2d =d(d - 3), (1.1

!There has been substantial progress for the simplest case of the torus topology.



Introduction to 2+1 gravity

which is zero for the case of d = 3. One can also argue in the following
way. In three dimensions the Ricci tensor R,, determines the curvature
tensor R, completely. The consequence of this and the vacuum Einstein
equations 2R,, = —Ag,, where g,, is the spacetime metric, is that the
spacetime has constant curvature (proportional to the cosmological con-
stant A). Phrasing it in physical terms: there are no gravitational waves in
three dimensions.

Nevertheless, the theory is nontrivial due to global degrees of freedom
and is worth studying. Let us give a short list of arguments why.

e Physical degrees of freedom may come from nontrivial topology of
space, but also from objects like point particles, which can be consid-
ered as a special limit of matter fields. A point particle is a point-like
mass, a naked singularity in three dimensions, which creates a con-
ical geometry around itself. This will be explained in more detail in
the next chapter. Note that besides the point particle, the Einstein
equations also have black hole solutions: geometries, where the sin-
gularity is behind a horizon. These solutions, however, only exist if
the cosmological constant A < 0.

e The model is classically soluble. Due to developments in the field
of three dimensional geometry and topology [2], we can enumerate
all possible manifolds which are solutions of the Einstein equations.
Furthermore, we can explicitly reduce the infinite dimensional phase
space to a reduced phase space of finite dimensions. Quantization of
a finite dimensional phase space is quantum mechanics rather than
quantum field theory, hence, considerably simpler.

e Viewed as a field theory defined by the Einstein-Hilbert action

1
Ilgw] = e JdBX\/Tg(R —27), (1.2)

where G is Newton’s constant, 2+1 gravity is non-renormalizable,
since Newton’s constant has the dimension of a length (in units ¢ =
h=1).2

e Many conceptual problems are inherited from four dimensional grav-
ity: The observables are invariants under diffeomorphisms, in partic-
ular time translations. They are thus constants of motion. Where

2If the first order formalism is used, this problem seems to disappear, but we have not
been able to apply it in the presence of matter [3].
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Introduction to 241 gravity

to find the dynamics and what is the appropriate time coordinate
with respect to which one should formulate the dynamics, are dif-
ficult questions. One hopes to be able to answer them first in the
simplified setting of 2+1 gravity.

¢ In the canonical formalism of three dimensional gravity, there are no
second class constraints. These are present in a general constrained
Hamiltonian system, if only a subset (called first class) of the Poisson
algebra of constraints closes. If this is the case, before quantization,
the Poisson bracket has to be replaced with the Dirac bracket [4] or
the second class constraints have to be solved by introducing a new,
smaller set of dynamical variables to the system. In four (and higher)
dimensional gravity this causes major complications.

e Due to the absence of local degrees of freedom, the theory is topologi-
cal, which is manifest in the first order formalism as we will see in the
next section. Among others, this means that one can discretize space-
time, e.g. by means of triangulation, while still keeping the exact set
of dynamical variables.

In the rest of this chapter we shall review the classical approaches con-
centrating mostly on the simplest sector of the theory, the case when the
cosmological constant vanishes. Since classical general relativity in 2 + 1
dimensions is well understood?®, the different approaches to the theory are
developed in order to serve as starting points for the quantum theory. Apart
from a few remarks, we will concentrate on the classical formulations and
postpone the aspects of quantization to the last chapter.

Two influential publications appeared at the end of the 80’s. In [5]
Deser, Jackiw and ’t Hooft wrote down the generic one-particle solution to
the Einstein equations for A = 0. They started from a static ansatz for the
metric and the expression for the stress energy tensor of a static point-like
source given by Toy = m 6? (¥ — 7)), and solved the Einstein equations.
They also computed the solution for a stationary, axially symmetric ansatz
for the metric and derived the angular momentum. As a combination of
these results the line element of a spinning, massive particle reads:

ds* = —(dt + 4Gsdd)? + dr* + (1 — 4Gm)*r*d¢* . (1.3)

After the transformations t’ = t + 4Gs¢ and ¢’ = (1 — 4Gm)¢, the form of
the above metric is Minkowskian everywhere, except at the origin. Further-
more, there is a cusp stretching from the origin with an unusual matching

3There are many unsolved questions though; we will see some examples in the next
chapter.
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condition
(t +8xGs, r, ¢ +8xGm) = (t, r, P) . (1.4)

This geometry is of a “helical cone”, its deficit angle at the tip is 87Gm and
the time shift is 4Gs. We will discuss this geometry in more detail in the
beginning of the next chapter.

The second important result is that of references [6, 3], where it was
proven that the pure gravity sector is equivalent to a Chern-Simons theory
with a Poincaré (ISO(2, 1)), de Sitter (SO(3, 1)) or anti de Sitter (SO(2, 2))
gauge group depending on the sign of the cosmological constant A. In
order to explain this result and for later convenience we shall now present
a short introduction to the first order formulation of gravity.

1.1 First order formalism

This formulation of gravity in arbitrary dimensions is long known and
widely used in the quantum gravity community, see [7] for an early paper
on the topic. In this approach to gravity there are two sets of dynamical
variables. One is given by the vielbein, which is locally an so(d — 1, 1) Lie
algebra valued one-form. The second field is an SO(d — 1, 1) connection.*
Hence, the theory resembles a gauge theory and in three dimensions it is
in fact a gauge theory, as we will see.

The first order formalism is usually considered as classically equivalent
to the second order formulation of gravity in terms of the metric. Whether
this equivalence continues to hold for the quantized theory depends on how
the quantization is done. There may well exist different, inequivalent quan-
tum versions. The issue underlying this opinion is that the phase space of
the first order formalism is larger than that of the second order formalism:
it contains configurations, which correspond to degenerate metrics. The
Einstein equations can only be recovered from the first order formalism,
when the metric is non-degenerate. Note also that the symmetry algebra
of the metric formulation, i.c. the diffeomorphism algebra, is contained in
the gauge symmetries of the first order formalism only on shell. Further-
more, finite diffeomorphisms, which are not connected continuously to the
identity map, are not symmetries of the first order approach, if we think of
it as a gauge theory [8].

Let us now explicitly define the fundamental variables and explain how
to interpret them physically. The vielbein is denoted by ejj, where 1 is a
spacetime index and a is a flat Minkowski index. The vielbein is interpreted

“In the case of Riemannian gravity, SO(d — 1, 1) is replaced by SO(d).

4



First order formalism

as a local observer: in his Lorentz frame at the point x the spacetime vector
vH(x) is measured as vi(x) = eﬁ (x)v#(x). The metric in terms of the
vielbein reads

g = €l e Nap (1.5)

with 14, being the Minkowski metric. We adopt the convention of using the
signature (— + +...) for the Minkowski metric n4. It is used to lower and
raise flat indices labeled by latin letters a,b = 0,1, 2... from the beginning
of the alphabet. Greek indices stand for spacetime indices and latin indices
i, j, k... for space indices.

There is an extra local Lorentz symmetry acting on the flat indices of
the vielbein, which leaves the form of the metric (1.5) invariant. We need
to introduce a Lorentz connection for parallel transporting those indices,
just like the affine connection is used for parallel transporting spacetime
indices. The Lorentz connection is called the spin connection and denoted
by wﬁb. It is antisymmetric in the flat indices, since it lives in the adjoint
representation of the so(d — 1,1) Lie algebra. In three dimensions, the
adjoint representation of the Lorentz Lie algebra so(2, 1) is equivalent to
the fundamental one and one may use the quantity with one flat index for
the spin connection defined by
1 b

a— Zga

(d‘u 3

“Wube s Wpab = €qbe W), - (1.6)
In order to indicate that the formalism is not specific to three dimensions,
however, we will use the quantity with two indices. We impose the re-
quirement that the vielbein should be covariantly constant, which can be
regarded as the definition of the connection w:

oue; — T eq — wzbeﬁ =0, (1.7)
where T}, is the affine connection. Eq. (1.7) also implies that the affine
connection is compatible with the metric (1.5). Furthermore, the curvature
of w:

a _ a __ a _ ,.a C a c
wa(w)—é#wyb éywub Wy Wy + Wy Wy (1.8)

coincides with the usual definition of the curvature in the following sense:

6 _ ra
RS, =F

5 b _ 5 B B 5
o €ala = O0aly —0pTg, + T, T — T TG (1.9)

av = By pv=ay -
The Hilbert-Palatini action of the first order formulation for d = 3 is

bc A

Sle,w] = JM Eape P (eﬁ F(w) — gez es e, - (1.10)
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Note that we introduced the units 16ocG = 1, which will be used from this
point on. The equations of motion read

A
2Fa1/b(w) = E(ez €up — 65 eyb) 5 (111)

Dyel—D,el = 0, (1.12)
where Dyejf = 0, ef —w;, e b is the gauge covariant derivative. The second
equation means that the spin connection is torsion free. This torsion given
by the lhs. of (1.12) is proportional to the usual definition Iy, — I'},,. Thus,
(1.7) and (1.12) assure that the affine connection is the unique Levi-Civita
connection associated to the metric (1.5).

The first set of equations of motion (1.11) implies for the Ricci tensor:

A
R = Fapbe ea = Eg#,/ 5 (1.13)

1
where e’ is the inverse of the vielbein satisfying el e2 = 65 and e e b = 82,
We can now see, that Einstein’s equations can only be recovered if the
vielbein is non-degenerate.®

In three dimensions we can write down the following two sets of sym-
metries of the action (1.10). One is the local Lorentz transformations

a_ sa ,bc a _ ,a d
be, =€,.€, T, bwyy, = €5, 0u T — € Wy 5 T . (1.14)

The other is the local translations
Set = 0, p* —wi,p®,  bwl, = Aleys p® —ef pp) (1.15)

where 7%(x) and p?(x) are the parameters of the local gauge transforma-
tions. The action is a scalar, so it is invariant under diffeomorphisms. The
infinitesimal diffeomorphism symmetry generated by the vector field {*(x)
is contained in the above gauge symmetries. If we write p® = Hejj, T¢ =
g‘“wﬁ, the combined transformations (1.14) and (1.15) coincide with the ex-
pressions of the Lie derivatives of the fields with respect to the vector field
¢#* modulo terms proportional to the equations of motion. It is this subtle
modification of the symmetry algebra, when carried along off-shell, that
may lead to inequivalent quantum models. Note also that the first order

°Note that everything written so far goes almost identically in d dimensions. However,
because the number of vielbein factors in the curvature term is d — 2, the variation with
respect to the vielbein yields F A e A ... A e for the lhs. of eq. (1.11), which, for d > 3, is
N———
d-3
proportional to the Einstein tensor rather than the curvature tensor.

6



First order formalism

phase space contains configurations that correspond to degenerate metrics
and this even allows for spatial topology change [9, 10, 11].

It has been pointed out in [3] that one can construct a connection A =
Aff Tx dx*, where Ty are the 6 generators of a Lie algebra and Aff are linear
combinations of wj; and ej with the following properties. The symmetries
given by eq. (1.14) and eq. (1.15) give a genuine gauge transformation for
the connection A. Furthermore, the action in terms of A acquires the form
of a Chern-Simons gauge theory

S[A]=£J Tr(A/\dA-l-%A/\A/\A) . (1.16)
47 M 3

The symbol Tr stands for an invariant, non-degenerate, bilinear form of the
Lie algebra iso(2, 1), so(2,2) and so(3,1) for zero, negative and positive
cosmological constant, respectively. Its existence is a nontrivial fact. The
coupling constant is given by k = -1/ \/W for A # 0 and by k = —1 for
A = 0. The equation of motion for this action is

F(A) =0, (1.17)

where F(A), as usual, denotes the curvature or field strength of the con-
nection A. This is another manifestation of the absence of local degrees of
freedom.

We now restrict ourselves to A = 0 when specifying the details of how e
and w are encoded in A. The formulae for other values of the cosmological
constant can be found in [12] or in the original paper [3]. The Poincaré
connection for A = 0 reads

A = (e, Py + wy J)dx" (1.18)

where P, and J, are the translation and Lorentz generators of the Poincaré
algebra iso(2, 1), respectively. A bilinear form is:

Tr(JeP?) = n%®, Tr(J%J?) = Tr(P°P®) = 0. (1.19)

In other words, the triad and spin connection together constitute a gen-
uine Poincaré gauge field. The action (1.16), defined on closed manifolds,
is invariant under infinitesimal gauge transformations (this statement is
non-trivial, because of the unusual dependence of the action on the gauge
fields). A recipe for its quantization is given in [3], but explicit calculations
have been done only for the case that the topology of space is the torus
[13, 14].
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We finish this section by mentioning the most important results for
nonzero cosmological constant. A black hole solution was found in [15]
and later it turned out that this three dimensional black hole can be cre-
ated by point particles [16]. All possible black hole solutions were classified
recently [17]. Let us note that a topical paper [18] indicates that the differ-
ent sectors of 3D gravity corresponding to the sign of the cosmological con-
stant and the signature of the metric (Riemannnian (+ + +) or Lorentzian
(— 4+ +4)) are related. In this thesis however, we restrict ourselves to the flat
case, that is, when the cosmological constant is zero.

1.2 Zero cosmological constant

This is the simplest sector of the theory. As will be explained below, the
physical phase space has the usual global, linear structure parametrized by
positions and momenta with the canonical Poisson bracket. Note that for
non-vanishing cosmological constant this is not the case. It is straightfor-
ward to quantize such a phase space. In the Schrodinger representation,
wave functions are given by square-integrable functions on the configura-
tion space. The operators representing the coordinates act by multiplication
and the momenta act as derivatives with respect to the coordinate. How-
ever, since the Hamiltonian is identically zero in the reduced phase space, it
is difficult to extract dynamical information from the spectrum of the above
operators. In the following we will show how the physical phase space can
be extracted. Our starting point is the Hamiltonian framework, which we
will describe in both the second and the first order formalism. The reduc-
tion of the phase space to the physical one will be done in both formalisms
in the next section.

The starting point of the canonical formalism is the space-time decom-
position of the metric a la Arnowitt Deser and Misner [19]:

ds* = —N2dt* + g;;(dx' + N'dt) (dx’ + N'dt) . (1.20)
;i (x',t) is the Riemannian two-metric on a spacelike hypersurface 3 la-
beled by the coordinates x'. The functions N(x,t) and Ni(x,t) are called

the lapse and the shift, respectively. The two-metric g;; and its inverse g9
are used to lower and raise the spatial indices i, j. Let us define the quantity

i = 1/(2)g (KY - ¢'K), (1.21)
where K;; = +(00gj — @ViN; — @V;N;) is the extrinsic curvature for

the ADM metric above and ¥V, denotes the Levi-Civita covariant deriva-
tive with respect to the metric g;;. It characterizes the embedding of the

8



Zero cosmological constant

equal time surface ¥ in the spacetime manifold.® We can now write the de-
composed Einstein-Hilbert action (1.2) (with 16xG = 1) in the following
compact form

I= Jdtj d?x (7 09 gij — NH# — N; H') (1.22)
>
with
ijy _— 1 ij 2 (2)
H(gij, 1) = —= (" m;j — 1) — V@g(PR-2A), (1.23)

V®@g
called the Hamiltonian constraint and
e’fi(gij,ﬂfij) = _2(2)Vj v, (1.29)

called the momentum constraint. The Cauchy data (g;;(x, to), T (x, to))
at a given parameter t, determines the whole spacetime if ;, is a Cauchy
surface.” The Poisson brackets can be read off from (1.22)

{800, 70} = %(65‘ & + 8{65)6(x, x) (1.25)

The equations of motion coming from the variations with respect to the
Lagrange multipliers N and N' are the constraints # = 0 and #' = 0,
respectively. They do not contain time derivatives of the fields. Further-
more, they are first class, the momentum constraints generate spatial, the
Hamiltonian constraint generates timelike diffeomorphisms. To see this, we
consider their Poisson brackets with the canonical variables. The rhs. of

{j d?x & (x) H'(x), gkl(x')} = — (V& + Pvig) (x) (1.26)

is the variation of the two-metric under a diffeomorphism of > generated
by ¢'. Turning to the momentum, we find

{ dx & (x) Hi(x), TU(x)} =
(1.27)
(gi ai ﬂ.kl + ﬂ.ik ai €l + ﬂ.il ai €k + Jz'kl ai éq) (X’) ,

The definition for the extrinsic curvature or second fundamental form is K,, =
—Vun, + n,n?V,n,, where n” is the unit normal to X. For the ADM metric given by
(1.20) this vector reads n, = N 62.

7A Cauchy surface is a spacelike hypersurface which is intersected by every inextendible
causal curve once and only once. An inextendible curve can end only at infinity or at an
initial/final singularity.
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which is the correct transformation law of the momentum under spatial
diffeomorphisms, since 7/ is a tensor density: only the quantity '/ / /@ g
transforms as a true tensor on %.® The action of the Hamiltonian constraint
is more subtle. It can be shown that it generates diffeomorphisms in the
timelike directions, but only on shell. We do not present the derivation of
this fact, because we will not continue along these lines, but it can be found
e.g. in [12]. Nevertheless, we write down the algebra of constraints. If the
generators are written as

G[¢, 81 = L d®’x CH + & HD) (1.28)

then a lengthy calculation shows [20] that their Poisson bracket can be
written as

{G[&1, 881, Gl&2, 81} = GIEs, 8L, (1.29)

with
& = 08— 808, (1.30)
gko= glogek —el ok 4+ g 018 — 80,81 . (1.31)

We see, that the algebra closes, but it is not a genuine Lie algebra: the
canonical variable g appears in the right-hand side.
The total Hamiltonian of the system is given by

H = J d’x(NH + N; HY) . (1.32)
>

It is a linear combination of the constraints, thus vanishes on shell for
closed universes. This fact is a generic feature of theories that are invari-
ant under spacetime diffeomorphisms. If one solves all constraints, there is
no dynamics in the reduced space of configurations unless an explicit time
slicing is introduced. The reason is that diffeomorphisms in the timelike
directions are also symmetries of the theory. For our variables g; and x"
the Hamiltonian H generates the time evolution in the usual way:

) 0H
&ij = S - {gij’H} 5

sH (1.33)
Ji.ij = - = {Jrij’ H} 5

6gij

80ne can see this e.g. from the absence of the determinant of the metric in the d?x
integral of formula (1.22).

10



Zero cosmological constant

but the right-hand side depends on the arbitrary lapse and shift functions.
They will acquire a definite form when an explicit time slicing is introduced.

Note that the Hamiltonian constraint (1.23) contains the inverse metric
and the square root of the determinant of the metric potentially giving rise
to problems when one tries to quantize the theory. As we will see below,
in three dimensions one can solve the constraints classically and quantize
the reduced phase space. However, the problem is more acute in four di-
mensions, where the phase space reduction technique is unavailable, the
constraints have to be promoted to operators, whose joint kernel singles
out the subspace of physical states in a larger Hilbert space. For a partic-
ular choice of first order variables, the Hamiltonian can be brought into
polynomial form [21]. This observation sparked off an extensive program
of canonical quantization called loop quantum gravity.

We now turn to canonical three dimensional gravity in the first order
formalism. The space-time (ADM) decomposition of the action (1.10) yields
the following formula®

S=2 j dtj d?xnqp €V* (e 0o W?+wiDjed + el F]l.’k) ) (1.34)
5

Note that for the sake of simplicity, we used of the spin connection with
one index defined by (1.6). The curvature then reads

F}, = 0ywl — 0y wi + e o wf . (1.35)

The dynamical fields are the spatial components of the triad e and the con-
nection w?. One reads off from (1.34) that they are canonically conjugate,

{00, ()} = zeonn™ 6P (x, ) (1.36)

2
where x and y denote coordinates on the surface . The space of classi-
cal solutions is spanned by the solutions of the curvature and the Gauss
constraint
Fi,(w)=0, Die5—Dyef =0, (1.37)

respectively. They are equations of motion coming from the variations with
respect to the fields e and wg, respectively. These fields are Lagrange mul-
tipliers similarly to the lapse and the shift in the second order formalism.
Their time derivatives do not appear in the action. If the triad is invert-
ible, the curvature constraint can be decomposed into a vector and a scalar

°A partial integration has been performed, but no boundary term arises, since we as-
sume that ¥ is closed.

11
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constraint, implying invariance under space and time diffeomorphisms, re-
spectively, see [22] for details.

Computing the Poisson brackets of the fields with the dynamical vari-
ables, one easily finds that the second equation of (1.37) generates the
local Lorentz transformations given by (1.14), and the first generates local
translations given by (1.15). Hence the constraint algebra is a closed Lie
algebra, no further constraints appear. The total Hamiltonian

H= L Nab c0ik (wg D; eZ + e; Fﬁ’k) (1.38)

is again a linear combination of the constraints.

The above discussion can be repeated in four dimensions. In the sec-
ond order formalism, we nowhere used the dimensionality of spacetime.
Also the space-time decomposition of the first order Hilbert-Palatini action
looks similar to its three dimensional counterpart, eq. (1.34): it consists
of a kinetic term linear in the vielbein and the time derivative of the spin
connection, a Gauss constraint multiplied by the time component of the
connection and a curvature constraint multiplied by the time component
of the vielbein. However, the most important differences are the following:

(i) the curvature constraint does not imply that w is a flat connection,

(ii) one finds secondary constraints when determining the Poisson alge-
bra of constraints,

(iii) this algebra does not close, there are second class constraints in the
theory.

In four dimensions, the complications with the constraint algebra also lead
to problems in the quantum theory, since it is not possible to solve the
constraints classically. Remarkable, in three dimensions the constraints can
be solved at the classical level: one can determine the reduced phase space
of the physical degrees of freedom explicitly. We present two different
formulations of this reduction in the next section: one from the second,
the other one from the first order formalism.

1.3 Phase space reduction: second order for-
malism

Let us first return to the canonical metric formulation defined by the action
(1.22). Recall that the dynamical variables are the spatial metric g;; and

12



Phase space reduction: second order formalism

its conjugate momentum . First, let us see, how the finite number of
physical degrees of freedom appear in the space of metrics g;;.

The uniformization theorem [23] asserts that every Riemann surface
is conformally equivalent to another so-called uniformizing surface with
constant curvature. That surface can be

e CU {oo} with its standard metric of constant curvature R = 1

4dzdz
2= — 1.
ds (1+]z]2)2° (1.39)
e the complex plane with the usual flat R = 0 metric
ds® = |dz|?, (1.40)
e or the Poincaré disc D? = {z : |z| < 1} with its metric of curvature
R=-1
4dzdz
ds* = ————— | 1.41
s TSPDE (1.41)

modulo a discrete group G of isometries. This group action should behave
sufficiently nicely.® For example, it cannot have fixed points, which would
cause a singularity in the quotient space.

The first case above is the sphere. It is compact and simply connected, so
it is topologically distinct from spaces in the second and the third class. We
conclude that all metrics with constant positive curvature are diffeomor-
phic: the reduced configuration space for the spherical topology is zero
dimensional (furthermore, there are no more Riemann surfaces in the first
class, since every isometry of the sphere has fixed points).

Let us turn to the second class. The fixed point free isometries of (1.40)
are the translations z — z + c with ¢ € C. If we choose a discrete subgroup
G of them with two generators 2 — z+ a and z — z + b, where a, b € C,
then we find the tori (a # cb, with ¢ € R). Note that we had to choose two
generators in the isometry group for the two generators of the fundamental
group! ir1(%) of the torus. We can choose a = 1, b = 7, T € C without

101f the group action G on the manifold M is properly discontinuous, then the quotient
M /G is a smooth manifold. The latter notion means that each x € M has a neighbourhood
Uy such that gU, N Uy = 0 for every non-trivial g € G.

"The elements of the fundamental group are equivalence classes (called homotopy
classes) of oriented closed curves in X starting and ending at a common basepoint in X.
Two curves are equivalent if one can be continuously deformed to the other. The multi-
plication is the composition of curves: a o b is the curve which is obtained by drawing a
and then b without raising our pencil from the paper. The unit element is the contractible
curve, and the inverse is the same curve class, but with opposite orientation.

13



Introduction to 2+1 gravity

Figure 1.1: A Riemann surface of genus g = 3 with the standard generators of its
fundamental group. These curves generate any homotopy class of curves by means linking
the path of the generators one after the other in appropriate order. They satisfy the
relation (1.42).

loss of generality. Hence, the reduced configuration space of metrics of
the torus topology is two dimensional, and is parametrized by the complex
modulus 7.

The most important for the following chapter is the third class. The
isometry group of (1.41) is the three dimensional group SU(1, 1), see also
appendix A.1. If g;; is the two by two matrix in the defining representation
of that group, then its action on D? is given by z — (g112+g12) / (€212 +222).
By appropriately choosing the subgroups G of SU(1, 1), one can construct
all compact Riemann surfaces with genus g > 1 (the genus is the number of
holes or handles of the surface). The fundamental group of a surface with
g > 0 has 2g generators by, b, . .., by, and one relation:

byby by byt bybaby byt .. bog 1 by by by = e, (1.42)

see also fig. 1.1 for illustration. We will call them standard generators be-
low. We can count the dimension of the reduced configuration space for
g > 1. Specifying G amounts to assigning elements of SU(1, 1) to the gen-
erators of i1 (Z). The group SU(1, 1) is three dimensional, so we have 3-2g
parameters. However, due to (1.42), three of them are not independent.
Note also that G and gGg~!, with g € SU(1, 1), yields the same surface,
which means that another three parameters are redundant. This way we
arrive at the number 6g — 6 for the dimension of the reduced configuration
space for g > 1. It is called Teichmiiller space and denoted by C,. It turns
out to be convenient to write the two-metric in the form

g =e*fg;, (1.43)
where g;; € C, and f denotes a diffeomorphism.

14



Phase space reduction: second order formalism

Now, let us turn to the momenta. We need the following definition of a
differential operator P, which acts on vector fields:

(PY);j=ViY;+ VY - g; 8V 1;. (1.44)

We can now write the following decomposition of 7r¥:
7w = e (pl] + Eg” T+ \/Eg‘k gHPY) ) , (1.45)

where 7 = gz, V stands for the Levi-Civita covariant derivative with
respect to &;;, and the first term in (1.45) is transverse and traceless with
respect to the same metric. That is,

Vipi =0, g;p' =0, (1.46)

respectively. The field pY is called quadratic differential or moduli defor-
mation, it parametrizes infinitesimal deformations of conformal classes of
metrics. In other words, pY parametrize the velocities that are conjugate to
the positions parametrized by g;;.

The decomposition given by (1.45) is unique up to vector fields k;,
which satisfy (Pk);; = 0. These are conformal Killing vectors, they in-
duce only conformal transformations of the metric. The second term of
eq. (1.45) is the trace, which can always be eliminated by a conformal
transformation (representing one local gauge degree of freedom). The
third term is a traceless piece of metric deformation coming from repara-
metrization (two local gauge degrees of freedom) by the vector field Y. So
locally, the symmetric p¥ containing three degrees of freedom can always
be chosen to vanish, but there may be topological obstructions to doing
that globally.

Without entering into the details, we mention that a version of the
Riemann-Roch theorem [23] states that the dimension of conformal Killing
vector fields d; minus the dimensions d of the space {p”} of transverse,
traceless symmetric two-tensors is equal to 3y, where y = 2 — 2g, the Euler
characteristic of %. In other words

d=6g—6+d. (1.47)

For g = 0, the conformal Killing transformations are given by SL(2, C).
Elements of SL(2,C) act on C U {oo} as was shown for SU(1,1) above,
and leave |dz|? invariant. SL(2,C) is six dimensional, so from the above
formula we get d = O for the sphere. The torus has a two parameter
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family of translation isometries, thus d = 2. Higher genus surfaces have no
conformal Killing vectors, since acting with V; on (PY);; = 0, one finds

g5 ViViY;=RY;=-Y; =0, (1.48)

hence d = 6g — 6.

Now, the next step is to rewrite the constraints (1.23) and (1.24) using
the decomposition (1.43) and (1.45). Then, an explicit time slicing should
be introduced. A convenient choice, which is used in [24, 25] is the York
time T = —K;;g”. This formula should be interpreted as the definition
for the equal time hypersurface >r. For the topology M = % X R, such a
foliation always exists with the necessary property that the function T is
monotone increasing [26]. Note that it was proven in [27] that a three
dimensional A = 0 universe, which contains a spacelike Caucy hypersur-
face, is always of the form 2 X R, see also appendix A.2. We will therefore
restrict ourselves to this case throughout this thesis, and use the symbol X
exclusively for a spacelike hypersurface of the spacetime manifold.

Using the York gauge defined above, it is possible to solve the mo-
mentum constraint, which implies that Y; = 0. The Hamiltonian con-
straint then yields an elliptic differential equation for the conformal factor
®. We will not need the details of the calculation, they can be found in
[24, 25]. The conclusion from this analysis is that, since the constraints
fix Y; and the conformal factor ®, the reduced phase space is the space
{8;;(my), pY(pP} = T.T,, the (co)tangent space of the Teichmiiller space.
Itis 0, 4 or 12g — 12 dimensional, for g = 0,1 and > 1, respectively. The
action (1.22) after the phase space reduction reads

dmy
[— JdT {p“% — Hyea(m, p, T)} , (1.49)

where the (time dependent) reduced Hamiltonian

Hyea(m, p, T) =j d?x4/ g e2®mp.T) (1.50)

T

is the area of the equal time surface X7, expressed in terms of the moduli
parameters via the differential equation for ®.

Note that the momentum and Hamiltonian constraints are solved iden-
tically and the reduced action (1.49) originates from the kinetic term of
(1.22). Note also that the finite dimensional dynamical system can only
be made explicit for the torus, where an expression is available for g; and
pY in terms of the moduli parameters and the differential equation for the
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conformal factor can explicitly be solved. For g > 1, none of these state-
ments hold: the metric g;; can only be given implicitly by specifying the
subgroup of SU(1, 1) as explained above or the lengths of certain geodesic
curves in the surface. There are existence theorems for the solutions of the
differential equation for the conformal factor [24], but no explicit solution
is known.

There is one more symmetry we have not factored out. The group of
large diffeomorphisms Diff(>) / Diffy(Z) is a discrete group with a compli-
cated action on the Teichmdiller space. With the exception of the torus even
its fundamental domain'? is unknown.

In practice, the results above are sufficient to quantize the Hamiltonian
system coming from the torus topology with four degrees of freedom. It
has a large literature, (see [12] and references therein), but it will not be
discussed here.

1.4 Phase space reduction: first order formal-
ism

Let us start with the definition of the holonomy, since it will be important
for the rest of the discussion and the subsequent chapters. The holonomy
or Wilson line of the gauge field along a curve « : [0, 1] — M is the parallel
transport operator

1 1
Uy.(A) = Pexp (J;) ds% A#(a(s))) , (1.5D

where a(0) = a, a(1) = b and p stands for path ordering. The holon-
omy obtained for the connection (1.18), with A = 0, is a Poincaré group
element, which can be decomposed as U,(A) = (Uy(w), ug). The first term

1
Ua(w) = Pexp (J ds22 ) wg(a(s))Ja) , (1.52)
0 ds

is the Lorentz holonomy, and u(a) is a finite translation. The reason for
this fact can be traced back to the structure of the Poincaré group. The
multiplication rule in the group has the form of a semi-direct product

(A1, a1) © (A2, az) = (A1Ag, Aias + ai) (1.53)

12The fundamental domain is a set of points in Teichmiiller space none of which are
connected by the group action and all points outside the set are connected with one inside
by the group action.
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with A; € SO(2,1) and q; € R?>!, which means that the Lorentz part is not
affected by the translation part.
The corresponding holonomies transform under general local Poincaré
transformations as
Uq(A) — g(a) Uy(A) g7 () (1.54)

with g(x) € ISO(2,1) and
Ug(w) = h(@) Ug(w) R (D) , (1.55)

with h(x) € SO(2,1) being the Lorentz part of the transformation g(x).
For closed loops, we will sometimes use the notation Uy(w) = Uy(w, X),
indicating the dependence of the holonomy on the basepoint x of the loop
Qa.

Due to (1.17), the space of physically distinct solutions of the Chern-
Simons theory is given by the space of flat Poincaré connections modulo
Poincaré gauge transformations. Because of (1.37), we can also say that the
reduced configuration space is the space of flat connections w in > modulo
Lorentz gauge transformations. A flat connection is locally a pure gauge
and completely specified by its holonomies along non-contractible closed
curves. We know already that there are 2g — 1 independent closed curves
in a surface with genus g > 1, and taking into account that the Lorentz
group is three dimensional as well as the conjugation symmetry (1.55), we
recover the dimension 6g — 6 of the reduced configuration space.

One can also solve the constraints and determine the fully reduced
phase space by using phase space functions, which are explicitly gauge
invariant. This is the path of the loop representation [28, 29, 30]. In
that approach, one set of observables is given by the traces of the Wilson
loops (1.52), denoted by T2(w). They are gauge invariant as opposed to
the untraced holonomies, which have a residual conjugation symmetry as
discussed above. An additional set of variables which contain information
about the momenta is defined by

L dat(s)
Tl w,e] = LTr (Ja ST

Uqg(w, x(s)) |, (1.56)

where J, are the so(2, 1) generators. The loop variables Tg and Tﬁ1 are not
canonically conjugate, but form a closed Poisson algebra, whose right-hand
side involve composition of the original loops a and 8. The price one has to
pay for working directly on the reduced phase space is that the loop vari-
ables are overcomplete. The difficulty amounts to finding an independent
set of them, which also takes into account the algebraic identities between

18



Point particles

traces of the holonomies in the representation that is used. For g > 1,
for the T° variables, this problem was solved in [31]. Quantization in the
loop representation amounts to representing the Poisson algebra of a suit-
able subset of these observables on a Hilbert space. This approach above is
an example of the so-called frozen-time formalism. The parameters of the
phase space are observables. It implies, due to invariance under timelike
diffeomorphisms that they are constants of motion. To recover dynamics
from the time independent observables is a difficult task in gravity.

One can follow a different path and choose the untraced SO(2, 1) ho-
lonomies and the edge vectors of a non-planar polygonal surface as basic
variables [32, 33, 34, 35]. These Approaches are all covariant and the
Hamiltonian is always a linear combination of the global constraints of the
theory. One can fix the Lagrange multipliers by assigning timelike vectors
to the corners of the polygonal surface and find the corresponding unique
dynamics. The details of these models, in particular their direct relation to
the original smooth fields w and e will be described in chapter 3 as well
as the procedure to reduce them to the 't Hooft polygon model. A char-
acteristic of the latter formulation is that it allows for incorporating point
particles representing matter in the universe. One of the most attractive
features of three dimensional gravity is the fact that one can include point-
like particles in it with mass and spin without much difficulty and without
losing the simple finite dimensionality of the phase space of the theory.

1.5 Point particles

Despite the simplicity of 241 gravity with A = 0, explicit results concerning
the quantum theory are only available when the space ¥ is the torus. One
can however explore a different sector of the theory. Instead of handles,
one can include point-like sources. They will follow causal geodesics, while
generating conical deficit angles in the spacetime surrounding them. The
classification of the arising classical spacetimes is a much more difficult
task than in the case of pure gravity without such particles. In the simplest
cases of one- or two-particle universes, many results are available in the
literature. These systems have been quantized explicitly [36, 37, 1], and
scattering amplitudes of particles have also been calculated [38, 39, 40].
The action in the second order variables of a particle reads

Sparice = | de (R + N@ P~ N@yRPrgT +m2),  (157)

where ¢' is the position of the particle, P; is its momentum and m is its
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mass. This should be added to the gravitational action (1.22) to describe
the coupled system. In case of an open universe there are additional bound-
ary terms which also need to be added. If the space ¥ is the plane R? with
punctures at the location of the particles, a convenient gauge is the so-
called instantaneous York gauge. In this gauge 2 is characterized by the
vanishing of the extrinsic curvature K;; = 0. Then, using conformal coor-
dinates and the following form of the metric

ds? = —N2dt? + e?*(dz + N*dt)(dz + N*dt) (1.58)

the Hamiltonian constraint takes the form of an inhomogeneous Liouville
equation for the conformal factor [41]

N N-2
200 + € = —4xr > (m; — 1)6(z — 2) —4x D, 8(z—24),  (1.59)
A=1

i=1

where A label the so-called apparent singularities, and i labels the particles.
This equation has a long history in mathematics and it is solved up to N =
2. For more particles it is more involved and there is no explicit form of
the solution. Nevertheless, the proof that the reduced dynamical system
is Hamiltonian, has been recently completed [42] (see also [41] for an
overview of this approach). This fact resembles the treatment of empty
universes in the York gauge, where the dynamics of the reduced system
was shown to be governed by the Hamiltonian (1.50).

A similar approach using the same gauge in the first order formalism
was followed by Welling [43], who reduced the solution to the problem to
that of solving the Riemann-Hilbert problem, which is as follows. Find an
SU(1, 1) complex spinor {*(2z) on the plane with N+1 punctures with given
monodromy properties around the punctures. He gave the analytic solution
for the two-particle problem and reduced the solution of the general case
to finding fermion correlation functions in a conformal field theory. The
instantaneous York gauge, which he used is suited for open universes or
the static problem of the sphere with particles.

Our interest is somewhat complementary to these approaches, which
were briefly discussed above. We want to study closed universes with point
particles and also possible topological degrees of freedom (higher genus).
The reason is that the polygon model can most conveniently be applied
to this case. In the framework of this model a complete (although non-
analytic) solution was given to the generic classical N-particle dynamics
with arbitrary spatial topology [44].

The starting point of the polygon model is the representation of a glob-
ally hyperbolic universe by local charts in Minkowski space. The physical
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moduli parameters are then encoded in the transition functions between
overlapping coordinate charts. This structure on the manifold M is called
geometric or (X, G) structure by mathematicians. X is the modeling space
(which is Minkowski space in our case) and G is a group to which the tran-
sition functions belong (the Poincaré group in our case). The equal time
slices are characterized by Euclidean polygons, which are glued together
along their edges yielding a non-planar surface with conical singularities,
and the moduli parameters are encoded in the geometry of these surfaces.
The phase space is a reduced phase space of finite dimension. However, it
is not completely reduced, the variables have to satisfy constraints, which
generate some remnant symmetries among them. The resulting dynami-
cal system has unusual features: chaotic behaviour near a final singularity,
and the fluctuation of the number of (the non-physical) variables used in
the model. Even though the time evolution in terms of the phase space
variables is simple, finding a set which solves the constraints is difficult,?
especially when the genus of space is g > 1.

In this thesis we will solve and explain some of these questions for the
case of closed universes. In particular, we will give an algorithm for con-
structing a 12g — 12 parameter family of matter free universes with > an ar-
bitrary g > 1 Riemann surface (the torus universes have been constructed
in [46]). This is achieved with the help of the following discovery. The
position variables, appearing as boost parameters in a set of holonomy ma-
trices, determine a point in the reduced configuration space. This point is
represented by a hyperbolic surface with curvature R = —1. This surface
has a basepoint and the boost parameters are lengths of geodesic loops
in certain homotopy classes based at that basepoint. The basepoint corre-
sponds to a chosen Lorentz frame in the physics problem. The algorithm
involves a recipe to carefully choose the Lorentz frame such that the con-
straints between the momenta can be solved. This is the topic of the next
chapter and of [45]. We also try to generalize the construction for particles
and show what can go wrong when trying to follow the same construction
as in the matter free case.

The variables of the dynamical system are divided into positions and
momenta. A candidate for the Hamiltonian is the total curvature of the
polygonal equal time surface. The observation that this Hamiltonian gener-
ates the correct time evolution if the Poisson brackets among the variables
is {qi, pj} = 8;; was crucial for a qualitative analysis of the quantum the-

13The author wrote a computer code to simulate the time evolution of the system, but,
apart from a trivial family corresponding to a totally symmetric situation, could not find
a set of parameters which solve the constraints for g > 1, before the work [45] was
completed.
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ory [47]. It turned out that the model can be derived from the first order
formalism [48], and the Poisson bracket is induced from the canonical one
given by (1.36). This is achieved in two steps. The first step is to solve
the constraints among the dynamical fields of the first order formalism al-
most everywhere by choosing the spin connection to be pure gauge. This
reduces the number of degrees of freedom from infinity to a finite num-
ber, while the model remains covariant. The new phase space variables
are the Lorentz holonomies along a set of non-contractible cycles and cer-
tain three-vectors conjugate to them. Variants of this reduction have been
worked out in the literature as well. The second step involves a gauge fixing
and a further reduction to the scalar variables of the polygon model. Then,
an alternative derivation is given for the Poisson bracket of the polygon
variables directly from (1.36) of the triad and the spin connection. This
is the topic of chapter 3 and of [48]. In the appendices we have collected
some relevant results from three dimensional geometry, two dimensional
hyperbolic geometry and technical proofs omitted in the main text.
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Chapter 2

Polygon model

The main part of this chapter contains the construction of any' three di-
mensional Lorentzian manifold M, which is

(i) everywhere locally flat,
(ii) globally hyperbolic,
(iii) maximal, and
(iv) spatially closed.

In other words we will construct the solutions to the Einstein equations in
three dimensions, which

(i) correspond to pure gravity with zero cosmological constant and with-
out matter degrees of freedom,

(i) contain a spacelike Cauchy surface,

(iii) have the property, that geodesics only end at infinity or at the ini-
tial/final singularity.

A consequence of criterion (ii) is that the topology of spacetime is neces-
sarily M = % X R [27]. Therefore, criterion (iv) means that X is a closed
surface. We saw in the previous chapter that there are no moduli for the
spherical topology. The results for the torus has been obtained in [46]. It
will be summarized briefly at the end of section 2.3. The main part of the
chapter, however, deals with the case when g > 1.

!We have no rigorous proof that the family of spacetimes we consider contain all space-
times with the specified properties. We will argue that the statement is very likely to be
true.
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The last part of the chapter contains an attempt to generalize the clas-
sification program for the physically more interesting case, when there are
also point particles present. We will expose the difficulties when trying
to apply here the methods which worked well for the matter-free case.
The framework used to complete these tasks is the gauge fixed polygon
model of 't Hooft. There is an extensive introduction in the original pa-
pers [49, 44, 50] and in the thesis of Max Welling [51]. However, a self-
contained introduction will be presented here from a different angle, which
is suited for the classification and the comparison to first order gravity, the
subject of the next chapter.

The general solution of the three dimensional Einstein equations for a
spinning massive particle has been derived in [5] and was treated in the in-
troduction in detail. In this chapter we shall use units 4G = 1 which means
that the mass creates a cone with deficit angle 27rm, so the mass param-
eter is restricted to be m < 1. Non-vanishing spin causes a timelike shift
in the identifications of the multi-valued Cartesian coordinates after a full
rotation around the puncture, and this implies the existence of closed time-
like curves (CTC) in the vicinity of the particle. These cannot be avoided.
However, for the case of an open universe with timelike center of mass
momentum, there are no CTC’s, if the sources have no angular momen-
tum individually [52]. CTC’s are also absent when the space is closed, as
opposed to the claim in [53]. This result is a direct consequence of the con-
struction [49]: in the polygon model spacetime arises as a foliation in terms
of Cauchy surfaces, thus, CTC’s are excluded by construction. Moreover, it
is explicitly shown in [49], that the moment when the CTC appears in the
solution of [53] necessarily happens “after” the final singularity, hence it is
an unphysical analytic continuation of the solution.

In the next section, the starting points of the polygon model are pre-
sented in full generality, with the inclusion of N point particles (punctures).
In section 2.2, we discuss the properties of the Poincaré group elements
appearing as matching conditions across the punctures. In section 2.3, the
time slicing of the polygon model will be introduced. Degrees of freedom
will be counted next, then the time evolution and the Hamiltonian of the
system are specified. Section 2.7 describes the concept of a one-polygon
tessellation (OPT). It means that the equal time Cauchy surface is one Eu-
clidean polygon. The Poincaré group elements appearing in the matching
conditions at the edges are associated to closed paths in this case. Con-
sidering the case N = O first, section 2.8 contains the construction of a
hyperbolic smooth surface S with curvature R = —1 parametrized by the
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momenta.? This is the surface mentioned at the end of the previous chap-
ter, and it is the central notion of section 2.8. We will explain in detail
the relation of S to an OPT in subsection 2.8.1. S is triangulated by closed
geodesic loops with one common basepoint as is shown in subsection 2.8.2.
The lengths of these loops are the absolute values of the boost parameters.
They are essentially the Zieschang-Vogt-Coldewey coordinates of the Teich-
miiller space C, as demonstrated in subsection 2.8.3. In subsections 2.8.4
and 2.8.5 we explain that S remains invariant under time evolution and the
remaining two parameter family of Lorentz transformations of the physical
Cauchy surface 2. In the following section of the chapter, we will try to
generalize the whole construction for N > 0. Finally, sections 2.10 and
2.11 are devoted to a discussion of the results.

2.1 Geometric structures

In this chapter we are going to describe locally Lorentzian spacetimes of the
form M = X X R, where X is a compact Riemann surface of genus g with
finite number of punctures on it. The discussion is based on the references
[45, 48].

Suppose, that the metric is Minkowski everywhere and at neighbor-
hoods of the punctures U X R it can be written as

ds? = —dt®> + di*>, dI? =r?™(dr? +r?d6?) . (2.1)

where m is a mass parameter. Then, (M, ds?) is a solution of the three di-
mensional Einstein equations with spinless point-like sources with mass m.
The two-metric dI? describes the conical singularity mentioned in the intro-
duction. One can easily understand this by inspecting the transformation
to the flat element [5]

rl—m
1-m’

p= 0=010-m)o, (2.2)
which gives dI? = dp®+ p? d6"?, but the range of the angle parameter is ' €
(0, 2 (1 — m). We see that there is an upper bound m < 1, it corresponds
to the Euclidean cone with maximal deficit angle 2or. We are interested

2Note that exchanging the momenta and the positions can be achieved by a canonical
transformation, so it is a matter of convenience, which terminology is used. We will see
that within the polygon model the boost parameters have a natural momentum interpreta-
tion, whereas they parametrize the points of Teichmiiller space, so they can also be called
positions.

25



Polygon model

FEIN

Figure 2.1: Three overlapping local neighborhoods U; and their associated charts on
M (diffeomorphisms f; : M — R3); f; o fj_1 are the Poincaré transformations between
neighboring charts.

in globally hyperbolic spacetimes: they contain a spacelike surface called
Cauchy surface, which “determines” the whole spacetime®. We can describe
a locally flat, punctured Lorentzian manifold in the language of geometric
structures. M is covered with Minkowski charts and the matching condition
between two neighboring charts X = (t,x,y) and X' = (t/,x’, y’) is given
by an element of the Poincaré group 1SO(2, 1) in three dimensions:

X' = PX. (2.3)

Consider now three adjacent patches U, 5 3 covering matter free regions of
M? with coordinate frames X 123 (fig. 2.1). If the matching conditions are

Xy =P X1, X3=PXy X1=PX;, (2.4)
in the nonempty intersection of U; N U, N U3 C M, it follows that

P3 P2 P1X1 = Xl- (25)

3 The statement can be understood from the following equivalent definition of a Cauchy
surface, alternative to the one given in the previous chapter. A Cauchy surface is a space-
like hypersurface, whose domain of dependence is the whole spacetime D(S) = M. The
domain of dependence is defined as D(S) = D*(S) U D™ (S), where D*(S) is the set of
points in M, through which all past directed causal curves intersect S, and D™ (S) is de-
fined analogously.
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Writing X = A;X + a; with A; € O(2,1) and a; a Lorentz vector, we
obtain

Ag Az A1 = 1, (26)
Ag A2a1 + A3a2 +as = 0. (27)

We restrict ourselves to the proper ortochronous Lorentz group SO, (2, 1),
which is the identity component of O(2,1), hence the manifold will be
orientable and time orientable*. Every element in SO, (2, 1) can be written
as the product of two rotations and a boost,

A; = R(¢p) B(&) R(¢)), (2.8)
where
cosh{ 0 sinh¢ 1 0 0
B(¢) = 0 1 0 , R(@)=| 0 cos¢p —sing |. (2.9)
sinh{ O cosh¢ 0 sin¢g coso

Substituting these expressions into (2.6), one arrives at the vertex condi-
tion
B(2n3) R(a1) B(2n2) R(as3) B(2171) R(az) = 1, (2.10)

with the identifications

& = 2n;
a; = ¢’3 + ¢2
a = ¢+ ¢s
az = qb’z + ¢1.

We take the range of the angles to be a; € [0, 2x], and the factor of two in
front of the n’s is a convention which will turn out to be useful later. The
above matrix equation has the following independent components:

cosh(2mnx) = cosh(2n;) cosh(2n;) + sinh(2n;) sinh(2n;) cos ax,
sinh(2n;) : sinh(2n;) : sinh(2n) = sina; : sina; : sinay, (2.1D)

and all permutations of the indices i, j, k.

4M is time orientable if there is a non-vanishing timelike vector field on it indicating
the direction of time.
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2.2 Particles

Now, we want to characterize a particle. If m € [0, 1), then it is sufficient
to determine the Poincaré holonomy of it, that is the Poincaré transforma-
tion corresponding to going around the particle®. For this purpose the axis
of a Lorentz transformation needs to be defined. A Lorentz group element
is called elliptic, (parabolic, hyperbolic) if it has has a timelike (lightlike,
spacelike, respectively) eigenvector corresponding to the eigenvalue 1. It
always belongs to one of these categories and the corresponding eigenvec-
tor is called the axis. Note also, elliptic elements are conjugate to pure
rotations R, hyperbolic elements are conjugate to pure boosts B, say, in the
y direction. Using the decomposition given by equation (2.8) the axis is
given by

/ A — A
p = c(coshn sin ¢, —sinhn cos¢2¢, —sinhn sin¢2¢).
(2.12)
In general we can rewrite the holonomy as
X' =PX=AX+a=AX-b)+b+D (2.13)

We require, without loss of generality, that b is perpendicular to the axis
while b’ parallel to it.® If P is to describe the holonomy of a particle, then
the world line of the particle should be described by X’ = X, as we will
see. If b’ is non-vanishing, then the equation X’ = X has no solution, since
we can write

A-1DX+b=(A-1Db (2.14)

and the scalar product with p of both sides yields b’p = 0. If A is elliptic,
then b’ is a dilatation in a timelike direction. In case A is a pure rotation b’ is
proportional to the angular momentum leading to CTC’s [5]. In a globally
hyperbolic universe it cannot appear. The solution of equation (2.14) with
b’ = 0 can be written as

X=b+cp, c€ER, (2.15)

where p is the axis of A defined above. It gives the world line of the corre-
sponding particle and we can read off its causal properties. If A is hyper-
bolic then it is a tachyon (moving along the spacelike trajectory given by

>The holonomy is a homomorphism from the fundamental group to the Poincaré group,
it will be properly defined in chapter 2.7. Note, that it coincides with the parallel transport
operator of the Poincaré connection via the equivalence of the first and second order
formalism explained in the first chapter.

The translation vector is decomposed as a = (1 — A) b + b'. A possible component of
b parallel to p is annihilated by (1 — A) and b can be chosen such that b’ is parallel to p.
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p), if A is parabolic (elliptic) then it is a massless (massive) particle. Let us
define the constant in front of the axis in eq. (2.12) as

¢;¢>’)

c = —sgn (sin (2.16)

whenever the rhs. is non-vanishing, and rewrite the Lorentz holonomy of
a massive particle as A; = gR(2wr — 2rm)g~! with g € SO, (2, 1). Then the
equality

trA =2cos(2rm) +1 (2.17)

turns out to be equivalent to
p? +sin*(mx) =0, (2.18)

if the lhs. of (2.17) is parametrized according to eq. (2.8). After elementary
manipulations it yields

A def

cos(mir) = = coshncos (2.19)
with ages = 2 — (¢ + ¢') is the angle of the wedge cut out of the frame
causing the conical geometry. We can define the mass parameter to obey
(2.19) with a plus sign. We conclude that p is the momentum of the par-
ticle and 2mxr = g in its rest frame (n = 0), where the holonomy is a
pure rotation. Note that the mass shell condition contains an unusual sine
in front of the mass, which is a matter of convention: the current definition
comes from writing T% = m 6(x — x () for the stress energy tensor leading
to eq. (2.1) [5]. With this definition, the mass of particles at rest is additive.
Note also, that the range of the mass parameter is m € (—oo0,0) U (0,1).”
The upper bound corresponds to G /4, if we restore the usual units. Finally,
we will also need the relation between the deficit angle and the boost pa-
rameter for a massless particle. It is given by writing down

p>=0 or trA=3 (2.20)

(both equations characterize a parabolic Lorentz transformation) yielding

Adef

coshn cos =1. (2.21D)

’Note that m = 0 corresponding to the trivial holonomy is not a massless particle.
However the relation (2.19) for a massless particle can be formally obtained by inserting
m = 0. Negative deficit angles, still correspond to timelike momenta, thus unlike particles
with hyperbolic holonomy, need not to be excluded, but we shall not use them.
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2.3 Time slicing, phase space

We will introduce now the time slicing of M leading to a foliation of space-
time with Cauchy surfaces characterized by a fixed global time coordinate
t. This leads to the polygon model. Fixing®

tl = tz (222)

for two adjacent charts U; N U, # 0 defines their common boundary in M.
These hyperplanes defined for all intersecting regions define the bound-
aries of all the simplices in a chart. For a given time ¢, each region is a
Euclidean polygon with a timelike normal vector. Setting

t1=ty=t3=..=tO (2.23)

for all the regions defines a piecewise flat Cauchy surface as illustrated
in fig. 2.2. When there are no particles we can embed the geometry in
Minkowski space and the t = t(® Cauchy surface is the non-planar tiling
of polygons such that each has a timelike normal vector but these normal
vectors are not parallel in general. We will assume that at most three poly-
gons meet at each vertex, which presents no loss of generality since edges
can have zero length at given instances of time.

The geometry of the Cauchy surface is completely fixed by the collection
of straight edges of the polygons. The skeleton of them is a graph I and the
geometry is specified by two real parameters associated to each of its edges.
One is the boost parameter n of the Lorentz transformation in the matching
condition X’ = R(¢) B(2n) R(¢") X + a between the two polygons sharing
the edge. The other parameter is the length L of the edge. The angles «;
enclosed by edges incident at a vertex are functions of the boost parame-
ters n; given by eq. (2.11). The meaning of that relation is that a trivalent
vertex of the Cauchy surface (to be called 3-vertex) does not represent a
particle because the holonomy around it is trivial. However, as a conse-
quence of our choice of time slicing, the two dimensional geometry of the
slice is singular and has a conical singularity at these vertices. We have a
2d geometry with conical singularities, where each singularity contributes
with a deficit angle 2t — > ; «; to the total curvature, just like in 2d Regge
calculus. By contrast, if there are no particles present, the three-geometry
is flat everywhere, including the worldlines of the vertices, and the flatness
condition is precisely eq. (2.10). Upon inspecting the independent compo-
nents of the matrix equation (2.10) given by (2.11), one can notice that

8This condition could be relaxed into t; = t; - constant.
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Figure 2.2: The geometry of an equal time slice is characterized by the intersection
of the boundaries (2.22) with the lines t = const. The vertex in the middle is a trivalent
vertex, while the open edge with a dot indicates a particle. The notation is schematic in the
sense that both the trivalent and the particle vertex, in general, have conical singularities,
which are not visible in this representation.

there is an ambivalence in the equations: if (a;, o, @) is a solution, then
so is (2w — ay, 2 — «j, 2w — o). This can be eliminated by the require-
ment that at most one angle may exceed the value of & at a 3-vertex. The
opposite situation is forbidden as explained in the caption of fig. 2.3.

Now, consider a patch which contains a particle. In this case we identify
the patch with itself after a rotation given by ¢ + ¢’ of (2.8). In accordance
with the last section, only those holonomies are allowed, where the Lorentz
part is elliptic or parabolic, and the translation part can be written as a =
(1 = A) b. In this case P has a fixed point, and the solution to X’ = X gives
the world line of the particle. This line coincides with the intersection of the
boundaries t = (P X)? and t = (P~'X)° by construction. Hence at t = t©
we have an edge identified with the adjacent edge, the angle between them
is ¢ + ¢’ and their common vertex is the location of the particle at the same
instant of time. In figure 2.2 it is indicated as an open edge of the graph
ending at a 1-vertex. The figure does not show the deficit angle around the
particle and depicts the two adjacent edges as glued together. The relation
between the (deficit) angle and the boost parameter for a massive particle
is given by (2.19). For a massless particle the corresponding relation is
(2.21).

The phase space is characterized by a decorated graph I', being the
skeleton of the polygons glued together yielding the piecewise flat Cauchy
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Figure 2.3: If there were two concave angles at a 3-vertex corresponding to region I and
II in the figure, then due to the identifications the same spacetime point P would appear
twice in the interior of two adjacent polygons. This is forbidden, and this requirement fixes
the ambiguity in expressing the angles in terms of the boost parameters at the 3-vertices.

surface. We can also say that T is the collection of edges of the simplicial
equal time surface. The edges carry two labels: the associated boost param-
eter n and the length L. This reduced phase space is thus 2E dimensional,
where E denotes the number of edges of I. This is not the fully reduced
phase space as the variables are subject to constraints, which are specified
as follows. There are three constraints per face (polygon) which arise from
the global condition that it must be closed. For a polygon with n sides we
have

Da=m-2x (2.24)
i=1
and
> Ligexpi6) =0, (2.25)

i=1

where 6; = Z§'=1 (r — ;) and I(i) is the label for the i-th edge starting from
a chosen one in counterclockwise direction.

We can now count the independent degrees of freedom. Assume first
that g > 1 and there are no particles present. Starting from 2E variables,
there are 3F constraints, where F is the number of faces. The number
of remaining symmetries is also 3F, namely, one Lorentz transformation of
the coordinate system at each face. However, this action is not free, because
conjugating all Lorentz matrices with the same rotation affects neither the
boost parameters nor the lengths; it simply amounts to an overall rotation
of all coordinate systems. We therefore arrive (with V being the number
vertices) at
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2E-3F-@BF-1)=-6(F+V-E)+1=-6x+1=12g—-11 (2.26)

for the number of independent degrees of freedom. In the equalities above,
the formula for the Euler characteristic y = F +V — E = 2 — 2g and the
trivalence of T (2E = 3V) have been used. Note that (2.26) is an odd num-
ber. Rescaling the lengths simultaneously with a constant corresponds to
the reparametrization of time with a constant. Hence, this degree of free-
dom should also be subtracted and we arrive at the 12g — 12 independent
parameters: the dimension of the reduced phase space of the theory.

In the absence of particles (N = 0), there are still V punctures in the
spatial slices. However, the correct physical phase space is not the cotan-
gent bundle over the moduli space of Riemann surfaces with V punctures
(which has dimension 12g — 12 + 4V), but the cotangent space over the
moduli space M, (the space of smooth metrics of constant curvature on a
genus-g surface modulo diffeomorphisms®), which has dimension 12g —12.
The reason is that we allow only the special class of geometries, where the
2E angles of the polygons depend on E parameters (1;) via the relations
(2.11). The conical singularities do not correspond to physical objects in
the spacetime, but are merely a consequence of the gauge choice of the
global time parameter. In the case N > 0, the four degrees of freedom per
particle can be easily recovered by the following consideration. To add a 1-
vertex to a trivalent graph we have to insert an extra vertex in the “middle”
of an edge. This “breaks” that edge, which contains the insertion point, into
two pieces (see fig. 2.2). Thus, we added two new edges, each carrying an
(L, n) pair. Therefore, the dimension of the reduced phase space is

d=12g— 12+ 4N (2.27)

This was the generic situation of either g > 1, org = 1 and N > 1,
or g = 0 and N > 2. However the empty torus and the sphere with less
then three particles needs separate treatment. Let us begin with the empty
torus. We can assume that F = 1, since increasing the number of faces
by one does not change the number of degrees of freedom, as can be seen
from eq. (2.26). For F = 1 we have E = 3 and V = 2. As fig. 2.4 shows,
the three edges are incident to both vertices and the closure condition of
the corresponding hexagon yields 2 >, a; = 4, that is, no deficit angle
for the vertices. However, in this case (2.11) is satisfied only in the special

°This moduli space differs from the Teichmiiller space T, by an additional quotient
with respect to the discrete mapping class group action.
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Figure 2.4: The non-static one-polygon torus in the diagrammatic notation and the cor-
responding hexagon, in which the angles are faithfully represented. The boost parameters
are chosen as n3 = 0 and 71 = n3.

configuration (1,1, 0) corresponding to (&, — a, ) with a freely specifi-
able and independent of the value of i1 (hence we can might choose a4 for
vertex A and ap for vertex B). We obtain a Euclidean hexagon if we cut the
torus open along the edges of T, see fig. 2.4 for illustration. This hexagon is
special in the sense that it has three pairs of edges and the members of the
pairs are parallel. Due to this, the constraint (2.25) does not restrict any of
the lengths, but does require a4 = ap = a. Hence, we have two lengths,
(the third one corresponds to time according to the discussion above) one
boost parameter and one angle to specify freely’®. The number of degrees
of freedom for the torus is four, as is familiar from many studies in the lit-
erature [12]. The reason why the torus violates eq. (2.26) lies in the fact
that it has a nontrivial group of isometries. For a detailed treatment of the
empty torus in the polygon representation, see [46].

The sphere requires at least three particles, and in the case N = 3, it
has a trivial phase space. One can understand this by applying the Gauss-
Bonnet theorem for the equal time slice, which says, that the total curvature
should be equal to 4xr (that is 2xr times the Euler characteristic of ). This
cannot be produced by one or two particles, since we saw, that the deficit
angle corresponding to a particle is at most 2x. In case N = 3, one may
argue in several ways to show that there are no moduli. Within the context
of the polygon model, the argument goes as follows. Suppose that F = 1.
Then the polygon is shown in fig. 2.5. If we go to the rest frame of one of
the particles, then the boost parameter of the corresponding edge is zero as
we will see in the next section. If a boost parameter is zero at a vertex, then
the other two must coincide and their value is fixed by eq. (2.24). Two of
the lengths are constrained by eq. (2.25) and the last one is identified with
time.

10There is a static sector, where all boost parameters are zero and two angles can be
specified freely
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Figure 2.5: The spherical universe with three particles represented by one polygon.

A more general argument is the following. The sphere with three par-
ticles is conformal to C U co with three punctures and ds? = |dz|?. Then,
the three punctures can always be transformed to 0,1 and co by an SL(2, C)
transformation (the action of such a matrix in the complex plane have been
explained in section 1.3). Such a transformation is an isometry of |dz|?, so
we conclude that all metrics on the sphere with three punctures belong
to the same conformal equivalence class. In other words, the Teichmiiller
space Cy 3, where 0 stands for the genus and 3 is the number of punctures,
consists of one point.

2.4 Dynamics

After having specified the time slicing and described the phase space we
can study the arising dynamics. First, the boost parameters are constant in
time by construction, they are associated to the holonomies independent
of the time slicing. The evolution of the edges is fixed by the matching
conditions between the neighboring polygons. Assume, for simplicity that
the origins of X; and X, coincide so that the matching condition between
them is given by

(R(¢p) B R(P') Xy = X; . (2.28)

Its first component is
to cosh 2n + (y,cos @’ + x,sin@’) sinh2n = t; . (2.29)

After imposing the gauge condition t; = t, and after elementary manipula-
tions becomes
yacos@’ + xysing’ = —tytanhny, (2.30)

or, in the other coordinate system
Y1 €08 — xysin¢ = +t; tanhn . (2.31D)

These are the equations of the lines containing the edge in coordinate
system X; and coordinate system X, respectively. We see that the time
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evolution of the edges is linear: they move with constant velocity tanhn
perpendicular to themselves and either into or away from both of the poly-
gons. In case of a particle, the magnitude of the velocity is a consequence
of formulae (2.19) and (2.21). Changing the sign of all boost parameters
simultaneously corresponds to time reversal.

The time evolution is well defined (and trivial) for an infinitesimal time
interval, but the parametrization can break down whenever an edge shrinks
to zero length or a concave angle («a > i) hits an opposite edge, and part of
the variables has to be reshuffled. There are nine types of such transitions,
during which edges can disappear and/or be newly created. The figures on
the next page show the topological transitions of the graph. That is, parts
of T' are depicted and the result of the possible discrete transitions. Solid
lines represent the edges of I', while dotted lines are the edges of the dual
graph. For the time being we can ignore those, they are drawn in the figure
for later use. In the first example the arrows indicate the time evolution
of the edges. It is clear that the length of edge 5 is decreasing, and the
transition happens when it becomes zero. All of the transitions except the
first occur only if there are particles or concave angles. The second group
preserves, the third decreases, the fourth increases the number of polygons.
Notice that the number of polygons, hence the number of variables can
fluctuate. The values of the associated new boost parameters are given by
the relations (2.11), (2.19), (2.21) and the restriction forbidding more than
one angle being concave incident to a vertex.

The total energy is given by the Euler characteristics [5]

\/@R—— @r-Sa)=1-g, (2.32)

iatV

where the last equality is the Gauss-Bonnet theorem. Despite the fact the
Hamiltonian is a constant, it generates the time evolution as a function of
the boost parameters

H(n) = Z(zx > aim)) (2.33)

iatV

if the symplectic structure is
{2n;, Lj} = 4w &y . (2.34)

This was discovered in [47] and it had important consequences for the
quantum theory.
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We have introduced the polygon model as 't Hooft constructed it in ref-
erences [5, 49]. Now we address one of the disadvantages of this otherwise
neat way of describing 2+1 dimensional gravity. It is difficult to classify the
set of all distinct universes, or to identify the truly reduced phase space.
There are many ways to represent the 12g — 12 + 4N parameter family of
universes in terms of polygons. The first major obstacle is the solution of
the constraints (2.24), (2.25). Then, performing a Lorentz transformation
inside one polygon causes the geometry of the polygons to change highly
non-trivially.

We now address the problem to find solutions to the constraint equa-
tions. A particular symmetric solution (with all L’s and all n’s equal) is
known [46]. One can perturb this solution and find a small open neigh-
bourhood in the 12g — 12 + 4N dimensional space of independent param-
eters. Other solutions can be found with intelligent guesses. A straightfor-
ward procedure for the case F = 1, with given masses for the particles, is
to guess all boost parameters except one, such that they satisfy the triangle
inequalities |n;| + |nj| > |nx| whenever the edges i, j and k are incident to
a common vertex. This is needed for the solution of the relations (2.11)
to exist. Then, it should be possible to determine the unspecified boost
parameter from the constraint, that the sum of angles of the Euclidean
polygon with 2F sides is (2E — 2) . The angles are now fixed. The next
step is to guess 2F — 2 edge lengths and determine the value of the last two
from equation (2.25). This way of guessing solutions seems simple, but it
does not always work. In the first step, it is difficult to satisfy all triangle
inequalities, and eq. (2.25) often yields negative solutions for the undeter-
mined lengths parameters for a fixed set of angles. Note that this problem
is not specific to the polygon representation, but is present also in other for-
mulations of 2+1 gravity, for example, in the canonical “frozen-time” loop
formulation of 241 gravity [29]. The problem of finding an independent
set of “loop variables” in this formulation was solved in [31].

We will address this problem in the polygon model and give an algorith-
mic solution for the constraints when F = 1, g > 1 and N = 0. To complete
the task we go through a mathematical exercise: we give a new interpre-
tation to the boost parameters in terms of geodesic lengths in hyperbolic
space.

2.5 Vertex conditions

Each polygon carries a timelike unit normal vector, which is a point in
hyperbolic space given by the unit hyperboloid H? = {(t, x, y)| —t>+ x? +
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y? = —1}. This space has a canonical metric, which is induced from the
Minkowski metric. It has constant curvature R = —1. The relation (2.6)
says, that if n; is the unit normal vector of the polygon of X; then n, =
Ainy, n3 = Ayny and n; = Asns. They determine a triangle in hyperbolic
space. Indeed, it was pointed out in [54], that eq. (2.10) (or equivalently
eq. (2.11)) is the relation between the lengths |2n;|, |2n;|, |2nk| and the
angles r — a;, T — «j, T — ay of a hyperbolic triangle, if the latter angles
are positive. The triangle inequalities,

Il + | = |ne] (2.35)

are constraints on the system as mentioned earlier. It should hold for all
permutations of edges (i, j, k) at a 3-vertex, otherwise (2.11) has no real
solutions for the angles. One has to be careful when interpreting the boost
parameters as hyperbolic lengths, since the boost parameters can also be
negative and the angles can also be concave. However, all cases can be as-
sociated with standard hyperbolic triangles of positive lengths 7}; and angles
0 < &; < 7. There are three different cases,

e homogeneous vertex: sgn(n;) =const, for which we set

fl’i = |2rll|)
a = T-a,

where i € {1,2,3} labels the edges (and opposite angles) incident at
the given 3-vertex;

e mixed vertex: sgn (173) # sgn (12) = sgn (171), where the identification
is made according to fig. 2.6, namely,

ﬁi = |2Tll| )
dg = A3 — T
dl - al) l = 1) 2 >

o the degenerate case: |n;| + |nj| = |n«|, characterized by d; = d» = 0
and o3 = 7.

Note that in the first case 2 < Zle a; < 37 and in the second case
T < Zle a; < 2x. Thus, homogeneous vertices correspond to negative,
mixed vertices to positive curvature.
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Figure 2.6: Also a “mixed” vertex can be associated with a true hyperbolic triangle
with sides |2n;|, but the identification of angles is different from the homogeneous case.
Assuming that a3 is concave, and proceeding clockwise from P, one reads off &; = a3,
&y = ag and &3 = a3 — TT.

Let us now take the conical singularity due to a particle, and consider
the formulae connecting its boost parameter and its deficit angle ag4er from
the hyperbolic point of view. If we define &, = aqer — 7 then (2.19) reads

~

a
cos(1 —m) & = coshnsin ?p . (2.36)

The latter can be derived from the generic formula (2.11) for a hyperbolic
triangle, with one angle being /2. In other words, it is the relation for
a hyperbolic triangle with a right angle. The angle (1 — m)x is opposite
to the side with length |n| adjacent to the right angle; &,/2 is the other
angle. Formally, if 0 S m < 1/2then -7 = &, = 0,andif1/2<m <1
then 0 < &, < . We will see in section 2.9, that the relation (2.36) has
a hyperbolic triangle interpretation also for the case when &, < 0. Finally,
eq. (2.21) corresponds to a right triangle with two right angles. It has two
infinite and parallel sides meeting each other at the conformal boundary of
hyperbolic space enclosing zero angle, opposite to the finite side of length

In|.

2.6 The dual graph

For the next step toward the solution of the polygon closure constraints
we need the notion of the dual graph. The hyperbolic triangles (encoded
by the vertex conditions) are associated to vertices, therefore, they are in
one-to-one correspondence with the faces of a graph y dual to I'. The dual
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of a graph is another graph with the following properties (uncapitalized v,
e and f denotes vertices, edges and faces of the dual graph, respectively).

e It has a vertex in the middle of each face of the original graph thus
v=F.

e Edges connect neighboring vertices. They cross one and only one
edge of the graph I', so e = E.

e Each dual face encloses an original vertex, therefore f = V.

Before we turn to a specific example to illustrate the above structure,
let us explain what a tessellation means. In the general discussion, we had
many polygons glued together and we did not need to talk about tessella-
tions. Nevertheless, in practice, one usually represents the Cauchy surface
that has the topology of a Riemann surface, with as few polygons as pos-
sible. There are different ways to represent a graph I'. One is to list the
polygons and to provide the edges with labels, such that edges with coin-
ciding labels are to be glued together. One can also say, that this picture
emerges from cutting the surface > open along the edges of I'. This is what
we will call a tessellation.

Fig. 2.7 represents a two polygon universe without particles. I' satisfies
the general requirement that its complement Z\I is simply connected. This
property is a reformulation of the fact that it bounds a number of polygonal
faces (that is discs, topologically). The dual graph of the figure can be
constructed by placing a point P above edge 1 and another point Q below
it. Then, one should connect each point to the middle of each edge of the
polygon surrounding it, such that the curve does not intersect any other
edge of I'. At the end of this procedure, there will be three classes of
curves: according to their source and target vertex: Q < P, P < P and
Q < Q. The complete curve system forms a triangle graph and it satisfies
the following properties:

(i) Each curve intersects one and only one edge of I'.
(ii) The curves are pairwise non-homotopic with fixed endpoints.
(iii) None of the closed curves are contractible.

In fig. 2.8 both graphs are shown.

Finally, the inclusion of particles modifies the dual graph, such that
its faces are not all triangles, but there are also monogons: faces entirely
bounded by one (closed) curve corresponding to the particles. Considering
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Figure 2.7: The spatial universe 3 is a piecewise flat genus-2 surface (thin lines),
whose Cauchy data are associated with the graph I' (thick lines). The spatial met-
ric on X is flat everywhere, but has conical singularities at the vertices of I', and the
edges of ' are straight lines. The (thickened-out) graph has two boundary components,
(1,2,3,4,5,6,4,8,7,5,6,7) and (1,8,3,9,10,11,9,2,12,10,11,12), and represents a
two-polygon universe. Note also, that the arrows represent a circular ordering of go-
ing around the boundary graph I thought as a fat graph. Then, the orientation of an edge
and its partner is always opposite.

Figure 2.8: The genus two surface with the graph I (solid lines) of fig. 2.7, but it is cut
open along those dual edges (dotted lines), which are on the boundary of the schematic
rectangle. As a consequence we see many copies of the points P and Q. The identification
of the (dual) edges at the boundary of this figure (by matching the numbers shown) goes
always with opposite orientation.
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the particles as punctures of the surface X, the dual graph satisfies the prop-
erties 1-3 above also in the general case when there are particles present.
Fig. 2.9 shows a genus g = 2 universe containing two particles and a spher-
ical four-particle universe, their corresponding tessellations and the dual
graphs.

2.7 One polygon tessellation (OPT)

From this point on, we suppose that g > 1, org=1and N >0,0org =0
and N > 2. The more polygons we use for describing the initial surface,
the more variables we need to work with. We would like to be economic
and work with only one polygon. Then, there are only three constraints to
solve which will be done below. To justify studying only OPT’s it will be
necessary to see whether all universes admit such a slicing. We will return
to this question after exploiting the advantages of working with OPT’s. An
example of a graph I' on ¥ and the associated dual curve system is shown
in figures 2.10 and 2.11.

The holonomy map is naturally associated to a geometric structure. It
is a homomorphism from the fundamental group of the manifold to the
group, to which the transition functions belong. In our case it is a map
from the fundamental group xr; (M) to the Poincaré group ISO(2,1). But
due to the topology M = X X R of the universes we study, ir; (M) = 1; (%).

In case of an OPT, the edges of y are all closed curves connecting the
(only) vertex to itself. They can be identified with elements of the fun-
damental group. So we can say, that the holonomy map assigns Poincaré
group elements to each edge of y. These are the same group elements as
the ones appearing in the matching conditions. Since the number e of the
edges of y is more than the number of independent generators of the fun-
damental group!! (E = 6g—3+2N > 2g+ N — 1), the set of corresponding
generators is over-complete. We can understand the 4g — 2 + N vertex
relations of type (2.5) obeyed by them.

It has been proven in [27], that the holonomy of a globally hyperbolic,
locally flat universe 2 X R with N = 0 has a special property: its Lorentz
part f : 1 (Z) — SO(2,1) gives a discrete embedding, and the quotient
H2 /G (with G = f(i;(%)), a discrete subgroup of the Lorentz group) is a

"UWhen there are isolated punctures on a Riemann surface, the fundamental group
has N extra generators besides the 2g standard generators: those curves, which can
be continuously contracted to the individual punctures. The relation (1.42) is modified
in such a way, that the lhs. is multiplied from the right with these generators in the
appropriate order.
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Figure 2.9: @): a genus g = 2, N = 2 universe, b): a genus g = 0, N = 4 universe. The
graph T is shown in the top figures, the corresponding polygons P = \I in the middle,
and the dual graphs in the bottom (Note that the dual graph of the genus two surface
on the bottom left is reflected with respect to the plane of the paper). The few drawn
dashed lines in the middle left picture are the intersections of the hyperplanes given by
t = (P.X)° with the t = 0 spacelike planes. The edges of the polygon P are determined by
the segments between the intersections of these lines. Those edges of the polygon bearing
the same number have the same length and are to be glued with opposite orientation.
The points A and B are examples of 3-vertices, O; are 1-vertices. At vertices the sum
of the angles are different from 2x. The dual graph cuts the surface into triangles and
monogons, corresponding to 3-, and 1-vertices, respectively. In the bottom figures one
triangle is shaded. It corresponds to those edges of ', which are incident to the 3-vertex
A.
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Figure 2.10: Example of a graph I corresponding to a OPT of genus 2.

Figure 2.11: The curve system y corresponding to the OPT in fig. 2.10 has been mapped
to a set of homotopic geodesic loops on the smooth constant-curvature surface S of the
same genus. All loops are oriented, and the labels i = 1,...,9 indicate the outgoing
direction from the base point. Note that the picture is a mirror image (with respect to the
paper plane) of the “correct” one.
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smooth hyperbolic surface with the same genus as 2. We will see in the next
section that the boost parameters corresponding to an OPT are lengths of
geodesic loops based at a common basepoint in this smooth surface; these
geodesic loops cut the surface into triangles.

2.8 Uniformizing surface without particles

Let us assume for the this section 2.8, that there are no particles present
(N = 0). Take the hyperbolic triangles associated to the vertices (with
side lengths given by the corresponding boost parameters) and glue them
together along the edges according to the structure of the dual graph. We
obtain a surface S with the topology of >, which has a hyperbolic structure
on it. The first statement is clear: the gluing identifications of the edges of
y fix the topology without any metric information. The metric information
is encoded by hyperbolic triangles, the sides of which are in one-to-one
correspondence with the edges of y. These were curves connecting vertices
of the dual graph in definite homotopy class with fixed endpoints, the cor-
responding sides of the hyperbolic triangles are geodesic arcs in S. In the
following we will use the symbol y for both the dual graph of I' and also
the corresponding graph on S, whose edges are geodesics.

To verify that S is a genuine hyperbolic surface without singularities,
the only thing we have to check is whether the sum of angles is 2 at the
vertices. If we have &; = & — «; for all values i, then the statement is easily
seen to be true. The angles &; are then the outer angles of the Euclidean
polygons, thus, they add up to 2xr. Recall, that the above condition for a
vertex means that all boost parameters at a 3-vertex have the same sign
(such a vertex was called homogeneous). Since y is connected, the above
condition is fulfilled if all boost parameters have the same sign.

Homogeneous vertices have only convex angles, as we saw in section
2.5. If there is a concave angle, the identification of the (positive) angles of
the corresponding hyperbolic triangle changes. If we want keep the inter-
pretation that 7 — « is the angle appearing at a basepoint in the hyperbolic
surface (a vertex of y), then we should explain what it means, if it is nega-
tive. The solution is that triangles corresponding to mixed vertices have to
be cut out instead of glued. Suppose that the angle « indicated in fig. 2.12
is concave. Then & — « is negative and this means that the angle & of the
geodesic triangle PQR should count with a negative sign when summing
the angles at basepoint P in S. The corresponding piece of the geodesic tri-
angulation of S is the right-most figure rather than the middle. The angles
of the hyperbolic triangle PQR is & = a — x, p = f and § = y according
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Figure 2.12: The piece of T represented by the solid lines prescribes the identification
of the dual triangles PSR and PQR along the edge PR. If the triangle PQR corresponds
to a homogeneous (mixed) vertex, then it should be glued to (cut from) the triangle PRS
as shown in the middle (right) picture. The shaded region indicates the piece of the
hyperbolic structure S corresponding to the two triangles.

to the analysis in sec. 2.5. When the triangle PQR is cut out rather than
glued, then the angles count as —&, 2 —  and —7, as can be seen in the
right figure. Suppose now, that P,Q and R are identified in S. Then the
angles together countas — @ +2r — -y =@ —a) + (=) + (r —Y),
when summing all angles at the basepoint. Hence, summing the angles at
the basepoint still correspond to summing the outer angles of the Euclidean
polygon.

For a multi-polygon configuration when Q is not identified with R, the
previous interpretation is not possible: —& = 1 — a is alright, but 2 — j§ #
m—f and —y # ;w—7, only the sum of the latter two relations is an equation.
Thus, § and ¥ should be incident to the same basepoint for the proposed
interpretation to hold. We could not resolve this problem. Note that it is
not present in an OPT.

In the remainder of this section, we will prove various properties of
OPT’s and their associated smooth surfaces by proceeding in a number of
steps:

(i) If all n’s have the same sign, we can identify their (absolute) values
directly with the lengths of the corresponding geodesic loops in the
triangulation of S. Special properties of such configurations will be
elucidated in sec. 2.8.1.

(i) The image in S of a triangulation y coming from an OPT can be ob-
tained directly as follows. After choosing a basepoint (corresponding
to the one and only vertex of y in S)), take the 2g standard gener-
ators b;, j = 1,...,2g, of the fundamental group ;(S). They have
the property that their complement in S is a geodesic polygon with
4g sides in the sequence

biby by by  b3byby byt .. . bog 1 by by by
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Polygon model

The notation b, ' indicates that the side is to be glued with opposite
orientation to its partner by (with the same k) to obtain S from the
geodesic polygon. (An example is given by the four loops labeled 1 to
4in fig. 2.11.) One then triangulates the 4g-sided polygon by drawing
geodesic diagonal arcs until the polygon is triangulated. This is the
subject of section 2.8.2.

When two out of the resulting 6g — 3 closed loops in S are taken to
be smooth geodesics (ie. without any kinks), this uniquely fixes the
common basepoint for all loops to be the intersection point of the two
smooth loops. In this case only 6g — 6 of the length parameters are
independent, and can be identified with the so-called Zieschang-Vogt-
Coldewey coordinates of C,, as we discuss in more detail in section
2.8.3.

The transitions occurring during the time evolution correspond to
changing the triangulation by deleting one arc and drawing another
one, but not altering the surface S. This will be explained in section
2.8.4.

The polygon picture exhibits a Lorentz symmetry: one can change
the basepoint of the set of loops in S. The length variables n; will
transform in a well-defined way, but the abstract geometry encoded
by S does not change. These properties will be explained in section
2.8.5.

Finally, the usefulness of the previous parts of the construction will
become apparent in section 2.8.6 where we also solve the constraints
for the length variables L;, and give an algorithm to construct a large
family of universes. The space of these universes is R'26712 modulo
an infinite, discrete group with a complicated action. We conjecture,
that the family we have constructed is in fact the complete physical
phase space.

2.8.1 Properties of an OPT

If the tessellation consists of a single polygon, all edges of the dual graph y
as well as their images in S are closed loops (geodesics on S) which begin
and end at the chosen basepoint. The number of triangles and edges are

V=4g-2, E=6g-3, (2.37)
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as follows immediately from the Euler characteristic and the trivalence of
I'. The closure constraint

Da=(12g-8)x, (2.38)
i=1

which is equivalent to the Gauss-Bonnet theorem (2.32), can be rewritten
for the angles of the hyperbolic triangles as

> & =2r, (2.39)
i=1

as explained in the beginning of this section.

After recalling the main properties of an OPT, let is discuss the special
case when all boost parameters have the same sign. In that case, there
are only convex angles, so the polygon can never split. Second, there is
only one transition which can occur, since the other eight require either
the presence of particles and/or more polygons. Third, since the velocity
of an edge is given by tanhn, the polygon is either expanding or shrinking
at all times. In the direction of time corresponding to a shrinking, the
universe always runs into a singularity, because of the lower bound for the
value of the boost parameters 1; (and therefore, for the velocities tanhn;
of the edges of I'): the length of the shortest (non-contractible) smooth
geodesic loop on S. This result is in accordance with [27], where it has
been proven that all globally hyperbolic matter-free universes with g > 1
contain an initial or final singularity, while it is geodesically complete in
the other direction of time.

2.8.2 Geodesic polygon

Consider a triangulation of S consisting of geodesic loops based at one
point. This corresponds to an OPT. The action of deleting a loop from
the triangulation merges two triangles into a quadrilateral. We can draw
the other diagonal of this quadrilateral, which changes the structure of
the triangulation. The combined action of deleting and drawing is called
elementary move. We can use the algorithm given in [55] to show, that any
triangulation of a given genus-g surface S that arises in our construction
(called an “ideal triangulation” in [55]), can be reached from any other one
by a finite sequence of elementary moves. The numbers of moves required
is bounded by a function of g.

For example, given any graph I, its dual y and a set of boost parame-
ters {n;} for genus two, we can calculate the values of {1/} corresponding
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Figure 2.13: A “triangulated” geodesic polygon (thin geodesic arcs) faithfully represent-
ing the smooth surface S on the unit disk D? (see appendix A.1 for the metric, geodesics
and isometry group of this model of hyperbolic space). Edges are to be glued pairwise and
with opposite orientation as indicated by the numbers in accordance with relation (1.42)
for the generators of the fundamental group. We have also included the original graph T'
(thick lines), the edges of which has no geometric meaning in S.

to the curve system in fig. 2.11. The latter has four geodesic loops la-
beled 1, 2, 3 and 4, and by cutting the surface along them, one obtains the
geodesic polygon with consecutive geodesic arcs by bob;' b, bsbsby' b, ",
as explained above. Fig. 2.13 shows the same geodesic polygon drawn on
the unit disk with the standard hyperbolic metric. A similar construction
can be performed for any genus g.

2.8.3 The ZVC coordinates

In general the geodesic polygon is described by 6g parameters, to wit, 4g
angles and 2g side lengths. Since all of the angles appear at the same
basepoint P, they must sum up to D, & = 2x. Assume now, that P is the
intersection point of the smooth geodesics labeled 1 and 2, say, and that
these two form part of the triangulation. In terms of the geodesic polygon,
which is called normal canonical polygon in this case, this means that the
two angles at b; (xy and ¢ in fig. 2.13), as well as the two angles at b, ({
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and ¢) should add up to . Together with the constraint >, & = 21 we
therefore have three equations for the angles. The closure condition for the
polygon makes two more sides and one angle redundant, and we arrive at
6g — 6 degrees of freedom. These (4g — 2 independent sides and 2g — 4
independent angles) are the Zieschang-Vogt-Coldewey (ZVC) coordinates
of the Teichmiiller space T, [56, 57].

Going to the normal polygon amounts to a gauge fixing of the boost pa-
rameters 1;, which are the lengths of the arcs of the geodesic polygon, and
can be calculated from the ZVC coordinates by using the triangle relations
(2.11). In Appendix A.3 we sketch the algorithm of how to construct a set
of boost parameters corresponding to an element of C, in practice.

2.8.4 The exchange transition

We have seen above how the boost parameters of an OPT can be used to
characterize a surface S uniquely. However, as we have pointed out al-
ready, within a finite amount of time ¥ may undergo a transition which
changes both I" and its dual y. In the absence of particles and concave an-
gles, only one transition can take place, the so-called exchange transition.
This transition is illustrated in the figure on top of page 37. The edge (5)
drawn in the middle shrinks to zero size and is subsequently replaced by
another edge (5) as indicated. The graph I is represented by thick lines.
The associated change in the dual diagram y (dotted lines) corresponds to
the substitution of a diagonal 5 of a quadrilateral 1432 by its other diagonal
5’, whose length can be obtained by elementary trigonometry. This is an
elementary move of the triangulation of the surface S in the terminology of
sec. 2.8.2. The surface S itself remains unchanged, and is therefore invari-
ant under the time evolution. (Note that this does not imply the absence
of time evolution from the original picture, but only reflects the constancy
of the edge momenta or velocities.) The fact that S is also left invariant by
the residual Lorentz gauge transformations of the polygon model will be
demonstrated in the next section.

2.8.5 Lorentz transformation

An important issue that we have not addressed so far is the role played
by the choice of the basepoint in S. As we will show in the following,
the action of a Lorentz transformation on the boost parameters (which
is a symmetry transformation of the piecewise flat formulation) precisely
induces a change in the location of the basepoint.
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Recall that the matching condition between neighboring coordinate sys-
tems X; and X, in the polygon picture, is

A1X1 +a, = X2 . (240)

If the edge in question separates two distinct polygons, the corresponding
coordinate systems X; and X, can be Lorentz-transformed with indepen-
dent group elements. In the special case of an OPT we have only one coor-
dinate system, and X is just a “copy” of X;. Under the action of a Lorentz
transformation A we have X; — X; = AXj, j = 1,2, and the matching
condition gets modified to

[\1}21 + Ell = Xz (241)

with [\1 = AA1 A_l and 511 = Aal.

We saw that the smooth surface is presented as S = H? /G, where G is
the Lorentz part of the holonomy group (see the end of sec. (2.7)). It is
generated by the Lorentz group elements A; associated to the edges. The
space H? is the universal cover of S. One of the inverse images (called lifts)
of the basepoint (that is a point in H?, which is mapped to the basepoint
on S under the covering) is n = (1, 0, 0), the normal vector of the polygon.
The universal cover consists of infinite number of copies of the geodesic
polygon, and the complete set of lifts of the basepoint is the set {An|A €
G}. If one considers the geodesic arcs emanating from n to A;n where
i labels the 6g — 3 edges, then one recovers the angles &; at n enclosed
by these arcs, which are lifts of the corresponding geodesic loops on the
surface.

What is the effect of a Lorentz transformation? If F was a fundamen-
tal domain of S in H?, then AF is a new one after the Lorentz transfor-
mation given by A, since AGA™'AF = AGF. But AF is isometric to F,
since A € SO(2,1) is an isometry of H2. So the surface does not change.
However, the triangulation does, since the lift of the original basepoint
n = (1,0,0) was also mapped to An (note that A is not an element of G).
In other words, the basepoint on the surface has been moved, the point n
has a different image on S after Lorentz transformation. The effect of this
in the universal cover is that the geodesic arcs n < A; n have been replaced
by n <> AA;A™1n. They are lifts of the unique geodesic loops on the surface
in the same homotopy classes as their ancestors before the Lorentz transfor-
mation, but based at a different basepoint. Note that the boost parameters
and the angles, as defined in equations (2.8) and (2.9), all change after a
Lorentz transformation.
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Figure 2.14: An example of how an OPT changes along a one-parameter family of
Lorentz transformations. As opposed to time evolution generated by the Hamiltonian
(2.33), angles change in a highly nontrivial manner (encoded by the changing of the ideal
triangulation on S when moving the basepoint). Within finite value of the parameter
transitions appear much like during time evolution.

2.8.6 The complex constraint

While we have found an abstract geometric re-interpretation for the boost
parameters of the polygon representation, which has enabled us to identify
the independent physical and the redundant gauge degrees of freedom,
nothing has been said so far about the other half of the canonical variables,
the edge length variables {L;}. We will show in the following that the
complex constraint (2.25) admits a solution for any triangulation of any
surface S € C,, provided that the basepoint P € S is chosen carefully.
Furthermore, we will show that from a particular solution (of eq. (2.46)
for all relevant triplets z;) one can construct a (6g — 6)-parameter family
of solutions, thus spanning an entire sector [ of the full phase space where
p=RECxT, TR 12,
For an OPT, we can rewrite the complex constraint (2.25) as

6g—3
CE Z LIZ[=O (242)
I=1

with z; = exp(i6;) + exp(i0;), since each label I will appear exactly twice,
namely, at positions i and j when counting the edges of the polygon in
counterclockwise direction. The angles 6; are expressible as sums of angles
«a; of the polygon, but there is a more straightforward way of writing them.
If the matching condition was X, = A1 X; + a; with

53



Polygon model

Figure 2.15: Starting from the edge labeled 1 and proceeding in counterclockwise
direction one has I(1) = 1, I(2) = 2, I(3) = 3, I(4) = 1, ... and therefore z; =
exp(if1) + exp(if,4). Instead of adding the outer angles in terms of a; to obtain 6;, we
can determine them directly from the angle parameters appearing in the Lorentz transfor-
mation part of the matching conditions corresponding to the edge 1.

A1 = R(¢1) B(2m1) R(¢)) , (2.43)

one can rewrite it as R(—¢;) X, = B(2n1) R(¢}) X; + a), and fig. 2.15 then
shows that
91 = ¢1 5 94 =T — ¢I1 . (244)

In order to derive this relation, one has to take into account that (after
an appropriate translation) X, has to be rotated by an angle —¢; and X;
by an angle ¢ to align their spatial axes with those of X, and that the two
occurrences of an edge always have opposite orientation. After rotating the
spatial axes of X; and X, to those of X, the matching condition between
the new coordinate systems is a pure boost B(2n;). The coefficient z; of
the corresponding edge is therefore given by

21 = exp(i 1) + exp(i (r — ¢})) . (2.45)

The constraint (2.42) is a complex linear equation, and has a solution if
and only if the complex coefficients z;, thought of as vectors based at the
origin of the complex plane, are not all contained in a half plane. If they
are, there is no non-trivial linear combination with positive coefficients L;
that vanishes. In appendix A.4 we prove the non-trivial fact that after an
appropriate conjugation of the generators A; of G, which correspond to
the loops of the triangulation, the coefficients z; will be transformed into a
generic position, not contained in any half plane.
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Figure 2.16: For any point 2; (i > 3) in one of the convex sections of the
complex plane bounded by two half lines j, k € {1, 2,3}, the triangle with
corner points (2;, 2j, 2x) contains the origin. In other words, the corre-
sponding eq. (2.46) has a unique solution with X;, Xy, X; + A € (0, 1).

Suppose now that this has been achieved, ie. there are three points 21,
%o, 23 in the desired generic position. We can divide the complex plane as
depicted in fig. 2.16, and z;, i > 3, is some other point lying in the convex
section of the plane bounded by lines 1 and 3, say. Then the equation

)lel + )L223 + (1 - )Ll - )Lz)Zi =0 (246)

admits a unique solution with \;, Xy, X; + Xy € (0,1). A similar statement
holds for any point 2; contained in one of the other two convex sections of
the plane. There are 6g—5 independent triangles ((1, 2, 3), and every other
indexi € [4, 6g—3] matched with two of (1, 2, 3) according to the location
of z; as explained above). Adding up the resulting 6g — 5 equations of the
form (2.46), each one multiplied by an arbitrary number p; > 0, we get a
solution to the constraint (2.42). Each index is represented, and each z;
appears with a positive coefficient L;, namely, a positive linear combination
of the p;. All p;’s are independent, but we can fix p; to be 1, which fixes
the global time parameter or, equivalently, an overall length scale. Thus we
have completed the explicit construction of a (12g — 12)-parameter set [J
of independent and unconstrained initial conditions for the polygon model,
each corresponding to a one-polygon universe. We have obtained this space
in the explicit form P = Rig_6 X C,. We conjecture that 0 is identical with
the full phase space of the model, and not just an open subset of it. To
prove this conjecture one should prove two statements.

(i) All OPT’s (if any) with a concave angle can be Lorentz transformed to
one with only convex angles.

(i) All universes can be represented with an OPT.

We will discuss both statements in the following subsections. Note that
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there is ongoing work establishing this result in the mathematics literature
[58].

2.8.7 OPT with a concave angle

Let us try to construct an OPT with a concave angle. We start with giving a
bound to the maximal number of concave angles. Recall that x < >, o; <
27 holds for mixed vertices of ', and 2 < D>}, a; < 3 for the homoge-
neous ones. Since the graph I" has 4g — 2 vertices, in the case of two mixed
vertices the sum of all angles in the polygon is given by (cf. (2.24))

12g—-6
(12g-8)r= D> a;<4r+(4g—4)3r=(12g-8)x. (2.47)
i=1

This is a contradiction, so we can exclude the appearance of more than one
mixed vertex. Note that if the graph I' was one-particle irreducible,'? it
would be impossible to have only one single mixed vertex. This bound is
2F — 1 for an F polygon tessellation without particles. So we can have at
most one mixed vertex for F = 1. The graph can be e.g. that of fig. 2.10,
with 11, 12, 15, N, N7 < 0 and 13, N4,Ns, Mo > 0. Then the vertex with
edges 359 is mixed, and the left handle is shrinking, whereas the right
handle is expanding (with the convention that n > 0, whenever the corre-
sponding edge is moving out of the polygon).

Suppose that the bound 2x for the sum of angles at the mixed vertex is
saturated. Then, an angle at any other vertex should be equal, on average,
to w(12g — 11) /(12g — 9). It means that the boost parameters have to
be large to give rise to angles close to & or, in other words, hyperbolic
triangles with very small angles. Nevertheless, one can find a consistent set
of boost parameters, which is consistent with the triangle inequalities and
determines a set of angles satisfying the closure constraint of the Euclidean
polygon. Equivalently, one can construct a hyperbolic geodesic polygon of
sec. 2.8.2, which contains a concave angle. Recall that the vertex, which
has a concave angle gives rise to a cut hyperbolic triangle, as illustrated in
the right-most picture of fig. 2.12. Hence, there is a concave angle (at point
Q in the figure) in the hyperbolic polygon.

The next step is the solution of the complex constraint. It turns out that
there are configurations discussed in the previous paragraph, for which we
can find solutions to that constraint. They can also be made to avoid self-
intersection of the polygon. However, the only solutions we found appear

12That is, a graph, which does not fall into disconnected pieces, if we cut any of its
edges.
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to be stronly Lorentz contracted in one direction, suggesting that another
Lorentz frame exists, where also these universes are described by a convex
OPT. This however we could not prove.

2.8.8 Multi-polygon tessellation

What we have described up to now is the sector of the theory corresponding
to a single polygon. For this case, we have identified a complete set of
initial data (the phase space /), and shown that it is mapped into itself
under time evolution. However, as we have mentioned in the introduction,
a generic universe in the 't Hooft representation is a whole collection of
flat polygons glued together at their boundaries. In the following we will
analyze multi-polygon configurations, and discuss their relation to the one-
polygon sector of the theory. Because of technical problems in connection
with the complicated action of the Lorentz gauge transformations on these
configurations, we have so far been unable to establish explicit solutions to
the analogues of the constraint equation (2.42) and to construct a complete
set of initial data. These questions may turn out to be irrelevant due to the
closing remark of sec. 2.8.6.

However, in the generic case with particles, the question is not only
whether any universe admits an OPT, but also whether one can avoid poly-
gon splitting transitions (bottom pictures on page 37) due to concave an-
gles. A universe consisting of F polygons has a graph I with 6g+3(F —2) +
2N edges. Since every edge comes with a canonical variable pair (n;, L;), it
is clear that 3F of these pairs must correspond to unphysical or redundant
information. For F > 1, one would expect that at the level of the n’s alone,
three more boosts can be gauge-fixed for every additional polygon in the
tessellation.

We will illustrate now by a specific example how a multi-polygon uni-
verse can be effectively reduced to a universe with fewer polygons by a
suitable gauge-fixing. Fig. 2.8 represents (a fundamental domain of) the
surface S triangulated by means of the geodesic arcs as explained above
with F = 2, corresponding to the piecewise flat universe of fig. 2.7. Fig. 2.8
is analogous to fig. 2.13 with the difference that the dual graph y (dotted
lines) now has two distinct basepoints P and Q as indicated (note, that
fig. 2.8 is only schematic as opposed to fig. 2.13, which renders the angles
of the hyperbolic polygon faithfully). The solid lines represent edges of I.
Any such edge which reaches the boundary of the big quadrilateral must be
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Figure 2.17: The polygons corresponding to the two-polygon universe of figs.2.7 and
2.8. If one Lorentz-transforms the two coordinate frames such that i3 becomes zero, the
angles 6 + w and € between edges 2 and 9 become 7. Similar statement holds for edges
4 and 8. Switching to the one-polygon representation of the same universe amounts to
deleting edge 3 and the vertices on it (which no longer carry any deficit angles) and
considering 2 and 9 as well as 4 and 8 as single edges.

glued to the outgoing edge labeled by the same number. The two flat poly-
gons corresponding to this example are shown schematically in fig. 2.17.
Closed dual loops based at P (Q) correspond to edges which appear twice
in the polygon with center P (Q), and dual curves connecting P to Q cor-
respond to edges appearing once in both polygons. After the gluing the
two polygons form a connected piecewise flat surface of genus 2. Consider
now the situation when one of the dual edges in S, say, edge 3, has zero
length. The basepoints P and Q then fall on top of each other, and the tri-
angles 348 and 392 are degenerate, since the two edges 4 and 8 coincide,
as do 2 and 9. The angles enclosed by these pairs of edges are zero, and
consequently the angles between the edges of I' (indicated in fig. 2.8) on
the piecewise flat surface are xr. Furthermore, since the boost parameter is
zero, the matching condition in the most general case is given by

Xp=R($)Xo—a. (2.48)

This implies that we can redefine X, to be exactly Xp without changing the
shape of the polygon (since the transformation is a pure rotation). It also
means that edge 3 is redundant, and edges 4 and 8 (as well as 2 and 9)
can be represented by just single edges. We have therefore re-derived the
situation of fig. 2.10.

The conclusion from this analysis is that if the boost parameter of an
edge bounding two distinct polygons can be made to vanish by an appro-
priate gauge transformation, then we have an OPT. The general matching
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condition of edge 3 (omitting the translational part) reads
Xp=AXq, (2.49)

where Xp and X, are now distinct coordinate systems. After performing
two independent Lorentz transformations on both frames (Xp — Xp =
ApXp and Xq — Xq = AgXq) eq. (2.49) becomes

Xp=N,'ANgXq . (2.50)

There are now many choices for Ap and Ay which reduce the matching
condition to Xp = X (for example, Ap = A and Aq = I will do), which
seems to mean that we can effectively get back to a one-polygon tessella-
tion by performing a symmetry transformation. Unfortunately, there is no
guarantee that when performing a finite Lorentz transformation (just like
upon finite time translations) the gauge does not crash: we do not need
to perform a transition. If the transition happens to be a polygon splitting
one, then we did not reduce the number of polygons. This prevents us from
proving that any multi-polygon universe admits an OPT.

2.9 Uniformizing surface with particles

In sec. 2.5 we have seen that the relation between the deficit angle and
the boost parameters also allows for interpretation in terms of a hyperbolic
triangle with a right angle. This is a promising sign toward generalizing the
constructions of the smooth surface S for N > 0. In this case, we expect to
have conical singularities also on S (the dimension of the moduli space of
these N times punctured surfaces is greater accordingly); by the invariance
property we also expect that the corresponding deficit angles are given by
the masses.

In the following we will show how this construction works for a large
class of universes. It is a two step procedure. The first step is the con-
struction of a bordered hyperbolic surface with N boundary components.
This is the result of cutting and pasting the triangles corresponding to the
3-vertices of I'. Then we glue (or cut) certain isosceles on the boundaries
along their base and identify their two equal sides. This way we obtain a hy-
perbolic cone surface with the above property: the deficit angles are given
by 27 times the masses of the particles. This procedure will be explained
below in detail.

The invariance property of the surface S under a Lorentz transformation
is difficult to establish, since the presentation of S as a quotient is not avail-
able any more. The invariance of S under time evolution is also not proven;
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the appearance of all transitions makes this task difficult. We believe, that
under certain circumstances, and infinitesimally, these properties hold. We
will also see, that there are counter examples, that is, universes where the
recipe does not work. In such a universe, we cannot construct the hyper-
bolic cone surface S with N punctures. Unfortunately, we were unable to
identify the class of universes, for which the construction does not work.

Let us study the specific example of a genus two N = 2, OPT universe
of fig. 2.9 a. Consider the hyperbolic structure arising from gluing triangles
together according to the dual graph of a generic polygonal Cauchy surface
as shown in fig. 2.18 (the solid lines represent the hyperbolic geodesics with
lengths |2m;|). It has the following properties:

e It has F = 1 vertices.

e Those (dual) edges, which form the boundary of a monogon in y (a
1-vertex in I'), see the labels 6 and 12 in the figure, are always closed
geodesic boundaries (that is, for F > 1 as well): their source and
target vertices always coincide (the particle’s holonomy is associated
to the closed curve around the particle).

First, assume that the masses of the particles are in the rangem € (1/2, 1).
A crucial observation is that the hyperbolic isosceles (triangle with two
equal sides) with base length 2n, (the boost parameter corresponding to a
particle) and angle 2 (1 — m) opposite to the base has angles

&y/2 = (Qger — 1) /2 (2.51)

adjacent to the base. For the chosen range of m the latter is always a
positive acute angle. It is a direct consequence of the relation (2.19) and
the fact discussed in the end of sec. 2.5, that ap,, (1—m) 7 and 1; determine
a hyperbolic triangle with a right angle, cf. fig. 2.19. If we glue this isosceles
to the boundary geodesic with length 2n on the hyperbolic structure and
identify the equal sides of the isosceles, then the boundary disappears and
we obtain a conical singularity with deficit angle 27rm.

The constructed hyperbolic surface is thus a candidate for the general-
ization of S in the matter-free case. The sum of angles at the basepoint
indeed add up to 21, because the hyperbolic angles are always the outer
angles of the Euclidean polygons. This statement is true for the particles
as well, since we have twice &,/2 at one basepoint and &, is really the
corresponding outer angle of the polygon.

What happens if the particle is light m € (0,1/2)? We can repeat
the previous discussion, but the angles «, are negative and (1 — m)x is an
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P

Figure 2.18: An illustration of the dual graph (solid lines) of a genus two OPT with two
particles corresponding to the left side of fig. 2.9. Edges labeled by 6 and 12 are boundary
geodesics of the bordered surface in the intermediate stage of constructing the hyperbolic
surface S with N = 2 conical singularities. The two dashed isosceles are to be glued
on these edges and their equal sides are to be identified. Then we obtain the hyperbolic
surface with conical singularities at Q; and Q-, the corresponding deficit angles are given
by the particle masses and the vertex P turns out to be a regular point as explained in the
text. The double lines are to be used in figure 2.21.

(I-m)m

Figure 2.19: Two isometric hyperbolic triangles with a right angle glued together yield
the isosceles with the correct base length (to glue to the corresponding boundary geodesic)
and angles on the base, the sum of which correspond to the outer angle of the Euclidean
polygon at the particle’s vertex. The isosceles, when its equal sides are glued together,
produces the conical singularity 2rm at the vertex opposite to the base.
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Figure 2.20: In case of light mass 0 < m < 1/2 the isosceles is to be cut out of the
bordered surface, the angles at the base count with a negative sign in the sum of angles
at the vertex P, in accordance with the fact that the corresponding outer angle of the
Euclidean polygon is negative.

obtuse angle. It means that the triangle is to be cut rather than glued to the
corresponding boundary geodesic as shown in fig. 2.20. Hence, the conical
singularity at the vertex opposite to the base is again 2xrm, the angle &, is
the outer angle (with sign) of the Euclidean polygon. Consult figures 2.21
and 2.22 to gain insight to these procedures on the surface itself.

2.10 Discussion

We have completed the construction on the formal level of the invariant
hyperbolic surface for the general case N > 0. However the result is far
from complete. Let us enumerate the as yet unsolved problems.

(i) Range of the mass
Let us start with discussing the limit cases. The case m = 1 corre-
sponds to the maximal deficit angle, it describes a lightlike particle
(so m no longer comes from the angle of the unique pure rotation
in the conjugacy class of an elliptic holonomy. The equal sides of
isosceles becomes infinite, its corner opposite to the base is now the
boundary of hyperbolic space and the angle at that corner is zero. The
case m = 0 is similar to m = 1. However, in this case the isosceles
should be cut out instead of glued, which is difficult to understand,
since the infinite triangle does not fit in a bounded geodesic polygon.
If m = 1/2, then the corresponding boundary geodesic is smooth
(the angle at its vertex is r. The identification amounts to folding the
geodesic to half; in the middle point there will be a conical singularity
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Figure 2.21: The bordered surface is being “born” by gluing a triangle along an edge
(7) to the left, and another (5) to the right. Its third side becomes the closed boundary
geodesic at the vertex P. The corresponding tessellated picture is fig. 2.18, but the similar
procedure for the triangle given by the edges 7, 8, 13 is not indicated here.

Q PAY
< 27
P
—— Q
a a
P 2n P
a a
A
P> 21

Figure 2.22: It is shown how to glue/cut off the isosceles to/from the bordered surface.
On the right hand side the “drop” shape indicates the boundary geodesic on the surface at
the basepoint P. The indicated angle is the sum of angles at the vertex P on the bordered
surface. It is less (more) than 2x above (below) before gluing (cutting). It becomes 27 in
both cases after the “operation”. The boundary disappears in both cases, since the equal
sides labeled by a are glued together.

63



(i)

(iii)

(iv)

Polygon model

of angle xr. The isosceles degenerates to the zero area triangle with
sides (11,1, 2n), respectively. So we covered the interval m € (0, 1].
However, we don’t know how a similar construction works for nega-
tive deficit angle, which would presumably be the case for negative
masses.

Presentation of S

We had a great advantage for matter free universes, namely, the sur-
face S could be presented as a quotient: = H?/G, where G is the
image of the fundamental group under the linear part of the holon-
omy homomorphism: the subgroup SO.(2,1) generated by the set
of Lorentz transformations corresponding to the closed curves in the
Cauchy surface. In case of massive particles with generic masses,
there is no such presentation, all we have is a fundamental polygon
with pasting conditions. The reason is, that elliptic elements have a
fixed point in H? (it is their axis).

Lorentz transformations, rest frame

Because of the previous point we have to be careful. We can still con-
sider the basepoint of an OPT to be the unit normal vector n of the
polygon and take the geodesics connecting the basepoint n to their
images A;n (where A; are the SO(2, 1) holonomies). Then the neigh-
borhood of n is isometric to the neighborhood of the basepoint on
the surface S: the geodesic arcs have the same lengths, emanate in
the same order and enclose the same angles among each other as
those on the surface. Conjugating the holonomies with an element
A € SO(2,1) changes the data, and we would wish to prove that
all we did was moving the basepoint. For this statement we would
need H? to be covered with isometric copies of the fundamental poly-
gon, that is, the hyperbolic space would be the universal cover of the
surface, which is not the case.

Suppose that some careful formulation of the statement is true, then
the rest frame of a particle would be characterized by the coincidence
of the vertex (P on the last few figures above) and the conical singu-
larity Q. That is, the isosceles degenerates to a point, or in other
words, the base point is the fixed point of the particle’s holonomy.

N > 1, counter examples for the existence of S

If there are more particles it can happen that when we try to construct
S by cutting and pasting triangles, the true angle at a vertex becomes
negative. In other words we cannot construct it. An example (with
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Cosmological singularities

g = 0, N = 4) is depicted in fig. 2.24. The corresponding “would
be” hyperbolic structure is shown in fig. 2.23. So there is a class of
universes, where there is no underlying hyperbolic surface associated.
How can one characterize this class? The moduli of the constructed
counter example in fig. 2.24 can be varied infinitesimally to stay in
that class, so it is clearly not a measure zero part of the phase space.
Or is it possible, that one just needs the careful choice of the Lorentz
frame (in other words the representative of the conjugacy class of G
in SO(2, 1)) to be able to construct S? If so, then what goes wrong,
when we conjugate it back (cf. point 3.)?

Teichmiiller space for punctured surfaces.

The construction of S for N = 0 was useful because a hyperbolic sur-
face can be considered as a point in the Teichmiiller space C,, which
is the configuration space of the gravity system. The Teichmiiller
space C, of the punctured genus g surfaces can be defined as the
set of punctured hyperbolic surfaces, which are complete and have
finite area. The cone surfaces we construct are not complete (cer-
tain geodesics end in finite distance at the cone point(s)). However,
the space of hyperbolic cone surfaces with fixed conical singularities
is homeomorphic to the usual Teichmiiller space [59], which corre-
spond to the special case when all masses are equal to 1, thus the
vertices of the isosceles are all at the boundary of D?, an infinite dis-
tance away from the vertex of the triangulation. Note that in this
case we still have the presentation S = D? /G, since those generators
of G, which correspond to the massless particles are all parabolic:
they have fixed points only at the boundary of the unit disc. See [60]
for more details.

2.11 Cosmological singularities

Finally, we will gain some insight into one of the original main motiva-
tions of this study: the asymptotic behaviour of the model near a Big
Bang/Crunch singularity. Let us quote the conjectures of 't Hooft formu-
lated in [44] on the basis of many numerical examples. Let us first fix the
terminology. The singularity when the Cauchy surface has zero area (the
sum of the area of the Euclidean polygons) is called Big Bang/Crunch, if it
lies in the past/future. The time span of the universe is a finite interval I
if it starts from a Big Bang and ends in a Big Crunch. It is a half line R if
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Q

Q

Figure 2.23: The fundamental (hyperbolic) polygon of S corresponding to a spherical
topology with four particles. If we tune the masses of Q4 and Q3 smaller and smaller,
the angle enclosed by the sides PQs; and PQ4 will become negative. It means that the
hyperbolic structure S cannot be constructed.

Figure 2.24: A faithful example of an OPT of a four particle universe with g = 0. It has
two heavy (m > 1/2) particles Q1 and Q2 and two light (m < 1/2) particles Q3 and Q4.
It corresponds to a situation when &g, /2 + &g, /2 — & < 0 in fig. 2.23; it is the negative
rotation angle between the indicated angle bisectors corresponding to a counterclockwise
orientation. In this case we cannot construct the corresponding hyperbolic surface
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only one of these is present and the universe is geodesically complete in the
other direction of time. It is the full real line R if it is geodesically complete
in both directions. ’t Hooft has found that depending on the genus of the
slice the following cases are possible!3:

g=0:1, Ry

g=1: Ry
He conjectured that this should hold in general and extrapolated the con-
jecture to

g>1: R, R.

For the matter-free case and g > 0 we saw that it is always R,. How does
the example of I appear? First of all, we have to mention an important
theorem derived in [50] stating that if all boost parameters have the same
(negative) sign corresponding to contraction at t = t© then this condition
remains satisfied for all times t > t(®. This is proven by checking all pos-
sible transitions. It means that an expanding universe with only positive
boost parameters necessarily began with a Big Bang. There exist initial
conditions such that a concave angle can be created in such a situation,
or equivalently, a negative boost parameter. The time reversal of the men-
tioned theorem protects the positive sign of one boost parameter, but this
is not an obstacle to end up in a shrinking universe. An example of the cre-
ation of a concave angle, hence a negative boost parameter, “surrounded”
by positive ones is shown in fig. 2.25. The effect of the transition leading
to this phenomenon on the level of S is the replacement of a glued triangle
with a cut one.

The last thing we have to mention is the asymptotic behavior of the
model near the singularities. It has been noticed by ’t Hooft that approach-
ing the Big Crunch the boost parameters grow unboundedly, which means
that all edges shrink with the speed of light. Even if there has been a large
number of polygons in an intermediate state of the time evolution, in this
asymptotic region there remains only one, which takes an asymptotic shape
of a triangle or sometimes a quadrangle. There is an infinite succession of
transitions taking place, but only the exchange and the hop (first and fourth
from above on page 37). We can interpret this on the level of S: those
transitions are preferred in this regime which leads to longer geodesic arcs
and they emanate in three “jets” from the basepoint. However, we cannot
explain this behaviour.

13The static sectors are not taken into account. The sphere can have static configurations
if the sum of the masses is 2. Then all boost parameters can be chosen to be zero. The
empty torus have been discussed at the end of sec. 2.3. There is no static universe with
g > 1 if the masses are in the range m; € [0, 1), the Gauss-Bonnet theorem requires
homogeneous vertices (with nonzero n’s) to produce negative curvature.
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S S

Figure 2.25: The top figure shows a hop transition leading to a concave angle. The
solid lines are the edges of T' and the dual edges are indicated by dotted lines. Below the
corresponding pieces of the hyperbolic structure is shown. The isosceles corresponding to
the particles are PRQ and TP’Q’ on the left and right figure, respectively. The condition
for the creation of a concave angle is ' = a1 + a2 + ap — 27 > 7. Rewriting this relation
for the angles in the hyperbolic triangulation below we get & = &; + &, + &, < 0. We can
see, that since & < 0, the new triangle TRP’ corresponding to the upper trivalent vertex
will also be cut while the original triangle TPR was glued.

There is a great deal of knowledge now in the mathematics literature
[27, 59, 61, 62, 63, 58] about classification, the cosmological time func-
tion and explicit construction of 't Hooft’s polygonal spacetimes, see also
appendix A.2. It seems that to be able to answer the unsolved problems
discussed above and enumerated at the end of the previous section, one
should explore the relation to the approach developed in this chapter and
the explicit constructions of spacetimes dealt with in the above cited ref-
erences. For example, the authors of [59] experienced difficulties similar
to ours when trying to classify universes containing particles. Their con-
clusion was that the phase space of these spacetimes has many different
components and it is likely, that even the dimension of some of them is less
than the maximal 12g — 12 + 4N.
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Chapter 3

Polygon model from first order
gravity

The previous chapter was devoted to the polygon model of classical 2+1
dimensional gravity at A = 0. Apart from the motivation to understand
the structure of its phase space, another reason for studying it is the hope
that the classically integrable model can be quantized and solved. The
complete quantum theory in the polygon representation is still missing, al-
though valuable qualitative observations are possible [47]. At the end of
this chapter we will give a summary of the quantum aspects of the model
and related approaches. What they have in common is their implications
of spectra of geometry: time is discrete, space is continuous. How to inter-
pret these results in a quantum theory of spacetime itself where the causal
structure is expected to fluctuate, is a difficult and unsolved problem.

We will show in this section that the 't Hooft model can be derived
from the first order formalism. The derivation of the phase space and the
symplectic structure (2.34) will be given by means of gauge fixing and
symplectic reduction. Various approaches addressing the first step, that is
reducing the phase space spanned by the fields w and e to a finite number
of covariant variables, can be found in the literature [64, 34, 36, 35, 38].
These references cover the matter free case and the proper treatment of the
inclusion of point particles. Another (lattice) approach has been developed
by Waelbroeck et al. [32], who have compared their covariant model to
the polygon model and derived the symplectic structure [65]. However,
they needed the technical requirement of having the spacelike slice con-
sisting of planar triangular faces. In this chapter we present the result of
[48], whose the starting point is the smooth first order formalism, and the
symplectic structure is derived in two ways. The first one is a partial gauge
fixing of the covariant model of [35]. The second is a direct derivation of
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the fields of the first order formalism: the boost parameters come from the
spin connection, the lengths originate from the triad. The next section is
devoted to summarizes the first step of the reduction from the field vari-
ables to the finite number of covariant ones: the SO(2, 1) holonomies and
the three-vectors built from the triad, which are canonically conjugate to
the holonomies. In section 3.2, the last step of the reduction is done, and
we will arrive at the phase space of the polygon model.

3.1 Reduction to finite degrees of freedom

It has been explained in section 1.5 that in order to incorporate point par-
ticles with mass m, we need to add extra terms to the gravitational action.
We will restrict ourselves to the case of spinless particles and choose the
path of [36, 35], where the mass shell conditions of the particles of type
(2.18) are added to the first order action with Lagrange multipliers. Some
modifications will be needed with respect to [35], where only the special
case was treated of trivial tangent bundle of the equal time surface, that is
when it is the plane, the sphere or the torus. For our discussion there will
be no such restriction, so ¥ can have arbitrary genus.

If there are point particles present, the Chern-Simons formulation and
the second order formulation of gravity are not even classically equivalent,
due to the different structure of large gauge transformations versus large
diffeomorphisms. In [8] an explicit example is constructed, where two
configurations ®; and @, in the Chern-Simons theory that are related by
a non-infinitesimal local translation do not correspond to diffeomorphic
spacetimes. Hence, the states ®; and ®, indistinguishable in Chern-Simons
gravity are distinguishable in Einstein’s gravity. One can understand this by
considering the smooth path in a gauge orbit given by t p?,t € [0, 1], where
p? is a non-infintesimal parameter of a local translation (1.15). If ®; and &,
are connected by this path, then there is no guarantee that for a given value
of t the configuration does not correspond to a degenerate triad/metric.
The explicit example constructed in [8] is a four-particle universe with ¥ =
R2. We shall not deal with this issue here any further.

For the sake of simplicity, the discussion throughout this chapter will
correspond to a one-polygon tessellation. Consider the equal time surface
> as a simply connected region P = % /T, with the graph I' of section 2,
and pairwise identifications of the boundaries (which are the worldlines of
the edges connecting vertices of I'). Here, I' does not consist of geodesic
segments, but arbitrary smooth curves called edges connecting its vertices.
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On shell, the spin connection and the triad are pure gauges
wh = (8710;9%, ¢ =g %0 f", (3.1)

with potentials g : R? — SO(2,1) and f : R? — R?! (the latter stands
for Minkowski space). They are defined on the universal cover, and are not
single valued on the surface 3. However, the requirement that the fields
should be single valued on X restricts the potentials. Most generally, on
each pair of edges i, and i_ in OP (the boundary of the simply connected

region P) which correspond to the same edge i of I' the following conditions
should hold

gl =Nigl, fly =A%l —a)), (3.2)

with A; € SO(2,1) and a; € R?!. This is of course the constant gauge
transformation which will lead to single valued fields (3.2) on the edges.
We need to impose the consistency conditions

Vi = A Al Ay =10, (3.3)
where j runs through all 3-vertices of I', the tuple (k(j),1(j),m(j)) is in
the appropriate order. Whether A or A™! appears in the constraint is also
straightforward when one fixes the labels i, and i_ for the edges. This way
the constraints in (1.37) are solved everywhere, except for the 1-vertices.
The reason is that the only possible locations for non-vanishing curvature
of w given by (3.2) are the vertices of T, but (3.3) makes the holonomy!
around any three-vertex? trivial, which means that the curvature vanishes
also there. In order for the 1-vertices to be point particles, we have to
impose extra constraints

W;=trAj—2cosm;j+1=0. (3.4)

for each 1-vertex. To obtain these from an action principle, one needs to
add the N terms of the form (3.4) to the action, where A is substituted with
the holonomy around the particle as the functional of the spin connection.
These terms have to be added to the action (1.34) with Lagrange multipli-
ers to make sure that the massive particles move along timelike geodesics,

IStrictly speaking, we do not yet know if the Lorentz group element A; is the holonomy
along the dual closed curves corresponding to the edge i, but it is in fact the case as will
be made clear below.

2Recall that the edges dual to the edges of T are closed curves and k(j) o I(j) o m(j)
is the closed curve (it would be the contour of the corresponding triangle, if the curves
k(j), L(j), m(j) were geodesics), which can be contracted to the three-vertex j.
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massless particles® move along lightlike geodesics and that there are coni-
cal singularities at their locations. Since the holonomies are functionals of
the connection w, one should also check, how the equations of motion from
the variation with respect to w change. It turns out that the value of the
extra Lagrange multiplier is fixed and it does not lead to new constraints.
For a careful analysis of this issue, see [36].

A second set of variables is given by the following formula

o (S)
ES —J dfe = J dsazfa (3.5)

where the parametrization s — «;, (s) respects a chosen circular ordering
of the boundary OP (that is, a;+(1) follows by «a;+(0)). The potential f
defines an embedding of > to Minkowski space, and the “edge vector” E{,
is interpreted as the relative position vector in the background Minkowski
space of the two ends of edge i. of I'. We assume that the edges labeled by
i, are oriented according to a global chosen orientation of 0P and the ori-
entation of their partners are always opposite, see fig.2.7 for an illustration.
The edge vectors are not independent, but have to satisfy

ES = —-ASED (3.6

Ly

where the minus sign is due to the opposite orientation. Finally there is a
global constraint

ci=3 (B +E) =0, (3.7)

which must hold, because according to the definition (3.5), we have to inte-
grate df around the closed contour of I' which has no boundary, hence the
integral is zero. Let us emphasize that the graph I' = 0P does not consists of
straight edges, but the vectors E{,, which live in a background Minkowski
space determine a closed contour due to (3.7) consisting of straight edges.

Let us remind the reader that the Poisson brackets are defined with the
help of the symplectic form, which is a antisymmetric two-index tensor
of maximal rank w = wupdz?dz®, (z* = (g, p), and the Poisson bracket
of two functions on the phase space is {f(p,q),g(p,q)} = @*B0,f dpg,
where @ is the inverse of w). If it is exact, that is, w = dO© in the form
notation, then the one-form © is called the symplectic potential. If the ki-
netic term in the action is p g, then the symplectic potential is given by p dq
giving rise to the symplectic form dp Adq familiar from classical mechanics.

3The parameter m is proportional the deficit angle of the cone corresponding to a
massive particle in its rest frame, and it is zero without any deficit angle interpretation for
a massless particle as discussed in the previous chapter.
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In our case, the action is given by (1.34) hence, canonical gravity in the
first order formalism is an example with the above property. The symplectic
potential thus reads

0= ZL d®x e* g dw§ eb = L d*xe* el 0; ((dgg ™% o f), (3.8)

where we chose to work again with the units 16Gxr = 1 for the rest of this
chapter, in order to avoid writing down too many 2x’s. P is a “fundamental
region” of the surface ¥, and the integration over it is well defined. To ar-
rive at the right hand side, we exploited the general identity for commuting
derivations 0 and 6

O(x16x) = x716 (dxx Hx (3.9)

used Lorentz invariance and the identity e/9;0; = 0. Now, since the inte-
grand is a total derivative, we can proceed to write

0= J dseb (dgg ™) osf° . (3.10)
oP

This can be written as a sum of integrals along the edges. After introducing
the notation f;, = f|;, and g, = g|;, we find

© = Z J ds el ((dgi+ g 0% 0sff — (dgi_ g% 0sff ) , (3.11)

where the integrals along the edges i— have been replaced by those along
i, and the minus sign is due to the opposite orientation of them. Using
eq. (3.2) to express the quantities with the index + in terms of those with
the index — one finds

6= Z j ds e (AN DG 05 fF = Z eb. (dAA)S ES (3.12)

The equality is due to (3.5) and the fact that the A; is constant. From this
we can compute the Poisson brackets
{A Ei} = 5;€iNS (3.13)
{Elqi’ E_?j:} = 6ij eng;:j: ) (314)

and the rest are zero. Note, that we treat the set {A;, E;, } as fundamental
variables, only they appear in the reduced symplectic potential.
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Polygon model from first order gravity

This symplectic potential coincides with that of Matschull and Welling in
[36], in the context of one gravitating particle and the generalization for a
multi-particle system in [35]. The calculation above “does not know” about
topology, the only extra ingredient with respect to [35] was to choose the
trivalent graph I' in such a way, the >\TI' is simply connected and to impose
the constraints (3.3).

The Poisson algebra above coincides also with that of Waelbroeck in
[32]. His lattice model is derived by means of discretization from the first
order variables. The E® variables there are the edge vectors of the skeleton
of the lattice. Two of them are associated to each edge, belonging to the two
faces adjacent to the edge. The A variables there transform the two vectors,
which belong to the same edge, into each other, the same way as in our
case (cf. eq. (3.6)), and they are interpreted as parallel transport operators
between the faces. Since the Poisson brackets of the basic variables are
the same in our case as in the lattice model, we can conclude that if the
lattice has only trivalent vertices, and, for the sake of our discussion, only
one face, then the brackets of the constraints also coincide. Eq. (3.3) and
(3.4) are first class constraints, they generate translations of the 3-vertices
and reparametrization of the worldline of the particles The computations
of the Poisson brackets can be found in [65]. The constraint (3.7) is also
first class:

{Ce,Cl} = e%ce (3.15)

it generates Lorentz transformations of the background Minkowski space.

What is the dynamics of the system? In order to have causal dynamics
we have to impose that requirement that all edge vectors are spacelike.
Then there is still no unique dynamics, since we have at hand a system
with first class constraints and the Hamiltonian is a linear combination of
the constraints

6g—3+N N
H= > €V N+ D> W;N;+N,C (3.16)
i=1 i=1

Fixing the Lagrange multipliers does lead to a unique dynamics, but the
actual spacetime does not depend on this choice. One may take N¢ =
0, since this is just a Lorentz transformation of the frame or background
Minkowski space. Then, H depends only on the holonomies, so they are
constants of motion, since {A, A} = 0 and the evolution of the edge vectors
is linear since {E, A} ~ A.

Let us briefly explain what is the geometrical meaning of a choice of the
set {N?, W;} of Lagrange multipliers in (3.16). One has to choose a time-
like vector N at one of the three corners, corresponding to the 3-vertex
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i, of the polygonal contour given by the edge vectors. It has to be parallel
transported to the other two such corners with the appropriate A; matri-
ces (corresponding to the edges incident to the three vertex). One should
“place” the axes of the Lorentz transformations A; at the 1-vertices, multi-
plied with W;. This way we have associated a timelike (or lightlike) vector
to each corner of the polygonal contour. Then, the unique time evolution,
which is generated by the Hamiltonian (3.16) amounts to sliding the cor-
ners along these vectors with an amount of proper time At. The slice of
spacetime that has been constructed is a cylinder with a polygonal base. Its
boundaries are pairwise identified by the holonomies. For a more detailed
explanation of the time evolution and the fact that the constructed space-
time does not depend on the choice of the chosen Lagrange multipliers, see
[33].

3.2 Gauge fixing and symplectic reduction

Waelbroeck and Zapata have shown [65] that from a triangular lattice ver-
sion of their model, the polygon model can be reproduced. We will now
show how the polygon model arises directly from the smooth first order
formalism. First, we require by means of a gauge transformation that the
initial time surface is mapped to a planar polygon by the potential f in
Minkowski space. Then, the scalar variables will be introduced, which
procedure leads to the solution of some of the constraints of the previous
section. One can proceed in two ways to recover the symplectic structure
(2.34) of the scalar variables of the polygon model. The first is further re-
duction of the symplectic potential given by formula (3.12). The second is
the derivation of the Poisson brackets directly by appropriately expressing
the scalar variables as functionals of the spin connection and the triad. Fi-
nally, in the last section we identify the induced constraints, which provide
dynamics for the model.

The edge vectors E7, and the holonomies A; are the finite number of co-
variant variables which contain the degrees of freedom of the system. One
can obtain the polygon model by performing a local translation of (1.15)
such that the polygonal contour is embedded in a spacelike plane in the
background Minkowski space. In other words, after the gauge transforma-
tion, all edge vectors Ej lie in a spacelike hyperplane. Denote the unit
timelike normal to this hyperplane by n?. Let us define the boost parame-
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ters* and the lengths as follows

cosh2n; = n, Af nt | (3.17)

Li = /B2 B nap = /B E? M. (3.18)

In the chosen gauge the only independent information contained in the
edge vectors are their lengths. Indeed, planarity and (3.6) enables us to
write in the frame where the normal of the polygon is purely timelike

Ei ==L R(=¢) eV, Eiy =FLR(¢p)eV, (3.19)

if the parametrization (2.8) is used and e = (0,1,0). Now, we shall
compute the symplectic potential departing from the rhs. of (3.12) in this
coordinate system. Let us calculate the first piece containing the holonomy

A7'dA = R(¢) B(2n) R(Z)B(—2n) R(—¢) d¢’'
(3.20)
+R($)MR(—¢) d(2n) + R (£)d¢,

where M is defined as the matrix with the following nonzero entries M3 =
Mg, = M3, = 1 and the identities S22 R(—x) = R (Z) and L2 B(—x) =
M have been used. Then, using Lorentz invariance, we arrive at the follow-
ing expression for ©

> FLieb, (R(r/2)% (B(2n) e ) dgi+

(3.21)
M® eMed(2n,) + R(r/2) eV dgy) .
The coefficients of d¢ and d¢’ vanish and we we are left with
©=2>"Ldn. (3.22)

The sign ambiguity can be fixed by the systematic choice of the labels +
and — for an edge and its partner. Note that the eq. (1.36) contains an
additional factor of 4 with respect to (2.34), since we used different units
(4G = 1), convenient for the previous chapter.

4Let us remark that for an edge i, it is possible to choose the gauge in such a way that
A; is a pure boost hence tr/A; = 2 cosh 2n; + 1 as proposed in [66], but this cannot be done
globally for all edges. It would mean that the (cosh of) the boost parameters are equal to
traces of holonomies along closed curved, thus gauge invariant. We will see that this is
not the case.
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To understand better the origin of the result above, we present an al-
ternative derivation of the Poisson brackets directly from the original fields
of the theory. The Lorentz group element A; is the holonomy along the
dual edge {;. More precisely, if the points a_ and a; are the starting and
endpoints of a curve freely homotopic to the dual edge ¢ with the same
orientation, then the following relations hold

Ugyla-,ay) =g '(a)glay) =g ' (a)Agla) =g (a) Aglay) ,
(3.23)

due to (3.1). Note that the index i is omitted from the above formula to
keep the notation simple. The holonomy can be also expressed in the usual
way as the functional of the spin connection given by eq. (1.52).

Let us now choose a fixed edge i of I' and denote its (oriented) dual
by ¢. The expression for the Poisson bracket of the associated length and
boost parameter reads

{L,cosh2n} = {L,n.(a;) U, (a-,as) n’(a,)} =

oL, OU;(a-,as) (3.24)
63 (X) 6wi (x) )

e na(a) (@) | dx

where n%(ay) = g‘l(a+)ab nb. In general, the functional derivative of the
holonomy can be written as

ou jd dc (S) 5 (x(s), x) Uy, Ty U, , (3.25)
6w (x)

where (; is the segment of ¢ until the point x, ¢, is the segment of ¢ from
the point x, and x(s) is the parametrization of the curve ¢. The variation
of the length with respect to the triad can be written using equations (3.1),
(3.5) and (3.18) as

6e (x) Jd 8(T)% dr 6(x(1), x) , (3.26)

where x(7) is a parametrization of the edge. Now we substitute (3.25) and
(3.26) to (3.24) and integrate out one Dirac delta. If the integral for ¢ is
done first from the point s_ = x(7) to its image s, along the curve ¢, then
we have ¢; = 0 and {, = (, so we can write

{L,cosh2n} =
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j k
| ar | as [ejk 0 DS 5 (o), x(0) |
i ¢ dT dS

E% g(s54),"

(s (T UG-, 50),n(s0) -

The expression outside the square bracket is independent of s, since we can
rewrite it using the notation (v X W), = €4 vV’ W as

(g ') EDN(g M s )nx g (s)An), = ES(n X An),, (3.27)

because both the vector product and the Minkowski scalar product are in-
variant under Lorentz transformations. The integral of the square bracket
above is the homotopy invariant oriented intersection number of the edge
i and the closed curve {. It is one for the pairs (i, {;) and zero otherwise.
The last step is to verify the following formula

nX An= smh(ZnJ EiJr . (3.28)

E;, is clearly orthogonal to both n and A;n due to (3.6) and the scalar
factor in the above equation is also not difficult to check using the definition
(3.17). We have thus arrived at the desired result:

{L;,cosh2n;} = &;;sinh2n; — {L;,2n;} = 6;; . (3.29)

At the intermediate stage of the symplectic reduction, the finite number
of covariant variables A; and E; have to satisfy a number of constraints,
given by (3.3), (3.4), (3.6) and (3.7). Changing to the scalar variables
L;, n; solves the first three, if the triangle inequalities

Il + il = |me] (3.30)

are satisfied, for every vertex U = {i, j, k}, and for every permutation of
{i, j, k} and also the global relation (2.38). The explanation is the follow-
ing: eq. (3.3) and (3.4) determine the angles of the polygon in terms of n;,
eq. (3.6) determines the direction of the edges. Or, phrasing differently, if
we choose the boost parameters and lengths as our fundamental variables,
then the equations (3.3), (3.4) and (3.6) are not constraints among the
variables, but fix the angles of the polygon.

In [65] it is argued that the Gauss constraint (3.7) is solved by intro-
ducing the scalar variables and there remain induced curvature constraints,
but, as we explained above, the situation is on the contrary: the Gauss law
and only that remains after the reduction. Eq. (3.7) becomes eq. (2.42) in
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the scalar variables, with only two independent components, the real and
imaginary part of C.

If the global constraint (2.33)) is taken to be the Hamiltonian H, then
it generates the time evolution of the polygon model that preserves the
closure of the polygon by construction, thus

{H,C} =D Liz=0, (3.31)

where the dot now indicates the time evolution induced by H. The fact
that the Poisson bracket of C with itself yields a linear combination of the
constraints is difficult to check explicitly. However, the correct number of
degrees of freedom can only be recovered if all the independent constraints
H, and C are first class and generate time translation and two independent
Lorentz transformations, respectively (since a rotation is factored out by
using lengths and angles instead of edge vectors). In other words the con-
straint algebra must close and the most general time evolution is generated
by the following Hamiltonian:

H =aH+cC, (3.32)

where a (c) is an arbitrary real (complex) function on the phase space.
Now, similarly to the covariant description, we can take b = ¢ = 0, since C
generates Lorentz transformations of the frame and a # 1 corresponds to
reparametrization of the time coordinate.

3.3 Status of quantization

In this section we briefly present some features of quantization of the above
models and related approaches. The covariant model of finite degrees of
freedom given by {A;, E;} has been quantized in [36], where the resulting
quantum geometry was found and the effect of the point particle on it. That
paper deals only with one (spinless) particle, which captures some essential
features of quantum gravity. Let us recall the structure of the phase space.
The momentum A lives in the group manifold SO(2,1) and the position
variable® E¢ lives in Minkowski space R?!. The Poisson brackets { E¢, E’} =
engC coincide with the commutator of the Lie algebra so(2, 1), so the full
phase space is the cotangent bundle T.SO(2, 1). However, in contract with
the usual situation of theories whose the phase space is a cotangent bundle,

°It comes from the triad which is the “square root” of the configuration variable, the
metric. That is why we call it position.
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it is the momenta here, which live in the curved group manifold and the
positions take the role of the cotangent vectors.®. Let us examine the direct
consequences of this structure of the phase space in the quantum theory.

The Hilbert space is L2(SO(2,1),dA), dA being the invariant measure
on the group. We consider the momentum representation, where the mo-
mentum operators act by multiplication and the positions can be realized
as the Lie algebra elements acting as (the left invariant) derivatives. They
represent the Poisson brackets of their classical counterparts

[E9, EP] = —ilp e E°, (3.33)

where lp = 4xGh is a new length scale 7. The operator of the invariant
length can be defined in terms of these operators as v/E?E,. Since E@
form a basis in the Lie algebra so(2, 1), the length operator is given by the
Casimir of the gauge group. Let us study its spectrum. There are two se-
ries of irreducible unitary representations of SO(2,1). The discrete series
corresponds to negative eigenvalues {—j(j + 1) | j € N} and the principal
series corresponds to positive eigenvalues [1/4, co) of the Casimir opera-
tor®. Since timelike vectors have negative, spacelike vector have positive
length squared, we associate the discrete series with timelike vectors, the
continuous series with spacelike ones. The conclusion is that time is quan-
tized, whereas space is continuous in the quantum theory.

Let us turn now to another promising approach to quantizing gravity,
which is called loop quantum gravity. This theory is based on the idea
that loops or graphs can describe excitations of quantum space. It is a
canonical approach, where quantum spacetime appears as the evolution
of these graphs [68]. We briefly describe the kinematical Hilbert space of
the loop approach to three dimensional quantum gravity, define the length
operator and describe its spectrum.

In the connection representation the states are given by the so-called
cylindrical functions®, which have the following properties: (i) they are

®Note that SO(2,1) = SL(2,R) is (locally) anti de Sitter. Writing the components of
the an SL(2,R) matrix aas aj;1 = x—w, a2 =2+ Yy,ad = 2— Y, dyo = X + W, one
finds that the unit determinant condition is —w? — 22 + x? + y2 = 1, which gives the three
dimensional hyperbolic space also known as anti de Sitter embedded in R>!.

’The non-commuting coordinates lead to the appearance of a shortest distance ~ Ip in
the quantum theory without breaking Lorentz invariance. This is a characteristic feature
of theories called doubly special relativity. 2+1 gravity with one particle, the theory we
are describing, is a notable example of doubly special relativity [67].

8Note that there is a third set of continuous representations called the supplementary
series with the spectrum [0, 1 /4] of the Casimir. They are excluded because they do not
appear in the Fourier decomposition of square integrable functions on the group.

The space of cylindrical functions may seem ad hoc, but it is shown that they are dense
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associated to closed graphs with E (oriented) edges, (ii) they have E ar-
guments which depend on the holonomies U;(w) of the spin connection
associated to the paths along the edges labeled by i = 1..Ei, and (iii) they
are invariant under the gauge transformations

f @y Ur(@) g51)s - &y Up(W) g53y) = f(U1 (W), ..., Up(w)),  (3.34)

where s(i) and t(i) denotes the source and the target vertex of edge i and
gy is the Lorentz group element acting in the tangent space T, M. Since
the holonomy is an element of the Lorentz gauge group, f is a function on
(E copies) of the group. These functions can be decomposed into a sum
(or integral) over irreducible unitary representations of the group. For
example,

£(g) =D, ™D (g), (3.35)
J

where j labels the irreducible representations and D is the matrix of the
group element g in that representation. The Hilbert space structure is de-
fined by the scalar product given by the invariant (Haar) measure on the
group.!® A basis in the Hilbert space is realized by the so-called spin net-
works, which are also associated to graphs. Each edge of the graph of a
spin network is decorated with an irreducible representation and each ver-
tex with an invariant tensor contracting the indices corresponding to the
vertex.!!

Two basic operators acting on the Hilbert space are the multiplication
operator of the holonomy of the connection (which adds an extra discon-
nected loop to the graph) and the derivative operator with respect to the
connection. Their quantum algebra provides the quantization of the classi-
cal Poisson brackets of the corresponding classical quantities, the holonomy
and the triad, respectively. Using this algebra we can evaluate the action of
the length operator on a spin network. Let us write the length of a curve
embedded in the equal time surface ; parametrized by « : [0, 1] — 3 as

! dot doi
_ a b
= L dS\/nab el e; s ds - (3.36)

in the space of gauge invariant functions of the spin connection.

10To compare two cylindrical functions corresponding to different graphs, one can view
both as defined on the union of the two graphs but independent from the other graph.

"For example, for a two-valent vertex, the only possibility is that the representations on
the incident edges coincide and the invariant intertwiner is given by the Kronecker-delta
symbol. For a three valent vertex it is given by the Clebsch-Gordan coefficients, and the
restriction of admissible representations on the incident edges is that one appears in the
decomposition of the tensor product of the other two. For more general situations the
invariant tensor is not unique.
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The action of the derivative operator associated to the triad on the holon-
omy P exp [, T, w® of edge i of the spin network is non-zero only if « inter-
sects i. Suppose that « intersects the spin network once at edge i. Then,
the action of the triad is the insertion of the generator T, at the intersec-
tion point. Therefore, the quantum operator [ corresponding to the quantity
(3.36) is (G times) the square root of the Casimir operator of SO(2, 1).
The edges of the spin network are “in definite irreducible representations”,
so the operator [ has diagonal action. Its eigenvalue is the square root of
the eigenvalue of the Casimir in the representation'? assigned to i.

We again have the situation that the spectrum of spacetime is deter-
mined by the representation theory of the Lorentz group SO(2,1). One
may wonder how to interpret the discrete series with negative eigenval-
ues in the canonical formalism at hand, where a “good” equal time sur-
face is spacelike. However, as explained in [69], in the canonical for-
mulation underlying the loop approach, such a requirement has nowhere
been explicitly imposed. The spectrum is thus the same as the one of the
Matschull/Waelbroeck approach discussed in the beginning of this section.
Finding the physical Hilbert space, that is the subspace of the one just
described annihilated by a Hamiltonian constraint operator, is still an un-
solved problem.

Another approach, where a similar picture of quantum spacetime emer-
ges is the so-called spin foam approach. It represents a generalization of
the usual path integral. In these models transition amplitudes can be cal-
culated by summing over branched colored surfaces, called spin foams. A
spin foam can be thought of as the evolution of a spin network. There-
fore, the coloring refers to assigning irreducible unitary representations of
the gauge group to faces, invariant tensors to the edges and an amplitude
(which is intimately connected to the action of the Hamiltonian constraint)
to the vertices. If the action is of BF type!3, the amplitude can be derived in
a systematic way from the classical action [70] by means of a discretization
of the path integral [ ®w e e'® based on a triangulation which is the sim-
plex dual to the spin foam. For topological theories without local degrees
of freedom like gravity in three dimensions, the resulting amplitudes are
independent of the triangulation.

What is the quantum spacetime represented by a spin foam in three

12In general, one has to regularize the operator fby partitioning the curve a into small
pieces and add the eigenvalues corresponding to the action of [ associated to the segments.

131f the action can be written as S = [(B A F + ®(B)), where F is the curvature of some
gauge connection, B is an D — 2 form and ®(B) is a function of the B field then it is called
of BF type.
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dimensions? Since the action reads | Tr (e A F), it is of BF type so one can
apply the procedure sketched above. The corresponding spin foam model
is called the Ponzano-Regge model [71]. Since the face of a spin foam is
dual to an edge of the triangulation in three dimensions, the irreducible
representation of so(2, 1) assigned to it is interpreted as the quantization
of the dual edge. Thus, spin foam faces give lengths to edges they intersect
and the length spectrum, as we can already guess, is given by the (square
root of) the spectrum of the Casimir operator.

There has also been an attempt to quantize the polygon model [47].
The canonical Poisson brackets between the boost parameters and lengths
can easily be represented by operators on a Hilbert space. However, the
Hamiltonian (2.33) is a non-polynomial functions of the variables and the
requirement that the wave functions should be invariant under the non-
physical transitions appearing in the model are serious obstacles in formu-
lating a consistent quantum theory. Nevertheless, several important obser-
vations were made in [47] regarding three dimensional quantum gravity.
One of them is that time must be quantized: since the Hamiltonian is an
angle (the sum of the deficit angles), it is defined only modulo 2. The con-
sequence of this is that the unitary time evolution operator U = exp(iHt) is
well defined only if t is integer. A similar argument shows that the length L,
being canonically conjugate to a hyperbolic angle, must remain continuous
in the quantum theory.

Hence, in three dimensions a consistent picture emerges from the study
of possible quantization procedures. It is supported further by the works
[72, 73]. In the former it is explicitly shown, that the Ponzano-Regge
model, which incorporates spinning particles as well, is a generalization
of Waelbroeck’s quantization of [74]. In [73] it is proven that the Ponzano-
Regge model is also equivalent to the Chern-Simons quantization.

Some of the above ideas are applied also to four dimensional general
relativity. There the theory is not topological, and its quantization is a
much more difficult task. The canonical quantization can again be based on
the Hilbert-Palatini action, which has a local SO(3, 1)-Lorentz symmetry.
Its Hamiltonian formulation, is plagued with second class constraints, but
it is possible to introduce a gauge fixing such that they do not appear. If
one follows this path, due to Ashtekar and Barbero [75], the local gauge
symmetry reduces to SU(2) and the equal time surface is always spacelike.
The area spectrum!* is given by the SU(2) Casimir and is thus entirely

4In four dimensions the spin networks intersect two dimensional surfaces in the equal
time hypersurface, so the area operator is the analogue of the length operator in three
dimensions. Or, using space time language, spin foam faces are dual to triangles of the
triangulation, which acquire area from the representation assigned to the face.
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discrete.

On the other hand, there are proposals for spin foam models based on
the full Lorentz group [76]. The area spectrum predicted by the spin foam
models of Lorentzian gravity is similar to what was found in three dimen-
sions. It is given by a Casimir of the gauge group, which is now SO(3,1).
It is discrete for timelike surfaces, and continuous for spacelike surfaces.
There is thus a potential clash between the canonical approach and the path
integral. However, it was recently argued, that the gauge fixing of SO(3, 1)
to SU(2) is not allowed, because it leads to a quantum theory where the
diffeomorphism symmetry is broken. In particular, this can explain the
appearance of a non-physical parameter (called Immirzi parameter) in the
spectrum of observables found in the standard loop quantization procedure
based on the gauge group SU(2). At the same time another quantization
procedure was suggested, which preserves all symmetries [77]. This ap-
proach is still in its infancy and a number of issue remain to be resolved.
The connection is non-commutative due to the complicated Dirac brackets
(which should always replace the Poisson brackets in the presence of sec-
ond class constraints), and the kinematical Hilbert space is missing. Never-
theless, a state space can be constructed and the area spectrum is computed
explicitly in [78]. It is independent of the Immirzi parameter. Moreover, it
was shown that a subspace of this state space coincides with that induced
by spin foams®, both in the case of spacelike [80] and timelike foliations
[81].

15How a spin foam induces spin network states on a foliation of spacetime is described
in [79].
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A.1 Models of hyperbolic space

There are two isometric models of the hyperbolic space H?, which we use
in this thesis. We introduces them and their relations in this appendix. The
first model is the upper sheet of the two-sheeted hyperboloid also known as
anti de Sitter space in two dimensions given by {(t, x, y)| —t>+ x>+ y? =
—1}, with the metric inherited from Minkowski space. It can be shown
that this metric is positive definite and its curvature R = —1. This space
has a boundary, the space of lightlike directions, which is topologically a
circle. The geodesics are hyperbolas obtained by the intersection of any
plane going through the origin of Minkowski space and the hyperboloid
itself. The isometry group is the (identity component of the) Lorentz group
S0,4(2,1).

If we use the stereographic projection from the South Pole (-1, 0, 0) to
the plane t = 0, we obtain another model of H? called the Poincaré disc
D? = {z € C| |z| < 1}. The induced metric is given by

4ldz|?

2 _
ds® = a2

(A1)

The geodesics of this model are diameters and Euclidean circle segments
perpendicular to the boundary, which is the unit circle. The isometry group
is PSU(1, 1), the group of two by two complex matrices g with unit de-
terminant which satisfies the relation gmg’ = m where m = diag(—1,1)
modulo multiplication of all entries of g with —1. They act on the disc as
z — (an + aiz) / (azz + azp), where a;; are the entries of the matrix. We
can see that the matrix A and —A have the same action.

We will need the form of the boost and rotation matrices in SU(1, 1).
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They are given by

cosh % sinh % exp(i %) 0
b(¢) := , r(@) = . (A.2)
sinh % cosh % 0 exp(—i %)

Any PSU(1,1) matrix can be written as

g=r(@)b)r@"), (A.3)

and the isomorphism with SO(2,1) is given by B(¢) < b({) and R(¢) <
r(¢), cf. (2.9).

Finally, we mention some properties of hyperbolic triangles, which we
use in the text. Triangles in the interior of hyperbolic space have angles
&;, the sum of which is always smaller then . The area of a triangle is
x— .. &;. If a vertex of a triangle is at the boundary then the corresponding
angle is zero, and the the lengths of the sides emanating from that vertex
is infinite. For illustrations and more details see e.g. [2].

A.2 Classification of globally hyperbolic space-
times

In this appendix we summarize some of the main results of the paper [27],
briefly discuss some related recent material and give the definition of some
notions appearing in the main text. Classical solutions of three dimensional
gravity are specified as (X, G) structures, where X is a manifold, on which
the spacetime M is modeled locally by specifying homeomorphisms from
open sets of M to X and the transition functions between two overlapping
charts are elements of the group G, which is usually the isometry group of
X. The sign of the cosmological constant A determines X, it is Minkowski
space R?! for A = 0, (anti) de Sitter space

{w,t,x,y) € R*: =2 + X + y2 + (—-)w? = -1}

for positive (negative) A. The corresponding isometry groups are ISO(2, 1)
for A =0, SO, (2,2) for A < 0and SO, (3,1) for A > 0. The holonomy map
p : m (M) — G and the developing map D : M — X are associated to an
(X, G) structure, where the tilde denotes the universal cover. The former
is a homomorphism unique up to conjugation with an element of G, the
latter is a local isometry, unique up to post composition with an element of
G. They satisfy the relation

D(yx) = p(y)D(x) (A.4)

86



Classification of globally hyperbolic spacetimes

where x € M and y € m; (M) acts in the usual way (yx is the endpoint of
the lift of y if x is a fixed chosen lift of the basepoint of ir; (M)). There is
a large variety of such manifolds for each case. Let us restrict ourselves to
spacetimes with the topology > X I, which is proven to be the only possi-
bility of any Lorentzian flat or anti de Sitter manifold with closed spacelike
boundary and probably holds for the de Sitter case as well [27]. Then M
is foliated by closed spacelike surfaces of the topology of X. One should
impose the additional and also natural maximality criterion of M being a
domain of dependence, which notion has been defined in footnote 3 on page
26.

After these preliminaries, we can discuss the classification of these space-
times for negative or zero cosmological constant. For the flat case it is
shown that the linear part G C SO, (2, 1) of the holonomy group p(ir; (M))
(that is the Lorentz part of the Poincaré group elements) gives a discrete
subgroup of SO, (2, 1) isomorphic to i; (M), which yields a compact quo-
tient space H? /G, (which is homeomorphic to 3. The converse is also true,
for any discrete and faithful homomorphism f : 1;(2) — SO, (2, 1) there
are a spacetimes, whose corresponding linear holonomies are given by f.
Furthermore, there exists a future (or past) complete convex domain U in
Minkowski space such that M = U/ p(sr;(M)) in the interior of the future
light cone of the origin.

The spacetimes are thus parametrized by the Teichmdiiller space T, and
the set of maps: a : m;(M) — R?!, the translation part of the Poincaré
holonomy. Let us expand on this description of the phase space. A def-
inition of Teichmdiiller space is the set of equivalence classes of constant
curvature metrics (or conformal structures), where two metrics in a class
are related by a diffeomorphism in the identity component of the diffeo-
morphism group.The hyperbolic surfaces S and S’ of genus g > 1 are
equivalent if, when presented as a quotient of H? by the discrete groups
G = G (B m(S)), G and G’ are conjugate in SO, (2,1) [57]. The maps
a : 1 (M) — R?! satisfy the property

alap) = ala) + f(Ba(P) , (A.5)

which follows from the composition of the Poincaré group elements. a and
a’ is equivalent if there is is a constant vector v € R?! such that

aly)—dy) =v-Ffyv. (A.6)

It means that the two holonomies are conjugate by a constant translation
yielding the same spacetime. As we explained in the first chapter, the Te-
ichmdiller space of a genus g surface is homeomorphic to R%7°, see also
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[57] for a detailed proof. The space of equivalence classes of the a maps!
has the same dimension. Indeed, assigning a vector to every independent
generator of the fundamental group means 3(2g — 1) parameters which
determines a for all elements of i;(S) by (A.5) and one needs to take the
quotient with (A.6) to arrive at 6g — 6.

The summary of the above discussion is that the maximal globally hy-
perbolic spacetimes admitting a closed spacelike surface of genus g > 1
have two families (future complete ones and their time reversal) paramet-
rized by R'26712| and they are quotients of convex domains in Minkowski
space by the image of the Poincaré holonomy. They contain an initial (or fi-
nal) singularity with a rich structure investigated with the help of so called
cosmological time function [82].

There has been a growing activity in the mathematics literature since
the paper [27] appeared. Results there have been generalized to higher
dimensions [63, 83], which has somewhat limited interest in physics. In
a recent paper [18] it is shown, that all vacuum spacetimes or at least
parts of them are related by Wick rotation or “rescaling” regardless of the
sign of the constant or whether the metric is Riemannian or Lorentzian.
The cosmological time has a central role in the construction and the initial
singularities have the “same structure” in all cases. This result is likely
to gain great importance in physics as well. Another important work in
progress needs to be mentioned. Barbot studied explicit constructions of
the ’t Hooft slicings of vacuum spacetimes and obtained the rigorous result
that each such spacetime admits an OPT [58].

Spacetimes containing particles are much less known. In general they
cannot be presented as a quotient of a domain with respect to the holon-
omy, and the developing map is not injective. Benedetti and Guadagnini
studied a special class of spacetimes with particle masses equal to inte-
ger multiples of &, and the dynamics is given by the geodesic flow on the
cotangent bundle of Teichmdiiller space [61]. They consider generic multi-
particle universes in [59]. They depart from a hyperbolic or flat surface
with conical singularities given by the masses of the particles and obtain 3-
dimensional spacetimes by means of Minkowskian suspensions. If dI2 or dI%
is the Euclidean or hyperbolic metric on the surface, then a Minkowskian
suspension is given by ds? = —dt? + dlz or ds?* = —dt? + t3dl% with t > 0
yielding flat spacetimes. Then appropriate deformations of these struc-
tures yield a large class of spacetimes. They reveal some facts about the
moduli space of these spacetimes, but even the dimension or the number

It is the group cohomology of cocycles (maps satisfying the property (A.5)) modulo
coboundaries (maps which can be written as the rhs. of (A.6)).
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of topological components are unknown. If the cone angles deviate “too
much” from zero, then similar problems arise that we have faced in section
2.9, when trying to construct the invariant surface for certain configura-
tions of too small particle masses. In these cases even the dimension of
the (actual component if the) moduli space is unclear, the rough estimate
6g —6+ 2N < d < 12g — 12 + 4N is given in [59].

Let us conclude with the remark that the space of physically distinct
universes with particles is hardly known, and one might need a higher level
of rigour to establish the polygon model of spacetimes (if all admit one) in
order to trust e.g. the conjectures concerning the initial or final singularity.

A.3 Boost parameters from Teichmiiller space

In this appendix we will explain how to obtain an independent set of initial
values for the boost parameters n. For simplicity and illustrative purposes,
we will discuss an example of genus 2. Since we will not make use of
the symmetry structure of this particular case, the generalization to higher
genus is immediate.

We fix the triangulation by choosing the graph I' on fig. 2.10, leading
to the triangulation of fig. 2.11. We will use the convention of multiply-
ing loops from left to right. The numbers indicate the outgoing ends of the
loops,andi = 1,...,4label the generators b; of the fundamental group sat-
isfying by b, b;'b, 'bs by by 'b, ' = 1. The homotopy classes of the remaining
closed curves can be obtained by composing the fundamental generators
and their inverses, leading to?

b, by b, 'b]!

b, b,

by b1 by (A.7)
b3 b’

bybsb,' .

O ® o U
U AN

Now we use the faithful representation of i; (S) in PSU(1,1) = SO, (2,1)
given explicitly in [84] in terms of the so-called Fenchel-Nielsen coordi-
nates. They are a set of length and angle variables (I, ), k = 1,...,3¢g-3,
which parametrize the Teichmiiller space T, globally. One can pick an ar-

bitrary element (I,7) € R3*™> x R%73 & T,, plug it into the formulae for

2Qur and Okai’s [84] convention for multiplying elements (curves) of the fundamental
group is from right to left, so the product v;v5 in 1 (S) in our case is mapped to g2 g1 in
the corresponding Lie group.
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the generators g; € PSU(1,1) and compute the combinations for the group
elements corresponding to the remaining curves in the triangulation (in
our specific example, the curves labeled 5, 6, 7, 8 and 9). Now, knowing
the group generators and the combinatorial information (the order of the
edges going around the polygon), we can identify the boost parameters and
compute the angles as well. How the boosts are supplemented by a set of
length variables L; has been described in sec. 2.8.6 above. Altogether this
amounts to an explicit algorithm for constructing a set of initial data for a
(2+1)-dimensional universe from any element of Rig_6 X Cq.

A.4 The complex constraint

The proof that for an OPT there is always a Lorentz frame?, in which the
complex constraint (2.42) admits a solution rests on the following facts.

(i) The complex vector z; defined below eq. (2.42) points to the angle
bisector of the geodesic loop corresponding to A; at the basepoint.

(i) The velocity at P of the unique arc connecting the base point P € S
to the unique smooth closed geodesic corresponding to A; points in
the same direction.

(iii) One can find a basepoint, where these velocities are not contained in
a half plane.

(iv) In practice, one proceeds by finding an element A € SO, (2, 1) which
corresponds to the desired change of basepoint. The original vectors
2; can be read off from A; € G. The new coefficients z; will be deter-
mined from the conjugated generators A™!A; A, and they will not lie
in a half plane by the above arguments.

In the following we will use the Poincare disc model D? of hyperbolic
space as defined in appendix A.1. How the Lorentz group elements A;
correspond to the g; € PSU(1, 1) and how that isometry group acts on D?
is also explained in that appendix.

Take the universal cover where the origin 0 € D? is mapped to the base
point P € S. The in- and out-going ends of the loop corresponding to g;
on S can be associated with the geodesic arcs connecting 0 with g0 and 0

3Equivalently, a suitable basepoint in S, or a suitable h € PSU(1,1) to conjugate all
the generators with.
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Figure A.1: On the surface S, the loop connecting the basepoint P to itself via point s
is the loop in the triangulation corresponding to g;. The circle in the middle is the unique
smooth geodesic which lies in the same homotopy class as the loop. The unique arcs
connecting p to the circle and the circle to the loop such that the angles at g, r and s are
right angles, create two isometric quadrilaterals.

with g7'0. Since the geodesics through 0 € D? are Euclidean straight lines,
and since

-1

g0 =tanhnexp(i¢;), g '0=tanhnexp(i(r—¢)), (A.8)

it is clear that the angle bisector of g; 0 and g '0 points in the same direc-
tion as z;.

The next step is to establish the validity of fig. A.1, namely, that the two
quadrilaterals Pqrs are isometric. The figure shows the smooth geodesic
(inner circle) freely homotopic to the geodesic loop PP and the unique
smooth geodesic arcs Pq and rs connecting two, and perpendicular to them
in the points g, r and s. All we need to show is that the arc Pq is the angle
bisector of the velocities of the in- and outgoing ends of the loop (denoted
by n in the figure). We refer to [57] for a detailed proof. The properties of
the various geodesics in D? are illustrated by fig. A.2. The smooth geodesic
of fig. A.1 is mapped to the smooth straight line on the bottom, and the
geodesic loop to the periodic non-smooth curve at the top. The curves at g,
r and s meet at right angles.

The situation in D? is as follows. We are given the set of 6g —3 elements
{g:} of the fundamental group G. Each g; has its so-called axis, that is, the
geodesic which is left invariant by g;. On the disk D?, an axis has the form
of a circle segment whose ends are perpendicular to the disk boundary.
(This fact is not reproduced in fig. A.2, where the axis is represented by the
straight line at the bottom.) Under the universal cover, an axis is mapped
(infinitely many times) to the smooth geodesic on S corresponding to g;.
The unique geodesic arc on D? from the origin which is perpendicular to
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Figure A.2: Lift to D? of a (periodically extended) geodesic loop at P (top) and of
the associated homotopic smooth geodesic (bottom). The geodesic arc rs is the unique
perpendicular connecting the geodesic loop PP to the smooth closed geodesic qq. The
unique geodesic arc connecting P to gq which is perpendicular at q is the angle bisector of
the loop and its inverse at P. The thick lines indicate one of the (infinitely many) pairs of
isometric quadrilaterals Pqrs (each with three right angles) which are mapped to Fig.A.1
under the universal covering map f.

one of these axes is mapped to the arc on S connecting the basepoint to the
smooth geodesic in question.

Suppose now, that the basepoint is the intersection of two smooth ge-
odesics corresponding to two of the generators, say g; and g. In other
words, the geodesic polygon obtained by cutting the surface along the
geodesic loops corresponding to g; is a normal canonical polygon. Note
that such a polygon is always convex. Take a universal covering, where a
lift of the basepoint is the origin of the Poincaré disc D?. Then, the axis of
g1 and g, are diameters of the disc. The coefficients z; and z, are identically
zero in this case, since the geodesic corresponding to g; and g;' emanate
exactly in the opposite direction from the basepoint (and similarly for g,
and g,"). However, if we move the basepoint infinitesimally from its lo-
cation to a direction different from the axes, then we find nonzero z; and
Zo. There are essentially four different location for a basepoint as shown
in fig. A.3. It is easy to show that one of the four locations will always be
such that z1, z5 and, say, 23 are in a generic location: the complex con-
straint admits a solution. Furthermore, since we moved the basepoint only
infinitesimally, the resulting geodesic polygon remains convex.

If the desired change of the basepoint is achieved by h € SU(1, 1), (that
is h0 = T), then we can determine the new boost parameters from the new
generators hgih™!.

We have thus completed the proof that one can always find a Lorentz
frame in which the complex constraint admits a solution. Note that with
this constructive proof one always produces convex polygons.
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B

Figure A.3: The two long lines are parts of the axes of g; and g,. They are diameters of
the Poincaré disc, O denotes the origin. There is a tiny parallelogram, the edges of which
are perpendicular to the axis they intersect. This parallelogram is divided into four regions
by the axes. If we move the basepoint to any of the four regions, then z; and z; will point
in the direction of the edges of the parallelogram, away from its corner in that region,
indicated by a dot. One of the four possibilities is always sufficient for having z; 2z, and 23
in a generic position, not contained in any half plane.

A.5 Eliminating polygons by gauge-fixing

In this appendix we will show how to gauge-transform a given (y, F) (a
geodesic triangulation ¥ of some F-polygon) to a configuration (y', F) which
is equivalent to a configuration (¥, F — 1) with one polygon fewer.* The
induced map (y/, F) — (", F —1) amounts to deleting three edges and one
base point from ¥’ but does not change ¥’ as a point set.

A gauge transformation of (¥, F) is an action of XzPSU(1,1), where each
of the F copies of PSU(1,1)= SO(2,1) acts 1ndependent1y as follows. If
é; denotes an oriented edge connecting base pomts P, and P; on S, we
will call its associated group element g;; = g]l . To give an example,

for the edge é;, connecting P, and P,, we have P, = g, P, for the in-
verse images in D?. A generic gauge transformation is given by an F-tuple
(hi, hy,...,hp) € XpPSU(1,1), acting by group multiplication at the end
points of edges according to

gi—higiht, 1,j€{1,2,...,F}. (A.9)

There will usually be several edges linking a base point to itself (implying

= j), which can be taken care of by introducing an extra label for the
edges and group elements, e(k) and g(k). At the level of the frames X;,
1 < j < F, and assuming for the moment no obstructions, this gauge
transformation corresponds to a simultaneous rotation of the frames, X; —
X; = A;X; via the canonical isomorphism h; ~ A; of subsection 3.5. If two

“*For the purposes of this appendix, we will mean by ¥ a geodesic triangulation together
with a definite length assignments 1; to its edges, and by y the underlying topological
triangulation.
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neighbouring frames were related by a Lorentz transformation A,; before
the gauge transformation, X, = A, X1, the matching condition afterwards
will be Xz = /N\21X1, with i\21 = A2A21A11, cf. (Ag)

Let us adopt the notation P for points in D? and P for their images in
S under the universal cover, and suppose that h;P; € D? is mapped to f’l’,
i = 1,2. Then the boost parameter 21n,, read off from the group element
h;'gah, is the length of the geodesic arc connecting P! to P}, which is
freely homotopic to the original arc connecting P, to P, with length 1.
We conclude that also in generic multi-polygon universes gauge transfor-
mations amount to moving the base points without changing the topology
of the graph y.

Suppose now that we perform a gauge transformation on a single frame
only, say, X;. The effect on the geometry of the graph y will be a motion of
the base point P; and a modification of the edges starting or ending at P;.
The magnitude of the change will be chosen as gs;, corresponding to the
geodesic arc é,; € ¥ connecting P, to f’{ = P,. Its effect can be written as
follows:

MO > MO, iS5/ @ @

3%1) hh— Pk e 3%1) : P — Py, 8%1) |_>g%1)811 821

~{1) . P ~ ~D) . S i i

e,(c% P =P, — e,(c% : Py — Py, gk1 — g g(z% (A.10)
~(i D 5 =10 . p 5 i .

e; ZPk—>P1, = e ZPkHP{s glngﬂglk

~(1) . P D ~(1)’ . P D @

ekl-Pl_>Pk; = € -Pl_>Pk) glegkl’

assuming k,[ # 1. Writing P! in (A.10) is meant to emphasize that despite
P! = P, one has to keep track of whether an end point of a curve in ¥
corresponds to the base point labeled by 1 or by 2. Consider now one of
the two triangles in ¥ which share the geodesic arc é;; (we have dropped
the counting label i for simplicity). It consists of the arcs é; : P — b, ey
P — P, and &y : P, — P,, and we have gy = g1 gux for the corresponding
group elements. The action of the above transformation on these arcs and
group elements reads

. D D =/ . D -1 _
€y :Pp—P 321.PHP23 &1 818 =1
5. .« D D 5 . _
ik :Po— P — &, : Pk — P =Dy, gk gn &k = &k (A.11)
5.« D D 5 .
éx:bP— P — &, :5 — b, 8ok > &ok-

In other words, arc é,; has shrunk to length zero (the trivial curve), arc
€1x has been transformed to coincide with é5, and arc &, has been left
untouched. The new geodesic triangle with sides &,,, &, and &), is degen-
erate. The same is true for the other triangle that shared the edge é5;. In
order to obtain the reduced graph (¥, F — 1) from (¥/, F), we delete the

94



Eliminating polygons by gauge-fixing

redundant base point P} and arc &), as well as one arc of the pair (&,,, &),
and one arc from the corresponding pair of the neighbouring triangle. Note
that ¥ = ¥’ as point sets, but that ¥’ has one trivial and two double edges.
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Samenvatting

Tegenwoordig speelt zwaartekracht een belangrijke rol in de theoretische
fysica. De gravitationele interactie tussen macroscopische objecten wordt
zeer successvol beschreven door Einstein’s algemene relativiteitstheorie.
Voor het beschrijven van het begin van het universum en de vorming als-
ook de verdamping van zwarte gaten zal echter een quantum theorie van
de zwaartekracht nodig zijn. Onze hoop is dat we zo een quantumtheorie
kunnen opzetten in de versimpelde context van drie ruimtetijd dimensies.
De procedure om van een klassieke- naar een quantumtheorie te komen is
niet uniek. Verschillende klassieke formuleringen kunnen leiden tot ver-
schillende quantumtheorieén.

In drie dimensies zijn er verschillende modellen die min of meer equi-
valent zijn aan de algemene relativiteitstheorie en kunnen dienen als start-
punt voor de quantumtheorie. Het eerste hoofdstuk behandelt einige voor-
beelden van deze verschillende modellen en de methode van de geredu-
ceerde fase-ruimte. Deze methode houdt in dat men expliciet de fysische
vrijheidsgraden probeert te isoleren. Met andere woorden, men probeert
de constraints al voor de quantizatie op te lossen. Het blijkt dat dit in drie
dimensies expliciet te doen is en dat dit leidt tot slechts een eindig aantal
fysische vrijheidsgraden.

Het polygoonmodel is een bepaalde formulering van drie dimensionele
zwaartekracht zonder cosmologische constante maar met puntdeeltjes. Dit
model is het hoofdonderwerp van dit proefschrift. De fundamentele vari-
abelen in dit model zijn niet direkt waarneembaar maar moeten voldoen
aan een aantal beperkingen zoals beschreven in het eerste deel van hoofd-
stuk 2. Verder wordt een beschrijving gegeven van een algorithmische
oplossing voor de constraints in het geval er geen deeltjes zijn en de on-
derliggende ruimteachtige variéteit de topologie heeft van een Riemann
oppervlak van een hoger geslacht (g > 1). We nemen aan dat deze pro-
cedure de volledige fysische faseruimte genereert. Het tweede deel van
het hoofdstuk behandelt een mogelijke veralgemening voor het geval dat
deeltjes worden toegevoegd.
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Samenvatting

Hoofdstuk 3 bevat een reductie van de eerste orde actie naar het poly-
goon model. De eerste stap is een reductie naar een tussenliggend, co-
variant model dat wordt beschreven in [32, 35]. Dit model heeft al een
eindig aantal vrijheidsgraden, te weten, een aantal Lorentz vectoren die
de randen van een niet planair polygoon afbakenen en de verzameling
van holonomie matrices van de Lorentz groep corresponderend met ges-
loten niet samentrekbare krommen. De holonomieén zijn functionalen van
de spin-connectie en de Lorentz vectoren zijn functionalen van het viel-
bein. Als we dan eisen dat het polygoon in te bedden is in R? krijgen we
het polygoon model. In de oorspronkelijke formulering waren de Poisson
haken gepostuleerd door te eisen dat de Hamiltoniaan de goede tijdsevolu-
tie genereert. In dit hoofdstuk worden deze echter afgeleid van de eerste
orde actie van driedimensionele zwaartekracht.
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