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Abstract

This thesis lies in the framework of the spontaneous symmetry breaking mechanism.
When such a mechanism occurs, Goldstone’s theorem predicts the existence of massless
modes, called Nambu-Goldstone modes (NG modes). The current knowledge on NG
modes is classified following the types of symmetries involved in the considered breaking
pattern. Spacetime symmetries are the ones for which most of the analysis remains to
be done. From a perturbative approach, we separately and concomitantly study the
breaking of dilatation symmetry and of spatial translation symmetry. It allows us to
comment on the present-day conjectures concerning the counting of NG modes associated
to breaking patterns involving spacetime symmetries. Moreover, we get closer to standard
laboratory conditions by investigating the situation in presence of a chemical potential.
The considered Landau-Ginzburg’s like models constitute plausible effective field theories
to describe superfluids. The higher derivative terms required to spontaneously break
translations lead to emergent subsystem symmetries. A connection between NG modes
and fractonic modes, i.e. excitations with reduced mobility, is then made.

Non-relativistic systems are less constrained by the symmetries compared to Lorentz
invariant systems which make the former more general. Even for non-spacetime sym-
metries, some uncertainties on the physics of NG modes remain when dealing with non-
relativistic models. One of them is the critical dimension of Minkowski spacetime under
which no spontaneous symmetry breaking can occur. This dimension has been conjec-
tured and we propose an explicit computation in order to attest this conjecture. However,
through a holographic analysis, we discuss some way out for large N field theories.

All along the dissertation, concrete future research perspectives on the above-men-
tioned discussions are provided.

Key words: Spontaneous symmetry breaking, Goldstone physics, effective field theories,
bottom-up holography.
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Résumé

Cette thèse porte sur le mécanisme de la brisure spontanée de symétrie. Lorsqu’un tel
mécanisme se produit, le théorème de Goldstone prédit l’existence de modes non-massifs,
appelés modes de Nambu-Goldstone (modes NG). Nos connaissances actuelles sur les
modes NG sont classifiées suivant le type de symétries impliquées dans le motif de brisure
considéré. Les symétries d’espace-temps sont les symétries pour lesquelles la majorité
de l’analyse reste encore à faire. A travers une approche perturbative, nous étudions
séparément et de façon concomitante la brisure de la symétrie de dilatation et la brisure
de la symétrie de translation spatiale. Cela nous permet de commenter les conjectures
actuelles portant sur le comptage des modes NG associés au motif de brisure faisant
intervenir des symétries d’espace-temps. De plus, nous nous rapprochons des conditions
expérimentales en investiguant la situation en présence d’un potentiel chimique. Les
modèles de type Landau-Ginzburg considérés constituent des théories effectives plausibles
pour la description de superfluides. Les termes de dérivées supérieures nécessaires à la
brisure des translations mènent à l’émergence de symétries de sous-systèmes. Un lien
entre les modes NG et les modes fractoniques, c-à-d. des excitations à mobilité réduite,
est alors établi.

Les systèmes non-relativistes sont moins contraints par les symétries comparés aux
systèmes invariants de Lorentz, ce qui rend les premiers plus généraux. Ainsi, même pour
des symétries qui ne sont pas d’espace-temps, certaines incertitudes sur la physique des
modes NG subsistent lorsque nous considérons des modèles non-relativistes. L’une d’entre
elles est la dimension critique de l’espace-temps de Minkowski en-dessous de laquelle au-
cune brisure spontanée de symétrie ne peut se produire. Cette dimension a été conjecturée
et nous proposons un calcul explicite en vue de valider cette conjecture. Cependant,
à travers une analyse holographique, nous discutons d’une échappatoire concernant les
théories de champs à grand N.

Tout au long de ce travail, de futures perspectives concrètes de recherche portant sur
les discussions mentionnées ci-dessus sont proposées.

Mots clés : brisure spontanée de symétrie, physique de Goldstone, théories effectives,
dualité holographique.

III





Acknowledgments

I would like to express my warmest gratitude to Riccardo Argurio, my advisor, for his
full support during this thesis. I wish to deeply thanks Riccardo for his advices, for his
kindness and for his sense of humour. Working with him was extremely pleasant. He has
introduced me to the rich and exciting domain of Goldstone physics. The balance between
formal developments and applied science we recover in this field of research matches my
scientific interest. The diversity of subjects associated to the mechanism of spontaneous
symmetry breaking permitted me to acquire, on a regular basis, new knowledge in various
areas of science, ranging from mathematics to condensed matter physics. It kept me
motivated during all these Ph.D. years. For this purpose, I am genuinely grateful to
Riccardo. I am eager to keep trying to understand the subtleties of my field of research
and I hope that, in the future, we will have other occasions to exchange and to collaborate.

The original part of this thesis would not have been possible without all the people
I collaborated with: Carlos Hoyos, Daniele Musso, Antoine Pasternak, Jelle Hartong,
Andrea Marzolla, Gaston Giribet, J. Anibal Sierra-Garcia and Andrea Mezzalira. Work-
ing with them has been a rewarding experience. In particular, I have truly appreciated
the informal discussions I had with Daniele, Antoine and Andrea (Marzolla). It definitely
helped me to acquire intuition on certain aspects of physics and to overcome some compu-
tational issues. I am indebted to Daniele who permitted me to become more independent
as a researcher. Indeed, not only he had the kindness to include me in a solo project
he was working on at that time but also, he introduced me in a new collaboration with
Daniel Areán, Jewel K. Ghosh and Ignacio Salazar Landea. I acknowledge Daniele for his
trust.

I am thankful to Glenn Barnich, Tomas Brauner, Thomas Hambye and Francisco Peña-
Benitez for accepting to be part of my thesis jury. Their questions and their comments
helped me to improve my knowledge of the field and it added new perspectives to my
research. I will be pleased to pursue these discussions on any occasions.

I would be remiss in not mentioning that the exchanges with Ankit Aggarwal and
Adrien Druart permitted me to clarify some technical details on the coset construction
presented in the first part of this thesis.

Working in a nice and friendly environment has played a major role in my fulfilment.
Consequently, I would like to extend my sincere thanks to the members of the “theoretical
and mathematical physics” group, both the researchers and the administrative staff. I
am also thankful to the people with whom I shared teaching duties.

In these acknowledgments I made the choice to remain at the academic level and to use
a rather formal phrasing. However, I would like to emphasise that I am forever grateful
to my family and my friends to be by my side and to make my journey through the years
so joyful. Mastering new knowledge is what drives me; therefore, I am sure that I will
not forget anyone by stating that I sincerely thank all those who have ever taught me
something.

V





List of Publications

The original work presented in this thesis is based on the selected papers 1, 2 and 4 in
the list below, while some of the highlights of paper 3 are as well commented. This choice
is motivated by our desire to discuss self-consistent research projects with some diversity
in the types of questionings addressed.

Let us emphasise that the concept of “first author” is non-existing in this research area,
the authors are systematically listed in alphabetic order.

Scientific papers:

1. R. Argurio, C. Hoyos, D. Musso, and D. Naegels, “Fractons in effective field theories
for spontaneously broken translations,” Phys. Rev. D 104 no. 10, (2021) 105001,
arXiv:2107.03073 [hep-th].

2. R. Argurio, C. Hoyos, D. Musso, and D. Naegels, “Gapped dilatons in scale in-
variant superfluids,” Phys. Rev. D 102 no. 7, (2020) 076011, arXiv:2006.11047
[hep-th].

3. D. Musso and D. Naegels, “Independent Goldstone modes for translations and shift
symmetry from a real modulated scalar,” Phys. Rev. D 101 no. 4, (2020) 045016,
arXiv:1907.04069 [hep-th].

4. R. Argurio, D. Naegels, and A. Pasternak, “Are there Goldstone bosons in d ď z`1
?,” Phys. Rev. D 100 no. 6, (2019) 066002, arXiv:1903.11417 [hep-th].

5. R. Argurio, J. Hartong, A. Marzolla, and D. Naegels, “Symmetry breaking in holo-
graphic theories with Lifshitz scaling,” JHEP 02 (2018) 053, arXiv:1709.08383
[hep-th].

6. R. Argurio, G. Giribet, A. Marzolla, D. Naegels, and J. A. Sierra-Garcia, “Holo-
graphic Ward identities for symmetry breaking in two dimensions,” JHEP 04 (2017)
007, arXiv:1612.00771 [hep-th].

7. R. Argurio, A. Marzolla, A. Mezzalira, and D. Naegels, “Note on holographic non-
relativistic Goldstone bosons,” Phys. Rev. D 92 no. 6, (2015) 066009,
arXiv:1507.00211 [hep-th].

Scientific proceedings:

1. D. Naegels, “Goldstone Boson Physics and Effective Field Theories,” PoS Mo-
dave2021 (2022) 004, arXiv:2110.14504 [hep-th] .

VII

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.105001
https://arxiv.org/abs/2107.03073
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.076011
https://arxiv.org/abs/2006.11047
https://arxiv.org/abs/2006.11047
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.045016
https://arxiv.org/abs/1907.04069
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.066002
https://arxiv.org/abs/1903.11417
https://link.springer.com/article/10.1007%2FJHEP02%282018%29053
https://arxiv.org/abs/1709.08383
https://arxiv.org/abs/1709.08383
https://link.springer.com/article/10.1007%2FJHEP04%282017%29007
https://link.springer.com/article/10.1007%2FJHEP04%282017%29007
https://arxiv.org/abs/1612.00771
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.066009
https://arxiv.org/abs/1507.00211
https://pos.sissa.it/404/004
https://pos.sissa.it/404/004
https://arxiv.org/abs/2110.14504




Note to the reader

This thesis is structured in four parts. Part I is an introduction to the area of interest,
namely Goldstone physics. A state of the art is provided at the end of this introductory
part. The original component of the dissertation are Part II and Part III. Finally, Part
IV is focusing on the conclusion of the thesis and on the potential research perspectives.

Units

We will use the natural units: ~ “ c “ kB “ 1, where c, ~ and kB are, respectively, the
speed of light, the Planck constant and the Boltzmann constant.

It implies that renergys “ rmasss “ rtemperatures “ rspaces´1 “ rtimes´1. We do not
specify the energy unit. In particular, small and large limits of dimensionful parameters
intervening in a given theory will always be with respect to other scales present in the
model.

For the holographic computations, in fixed geometry, we will set the radius of the consid-
ered curved spacetime to one. When the geometry is dynamical, we will rather set the
gravitational coupling between the gravitational field and matter to one.

Conventions

For quantum field theory computations, concerning the metric, we are going to use the
mostly minus signature

p`,´,´, . . .q ,

i.e. for Parts I and II as well as half of Part III, while for the holographic computations,
we will consider the mostly plus signature

p´,`,`, . . .q ,

i.e. for the other half of Part III and for Part IV.

We use Greek indices for the Minkowski spacetime components such that µ runs over
0, 1, 2, 3, . . . or t, x, y, z, . . . . The lowercase Roman indices i, j, k correspond to the spatial
components such that they run over 1, 2, 3, , . . . or x, y, z, , . . . . In holography, the bulk
d` 1 coordinates will be labelled either with capital Roman indices or with the lowercase
Roman indices m,n, o. If not mentioned otherwise, Einstein’s summation convention is
considered, i.e. indices that are repeated are summed over.

For d-vectors, we may also write: xµ “ x “ pt,xq “ pt, ~xq .

Eventually, we chose the following convention for the Fourier transform:

fpxq “

ż

ddk

p2πqd
f̃pkq e´ikµx

µ

.

For the mostly minus signature of the metric, we schematically have Bt Ñ ´i ω and
Bi Ñ i ki .
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Introduction

This dissertation lies in the context of Goldstone physics. This area of physics revolves
around the Goldstone theorem which, briefly stated, ensures that there is at least one
massless mode, called the Nambu-Goldstone mode1 (NG mode), in the spectrum of the
theory when a spontaneous symmetry breaking (SSB) occurs [3, 4]. When the dynamics
of a considered physical system is invariant under a transformation, we call such transfor-
mation a symmetry. An SSB is the situation where a theory possesses a symmetry, but
the vacuum around which we perform the perturbation analysis/the quantisation does not
have such symmetry – the state of the system is not invariant when acting the symmetry
on it [5]. More precisely, Goldstone’s theorem stands for the breaking of global continuous
symmetry groups. These are continuous sets of symmetries which are parametrised by
continuous numbers (we speak of local continuous symmetry groups when these numbers
are promoted to be functions over spacetime). A cartoon visualisation of this concept can
be observed in Figure 1 through the Mexican hat potential. These different notions will
be revised more formally later. However, we can already understand that Goldstone’s
theorem provides some information on the spectrum content at low energy, i.e. the in-
frared region (the IR region). Therefore, combining this information with tools to build
Effective Field Theories (EFTs) would provide us an almost complete description of the
IR physics. That could be a definition of what Goldstone physics is: a thorough analysis
of the Goldstone theorem and of the related results supplemented by/completed with
EFT tools.

The main asset of studying Goldstone physics is the universality of the results that we
get. Indeed, we can find SSB in particle physics: the Brout-Englert-Higgs mechanism is
a good illustration [6, 7]. Furthermore, SSB can be used in statistical physics to describe
phase transitions such as superfluidity [8]. Hence, we deduce that the progress in the
comprehension of the SSB mechanism will help us to understand the fundamental laws of
nature and it can also be useful in applied science. Another major impact of spontaneous
symmetry breaking in science is the exactness of the results that we extract. The laws
of nature are complicated. Physicists usually do some approximations to study natural
phenomena. However, when a spontaneous symmetry breaking occurs, we are sure that
the spectrum of the physical system at study will contain exactly gapless excitations
and hierarchically small massive modes. This assertion is the statement of the already
mentioned Goldstone’s theorem.

For a given spontaneous symmetry breaking pattern, the theorem of Goldstone pre-
dicts the existence of NG modes but does not predict their exact number. Establishing
a counting rule for the symmetry originated gapless excitations is one of the principal
research directions of Goldstone physics. Two other dominant lines of investigation are
understanding better the criteria under which a system can sustain an SSB and under-
standing how NG modes interconnect and interact with other physical particles. In this
thesis, these three aspects will be discussed.

The counting rule for NG modes depends on the types of the symmetries which are

1Historically, Nambu is the one who conjectured the link between symmetry breaking and the mass
constraint it implies [1, 2], while it is Goldstone who clarified and proved this conjecture [3, 4].
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Re(φ)
Im(φ)

V (|φ|)

The Mexican hat potential

Figure 1: The dynamics of a physical system is mainly dictated by its potential. We
observe that the represented potential in the above cartoon has a rotation symmetry
since all the directions in the complex plane are equivalent. This means that the theory
describing our system possesses this symmetry. However, the stable state into which we
place the system (represented by the yellow sphere) selects one specific direction. Hence,
all the directions are not anymore equivalent, the rotation symmetry is broken by the
state of the system. We say that the symmetry is spontaneously broken.

involved in the given symmetry breaking pattern. Concerning symmetries which act
solely on the internal space of the degrees of freedom, namely internal symmetries, a
strong counting rule as well as a classification of the NG modes have already been ob-
tained [9, 10]. It is not the case for spacetimes symmetries. These symmetries are both
technically and conceptually involved since they act on the internal space of the degrees
of freedom but as well on the spacetime coordinates. The number of gapless NG modes
can also be affected by the presence of a chemical potential. The latter might provide
a gap to some of them [11–13]. To encompass both subtleties, we will build toy models
displaying dilatation symmetry breaking and spatial translation symmetry breaking both
separately and concomitantly at zero and at finite density. The perturbative analysis of
such toy models will offer a consistency check of the current conjectures concerning the
counting rules of NG modes for spacetime symmetries. It will also add new materials to
the discussion on the effect of a chemical potential on the gaps of the symmetry origi-
nated modes. The technicalities of the computations will lead us to introduce new tools to
study low energy spectra. Especially, it will be the use of the Ward-Takahashi identities
to deduce the symmetry origin of the obtained dispersion relations. Finally, the break-
ing of spatial translation symmetry requires higher derivative terms in the fundamental
Lagrangian. Once we compute the effective action, these higher derivative terms ensure
that additional symmetries emerge, called subsystem symmetries. These symmetries lead

2



Introduction

to supplementary conservation laws at low energy, in particular the conservation of mul-
tipole moments. As a consequence, some restriction in the mobility of the excitations is
observed. These modes are known in the literature under the name of “fractonic exci-
tations” [14, 15]. Hence, our Goldstone physics oriented toy models open new doors for
fractonic model building. The interplay between NG modes and fractonic modes offers a
perspective of research which will be useful to better understand both types of excitations.

Theoretical physics considers both Lorentz relativistic theories and non-relativistic
theories, the former in the perspective of fundamental physics and the latter in the per-
spective of macroscopic physics. Non-relativistic theories are more general because they
are not constrained by Lorentz symmetry. Therefore, establishing generic results for
such theories is arduous. Determining the criteria under which a spontaneous symmetry
breaking can be initiated in a physical system is an involved process, even for internal
symmetries. Nevertheless, for relativistic theories, it is known that the critical spacetime
dimension under which no spontaneous symmetry breaking can occur at quantum level is
two [16]. In the literature, a critical dimension has been conjectured for non-relativistic
systems [17]. To some extends, we will verify the validity of this conjecture through an
explicit computation in quantum field theory. Although, large N field theories offer a
counter-example to the conjecture. Such a counter-example will be found thanks to a
holographic study. A memory of the peculiar spacetime dimension will however remain
through the need of a specific holographic renormalisation.

The dissertation is organised in four parts. The first one is an introduction to Gold-
stone physics where the notions we discussed so far are formally defined and explained.
The concluding chapter of Part I is the state of the art summarising the key features of
Goldstone physics necessary for the rest of the thesis. Part II is dedicated to the study
of the breaking of spacetime symmetries. More specifically, a perturbative approach of
the spontaneous symmetry breaking of dilatation and spatial translation is provided. Be-
cause it leads to a connection with fracton physics, a journalistic overview of the latter
area of physics is presented. In Part III, the spontaneous symmetry breaking of internal
symmetries in non-relativistic systems at lower spacetime dimension is examined. Among
other things, holography will be needed. This tool will be explained. Eventually, Part IV
focuses on a specific future research project and contains the conclusion of the thesis. It
should be mentioned that, all along the dissertation, outlooks will be proposed.

3
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Part I

An introduction to Goldstone
physics
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Preamble Part I

This part of the dissertation has for purpose to define the physical notions and quantities
we will use in this thesis and to give a global picture of what Goldstone physics is. In
particular, it will permit to clearly state what are the current challenges of this area of
science and so, to give a meaning to the computations we will perform in the next parts of
the thesis dedicated to the original contribution of the author and his collaborators to some
of the open problems. This introduction to Goldstone physics is meant as a pedagogical
approach which favours intuitive reasoning over technical details. We nevertheless keep a
certain level of formal developments in order to provide a concrete idea of what is behind
the general principles and also, to introduce the computational tools.

These introductory notes are structured as follow. We will begin by motivating the
subject. Afterwards, the formalism we will use will be settled. It should be seen as a
way to set the conventions and the definitions rather than in an axiomatic goal. Then,
Goldstone’s theorem will be stated and proved (without any claim of full mathematical
rigour). From a discussion on the NG modes, some of their properties will emerge: they
are massless, they are weakly coupled in the IR and they transform non-linearly under the
spontaneously broken symmetries. These properties will formally be displayed through
the construction of a generic EFT for NG modes. This, by using the coset construction
formalism, which will itself be introduced. Furthermore, the EFT approach will allow us to
acquire additional knowledge compared to the prediction of Goldstone’s theorem, namely,
we will obtain a classification and a counting rule for the NG modes. This counting
rule will be adapted for the situation at finite density. Furthermore, the established
classification will allow for a discussion on no-go theorems concerning the occurrence of
spontaneous symmetry breaking in lower dimensional spacetimes. The range of validity
of these results will be detailed. In particular, spacetime symmetries will need a specific
treatment and an entire chapter will be dedicated to them. The abstract discussions and
developments will be illustrated in the appendices by two concrete examples in statistical
physics: ferromagnetism and superfluidity. Finally, a state of the art of Goldstone physics
will be provided.

The five main references that were used to write this part of the dissertation are
[5, 9, 10, 18, 19]. Let us mention that the subject of spontaneous symmetry breaking is
vast and many articles appeared in the past decades. The bibliography of this work is
not meant to be exhaustive; it focuses on the references the author is the most familiar
with. We apologise for any unintentional omissions of relevant papers or reviews.

We draw the reader’s attention to the fact that chapters 1, 2, 3, 4 and appendix A
are slightly edited from the proceeding the author of this thesis published following the
lecture he gave at the XVII Modave summer school in mathematical physics [20].
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Chapter 1

Motivations

To motivate the study of Goldstone physics we need first to recap the well-known assets of
symmetries. This, in order to put into perspective the interesting aspects of spontaneous
symmetry breaking.

It is intuitive that knowing a symmetry of an object (geometric figures, mathematical
equations etc. left invariant after a given transformation) permits to ease the description
and the manipulation of the considered object. In physics, this idea has been formalised
through the Noether theorems which establish a connection between symmetries and
conserved quantities. A noteworthy point is that these conserved quantities are exactly
conserved no matter how complex the dynamics is. Hence, symmetries offer exact (i.e.
non-perturbative) results. Furthermore, symmetries rely on the mathematical description
of physics, it is thus not specific to a given physical scenario1. When a concept applies
to several physical phenomena, we say that this concept is universal. This is the case
of symmetries. Finally, the symmetries permit to constrain the shape of a Lagrangian
when we do model building. The importance of symmetries in physics can be heuristically
shown by noticing that symmetries are one of the current paradigms of modern physics:
special relativity has for cornerstone Lorentz symmetry, general relativity is based on
diffeomorphism invariance and the standard model is constructed on the notion of gauge
symmetries.

Paradoxically, physics is richer when symmetries are spontaneously broken. At first,
we could think that we lose universality but this is not the case since many physical
phenomena take place around a pre-existing background which breaks spontaneously the
fundamental symmetries. For example, the crystal structure in solid state physics is usu-
ally taken as granted and it breaks the Galilean group (spatial translations and rotations
as well as the Galilean boosts). Another example could be the quark condensate; at low
energy the quarks are not free and form bound states. This condensation breaks the chiral
symmetry. An additional possible false idea we could have when SSB occurs is that we
lose the exactness of the results related to symmetries. This can be denied thanks to
Goldstone’s theorem where the massless aspect of the NG modes is exact. Furthermore,
we can mention that even in the case of an explicit symmetry breaking, if we are able
to write down the source generating the breaking, the Ward-Takahashi identities can be
generalised and still be exact (see for example [21, 22]). This can be relevant for pseudo
NG modes, cf. Section 4.3. Finally, the spontaneously broken symmetries still constrain
the shape of the Lagrangian. However, it is less easy to see because these symmetries
are now “hidden”. We will see that the formal explanation is that they are non-linearly
realised instead of being linearly realised,2 which makes the invariance of the Lagrangian

1An example is that we use energy conservation in any area of physics.
2In physics, in general, the usual symmetries (Up1q, SOp3q, SUpNq . . .) are realised through matrices

acting on fields which makes their action intrinsically linear – we then speak of the representations of
the groups. Because non-linearity will play a major role in Goldstone physics, we will keep the generic
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Chapter 1. Motivations

less obvious. Gathering all these observations, we can (with a bit of exaggeration) say
that spontaneous symmetry breaking gives us the IR matter content of a given physi-
cal phenomenon through Goldstone’s theorem and constrains the shape of the associated
EFT. In other words, it completely settles the effective field theory. Therefore, while sym-
metries are giving partial information on the dynamics through the conserved quantities,
spontaneous symmetry breaking provides all the dynamics at low energy. It is in this
sense that physics is richer in the case of SSB. Of course, that is hasty said, it should not
be taken literally but more as a guideline which motivates the study of Goldstone physics.

Since the last assertion is the main motivation of Goldstone physics, it could be inter-
esting to have an additional viewpoint on it – in order to double check the consistency of
this statement. It can be done through the concept of the renormalisation group flow (the
RG flow). In the UV (at high energies) each physical phenomenon is described by one
theory. When we follow the RG flow toward the IR, the irrelevant operators become pro-
gressively suppressed. We thus remain with a handful numbers of theories – the number
of parameters is now limited – which are constrained by the symmetries. Indeed, the RG
flow modifies the theories consistently with the symmetries (if there are no anomalies).
Hence, in the IR, one theory is describing several physical phenomena. The effective field
theories are therefore universal and symmetrically constrained. The different physical
phenomena are discriminated by the different interpretations we give to the parameters
(the mass, the compression modulus etc.) and by the numerical values of these parame-
ters3. Furthermore, when we go to low energy, the system tends to condense (e.g. liquid to
solid phase transition at low temperature, quark condensate at low energy, Bose-Einstein
condensation at low temperature). The condensate will spontaneously break some sym-
metries. We can thus apply Goldstone’s theorem to get information on the IR spectrum
content. This leads to the rough idea that IR physics is universally described by Goldstone
physics. As mentioned earlier, it should be understood more as an argument motivating
the subject rather than a strong statement.

Until now, we used abstract ideas to justify the universality of spontaneous symmetry
breaking and Goldstone physics. We will close this chapter by stating some concrete
examples where such concepts are found (it is not an exhaustive list).

� High energy physics: light mesons physics [18], composite Higgs model [23], Higgs
mechanism [24].

� Statistical physics: phase transitions (ferromagnetism [18] . . .), transport phenom-
ena (superfluidity [8] . . .), condensed matter (crystal structures . . .) [25].

� Astrophysics: stellar superfluids (e.g. in neutron stars) [8]

Of course, these domains are interconnected and it is one of the reasons why spontaneous
symmetry breaking occurs in many areas of physics. For example, spontaneous symme-
try breaking intervenes in the study of neutron stars because the latter have the right

nomenclature of “linear realisation” rather than of “representation”.
3An EFT is the most general theory we can write which is invariant under a given symmetry group

and that is written as an expansion in energy (usually a power series in derivatives of the fields). The
experimental precision (or just the desired precision) tells us where to truncate this series. From the
UV theory or from experiments we are thus able to determine the remaining parameters and our EFT
becomes predictive at low energy.

10



Chapter 1. Motivations

thermodynamic conditions to sustain a superfluid phase. Some of the superfluid phase
transitions correspond to a Bose-Einstein condensation which can be described by the
spontaneous symmetry breaking of a Up1q symmetry [8]. Thus, with the single example
of superfluid, SSB intervenes in phase transition physics, in transport phenomena study
and in astrophysics.
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Chapter 2

Setting the formalism

Before starting to discuss and to compute physical quantities related to spontaneous
symmetry breaking, we will recap the necessary prerequisites as well as establish the
framework we are going to work with. This is the purpose of this chapter. Let us mention
that we do claim a scientific approach (i.e. justify every step and keep an appropriate
rigour level). However, we do not claim a full mathematical rigour and we do not pretend
to have an axiomatic approach of physics. This chapter should be understood as a way
to refresh our memory on standard notions (no claim of originality) and to establish the
vocabulary as well as the definitions.

We are going to work with physical quantum field theories (QFT) defined on Minkowski
spacetime of dimension d ě 2. Using fields as degrees of freedom is consistent with the
infrared limit because this limit is equivalent to probe for phenomena occurring at large
distances and so, there is not much loss of generality by considering the continuous limit
(e.g. crystal structures at large spatial scale compared to their lattice spacing can be seen
as continuous) [18]. Furthermore, in addition to the time direction permitting to define
the notion of energy, we need at least one spatial direction to be able to have the notion of
momentum (necessary for the concept of mass/gap). The term “physical” is deliberately
vague1 but it should include at least:

� A notion of locality: following the theorems or the results we will consider, there
will be specific restrictions on locality. For example, while building effective field
theories, we will only consider interactions between fields evaluated at the same
spacetime position. On the contrary, Goldstone’s theorem is robust with respect to
a partial relaxation of locality. It is valid up to interactions with a finite range in
space.

� Stability: we want our vacuum as well as the fluctuations around it to be stable,
i.e. to remain finite through time.

� Consistency with a possible Poincaré-relativistic UV completion: Goldstone physics
encompasses phenomenological descriptions of macroscopic systems. These phe-
nomenological theories could be non-relativistic, however, we know that at the fun-
damental level, physics is relativistic. Therefore, any non-relativistic theory in the
IR should, at higher energy, come from the spontaneous symmetry breaking of

1The idea of physical theories is intrinsically vague since this notion evolves with our understanding
of nature. A naive example is that at a moment of history we thought that time was absolute but with
special relativity, we learned that it was not correct. So, what a physical theory is evolves through
science history. A more relevant example for us is that in the early seventies Coleman stated that for a
relativistic field theory in two spacetime dimensions, no spontaneous symmetry breaking can occur [16].
This theorem can be evaded if we consider strictly large N theories [26–28]. These theories could be
thought of as purely exotic and non-physical. However, thanks to the holographic duality postulated in
the nineties [29–31], it appears that they could be linked to consistent physical gravitational theories.

13



Chapter 2. Setting the formalism

Poincaré symmetry (as it is suggested in [32] for example). We will not check ex-
plicitly this last requirement concerning a possible relativistic completion, but we
should keep in mind this physical constraint. Notice that in this dissertation, when
we mention relativity it is with respect to Poincaré symmetry (Poincaré-Lorentz
relativity).

It is important to notice that the considered QFTs are not necessary Lorentz invari-
ant. Since the paradigm among high energy physicists is that QFT has been introduced
to build quantum Lorentz invariant theories, let us take some time to justify why we
can be interested in non-relativistic field theories. We have that macroscopic systems
correspond usually to some fluctuations around a given condensate (e.g. in solid state
physics where the crystal structure is given for granted). The centre of mass of this con-
densate corresponds therefore to a preferential frame (the rest frame) which is opposed
to the paradigm of relativity: fundamentally, the laws of physics are the same in any
(inertial) frame. Furthermore, the thermodynamic state of the system is given through
a computation involving the probability weight e´βH where H is the Hamiltonian. The
interplay between the Hamiltonian and the Lorentz group is non-trivial, thus, thermo-
dynamic states tend to break Lorentz invariance. Finally, the macroscopic systems are
important for this thesis because Goldstone’s theorem does apply to them as well.

Even if we just mentioned the importance of statistical field theory, we are going to
work with QFTs at zero temperature and, if not mentioned otherwise, at zero chemical
potential. Of course, switching on temperature is part of the research area of Goldstone
physic. But switching on temperature is a technically non-trivial process since in the
imaginary time formalism the time is periodic. And if we want to study the dynamics,
we need to go to real time formalism where time is an oriented curve in the time complex
plan (or we should proceed to an analytic continuation of the correlators obtained in the
imaginary time formalism) [33]. This constitutes a domain of research on its own. Besides
some brief comments, Goldstone physics at finite temperature will not be analysed in this
dissertation. It should however be mentioned that, doing zero temperature QFT does
not prevent us to compute thermal quantities at low temperature. An example of this
assertion can be found in Appendix A.

2.1 What do we mean by symmetry ?

2.1.1 At classical level

In field theory, a symmetry is a transformation applied on the fields which leaves the
equations of motion (EOM) unchanged. An equivalent formulation is that under such a
transformation, a solution of the EOM remains a solution. Mathematically, a transfor-
mation on the fields is defined as

#

xµ Ñ x1µ “ x1µpxq ,

φipxq Ñ φ1ipx1q “ F i rx, φpxqs ,
(2.1.1)

where φ is a generic field and the index i refers to its possible multi-component nature,
F i is a function, finally, the prime index represents the transformed object.

14



Chapter 2. Setting the formalism

In this work we will do a small misnomer by defining “a symmetry” as a transformation
applied on the fields which leaves the action of the field theory unchanged:

Srφ1s “ Srφs . (2.1.2)

This small misappropriation of the term symmetry is consistent in the sense that a sym-
metry of the action implies a symmetry of the EOM. Furthermore, we do not lose much
generality because most of the important symmetries (and the mostly used ones) in physics
are the ones which can be seen at the level of the action.

If we consider several transformations of the type (2.1.1), we can combine them through
the law of function composition and get another symmetry by “chain reaction”. It is
therefore possible to define an internal associative product. The identical transformation
is trivially a symmetry. Finally, physical interesting transformations are predominantly
invertible2 (e.g. rotations, phase-shifts, translations . . . ). Hence, the symmetries of a
theory form a group. It is common to denote this set of transformations as a realisation
of the usual groups: Z2, Up1q, SOp3q, SUpNq . . . . We will of course come back to it later,
but Goldstone’s theorem only applies when such groups are continuous. We will from now
on focus on continuous groups. If we consider a continuous set of transformations (2.1.1)
parametrised by αa, we can write an infinitesimal expression

#

xµ Ñ x1µ “ xµ ` αa ξµa pxq ,

φipxq Ñ φ1ipxq “ φipxq ` αa δaφ
ipxq .

(2.1.3)

These transformations correspond to the realisation of the continuous connected part to
the identity (α “ 0) of the symmetry group. Therefore, αa parametrises the Lie algebra
of the continuous group and we can define the representation of the generators Ga by the
infinitesimal action on the fields

αaGaφ
i
pxq ” δαφ

i
pxq ” φ1ipxq ´ φipxq . (2.1.4)

Let us mention that we will slowly start to stop to do the distinction between the gener-
ators and the realisation of the generators. The context should make it clear which case
is considered.

We recall that through Noether’s first theorem, it exists a one-to-one relation between
the set of symmetry generators Ga associated to constant parameters over spacetime
αa (i.e. the generators of global symmetries) and the set of conserved currents jµa pxq,
satisfying Bµj

µ
a “ 0 on-shell3 – i.e. when the EOM are satisfied. To construct the conserved

current associated to Ga, we consider an invariant theory under the action of Ga. The
Lagrangian Lpφ, Bφq of the theory can transform up to a global derivative under the
transformation

δaφ
i
” Gaφ

i , (2.1.5)

2A symmetry transformation could be somehow interpreted as a change of frame. Physically, nothing
prevents us to go back to the original frame.

3To be more precise, a gauge symmetry is a symmetry (2.1.4) where the parameter αa is an arbitrary
function of spacetime. The global symmetries are the set of symmetries (2.1.4) where we identify the
transformations (2.1.4) which are equal on-shell up to a gauge transformation. Noether’s first theorem
establishes a one-to-one correspondence between the set of global symmetries and the set of classes of
conserved currents rjµa s, where jµa „ jµa ` BνR

νµ with R a generic anti-symetric tensor. A more rigorous
statement can be found in [34].

15



Chapter 2. Setting the formalism

such that we express the global derivative through Kν
a :

δaL ” BµKµ
a . (2.1.6)

The conserved current is then given by4 [5, 35]

jνa “
BL

B pBνφiq
δaφ

i
´Kν

a . (2.1.7)

From jµa , a conserved quantity can be built

Qa ”

ż

dd´1x j0
apxq , (2.1.8)

where BtQa “ 0 on-shell.

2.1.2 At quantum level

Quantum mechanics is described by a complex Hilbert space H “ t|ψyu and by a Hamil-
tonian Ĥ. Conceptually, a symmetry transformation |ψy Ñ |ψ1y can be seen as a change
of frame. Changing the frame should not alter the relative results of an experiment.
Therefore, a necessary condition that a symmetry transformation should satisfy is

xψ| Â |ψy “ xψ1| Â1 |ψ1y , (2.1.9)

where Â is an observable and the prime represents its transformation [36]. Let us mention
that the transformations (2.1.9) can be seen as the quantum version of the canonical
transformations in classical mechanics. Wigner theorem states that for (2.1.9) to be
fulfilled, a symmetry transformation acting on H should be either unitary and linear or
antiunitary and antilinear [36]. As it will become clear later, in Goldstone physics we
are interested in the part of the symmetry group which is continuously connected to
the identity. Said otherwise, we are interested in the symmetry transformations which
can be parametrised by the Lie algebra. Identity is a unitary operator and the switch
between unitary and antiunitary is discontinuous, thus, we have that our considered
transformations are unitary. Hence, the symmetry transformations we are interested in,
realising a given symmetry group, can be written as

|ψy Ñ eiα
aQ̂a |ψy , (2.1.10)

where the realisation of the generators is Hermitian

Q̂:a “ Q̂a . (2.1.11)

From (2.1.9) and (2.1.10), we have

ÂÑ eiα
aQ̂aÂ e´iα

aQ̂a . (2.1.12)

4Let us mention that defining the conserved current with an opposite sign would not change the
conservation property.
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To define what a symmetry is, we will use a pragmatic approach. From the classical
discussion we know that a symmetry is associated to a conserved quantity. Therefore, we
are going to say that a continuous group of transformations |ψy Ñ |ψ1y realising on H one
of the usual continuous groups (SUp2q, OpNq etc.) is a symmetry group if the generators
Q̂a satisfy:

dQ̂a

dt
” BtQ̂a ` rQ̂a, Ĥs “ 0 . (2.1.13)

A final comment is that, from the canonical quantisation, the operatorisation of the
conserved charges of a field theory corresponds to the realisation of the generators at
quantum level

riQ̂a, φ̂
i
s “ δaφ̂

i
” Gaφ̂

i , (2.1.14)

if rδaφ̂
i, φ̂js “ 0 [5].

A bit more of details

The phase space of a quantum theory corresponds to the projective space of H [36]. To
say it more simply, a state of the system is a ray R of H (this because global phases are
not observable). Let us consider a continuous set tT u of transformations T : R Ñ R1

which has a group structure (through function composition) that realises one of the usual
continuous groups (SUp2q, OpNq etc.). From a transformation T of our given set, we may
define a transformation UpT q acting on the Hilbert space, UpT q : |ψy Ñ |ψ1y. The product
law induced on tUpT qu is defined up to a global phase (cf. the projective nature of the
phase space VS. the vector space H). Therefore, the representation of a given symmetry
group on the phase space corresponds to a projective representation on the Hilbert space.
It can be shown that a central charge cab might appear in the realisation of the Lie algebra
on H

rQ̂a, Q̂bs „ f c
ab Q̂c ` cab , (2.1.15)

where f c
ab are the structure constants [36]. Let us mention that to pursue with the manip-

ulation of usual representations on H, a possible trick is to consider a central extension
of the symmetry group we want to realise on H.

We should mention that the appearance of a central charge can already be retrieved
at the classical level in some Lie algebras formed by the conserved charges and the Pois-
son bracket (e.g. the Galilean symmetry algebra and its associated central extension, the
Bargmann algebra).

2.1.3 Ward-Takahashi identities

The quantum theory coming from the canonical quantisation of fields is usually not explic-
itly expressed in terms of its Hilbert space and its Hamiltonian. A quantum field theory
is entirely described by its asymptotic spectrum (the spectrum at infinite times), which
by assumption corresponds to the free (renormalised) spectrum, and by its correlators,
which illustrate how the system evolves from tÑ ´8 to tÑ `8. In this framework, the
quantum conservation laws (2.1.13) correspond to the Ward-Takahashi identities. With
the path integral formalism, it can be shown that when the classical field theory has the
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symmetry (2.1.3) – Srφ1s “ Srφs – and that the functional integration measure has this
symmetry as well (Dφ1 “ Dφ), then the following identities are satisfied [37]:

B

Bxµ
x`8, 0|T

#

ĵµa pxq
m
ź

k“1

φ̂ikpxkq

+

|´8, 0y “

p´iq
m
ÿ

k“1

δpx´ xkq x`8, 0|T
!

φ̂i1px1q . . . δaφ̂
ikpxkq . . . φ̂

impxmq
)

|´8, 0y ,
(2.1.16)

where ĵµa is the operator obtained from the canonical quantisation of (2.1.7) and |0y is the
asymptotic vacuum state (we consider the normalised correlators: x`8, 0|´8, 0y ” 1).
These identities are the Ward-Takahashi identities. We say that the quantum field theory
has the symmetry (2.1.3) when the associated Ward-Takahashi identities (2.1.16) are
satisfied.

Let us notice that if we take m “ 0 in (2.1.16) we recover the quantum version of the
classical conservation law:

B

Bxµ
x`8, 0|T

!

ĵµa pxq
)

|´8, 0y “ 0 . (2.1.17)

The left-hand side of the identities (2.1.16) are in general non-zero because the derivative
operator is infinitesimally non-local and so, the presence of an operator φ̂i near ĵµa might
interfere with (2.1.17). This is the reason why each term on the right-hand side of (2.1.16)
are weighted by the factor δpx´ xkq. We label such terms as contact terms.

In the case where Dφ1 ‰ Dφ (and Srφ1s “ Srφs), the symmetry of the classical theory
will not be recovered at quantum level. We call such situation an anomaly. It can be
interpreted as an explicit breaking of the symmetry due to the quantisation. It is a rich
domain of QFT [38], however, since we are interested in the spontaneous breaking of
symmetries we will not study such scenarios in this work.

2.1.4 Symmetries through the quantum effective action

From the discussion on symmetries we had so far, it seems that at classical level the
symmetries of the theory are defined through the action while at quantum level they are
defined through the conservation laws. It therefore looks like that we have two separate
treatments to study the symmetries, one for the classical study and one for the quantum
study. In order to draw an analogy with the classical case, we can use the quantum
effective action Γrφs.

The quantum effective action encompasses the quantum corrections and by doing so,
it permits to effectively describe the QFT as a classical field theory [35, 39]. Indeed, the
stationary point of Γrφs is the one-point correlator of the QFT in the same way that
the stationary point of Srφs is the on-shell field. The connected n-point correlators of
the QFT are obtained by summing on all the possible connected tree graphs where the
Feynman rules are taken from Γrφs, alike the tree graphs computed from Srφs which are
the QFT results in the classical limit (~Ñ 0). In particular, the connected propagator of
the QFT is given by:

x`8, 0|T
!

φ̂pxqφ̂pyq
)

|´8, 0yc “ i

˜

δ2Γrφs

δφpxqδφpyq

ˇ

ˇ

ˇ

ˇ

φ0

¸´1

, (2.1.18)
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where the label c stand for “connected” and φ0 is such that

δΓrφs

δφpxq

ˇ

ˇ

ˇ

ˇ

φ0

“ 0 , i.e. φ0pxq “ x`8, 0|T
!

φ̂pxq
)

|´8, 0y . (2.1.19)

As we will see, the expression (2.1.18) will be used to define the notion of mass and will
be important for the perturbative proof of Goldstone’s theorem.

When Srφs is invariant under (2.1.3) and there are no anomalies, the quantum effective
action Γrφs is invariant under the transformation [39]

φipxq Ñ φ1ipxq “ φipxq ` αa x`8, 0|T
!

δaφ̂
i
pxq

)

|´8, 0yJφ , (2.1.20)

where 〈. . .〉Jφ is the correlator in presence of the source Jφ which is defined as the source
imposing

x`8, 0|T
!

φ̂ipxq
)

|´8, 0yJφ “ φipxq . (2.1.21)

In particular, if we take (2.1.3) to be an affine transformation

φipxq Ñ φ1ipxq “ φipxq ` αa
ˆ

sapxq `

ż

ddy tijpx, yqφ
j
pyq

˙

, (2.1.22)

we can observe that, by using (2.1.21), (2.1.20) is the same expression as (2.1.22).
Hence, in the same way Srφ1s “ Srφs defines a symmetry of the classical field theory,

Γrφ1s “ Γrφs defines a symmetry of the QFT. This analogy can be pushed forward to
QFTs at finite density and/or finite temperature. For thermal field theories expressed
in the real time formalism, we can as well define a thermal effective action Γβrφs which
generates the thermal connected correlators and which defines the notion of symmetry
through its invariance under certain transformations φÑ φ1 [40].

For the Section 2.2 and beyond, we will not denote with a circumflex accent anymore
the quantum operators. We will as well shorten the writing x`8, 0|T t. . .u |´8, 0y to
〈. . .〉.

2.2 Different classifications of the symmetries

Goldstone physics depends heavily on symmetries, we can then naturally be convinced
that some of the results we will state in the following chapters rely on the nature of the
considered symmetries. One way to characterise the symmetries is through the mathe-
matical properties of the symmetry group. As we will see, the symmetry group being
compact or not will play a major role. We then qualify the symmetries to be compact
or non-compact. Other possible criteria on which to classify the symmetries could be the
way the symmetries act on the fields and on spacetime. We list here the main important
classifications:

� Local symmetries are such that the parameters αa in (2.1.3) are functions of space-
time. Otherwise, we speak of global symmetries.

� Spacetime symmetries are symmetries which act non-trivially on spacetime. Con-
sequently, a non-spacetime symmetry will have x1µ “ xµ in (2.1.1). The typical
examples of spacetime symmetries are translations, rotations, boosts etc.
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� Internal symmetries are the ones where the generators commute with the Poincaré
algebra. Up1q, SOp2q, SUpNq . . . are typical internal symmetries. Internal sym-
metries can be thought as non-spacetime symmetries. But the converse is false, a
counter-example is the spatial linear shift symmetry φpxq Ñ φpxq ` αi x

i, where αi
is a constant parameter, which is a non-internal symmetry (it does not commute
with translations for example) and it is also a non-spacetime symmetry.

� Uniform symmetries are the ones where F i in (2.1.1) does not depend explicitly on
xµ. For example, SOpNq is a uniform symmetry. The spatial linear shift symmetry
is a case where F i does depend explicitly on xµ, it is therefore not a uniform symme-
try. An equivalent definition for uniform symmetries is when the realisation of the
generators does not depend on spacetime coordinates. For instance, the generators
of translations and rotations acting on a scalar field are respectively

Pi “ ´Bi , Lij “ xiBj ´ xjBi . (2.2.1)

We notice that translations are uniform symmetries while rotations are not. Let us
mention that translations are the only spacetime symmetries which are uniform.

� Compact symmetries are the ones which realise compact groups.

In QFT, we mostly encounter internal symmetries and spacetime symmetries, where
spacetime symmetries are more subtle since they act both on the internal space of fields
and on the manifold on which the fields are defined on. The systematic recurrence of these
two radical different types of symmetries is the reason why Goldstone physics literature
has the tendency to classify the studied symmetries following being internal or spacetime.
However, these two distinct sets of symmetries do not cover all the possible global con-
tinuous symmetries, the ones – as it will be seen – we are interested in Goldstone physics.
A cartoon visualisation on how the different classifications of symmetries interconnect is
proposed in Figure 2.1. From this cartoon, a more natural analysis seems to classify the
symmetries following being uniform or non-uniform. By doing so, we are covering all the
possible cases. The paper [41] argues that it would indeed be a more appropriate classifi-
cation. In particular, they show that the known results in Goldstone physics for internal
symmetries extend to uniform symmetries. In this dissertation, we will keep the historical
approach by first presenting the internal case in Chapter 4 and then the spacetime situa-
tion in Chapter 5. We will explicitly comment on the non-uniform symmetries and indeed,
from the abstract point of view, there is no major reasons to not do the analysis based
on the uniform VS. non-uniform symmetries. Nevertheless, in practice, for example when
building effective field theories, to make a distinction between spacetime symmetries and
non-uniform symmetries in general can be relevant because the former act on spacetime
coordinates, we therefore need to be vigilant on how we deal with the integration measure
or with the derivative operators to keep the theory symmetric invariant.

2.3 Spontaneous symmetry breaking

Spontaneous symmetry breaking (SSB) is the phenomenon in which a stable state of the
system transforms non-trivially under certain symmetries of the theory. These symmetries
are then said to be spontaneously broken and the state is called the broken state [5].
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Figure 2.1: These two cartoons correspond to Venn diagrams where the frame rectangle
corresponds to all the global continuous symmetries. On the left cartoon, the orange part
are the non-uniform symmetries and the yellow part are the uniform symmetries. We
see that these two sets cover all the global continuous symmetries with no overlap. On
the right cartoon, the dashed line shows the previous separation between non-uniform
symmetries and uniform symmetries. The blue part is the spacetime symmetries where
the overlapping with the uniform symmetries are the translations. The red part are the
internal symmetries which are entirely included in the set of uniform symmetries. We
can observe that the union of the blue part and the red part does not cover all the
frame rectangle. The remaining green part are the non-uniform symmetries which are not
spacetime symmetries, e.g. polynomial shift symmetries.

2.3.1 At classical level

In classical field theory, the state of the system is characterised by one of the solutions of
the EOM of the fields. We will call this particular solution the background, it can also
be referred to as the vacuum. It is a stable solution if it remains finite along its evolution
through spacetime and if small perturbations around it remain small along their dynamical
evolution. It is customary to look for such stable background among the solutions which
minimise the energy, at least corresponding to a local minimum. This could be intuitively
understood from point-like classical mechanics where the conservative forces act in the
opposite direction to the gradient of the potential. Hence, being originally at a minimum
of the potential, we have that the forces tend to bring back the system to its original
state. Furthermore, by minimising the kinetic energy, we ensure that the system has not
enough inertia to pass a potential hill. Otherwise, the system could go from one potential
minimum to another.

2.3.2 At quantum level

At the quantum level, for a given symmetry, the vacuum state |0y of the system breaks
spontaneously this symmetry if

eiαQ |0y ‰ |0y up to a global phase. (2.3.1)

However, this naive definition of SSB might not be well settled because the non-trivial
action of the broken generator Q on our vacuum might lead to an ill defined state, i.e. a
state with an infinite norm [42, 43]. Indeed, if |0y is homogeneous (i.e. an eigenstate of
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Pµ) and Q is uniform – in addition to be Hermitian – then

||Q |0y ||2 “ x0|Q:Q |0y “ x0|QQ |0y

“

ż

dd´1x x0| j0
pxqQ |0y

“ x0| j0
p0qQ |0y

ż

dd´1x ,

(2.3.2)

(2.3.3)

(2.3.4)

which, in infinite volume, could tend to infinity if Q |0y ‰ 0. Notice that the symmetry
being uniform, we have been able to express j0pxq as a translation in spacetime of j0p0q,

j0
pxq “ eix

µPµj0
p0qe´ix

µPµ . (2.3.5)

By still using the uniform aspect of the symmetry, we have that rQ,Pµs “ 0 because Q is
either internal or a spacetime translation generator (we look to the case without central
charges). Then, considering our vacuum as being homogeneous (we are not currently
looking to the breaking of spacetime symmetries) and choosing it as the zero-energy (we
are not considering gravity, only the relative energy among states is physical), we have
Pµ |0y “ 0. Combining these observations allowed us to go from (2.3.3) to (2.3.4).

A more formal definition of spontaneous symmetry breaking is then used to evade this
possible inconsistency. We will say that a state |ψy breaks the symmetry generated by Q
if there exists any field Φ, called the interpolaing field, such that [10]:

xψ| rQ,Φpxqs |ψy ‰ 0 . (2.3.6)

If no such operator Φ exists, the state is symmetric. An argument to use a local field Φ
to define SSB is that we are working in infinite volume or more generally in the thermo-
dynamic limit (cf. the coming section about singular limits). It is thus more convenient
to be able to probe locally if the SSB occured rather than to perform a global analysis on
the full ket state [44].

We can convince ourselves that both definitions (2.3.1) and (2.3.6) are consistent with
each other. Indeed, if we had Q |ψy “ λ |ψy, where λ is a real constant since Q is
Hermitian, then

xψ| rΦ, Qs |ψy “ xψ|ΦQ |ψy ´ xψ|QΦ |ψy

“ λ xψ|Φ |ψy ´ λ˚ xψ|Φ |ψy
“ 0 @Φ .

(2.3.7)

(2.3.8)

(2.3.9)

So, we have that the relation (2.3.6) is a signature of a spontaneous symmetry breaking
following the definition (2.3.1).

The notion of stability remains the same as in the classical theory: a small perturbation
(e.g. local measurements [5]) of the state should not radically alter the state.

2.3.3 Generalities

In practice, to observe if an SSB occurred or not we define an order parameter Opxq. The
order parameter should be zero when the symmetry is not broken and should be different
from zero when the symmetry is spontaneously broken. Ideally, it should take different
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values for different broken states and broken states close to each other5 should correspond
to close values of Opxq. A possible order parameter is of course the definition of SSB
itself (2.3.6). In Quantum Field Theory, it is customary to use the fundamental fields
with nontrivial transformation properties under the symmetry as order parameter – φpxq
on-shell at the classical level and xφpxqy at the quantum level. We shortly designated this
order parameter as the “VEV” (for vacuum expectation value).

Another device than the order parameter which can provide a clue if an SSB occured
is the two-point correlation function. Correlation at long range can indeed be a signature
of SSB. However, we will not often use this indicator in this dissertation. Therefore, we
will further comment on it at the appropriated time (i.e. in Subsection 4.5.1).

Let us finish with a brief vocabulary comment. When we speak about spontaneous
symmetry breaking, the use of the term “fundamental theory” can be misleading. Usually
in physics, the fundamental theory refers to the fundamental microscopic theory / to the
fundamental UV theory. In SSB physics, the fundamental theory is the theory we have
prior the spontaneous symmetry breaking, it is therefore not necessarily the “standard
model fundamental” UV theory. The term “fundamental theory” is thus used in order
to contrast with the perturbation theory obtained from fluctuations around the broken
state. From now on, in this dissertation, we will refer to the fundamental theory in the
sense of SSB physics.

We close this section on the definition of spontaneous symmetry breaking with an
important assertion. When a symmetry group G is spontaneously broken by a VEV
φ0 such that a subset H Ă G of the symmetries still leaves φ0 invariant, then H has
automatically the structure of a group [24]. Indeed, by using the fact that G is a group
(the product is defined and associative and the inverse exists), we have

� Trivially, e P H where e is the identity.

� @h1, h2 P H, h1h2φ0 “ h1φ0 “ φ0 so, h1h2 P H.

� @h1 P H Ă G, Dh´1
1 P G. Furthermore, h´1

1 h1φ0 “ eφ0 ô h´1
1 φ0 “ φ0 ô h´1

1 P H.

H is called the unbroken subgroup of G. If both G and H are continuous groups, the
generators of H are labelised as the unbroken generators while the remaining ones of G
are named the broken generators.

2.4 Singular limits

The way spontaneous symmetry breaking is naively defined might suggest that it is only
a pure academical concept. Indeed, we are looking for a stable solution by minimising the
energy, and see if there is arbitrariness in the choice of the vacuum due to the symmetries
(cf. the example of Figure 1 where there is a set of possible vacua due to the rotational
symmetry). But in Nature, any physical system interacts with the external world, at least
weakly. These external interactions will make such that one particular state of the system
is energetically favourable. Thus, there is no more arbitrariness, no more spontaneity in

5From one broken state we can get another one by applying the broken symmetry on it. Since we
consider continuous symmetry group, the notion of “broken states close to each other” is understood in
the sense of the continuous action of the symmetry group.
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the choice of the background. The background is explicitly chosen by the dynamics and
so, we have an explicit breaking of the symmetries rather than a spontaneous one.

The wondering can be deeper at quantum level where the notion of SSB might not even
exists. Indeed, quantum superposition might allow the system to be in a superposition
of broken states which end up as a symmetric state – for example, the system could be
in a superposition of all the classical vacua of Figure 1 (the Up1q-circle at the bottom of
the Mexican hat), this superposition all over the Up1q-circle does not choose a specific
direction anymore and so, rotation symmetry is re-established. The same argument can
hold for thermal physics where the thermal state being an average of microscopic states
will be/can be symmetric.

Two additional arguments against the concept of SSB at quantum level can be for-
mulated. The first one is that even if we initially place the system on one specific chosen
vacuum, by quantum tunnelling, the system might evolve in a superposition of the degen-
erate vacua and so, end up in a stable symmetric state. The second additional argument
is that in some cases, due to quantum superposition, the symmetric state has a lower en-
ergy than the one of the individual broken states. It is therefore favourable for the system
to be in the symmetric state. The latter two arguments can be illustrated through an
example [39]. Let us consider a classical potential with the Z2 symmetry and displaying
two vacua. The quantisation around the first vacuum provides the state |0,`y and the
quantisation around the second one gives the state |0,´y. Because of the Z2 symmetry,
we have

x0,`|H |0,`y “ x0,´|H |0,´y ” a . (2.4.1)

Due to quantum tunnelling, we as well have

x0,`|H |0,´y ” b ‰ 0 . (2.4.2)

Therefore, up to a global sign /global phase, the symmetric state p1{
?
nq p|0,`y ´ |0,´yq,

where n has the right value to normalise the state, has the energy p2{nq pa´ Repbqq which
tends to be lower than the one of the individual broken states. In this example, SSB
seems to be lost at quantum level.

These questionings on the well defined nature of SSB can be answered through the
singular limits [5] (cf. later for the meaning of this expression). If we take the ther-
modynamic limit, which in zero temperature field theory corresponds to a large spatial
volume limit, the system becomes highly sensitive to external perturbations. Thus, a
small external perturbation is enough to explicitly select one of the degenerate vacua.
This perturbation can be taken as small as we want thanks to the thermodynamic limit.
Hence, the influence of the external world on the vacuum selection is not observable. From
the point of view of the physicists, the selection of the vacuum is therefore spontaneous!
We can see it with the example of the simplest Mexican hat model:

L “ Bµφ˚Bµφ´ V p|φ|q ´ ε V1pφq , (2.4.3)

where φ is a complex scalar field, V p|φ|q is the Mexican hat potential of Figure 1, V1pφq is
a perturbation promoting a specific phase of φ and ε is a small parameter. The conjugate
momentum is given by π “ BL{BpB0φq “ B0φ

˚ from which we construct the Hamiltonian

H “ πB0φ` π
˚
B0φ

˚
´ L “ B0φB0φ

˚
` BiφBiφ

˚
` V p|φ|q ` ε V1pφq

ñH “

ż

Ω

dd´1x rB0φB0φ
˚
` BiφBiφ

˚
` V p|φ|q ` ε V1pφqs ,

(2.4.4)
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where Ω is the spatial volume. The minimisation of the energy requires the vacuum φ0 to
be static and homogeneous. The norm |φ0| is given by the minimisation of V p|φ|q which
geometrically is given by the radius of the circle at the bottom of Figure 1. Finally, the
vacuum is entirely settled thanks to the minimisation of V1pφq which fixes the phase of
φ0. It should be noticed that the influence of V1pφq on the minimisation of the energy can
be finite even if ε is small thanks to the large volume limit:

H1rφ0s “ lim
εÑ0

lim
ΩÑ`8

Ω ε V1pφ0q ‰ 0 . (2.4.5)

We recover the idea that in the thermodynamic limit, the perturbation can be taken so
small that it is not observable6 but yet, it can select a vacuum.

The two limits intervening in (2.4.5) are not commuting. Indeed, taking the ε Ñ 0
limit first corresponds to set ε to zero from the beginning, i.e. in (2.4.3). The latter case
is strictly equivalent to the unperturbed case which leads to H1rφ0s “ 0. Considering the
thermodynamic limit first permits to make the system sensitive to perturbations. Such
non commuting limits are called “singular limits”.

The thermodynamic limit permits as well to answer to the problematic of quantum
superposition [24]. In order to be in a superposition of states, the system must be able
to transit between these different states (for simplicity, let us assume that the latter
ones belong to the vector basis diagonalizing the observable we are measuring). Indeed,
from the postulate of the reproducibility of the measurement, the state collapses onto the
eigensubspace associated with the eigenvalue measured. In our example (2.4.3), even if
there is no potential barrier between the potential minima, because we are working in
infinite volume, it requires an infinite amount of energy to move from one vacuum to
another. In fact, to do such a jump, the field φ is now dynamical φptq (but still considered
as homogeneous – we assume the transition to be fast and so, imposing a global collapse).
Hence, there is a kinetic energy cost which is arbitrarily large

Ekin9Ω B0φB0φ
˚
ÝÑ

ΩÑ`8
`8 . (2.4.6)

Thus, a superposition of several fundamental states is not achievable.
The argument from the preceding paragraph could naively be used as well to argue

against quantum tunnelling between degenerate vacua: because of the thermodynamic
limit, the energy cost to go from one classical vacuum to another is too high and so,
the probability of tunnelling is vanishing. However, on the contrary to the collapse due
to a measurement, quantum tunnelling does not need to be fast. Hence, the evolution
from one vacuum to another does not need to be global, local transitions are possible.
Studying quantum tunnelling in QFT requires to find particular solutions of the equations
of motion evolving from one classical vacuum to another (in the Euclidean time formalism,
we look for bouncing solutions) [24]. This is a non-trivial issue since we are dealing with
non-linear differential equations. Hence, there is no general/generic arguments to discuss
the effect of quantum tunnelling on SSB besides the fact that the thermodynamic limit
avoids global transitions between vacua. Each model should be dealt with case by case.

6Let us emphasise that the influence of V1pφ0q on the energy is finite but tiny compared to V p|φ0|q

which scales proportionally to Ω. So, an observer will not discriminate the case ε “ 0 from the case ε ‰ 0
by measuring the energy.
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Finally, the thermodynamic limit can solve the issue that, at quantum level, symmetric
states might have lower energy than the broken states. In our example of the theory with
the Z2 symmetry, we can argue that quantum tunnelling tends to be suppressed. Hence,
b in (2.4.2) is small. The symmetric state is now almost at the same energetic level than
the broken states. A small external perturbation is therefore enough to impose one of the
broken states to be the selected vacuum state (we recover the notion of singular limits).

From this discussion, we can draw two conclusions:

1. We provided hand-waving arguments that the notion of spontaneous symmetry
breaking is well defined and physical. Our discussion does not constitute a for-
mal proof of the later statement, however, it proves that there are at least some
physical systems which do indeed present spontaneous symmetry breaking. It is
therefore worth to study the SSB mechanism.

2. The lack of formal developments in our discussion displays that it is a highly non-
trivial question to know generically if a given system can or cannot sustain an SSB.
There are some general theorems on this problematic, we will mention them later
on (cf. Section 4.5), however such a question is usually dealt with case by case.

The fact that we are working in Minkowski spacetime and so, in an infinite spatial
volume, ensures the singular limits to be satisfied. Hence, in our framework, we evade
most of the above-mentioned conceptual problems about SSB.

2.5 Mass and gap

Goldstone’s theorem refers to massless particles. The notion of mass is a central idea
of Goldstone physics. This is the reason why we will briefly remind here this standard
notion. Let us notice that we work on Minkowski spacetime and therefore, we do not do
general relativity or QFT on curved spacetime. Hence, we will not encounter the related
difficulties to define energy and momentum as well as their conservation. The mass we
are going to discuss is the QFT textbook definition.

2.5.1 The notion of mass

In classical field theory, the square of the mass is given by the coefficient of the quadratic
no-derivative term in the action (m2

0 φφ) [24]. In this work we are just concerned if this
term is present or not, which will tell us if the associated field is massive or not. For a
quantum particle, we use the relativistic definition which is, its mass is its energy in the
zero-limit of the spatial-momentum. The classical and quantum definitions are consistent.
Indeed, the particle states of a QFT correspond to the asymptotic states of the theory,
i.e. the spectrum we get while quantising the free theory. From standard QFT textbooks,
quantising a free theory tells us that the energy corresponds to the dispersion relation,
which in the free case is of the form ωl “ v pn `m2

0, where l and n are respectively the
number of time-derivative and the number of space-derivative (of the dominant terms),
and v is a constant. Sending the momentum p to zero, we see a correspondence between
the classical mass and the quantum mass. In particular, when l “ 2 (it could be the
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relativistic case l “ n “ 2), we recover the standard idea that the square of the mass is
m2

0.
However, even if the two definitions are consistent, due to the renormalisation, the

quantum mass might be different from the classical mass. The classical mass is a bare
parameter which might need to be redefined through renormalisation conditions. The
physical interpretation is that, in presence of interactions, the effective mass that we
observe is different from the bare mass due to the self-energy of the particle: through its
propagation, other particles can be created and annihilated which modifies the apparent
propagation of our studied particle. The renormalisation condition to define the physical
(i.e. the observable) mass is the pole of the connected propagator at low energy [36]. In
particular, such mass can then be extracted from the quantum effective action Γrφs.

Goldstone’s theorem is valid at classical level as well as at quantum level. This suggests
that the masses (which are zero) of the Nambu-Goldstone modes are symmetry protected
during the quantisation (modulo that no anomalies occur and that the SSB is not altered
by the quantisation). A specific computation at one loop for the linear sigma model is
done in [35] to illustrate this assertion.

2.5.2 The generalisation of mass: the notion of gap

To define the mass, we need the energy and the momentum to be defined. Hence, we need
continuous spacetime translation symmetries for our theory. For the explicit computations
and proofs, we will perform in this part of the dissertation, we will assume to have such
symmetries.

However, it is not uncommon that physical systems do not have continuous spacetime
translation symmetries. For example, crystal lattices do have “only” discrete spatial
translations. Another example could be open macroscopic systems which do not have
time translation symmetry since the external world can at any time modify the value of
the conserved quantities (cf. the chemical potentials). For these kinds of examples, it is
possible to generalise the notion of mass, we then speak about gaps. In particular, the
gap can be defined with respect to the free energy rather than the energy [11, 12] and it
can use crystal momentum rather than momentum [25,45].

In thermal quantum field theory, the apparent gap is the pole of the thermal prop-
agator [33] and it can thus be extracted from the thermal effective action Γβrφs. The
interpretation of this gap is that, at zero chemical potential, the bare mass of the particle
propagating in a thermal bath will have quantum corrections coming from its self-energy
and thermal corrections coming from its interactions with the thermalised surrounding
particles7.

The last case we will present, and which is necessary for this thesis (in particular for

7The renormalisation of a thermal QFT due to UV divergences is the same as the associated QFT at
zero temperature, i.e. the counterterms are independent of the temperature [33]. It can be understood by
the fact that in the UV, the energy scale is much bigger than the thermal energy. Hence, the field theory
in the UV is blind with respect to the temperature. Therefore, defining a quantum mass was strictly
necessary to cancel the UV divergences but defining a thermal mass on top of it is for convenience. It
should be mentioned that temperature has a significant influence in the IR. As it will be commented
later, the IR divergences play a role on the possibility or not to have spontaneous symmetry breaking
(see Section 4.5). We therefore understand that temperature will have an impact under which conditions
a system can display SSB (cf. Subsection 4.5.3).
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Part II), is a sort of in-between situation. It is called the homogeneous breaking. This is
when translation symmetry is spontaneously broken following one direction of spacetime
but that the perturbative theory around the VEV does not explicitly depend on the
broken spacetime coordinate (as we would have expected). This is made possible when
there is an additional internal symmetry which is also spontaneously broken in a way that
it can compensate the action of the broken translation on the VEV.

Let us clarify this cryptic description with an example. We consider a spacetime
translation invariant fundamental Lagrangian Lrφ, Bφs with an additional Up1q symmetry.
The fundamental field is considered to be a complex scalar field φpxq. If the VEV is given
by

φ0ptq “ v eict , (2.5.1)

where v and c are constants, we have that Up1q and time translation symmetries are
spontaneously broken, however the transformation

tÑ t` a , φÑ e´i a cφ , (2.5.2)

still leaves the background φ0ptq invariant. In the Lie algebra language, the generators P0

and Q (respectively time translation and Up1q generators) are broken but the diagonal
direction P0 ´ cQ is not. We therefore sometimes call it a diagonal breaking. Now, if we
perform a fluctuation around φ0ptq, the Lagrangian for the fluctuations will not depend
explicitly on time. This is because

Lrφ0pt1q, Bφ0pt1qs “ Lrφ0pt2q, Bφ0pt2qs , t1 ‰ t2 . (2.5.3)

Indeed, evaluate the fundamental Lagrangian on the background at two different times
is equivalent to apply a Up1q symmetry (cf. the shape of φ0ptq). But the fundamental
Lagrangian is invariant under Up1q, hence, the value of the fundamental Lagrangian eval-
uates on the background is the same at any time t. We can thus perform the fluctuations
at any time t around φ0ptq, the perturbed Lagrangian will always be the same. The latter
will have no explicit time dependency. As a consequence, we can define energy as usual for
the perturbation theory despite that originally time translation is spontaneously broken!
From the perspective of the fundamental theory, this energy corresponds to the conserved
quantity associated to P0´ cQ rather than P0. This is why, strictly speaking, the masses
we will compute for the perturbations are rather gaps.

This example for the homogenous breaking of time translation has been thoroughly
studied in [46], it plays a major role in QFT at finite density as it will be seen in Section
5.3 and in Part II. The discussion holds as well for the homogeneous breaking of space
translation [47], a toy model displaying that situation will be studied in Part II.

Finally, even though in this part (i.e. Part I) of the dissertation we will compute
assuming spacetime translations invariance, we will mention if the same final results can
be obtained by relaxing this hypothesis.
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Goldstone’s theorem

Goldstone’s theorem has been mainly established in the sixties and has been refined over
the following decades. It is Nambu who first conjectured the existence of a relation
between symmetries and masses [1, 2]1. Goldstone improved the conjecture of Nambu by
specifying the notion of spontaneous symmetry breaking and by stressing the importance
that the broken symmetry should be continuous [3]. Goldstone, Salam and Weinberg
provided two general poofs of the conjecture in [4]. Following this publication, several
other papers came out in order to clarify under which hypotheses Goldstone’s theorem
is valid [41, 48–54]2. Some alternative (formal/axiomatic) proofs and corollaries have
also been provided, e.g. [59–62]. These research efforts led to the current statement of
Goldstone’s theorem.

Theorem 1 (Goldstone’s theorem). Let us consider a physical (field) theory at the quan-
tum level, respectively at the classical level, with a global continuous symmetry group G
(realised non-trivially on the theory) such that it is spontaneously broken to a subgroup H
different from G (H Ł G) and that the notion of gap is well defined. Then, the spectrum
of the theory will contain at least one gapless particle, respectively at least one gapless
mode. This statement remains true for thermal theories (non-zero temperature and/or
non-zero chemical potentials).

Let us notice how generic G can be: it can be uniform or non-uniform, involving
spacetime symmetries or not, being compact or not etc. Furthermore, the theorem is
relatively loose concerning the notion of mass (therefore we speak about gaps). The
theorem is thus valid for theories defined on crystal lattice, for (thermal) open systems etc.
Finally, the locality requirement of the theory is hidden in the “physical” aspect. More
explicitly, the interactions should at most have a finite range or an exponential spatial
decay (otherwise, the validity of the theorem should be checked case by case) [9, 52–54].
In conclusion, Goldstone’s theorem is very general!

There are two main proofs of Goldstone’s theorem, one which is using the quantum
effective action formalism and one which is established in the Dirac notation of quantum
mechanics. The first one is a perturbative proof. The second proof is stricter on the hy-
potheses than what is mentioned for Theorem 1 but it permits to display straightforwardly
the spectral content and it is an exact proof. Let us begin with an intuitive explanation of
why Goldstone’s theorem holds, we will then develop each of the two proofs. We empha-
sise that the proofs present here, and in general in this introduction to Goldstone physics,

1Let us mention that the second cited paper is in collaboration with Jona-Lasinio. The first cited
paper is written by Nambu alone and is older than the second cited one. Furthermore, Nambu being the
common thread between the two papers, he is considered as the principal investigator of the conjecture.

2Since we are in the historical genesis of Goldstone’s theorem, it should be mentioned that, sometimes
in the literature, NG modes are labelled as pions. This because historically, NG modes were studied in
the framework of particle physics and light mesons analysis (e.g. [2, 55, 56]). For example, [57, 58] which
are cornerstone papers in the building of effective theory for NG modes call the latter pions.
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are not meant to have an orthodox mathematical rigour, we refer the reader to the cited
papers and the references therein for the formal and axiomatic developments.

3.1 Intuitive picture of Goldstone’s theorem

Goldstone’s theorem and its hypotheses can be understood intuitively. We have that the
broken state is degenerate. Indeed, we can get a set of broken states by applying succes-
sively the spontaneously broken symmetries on our broken states. Let us call this set of so
obtained broken states the coset space3. If we do the shortcut that the symmetries of the
theory are also the symmetries of the energy, we have that all the broken states of the coset
space have the same energy. For simplicity, we do not consider the breaking of spacetime
symmetries. Hence, there is no interplay between the kinetic energy and the potential
energy while applying the spontaneously broken symmetries on the broken states. So, the
broken states of the coset space have the same potential energy. Furthermore, the broken
symmetries are continuous, which means that the coset space is continuously connected
as well. Therefore, there is no potential hill between the broken states. A possible visu-
alisation is to consider the Mexican hat potential example of Figure 1. The degenerate
broken states correspond to the Up1q-circle lying at the bottom of the potential4, we do
indeed observe that there is no potential hill between them. Thus, fluctuations around a
chosen broken state, in the directions of the broken symmetries, will, at quadratic order,
not have potential terms in the perturbation Lagrangian. Hence, such fluctuations are
massless. These are precisely the (candidate5) NG modes! NG modes correspond to a
spacetime modulated action of the spontaneously broken symmetries on the considered
background.

This schematic reasoning allowed us to understand why SSB leads to massless modes
and in particular, why the continuity of G is crucial to reach masslessness. Concerning the
global aspect of G, it permits to evade the Brout-Englert-Higgs mechanism [6, 7, 63–65]
which illustrates that the NG modes coming from the spontaneous breaking of local sym-
metries are absorbed by gauge transformations and are thus unphysical – not observable.
This result of the Brout-Englert-Higgs mechanism can be understood. We have seen
that NG modes are spacetime modulated fluctuations in the directions of the broken
symmetries. Gauge transformations are arbitrary spacetime modulated fluctuations in
the directions of the gauge symmetries, and in particular in the directions of the broken
gauge symmetries. In physics, we need to fix by hand this arbitrariness, interpreted as a
redundancy, otherwise the theory would not be predictable. This because the solutions
of the EOM are obtained up to arbitrary spacetime functions, and it would require an
infinite number of boundary conditions to univocally determine the solutions – this means
an infinite number of measurements. Since the broken gauge redundancies are in the same
directions than the fluctuations associated to the corresponding NG modes, we can simply

3This nomenclature can be understood by seeing the spontaneously broken symmetries as elements of
G{H. The broken states being obtained by the successive action of the spontaneously broken symmetries,
they are parametrised by the coset space G{H.

4Notice that the Up1q-circle is indeed the coset space G{teu, where e is the identity, corresponding to
the full spontaneous breaking of Up1q symmetry.

5It remains to see if these fluctuations are independent from each other. We understand as well that,
by definition, the number of NG modes is bounded from above by the number of broken generators.
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fix the gauge by setting to zero the NG modes. This picture is formally commented in
Subsection 4.2.1 in the coset construction framework.

Let us mention that discussing SSB of gauge symmetries might even be not relevant
at all. Indeed, the Elitzur theorem, briefly stated, says that local symmetries cannot
spontaneously be broken at quantum level [66]. This assertion can be intuitively under-
stood from the discussion associated to equation (2.4.6). We have seen that no quantum
superposition of degenerate vacua was possible because going from one vacuum to the
other was equivalent to perform a global symmetry transformation (i.e. a transformation
occurring on all the spatial manifold) which due to the large volume limit corresponds to
an infinite amount of kinetic energy. In the case of local SSB, the vacua are connected
between them through local transformations. Thus, we can go from one to the other
with a transformation localised on an infinitesimal subregion of the spatial manifold. The
kinetic energy cost is not anymore proportional to the entire volume of the system but
only to the volume of this infinitesimal subregion. Hence, the kinetic energy cost is in-
finitesimally small and quantum superposition over the degenerate vacua is possible. At
quantum level, it seems that the state is a symmetric state for local symmetries. We do
not have SSB of gauge symmetries at quantum level.

Following this intuitive picture of Goldstone’s theorem, we can go even further on
collecting information on the properties of the NG modes. We have that the Fourier
transform of the spacetime modulated action of the spontaneously broken symmetries tell
us how fast these modulations fluctuate through spacetime. If we go in the IR, usually
we use the scale of the VEV to determine what low energy means, it is equivalent to look
for modulations with small wave vectors kµ and thus fluctuating with long wavelength.
In the zero kµ limit, the modulations become constant over spacetime. So, in this limit,
the modulated action of the spontaneously broken symmetries is nothing else than the
regular action of symmetries joining two vacua. Hence, the NG modes do no provide
additional energy to the background. This is the signature that they do not interact. We
arrive at the conclusion that in the IR, the NG modes are weakly coupled6. Finally, it is
customary to hear about the NG modes as “NG bosons”. This is because many of the
practical cases involve only internal spontaneously broken symmetries. Indeed, the action
of such symmetries does not mix the Lorentz group representations (the symmetry algebra
commutes with Lorentz algebra). So to speak, the algebra of G is spin zero, hence, the
fluctuations produced by such elements by acting on the vacuum are scalars (it is formally
shown in Subsection 4.2.1). The common example of NG modes with a non-trivial spin
are the Goldstinos coming from the spontaneous symmetry breaking of supersymmetry
which mix non-trivially the Lorentz representations – in particular it links a boson with
a fermion, we thus understand that the fluctuations should have a non-trivial spin.

What to bear in mind

We learned that the definition of an NG candidate is a fluctuation around the background
in the direction of one of the spontaneously broken generators. A thorough analysis is
still needed to establish if the NG candidates are independent or not, but we know that

6Let us stress that we are doing here an intuitive reasoning which is mostly valid for the spontaneous
breaking of internal symmetries. However, even for internal symmetries some examples can be found
where NG modes are not weakly coupled in the IR. Here are two references (among others) which discuss
this particular feature [67,68].
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the related independent degrees of freedom are massless and (most of the time) weakly
coupled in the IR, these are the NG modes. Furthermore, the spontaneous breaking
of internal symmetries leads to scalar NG modes, we then qualify them as (Nambu)
Goldstone bosons.

3.2 Perturbative proof

We follow the proof of [4,54]. Let us consider a QFT with spacetime translation symme-
try and described by a quantum effective action7 Γrφs invariant under the infinitesimal
transformation δφipyq “ αaF i

ary, φs ” F iry, φs. The associated symmetry is assumed to
be spontaneously broken by the VEV of the theory xφpxqy ” vpxq, i.e. F iry, vs ‰ 0 for at
least one value of i.

From the symmetry, we have

δΓrφs “

ż

ddy
δΓrφs

δφipyq
F i
ry, φs “ 0

ñ

ż

ddy
δ2Γrφs

δφjpxqδφipyq

ˇ

ˇ

ˇ

ˇ

v

F i
ry, φs

ˇ

ˇ

v
“ 0 ,

(3.2.1)

(3.2.2)

where we used (2.1.19) while differentiating and evaluating the result on the VEV. Let us
notice that the second derivative of Γrφs is proportional to the inverse of the propagator
matrix, cf. (2.1.18). We abbreviate the notation of the 2-point correlators as Gjipx, yq
and thanks to the spacetime translation invariance, we have Gjipx, yq “ Gjipx ´ yq. By
multiplying by eikµx

µ
and integrating on x, we can make appear the Fourier transform of

the propagator matrix and we can study its poles:
ż

ddy ddx eikµx
µ

G´1
ji px´ yq F

i
ry, φs

ˇ

ˇ

v
“ 0

ô G´1
ji pkq

ż

ddy eikµy
µ

F i
ry, φs

ˇ

ˇ

v
“ 0 ,

(3.2.3)

(3.2.4)

where we made the change of variable x “ l ` y. In the limit of kµ Ñ 0, the remaining
integral on y is non-zero thanks to the hypothesis of SSB and it is finite (we make the
physical and customary assumption that δφipyq has a finite support). As a consequence,
we conclude that the matrix G´1

ji pkq has at least one zero eigenvalue in the limit kµ Ñ 0,
which means that in a suitable basis, at least one propagator has a pole at kµ Ñ 0, thus
the spectrum contains at least one massless particle.

If we replace the quantum effective action Γrφs by the thermal effective action Γβrφs,
we can reproduce exactly the same reasoning and arrive at the same conclusion. It shows
that Goldstone’s theorem is indeed valid as well for thermal systems [40]. We can also
replace Γrφs by the classical action Srφs. In such a case, Gjipkq is the Fourier transform
of the quadratic part of Srφs and taking the limit kµ Ñ 0 permits to isolate the quadratic
part of Srφs containing no derivatives. Hence, Gjip0q is the classical mass matrix. We
thus arrive at the same conclusion: Gjip0q has at least one zero eigenvalue which means
that we have at least one classical massless mode. Goldstone’s theorem is also valid at
classical level [24, 35].

7Hence, we implicitly ask for the axiomatic hypotheses necessary for a QFT to have a well defined
effective action to be satisfied.
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3.3 Spectral decomposition proof

As already mentioned, to perform the spectral decomposition proof we have to revise
some hypotheses of Theorem 1. We will consider the group G to be global continuous and
uniform. The continuity of G allows to define Noether currents. Asking G to be global
permits to evade gauge symmetries for which the conserved currents (defined through
Noether’s first theorem) are trivial (in the sense of the equivalence relation) and so, give
trivial conserved charges [34,69]. As we will see, Goldstone modes rely on these conserved
currents, and the starting point of the proof is a non-zero conserved charge. This is
a technical explanation on why G cannot be local which adds to the already provided
intuitive reasoning based on the Brout-Englert-Higgs mechanism. The last constraint on
G, i.e. to be uniform, is imposed to avoid the case of spacetime symmetries (spacetime
translations symmetry breaking will be ruled out by considering a homogeneous vacuum)
and to ease the technicalities of the computations.

Now that we are ensured to have properly defined conserved currents (continuous
global G), we have to guarantee to be able to associate to them conserved charges. This
is done by specifying what we mean by locality. We will ask the interactions to be local
enough such that

ż

BV

dSi j
i
pxq “ 0 , (3.3.1)

where V is the spatial volume of the system. Hence,

dQ

dt
“

ż

V

dd´1x B0j
0
“ ´

ż

V

dd´1x Bij
i
“ ´

ż

BV

dSi j
i
pxq “ 0 . (3.3.2)

A more precise statement is made in [43].
As cited above, we are not considering the spontaneous breaking of spacetime sym-

metries. It implies that our vacuum |0y is homogeneous (i.e. an eigenstate of Pµ). Also,
since we do not include gravity, we chose |0y to be the zero of energy: Pµ |0y “ 0.

Finally, the main hypothesis of Goldstone’s theorem is that we have spontaneous
symmetry breaking. Let Q be a generator of G such that Q is spontaneously broken. By
definition, it exists a field Φ giving

x0| rQ,Φpxqs |0y ‰ 0 . (3.3.3)

To prove Goldstone’s theorem under the aforementioned hypotheses, we study the
spectral decomposition of (3.3.3) by injecting a closure relation where the basis vectors∣∣n~kD are eigenvectors of Pµ [9].

x0| rQ,Φpxqs |0y “
ż

dd´1x1 x0| rj0
px1q,Φpxqs |0y

“

ż

dd´1x1
ÿ

n

ż

dd´1k

p2πqd´1

`

x0| j0
px1q

∣∣n
´~k

D @

n
´~k

ˇ

ˇΦpxq |0y

´ x0|Φpxq
ˇ

ˇn~k
D @

n~k
ˇ

ˇ j0
px1q |0y

˘

.

(3.3.4)

(3.3.5)
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As we did in (2.3.5), thanks to Q that generates a uniform symmetry, we translate the
conserved current to the origin:

x0| rQ,Φpxqs |0y “
ż

dd´1x1
ÿ

n

ż

dd´1k

p2πqd´1
eikµx

1µ `

x0| j0
p0q
∣∣n
´~k

D @

n
´~k

ˇ

ˇΦpxq |0y

´ x0|Φpxq
ˇ

ˇn~k
D @

n~k
ˇ

ˇ j0
p0q |0y

˘

“
ÿ

n

ż

dd´1k eiEnp
~kqt ϕp~kq

`

x0| j0
p0q
∣∣n
´~k

D @

n
´~k

ˇ

ˇΦpxq |0y

´ x0|Φpxq
ˇ

ˇn~k
D @

n~k
ˇ

ˇ j0
p0q |0y

˘

,

(3.3.6)

(3.3.7)

where,
ż

dd´1x1

p2πqd´1
e´i

~k~x
“ ϕp~kq ÝÝÝÝÑ

VÑ`8
δd´1

p~kq . (3.3.8)

From (3.3.8), we have that only the modes in the zero-momentum limit intervene in the
integral of (3.3.7). Furthermore, since we have dQ{dt “ 0, it means that the only time
dependence in (3.3.7) is coming from Φpxq. Thus, the exponential should not intervene.
Therefore, only the modes with

Enp~kq ÝÝÑ
~kÑ~0

0 , (3.3.9)

i.e. the massless modes, should contribute to the sum over n. Finally, with the hypothesis
(3.3.3), the final result should be non-zero. Thus, we are ensured there exists at least one
particle8

∣∣n~kD which is massless and which is such that x0|Φpxq
ˇ

ˇn~k
D @

n~k
ˇ

ˇ j0p0q |0y ‰ 0.
These are the NG modes, we learned that, besides being massless, they are created by the
action of the broken symmetry on the vacuum (here represented by j0p0q |0y) in a way
which still needs to be clarified/formalised (cf. the coset construction, Subsection 4.2.1).

The reason we did not write ϕp~kq directly as a Dirac delta is to emphasise that the

evaluation of (3.3.7) at ~k “ 0 should be understood as a limit (coming from the infinite
volume limit). Hence, we should not consider isolated momentum eigenstates with zero
eigenvalue (i.e. spurious states). So, the NG modes are indeed properly defined particles.
A more detailed discussion on the spurious states can be found in the literature (e.g.
[43,52,53,70]). From this discussion, we learn that the hypothesis on locality is not only
there to guarantee charge conservation but also to avoid spurious states which would
invalidate our conclusion on (3.3.7). The final outcome on locality is that the theory
should have a well behaved range of interactions (at most finite range or exponentially
decreasing with distance). If it is not the case, it should be checked case by case if
the Noether charges are time independent [9]. Notice that field theories with non-local
interaction terms which cannot be written as a single spacetime integration could then be
allowed [54].

To avoid computational heaviness, we looked at a homogeneous vacuum. But this
hypothesis excludes a large area of applications in condensed matter. The spectral de-
composition proof can be generalised to the case where the fundamental theory possesses

8The term “particle” is used in a generic way. Since these degrees of freedom are not the fundamental
ones, we usually speak of quasi-particles or collective excitations.
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continuous spatial translation symmetries in some directions and discrete ones in the re-
maining spatial directions. The spectral proof can also be extended to the situation where
we have the spontaneous breaking of continuous spatial translation symmetries to discrete
symmetries (i.e. we can include the formation of lattices) [41].

3.4 Toy model: spontaneous symmetry breaking of

Up1q

Until now, we remained abstract in the development of what Goldstone’s theorem is.
The aim of this subsection is to illustrate the different results we obtained so far with a
concrete example. To do so, let us consider the following toy model of a complex scalar
field in d ě 2 dimensions

L “ Bµφ˚Bµφ`M2φ˚φ´ λpφ˚φq2 with M2
ą 0 and λ ą 0 . (3.4.1)

The potential term V p|φ|q “ ´M2φ˚φ ` λpφ˚φq2 is the Mexican hat potential of Figure
1.

We can observe that the theory (3.4.1) is invariant under the Up1q symmetry

φpxq Ñ eiαφpxq . (3.4.2)

To find a stable background, we look for a particular solution of the EOM which
minimises the energy. We ask this solution to be a non-zero constant φ0 to minimise to
kinetic energy9. Concerning the potential energy, we impose

dV p|φ|q

d|φ|

ˇ

ˇ

ˇ

ˇ

φ0

“ 0 ô |φ0| “

c

M2

2λ
” v . (3.4.3)

From the energy minimisation, the phase remains unspecified (it corresponds to the Up1q
circle at the bottom of the Mexican hat), therefore, we will arbitrarily choose it to be zero.
Notice that φ0 “ 0 would also extremise the energy but it would correspond to a maximum
and thus, to an unstable background. So, our particular solution is φ0pxq “ v (it is
straightforward to check that it is indeed a solution of the EOM). It breaks spontaneously
the Up1q symmetry because it transforms non-trivially under it

v Ñ v eiα . (3.4.4)

We have that all the hypotheses of Goldstone’s theorem are satisfied. Hence, we expect
to find at least one massless mode in the perturbation theory. To explicitly verify it, we
parametrise the fluctuations as

φpxq “ pv ` σpxqq eiθpxq . (3.4.5)

The perturbation theory up to third order is

L “ BµσBµσ ` v2
BµθB

µθ ´ 2M2σ2
´ 2
?

2λM2 σ3
` 2 v σ BµθB

µθ `O
`

ε4
˘

. (3.4.6)

9Ekin “ |Btφ|
2 ` |Biφ|

2 ě 0 .
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where ε „ θ „ σ. We observe that θpxq is a massless mode. Is it the predicted NG mode
or is it a matter of luck ? We have that θpxq parametrises a perturbation of the vacuum
v in the direction of the action of Up1q

v Ñ v eiθpxq , (3.4.7)

where the arrow corresponds to a spacetime modulated Up1q action. We see that θpxq is
by definition an NG mode – a broken symmetry originated massless mode – and so, the
prediction of Goldstone’s theorem is indeed satisfied for our toy model.

If we pay attention to the interaction term of the NG mode θpxq, it involves derivatives.
If we go in Fourier space, we understand that this interaction term will go to zero at low
energy. We recover the idea that NG modes are weakly coupled in the IR.

We could have guessed the shape of the interaction terms for θpxq based on the Up1q
symmetry. Indeed, the fundamental theory (3.4.1) is invariant under Up1q and so should
be the perturbation theory (3.4.6). The transformation rule of θpxq is given by

pv ` σpxqq eiθpxq Ñ pv ` σpxqq eiθpxqeiα , (3.4.8)

so,

θpxq Ñ θpxq ` α . (3.4.9)

We have that θpxq transforms as a shift and σpxq is invariant. Therefore, the perturbation
theory (3.4.6) is Up1q invariant if on each θpxq there is a derivative acting on it. This
explains why θpxq is massless and why its interactions go to zero at low energy. This can
be verified empirically by coding a computer symbolic program (e.g. on Mathematica) for
this toy model and run the code to any desired (finite) higher orders. Each term involving
the field θpxq will have at least one derivative in it.

We can now have a sense of why we say that the symmetries which are spontaneously
broken are “hidden”. It is because they are non-linearly realised in the perturbation theory
(cf. (3.4.9)) which makes it not always convenient to see the symmetry invariance. In
addition, NG modes are transforming non-homogeneously (cf. (3.4.9), even if we evaluate
θpxq at zero, it still transforms) which explains the systematic derivative operators acting
on them.

We should emphasise that the intuition we acquired from Sections 3.1 and 3.4 is valid
for the spontaneous breaking of internal symmetries. When the breaking of spacetime
symmetries is involved, there are additional conceptual and technical difficulties which
might spoil some of the intuitive results we derived so far (but the masslessness aspect of
NG modes claimed by Goldstone’s theorem remain robustly true).

A comment about the boundary conditions

In order to extract the EOM from the fundamental action, we apply the variational
principle. To do so, we need to integrate by part which leads to a boundary term in the
variation of the action. In standard QFT textbooks, we consider the fields to be zero at
infinity which erases this boundary term. In our case, considering a particular non-zero
constant solution φ0pxq “ v does not satisfy the zero-at-infinity assumption. However,
the boundary part of the variational principle is of the form δφ˚Bφ which is zero for a
constant field. Hence, φ0pxq “ v is a tolerated classical solution.
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On a more general level, a possible consistent way to impose boundary conditions
is the following. We regularised the (spacetime) volume by putting the system in a
large finite-size (spacetime) box and we impose periodic boundary conditions, similarly
to the Born–von Karman boundary conditions in condensed matter (it can be justified
by an isotropic influence of the external world on our system for example). Because these
boundary conditions are periodic, the boundary term from the variational principle will be
equal to zero. We can then retrieve our initial model by sending the (spacetime) volume
back to infinity. In particular, φ0pxq “ v is satisfying periodic boundary conditions.

Since the perturbations around the classical background φ0pxq “ v are the fields we are
going to quantise, we require these perturbations to have a “gentle enough” decrease in the
asymptotic regions, and eventually to vanish at infinity. This in order to allow for a Fourier
transformation, which is necessary for the standard canonical quantisation procedure.
Let us notice that the behaviour of the perturbation fields at infinity is consistent with
the periodic boundary conditions (and correspond to the zero-at-infinity assumption of
standard QFT textbooks).

3.5 Paradigm of the computations

The toy model we derived in the previous section illustrates well how the computations
are done in practice, namely what is the philosophy of (almost) each computation we are
going to perform in this thesis. First, we learned that to have SSB we need theories with
interactions10. Therefore, the EOM are non-linear differential equations. Fortunately for
us, we only need to find one particular stable non-trivial solution (if any exists). This is
most of the time done by considering an Ansatz (motivated by some physical reasons like
the energy minimisation) and by tuning this Ansatz in order to solve the EOM. Second,
we are interested in the particle spectrum of the theory quantised around the classical
particular solution we found (or we could even just be interested by solely the classical
perturbative theory, e.g. for classical statistical field theory physics). This spectrum
corresponds to the spectrum of the free theory obtained after renormalisation. More
specifically, we want the masses and the dispersion relations. Hence, our computations
will be at quadratic order in the perturbation theory. This makes the masses apparent
and the EOM are linear differential equations which can be solved in Fourier space and so,
they display the dispersion relations. If the perturbation theory is still too complicated,
we can go at lower energy and integrate out the hierarchically most massive modes because
only the hierarchically small massive modes are our primary interest (NG modes and as
we will see, the related hierarchically small massive symmetry originated modes). The
computations of Part II are done at the classical level. As a consequence, the results on
the gaps and the dispersion relations might be spoiled by the renormalisation procedure
once we quantise the theory. The argument is that our results are symmetry protected
and so, they should hold as well in the quantum theory11. Naturally, a formal proof

10There are of course counter-examples such as the free real scalar relativistic theory L “ BµφB
µφ

which is shift invariant and where the trivial solution breaks the shift symmetry. But most of the
physical relevant SSB need interactions to occur.

11If an anomaly occurs – i.e. an explicit symmetry breaking – or if the renormalised theory does not
show SSB anymore (for example, the parameters have changed such that we lose the Mexican hat shape
for the potential) then we are outside the range of our hypotheses (we are discussing SSB patterns) and
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should be given but as it will be seen, the models we are studying are involved and their
quantisation constitutes several projects by their own. From the effective point of view,
we can also imagine that there are physical cut-offs in our theory (e.g. lattice spacings)
and so, our description is an EFT where the quantisation is naturally regularised (and so
normalised) by these cut-offs – this could be a way out in case where our field theories are
non-renormalisable. Concerning Part III, the quantisation is at the center of attention
because we are precisely probing a peculiar change of behaviour between the classical
theory and the quantum theory.

3.6 Directions of research

Goldstone’s theorem provides an interesting observation. But as often in science, an
interesting observation leads to new questionings. Here are listed some of the main open
questions brought by Goldstone’s theorem:

1. Goldstone’s theorem predicts the existence of gapless modes when a global contin-
uous SSB occurs but does not provide a precise statement on how many there will
be in the perturbation theory. We thus need a counting rule for such modes, said
otherwise, we need to know which NG candidates are dependent and independent
from each other. To do such counting, we probably also need a classification of the
NG modes.

2. The fundamental hypothesis of Goldstone’s theorem is that we have an SSB. There-
fore, it could be meaningful to probe what are the conditions to have a spontaneous
symmetry breaking in a given theory. For example, Coleman’s theorem [16] states
that, at quantum level, for relativistic theories in two-dimensional spacetime, there
are no SSB that could lead to NG modes.

3. If we know the number of NG modes and their statistics (for internal symmetries,
these are bosons) it could be interesting to have their dispersion relations. This
would, for example, allow us to compute thermodynamic observables. A generic
study of the possible shape of dispersion relations, for instance [71], could then be
of interest.

4. The NG modes are systematically present in the IR since they are massless. But
they are not the only type of light particles. So, in the perspective of building
effective field theories, we should understand how NG particles interact with other
non-symmetry originated particles. An example could be the Cooper pairs where it
is the interaction between the electrons and the phonons (NG modes coming from
the discrete breaking of spatial translations) which display the effective attractive
interaction between the electrons once we integrated out the phonons.

Partial answers have already been provided to this list of questions but, each of these
points remains an active topic of research. This introduction to Goldstone physics plays
the role of an extended state of the art, the questionings mentioned above will be further
commented and clarified. Parts II, III and IV will humbly provide partial answers and

it is not inconsistent if our results do not hold in such situations.
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some directions of investigation to a-few of the open questions stated in this part of the
dissertation. It should be mentioned that there are as well some more fundamental exten-
sions of the Goldstone theorem which are investigated in the litterature. For example, how
is Goldstone’s theorem modified on curved spacetimes [72–74] ? Does Goldstone theorem
generalise for Higher-form symmetries [75] ? Can we study NG modes in thermal non-
equilibrium systems [76] ? Nevertheless, we will not address these broader considerations
in the rest of this thesis.
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Chapter 4

Spontaneous breaking of internal
symmetries

Since the statement of Goldstone’s theorem in the early sixties, major progress has been
achieved in the understanding of the NG modes and their physics. Most of these develop-
ments took place in the case of the spontaneous symmetry breaking of internal symmetries.
The breaking of these symmetries is conceptually and technically less involved compared
to the breaking of the non-uniform symmetries (especially the spacetime symmetries).

In this chapter, we specifically focus on the main results associated to the breaking of
internal symmetries – with some comments on the case of uniform symmetries, the next
chapter will then treat the situation with the breaking of spacetime symmetries (and by
extension, with the SSB of non-uniform symmetries also).

The two first sections of the current chapter will be about the classifications and
the counting rules for NG modes, the next sections will be dedicated to generalities on
Goldstone physics.

4.1 Counting rule and classification based on disper-

sion relations

We already exposed the fact that Goldstone’s theorem does not provide a precise state-
ment on the number of NG modes we could expect from a given symmetry breaking
pattern. In the original proofs of the theorem [4], it was already clear that for relativis-
tic theories displaying solely spontaneous symmetry breaking of internal symmetries, the
number of NG modes is equal to the number of broken generators. A pedagogical proof
of this statement, at classical level, can be found in [24]. However, several examples in
non-relativistic theories showed that the number of NG modes might be reduced com-
pared to the number of broken generators (by definition, the number of NG modes is
bounded from above by the number of broken generators). A textbook example could
be ferromagnetism [25], where the breaking of two of the three SUp2q generators due
to the spins alignment leads to one magnon (the gapless spin-wave), see Appendix A.
Therefore, a counting rule, and an associated classification, for NG modes is necessary. It
remains an open question for a totally generic breaking pattern (including both uniform
and non-uniform symmetries1), however, some progress and some strong results have been
obtained through the past decades.

Nielsen and Chadha proposed a first classification relying on the dispersion relations
of the NG modes [70]. This classification led to a counting rule. One of the original
hypotheses of Nielsen and Chadha was that the considered fundamental theory should

1A more general way to say internal symmetries and spacetime symmetries.
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have continuous spatial translations symmetry. This has been relaxed in [41] such that
discrete spatial translations are tolerated.

The guideline of the proof of Nielsen and Chadha’s counting rule is the spectral de-
composition of (2.3.6), in the same spirit as the argument we displayed for Goldstone’s
theorem at Section 3.3. We will not present the proof because it will neither provide
additional intuitive knowledge nor new technical computational tools.

Theorem 2 (Nielsen and Chadha’s theorem). Let us consider a fundamental (field) theory
such that the locality of the interactions implies that, at quantum level, if Apxq and Bp0q
are any two local operators, then

| x |Ñ 8 : | x0| rApx, tq, Bp0qs |0y |Ñ e´τ |x|, τ ą 0 . (4.1.1)

If

� nBG generators of the uniform symmetries of our fundamental theory are sponta-
neously broken (while the non-uniform ones remain untouched),

� the notion of gap is well defined,

� the dispersion relations of the NG modes are isotropic and can be written as a
polynomial expansion at low momentum,

then we classify as type I the NG modes with an energy which is proportional to an odd
power of the momentum at long wavelengths, nI is the number of such modes. The ones
with an even power are called type II and nII is their number. The amount of NG particles
satisfies the inequality

nI ` 2nII ě nBG . (4.1.2)

We can notice that asking the dispersion relation to be isotropic is an implicit hy-
pothesis of rotational symmetry of the fundamental theory. Relaxing this hypothesis is
discussed in [41]. The locality condition (4.1.1) ensures an analytic behaviour of the
Fourier transform and so, indirectly of the dispersion relations. Specifying that the latter
should have a polynomial expansion at long wavelengths could be considered as tautolog-
ical – this tautology is not present in the original statement of Nielsen and Chadha, it is
due to the reformulation made by the author of this dissertation.

As a consistency check, we have that for relativistic theories, the massless dispersion
relations are always linear (with a model independent velocity equal to the speed of light)
and so, the NG modes are always type I (nII “ 0). The counting rule 4.1.2 informs us that
nI ě nBG. Complemented with nI` nII ď nBG by definition of the NG modes, we recover
the known result nI “ nBG for relativistic theories with SSB of internal symmetries.

The Nielsen and Chadha counting rule is an inequality, a stronger counting rule with
an equality has been obtained later on by Brauner, Murayama and Watanabe. The
derivation of this stronger counting rule is the goal of the next section. However, despite
being weaker, the classification based on dispersion relations is still used in the literature
since in some cases it is more practical.
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4.2 Counting rule through the coset construction

To derive the counting rule involving an equality, we will do the hypothesis that G is
internal and compact (in addition to be global and continuous)2. We are going to establish,
by using the coset construction, the most generic shape of the dominant terms in the IR
of an effective field theory describing NG modes resulting from a given breaking pattern
G Ñ H. Then, we will count the number of canonical independent degrees of freedom
contained in this generic theory which will provide us a counting rule for the NG modes
and a classification based on the broken generators. The obtained counting rule was
conjectured and partially proved by Brauner and Watanabe [54] and proved by Murayama
and Watanabe [77,78] in the early decade of 2010. Their work is based on several progress
in the counting and the classification of NG modes, a (non-exhaustive) list of relevant
papers could be [9, 41,57–59,70,79–84].

4.2.1 The coset construction

From a general perspective, the coset construction is the classification of the non-linear
realisations of a given continuous symmetry group3 G which reduce to linear representa-
tions when considering a continuous subgroup H̃ of G. Then, Lagrangians, which consist
of an expansion in the fields and their derivatives (this defines locality), are built such
that they are invariant under these specific realisations. We thus understand that the
name “coset construction” comes from the quotient space G{H̃, the part of G which is
non-linearly realised, and from the construction method to get invariant Lagrangians.

The coset construction was first established in the sixties in the domain of elemen-
tary particles physics. Indeed, effective theories were built in order to describe light
mesons. Such theories were displaying non-linear realisations of respectively the chiral
group SUp2q ˆ SUp2q and the chiral group SUp3q ˆ SUp3q (see for example the non-
exhaustive list [85–88]). It is Coleman, Wess and Zumino who, in the end of the sixties,
established a classification of all the non-linear realisations respecting the criteria defined
in the preceding paragraph for a generic connected compact semi-simple internal sym-
metry group G [55]. Just afterwards, with the additional help of Callan, they set up
a method which permits to build invariant local Lagrangians and to gauge the symme-
try [56]. The coset construction is sometimes referred to CCWZ construction, the initials
of the previously cited authors.

Intuitively, if we take back our Up1q Mexican hat example – see Section 3.4, we have
that the Lagrangian we obtained after the spontaneous symmetry breaking reproduces
non-linearly the Up1q symmetry through the shift of the phase field which is nothing
else than the NG mode. The obtained perturbation theory could then be likened to
a particular case of the coset construction. This intuition and so, the interest of the
coset construction for Goldstone physics, was formally noticed in [89]. They showed that

2Of course the fundamental theory can have additional non-internal symmetries which are not spon-
taneously broken, but they should have particular commutation relations with the broken internal sym-
metries. These requirements will be discussed later on, however, since spacetime symmetries commutes
with internal G, they are tolerated (the non-trivial discussion is for the non-uniform symmetries which
are not spacetime symmetries).

3More precisely, it concerns only the realisation of the elements of the group which are connected to
the identity.
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effective field theories describing NG modes where corresponding to CCWZ invariant
Lagrangians. From a coset construction they were able to recover all the properties of
NG fields, i.e. massless modes (or with a light mass when a small explicit symmetry
breaking occurs) and fields which are weakly coupled at small energy. Furthermore, by
gauging the symmetries, they retrieve the Brout-Englert-Higgs mechanism. The non-
linear transformations of NG fields are also discussed in [57].

From now on, we will consider the coset construction only in the framework of Gold-
stone physics. Since the transformation rules for the NG fields are settled by the trans-
formation rules of the fundamental fields, we do not need the mathematical machinery of
classifying the different equivalent transformation laws. We therefore can relax some of
the hypotheses of the papers [55,56]. This introduction to the coset construction heavily
relies on the review [18], another relevant review is [19].

4.2.1.1 Hypotheses on the symmetry group

Let G be an internal continuous compact group which is faithfully linearly realised in the
fundamental theory where the dimension of the realisation4 is finite. In such a case, we
can always chose a basis of the Lie algebra so that [24]

Tr pGαGβq “ δαβ ,

G:α “ Gα ,

(4.2.1)

(4.2.2)

where tGαu is the realisation of the generators of G. We will do a misnomer by denoting
Gα as a generator of G. The choice made such that (4.2.1) and (4.2.2) are satisfied implies
that the structure constants of the algebra are fully anti-symmetric:

rGα, Gβs “ if γ
αβ Gγ , (4.2.3)

where f γ
αβ is anti-symmetric in its 3 indices.

4.2.1.2 Comment on the algebra

We will consider that G is spontaneously broken to a continuous subgroup H. Let us call
Xa the broken generators of G, and TA the unbroken ones. Since H is a subgroup, we
have

rTA, TBs “ if C
AB TC ô @a, f a

AB “ 0 . (4.2.4)

By using the full anti-symmetry of the structure constants and (4.2.4), we have

@a, f B
Aa “ 0 ô rTA, Xas “ if b

Aa Xb . (4.2.5)

We observe that tXau is a representation of H (more precisely, the space generated by
tiXau is a representation of the Lie algebra of H). Let us emphasise that this last obser-
vation is always true for compact groups. This is one of the main reasons why we take G
as being compact in our hypotheses.

4We use the more general terminology “realisation” instead of “representation” since, as we will see,
the action of G will be non-linear for the specific parametrisation we will choose for the fields.
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We can notice that this classification between broken and unbroken generators is not
unique since one can always redefine a broken generator as Xa Ñ Xa ` c

A
a TA, where the

c A
a are arbitrary coefficients. On the condition that the newly defined generators still

form a representation of H, it will not alter our generic discussion on the spontaneous
breaking of internal symmetries. In practice, these possible redefinitions can be used to
simplify technical computations.

4.2.1.3 The coset construction for NG modes

A field of the fundamental theory – called a fundamental field – φ can be parametrised
as [18]

φpxq “ Upπpxqqχpxq , (4.2.6)

with

Upπpxqq ” eiπ
apxqXa , (4.2.7)

where πapxq and χpxq are general functions5. If we particularise to χpxq “ v with v being
the constant VEV (no spacetime SSB), we have that

eiπ
apxqXav (4.2.8)

corresponds to a spacetime modulated fluctuation around the VEV in a spontaneously
broken direction of G. It is, by definition, a NG mode. The NG modes are therefore
naturally parametrised by πapxq, i.e. the coordinates of a mapping between spacetime
and the connected patch to the identity6 of G{H. Henceforth, we refer to πa as NG
candidates (we still have to determine which ones are independent, i.e. which one are NG
modes) and we consider them as small perturbation fields. The Equation (4.2.7) is called
the coset parametrisation.

To get the transformation rules of πa, we use the realisation of G on the fundamental
field which leads us to

g Upπpxqqχpxq “ Upπ̃pxqq χ̃pxq , (4.2.9)

where the tildes refer to the transformed fields and g P G is a shortcut to denote the
realisation of g. We will keep using this misuse as long as it leads to no ambiguity. Since
gUpπpxqq P G by associativity of the product and because7

@αa, Dfapαq, gApαq | eiα
βGβ “ eif

apαqXa eig
ApαqTA , (4.2.11)

5It is proven in [18] that we can indeed always write (4.2.6). An argument to be convinced is that
χpxq is a totally generic function and that it is reasonable to consider eiπ

a
pxqXa to be invertible since it

is a group element.
6This is mathematically quickly said, it should need a more formal description. But the gist of what

this mapping is geometrically is enough for our purpose.
7We use the Baker–Campbell–Hausdorff formula where the lie algebra elements are considered as small

since NG candidates are perturbations around the VEV, thus

eyex “ ex`y`
1
2 ry,xs , (4.2.10)

where the approximation rx, rx, yss « 0 is considered. Then, we conclude with the commutation relation
(4.2.5).
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we can write

gUpπpxqq “ Upπ̃pxqq eiu
Apπ,gqTA , (4.2.12)

where uA is some function of π and g. The transformation rules π Ñ π̃, χÑ χ̃ therefore
satisfy

gUpπpxqq “ Upπ̃pxqq eiu
Apπ,gqTA ,

χ̃pxq “ eiu
Apπ,gqTAχpxq .

(4.2.13)

(4.2.14)

It can be checked that it is indeed a good realisation of G (i.e. the product of the re-
alisation is the realisation of the product). In general, these transformation rules are
non-linear through the dependency of uA in π. The transformation law for πa is com-
plicated, however, the one for χ is technically easier. This because it is a (non-linear)
covariant transformation under G built on a covariant realisation of H.

If we particularise the transformation laws (4.2.13), (4.2.14) for g “ h P H and that
we use (4.2.5), we obtain

hUpπpxqq “ Upπ̃pxqqhô π̃apxqXa “ hπapxqXa h
´1 ,

χpxq “ h χ̃pxq .

(4.2.15)

(4.2.16)

We observe that our fields transform linearly under H while generically, according to
(4.2.13) and (4.2.14), they transform non-linearly under G. Thus, Nambu-Goldstone
modes and their effective field theories could indeed be well described by the coset con-
struction formalism where H̃ corresponds to H (concerning internal symmetries at least).
We remind that H̃ is defined as the continuous subgroup of G which is linearly realised.

It could be instructive to develop a bit further the transformation rule of πa when g
is generated by broken generators. Infinitesimally, the left-hand side of (4.2.13) is

gUpπpxqq “ eiω
aXaeiπ

bpxqXb

“ p1` iωaXa `Opω2
qqp1` iπbpxqXb `Opπ2

qq

“ 1` ipπapxq ` ωaqXa `Opε2q ,

(4.2.17)

(4.2.18)

(4.2.19)

where π „ ω „ ε. It should be equal to the right-hand side of (4.2.13)

Upπ̃pxqq eiu
Apπ,gqTA “ p1` iπ̃apxqXa `Opπ̃2

qqp1` iuApπ, gqTA `Opu2
qq

“ 1` iuApπ, gqTA ` iπ̃
a
pxqXa `Opε2q ,

(4.2.20)

(4.2.21)

where π̃ „ uA „ ε. By comparing (4.2.19) to (4.2.21), we get

π̃apxq “ πapxq ` ωa `Opε2q , uApπ, gq “ Opε2q . (4.2.22)

The transformation of the NG modes is inhomogeneous. This is a signature that in the
EFTs describing NG modes, there cannot be any mass terms for πa and the interacting
terms involving NG modes should contain derivatives (i.e. weakly coupled in the IR).
Moreover, it provides an argument that the spontaneous breaking of gauge symmetries (at
classical level) cannot lead to NG modes. In fact, ωa being a broken symmetry parameter,
if this symmetry is gauged, ωa is then an arbitrary function that should be fixed through
a gauge choice. From (4.2.22), we understand that the associated NG candidate can be
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suppressed by a suitable gauge fixing. The coset construction allows us to recover all the
characteristic features predicted by Goldstone’s theorem.

We can even go further and recover the idea that the NG modes emanating from the
breaking of internal symmetries are bosons. Let us consider that the fundamental field is
in a linear representation of the Lorentz group (even if Lorentz’s group is not necessarily
included in the symmetry group of the fundamental theory), then8

eiω
µνLµνUpπpxqq “ eiω

µνLµνeiπ
bpxqXb

“ eiω
µνpipxµBν´xνBµq`Sµνqeiπ

bpxqXb

“ eipπ
b´ωµνpxµBν´xνBµqπbqXbeiω

µνLµν

” eiπ̃
bpxqXbeiu

µνpπ,ωqLµν ,

(4.2.24)

(4.2.25)

(4.2.26)

(4.2.27)

where, thanks to rSµν , Xas “ 0 because Xa is internal, πa transforms as a spinless field.
Furthermore, πa fits in the standard classification of fields based on the representation of
the Poincaré group because, in addition to be spinless, it transforms canonically under
translations:

eia
µPµUpπpxqq “ e´a

µBµeiπ
bpxqXb

“ eipπ
bpxq´aµBµπbpxqqXbe´a

µBµ

” eiπ̃
bpxqXbeiu

µpπ,aqPµ .

(4.2.28)

(4.2.29)

(4.2.30)

We conclude that πapxq is a real scalar field which displays all the expected features of
an NG mode and is therefore a consistent NG candidate.

Building an invariant Lagrangian directly using the transformation law of πa under G
is an involved process. We need an object which transforms covariantly with respect to
G and will therefore, constitute our building block. This object is obtained through the
Maurer-Cartan 1-form: dxµUpπq´1BµUpπq. It is a 1-form which takes its values in the Lie
algebra of G. We can thus write:

Upπq´1
BµUpπq “ ´iAA

µ pπqTA ` i e
a
µpπqXa . (4.2.31)

With γ “ eiu
Apπ,gqTA and

Upπ̃pxqq “ gUpπpxqq γ´1 , (4.2.32)

coming from (4.2.13), we have

Upπ̃q´1
BµUpπ̃q “ γ Upπq´1

BµUpπqγ
´1
` γ Bµγ

´1 . (4.2.33)

Hence, by recalling (4.2.4) and (4.2.5), the transformation rules are given by:

eaµpπ̃qXa “ γ
`

eaµpπqXa

˘

γ´1 ,

´ iAA
µ pπ̃qTA “ γ

`

´iAA
µ pπqTA

˘

γ´1
` γ Bµγ

´1 .

(4.2.34)

(4.2.35)

8We use the Baker–Campbell–Hausdorff formula with the same approximation as in (4.2.10)

eyex “ ex`y`
1
2 ry,xs “ ex`ry,xsey . (4.2.23)
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We thus have that eµpπq ” eaµpπqXa transforms in a covariant way under G from a realisa-
tion of H. Therefore, eµpπq is the building block we were looking for. Indeed, any function
of eµpπq which is covariantly invariant under H will automatically be invariant under G.
However, the transformation laws are spacetime dependent through their dependency in
the fields πapxq9. So, Bνeµpπq does not transform covariantly. We need to define a good
differential operator. If we look at (4.2.35), we observe that AA

µ pπq transforms as a gauge
field and can then be used to define a covariant derivative for eµpπq:

pDµeνq
a
” Bµe

a
ν ` f

a
Bc AB

µ e
c
ν . (4.2.36)

The covariant behaviour of (4.2.36) can be verified. With an infinitesimal expansion of
γ “ eiu

Apπ,gqTA in (4.2.34) and (4.2.35), we find

δeaµ ” eaµpπ̃q ´ e
a
µpπq « f a

bA ebµ u
A ,

δAAµ ” AAµ pπ̃q ´ A
A
µ pπq « Bµu

A
´ f A

BC uBACµ .

(4.2.37)

(4.2.38)

By injecting these transformation law in (4.2.36), we have

δ pDµeνq
a
« f a

bA pDµeνq
b uA . (4.2.39)

It is the same transformation law as eaµ. We can then be convinced that (4.2.36) is indeed
a covariant derivative.

Before commenting on the construction of an invariant Lagrangian, we can try to have
a sense on the way eµpπq and AA

µ pπq depend on πa. We have that

Upπq´1
BµUpπq “ e´iπ

aXaBµ e
iπbXb

“ i Bµπ
b
`

e´iπ
aXaXb e

iπcXc
˘

.

(4.2.40)

(4.2.41)

We can notice the global Bµπ
b factor, and by comparing the obtained expression with

(4.2.31), we can conclude that eµpπq and AA
µ pπq will systematically contain a derivative

of πa. In particular, by developing (4.2.41) to quadratic order, we have

eaµpπq “ Bµπ
a
´

1

2
Bµπ

bπcf a
bc `Opπ3

q ,

AA
µ pπq “

1

2
Bµπ

aπbf A
ab `Opπ3

q .

(4.2.42)

(4.2.43)

We can build a G invariant Lagrangian by using eµ and Dµeν by asking this Lagrangian
to be H covariantly invariant:

Lpeµ, Dµeν , . . .q such that Lph eµ h´1, hDµeν h
´1, . . .q “ Lpeµ, Dµeν , . . .q , (4.2.44)

where the ellipses denote higher covariant derivatives. Let us mention that we could also
add other fields than the NG modes through χpxq which transforms covariantly (4.2.14)
(the derivative operator would then be given by Dµχpxq).

9Let us emphasise/remind that we are looking to a global realisation of G, G is not gauged.
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4.2.1.4 Effective field theories for NG modes

Said crudely, an effective theory is the most general theory respecting some given sym-
metry constrains which can be written as an expansion in energy.

So, to establish the effective theory for NG modes associated to a given symmetry
breaking pattern, we need to show that the most general G invariant Lagrangian for
πa built with eµpπq is equivalent to the most general G invariant Lagrangian directly
constructed with πa. This is proven in [18], we will not repeat the proof and accept the
statement10.

Furthermore, since a generic construction based on eµpπq is indeed totally general, we
have that each term of the Lagrangian contains a derivative of πa (cf. the paragraph
below (4.2.41)). The expansion in energy is therefore rather natural. We are thus able
to write a generic EFT and to guess the first dominant terms. In fact, we know that the
EFT will systematically have a derivative in each term, the dominant terms will be the
ones with the minimum number of derivatives.

For the relativistic case, since we need to contract the Lorentz indices, the minimum
number of derivatives we can have is two. Hence11,

L pπq “ 1

2
gabpπqBµπ

a
B
µπb `OpB4

q , (4.2.45)

where gabpπq is a symmetric matrix. To ensure the kinetic energy to be positive, we take
gabpπq to be positive definite for all πa. The additional constrains we have to impose on
gabpπq in order for L pπq to be G invariant will give us a geometric interpretation.

Let us see the G transformation

π̃a “ πa ` ξapπq , (4.2.46)

as a diffeomorphism on G{H, where ξapπq generically depends on πa. The latter statement
can be seen by considering the higher terms in (4.2.22). We get

L pπ̃q “ 1

2
gabpπ ` ξq Bµpπ

a
` ξaq Bµpπb ` ξbq `OpB4

q

“ L pπq ` 1

2
pξa Bagbc ` gac Bbξ

a
` gba Bcξ

a
q Bµπ

b
B
µπc `Opξ2

q ,

(4.2.47)

(4.2.48)

where we Taylor expanded gabpπ ` ξq. Imposing L pπ̃q “ L pπq to have the G invariance
is equivalent to ask

ξa Bagbc ` gac Bbξ
a
` gba Bcξ

a
“ 0 . (4.2.49)

10This in accordance with the paradigm of this introduction to Goldstone physics: we develop the
technical proofs only when we acquire new intuitive knowledge on NG modes from it or when it permits
to master a new computational tool (e.g. here the coset construction is illustrated and it permits us to
understand better the different features of NG modes).

11As it can be observed, in the subdominant terms, we included possible higher time-derivative terms.
Going higher than the second derivative in time leads to the Ostrogradsky instabilty [90–93]. It is argued
in the cited papers that this instability can be avoided in the perturbation theory. In particular, in the
search of possible IR modifications of General Relativity, ghost condensation models have been proposed
with higher time-derivative terms [94]. From the moment we have either a one-time derivative or a two-
time derivative as dominant term, these higher time-derivative term will not influence our discussion. We
will assume to be in this situation.
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By seeing πa as coordinates on G{H and its transformation under G as a diffeomorphism,
we can interpret gabpπq as a metric with the isometry group G. Indeed, (4.2.49) is the Lie
derivative with respect to ξapπq, thus the constraint of being G invariant is given by

Lξg “ 0 . (4.2.50)

This provides an interesting geometric picture because it shows that finding the dominant
term of the most general relativistic G invariant EFT is equivalent to looking for the most
generic positive definite G invariant metric on G{H.

The geometrical interpretation of the coset construction has been established in [95],
this in the goal to make a link with general relativity. Volkov enriched this geometrical
approach in [96].

A bit more of details: It is shown in [18] that when SpantiXau forms a completely
reducible representation of H (we have already seen that it is a representation, cf. (4.2.5)),
the set of positive definite G invariant metrics on G{H is parametrised by n positive
parameters, where n is the number of irreducible representations of H in SpantiXau. In
particular, when SpantiXau is an irreducible representation of H, the metric is unique up
to a positive normalisation factor.

For the non-relativistic case, we are going to keep the spatial rotation symmetry12.
This leads us to

L pπq “ capπqBtπ
a
`

1

2
gabpπqBtπ

a
Btπ

b
´

1

2
ḡabpπqBiπ

a
Biπ

b
`OpB3

t , BtB
2
i , B

4
i q , (4.2.51)

where gabpπq and ḡabpπq are generic positive definite G invariant metrics on G{H, they are
taken in that way to ensure the positivity of the kinetic energy, even when we go at higher
energy and that B2

t becomes dominant compared to Bt. Notice that gabpπq and ḡabpπq are
proportional to each other when tXau is an irreducible representation of H. To have an
invariant theory, we need the function capπq to be a generic covector field on G{H which
transforms under the G diffeomorphism (4.2.46) as a global (π-)derivative

Lξca “ BaΩξpπq , (4.2.52)

where Ωξpπq is an unconstrained function on G{H. Indeed,

capπ̃qBtπ̃
a
“ pcapπq ` Bbcaξ

b
qpBtπ

a
` Bbξ

a
Btπ

b
q `Opξ2

q

“ capπqBtπ
a
` pξbBbca ` cbBaξ

b
qBtπ

a
`Opξ2

q

“ capπqBtπ
a
` BtΩξ `Opξ2

q ,

(4.2.53)

(4.2.54)

(4.2.55)

where we Taylor expended till the first order and where we used the definition of the
Lie derivative acting on a covector. We notice that under the constraint (4.2.52), the
Lagrangian transforms up to a global derivative. Our goal is to have an invariant theory

12This is not too restrictive for condensed matter because we are looking at phenomena occurring on
large spatial scales compared to the lattice spacing. Hence, in the same way the discrete translation
symmetries are smoothened, the discrete rotation symmetries appear continuous in such regime.
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rather than an invariant Lagrangian. So, this transformation behaviour is tolerated for
our EFT.

Let us mention that, in the context of effective theories for NG modes, terms trans-
forming up to a global derivative are called Wess-Zumino-Witten terms [19]. To be totally
generic, the classification of such terms should be added to our discussion. This classifica-
tion is outside the scope of this dissertation13. However, a discussion of such terms for our
particular case can be found in [78] which ensures that (4.2.51) is indeed totally general.
Some possible directions to look at to get acquainted with these Wess-Zumino-Witten
terms are [97–102].

4.2.1.5 Recap on the hypotheses made for the EFT

We established that (4.2.51) corresponds to the most general dominant terms of an EFT
describing NG modes in the IR – let us notice that the limit of low energy is consistent
with the massless aspect of NG modes. Some of the hypotheses were explicitly stated
and others have been implicitly considered. We thus here provide a recap under which
hypotheses (4.2.51) has been obtained.

� The spontaneous symmetry breaking pattern GÑ H is such that G is a continuous
global compact internal group with a faithful finite dimensional linear representa-
tion on the fundamental theory. And H is either a continuous subgroup of G or
the trivial subgroup containing only the identity. The constrains on G might look
extensively restrictive but they are satisfied in many physical cases. Indeed, Up1q,
SOp3q, SUpNq are for example common groups encountered in physics where they
are realised through faithful matrix representations. Hence, they do satisfy the re-
quirements on G. Let us remind that we took G to be compact mainly to ensure
that tXau is a representation of H. A specificity that we notably used when dis-
playing the transformation rules. It suggests that we might relax the hypothesis on
the compactness of G on the condition that (4.2.5) is still satisfied.

� We kept some bonds with the fundamental theory through the parametrisation
(4.2.6) and (4.2.7). This implied that we had to consider G to be linearly realised
on the fundamental theory. As we will see in Section 5.2, we are able to build the
same EFTs purely based on group theory, more specifically, purely on the Lie algebra
structure. Therefore, we can anticipate thatG should be realised on the fundamental
theory but not necessarily linearly. Furthermore, since the only group theory result
we used was (4.2.5) ((4.2.4) is automatically verified), we can anticipate that G can
be generalised to any continuous internal symmetry group respecting (4.2.5) – it
was ensured by considering G being compact. Beside the symmetry group G, the
fundamental theory can have any other non-internal unbroken symmetries on the
condition that (4.2.5) remains true. In particular, we can consider any unbroken
spacetime symmetries since they commute with the internal broken symmetries. The
EFT construction remains exactly the same, we only have to add the constraint to be

13For completeness, let us at least state that the classification of the Wess-Zumino-Witten terms can be
reduced to finding the d`1 de Rham cohomology group Hd`1pG{Hq. From mathematics, it seems that for
general G{H, Hd`1pG{Hq is not available. But when G{H is itself a Lie group, the de Rham cohomology
group is well known. Furthermore, the construction of Hd`1pG{Hq is simpler when G is compact which
shows once again why the coset construction is systematic for compact symmetry groups [97].
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invariant under these additional non-internal unbroken symmetries. We implicitly
did it when we were imposing Poincaré invariance on (4.2.45) for relativistic theories,
or when we asked for spatial rotation symmetries in (4.2.51).

� We considered that NG modes are the only massless modes (or light modes) in
the spectrum. So to speak, we went to enough low energy such that all the massive
modes have been integrated out. Of course, the discussion remains to be generalised
to the case of additional massless perturbations and/or very light modes.

� In addition to continuous rotation symmetries, we made the hypothesis of continuous
spacetime translation symmetries. In particular, the notion of mass is well defined.
Let us mention that lattice physics could be discussed through our EFT in the
continuum limit which is consistent with the IR limit.

� We made the physically realistic assumption that the theory possesses at least one
term with either one time-derivative or two time-derivatives (i.e. higher time-
derivative terms, if any, are subdominant in the IR). The choice for the metrics
g and ḡ to be positive definite is motivated by the stability of the theory (positivity
of the energy).

� The locality of the theory has been taken such that only fields at the same spacetime
position interact (modulo the infinitesimal difference due to the finite number of
derivatives).

� The dimension of spacetime d has been chosen to be strictly greater than two. In-
deed, we took in consideration spatial rotation symmetries, spatial rotations require
at least two spatial directions. If we would have studied the case d “ 2, additional
terms as BtπBxπ, etc. would have been tolerated. It is discussed in [78]. Further-
more, the case d “ 2 is singular (mainly for the relativistic case) due to Coleman’s
theorem (see Subsection 4.5.1) and requires specific attention.

� There might be possible additional hypotheses that we overlooked due to some lack
in the mathematical rigour of the development. Since we do not claim to have an
axiomatic approach of physics, we will consider these hypotheses to be encompassed
in the term “physical theory”.

Let us mention that, when writing a general EFT, we have to keep in mind that this
EFT should be consistent with a possible UV completion (as discussed in Section 2).
This could for example impose some constraints on the parameters of the theory, to avoid
superluminal speeds for example.

4.2.2 Counting rule and classification based on the broken gen-
erators

All the NG candidates in (4.2.51) are not necessarily dynamically independent. In fact,
canonical conjugation between πa fields can appear if the Lagrangian is of the form

L „ π1
Btπ

2
´ π2

Btπ
1
` . . . . (4.2.56)
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By using the definition of the canonical momentum

Pa ”
BL

BpBtπaq
, (4.2.57)

we find that the canonically conjugated pairs are pπ1,´π2q and pπ2, π1q. Hence, we have
that π1 and π2 are canonically conjugated and both of them form one degree of freedom14.
From this schematic reasoning, we understand that the term capπqBtπ

a in (4.2.51) is crucial
for our counting rule.

To count the number of independent NG modes, we have to label which modes are
conjugated to which other modes. To do so, we need a classification. A natural clas-
sification could be based on the broken generators since, as we have seen in the coset
construction, it is them which generate the NG modes. Hence, we need to establish a
link between the Qa’s (the conserved charges which after quantisation correspond to the
broken generators) and the capπq’s. This is done thanks to Noether currents.

The guidelines of this subsection will be to compute the Noether currents. It will
provide us a non-explicit relation between the conserved charges and the capπq coefficients.
By introducing a new quantity and with the preceding relation in mind, we will be able
to establish a direct contact between the Qa’s and the capπq’s. It will then remain to
express capπqBtπ

a in terms of the Qa’s in our Lagrangian. So, the canonical structure of
the theory will be given in terms of the Qa’s. We will thus end up with a classification
and a counting rule based on the broken generators. This subsection leans on [54,77,78].

Let us start by re-expressing a bit differently the transformation law of πa.

πapxq
G
ÝÑ πapxq ` ξapπq “ πapxq ` ωαhaαpπq , (4.2.58)

such that

haαpπq “

"

hab pπq if α “ b
πchaAc if α “ A

, (4.2.59)

where haAc is constant, because πa transforms linearly under H. The action of the gener-
ators of G is then given by the operators

Gα “ haαpπqBa . (4.2.60)

We have seen that the Lagrangian (4.2.51) transforms up to a global derivative. It
permits to define K0

α in such manner that δLpπq ” ωαBtK
0
α. In such case, the (zero

component of) the Noether currents are given by (cf. (2.1.7))

j0
αpπq “

BL
BpBtπaq

haαpπq ´K
0
αpπq . (4.2.61)

Let us find out the expression of K0
α.

δLpπq “ BtΩξ “ pLξcaq Btπa

“
`

ωαhbαpπqBbcapπq ` cbpπqω
α
Bah

b
αpπq

˘

Btπ
a

“ ωαhbαpπqBbcapπqBtπ
a
` cbpπqω

α
Bth

b
αpπq

“ Bt
`

cbpπqω
αhbαpπq

˘

` ωαhbαpπq pBbcapπq ´ Bacbpπqq Btπ
a ,

(4.2.62)

(4.2.63)

(4.2.64)

(4.2.65)

14We define the degrees of freedom as the quantities for which we have fixed their instantaneous speed
and their values at initial time to unequivocally fix the dynamics.
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where to go from (4.2.64) to (4.2.65) we used an integration by part. We know that the
Lagrangian transforms up to a global derivative. So, it must exist a function rαpπq such
that

Barαpπq “ hbαpπq pBbcapπq ´ Bacbpπqq . (4.2.66)

Thus
δLpπq “ ωαBt

`

cb h
b
α ` rα

˘

, (4.2.67)

which gives

K0
α “ cbpπqh

b
αpπq ` rαpπq . (4.2.68)

We are now able to compute the (zero component of) Noether currents:

j0
αpπq “

BL
BpBtπaq

haαpπq ´K
0
αpπq

“
1

2
gabpπqh

a
αpπqBtπ

b
´ rαpπq .

(4.2.69)

(4.2.70)

The vacuum expectation value of j0
α is given by its classical vacuum value. The argument

is that a renormalisation factor j0
α Ñ Zj0

α would spoil the commutation algebra rj0
α, j

0
βs “

if γ
αβ j0

γ , [78]15. Evaluating (4.2.70) on the vacuum corresponds to consider the fields πa

as vanishing fields. This can be understood from (4.2.6) and (4.2.8). So,

x0| j0
αpxq |0y “ j0

αpxq
ˇ

ˇ

π“0
“ ´ rα|π“0 . (4.2.71)

Through equations (4.2.66) and (4.2.71), we have a non-explicit relation between the
broken charge densities and the ca’s. To make this connection more explicit, let us study
the quantity

ραβ ” lim
VÑ`8

´i

V
x0| rQα, Qβs |0y , (4.2.72)

where V is the spatial volume of our system. We can develop this expression by using
the definition of a conserved charge, by translating the conserved current at the origin, by
taking into account the internal aspect of Qα and by considering a homogeneous vacuum

ραβ “ lim
VÑ`8

´i

V

ż

V

dd´1x x0| rQα, j
0
βpxqs |0y

“ ´i x0| rQα, j
0
βp0qs |0y .

(4.2.73)

(4.2.74)

With the help of (2.1.14), (4.2.60) and (4.2.71),

ραβ “ ´ δαj
0
βp0q

ˇ

ˇ

π“0
“ ´ haαpπqBaj

0
βp0q

ˇ

ˇ

π“0
“ haαpπqBarβpπq|π“0 . (4.2.75)

Let us notice that if we particularise at β “ A, we have BarA|π“0 “ 0 because hbApπ “
0q “ 0 (cf. (4.2.66), (4.2.59)). Thus,

ραA “ 0 “ ´ρAα . (4.2.76)

15An alternative approach based on the Ward-Takahashi identities recovers the similar result that a non-
zero VEV of non-abelian charge densities induces a one-time derivative term in the effective Lagrangian
[58].
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This is consistent with QA |0y9 |0y, since QA is unbroken, which implies ραA “ 0 “ ρAα.
We will therefore focus on ρab. With (4.2.66),

ρab “ hcap0qh
d
bp0q pBdcc ´ Bccdq|π“0

ô Brdccs
ˇ

ˇ

π“0
“

1

2
ρab

`

h´1
p0q

˘a

d

`

h´1
p0q

˘b

c
,

(4.2.77)

(4.2.78)

where the brackets r. . .s on the indices correspond to an anti-symmetrisation of these
indices. The intuition that we can indeed invert hdbp0q is that πa transforms inhomoge-
neously under the action of broken generators and so, hdbp0q ‰ 0. More formally, tXau

forms a basis of the tangential space of G{H at π “ 0 and these generators are faithfully
realised by thab pπqBau. Hence, the latter expression, evaluated at π “ 0, is as well a basis
of the tangential space of the coset space at the identity. Thus, hab p0q is a full ranked
matrix.

We are now able to express the canonical structure of our theory in terms of ρab.
From our schematic reasoning (4.2.56), we can limit ourselves to the quadratic part of the
Lagrangian to probe the canonical conjugated fields. Therefore, let us expand the first
term of the Lagrangian (4.2.51) till the quadratic order in π:

capπqBtπ
a
“ pcap0q ` Bbca |π“0 π

b
qBtπ

a

“ pcap0q ` Brbcas |π“0 π
b
` Btbcau |π“0 π

b
qBtπ

a ,

(4.2.79)

(4.2.80)

where the braces t. . .u on the indices denote a symmetrisation of these indices. To continue
the development, we can notice that

BtpBtbcau |π“0 π
bπaq “ Btbcau |π“0 Btπ

bπa ` Btbcauπ
b
Btπ

a

“ 2Btbcau |π“0 π
b
Btπ

a .

(4.2.81)

(4.2.82)

Using the last equality in (4.2.80)

capπqBtπ
a
“ Brbcas |π“0 π

b
Btπ

a
` Btpcap0qBtπ

a
`

1

2
Btbcauπ

bπaq . (4.2.83)

We can drop the term with the total derivative because it will lead to a surface term in the
expression of the action and due to the fact that we neglect the boundary effects, it will
not influence the evolution of the system. The first term of (4.2.83) can be re-expressed
with (4.2.78)

capπqBtπ
a
“

1

2
ρab

`

h´1
p0q

˘a

c

`

h´1
p0q

˘b

d
πcBtπ

d

“
1

2
ρabπ̃

a
Btπ̃

b ,

(4.2.84)

(4.2.85)

where we did a field redefinition, i.e. a change of coordinate on G{H induced by the full
ranked matrix hab p0q. Let us do the misnomer ρ as being the matrix ρab instead of ραβ.
Since ρ is a real and an anti-symmetric matrix, there exists an orthogonal change of basis
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such that (let us suppose that we work with this new basis since the beginning)

ρ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

M1

. . .

Mm

0
. . .

0

˛

‹

‹

‹

‹

‹

‹

‹

‚

with Mi “

ˆ

0 λi
´λi 0

˙

, (4.2.86)

where λi ‰ 0 for i “ 1, . . . ,m. We emphasise that

rankpρq “
m
ÿ

i“1

rankpMiq “ 2mô m “ 1
2
rankpρq . (4.2.87)

From (4.2.85) and (4.2.86), we have

capπqBtπ
a
“

m
ÿ

i“1

1

2
λipπ̃

2i
Btπ̃

2i´1
´ π̃2i´1

Btπ̃
2i
q . (4.2.88)

By comparison with our schematic reasoning (4.2.56), we have that the π̃2i field is canon-
ically conjugated with the π̃2i´1 field. Hence, they do form one single degree of freedom
instead of two. The associated independent NG mode is called a type B NG mode. Since
i is running from 1 to m, we have that the number of type B NG modes, nB, is given by

nB “
1
2
rankpρq . (4.2.89)

Concerning the πa fields lying in the null part of ρ, cf. (4.2.86), they do not intervene in the
single time-derivative term of the Lagrangian and are therefore canonically independent
from the other fields. Each of these πa represents one degree of freedom. We denote these
NG modes as type A NG modes.

Conceptually, a type B NG mode is generated by two broken generators16 while a type
A NG mode is produced by one broken generator. However, in practice, this classification
might not be robust with respect to an arbitrary choice of basis in the algebra. This is
discussed in [54].

It is interesting to notice that by looking at (4.2.51) and to its Fourier transform, type
B NG mode will systematically have a quadratic dispersion relation (ω „ q2) while type
A will in general have a linear dispersion relation (ω „ q). In fact, ḡabpπq might be semi-
definite positive in some cases (we, here, extend a bit our hypotheses) and thus zero for
some directions. In such situation, the dispersion relations are dictated by the OpB4

i q term
and so, type A NG mode would have a quadratic dispersion relation (ω „ q2). Hence,
type B NG modes are always type II NG modes while type A NG modes are often type
I NG modes but in particular situations, it can be type II. This explain the inequality of
Nielsen and Chadha’s counting rule (4.1.2): nI ` 2nII “ nBG is when type A are indeed

16Qualitatively speaking, we are going to say that two broken generators Qi and Qj are conjugated
if x0| rQi, Qjs |0y ‰ 0. In such case, we consider that Qi and Qj generate one type B NG mode. But it
remains to show that, in the chosen basis, the generators are either conjugated by pairs or are independent.
Otherwise the classification is spoiled.
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type I but nI ` 2nII ě nBG is when type A are type II and that they are erroneously
counted twice by Nielsen and Chadha’s counting rule.

With all these developments, we have recovered (with some shortcuts) the theorem
established by Brauner, Murayama and Watanabe in [54, 77, 78]. This theorem can be
stated as

Theorem 3 (Brauner-Murayama-Watanabe’s theorem). Let us consider a physical field
theory living in 2 ` 1 or above Minkowski spacetime which is invariant under transla-
tions and rotations (at least at long distances) and where no terms contain fields at two
separated spacetime points (it could eventually be relaxed to an exponentially decrease of
the interactions with distance). If the fundamental theory, in addition to spacetime sym-
metries which are not spontaneously broken, has a faithfully realised global continuous
internal compact symmetry group G generated by tQαu such that it is either completely
spontaneously broken or partially spontaneously broken to a continuous subgroup H, this
without any anomalies and explicit symmetry breaking being involved, then, considering
that the associated NG modes are the only massless modes, the number of NG bosons nNG

is related to the number of broken symmetry generators nBG by the equality

nNG “ nBG ´
1

2
rankpρq , (4.2.90)

with

ρab ” lim
VÑ8

´i

V
x0| rQa, Qbs |0y , (4.2.91)

where V is the spatial volume of our system in spacetime and tQau are the broken gener-
ators.

Let us mention that the hypothesis on the locality of the fundamental theory should
ensure the effective field theory to be itself local, as we required in our preceding devel-
opments.

We conclude this discussion on the Brauner-Murayama-Watanabe’s counting rule with
several observations and remarks.

First, on the condition that the symmetry algebra satisfies (“gen.” stands for “gener-
ator”)

rbroken gen. , unbroken gen.s “
ÿ

broken gen. , (4.2.92)

the theorem holds if there are additional unbroken internal symmetries and unbroken
non-uniform symmetries. Still under the condition that (4.2.92) is verified, the counting
rule remains true for G being non-compact. Let us stress that, for the moment, we do not
tolerate the spontaneous breaking of non-uniform symmetries (in particular, spacetime
symmetries). It will be discussed in Chapter 5.

Second, Brauner-Murayama-Watanabe’s counting rule is not totally model indepen-
dent since ρ is the VEV of the commutators of the broken generators of G. So, there is a
dependency on the vacuum of the fundamental theory. Based on a thorough analysis of the
topology/geometry of the coset space G{H and of the presymplectic structures which can
live on G{H, Murayama and Watanabe completely classified the possible combinations of
numbers of type A and type B NG modes for a given breaking pattern GÑ H [78]. Hence,
it is partial information on the number of NG modes which rely only on the symmetries
and so, is totally model independent.
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Third, the counting rule can be sensible to the central extension of the Lie algebra at
the quantum level since ρ depends on the commutators of the generators acting on the
Hilbert space rather than on the phase space (the projective Hilbert space). A pedagogical
example can be found in [9], it is the free non-relativistic complex scalar field

L “ iφ˚Btφ´
1

2m
Biφ

˚
Biφ . (4.2.93)

This theory is invariant under Up1q – SOp2q and under the complex shift φÑ φ`z where
z is a complex constant, hence described by two real numbers. The symmetry group is
then the internal continuous ISOp2q group (I stands for inhomogeneous and corresponds
to the shifts). Its realisation on φ is generated by three generators satisfying the algebra

rQ3, Q1s “ ´iQ2 , rQ3, Q2s “ iQ1 , rQ1, Q2s “ 0 , (4.2.94)

where Q1 and Q2 respectively generates the real and imaginary shift while Q3 generates
Up1q. One possible vacuum of (4.2.93) is the trivial field φ “ 0, which means that the
spontaneous breaking pattern is ISOp2q Ñ SOp2q. Despite ISOp2q being non-compact,
the condition (4.2.92) is verified and we can apply the counting rule. At classical level,
the counting rule predicts two NG modes and indeed, the perturbation theory of (4.2.93)
around φ “ 0 is nothing else than (4.2.93) (where φ is now the small perturbation) and
we do indeed have two massless real modes. However, when we canonically quantise the
theory, the Noether charges are such that a central charge appears

rQ1, Q2s “ 2iV , (4.2.95)

where V is the volume of the theory. Hence at quantum level, the counting rule predicts
one NG mode. And it is verified by an explicit computation that the quantum spectrum
has one massless mode. We refer to [9] for the details of the computations. Let us quote
that for a relativistic free field, such central charge would have not appeared and we would
have consistently had nNG “ nBG. Let us mention that the central extensions of a Lie
algebra g are classified by the second Chevalley-Elenberg cohomology group H2pgq. This
group is trivial for semi-simple finite-dimensional algebras, hence, such algebras do not
have central extensions [103,104].

Fourth, we have seen that it is the one-time derivative term which canonically com-
bined the NG modes. Since the relativistic EFT (4.2.45) does not possess this term, we
can safely conclude that all the NG modes are independent and so, their number corre-
sponds to the number of broken generators. This is in fact displayed by (4.2.90). For
relativistic theories, no charged operator under Lorentz group can acquire a VEV other-
wise Lorentz symmetry would be broken. Considering no central extension, we have for
relativistic theories

ρ „ x0| rQa, Qbs |0y “ if c
ab x0|Qc |0y „ x0| j0

c |0y “ 0 , (4.2.96)

because j0
c is a component of the conserved current which is a Lorentz-vector [10]. Thus,

for relativistic theories ρ “ 0 and nNG “ nBG as expected. Let us emphasise that
nNG “ nBG would not necessarily be true if we consider spontaneous breaking of spacetime
symmetries in a relativistic fundamental theory (see Chapter 5).
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Fifth, if we force the effective theory to depend only on the independent NG modes,
the obtained EFT will be complicated. Indeed, if we try to integrate out one of the two
canonically conjugated fields πa of a type B NG mode, it will lead to non-local interaction
terms in Leff [78]. Furthermore, it will spoil the classification since a type B would then
be described by one πa which might be interpreted as a type A. We thus understand that
the considered locality is necessary for the classification to make sense.

Sixth, if we go to higher enough energy, the two-time derivative term become dominant
compared to the single time-derivative term. The canonical structure would then rather
be determined by gabpπqBtπ

aBtπ
b instead of capπqBtπ

a. Since we consider gab as being a
positive definite metric, and so a non-degenerate metric, the two πa fields associated to
a type B NG mode will be canonically independent. This means that each massless type
B NG mode has a massive partner called an almost NG mode. The mass of an almost
NG mode scales with the Lorentz breaking parameter ca [105]. It is interesting to notice
that its mass is not necessarily hierarchically smaller than other massive modes in the
theory. Furthermore, the scaling with the Lorentz breaking parameter is consistent with
the relativistic case: when ca “ 0, all the NG modes are type A and do not have partners.
So, the almost NG mode should become a type A NG mode when we send ca to zero
(assuming a continuous limit), i.e. a massless mode. The case where gab is semi-positive
definite, thus degenerate, is discussed in [105] where a counting rule is provided to give
the number of almost NG mode we could expect. In the same paper, it is discussed the
possibility to relax the hypothesis on spatial rotation symmetry in Theorem 3. Notice
that, in our derivation, it might spoil the computation of the conserved current (4.2.69).
It is as well commented that, because of the term caBtπ

a, time-reversal symmetry breaking
might be a signature of type B NG modes. However, we should be cautious because as
shown in [78], there is no systematic implication.

Seventh, the derivation of Theorem 3 has been (mainly) done at classical level. Going
to higher orders, i.e. including the interactions in the EFT, and quantising the theory
would lead to a renormalisation of the bare parameters of the EFT. The argument that
the counting rule (4.2.90) still holds is that it mostly relies on the presence or not of the ca
coefficients and not on their specific values (the counting rule is not fine tuned). The way
the parameters are arranged in the EFT is constraint by the symmetries. Therefore, we
expect the canonical structure of the EFT to be symmetry protected and so is the counting
rule. Naturally, this should be confirmed by formal computations. The historic papers on
which Theorem 3 is based already proved that x0| rQa, Qbs |0y ‰ 0 ñ nNG ă nBG and this,
with concrete computations both at classical and quantum level [9, 41, 57–59, 70, 79–84].
Brauner and Watanabe conjectured the counting rule (4.2.90) in [54] and partially proved
it by a spectral decomposition in analogy to the proof of Nielsen and Chadha’s counting
rule and of the proof in Section 3.3. These quantum computations provide evidences of
the quantum validity of Theorem 3. Futhermore, the stability of the classification of type
A and type B NG mode under renormalisation in the presence of interactions has been
studied in [106].

Eight, it should be mentioned that the counting rule (4.2.90) has been independently
obtained in [107] by Mori projection operator method. Furthermore, in this article they
extend the discussion to the finite temperature case. During the mid-2010 decade, [108]
re-derived the counting rule (4.2.90) by the Bogoliubov theory and discussed how we
could take into consideration other gapless modes than the NG modes in the analysis
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and discussed also how we could deal with spontaneously broken spacetime symmetry
breaking.

Finally, while Brauner and Watanabe conjectured the counting rule in [54], they pro-
vided a partial proof which requires the symmetry to be uniform instead of compact and
internal. Furthermore, the proof of the counting rule relies heavily on the shape of the
EFT (4.2.51) and on the fact that the single time-derivative is due to a non-zero VEV of
a charge density. Leutwyler recovered these two ingredients thanks to an EFT building
method based on the Ward-Takahashi Identities, where he used similar hypotheses than
the ones we imposed for the coset construction except that he does not require G to be
compact [57,58]. In addition, several examples we can find in the already cited literature
(e.g. the acoustic phonon analysis in [77]) also point towards the idea that the counting
rule could be extended to uniform symmetries – mainly because the shape of (4.2.51)
can correspond to EFTs not necessarily coming from compact groups. Moreover, lattice
systems (and the associated breaking of spatial translations and spatial rotations) could
be encompassed in the discussion since we are in the IR which is consistent with a spatial
continuum limit. A commonly accepted conjecture is then that Theorem 3 holds for G
being a uniform continuous symmetry group which can include the spatial rotation and
without the necessity to satisfy (4.2.92).

These abstract notions and the usefulness of the coset construction as well as of
the Theorem 3 are illustrated in Appendix A with a concrete physical example: fer-
romagnestism.

4.3 Pseudo Goldstone modes

In the context of spontaneous symmetry breaking, there might be similar modes to the
NG modes which are present in the theory. They also are symmetry-originated and
have a mass (partially) settled by the symmetries. To understand their origin, we can
take back the intuitive picture we have for the NG modes. We spontaneously break the
symmetries of the system by looking for a non-trivial solution which minimises the energy.
Taking this solution to be homogeneous (in this section, we are mostly interested by the
breaking of internal symmetries), the kinetic part of the theory does not intervene in the
discussion which simplifies the reasoning. Then, the flat directions of the potential around
the background correspond to opportunities to build massless on-shell fluctuations. The
broken symmetries parametrise some of these flat directions and are thus, the origin of
the NG modes. However, there can be additional flat directions:

� The potential part of the action might have a bigger continuous symmetry group
than the action as a whole. If these additional symmetries are spontaneously broken
by the background, it leads to additional flat directions.

� The equations for the potential minimisation might see some emergent symmetries
which with the SSB mechanism could correspond to additional flat directions.

� There might be a fine tuning among the Lagrangian parameters which makes that
for a specific vacuum, the potential at this particular point has flat directions.

The additional symmetries coming from the potential are called approximate symmetries
(since they are not exact symmetries of the full action). We understand that if we fluctuate
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the system around the vacuum along the flat directions associated to the approximate
symmetries, we are getting massless modes [109, 110]. These modes are called quasi
NG modes since at classical level, they are massless but their mass is not symmetry
protected when we quantise the theory (or when we follow the RG flow). The quasi NG
modes represent a limitation of Brauner-Murayama-Watanabe’s counting rule because
it has been established considering the NG modes as being the only massless modes in
the theory. A first counting rule was derived in [110] but the generalisation of Brauner-
Murayama-Watanabe’s counting rule is discussed in [108,111].

There is another family of modes which are closely related to the Nambu-Goldstone
mechanism. They appear when a symmetry is explicitly broken by a small parameter m
in the Lagrangian compared to the VEV. If the VEV would have spontaneously broken
the symmetry then, we would have had an NG mode. If we consider the theory to have
a continuous behaviour in the limit m Ñ 0, we can expect that the would-be NG mode
has a small mass which goes to zero in the zero limit of m. This intuition was notably
used by Nambu and Jona-Lasinio to describe light mesons in [2], one of the articles
which led to the conjecture of Goldstone’s theorem. It is Gell-Mann, Oakes and Renner
who first established, still in the context of quantum chromodynamics (QCD), that the
square of the mass of the would-be NG mode scales linearly with m [112]. This relation
bears their name and is abbreviate as the GMOR relation. This result has been derived in
several ways in the literature, mostly in the context of QCD, by using the Ward-Takahashi
identities (e.g. [113,114]) or by following the effective theory approach (e.g. [18,115]). In
a more general context than QCD, a derivation of the GMOR relation has been done
for generic relativistic effective field theories in [57]. A proof of the GMOR law, at the
level of the fundamental theory, for abelian internal symmetries in relativistic theories
has been established in [22]. It can be worth to mention that the GMOR relation has
been recovered in non-relativistic toy models [116] as well as in holographic models [21]
displaying a homogeneous symmetry breaking of spatial translation.

We close this subsection with a clarification on the nomenclature. We call approx-
imated symmetries, transformations which either leave the potential part of the action
invariant but not the action as a whole or which are symmetries explicitly broken by a
small parameter. The modes which have for origin the first case of approximate sym-
metries are called quasi NG modes. When the symmetry is explicitly broken by a small
parameter and that the associated mode follows the GMOR relation, we call such mode
a pseudo NG mode. Finally, the term massive NG mode can refer either to the massive
partner of a type B NG mode (i.e. an almost NG mode) either to a massive symmetry-
originated mode obtained in the context of the introduction of a chemical potential (cf.
next section).

4.4 Goldstone physics at finite density

As we have seen, spontaneous symmetry breaking occurs in several areas of physics. It
could then be interesting to see how Goldstone’s theorem is implemented in these different
domains. With the quantum field theory formalism we employ, the implementation of the
theorem in particle physics is rather straightforward. We could now look how does it
apply for many-body systems at equilibrium. A first step to it is to consider QFTs still
at zero temperature but with a chemical potential. This is the aim of this subsection.
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For a statistical system we can associate a chemical potential to each of its conserved
charges – the microscopic dynamics is as usual dictated by either a Hamiltonian or a La-
grangian which might possess some symmetries and therefore, some conserved quantities
are defined. Switching on the chemical potential µQ associated to the charge Q means
that we consider that the external world acts on our statistical system such that it can
vary the “conserved” charge Q. We are thus working in the grand canonical ensemble
where µQ scales the energy cost when we vary Q. Considering our statistical system to
be at equilibrium, its thermal state is dictated by the grand canonical partition function

Z “ Tr
”

e´βpH´µQQq
ı

. (4.4.1)

The trace in (4.4.1) represents a summation/integration on the phase space. Hence, in
the zero temperature limit, i.e. β Ñ `8, we can do the saddle-point approximation.
This means that the thermal state is given by the minimisation of H ´ µQQ and by the
small fluctuations around the minimum.

From this brief recap of statistical physics, we emphasise that the microscopic dynam-
ics is given by H and that the thermal state of the system is settled by H̃ ” H´µQQ. So,
switching on a chemical potential means that the background, which will spontaneously
break the symmetries of H, minimises H̃ instead of H. Thus, compared to the zero chem-
ical potential case, the vacuum might change and also the symmetry breaking pattern
G Ñ HG (the unbroken subgroup is now written with a subindex to not be mistaken
with the Hamiltonian). Furthermore, it is the fluctuations around H̃ which are physically
important, thus, the gap (the mass) will be defined with respect to H̃ instead of H.

Let us call |µy the microscopic state which minimises H̃. It is therefore an eigenvector
of the latter operator and since we do not consider gravity, we can redefine the energy
scale such that the eigenvalue is zero:

H̃ |µy “ pH ´ µQQq |µy “ 0 . (4.4.2)

The current literature on Goldstone physics at finite density deals in three ways with the
chemical potential case at zero temperature:

1. We can interpret H̃ as generating an evolution of the system in a new time direction.
Thermally speaking, it is the fluctuations evolving along this new time direction
which interest us. Hence, we can effectively consider that the dynamics and the
mass is given by H̃. Furthermore, from (4.4.2), |µy does not break spontaneously
time-translation with respect to the new definition of time. We see that we recover
exactly the setup of Goldstone’s theorem where the theory is changed from H to
H̃ and that the considered symmetry group should be the one of H̃. This idea is
recovered in [79,80]17. It is an efficient way to proceed to “get back on our feet” and
extract, without additional costs, information on the low energy thermal excitations.

17These papers are written in the Lagrangian field theory approach. In such case, a chemical potential
µ can be effectively described by gauging the symmetry to which it is related and by fixing the gauge
field to be Aν “ µQ δ

ν0 [117]. Schematically, the Lagrangian is thus of the form:

L “ Dµφ
˚Dµφ` . . . “ pB0 ` iµQqφ

˚pB0 ´ iµQqφ´ Biφ
˚Biφ` . . . . (4.4.3)
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Of course, since we disregard some of the physical aspects, we lose some results, as
it will be confirmed later.

2. We can tackle the problem with the standard spectral decomposition approach as
we did in Section 3.3, where the time evolution of the microscopic states (i.e. the
kets) is driven by H and where the gap is computed with respect to H̃. It is the
results of this method that we present here below. It has the advantage of keeping
track of the physical origin of µQ.

3. When Q is spontaneously broken by |µy, the vacuum |µy evolves non-trivially in
H-time as it can be noticed from (4.4.2). Therefore, time translation symmetry is
spontaneously broken as well as maybe other spacetime symmetries (such as boosts
for example). An approach based on the study of spacetime symmetry breaking
can thus be used. The references [13,46] explicitly deal with such problematic. The
EFTs built on a generalisation of the coset construction for spacetime symmetries
permit to extract additional results compared to the ones we get with the standard
spectral decomposition approach. These aspects will be discussed in Section 5.3.

Nicolis, Piazza [11] and Brauner, Murayama, Watanabe [12] showed, by a spectral
decomposition of the order parameter, that the number of gapless NG modes is given by
the Brauner-Murayama-Watanabe’s counting rule where the considered broken generators
are the broken symmetry generators of H̃, i.e. the broken symmetry generators of H which
commute with Q. They also showed that the remaining broken symmetry generators of H
lead to gapped modes where the gap is entirely fixed by µQ and by group theory. This can
be summarised in the following theorem (NPBMW stands for the initials of the authors
of [11, 12]).

Theorem 4 (NPBMW theorem). Let us consider a system satisfying the hypotheses of
Theorem 3 (i.e. Brauner-Murayama-Watanabe’s theorem’s hypotheses). We switch on
a chemical potential, µQ, for a particular symmetry generated by Q. The thermal state
of the system is driven by the free energy and the notion of gap is defined according to
it. The free energy has a symmetry group G̃ such that G̃ Ď G. The number of massless
NG bosons nNG is related to the number of broken symmetry generators nBG of G̃ by the
equality

nNG “ nBG ´
1

2
rankpρ̃q , (4.4.4)

with

ρ̃a,b ” lim
VÑ`8

´i

V
xµ| rQ̃a, Q̃bs |µy , (4.4.5)

where V is the volume of our system in spacetime, |µy is the vacuum and tQ̃au are the
broken generators of G̃.
The spectrum possesses some gapped modes as well, where their gap is entirely fixed by
group theory and by µQ. The number of the massive NG modes nmNG is given by

nmNG “
1

2
rrankpρq ´ rankpρ̃qs , (4.4.6)

where ρ is defined in a similar fashion than ρ̃ but using the broken generators of G, tQau,
instead of the ones of G̃ (tQ̃au Ď tQau). Under an appropriate choice of basis for the Lie
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algebra of G, the massive NG modes are generated by pairs of broken generators tQ˘σu
(Ę tQ̃au) and their gaps are µQ qσ where rQ,Q˘σs “ ˘qσQ˘σ .

Let us notice that the generators being at the origin of the gap-fixed modes are the
ones which are explicitly broken by the parameter µQ in H̃. However, the gaps do not
follow the GMOR relation. There are several points which permit to evade the GMOR
relation: here, we are studying a gap with respect to H̃ while the dynamics is still driven
by H for which the considered generators are symmetry generators. Moreover, in Section
5.3, we will see that, under the condition Q being spontaneously broken, all the physics
can be solely derived from H. Hence, there is no notion of explicit symmetry breaking
(only spontaneous breaking are present).

From an effective theory approach, Brauner, Murayama and Watanabe [12] have seen
that there are additional massive NG modes for which the mass goes to zero when µQ is
sent to zero but, this mass is different form the one of the gapped modes predicated by
Theorem 4. Assuming a continuous behaviour of the theory with the limit µQ Ñ 0 and
that the new vacuum in this limit still displays the same breaking pattern G Ñ HG, the
number of such additional massive NG modes can be obtained by counting the number
of NG modes at zero chemical potential and by substracting the number of NG modes
and massive NG modes of Theorem 4 at finite chemical potential. To understand the
nature of these additional modes, their dispersion relations etc. a deeper analysis should
be done. This is the subject of [13], and Section 5.3, based on seeing the introduction of a
chemical potential as breaking the time translation symmetry. We can, however, already
guess candidates for such additional massive NG modes. If we consider a relativistic
microscopic theory at finite density (Lorentz symmetry is thus generally broken), the
partners of the massive NG modes of Theorem 4 can also be massive18. When we send
µQ to zero, we recover our relativistic theory and so, all NG modes are type A, including
our initial massive NG modes of Theorem 4. Therefore, their massive partners should
also be massless, it makes them part of the additional massive NG modes we have when
the chemical potential is switched on.

4.5 No spontaneous symmetry breaking at low di-

mensions

Spontaneous symmetry breaking is the fundamental hypothesis of Goldstone’s theorem.
It is therefore consistent to ask whenever a spontaneous symmetry breaking is possible.
In this section we will enunciate some theorems which state that at lower spacetime
dimensions, some spontaneous symmetry breaking patterns are impossible. In accordance
with this dissertation, we will mainly discuss the zero temperature case, then, a comment
will be made for the finite temperature case.

4.5.1 Coleman’s theorem

From Section 2.4, at quantum level, the quantum superposition of the possible classical
vacua is avoided thanks to the large volume of spacetime: the energy required for the

18A massive NG mode of Theorem 4 corresponds here to a combination of two generators. We can
therefore consider a partner which is given by the orthogonal combination of the two same generators.
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system to switch from one classical vacuum to another is proportional to the system
volume (even if the potential directions are flat, there is still kinetic energy involved during
the switching). Naively said, the lower the dimension of the spacetime is, the lower is
the volume of the system. Hence, we could guess that at sufficiently low dimensions, the
quantum fluctuations will be large enough to give rise to a symmetric quantum vacuum.
For example, if we take the Up1q-circle of the Mexican hat of Figure 1, the specific
classically selected point of the circle playing the role of the classical vacuum will be
forgotten by the system due to the large quantum fluctuations around such point. Indeed,
the fluctuations go all over the circle giving then a zero average state. The VEV being
the order parameter, we lose the spontaneous symmetry breaking at quantum level.

This idea has been formally stated by Coleman [16] under the theorem:

Theorem 5 (Coleman’s theorem). For relativistic physical field theories in two-dimen-
sional spacetime, at the quantum level, there cannot be any spontaneous breaking of con-
tinuous internal global symmetries.

The proof of Coleman [16] is rather mathematical, hence, we will sketch the proof of
[118] which is more physical and closer to the intuition we proposed earlier. It is a proof by
contradiction, spontaneous symmetry breaking implies massless modes at quantum level.
In two-dimensional spacetime, such massless modes induce an IR divergence which makes
vanish the VEV (the order parameter) and so, we lose spontaneous symmetry breaking.
The consistent picture is thus that we never have spontaneous symmetry breaking in such
context.

To see this, we start with a relativistic fundamental field theory and we spontaneously
break some of its continuous internal symmetries. To get the asymptotic spectrum of
the QFT obtained by quantisation around the chosen classical vacuum, we perturb our
fundamental theory around our background and we consider the free theory of the per-
turbations19. The NG modes being independent from each other – the free part of their
action is of the form of (4.2.45), so there are no canonical conjugated pairs –, we do
not lose much generality by considering the specific abelian case of the Up1q symmetry
spontaneously broken. The unique associated NG mode is denoted by θpxq. A relativistic
massless free theory is a conformal field theory (CFT). We can obtain the shape of the
two-point correlator of θpxq through the Ward-Takahashi identities [119]. The symmetry
under the scaling xµ Ñ λxµ imposes

〈θpλxqθpλyq〉 “ λ´2∆θ 〈θpxqθpyq〉 , (4.5.1)

where ∆θ is the scaling dimension of θpxq. From the invariance under Lorentz and under
translations, with θpxq being a scalar field and since the only scaling object at disposal in
our CFT is xµ, we have

〈θpxqθp0q〉 9 1

|x|2∆θ
. (4.5.2)

We can already see that there is a change of behaviour at large distance (|x| Ñ `8),
i.e. in the IR, following ∆θ being positive or negative. In particular, we will have an IR

19Another way to argue why we focus on the free theory of the perturbations is to anticipate the fact
that we will get an IR divergence. Hence, it is the low energy regim of the theory which interests us. We
know that, at low enough energy, the relativistic Goldstone modes are described by (4.2.45) and are thus
free.
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divergence when

∆θ ď 0 . (4.5.3)

Let us mention that the case ∆θ “ 0 should be treated with more care, but as we will
see, it leads to an IR divergence as well.

We still have to determine ∆θ. When we mentioned that the only scaling object at
disposal was xµ, we did a small shortcut because actually, there is a scale in the theory
which is the VEV v coming from the Up1q fundamental theory. But this v, dynamically
speaking, can be reabsorbed by a redefinition of the field θpxq. Looking back to (3.4.6),
the free theory of a Up1q NG mode is

Sfreerθs “

ż

ddx v2
BµθB

µθ , (4.5.4)

where d is the spacetime dimension. By absorbing v into the canonical dimensionless Up1q
phase θ, we get a dynamical field θ with a scaling dimension20

∆θ “ ∆v “ ∆φ , (4.5.5)

where φ is the Up1q fundamental field. The canonical dimension of a relativistic scalar
field is d´2

2
, under the relativistic scaling21 xµ Ñ λxµ, the scaling dimension is equal to

the canonical dimension. Hence,

∆θ “
d´ 2

2
. (4.5.6)

By injecting (4.5.6) in (4.5.2), and by adding a bit more of details on the coefficients
necessary to understand the case ∆θ “ 0, we obtain

〈θpxqθp0q〉 9 Γ
`

d
2
´ 1

˘

|x|d´2
9
d“2

´ ln

ˆ |x|
|x0|

˙

. (4.5.7)

The IR divergence region given by (4.5.3) corresponds to d ď 2. Since, in this dissertation,
we consider d ě 2, it leaves the case d “ 2. Mentioning the coefficient Γ

`

d
2
´ 1

˘

was
important to understand why the case d “ 2 is singular22. We allowed ourselves to not
derive the origin of this Γ as well as other details of the following computations, the reason
is that we do explicitly similar computations in Part III of this thesis.

We observe that we have a radical change of behaviour when the spacetime dimension
d is equal to two. With a proper regularisation, we get a logarithmic behaviour for d “ 2
where x0 is the regulator. We then have both a UV divergence (|x| Ñ 0) and an IR

20A brief recap on the nomenclature: we redefine a field in a field theory such that one of the terms
in the Lagrangian has a coefficient equal to one. All the terms which acquire a coefficient one thanks to
this redefinition are called the “kinetic part” of the theory. Usually, we chose the lowest time-derivative
order term to have a coefficient one. The canonical dimension of the field is then settled by its kinetic
term(s). The scaling dimension of the field is the parameter which tells us how the field transforms
under a given dilatation of the spacetime coordinates. Classically, the scaling dimension of a field is
equal to its canonical dimension. At quantum level, from the RG flow, there might be some (anomalous)
corrections which makes differ the scaling dimension from the canonical dimension. Here, we are looking
to a Gaussian RG fixed point, no such corrections will appear.

21Relativistic because time and space scale the same way.
22The Γ function is divergent when evaluated at zero.
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divergence (|x| Ñ `8). The UV divergence can be dealt with the usual procedures of
renormalisation. However, the IR divergence will remain23. It is worth to emphasise that
this IR divergence is due to the Goldstonic nature of θpxq, i.e. to its masslessness. To
observe it, we go to Fourier space, from (4.5.4) and after integrating ω

〈θpxqθp0q〉 „
ż

dd´1k
e´ipωpkqt´kix

iq

ωpkq
„
IR

ż

d|~k|
|~k|d´2

|~k|
, (4.5.8)

where the dispersion relation of θ is ωpkq “ |~k|, we used the spherical coordinates and

focused on the IR part of the integral (|~k| « 0). The lack of a mass in the denominator
and the polynomial order of the dispersion relation (which by the way is linked to ∆θ)

are the reasons why the integral diverges when d “ 2 and when |~k| Ñ 0. Let us notice
that the regulator |x0| in (4.5.7) can be seen as a mass regulator 1{|x0|. To get rid of
this IR divergence, we could get rid of the massless mode, i.e. of the Goldstone mode.
This is what naturally does the theory. In fact, we will now show that the VEV of the
fundamental Up1q theory is set to zero due to this IR divergence.

Considering θpxq as a free field, we have24 [35]

〈θpxqθp0q〉 “
〈
θ`pxqθ´p0q

〉
“
〈“
θ`pxq, θ´p0q

‰〉
, (4.5.9)

with θ ” θ`` θ´ where θ` is associated to the positive energy modes and is proportional
to an annihilation operator, θ´ is associated to the negatives energy modes and is propor-
tional to a creation operator. We now evaluate the one-point function of the fundamental
Up1q complex field φ:

〈φpxq〉 “
〈
pv ` σpxqqeiθpxq

〉
“ v

〈
eiθpxq

〉
“ v

〈
eiθ

´pxqeiθ
`pxqe1{2rθ´pxq,θ`pxqs

〉
“ v e´1{2〈rθ`pxq,θ´pxqs〉

“ v e´1{2p〈θp0qθp0q〉q

“ 0 for d=2 ,

(4.5.10)

where σpxq is the small massive norm perturbation and v is the classical chosen vacuum.
To go through the different equalities, we are at the free level, hence the relativistic one-
point correlator of σ is zero. The fields σ and θ are not interacting, thus, their mixed
correlator splits into the shape 〈σ〉

〈
eiθpxq

〉
. Thanks to 〈σ〉 “ 0, the mixed correlator

vanishes. Then, we used the Baker–Campbell–Hausdorff formula (up to the quadratic
order). By using (4.5.7) and translational symmetry, we notice that in two-dimensional
spacetime, the VEV vanishes which makes inconsistent the initial hypothesis that Up1q
symmetry is spontaneously broken at quantum level. This concludes the sketch of the
proof by contradiction25.

23Naively said, the bare parameters are already used to deal with the UV divergence. Furthermore, as
it will be displayed, the IR divergence is due to the massless modes only. An efficient way to renormalise
the IR divergence will be to simply get rid of these massless modes. These massless modes being the NG
modes, we can remove them by suppressing the SSB.

24This is the non time-ordered 2-point correlator. However, we will evaluate it at the two same space-
time points. Hence, we will be able to use the time order propagator (4.5.7) to evaluate it.

25The physical interpretation we gave to Coleman’s theorem was that it is due to large quantum
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It should be emphasised that it is the massless nature of the NG modes which leads
to the logarithmic behaviour (4.5.7) – cf. (4.5.8). If they were massive, we would not
have had a CFT and the two-point correlator would then be an exponential decrease
with an argument weighted by the mass of the considered particle. This explains why
Coleman’s theorem does not exclude the spontaneous breaking of discrete symmetries in
two dimensions. This is because such symmetries do not lead to Goldstone modes, i.e. to
massless particles “free” in the IR. The same comment holds for small explicit breaking of
symmetries. In this case, the NG candidates will be pseudo-Goldstone modes with masses
hierarchically smaller than the rest of the massive spectrum. These masses can anyway
play the role of IR regulators and so they permit to avoid the IR divergence. Hence,
explicit symmetry breaking (even a small one) is tolerated by Coleman’s theorem.

A wondering we could have on our sketch of the proof could be that we worked all the
time with the free theory of the perturbations. Intuitively, switching on the interactions
will lead to another UV renormalisation but, this new renormalisation will not alter the
massless nature of the NG modes since it is symmetry protected. Hence, the IR divergence
will remain and the consistent way to fully renormalise the theory will be to set to zero
the VEV.

Coleman’s theorem can fail for specific relativistic theories. Theories with a large
number N of constituents are known to have ordered phases in the N Ñ 8 limit [26,27].
It can be seen that the large quantum fluctuations are actually suppressed by a 1{N
power [28]

〈φpxqφp0q〉 9
|x|Ñ8

1

|x|1{N ÝÑ
NÑ8

cst , (4.5.12)

where φ is the fundamental field and its two-point correlator probes the ordered structure
of the vacuum26. This is precisely the case for theories which have a holographic dual.
It was shown in [121] that indeed AdS3 holography allows for spontaneous symmetry
breaking in its dual two-dimensional QFT (we will come back on what holography is in
Part II – for now, holography is a tool allowing us to probe large N field theories).

Let us notice that large N theories could a priori be seen as QFT curiosities rather
than proper physical theories. So, the failure of Coleman’s theorem is a rather academic

fluctuations that the VEV is set to zero. It is in fact what we have here. A quantum measurement is
statistical. Therefore, a measurement is given by its expectation value and by its variance. The variance
is what is called the quantum fluctuation. In our case, the variance of a measurement on θ is

p∆θp0qq
2
“
〈
θp0q2

〉
´ 〈θp0q〉2 “ 〈θp0qθp0q〉 , (4.5.11)

where 〈θp0q〉 “ 0 since θ is driven by a relativistic free theory. Notice that this result is true at all
spacetime position thanks to the symmetry of translations. Thus, the divergence of the 2-point correlator
is indeed a divergence of the quantum fluctuations.

26Large scale ordered structure is, under some circumstances, indeed synonym to SSB. The cluster
decomposition tells us that for relativistic theories, at large distance (space-like distance) we have [120]

〈φpxqφp0q〉 „
|x|Ñ8

〈φpxq〉 〈φp0q〉 , (4.5.13)

where x is a spacelike vector. A non-zero result reflects the fact that two measurements at non-causal
distance can be correlated but, these measurements cannot influence themselves (cf. the splitting into
one-point correlators). So, if we have large scale ordering, i.e. large scale correlation, it means that the
VEV is non-zero. Large distance ordering is indeed a sign of SSB.
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discussion. However, in the framework of holographic dualities, such models could describe
sensible gravitational physics.

4.5.2 Non-relativistic extension of Coleman’s theorem

The non-relativistic scenario has been commented by Griffin, Grosvenor, Horava and
Yan [17]. The main difference is that now the free theory of NG modes can lead to a
non-trivial canonical conjugation among NG modes as it has been seen for the type B
NG modes by studying (4.2.51). Furthermore, the free theory is not anymore constrained
by Lorentz symmetry, thus, the order of the spatial derivatives can be higher than the
usual second order. Having this in mind, [17] based their argumentation on the intuition
that no spontaneous symmetry breaking can occurs when the scaling dimension of the
NG modes is smaller or equal than zero, in analogy to the relativistic case (4.5.3). The
sketch of the reasoning goes as follow, if we idealise the free theory of the NG modes, we
respectively have for the type A NG modes and for the type B NG modes27

SFree Type Arπs “

ż

dtdd´1x pBtπBtπ ´ c B
n
i π B

n
i πq ,

SFree Type Brπ
1, π2

s “

ż

dtdd´1x
´

π1
Btπ

2
´ π2

Btπ
1
´ cj B

n
2
i π

j
B
n
2
i π

j
¯

,

(4.5.14)

(4.5.15)

where we have already reabsorbed the VEV factor into the definition of the π fields which
are the NG fields (this means that the π fields have the same canonical dimensions than
the fundamental fields, and by extension, the same scaling dimensions). For simplicity, we
considered the two canonicaly conjugated type B NG fields to have the same order in the
spatial derivatives. In (4.5.14) and (4.5.15), we can observe that we have a non-relativistic
scaling

xi Ñ λxi ,

tÑ λn t ,

π Ñ λ´∆π π ,

(4.5.16)

(4.5.17)

(4.5.18)

where, respectively for type A NG modes and for type B NG modes, we have

Type A: ∆π “
d´ 1´ n

2
,

Type B: ∆π “
d´ 1

2
.

(4.5.19)

(4.5.20)

Moreover, we still have the spacetime translation symmetries and the spatial rotation
symmetries. Thus, the 2-point correlator at zero time but at two saptial different points
has the shape

〈πp0, xqπp0, 0q〉 9 1

|x|2∆π
. (4.5.21)

We recover the idea that we have an IR divergence (|x|Ñ `8) when ∆π ď 0 (again, the
case ∆π “ 0 should be dealt with more care). This suggests that, thanks to (4.5.19), when

27Since we are taking for granted the classification type A and type B NG modes, it means that we
implicitly make the assumption to be in the range of Theorem 3 and its extended conjecture.
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we solely have type A NG modes, we do not have SSB of continuous internal symmetries
at quantum level when

Solely type A, no SSB when: d ď n` 1 , (4.5.22)

where 2n is the number of spatial derivatives in the free theory. Thanks to (4.5.20), when
we solely have type B NG modes, we do not have SSB of continuous internal symmetries
at quantum level when

Solely type B, no SSB when: d ď 1 , (4.5.23)

which never occurs since d ě 2.
We can notice that for type A NG modes, we consistently recover the relativistic case

when n “ 1 (the true relativistic case is when the coefficient c “ 1 also). Concerning the
type B NG modes, they do not prevent the spontaneous symmetry breaking at quantum
level in any dimensions. The intuition could be that a type B NG mode has a gapped
partner which also corresponds to a fluctuation in one of the broken symmetry directions.
Because this mode is gapped, it does not lead to IR divergences (cf. (4.5.8) for example)
and so, the associated symmetry direction can be spontaneously broken. Of course, it is
a non-trivial mechanism which leads to the idea that the symmetry direction associated
to the gapless type B NG mode can then as well be broken. Let us mention that type
B NG modes can only occur in non-relativistic systems, hence, there is no conflict with
Coleman’s theorem.

The result for the type A NG modes can also be obtained through the Fourier space
where the dispersion relation is ω „ |~k|n:

〈πpxqπp0q〉 „
ż

dd´1k
e´ipωpkqt´kix

iq

ωpkq
„
IR

ż

d|~k|
|~k|d´2

|~k|n
. (4.5.24)

The last integral diverges in the region |~k| Ñ 0 when d´ 2´n ď ´1, i.e. when d ď n` 1,
consistently with (4.5.22). If we reproduce the same reasoning with type B NG modes,
we will not recover (4.5.23). This is because our computations do not take into account
the canonical conjugation structure of the type B NG modes, therefore, this case should
be discussed and analysed more carefully.

We close this discussion on the non-relativistic extension of Coleman’s theorem by
stressing the fact that the presented results come from an argumentation in [17] and
no formal rigorous proofs or computations have been done in this paper. Murayama
and Watanabe presented a computation in [78] where they confirm that SSB leading to
only non-relativistic type A NG modes with linear dispersion relations do indeed follow
Coleman’s theorem (no SSB at quantum level when d “ 2). The idea remains the same
than the Fourier space approach except that they consider a generalisation of (4.2.51) (at
two dimensions there are additional symmetry-allowed terms). Furthermore, they also
emphasise the fact that there is nothing that prevent SSB at quantum level if only type
B NG modes are generated. The non-relativistic scenario of Coleman’s theorem is as well
discussed in [5].

Some of the possible open questions that remain or some points to clarify, at zero
temperature, could be:
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1. What is the critical dimension (i.e. the dimension below which we cannot have SSB
at quantum level) when the theory possesses both type A and type B NG modes ?

2. More explicit computations to consolidate the two statements of [17] are needed.

3. In the strict large N limit, is the spontaneous symmetry breaking recovered at
quantum level like in Coleman’s case ?

4. How Coleman’s theorem extends to the breaking of spacetime symmetries ? The
gist of why it is more complicated is that the dispersion relations of the NG modes in
this case are more involved. Indeed, we might not have isotropic dispersion relations
anymore (we might lose rotational symmetries) and so, possibly have non-analytic
dispersion relations. The Fourier space analysis of the IR divergences is thus less
straight forward.

In Part III of this dissertation we provide an explicit computation to assert the state-
ment of [17] that no spontaneous symmetry breaking that lead to only type A NG modes
can occur at quantum level when d ď n ` 1. This computation is actually a bit more
general since there, n is taken to be real positive greater than one rather than to be a
natural number greater than one. These kinds of theories are called Lifshitz theories and
will be presented in Part III. In the same part of this thesis, we will also show that it
is possible to evade the statement on the critical dimension if we consider strict large N
theories. This will be seen through a holographic computation.

4.5.3 Mermin-Wagner-Hohenberg theorem

A bit prior to Coleman work, a similar discussion has been done at finite temperature
where the thermal fluctuations play a similar role as the quantum fluctuations on the
parameter order. It is the Mermin-Wagner-Hohenberg theorem [122, 123]. It states that
at finite temperature, no continuous spontaneous symmetry breaking can occur for d ď 3
where d is the spacetime dimension. Let us notice that the critical value for d is stricter
than the one for the zero temperature case (Coleman’s theorem) which is consistent with
the idea that now, both quantum fluctuations and thermal fluctuations add up in order
to vanish the order parameter.

In this thesis, we are not discussing thermal field theory, hence, we will not expand
on how Goldstone physics fits with Mermin-Wagner-Hohenberg theorem. A discussion on
the possible NG modes we can have in a thermal theory, at low spacetime dimension, is
done (for example) in [5, 78, 124].
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Chapter 5

Spontaneous breaking of spacetime
symmetries

Until now, we concentrate our study of NG modes (counting rules and classifications) on
the breaking of continuous internal (compact) symmetry groups. We also discussed and
argued that it is reasonable to think that we can extend the already obtained results to the
breaking of continuous uniform symmetries. But concerning the breaking of continuous
non-uniform symmetries, and more specifically of continuous spacetime symmetries, the
analysis is much more involved. A generic counting rule for such symmetry breaking
patterns is still unknown and represents a current active research topic. Because this field
is not yet well established, we will remain perfunctory in our discussion. The latter will
focus on the spacetime symmetry case, the extrapolation to non-uniform symmetries in
general will be commented.

5.1 Spacetime symmetry specificities

We can have a feeling of the reasons why spacetime symmetry breaking is a complex
problem. First of all, many of the spacetime symmetries are non-compact – e.g. dilatation,
translations, boosts,... It means that the useful group theory properties we used so far are
not anymore systematically verified. We did not expand much on it, but we have noticed
that the coset construction can be related to differential geometry. The geometric study
of coset spaces G{H where G is non-compact is more involved. More broadly, taking G
totally general makes more difficult a generic classification of the NG modes, of all the
possible terms in a symmetric-invariant EFT,...

Furthermore, breaking spacetime symmetries usually means to work with a spacetime
dependent background where before it was purely constant. Thus, the functional aspect
of QFT is emphasised. Indeed, to find a stable vacuum, we minimise the energy. When
we look for a constant solution, the energy can be seen as a function defined on a set of
numbers (i.e. a real or a complex space). But when we tolerate for spacetime modulated
vacua, we are forced to consider the energy as it is, i.e. a functional.

Another difficulty is that the effective Lagrangians are less constrained and thus, are
more complicated. If we look at (4.2.45) and (4.2.51), we were able to write them in
a compact form thanks to respectively Lorentz symmetry and rotation symmetry. The
dispersion relations for the NG modes are therefore more involved with less constrained
EFTs and can even be non-analytic. We understand that the classification based on
dispersion relations might have some flaws.

Finally, Derrick theorem [24] suggests that we would need to have higher derivative
terms in the fundamental theory to have stable and physical solitonic solutions. Of course,
this should be qualified but it displays the tendency that even toy models are difficult
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theories. See for instance [45,116,125], some of the papers which are the core of Part II.

We just gave a gist of the technical difficulties associated to spacetime spontaneous
symmetry breaking, but does it affect the counting rules we already know ? The answer
is yes. In fact, even for relativistic fundamental theories, the number of NG modes can
be reduced compared to the number of broken generators. Indeed, [96, 126] studied the
spontaneous breaking of the conformal group down to the Poincaré group. They found
that (for some cases) only one massless mode was present in the spectrum. It appears
that it is the NG mode associated to the breaking of dilatation while the breaking of
the special conformal transformations is not providing additional NG modes1. A simpler
example is the spontaneous breaking of translation and rotation symmetries to a discrete
subset by a crystal lattice. With an explicit computation of the oscillation modes of the
lattice, it can be noticed that the number of NG modes are linked to the breaking of
translations and that the rotations do not provide additional massless excitations. We
can intuitively understand this last result as explained in the paragraph below.

By looking in Figure 5.1, we have an infinite straight rope disposed in a plane Oxy.
By choosing this specific position/configuration, we spontaneously break translation sym-
metry in the x´direction and the rotation symmetry of the plane. We can observe that a
global rotation acting on the rope is equivalent to a modulated action of the x-translation
where the modulation is linear with y. If we extrapolate this information, we have that
a local action of rotation on our rope can always be reproduced by a local action of x-
translation. By definition, an NG mode is a spacetime modulation of the background in
the direction of one of the spontaneously broken symmetries. Hence, the NG mode gener-
ated by the broken rotation is equivalent to the NG mode generated by the x-translation.
So, unlike to the internal case, even before discussing dynamical conjugation between
NG modes, we can already have locking between some broken directions; and thus, a
reduction of the number of independent NG modes. This instinctive reasoning has been
formalised and talked through in [127–129]. We will come back on it once we have gen-
eralised the coset construction for the breaking of spacetime symmetries (we could even
say generalised for a generic breaking pattern – modulo some assumptions).

5.2 The coset construction for spacetime symmetries

The coset construction has been extrapolated to particular cases of spontaneous spacetime
symmetries. In fact, we already mentioned that [96, 126] studied the spontaneous break-
ing of the conformal group down to the Poincaré group. Volkov in [96] displayed a coset
construction for an unspecified group G spontaneously broken to a subgroup H containing
the Poincaré group. This particular extension to spacetime symmetries is explained in
the lecture notes of Ogievetsky [130]. In this framework, it was noticed that, for some
specific symmetry breaking patterns, it is possible to build invariant Lagrangians without

1A possible handwaving argument to understand this result is that there is a conjecture which states
that a Poincaré invariant theory invariant under scaling symmetry is a CFT (meaning, it is as well
invariant under the action of the special conformal transformations). Therefore, starting with a relativistic
EFT, we only need to add one field to it in order to make it scale invariant. For the same prize, we make
it invariant under the full conformal group. Hence, the EFT of a CFT where dilatation and special
conformal transformations have been spontaneously broken needs only one NG field (the one coming
from dilatation breaking) to be invariant under the conformal group [127].
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θ

θ„ θLxy

„ yPx

y

x

Figure 5.1: In this cartoon, we illustrate how a modulated translation on a line can
reproduce a global rotation of this line. This is the schematic reasoning providing that
some NG modes associated to broken spacetime symmetries can be locked together.

requiring all the NG mode candidates. Hence, some of them might be non-physical or
can be massive (e.g., the single dilaton associated to the breaking of dilatation symmetry
and of special conformal transformation symmetries). The conditions when this situation
occurs have been investigated by Ivanov and Ogievetsky in [131]. Based on the more
detailed review [19], we provide in this section a description of the prescription provided
by [96, 130, 131]. The hypotheses of validity of this prescription are not yet well estab-
lished. Thus, the following results should be taken with care and any application of the
prescription to an extended case should carefully be checked.

5.2.1 Effective field theories purely based on group theory

If we try to directly extend the reasoning we made at Subsection 4.2.1 to the case where G
possesses some spacetime symmetries, the process and the computations become relatively
involved2. This is due to the fact that we use the field realisation of G acting on the
fundamental field(s). For internal symmetries, there is not much a difference between
the Lie algebra and its field representation. This is why we were doing the misnomer
of calling tGαu the generators instead of the realisation of the generators. However, for
spacetime symmetries, it is not the case. This because they act as well on the spacetime
coordinates, their field realisation involves derivatives. For example, the field realisation of
a Lorentz generator is Lµν “ ipxµBν ´xνBµq`Sµν . Since the NG fields are the coefficients
of the realisation of the broken generators, due to their coordinates dependence, the usual
commutation relation coming from the algebra is not satisfied anymore [58]:

rGα, π
a
pxqXas “ rGα, π

a
pxqsXa ` π

a
pxq rGα, Xas ‰ πapxq rGα, Xas , (5.2.1)

2For this discussion on the coset construction for the spacetime symmetry case, we use the same
nomenclature and notations as in Subsection 4.2.1. Few details might change but they will explicitly be
stated.
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because the derivatives in the realisation of Gα will act on πapxq. Therefore, all the
computations involving the commutation of two group elements, e.g. to compute (4.2.13),
are more involved compared to the internal case where the usual commutation laws of the
algebra are sufficient (rGα, π

apxqXas “ πapxq rGα, Xas).
To avoid this technical problem, we need to go back to a more abstract picture and

forget (for a while) the fundamental theory. We are going to build tools which will permit
to write EFTs purely based on group theory considerations. So, the prescription proposed
by Volkov et al. is the pure EFT picture while the reasoning proposed at Subsection 4.2.1
was still a bit relying on the fundamental theory (through the way the symmetry group
is realised on the theory and through the way the fundamental fields are parametrised in
terms of the NG fields and other perturbation fields). In some sense, we are recovering
the original idea of the coset construction: the classifications of the non-linear realisations
of G{H̃ where H̃ is a linearly realised subgroup of G. We will not do a mathematical
discussion and we do not claim any mathematical rigour. We will follow the guidelines
given in the review [19] and of course use some other relevant papers which will be cited
at the appropriated time.

Because we use a totally abstract reasoning, we have to build everything from scratch.
In particular, we have to build the NG candidate fields and to define consistent transfor-
mation laws for them (and for eventually additional matter fields and/or gauge fields).
We know that we have at disposal a generic group G and we make the assumption that it
contains the Poincaré group and that the latter is not spontaneously broken. We thus have
an algebra containing, among others, broken generators tXau and spacetime translation
generators tPµu. To define NG candidate fields, in the subspace generated by tXa, Pµu,
we consider a submanifold parametrised by πapxq, where xµ are the algebra coefficients of
Pµ and πa are the algebra coefficients of Xa. The goal is now to build/to define transfor-
mation laws under G such that xµ can be interpreted as Minkowski spacetime coordinates
and πapxq as usual QFT fields (i.e. with usual transformation laws under the Poincaré
group for both xµ and πapxq). These transformation laws for πapxq should as well be non-
linear for G{H, where H is the unbroken subgroup (notice that G{H Ď G{H̃ ñ H̃ Ď H).
This in order for the πapxq to parametrise NG candidates.

Let us emphasis that, since we are at the Lie algebra level, we do have that

rGα, π
a
pxqXas “ πapxq rGα, Xas . (5.2.2)

From this observation, the coset construction for the spacetime symmetry case is vastly
similar to what we did in Subsection 4.2.1. A last important remark is that Gα and Pµ are
both labelised by Greek indices. Since Gα will not be used in the explicit computations,
it will always be clear that, in the rest of this section, a Greek index refers to a spacetime
translation generator.

5.2.2 Hypotheses on the symmetry group

We consider a continuous global symmetry group G which can include spacetime trans-
formations as well as non-uniform symmetries in general. This group G is spontaneously
broken to a continuous subgroup H which contains at least the Poincaré group. We denote
Xa the broken generators, Pµ the unbroken translation generators and TA the remaining
unbroken generators – so, TA contains the Lorentz generators and some other unbroken
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generators (notice the difference with Subsection 4.2.1, where TA was denoting all the un-
broken generators). The subspace generated by TA is, as it will be confirmed a posteriori,
H̃ and, on the contrary to the internal case, it is different from the unbroken subgroup
H. We ask for the following relations

rXa, TAs “ if b
aA Xb ,

rPµ, TAs “ if ν
µA Pν .

(5.2.3)

(5.2.4)

Moreover, we ask H̃ to be a subgroup, thus,

rTA, TBs “ if C
AB TC . (5.2.5)

Notice that it is not anymore systematic because H̃ ‰ H. As already commented at
Subsubsection 4.2.1.2, this classification between broken and unbroken generators is not
unique. However, a redefinition of the generators should still satisfy the commutation
relations requested.

5.2.3 The coset parametrisation and the transformation laws

With a similar approach to the internal case, we define the transformation laws and we
construct the covariant building blocks in the perspective to write invariant EFTs under
G for the NG candidates.

The coset parametrisation is given by

Upx, πpxqq “ eix
µPµeiπ

apxqXa . (5.2.6)

A possible intuition on why there is an additional eix
µPµ factor compared to the internal

case is that the coset parametrisation is built with the objects transforming non-linearly
under the symmetry group3. Now that the translations are explicitly listed in G, and
because the coordinates xµ transform as a shift (so, non-linearly) under the action of the
translations, we intuitively understand that we have to introduce the eix

µPµ factor in the
coset parametrisation4.

Let us notice that we could write the coset parametrisation in another way, in a
product of exponentials with each of them containing one broken generator for example.
This can be useful in practice to simplify some computations.

The Lie algebra elements will be considered as small5 and so, each expansion interven-
ing in the following will be carried out till the order two included. It means for example
that the Baker–Campbell–Hausdorff formula implies

eyex “ ex`y`
1
2
ry,xs

“ ex`ry,xsey ,

ey x e´y “ x` ry, xs ,

(5.2.7)

(5.2.8)

3Let us recall that H̃ in the coset construction G{H̃ is the subgroup which is linearly realised. The
coset parametrisation parametrises G{H̃.

4In the language of cosets, xµ parametrise the coset space pPoincaréq{pLorentzq which is another way
to argue that it should appear in the coset parametrisation [127].

5We consider group elements close to the identity which for NG candidates is consistent since they do
represent perturbations around a VEV.
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where the approximation rx, rx, yss « 0 is considered.
We are now ready to compute the transformation laws. In particular, we will verify

that our coset parametrisation indeed makes sense: xµ are Minkowski spacetime coordi-
nates and πa are NG candidate fields.

Like for the pure internal case, we define the transformation rules under G as

gUpx, πq ” Upx̃, π̃qeiu
Apg,πpxqqTA “ eix̃

µPµeiπ̃
apx̃qXaeiu

Apg,x,πpxqqTA , (5.2.9)

where g P G.
If we look to the transformations under the action of an element generated by Pµ, we

get:

eia
νPνeix

µPµeiπ
apxqXa “ eipx

µ`aµqPµeiπ
apxqXa , (5.2.10)

because rxµPµ, a
νPνs “ 0. By comparison with (5.2.9), we obtain

x̃µ “ xµ ` aµ ,

π̃apx̃q “ πapxq ,

uApg, x, πpxqq “ 0 .

(5.2.11)

(5.2.12)

(5.2.13)

If the action of Pµ is seen as a translation, these transformation laws are consistent
with our interpretation of xµ being spacetime coordinates and πa being fields defined
on Minkowski spacetime. To confirm it, we look how these objects transform under the
Lorentz group:

eiω
πκLπκeix

µPµeiπ
apxqXa “ eipΛxq

µPµeiω
πκLπκeiπ

apxqXa

“ eipΛxq
µPµeipπ

apxq´ωπκπbf
a

pπκqb qXaeiω
πκLπκ ,

(5.2.14)

(5.2.15)

where, at the first line we used the product structure of the Poincaré group, namely,

pΛ, 0qpI, xq “ pΛ,Λxq “ pI,ΛxqpΛ, 0q , Λ ” eiω
πκLπκ . (5.2.16)

We reached the second line (5.2.15) thanks to (5.2.7) and (5.2.3) (Lµν P tTAu). It gives
us

x̃µ “ Λxµ ,

π̃apx̃q “ πapxq ´ πbpxqωπκf
a

pπκqb ,

uπκpg, x, πpxqq “ ωπκ ,

(5.2.17)

(5.2.18)

(5.2.19)

where the brackets in the subindices of the structure constant is because one Lorentz
generator is labelised in such a way, Lπκ. We then have that the xµ transform as Minkowski
coordinates under Lorentz and that the πa fields have a priori non exotic transformation
laws under Lorentz since the latter are based on the usual commutation relations we have
in the spacetime algebras (such as the conformal algebra). In particular, if Xa are internal
symmetry generators, the commutation relations with Lorentz generators are trivial and
the πa are spinless field, consistently with our results from Subsection 4.2.1.

Now that we have verified the consistency of our parametrisation from the point of
view of QFT, we can compute the transformation laws under respectively the unbroken
subgroup (we already have done it for Pµ, it remains under H̃) and the broken subset
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of G. In particular, we still have to check that the πa transform linearly under H̃ and
non-linearly under G{H̃.

Under the action of eim
ATA P H̃, we have

x̃µ “ xµ ´ xνmAf µ
Aν ,

π̃apx̃q “ πapxq ´ πbpxqmAf a
Ab ,

uApg, x, πpxqq “ mA .

(5.2.20)

(5.2.21)

(5.2.22)

If TA are internal generators (f ¨¨¨
Aν “ 0, where the ellipses indicate any indices), we

consistently have x̃µ “ xµ since such symmetries are expected to not act on spacetime
coordinates. In any case, we have that the πa fields transform linearly under H̃.

Under the action of ein
bXb P G{H, we have

x̃µ “ xµ ´ xνnaf µ
aν ´

1

2
nbπapxqf µ

ba ,

π̃apx̃q “ πapxq ` na ´
1

2
πcpxqnbf a

bc ´ n
bxµf a

bµ ,

uApg, x, πpxqq “ ´naxµf A
aµ ´

1

2
nbπapxqf A

ba .

(5.2.23)

(5.2.24)

(5.2.25)

We observe that the πa fields transform non-linearly under G{H as they should in order
to be NG candidates. If we particularise to the action of internal symmetries (f ¨¨¨

bµ “ 0 “

f µ
ba ) and restrict ourselves to the first order, we recover (4.2.22).

All these results have been obtained by using the definition (5.2.9), by considering the
approximated version of the Baker–Campbell–Hausdorff formula (5.2.7) and by applying
the commutation relations of Subsection 5.2.2 in order to shift the g element from the left
to the right and stop when we reached the correct shape of the right-hand side of (5.2.9).

5.2.4 The Maurer-Cartan 1-form

The transformation laws of our fields are non-linear and involved. Therefore, we need to
construct objects which transform covariantly, the latter will be the building blocks of the
EFTs. As we have already seen in the pure internal case, this is achieved by considering
the Mauer-Cartan 1-form

dxµ Upx, πq´1
BµUpx, πq “

dxµ
`

´iA A
µ px, πqTA ` i r

α
µ px, πq e

a
α px, πqXa ` i r

α
µ px, πqPα

˘

.
(5.2.26)

This equality holds because the Mauer-Cartan 1-form takes its values in the Lie algebra
of G and we have an additional term compared to the internal case due to the additional
Pµ in the coset parametrisation (5.2.6). Moreover, we expressed the coefficients of the Xa

generator as a product of r and e, it is a convenient choice for later. It assumes that r
is invertible (e is r´1 times the coefficient of Xa) and we will keep this hypothesis in the
rest of the development.

By computing dx̃µ Upx̃, π̃q´1B̃µUpx̃, π̃q, we obtain the transformation properties of e,
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r and A. With γ “ eiu
Apg,x,πqTA ,

dx̃µ Upx̃, π̃q´1
B̃µUpx̃, π̃q “

Bx̃µ

Bxν
dxνγ Upx, πq´1 Bx

κ

Bx̃µ
Bκ

`

Upx, πqγ´1
˘

“ dxµ
`

γUpx, πq´1
BµUpx, πqγ

´1
` γBµγ

´1
˘

“ dxµ
`

´iA A
µ px, πq γTAγ

´1

`i r α
µ px, πq e

a
α px, πq γXaγ

´1

`i r α
µ px, πq γPαγ

´1
` γBµγ

´1
˘

.

(5.2.27)

(5.2.28)

(5.2.29)

Thanks to the commutation relations of Subsection 5.2.2, we can write

γPαγ
´1
“ h β

α pg, x, πqPβ ,

γXaγ
´1
“ h b

a pg, x, πqXb ,

(5.2.30)

(5.2.31)

where hpg, x, πq is a representation of H̃, with the different indices (Greek letters, lowercase
Latin letters and capital Latin letters) corresponding to different representations of the
same element of H̃. This is coming from the fact that γ P H̃. Thus, we see that the group
G is non-linearly realised through the covariant representation of H̃, namely hpg, x, πq,
where the non-linearity is hidden in the non-trivial dependency of h on g, x, π. By injecting
these results into (5.2.29) and by remembering that dx̃µ “ Bx̃µ

Bxν
dxν with Bx̃µ

Bxν
Bxβ

Bx̃µ
“ δβν , we

can extract the transformation laws of the Mauer-Cartan 1-form coefficients

r α
µ px̃, π̃q “

Bxν

Bx̃µ
r β
ν px, πqh

α
β pg, x, πq ,

e a
α px̃, π̃q “

`

ph´1
pg, x, πq

˘ ν

α
e b
ν px, πqh

a
b pg, x, πq ,

dx̃µA A
µ px̃, π̃qTA “ dxµ

`

A A
µ px, πqγTAγ

´1
` iγBµγ

´1
˘

,

(5.2.32)

(5.2.33)

(5.2.34)

where A A
µ TA is dealt with in a different fashion compared to e and r, this because we

will use it to define a covariant derivative and so, we will need TA to be in a specific
representation of H̃. By analogy to gauge theories, and by the similarity of the laws of
transformation between A A

µ and a gauge field, we call A A
µ the coset connection.

By looking at (5.2.33), we notice that we have an object which depends on the πa

fields and which transforms covariantly under the action G despite that the πa fields
transform non-linearly. This object is the building block we will use in order to write
invariant Lagrangians under G. However, the spacetime coordinates are as well affected
by the action of G since it includes spacetime symmetries. Therefore, the measure ddx of
integration in the action of the EFT is not invariant. To have an invariant theory from an
invariant Lagrangian, we need an invariant measure. This is achieved thanks to (5.2.32),
where r has similar transformation properties than the vielbein in general relativity under
local Lorentz transformations [19,132]. We then call r α

µ the coset vielbein. The measure
ddx detprq is invariant under G. Indeed, by using matrix products, we have

ddx̃ detprpx̃, π̃qq “ ddx det

ˆ

Bx̃

Bx

˙

det

ˆ

Bx

Bx̃
hpg, x, πq rpx, πq

˙

“ ddx det

ˆ

Bx̃

Bx

˙

det

ˆ

Bx̃

Bx

˙´1

det phpg, x, πqq det prpx, πqq ,

(5.2.35)

(5.2.36)
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where det phpg, x, πqq “ 1 since h α
β is defined by

dx r γ P γ´1
“ dx r hP

ñ det pdx r P q “ det pdx r P q det phq

ô det phq “ 1 , assuming pdx r P q ‰ 0 .

(5.2.37)

(5.2.38)

(5.2.39)

Hence, indeed

ddx̃ detprpx̃, π̃qq “ ddx det prpx, πqq . (5.2.40)

At present, we know how to construct an invariant EFT but, in order to allow us
for more generality, we should define a covariant differential operator acting on epx, πq.
In fact, the usual Bµ does not give a covariant transformation law both because the
covariant matrix h has an explicit and implicit dependence in x (we already had the
implicit dependence in the pure internal case) and because xµ is itself transforming under
G.

Let us define r´1 such that

rpx, πq κ
λ

`

r´1
px, πq

˘ β

κ
“ δ β

λ . (5.2.41)

Its transformation rule is obtained through

rpx̃, π̃q κ
λ

`

r´1
px̃, π̃q

˘ β

κ
“ δ β

λ

ô
Bxν

Bx̃λ
r β
ν px, πqh

κ
β pg, x, πq

`

r´1
px̃, π̃q

˘ β

κ
“ δ β

λ .

(5.2.42)

(5.2.43)

So,
`

r´1
px̃, π̃q

˘ β

κ
“
`

ph´1
pg, x, πq

˘ λ

κ

`

r´1
px, πq

˘ ν

λ

Bx̃β

Bxν
. (5.2.44)

From all this, we define a covariant derivative which acts on a field in a given covariant
realisation of G through a linear representation of H̃ (like e),

Dα ”
`

r´1
px, πq

˘ µ

α

`

Bµ ´ iA A
µ px, πqTA

˘

, (5.2.45)

where TA is the realisation of the generator TA in the representation of H̃ in which the
field acted on is. Of course, Bµ should be seen as a diagonal matrix (we are looking at
finite dimensional linear realisation of H̃) where each non-zero entry is Bµ.

To see the covariance of Dα, let us consider a matter field ψi where i is the index of a
finite dimensional linear realisation of H̃, such that ψi transforms under G as

ψ̃ipx̃q “ hijpg, x, πqψ
j
pxq . (5.2.46)

We have

D̃αψ̃
l
px̃q “

`

r´1
px̃, π̃q

˘ µ

α

´

δlj B̃µ ´ iA A
µ px̃, π̃q pTAq

l
j

¯

ψ̃jpx̃q

“
`

ph´1
pg, x, πq

˘ ν

α
hlmpg, x, πq

`

r´1
px, πq

˘ β

ν

´

δmi Bβ ´ iA A
β px, πq pTAq

m
i

¯

ψipxq

“
`

ph´1
pg, x, πq

˘ ν

α
hlmpg, x, πqDνψ

m
pxq ,

(5.2.47)

(5.2.48)

(5.2.49)
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where we developed thanks to (5.2.32), (5.2.34) and (5.2.46). The computation is straight-
forward, the only trick was at a moment to think about hBh´1 “ Bphh´1q ´ Bhh´1 “

´Bhh´1. The reasoning is the same when applied on e a
ν , but a bit more technical. We

have thus shown that Dα is indeed a covariant derivative. Moreover, we have as well see
how we can enrich the theory with additional matter fields with transformation laws of
the form (5.2.46).

At the moment, we have covariant objects: e a
ν , Dα and possibly additional fields ψi.

To have invariant terms in our effective Lagrangian, we need to be able to contract the
indices. Hence, we have to define how to lower and to raise indices. Since we are working
in Minkowski spacetime, we have at disposal the Minkowski metric ηµν . A possible way
to define lowering and raising indices is through the matrices gαβ and gab defined as

gαβ ” ηµνr α
µ px, πqr

β
ν px, πq ,

gab ” ηµνe a
µ px, πqe

b
ν px, πq ,

(5.2.50)

(5.2.51)

where gαβ and gab are respectively numerically defined as gαβ “ pg´1qαβ and as gab “
pg´1qab. As a consistency check, it can be computed that

Dα
” gαβDβ , (5.2.52)

transforms as
D̃α

“ Dρh α
ρ , (5.2.53)

where it should be recalled that ηµν transforms as a tensor under spacetime symmetries
(i.e. diffeomorphisms if we focus solely on the action on the spacetime coordinates).
Therefore,

D̃αD̃α “ Dρh α
ρ

`

h´1
˘ ν

α
Dν “ DρDρ . (5.2.54)

Let us mention that to be rigorous we should have made the computation by applying
Dα on a field, for simplicity, if we take this field to be non-transforming (a scalar under
G), we recover the computation we just did.

5.2.5 Effective field theories for a given symmetry breaking pat-
tern

We are now able to write effective field theories for any given continuous global symmetry
breaking pattern G Ñ H respecting the assumptions, i.e. G and H should contain
the Poincaré group and the algebra commutation relations of Subsection 5.2.2 should be
verified. Such EFTs will have the form

S “

ż

ddx det prpx, πqqL
`

e a
α px, πq, Dα

`

e a
µ px, πq

˘

, . . .
˘

, (5.2.55)

where L is required to be invariant under linear realisations of H̃, which as we have seen
is enough to be invariant under G. The ellipses in L denote higher covariant derivatives.

Finding the most general effective field theory for a given symmetry breaking pattern
is highly involved. First, we have to prove that the most general EFT we can build
with e,De, . . . is equivalent to the most general EFT we can build directly with x and
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π. This is proven for the pure internal case [18] but as far as the author knows, not for
the generic case. Second, once we have the most general invariant Lagrangian, we still
need to write all the possible (inequivalent) Wess-Zumino-Witten terms which again, as
far as the author knows, there is no generic classification of such terms for spacetime
symmetries/non-uniform symmetries. This could be seen as one of the technical reasons
why a counting rule for the NG modes associated to a generic spontaneous symmetry
breaking pattern GÑ H is still an open question.

It can be mentioned that the symmetries can be gauged, indeed, we have at disposal
a coset connection A A

µ px, πq. In this dissertation, gauge symmetries are not our primary
interest, we are therefore not commenting further this aspect.

The requirement to preserve Poincaré group unbroken (or even to ask that it is a
symmetry in the first place) can be restrictive in the study of spacetime symmetry breaking
since most of the physical systems showing a non-trivial condensate define a preferential
frame (the rest frame) breaking then the boosts. On the conceptual level, asking Poincaré
to be included in G can be relevant because high energy physics should be relativistic.
Therefore, any fundamental non-relativistic theories can itself be seen as an EFT of a
UV relativistic theory [32]. In practice, it is of course highly restrictive, especially for
condensed matter applications. However, we can see the coset construction we just derived
as a “recipe”. In the sense that even if we do not satisfy all the assumptions of Subsection
5.2.2, we can apply, and modify according to our case, the procedure and carefully check
step by step the process6. There are many examples in the literature where the EFTs
derived from the coset construction despite being non-relativistic, or breaking translations
and/or boosts, provide successful results, e.g. [32, 102, 128, 129, 134–136]. And of course,
the coset construction we derived for non-relativistic theories in the pure internal case is
one of these successful examples.

From the discussion we had in Section 5.1, and in particular form the example of
Figure 5.1, it appeared that, in the case of spacetime symmetry breaking, the reduction
of NG candidates can happen even prior any discussions on the dynamics. A reduction
of NG candidates can be seen solely based on their definitions and their transformation
properties. However, in our presentation of the coset construction, we did not see such
events. We arrived at the point to write invariant EFTs which means that beyond that
step, the reduction of NG candidates will be dynamical. The reason is that we skipped
a step, we did not compute explicitly the functions e a

α px, πq, r
α
µ px, πq and A A

µ px, πq.
We are going to do it in the following subsection. As we will see, it will lead to a rich
discussion on the potential removal of some NG candidates, where the key word is “inverse
Higgs constraints”.

6An example how the recipe can be extended is when some of the translation symmetries are sponta-
neously broken by extended objects such as membranes. In this case, the broken Pµ are included in the
set tXau and the unbroken translation generators, labelised as P̄µ, are dealt with in the regular way in
the coset parametrisation:

Upx, πpxqq “ eix
µP̄µeiπ

a
pxqXa . (5.2.56)

As we can notice, the NG candidate fields πa are now function of only the unbroken coordinates. This
can be understood from Figure 5.1, where the infinite rope breaking the x-direction tolerates a spatial
modulation only following the unbroken direction, i.e. the fluctuations are spatially dependent of only
the y-direction (considering we are in 2 ` 1-dimensional spacetime). More examples of the breaking of
translations by extended objects can be found in [127,133] and in the references therein.
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5.2.6 Inverse Higgs constraints

Let us compute the functions e a
α px, πq, r

α
µ px, πq and A A

µ px, πq from their definitions
(5.2.26). To do so, we use the commutation relations of Subsection 5.2.2, the Baker-
Campbell-Hausdorff formula till second order and the relation [19]

e´ia
αGαBµe

iaαGα “ iBµa
α

ˆ

Gα `
i

2
aβ rGα, Gβs

˙

`O
`

a3
˘

. (5.2.57)

At second order, we obtain

r α
µ px, πq « δ α

µ ´ πaf α
µa ´

1

2
Bµπ

aπbf α
ab ,

e a
α px, πq « Bαπ

a
´ πbf a

αb ´
1

2
Bαπ

bπcf a
bc ` π

bf λ
αb Bλπ

a
´ πcπbf λ

αc f
a

λb ,

A A
µ px, πq « πaf A

µa `
1

2
Bµπ

aπbf A
ab .

(5.2.58)

(5.2.59)

(5.2.60)

We can notice that terms with no derivatives are present. Hence, contrary to the pure
internal case – that incidentally can be recovered by considering f ...

µa “ 0, the effective
Lagrangians may contain no derivative terms and so, some NG candidates can be massive
(the discussion on NG candidates being systematically weakly coupled at low energy can
as well be affected). In the literature, there are several examples of such a reduction
of the number of massless NG candidates (e.g. [96, 126]). We are evading the intuitive
picture we presented at Subsection 3.1, this intuitive reasoning was considering internal
symmetries for simplicity, where now it is confirmed that the spacetime case/non-uniform
case is much more elaborate.

To study the possibility to have massive NG candidates, we can restrict ourselves to the
quadratic part of the effective theories. Since these theories are built on the contraction
of indices of the covariant objects e, r, D, their quadratic part is of the form

Squad „

ż

ddx det prq
`

e a
α e

α
a ``Dα

`

e a
µ

˘

Dα
peµaq

˘

. (5.2.61)

To be indeed quadratic, it means that e should be of order one and r and D should be of
order zero. Hence, at quadratic order for the EFTs, we have:

r α
µ px, πq « δ ν

µ ,

e a
α px, πq « Bαπ

a
´ πbf a

αb ,

A A
µ px, πq « 0 .

(5.2.62)

(5.2.63)

(5.2.64)

In the goal to have EFTs describing only massless NG candidates and so, to be able to
establish a counting rule for the NG modes, we could eliminate the potentially massive
NG candidates πb in (5.2.63) by imposing by hand epx, πq “ 0. This constraint is con-
sistent with the symmetries because e transforms covariantly and thus, the constraint is
symmetric invariant. However, by doing so, we are trivialising the theory (5.2.61)! This
is of course a cavalier manner to get rid of massive NG candidates. Ivanov and Ogievet-
sky [131] refined this idea and emphasised under which conditions it is possible to impose
similar constraints without trivialising the EFTs.
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The additional hypothesis required for the following discussion is that the broken gen-
erators Xa are in a complete reducible representation of H̃, the same for the translations
Pµ. We will denote with brackets the different irreducible multiplets X

piq
a and P

plq
µ (where

the indices a and µ now labelise the different generators inside respectively the multiplet
piq and the multiplet plq)

rXpiq
a , TAs “ if b

aA X
piq
b , rP plqµ , TAs “ if ν

µA P plqν . (5.2.65)

From this hypothesis, we are ensured that the hpg, x, πq element of H̃ representing the
action of g P G defined at (5.2.30) and (5.2.31) does not mix the different multiplets.
Therefore, from (5.2.33), e a

α px, πq is itself a complete reducible representation of H̃ and
by extension of G (since it transforms under G through a covariant realisation of H̃). The

different multiplets are denoted by e a
α px, πq|

piq
plq . This notation |

piq
plq , when necessary, we

will use it to indicate the multiplet nature of the indices.
From the point of view of the transformation laws, each multiplet e a

α px, πq|
piq

plq are
independent from each other. This means that, we can use only few of them to build an
invariant effective Lagrangian. In particular, for a given multiplet, setting e a

α px, πq|
piq

plq “

0 will not trivialise the theory and it will not spoil the symmetries.
If

rP plqµ , X
pjq
b s Ą if a

µb X
piq
a , f a

µb |
piq

plqpjq ‰ 0 , (5.2.66)

it means that, from (5.2.63),

e a
α px, πq|

piq
plq “ Bαπ

a
|
piq

plq ´ πb|pjqf a
αb |

piq
plqpjq ` . . . . (5.2.67)

We understand that if we impose (5.2.67) to be zero, the obtained equation will be solvable

and we can express the πb|pjq NG candidates in terms of Bαπ
a|

piq
plq . As a consequence,

we are able to eliminate some potentially massive NG candidates without trivialising the
effective theory we are establishing and without spoiling the invariance of the latter.

The constraint
e a
α px, πq|

piq
plq “ 0 , (5.2.68)

under the hypothesis (5.2.65) and the condition (5.2.66), bears the name of inverse Higgs
constraint (IHC) [131]. The name comes from the case when we gauge the symmetries.
In such a situation there are additional gauge fields and sometimes, we can impose a con-
straint like (5.2.68) to eliminate some of these gauge fields in terms of the NG candidates.
Namely, it is sort of the Brout-Englert-Higgs mechanism in reverse.

As always, a good consistency check is that if we retrieve the pure internal case from
this more general picture. In fact, by considering internal symmetries, the commutator
rPµ, Xas is always zero, hence the condition (5.2.66) is never satisfied. No inverse IHC can
be imposed and we recover the idea that there is no apparent reduction of the number of
massless NG candidates without a careful study of their dynamics.

Speaking of the condition (5.2.66), when some translation symmetries are broken, it
is only the unbroken translation generators which have to be considered in (5.2.66) –
consistently with Footnote 6.

After imposing the inverse Higgs constraint, the coset construction is equivalent to
the one we would have done with G1, the reduced symmetry group where we subtracted
the broken generators we got rid of. However, a trace of G would remain in the relative
numerical values of the coefficients of the Lagrangian.
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5.2.7 Does imposing inverse Higgs constraints lead to a loss of
generality ?

Having the possibility to impose inverse Higgs constraints indicate that we do not need all
the NG candidates in order to build an invariant effective Lagrangian under the action of
G. If we want to build the most general effective Lagrangian for massless NG candidates,
for example to establish a generic counting rule for the NG modes based on a non-specific
breaking pattern G Ñ H, we have to ensure that imposing by hand an IHC does not
lead to a loss of generality. The argument is that the fact to be able to impose an IHC
stipulates that the NG candidates we could suppress are potentially massive. Hence, even
if we do not impose the IHC, we can always go at a low enough energy and integrate out
these massive modes. Several examples support this argumentation, see for e.g. [133] and
the references therein. The issue is that it is a reasoning and not a formal proof. Indeed,
(5.2.63) seems to lead to the idea that the πb will be massive. But nothing prevents the
effective Lagrangian to have an unusual form with a non-trivial interplay among its terms
such that πb will end-up massless or with no derivative at all, even at higher orders, and
so to be an auxiliary field with no dynamics or even that πb can be entirely absorbed by
a field redefinition. The conservative approach would then be to impose no IHCs at all,
however, it significantly increases the technical difficulty since we would be dealing with
all the NG candidates7. We thus need to be smart and try to see which IHCs we are sure
we can impose without losing generality. This statement holds also if we want to keep
the massive modes, which IHC can be used to eliminate spurious fields without getting
rid of physical massive modes ? Here are some suggestions:

1. If we have access to the fundamental theory or at least to the VEV and the realisation
of G on the fundamental fields, we can solve the equation

iπapxqXaφpxq “ 0 , (5.2.69)

for πa, where φpxq is the VEV (with a dependence on xµ since we break sponta-
neously spacetime symmetries) and the Xa are the realisation of the broken gen-
erators on the fundamental fields. If (5.2.69) has non-trivial solutions, it means
that some of the NG candidates generates the same fluctuations around the VEV
than a combination of other NG candidates. It is then straightforward that we
can eliminate the dependent NG candidates8. This argument has been provided for

7And even with such a conservative approach, we would not be sure to encompass all the possi-
ble physical cases. Indeed, we built one possible non-linear realisation of G but, there could be other
non-equivalent non-linear realisations which could parametrise the NG candidates [13]. From a more
mathematical point of view, that is what the coset construction is about: classifying the non-linear real-
isations. In particular, the ambiguity on the IHCs could be a signature of this mathematical comment.
Let us notice that we did not have such a problem on the different inequivalent non-linear realisations of
G in the pure internal case. This because we started with the representation of G on our fundamental
field theory, hence, its realisation on the fluctuations, specifically on the NG candidates, was fixed/given.

8This is the formalisation of the idea illustrated in Figure 5.1. Especially, for the example of the
breaking of the x-translation and the θ-rotation, in 2 ` 1-dimensional spacetime px, y, tq, we have that
the VEV has the dependency φpxq. Then,

piπPx ` iθJxyqφpxq “ 0 ô π “ y θ , (5.2.70)

where Px “ iBx and Jxy “ ipxBy´yBxq. We can in fact eliminate one of the two fields as an NG candidate.
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classical relativistic cases in [127] and has been generalised at quantum level and
for non-relativistic theories in [128, 137]. It can be connected to the IHCs in the
following way

(5.2.69) ñ P̄µiπ
a
pxqXaφpxq “ 0 ô

`

´Bµπ
a
´ πcf a

µc

˘

Xaφpxq “ 0 , (5.2.71)

where P̄µ is the realisation of an unbroken translation generator (P̄µφpxq “ 0). We
notice that the factor inside the brackets on the right-hand side of (5.2.71) is an
IHC (5.2.67) under the condition rP̄µ, Xcs Ą Xa. The converse of (5.2.71) is not
ensured to be true but, it means that an IHC might be a signature of a non-trivial
solution of (5.2.69). Hence, if we show it to be true, we can safely impose the IHC
to zero9.

2. In [133], they provide several examples where the potentially massive NG candidates
are in fact auxiliary fields which lead to algebraic equations of motion and can thus
be eliminated from the dynamics. In such case, the IHCs are equivalent to the
EOM. We could then try to see if for the particular physical example at study, the
effective Lagrangian would lead to only massive terms with no derivatives at all for
the potentially massive fields.

3. We have previously commented that the coset parametrisation is not unique (see
Subsection 5.2.3). It appears that the IHCs are sensible to the choice of parametri-
sation [133]. Following how we describe the coset parametrisation, the equations
(5.2.63) might be easier to solve. Sometimes, for a specific parametrisation of (5.2.6)
it is possible that both πa and πb have derivatives in (5.2.67), which makes the IHC
non algebraically solvable. This can be a clue on the relevance or not of the IHC.

4. If we have access to the fundamental fields, we know how many scalar fields are
necessary to describe them. This provides an upper bound on the number of inde-
pendent fluctuations and so, on the number of independent NG candidates. It is
another indication on whether or not we should impose IHCs.

5. It is always easier when we know the answer in advance. If, by another method,
we already have the effective field theory we are trying to build from the coset
construction, it can indicate how to deal with the IHCs. From it, we can obtain
intuition on general rules under which an IHC is physically relevant or not.

9In [129], they showed that if (5.2.69) has a non-trivial solution allowing to express one class of NG
candidates – the class 1 – in terms of another class of NG candidates – the class 2, the Noether currents
associated to the respective symmetries of the NG candidates, Jµ1a and Jµ2a where a are the parameters
of the symmetries, are as well linked together. We have that it exists two functions f ba and Nµ

a satisfying

Jµ2aBµf
b
a “ BµN

µ
a , (5.2.72)

such that

Jµ1a “ f baJ
µ
2a ´N

µ
a . (5.2.73)

In particular it implies BµJ
µ
1a “ 0 ô BµJ

µ
2a “ 0. The relation (5.2.73) can be useful in QFT. The

spectrum of the quantum theory is so that the pole structure of the correlators permits to saturate the
Ward-Takahashi identities. Hence, to satisfy the Ward-Takahashi identities associated to Jµ1a and Jµ2a,
we would need only one NG mode instead of two.
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A conceptual question which is remaining is what is the interpretation of the modes
that we eliminate through IHCs ? When the IHCs eliminates non-physical modes, it is
suggested that these modes are gauge redundancies of the theory [13, 133]. The simplest
situation to see it, is to consider the case of (5.2.69). Let us consider that we have two NG
candidates π1 and π2. These two modes parametrise a fluctuation around the fundamental
VEV φpxq ` δφpπ1, π2q. Injecting this parametrisation in the fundamental theory, we can
extract the perturbative action

Srφ` δφs ” Spertrπ
1, π2

s . (5.2.74)

If we have a non-trivial solution for (5.2.69) of the form

π2
“ fpxqπ1 , (5.2.75)

then Spertrπ
1, π2s is invariant under the gauge transformation

π1
pxq Ñ π1

pxq ` εpxq , π2
pxq Ñ π2

pxq ` εpxqfpxqπ1
pxq , (5.2.76)

because δφrπ1, π2s is invariant thanks to (5.2.75) being a solution of (5.2.69). We therefore
can fix the gauge εpxq to eliminate π1pxq. Discarding π1 through an IHC is then a way to
get rid of a gauge redundancy.

When the IHCs eliminate physical modes, it appears that these are always massive
modes. Hence, it looks that imposing an IHC never eliminates a massless NG candidate
that we should have kept. It discards either a spurious field either a massive NG candidate.
This idea has been argued and tested on several examples in [129].

5.2.8 Commonly accepted conjecture on the inverse Higgs con-
straints

In [129], Brauner and Watanabe proposed a fairly complete picture which is nowadays
commonly accepted. By requiring solely the non-breaking of translation symmetries (thus,
non-relativistic systems are included in the following statement), it is argued that imposing
an inverse Higgs constraint leads to the elimination either of a spurious field (gauge
redundant field, auxiliary field) or of a physical massive field. Therefore, in the optics
to study only massless NG candidates, we can impose all the inverse Higgs constraints.
The most general effective theory built by imposing all the IHCs might differ from the
most general effective theory obtained by imposing none of the IHCs (or only some of
them) and by integrating out the massive fields. However, physically speaking, these two
theories are equivalent since we are going to use either experiments or the fundamental
theory to tune the coefficients of these two effective fields theories. Thus, they will provide
the same physical predictions. The only ambiguity remaining from the IHCs is when we
want to study the massive NG candidates as well. In this case, imposing or not an IHC
might spoil the analysis since, solely based on group theory, we do not have (yet) concrete
arguments to know in advance if this IHC should/can indeed be imposed. The only way
out is through experimental measurement or via an access to the fundamental theory.

By using this conjecture, we can have a good intuition on how the counting rules
for NG modes will operate for a generic symmetry breaking pattern G Ñ H, where the
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Poincaré group is both in G and in H. In this case, each of the broken generator provides
an NG candidate. We reduce this number with the number of independent IHCs and this
should provide the number of NG modes since we have seen that a relativistic EFT does
not lead to canonical conjugation among NG candidates. For non-relativistic theories, it is
of course much more involved because we still have to build the most general EFT (with all
the possible Wess-Zumino-Witten terms), somehow tune this EFT with the fundamental
theory (we have already seen in the pure internal case that it was not possible to have
a counting rule for non-relativistic theories solely based on group theory) and study the
canonical conjugation structure of this EFT.

5.2.9 Closing words on the coset construction for spacetime
symmetries

In this section, we have presented the coset construction for symmetry breaking patterns
involving spacetime symmetries and non-uniform symmetries in general. The develop-
ment has been established based on constraining hypotheses. The commutation relations
of Subsection 5.2.2 appear to be primordial for the most important result which is that
we successfully build objects which transform non-linearly under G but have covariant
representation of H̃ – the key formulas are (5.2.30) and (5.2.31). It allows us to circum-
vent the difficulty to write invariant theory under non-linear realisations of G. However,
concerning the assumption to consider Poincaré symmetry to be present and unbroken,
it seems reasonable that we can relax this hypothesis. In fact, we mainly used it to
show that the NG candidates we build at Subsection 5.2.1 are well defined fields in the
language of QFT. This is a pure formal aspect which in practice, could be evaded by a
proper discussion on the nature of the fields and how they connect with the spacetime
they are defined on. Because we are mainly dealing with continuous scalar fields (the NG
candidates), keeping only the continuous translation spacetime symmetries at the funda-
mental level (i.e. in G but not necessarily in H) seems a fair relaxation of the hypotheses.
Several coset construction computations have provided good results in non-relativistic
frameworks [128,129,134,135].

The coset construction displays the interesting feature that it might be possible to get
rid of spurious fields and of massive fields without doing any explicit dynamical compu-
tations. These possibilities are encoded in the inverse Higgs constraints. The conjecture
of Brauner and Watanabe on when to impose these IHCs takes place in the relaxed hy-
pothesis framework we commented just above. But it additionally requires that spacetime
translations are not spontaneously broken. Following this conjecture, we can safely impose
all the possible IHCs if we want to solely focus on the massless NG candidates, however,
some ambiguities remain on which IHCs to impose if we want to include the massive NG
candidates as well.

We illustrate the coset construction for spacetime symmetries and the IHCs by a
concrete example in appendix B in Section B.2. The standard relativistic superfluid
EFT [138] is derived. However, we recommend reading the next section on the chemical
case before to have a glance at it. This because the superfluid condensate is usually made
possible via the introduction of a chemical potential.

Some possible outlooks could be to test how strong the conjecture of Brauner and
Watanabe is and to which extend it remains true. This can be done through toy models.
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In Part II of this thesis, toy models displaying spacetime symmetry breaking patterns
are studied. Some are in the exact assumption framework of the conjecture and other
are slightly outside (for example, some are breaking spatial translations). By comparing
the number of massless NG modes, we obtain by explicit computation of the spectrum to
the number predicted by the conjecture (i.e. by imposing all the IHCs and by discussing
the possible dynamical reduction of the remaining NG candidates) we will be able to
do a consistency check of the conjecture and of its extension to spacetime translation
breaking. Another possible interesting discussion might be to focus on the breaking of
non-uniform symmetries10. These are less technical symmetries because they do not act
on spacetime coordinates but they nevertheless remain subtle (we do not have yet a well
proven counting rule for them). They are non-internal and so, the condition (5.2.66) to
have IHCs can apply on them. The non-uniform symmetries seem to be a good in between
case to acquire some knowledge and some intuition on the concern we have concerning
the IHCs and the coset construction in general. The motivation is also practical because
as it is explained in Appendix D in Part II, they play a major role (via the polynomial
shift symmetries) in fracton physics – the physics of modes with reduced mobility where
their restricted dynamics is symmetry originated.

5.3 A brief come back on Goldstone physics at finite

density

We commented in Section 4.4 that introducing a chemical potential µQ for a conserved
charge Q whose associated internal symmetry is spontaneously broken is equivalent to
consider a background solution of the theory |µy which spontaneously breaks time trans-
lation following

pH ´ µQQq |µy “ 0 . (5.3.1)

As we can observe, if the internal symmetry generated by Q is spontaneously broken,
time translation generated by H is also spontaneously broken, but, the diagonal direction
pH ´ µQQq is not11. We can then study the low energy spectrum of the theory from the
perspective of the coset construction for spacetime symmetry breaking. And see if we
recover similar results to Theorem 4.

Such an analysis has been done in [13, 46] in the relativistic case. In the paper [46],
they generically study the spontaneous breaking of a uniform symmetry concomitantly
with time translation (Lorentz boosts are as well broken) so that the diagonal direction

10In our discussion of the coset construction, we might have had this dichotomic view of internal
symmetries VS. spacetime symmetries, but nothing in our development prevents G to include non-uniform
symmetries. Notice that there are non-uniform symmetries which are neither internal neither spacetime
symmetries. For example the linear shift φpxq Ñ φpxq ` αix

i.
11In the language of fields, we can illustrate this situation with the example where the fundamental

field is a complex scalar field φpxq with a Up1q-symmetric dynamics. If the VEV is given by v eiµQt where
v is a constant, we have that Up1q and time translation symmetries are spontaneously broken, however
the transformation

tÑ t` a , φÑ e´ia µQφ , (5.3.2)

still leaves the background invariant. Hence, the diagonal direction H´µQQ in the symmetry Lie algebra
is unbroken.
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of these two symmetries is not spontaneously broken. They call such symmetry breaking
pattern the spontaneous symmetry probing (SSP). They confirmed the physical validity of
SSP by proving that it can indeed be realised, the only requirement is that the diagonal
direction should be fixed in time, namely, the coefficient µQ in (5.3.1) has to be time
independent. They display the non-exotic nature of SSP by showing that from any SSB
of a uniform symmetry with a finite density (j0 ‰ 0, where jµ is the corresponding
Noether current), we can always build a VEV leading to a SSP (the converse is not true).
The iconic example being the non-zero chemical potential case! Strong of this analysis,
in [13] a counting rule emerged. We will label the theorem according to the initials of the
authors: Nicolis, Penco, Piazza and Rosen.

Theorem 6 (NPPR theorem). We consider a Poincaré invariant fundamental theory
satisfying Goldstone’s theorem hypotheses with an internal continuous compact symmetry
group G. We switch on a chemical potential µQ associated to the internal symmetry gen-
erated by Q. According to this, the background state of the theory acquires a VEV leading
to the spontaneous breaking, among other internal generators, of Q. It corresponds to a
spontaneous symmetry probing. We assume that the spontaneous breaking of time transla-
tion and of Lorentz boosts is only due to µQ (i.e. no underlying medium) – in particular,
the symmetries of spatial tanslations and of rotations are preserved. Finally, we consider
µQ much smaller than the coupling scale of the fundamental theory and that the limit
µQ Ñ 0 is smooth and without any phase transition, meaning that we can compare our
result directly with the µQ “ 0 case which displays the same symmetry breaking pattern for
the internal symmetry group G (the Poincaré group is now unbroken). Then, the observed
hierarchically small massive modes of the spectrum are classified in four categories

1. Linear gapless: modes with low momentum dispersion relation ω9 k,

2. Quadratic gapless: modes with low momentum dispersion relation ω9 k2

µQ
,

3. Fixed gap: gapped modes with a low momentum gap ω9µQ, completely determined
by the symmetry breaking pattern (the proportional factor is linked to the structure
constants),

4. Unfixed gap: gapped modes with a low momentum gap generically of order µQ, but
dependent on the free parameters,

where categories 1 and 2 are respectively type I and type II NG modes, and where categories
3 and 4 are massive NG modes. The number of these modes follows the counting rule

n2 ď n4 ď n2 ` n3 , (5.3.3)

with ni, the number of modes of category i.

This counting rule has been derived with the most general effective theory obtained
via the coset construction method for spacetime symmetry breaking where the unbroken
time translation generator P̄0 has been taken to be H ´ µQQ. Let us mention that we
are simplifying some technicalities, we refer to [13] for the full discussion and for the
supplementary – non physically constraining – assumptions.
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Since in addition to the breaking of internal symmetries, the breaking of spacetime
symmetries is as well considered (namely the Lorentz boosts, and homogeneously time
translation), we should obtain equal or larger number of NG modes and of massive NG
modes compared to Theorem 4. This because, more NG candidates are at disposal. Type
A NG modes can be either type I or type II, but most of the time it is type I. Concerning
type B NG modes, these are always type II. The general EFT is involved and it does not
permit to formally affirm that the type I NG modes are in this scenario type A. However,
it is discussed and argued that it should be the case. Thus, if we accept this statement,
the computation in the paper [13] recover the same number of NG modes (i.e. symmetry-
originated massless modes) compared to Theorem 4. From now on, we consider category
1 to be type A NG modes and category 2 to be type B NG modes.

The new results of [13] lie in the numbering of the massive NG modes. The counting
rule (5.3.3) is an inequality on the number of massive NG modes. This can be explained
by the conjecture of Brauner and Watanabe on the IHCs (cf. previous section). Indeed,
we do not have any ambiguity on n1 and n2, the number of massless NG modes, but due to
the questioning on whether or not an IHC can be applied, the number of massive modes is
not unequivocally determined. From the computations, n3 is unambiguously known and
it corresponds to the massive modes of Theorem 4. Therefore, all the uncertainties focus
on n4. The counting rule (5.3.3) informs us that the category 4 modes are the potential
partners of category 2 and category 3 modes. In fact, by referring to Theorem 4, these
latter modes are created by the conjugation of two broken generators which leaves room
for an associated symmetry-originated mode. Actually, the partners of type B NG modes
(i.e. category 2) are systematically category 4. Indeed, thanks to the assumption of the
smooth limit µQ Ñ 0, we recover the same breaking pattern of G but in a pure relativistic
case. Thus, all the previously type B become type A, and their partners have no choice
than becoming type A as well (each broken generator gives one independent NG mode).
Thus, the partner of type B is either category 3 or 4 (a mass going to zero with the
zero limit of µQ) – this is consistent with the generic feature of almost NG modes: their
masses scale with the Lorentz breaking parameter which here is represented by µQ. But
from Theorem 4, category 3 modes come from generators which do not commutes with
Q while the type B NG modes are created by generators commuting with Q. Hence, the
only possibility for type B partners is to be category 4. This explains the lower bound
of (5.3.3). The upper bound, is when all the partners of category 3 mode are category 4.
This is not systematic because these partners can be spurious modes. Indeed, IHCs can be
applied on them since they are associated to broken generators Xa such that rQ,Xas ‰ 0,
which leads to rP̄0, Xas ‰ 0 – where P̄0 is the unbroken time translation used in the
coset parametrisation. The possibility to be eliminated by an IHC can be a signature of
being a spurious field (IHCs either eliminate physical massive modes or they eliminate
non-physical modes). Let us notice that no IHCs can be applied on the partners of type
B modes because rQ,Xas “ 0 “ rH,Xas, so rP̄0, Xas “ 0 “ rPi, Xas, none of the unbroken
translations give a non-zero commutator which is part of the condition (5.2.66) to have
an IHC. Each type B partner is a physical massive field and as already discussed, is a
category 4. This explains once again the lower bound of (5.3.3).

A final comment on Theorem 6 could be on the assumption to take µQ smaller than
the coupling scale of the theory. This is in order to make sure that the massive modes of
categories 3 and 4 are visible in the EFT, i.e. they are not integrated out. This is also
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to introduce a hierarchy with the rest of the gapped mode of the theory and to focus on
Goldstone physics, the physics coming from the symmetry breaking pattern.

Appendix B has for purpose to illustrate the coset construction for spacetime symme-
tries. It is done via an example in superfluidity. Since a chemical potential is often nec-
essary to initiate the condensation, this example can also illustrate Theorem 6. However,
the chemical potential being not the central focus, the illustration is a relatively simple
case of Theorem 6 and so, does not display the interesting modes in this case, namely the
massive NG modes. In Part II of the thesis, we analyse relativistic and non-relativistic
toy models at finite density showing breaking patterns with spacetime symmetries. This
evades a little bit the assumptions of Theorem 6 and so, it permits to see if the counting
rule holds anyway or if at least we recover some qualitative features such as the unfixed
gapped modes.
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State of the art

Goldstone physics takes place in the framework of the spontaneous symmetry breaking
mechanism. The latter is when the state of the system displays a lower number of sym-
metries compared to the dynamics, i.e. compared to the equations of motion or to any
objects from which the EOM are derived. The two main assets of Goldstone physics
are the universality of the results we get and the exactness of these results. The reason
for that is the almost purely symmetry based approach we have to describe effectively
the phenomena at study. Symmetries being a generic feature of physics equations, Gold-
stone physics is recovered in many areas, ranging from particle physics to condensed
matter physics passing by astrophysics. In the same way that symmetries lead to exact
conserved quantities, the spontaneous breaking of the former leads to exact knowledge
on the hierarchically small masses of the spectrum. This is encoded in the theorem of
Goldstone.

Goldstone’s theorem states that when a physical system, in Minkowski spacetime,
has some continuous global symmetries which are spontaneously broken, its spectrum
contains at least one gapless mode. These gapless modes which have a symmetry origin
are called Nambu-Goldstone modes (NG modes). This theorem is very general because the
mathematical requirements on the symmetry group as well as the physical requirements
on the theory (locality, stability and UV completion – let us emphasise that we do not
need to be relativistic) are loose. Furthermore, the theorem is valid both at classical and
at quantum level with or without temperature and/or chemical potentials. However, it
heavily relies on the possibility to have spontaneous symmetry breaking (SSB). Hence,
the analysis under which conditions an SSB is possible have to be investigated. The
same holds for a counting rule and a classification of the NG modes; indeed, Goldstone’s
theorem does not give a precise statement on the number of such modes. Moreover, we
mentioned that Goldstone physics appears in many domains of physics; it means that we
have to look into what is the interplay between the NG modes and these domains.

We have a strong classification and so, a powerful counting rule, when the system,
at zero temperature, possesses unbroken spacetime symmetries (it must include rotations
and translations) and a compact internal continuous symmetry group G which is partially
or completely spontaneously broken. We can relax the hypothesis on the unbroken sym-
metries by tolerating to add any kinds of unbroken symmetries on the condition that the
commutation relations between broken generators Xa and unbroken generators TA remain
systematically in the set of the broken generators (or is zero)

rXa, TAs P Span tXbu . (6.0.1)

Let us notice that it is trivially true when TA are spacetime generators confronted to the
internal broken generators. It is as well conjectured that the classification and the counting
rule stand even if G is a continuous group of uniform symmetries. The classification goes
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as follow: each broken generator Xa provides an NG candidate. The NG candidates might
be matched in order to give one massless mode, a true NG mode, and a massive partner,
the almost NG mode. This happens when

x0| rXa, Xbs |0y ‰ 0 , (6.0.2)

where |0y is the vacuum of the fundamental theory, i.e. the theory prior symmetry break-
ing and so, prior the perturbation study around the vacuum. The NG mode created by a
pair of broken generators satisfying (6.0.2) is called a type B NG mode. Otherwise, if it
is created by a single broken generator, it is a type A NG mode. The total number of NG
modes is then given by the sum of the numbers of type A and type B NG modes. It exists
another classification which from an abstract point of view provides a weaker counting
rule (because it is based on an inequality) but turns out to be sometimes more convenient
in practice. An NG mode having a monomial dispersion relation at low-momentum with
an odd-power in spatial momentum is called a type I NG mode, otherwise it is called a
type II NG mode. It has been proven that nI ` 2nII ě nBG, where ni are respectively the
number of type I NG modes, type II NG modes and the number of broken generators.

From the preceding discussion, we do understand that the case of the breaking of
uniform symmetries is well established. Nevertheless, there are of course some open ques-
tions remaining concerning these kinds of symmetry breaking patterns. A first example
could be the search of the critical dimension of spacetime under which no spontaneous
breaking of uniform symmetries can occur at quantum level. For relativistic theories,
this critical dimension has been found and proved to be two – this is Coleman’s theorem
(nevertheless, large N QFTs in the strict infinite N limit evade this statement). For non-
relativistic theories, there are no results which are known for a totally generic case. But
it is conjectured that if the breaking pattern leads to solely type A NG modes, the critical
dimension is n`1, where n is half of the number of spatial derivatives in the kinetic term
of the effective theory describing the NG modes – i.e. when the scaling dimension of the
non-trivial vacuum of the fundamental theory is zero. Concerning the situation where
there are only type B NG modes, it appears and it has been computed that there is no
critical dimension, SSB can occur at any dimensions of spacetime. The situation where
both type A and type B NG modes are present remains unclear concerning the existence
of a critical dimension of spacetime.

A second example of unsolved issues is the uncertainty on the number of symmetry
originated massive modes when we switch on a chemical potential. The counting rule
based on type A/type B NG modes has been generalised at finite density in order to
count the massless modes (the NG modes) but also to count the massive modes with a
gap entirely fixed by group theory and by a linear dependence on the chemical potential.
However, there are other massive symmetry originated modes which are also scaling with
the chemical potential but this dependency is model dependent. For relativistic funda-
mental theories, the number of such modes is bounded from below and from above. In
any case, relativistic or non-relativistic, we do not have yet a strict counting rule for these
symmetry originated modes with a model dependent gap.

The extension of all the aspects we mentioned so far to a totally generic symmetry
breaking pattern, i.e. where the breaking of non-uniform symmetries is tolerated, consti-
tutes the main current problematic of Goldstone physics. In the literature, the focus is
mainly done on the breaking of spacetime symmetries but it should be mentioned that
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the discussion concerns non-uniform symmetries in general. We do not have, if it ex-
ists, a counting rule for a generic breaking pattern. Nevertheless, we have a powerful
effective field theory (EFT) building tool which relies only on group theory: the coset
construction. It relies on the assumption that the commutation of broken generators with
unbroken generators (modulo the unbroken translation symmetries) always remains in
the set of broken generators. Furthermore, it requires that spacetime translations are
present and unbroken – there are some tricks to anyway describe the breaking of transla-
tions, e.g. a homogeneous breaking where the breaking of translation is compensated by
an additional internal symmetry breaking. Schematically, the requirements on how the
commutation relations should be are

rXa, TAs P Span tXbu ,

rPµ, TAs P Span tPνu ,

(6.0.3)

(6.0.4)

where Pµ are the unbroken translation generators and where Pµ R tTAu. In the internal
symmetric case, the reduction of the number of NG candidates is done purely at the
dynamical level. Indeed, it is the canonical conjugation structure of the most general EFT
which has led to the condition (6.0.2) which eventually causes a reduction of the number
of NG modes compared to the number of broken generators. It appears from the coset
construction, and under the associated assumptions, that for non-uniform symmetries
there can be a reduction of the NG candidates prior any dynamical considerations. Or
more precisely before any dynamical computations, because of course, this reduction of
NG candidates is justified and recovered by the dynamics in the EOM. This apparent
non-dynamical reduction can be directly seen from the transformation laws of the NG
candidates and from their intrinsic definitions. It has been formalised under the notion
of inverse Higgs constraint (IHC). In order to eliminate the NG candidate associated to
the broken generator Xb, an IHC can be imposed if

rPµ, Xbs Ą Xa , (6.0.5)

where Pµ is an unbroken translation generator (there are additional technical requirements
behind the condition (6.0.5); in this summary we focus only on the gist of what Goldstone
physics is). It is conjectured that imposing all the inverse Higgs constraints does not lead
to a loss of generality on the numbering of the (massless) NG modes. Therefore, indication
on their number for a given symmetry breaking pattern can be obtained through the
number of independent IHCs we can impose and on the canonical conjugation structure of
the EFT containing solely the massless modes. However, imposing IHCs might introduce a
loss of generality on the massive symmetry originated modes. So, establishing the criteria
on which we can impose an IHC without any loss of physics constitutes a remaining
research task. In particular, this ambiguity on the number of massive symmetry originated
modes due to the uncertainty revolving around the IHCs is at the origin of the problematic
mentioned in the preceding paragraph on Goldstone physics at finite density.

The study of the breaking of non-uniform symmetries, and in particular of spacetime
symmetries, is conceptually and technically more involved than the pure internal case.
Tackling the different open questions directly with a generic approach might be too am-
bitious. The general strategy for this thesis and for the future research projects is the
following.
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As a first step, toy models will be studied. These toy models should be complex
enough to encode physical subtleties but simple enough to allow for (partial) analytic
computations. We mean by physical subtleties that the model should display breaking
patterns or physical situations which are in the range of the assumptions of the different
conjectures, this in order to check their consistency. It could be interesting to look at cases
which are slightly outside the assumptions of the known theorems and of the conjectures
to probe how far these known results could be extended. We want as much as possible
to remain at the level of analytic computation. The reason is that it allows to keep
track of how the free parameters of the theory interconnect to finally give the masses, the
dispersion relations, the perturbation interactions and most importantly, it permits to
discriminate the final spectrum. Indeed, the parametrisation of the perturbations which
diagonalises the perturbation kinetic matrix is not necessarily the parametrisation which
displays explicitly the NG candidates. Hence, it is not trivial to make the connection
between the final dispersion relations and the NG candidates (which ones have been
suppressed, which ones become massive and which ones are true NG modes ?). It is only
possible if we keep track of all the steps of the computations, where usually in numerical
simulations we are blind with respect to these subtleties. Moreover, if we are analytic, it
is easier to study some parameter limits of our theory, for example when we switch on a
chemical potential and we want to study the mass hierarchy when we send to zero this
chemical potential. The fundamental idea behind the analysis of toy models is to acquire
intuition on our final goal: find generic results.

The second step is to see how strong the intuition we acquired by studying toy models
is. To do so, we have to reproduce the specific studied breaking patterns in exotic field
theories. Holography is the right tool for that. Holography is a strongly VS. weakly
coupled duality between a quantum field theory and a gravitational theory living in a
one higher dimensional spacetime. When the quantum field theory is a strongly coupled
large N theory with N going “strictly” to infinity, its gravity dual is purely classical and
weakly coupled. Therefore, with a classical perturbative computation on the gravity side
of the duality, we can obtain (information on) the quantum correlators of the strongly
coupled large N QFT! Thus, if we succeed to encode the desired breaking pattern in the
framework of holography, we will be able to test our acquired intuition at quantum level
and for complicated theories.

The final step would then be a generic study based on the coset construction where
our intuition from the two preceding steps can serve as guidelines, for example in the
case of the criteria under which we have to impose inverse Higgs constraints. Spacetime
symmetries are technically complicated because they act both on the internal space of
fields but also on the manifold coordinates on which the fields are defined on. An in-
between case could be the non-uniform symmetries which are not spacetime symmetries,
e.g. the spatial polynomial shift symmetries (φpxq Ñ φpxq ` βix

i). They have the same
conceptual subtleties than spacetime symmetries, in particular they can as well be involved
in IHCs since they do not commute with translations. But they are technically less
elaborated since they do not act on spacetime coordinates. Another reason to focus
on non-uniform non-spacetime symmetries is that they can be connected to the notion
of subsystem symmetries, the latter play a major role in fracton physics – see Part II
Appendix D. As we said earlier, because Goldstone physics is universal, it is important
not only to study NG modes from a pure abstract viewpoint but also to see how it fits
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in concrete physical systems and how they interact with other fields. Especially, fracton
physics is recent (it started in the mid-decade of 2010 while Goldstone physics started in
the early decade of 1960) and already provided promising results. Therefore, establishing
a connection with this area of physics can help us in both ways: consolidate and improve
the early results of fracton physics but also learn new things about Nambu-Goldstone
modes.

The three steps we mentioned above should of course not be seen as strictly sequential:
there might be interconnections and overlap projects between these three approaches. And
as often in research, new elements can make us deviate from the original path. These are
just guidelines. In this thesis, the two first approaches are used. We close this state of
the art with the specific open problematic we partially address in this thesis.

� In Part II, we build toy models which display spacetime symmetry breaking, first
the breaking of dilatation alone and then the concomitant breaking of dilatation and
spatial translation. The case with a chemical potential is also dealt with. These
models slightly evade the hypotheses of the known results for spacetime symmetries
and for Goldstone physics at finite density. Thus, it permits a non-trivial discussion
on the counting rules and on the dispersion relations but also on new tools to discrim-
inate in practice which dispersion relation is associated to which NG candidate(s).
Connection with fractonic physics will be made and commented. Finally, these toy
models have the right properties to play the role of Landau-Ginzburg’s models ef-
fectively describing superfluid condensates. Let us mention that the breaking of
translation is homogeneous; the inhomogeneous breaking will be briefly discussed
in Appendix C in Part II.

� In Part III, with an explicit computation in QFT, we prove the conjecture on the crit-
ical dimension of spacetime under which there is no spontaneous symmetry breaking
which would lead to solely type A NG modes. Let us notice that since we use the
classification type A and type B NG modes, it means that we are assuming that
only uniform symmetries are broken. Then, from a holographic computation, with
a counter-example, we show that strict large N limit QFTs are not subject to this
critical dimension. Nothing generic prevents an SSB at lower dimensional spacetime
for strict large N QFTs.

� In Part IV, we provide outlooks based on the general guidelines mentioned above.
Especially, we propose a holographic model which would be able to reproduce the
toy model features of Part II and we discuss on the feasibility of this future re-
search project. The thesis is eventually concluded with a discussion summarising
the highlights of this dissertation.

99



Chapter 6. State of the art

100



Appendix A

Concrete example: ferromagnetism

The aim of this chapter is to illustrate how the results and the technology we introduced
in Chapter 4 can be implemented on a specific observable physical phenomenon. We do
not intend to do precise phenomenological predictions but rather to show how an analysis
of the symmetries alone can already provide the behaviour of the observations, and how
the coset construction can lead to crude quantitative predictions. The two main references
for this part of the script are [18, 25].

The example we are going to look at is ferromagnetism: below a critical temperature Tc
(usually between 102 K and 103 K) certain materials acquire a spontaneous magnetisation.
This magnetisation come from the magnetic moment the elementary constituents (atoms,
molecules, ions, electrons,...) of the considered material can have due to their spin and
their orbital momentum. At high temperature, the thermal agitation randomly orients
the different magnetic momenta and so, by average, there is no global magnetisation. By
decreasing the temperature and depending how the elementary constituents interact, a
magnetic ordering can appear, the global alignment of the individual magnetic momenta
can generate a spontaneous global magnetic field.

We are going to study ferromagnet at low temperature (T ! Tc), low enough such
that we can do the approximation to study the microscopic theory at zero temperature in
order to establish the fundamental state and the excitation spectrum. Afterwards, to get
the thermodynamic quantities, we will apply the statistics on our microscopic spectrum.

Since our purpose is mainly illustrative, we can limit ourselves to a coarse model. As
a first approximation, we can reasonably consider the electrons to be localised on their
corresponding atoms. These atoms will be taken as identical and we will assume that they
are placed at the sites of a 3 (spatial)-dimensional Bravais lattice. Each of them should

possess a non-zero total angular momentum ~S. It is standard practice to call this angular
moment “spin” in reference to the original Heisenberg Hamiltonian, cf. later. We will
already start from an effective theory where the Coulomb interactions combined with the
Pauli exclusion provide effective interactions among momenta described by the Heisenberg
Hamiltonian. We will consider that our system can indeed be effectively described by the
Heisenberg Hamiltonian:

Ĥ “ ´
ÿ

RR’

JRR’ ŜRŜR’ , (A.0.1)

where bold letters correspond to 3-dimensional vectors, R labelises the Bravais lattice
sites and JRR’ depends on R and R’ only by the difference L “ R´R’. We will suppose
JRR’ to decrease fast enough with L such that our requirements on locality are satisfied.
Furthermore, in the case of ferromagnetic materials: JRR’ ą 0 @R,R’.

To minimise the energy, we should maximise the scalar product in (A.0.1). To do
so, all the spins should be aligned. The direction of the global alignment is not fixed by
the energy minimisation principle, let us arbitrarily chose that all the spins align in the
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x´direction.

A.1 Analysis based on solely the symmetries

The interactions between spins depend on the relative orientation of the spins (A.0.1).
Hence, a global rotation of the spins will not alter the dynamics. We thus have a global
SUp2q symmetry. From the coset construction and the counting rule of Section 4.2, we
learned that it is mainly the algebra which matters. Since sup2q – sop3q, for a better
visualisation, we will consider the dynamics to have a global internal SOp3q symmetry.
It is indeed an internal symmetry since we rotate the spins around their attach points –
we do not rotate the crystal (the space).

The vacuum has been established and chosen such that all the spins are aligned along
the x´direction. We thus have a spontaneous symmetry breaking of SOp3q to SOp2q since
the vacuum is invariant under a rotation along the Ox axis but does transform under any
other kind of rotations. We thus have that the generators Ŝy and Ŝz are spontaneously
broken.

Another important symmetry breaking for the coset construction is the spontaneous
symmetry breaking of time reversal symmetry. Indeed, we can visualise the spin of each
atom due to orbital rotation and to intrinsic rotation (the actual spin) of their constituents.
By inverting the flow of time, the direction of rotation will change and so, the spins will
flip. The dynamics is invariant under this flip since only the relative orientation between
the spins matter. However, our vacuum will transform from an alignment along x to an
alignment along ´x.

From the breaking pattern SOp3q Ñ SOp2q, and from the hypotheses of our model,
we can apply both Goldstone’s theorem and the Brauner-Murayama-Watanabe’s counting
rule. We have that

x0| rŜj, Ŝjs |0y “ 0 , j “ y, z ,

x0| rŜy, Ŝzs |0y “ i x0| Ŝx |0y “ i n V S ,

(A.1.1)

(A.1.2)

where n is the density of atoms, V is the volume of our lattice and S is the norm of the
spin of one atom. So,

ρ “ lim
VÑ8

´i

V

ˆ

0 i n V S
´i n V S 0

˙

“

ˆ

0 nV S
´nV S 0

˙

ñ rankpρq “ 2 . (A.1.3)

The low energy excitation spectrum will contain one NG mode and it will be of type B.
Indeed,

nNG “ nBG ´
1

2
rankpρq “ 2´ 1 “ 1 ,

nB “
1

2
rankpρq “ 1 ,

nA “ nNG ´ nB “ 0 .

(A.1.4)

(A.1.5)

(A.1.6)

Since the action of SOp3q does not modify the Lorentz representation of the spins, the per-
turbations around the vacuum in the broken directions of SOp3q will be scalars. The type
B NG mode will thus be a boson and because it is a type B, it will have a quadratic dis-
persion relation. In condensed matter literature, this excitation is either called a magnon
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or a spin wave (since it is a fluctuation in the spin orientation which propagates through
the system).

We have all the necessary tools to get the behaviour of certain thermodynamic quan-
tities. We work in the natural units c “ ~ “ kB “ 1, where kB is the Boltzmann constant.
Let us focus on the heat capacity per unit of volume:

cpT q ”
dε

dT
, (A.1.7)

where ε is the energy per unit of volume.
The magnetic contribution to cpT q is computed from

εm “ ε0 `
ÿ

q

ωq xnqyT , (A.1.8)

where εm is the magnetic energy density, ε0 is the vacuum energy density and xnqyT

is the average number density of magnetic NG modes of wave vector q at temperature
T . Because we are working at finite volume (ferromagnet materials are of finite size),
the values for the wave vector are discretised due to the Born–von Karman boundary
conditions

qi “ 2π
ki
Li

with ki P Z, i “ 1, . . . , d´ 1 , (A.1.9)

where Li is the length of the system in the i-direction.
Since the excitation modes are bosons, xnqyT is given by the Bose-Einstein statistics:

xnqyT “
1

V pe
ωq
T ´ 1q

. (A.1.10)

By going to the large volume limit (the volume is large compared to the lattice spacing),
we can switch the sum for an integral in (A.1.8) and use (A.1.9) to determine the density
of states in the integration measure. We roughly obtain

εm “ ε0 `
1

p2πq3

ż

d3q
ωq

e
ωq
T ´ 1

„ ε0 `

ż `8

0

dq
q4

e
q2

T ´ 1
„ ε0 ` T

5{2

ż `8

0

ds
s3{2

es ´ 1
,

(A.1.11)

where we used the quadratic shape of the dispersion relation, we went to spherical coor-
dinates and we made a change of variable. The most right-hand side integral is given by
the Riemann zeta function

ż `8

0

ds
s3{2

es ´ 1
“ ζ

ˆ

5

2

˙

Γ

ˆ

5

2

˙

, (A.1.12)

which is non-zero and finite.
Finally, we have that the magnetic contribution cmpT q to the specific heat evolves with

temperature as

cmpT q ”
dεm
dT

„ T 3{2 . (A.1.13)
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This thermal behaviour at low temperature is the standard textbook law obtained through
more “usual” condensed matter computations [139]. To compare it with experiment, from
the hypotheses of our model, we have to consider the specific heat as well coming from
the phonons, i.e. the crystal oscillations. These modes are the NG modes coming from
the spontaneous symmetry breaking of continuous spatial translation symmetries to their
discrete subset due to the crystal lattice itself. Since translations commute with them-
selves and with internal symmetries, phonons are type A NG modes (as we have discussed,
it is reasonable to consider the classification of Theorem 3 to hold for uniform symme-
tries) and they are bosons since translations do not modify the Lorenz representation of
the field they act on. Because the interactions between elementary constituents of the
lattice (atoms or molecule) can be simulate with harmonic interactions among closest
neighbours1, the interactions are closely localised in space. Hence, we can suppose that
the EFT will then contain lower order spatial derivative terms, added to spatial rotation
symmetry, the EFT will have a second order spatial derivative term as dominant term.
In such a case, type A NG modes are type I NG modes. Thus, the phonons have linear
relation dispersions. In (A.1.11), phonons will contribute to the energy density following
T 4. So, the specific heat (A.1.13) goes as T 3. Let us mention that there are no additional
NG modes due to the breaking of spatial rotations, this is explained in Chapter 5.

Solely based on the symmetries involved in our model describing ferromagnets, we
displayed that the specific heat receives two contributions2 such that at low temperature,
it has the following behaviour

cpT q “ a T 3{2
` b T 3 , (A.1.14)

where the a and b coefficients quantify respectively the magnetic contribution and the
crystal contribution. If we conduct a measurement on a ferromagnetic material with close
enough properties to our models and that we plot cpT qT´3{2 in function of T 3{2, we should
get a straight line permitting to determine a and b. This can be observed for Yttrium
Iron Garnet from 1.5 to 4.2 K [140]. The plot is given in Figure A.1.

A.2 Coset construction for ferromagnetism

In order to have more quantitative results for our analysis of ferromagnetism, we can build
the effective field theory describing magnons through the coset construction. Indeed, the
breaking pattern SOp3q Ñ SOp2q does satisfy the criteria with which we introduced the
coset construction.

The coset space is

G{H “ SOp3q{SOp2q – S2 . (A.2.1)

The 2-sphere can be parametrised by the azimuthal angle ϕ P r0, 2πr and by the angular
angle θ P r0, πs. Thus, our candidates NG modes π are

πpxq “ pθpxq, ϕpxqq . (A.2.2)

1Each of the elementary constituent is at an equilibrium position, i.e. at the bottom of a potential well.
The potential function expanded at lower order around the equilibrium position is then well approximated
by a parabolic function.

2We made the assumption that the electrons are localised, hence, no additional electronic contribution
to the specific heat is considered.
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Figure A.1: Heat capacity of yttrium iron garnet at low temperature [139,140].

Time reversal symmetry is broken, thus the EFT should contain a single time-deriva-
tive term and this term will be dominant with respect to O pB2

t q since we consider to
be (deep enough) in the IR. Furthermore, the IR region is consistent with the contin-
uum limit, and we will thus make the approximation that we have continuous spatial
translation symmetries and spatial rotation symmetries. Hence, the shape of the effective
Lagrangian is

L pπq “ capπqBtπ
a
´

1

2
ḡabpπqBiπ

a
Biπ

b
`OpB2

t , BtB
2
i , B

4
i q . (A.2.3)

The coefficient ḡabpπq should be a generic metric on S2 invariant under SOp3q. Since
the broken generators form an irreducible representation3 of SOp2q and from the empha-
sised comment in Subsubsection 4.2.1.4, ḡabpπq is given up to a global factor, a natural
particular metric is the canonical metric of the 2-sphere, thus our generic metric is:

ḡabpπq “ u1

ˆ

1 0
0 sin2pθq

˙

, (A.2.4)

where u1 is a general constant. Another way to recover (A.2.4) as the most generic metric
is to solve the system given by the vanishing Lie derivatives of the metric with respect to
the SOp3q generators4.

3The real vector space generated by tiSy, iSzu is an irreducible representation of sop2q – a real algebra
– where the action of sop2q is defined by r¨, iSxs [18]. Indeed, if we try to find a, b, c P R such that
raiSy ` biSz, iSxs “ cpaiSy ` biSzq, we have the constraints a “ bc and c2 “ ´1. The constraint on c
cannot be satisfied because c P R.

4The SOp3q generators realising rotations on the 2-sphere are

ξap1q “ δaφ , ξ
a
p2q “ ´

`

cospφqδaθ ´ cotpθqsinpφqδ
a
φ

˘

, ξap3q “ sinpφqδaθ ` cotpθqcospφqδ
a
φ . (A.2.5)
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The coefficient capπq is a generic covector which should transform as

Lξca “ BaΩξpπq , (A.2.6)

where Ωξpπq is an unconstrained function on S2 and where ξ is any of the Killing vectors
corresponding to the generators of SOp3q . It means that the anti-symmetric tensor

Fab ” Bacb ´ Bbca , (A.2.7)

is invariant under the isometry generated by ξ. Furthermore, since Fab is defined on a
two-dimensional manifold (the 2-sphere), it is defined by one scalar function u10pπq:

Fab “ u10
a

Detpḡq εab . (A.2.8)

The invariance of Fab reduces to

Lξu10 “ ξaBau
1
0 “ 0 , (A.2.9)

for all the rotation Killing vectors ξ. This condition implies that u10pπq is in fact inde-
pendent of π. Combining this observation with (A.2.4), (A.2.7) and (A.2.8) we obtain an
equation for capπq

Bθcϕ ´ Bϕcθ “ u10 u1 sinpθq . (A.2.10)

Because the transformation (A.2.6) of capπq is a symmetry of the theory and it is driven
by an arbitrary function Ωξpπq, we can use it to eliminate one of the components of capπq.
Let us set to zero cθpπq. Thus, a generic solution for (A.2.10) is

cpπq “ p0, u0 cospθqq with u0 ” ´u
1
0u1 . (A.2.11)

We can explicitly check that Lξca “ BaΩξpπq is satisfied for each Killing vector (A.2.5)
when the solution (A.2.11) is considered.5

Our effective Lagrangian is now of the form

L pπq “ u0 cospθqBtϕ´
u1

2

`

BiθBiθ ` sin2
pθqBjϕBjϕ

˘

`OpB2
t , BtB

2
i , B

4
i q . (A.2.12)

To connect our NG fields, θpxq and ϕpxq, to a physical interpretation, we express the
2-sphere with Cartesian coordinates

$

’

&

’

%

sx “ sinpθq cospϕq ,

sy “ sinpθq sinpϕq ,

sz “ cospθq ,

(A.2.13)

were the Cartesian coordinates correspond to the “spin field” (this field provides the spin
we have in our material at the spacetime position x). The fundamental state is when all

5Ωξp1q
“ cst. , Ωξp2q

“ u0
sinpϕq
sinpθq ` cst. , Ωξp3q

“ u0
cospϕq
sinpθq ` cst. .
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the spins are aligned in the x´direction, so, our spin field should be constant over space
and time, and it should point towards the x´direction. This means that

$

&

%

θ0pxq “
π

2
,

ϕ0pxq “ 0 .
(A.2.14)

NG modes correspond to small fluctuations around the vacuum in the broken directions,
hence, to properly describe NG modes we have to infinitesimally fluctuate around (A.2.14)

$

&

%

θpxq “
π

2
` θ1pxq ,

ϕpxq “ ϕ1pxq .
(A.2.15)

Till quadratic order, we have

L pπq “ u0

2
ϕ1Btθ

1
´
u0

2
θ1Btϕ

1
´
u1

2
pBiθ

1
Biθ

1
` Bjϕ

1
Bjϕ

1
q `OpB2

t , BtB
2
i , B

4
i q . (A.2.16)

From Fourier transform we can notice that we will get a unique dispersion relation

ω “
u1

u0

q2 . (A.2.17)

Therefore, we recover the fact that we have a single particle corresponding to a type B
NG mode6.

The two unknown coefficients u0 and u1 can be obtained experimentally. For example,
by inelastic neutron scattering through the medium: if we know how much energy and
momentum have the neutrons before and after the propagation, we can deduce how much
energy and momentum were provided to the system in order to excite the modes of the
solid. We thus get a curve of ω in terms of q. Of course, we have to discriminate the
phonon excitations and the magnon excitations. The magnons are sensible to temperature,
hence, by doing the experiment at various temperature we can discriminate the two kinds
of excitations and extract the dispersion relation of the magnons. Once u0 and u1 are
determined, we can explicitly compute (A.1.11) and obtained a value for (A.1.13) or at
least, an order of magnitude.

6Let us stress that we developed the EFT solely for the spins, the phonons were not considered in this
coset construction. In fact, including the non-homogeneous breaking of translations through a lattice
structure in the coset construction is out of the scope of both coset constructions presented respectively
in Chapter 4 and in Chapter 5. A starting point could be [134].
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Appendix B

Field-theoretical approach of
superfluidity

In this appendix, we are going to illustrate how certain types of superfluid can be phe-
nomenologically described by field theories in the spirit of Landau-Ginzburg’s models1.
The motivation is twofold. First, the effective description of superfluidity is one of the
less involved examples of the coset construction for spacetime symmetry breaking. Sec-
ond, in Part II of this thesis, some of the studied toy models are good candidates to
phenomenologically describe some superfluid, in this appendix we explain why it is the
case.

Let us stress that we are doing here a schematic discussion to give a gist on how certain
superfluid can be described by field theories, we do not claim to be exhaustive nor to be
rigorously precise.

A superfluid is a fluid whose main feature is that it can flow through a thin capillary
with zero resistance [142, 143]. For such kind of flow, the superfluid has zero viscosity.
However, if a cylinder is placed in a superfluid bath and rotated, there is a momentum
transfer from the rotating cylinder to the superfluid, hence, the viscosity is not zero for this
specific kind of motion [144]. We understand that a superfluid does not exactly behave
as a perfect fluid (an analogy can be made with the difference between a superconductor
and a perfect conductor). This specificity of superfluidity can be captured by the two-
fluid model where the superfluid is seen as a mixture of a perfect fluid (zero viscosity) of
density ρs and a normal fluid (non-zero viscosity) of density ρn. The phase transition is
at the thermodynamical point where ρs “ ρn [8]. In this brief illustration of superfluid
physics, we are going to only consider superfluid phase occurring at low temperature.
Furthermore, consistently with the general hypotheses of this thesis, the zero temperature

1Landau-Ginzburg’s theory is a generic approach to study phase transitions in statistical field theories
at equilibrium. The phase transitions are classified through their symmetry breaking patterns. Hence, a
field order parameter mp~xq is defined and the free energy is re-written in terms of mp~xq: F rmp~xqs. The
latter is called the Landau-Ginzburg free energy. The partition function is now expressed as [141]:

Zβrmp~xqs “

ż

Dmp~xq e´βF rmp~xqs . (B.0.1)

We observe that in the zero temperature limit, through the saddlepoint approximation, the thermody-
namical state of the system is given by the stationary point of F rmp~xqs, i.e. the solution of the equations
of motion derived from F rmp~xqs. The thermodynamical conditions can modify the shape of F rmp~xqs.
So, under some conditions, the solution will be trivial – mp~xq “ 0 – meaning that there is no SSB, this
is one possible phase. Under other external conditions, the solution will be non-trivial – mp~xq ‰ 0 –
meaning that an SSB occured, which corresponds to another thermodynamical phase. Hence, at zero
temperature, the shape of F rmp~xqs dictates the phase we are in, and mp~xq inform us of the behaviour of
the system in the associated phase. Let us mention that not all the phase transitions are captured by
Landau-Ginzburg’s classification, e.g. topological phase transitions do not fit in this classification.
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limit will be assumed. In such limit, the perfect fluid component of the mixture prevails.
Thus, the phase transition point will not be reachable, only the superfluid phase itself
will be described and this, with a single fluid model.

B.1 Bose-Einstein condensate superfluids

The low temperature superfluids correspond to bosonic particles which have undergo a
Bose-Einstein condensation and where, given some criteria which will be detailed later,
the condensate displays a superfluid behaviour [8].

A Bose-Einstein condensate (BEC) of a gas of weakly interacting bosons can phe-
nomenologically be described by a classical field. Indeed, at high temperature, the ther-
mal agitation is such that the individual bosons are in a quantum superposition of several
momenta. Their individual probability wave functions (a superposition of plane waves
labelled by the momenta) are therefore compact wave packets with definite individual
positions. When the temperature is reduced, the bosons start to reach quantum states
with lower momenta. Thus, the individual wave functions start to spread and individual
positions start to be less clearly defined. When the phase transition occurs, all the bosons
are in the same zero momentum state, i.e. they form the BEC. The individual probability
wave functions fully overlap each other which leads to a one single collective wave func-
tion – physically, it can be seen as a density wave. This collective wave function is then
phenomenologically described by a field theory [145, 146]. Since we started with weakly
interacting bosons, this field theory is weakly coupled. A perturbative study can thus be
made. From the Feynman diagrammatic description of QFT, we know that the expansion
in terms of the coupling constants can be resumed into an expansion in number of loops
where each loop is weighted by an ~ factor. The corrections due to the loops are small,
therefore, the classical limit ~Ñ 0 gives a good picture of the behaviour of the collective
wave function. Hence, the BEC field behaves like a classical wave. This assertion has
been proven experimentally where two BECs have been collided and it provided a classical
interference pattern2 [147].

As mentioned earlier, the collective wave function is interpreted as a density wave and
since it comes from the quantum formalism, this collective wave is a complex field. Hence,
the field theory ruling the density wave has the Up1q symmetry where the associated
Noether charge corresponds to the density of particles. This conclude the fact that we can
describe BEC phase transition through Landau-Ginzburg’s theory: at low temperature,
we have a classical field theory with a symmetry where the order parameter is the field
itself. When the symmetry is spontaneously broken, it means that the system is in the
BEC phase (non-trivial collective wave). Otherwise, the BEC phase transition has not
occurred (trivial collective wave). This is the spirit of Landau-Ginzburg’s models.

To obtain the different possible flows of the BEC field, we study the different particular
solutions of the equations of motion derived from the classical Landau-Ginzburg field
theory phenomenologically describing the BEC. Being in the zero temperature limit, this
corresponds indeed to the thermodynamical state. One way to do it is to seek for a static

2Quantum waves (i.e. probability waves), due to the collapse of the quantum states after the mea-
surement, form an interference pattern only after several repetitions of the experiment. Here, classical
interference pattern means that the pattern has been obtained in a single shot, showing that the two
considered waves behave indeed as classical waves.
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solution (easier to find) and then obtain a moving solution by applying a boost on our
static solution (usually, the theory has either Lorentz symmetry or Galilei symmetry).
This concept is illustrated in Chapter 7 in Part II of this thesis.

To concretely define “what is moving” and so to define what we mean by the velocity
of the fluid, we use the Up1q internal symmetry of the Landau-Ginzburg field theory. The
associated Noether charge corresponds to the quantity which is travelling. In the case of
Up1q, it is matter transportation. The velocity of the fluid, vµ, is then defined thanks to
the Noether current schematically as jµ9 vµ [8].

In order for our BEC to be a superfluid, it should satisfy some criteria. First, it should
be able to flow and so to be a fluid even at very low temperature. In our above discussion,
we implicitly made the assumption that the gas of bosons does not solidify when lowering
the temperature. The usual example of a bosonic material which, at atmospheric pressure,
does not solidify even at extreme low temperature is 4He. The phonon vibrations are
larger than the lattice spacing causing the lattice structure to vanish and so, making it
impossible for 4He to solidify [144]. The second condition to be a superfluid is that when
the fluid encounter an obstacle, its velocity remains constant. There are two possibilities
to satisfy this last requirement:

1. The flow is topologically protected. For example, the classical solution of the con-
sidered Landau-Ginzburg model can have a vortex structure [148, 149]. From the
Up1q SSB, the coset space3 is G{H – Up1q – S1. In two-dimensional space, we
can then classify topological solitons through the first homotopy group π1pS

1q – Z,
where the equivalence classes of the topological solitons are labelised by the winding
number of the circle at spatial infinity on the internal circle of the coset space [24].
Hence, a flow with a given winding number cannot be continuously deformed to a
flow with another winding number, said otherwise, small perturbations in the sys-
tem cannot change the winding number. So, the velocity – which is related to the
winding number – is stable with respect to these small perturbations.

2. The excitation modes of the fluids are such that they cannot be activated by an
interaction with an obstacle when the fluid has a velocity below a non-zero critical
velocity. Thus, there cannot be energy and momentum exchange between the fluid
and the external world. The velocity remains therefore constant. To evaluate this
critical velocity, Landau proposed an idealised situation: we consider a one spatial
dimensional flow of speed v going around a finite size obstacle of mass M at rest
[144, 150]. By boosting the system, we can choose our frame such that the fluid is
at rest and that the obstacle is moving at speed v (it is a handwaving argument,
we do not keep track of the unphysical sign). In order to slow down, the obstacle
should exchange momentum and energy with the fluid, by conservation of these two
quantities we have

Mv “Mv1 ` p ,

1

2
Mv2

“
1

2
Mv12 ` E ,

(B.1.1)

(B.1.2)

where v1 is the final speed of the obstacle, p is the exchanged momentum and E is

3Here it represents all the possible values of the non-trivial homogenous vacua connected by the Up1q
symmetry.
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the exchanged energy. We get

v1 “ v ´
p

M
,

1

2
Mv2

“
1

2

ˆ

Mv2
´ 2vp`

p2

M

˙

` E .

(B.1.3)

(B.1.4)

By considering the mass of the macroscopic obstacle to be large compared to p, E
and v, we can neglect p2

M
and obtain

E “ v p . (B.1.5)

Coming back to the beginning of our reasoning, v is the velocity of the fluid, E is the
exchanged energy meaning that it corresponds to the energy of the excited modes
of the fluid. These modes are obtained by a perturbative fluctuation around the
background solution of the Landau-Ginzburg model and the dispersion relations of
these perturbations ωppq, after quantisation, correspond to the energy of the excited
modes. In the language of dispersion relations, there is a momentum and energy
exchange between the obstacle and the fluid when the following equality is satisfied:

ωppq “ v p . (B.1.6)

The critical velocity is the minimal velocity for which (B.1.6) can be satisfied.
Graphically, in the pω, pq-plane, it corresponds to the minimal slope of the straight
line starting from the origin and intersecting the dispersion curve ωppq. A cartoon
of a standard dispersion relation for a Helium superfluid is represented in Figure
B.1 [8]. These kinds of curves are obtained experimentally4. We can observe that
the critical velocity is indeed non-zero for a superfluid. Hence, when v is smaller
than vcritical, there is no energy and no momentum exchange which are possible be-
cause there are no excitation modes which can “absorb” them. Thus, the fluid keeps
its speed constant. Let us notice that for a strictly linear dispersion relation, the
critical velocity corresponds to the slope of the dispersion relation. For a quadratic
dispersion relation, the critical velocity is zero since the p-axis is tangential at the
origin to the quadratic dispersion relation.

A typical example of BEC superfluid satisfying Landau’s criteria has been worked
out by Bogoliubov. He derived the Landau-Ginzburg model and the associated (low
energy) dispersion relations of a gas of weakly repulsive bosons with a positive chemical
potential [151]. The positive chemical potential means that it is energetically favourable
for the system to increase the particle density despite the repulsive interaction. The
presence of the chemical potential allows the BEC to form. Other kinds of superfluid
have been obtained through the introduction of a chemical potential [117, 152]. It is
therefore not surprising to study Landau-Ginzburg toy models at finite density in the
perspective of superfluid description.

4Usually, only an analytic effective study can be made and so, analytically we only have access to the
low energy part of the curve (the linear part in the cartoon of Figure B.1).
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ωppq

p

ω

vcritical p

Figure B.1: Typical dispersion relation ωppq of a superfluid, cartoon modified from [8].

Summary of BEC superfluids

As a summary of the above discussion, we explain why some of the toy models of Part
II are good candidates to be Landau-Ginzburg like models describing low temperature
Bose-Einstein condensate superfluids. The studied toy models are theories of classical
fields with a Up1q symmetry, therefore, matter transportation is defined through the Up1q
conserved charge and through the Up1q Noether current, the fields could then represent
BEC density waves. Furthermore, we are working at zero temperature, so the classical
solutions are the thermodynamical states (in the Landau-Ginzburg spirit). Since the
Up1q symmetry is spontaneously broken, it means that the BEC condensate has formed
and we are currently describing the BEC phase. Finally, the dispersion relations are of
“linear” type5 and so, the critical velocities seem to be non-zero – at least from what we
can observe at low energy. The fact that a chemical potential is switched on is, as we
have seen, not inconsistent to what we can find in the literature specifically dedicated
to BEC superfluids. Finally, having a boost symmetry can ease the process of finding
time-dependent (moving) solutions.

B.2 Effective theory for superfluids

In the language of Goldstone physics, the Landau-Ginzburg model describing a low tem-
perature BEC superfluid is seen as the fundamental theory. In the BEC superfluid phase,
there is a symmetry breaking pattern. We can use the tools provided by Goldstone physics,
namely the coset construction, to obtain information on the effective theory. From it, we
can extract the low energy excitation modes and, with a similar development we made in
Appendix A, derive some thermodynamical properties.

Here, we are going to illustrate the coset construction for spacetime symmetries by
computing the effective theory of a zero temperature relativistic superfluid in a 3 ` 1-
dimensional spacetime with a chemical potential µQ associated to a Up1q symmetry. The
spontaneous breaking of the Up1q symmetry leads to the formation of a condensate, indi-

5We put brackets because the dispersion relations are not always analytic but ω „
b

q2
x ` q

2
y can

roughly be interpreted as being linear.
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cating we are in the superfluid phase. This condensate defines a privileged frame, the one
where the condensate is at rest. Hence, the Lorentz boosts are also spontaneously broken.
As we have seen in Section 5.3, this condensate with a chemical potential corresponds to
a spontaneous symmetry probing, which means that the diagonal direction of Up1q sym-
metry and of time translation symmetry is left unbroken. The symmetry generators of
the system are Q, Pµ, Ki and Ji corresponding respectively to Up1q, translations, boosts
and rotations. The symmetry breaking pattern is as follow

Unbroken “

$

&

%

P̄i ” Pi spatial translations
P̄0 ” P0 ´ µQQ time translation
Ji rotations

,

Broken “

"

Q Up1q symmetry
Ki Lorentz boosts

.

(B.2.1)

The commutation relations are obtained from the Poincaré algebra and by using the fact
that Up1q is an internal symmetry. Hence,

rQ, . . .s “ 0 ,

rP̄µ, P̄νs “ 0 ,

rJm, Jns “ ε k
mn Jk ,

rJm, P̄ns “ iε k
mn P̄k ,

rJi, P̄0s “ 0 ,

rJm, Kns “ iε k
mn Kk ,

rKi, P̄is “ iηik
`

P̄0 ` µQQ
˘

,

rKi, P̄0s “ ´iP̄i ,

rKm, Kns “ ´iε
k

mn Jk ,

(B.2.2)

(B.2.3)

(B.2.4)

(B.2.5)

(B.2.6)

(B.2.7)

(B.2.8)

(B.2.9)

(B.2.10)

where η is the matrix of mostly minus Minkowski’s metric and ε is the Levi-Civita symbol.
We can observe that we respect the algebra criteria of Subsection 5.2.2. Indeed, we
schematically have rT,Xs „ X, rT, P̄ s „ P̄ and the H̃ subalgebra is generated by the
rotation generators rJ, Js „ J (and as always, the unbroken generators form a subalgebra
H: rT, T s „ T ). Moreover,

 

P̄i
(

and
 

P̄0

(

are two distinct multiplets of H̃, the same
holds for tKiu and tQu respectively.

The coset parametrisation is chosen to be parametrised as

Upx, π, λq “ eix
µP̄µeiπpxqQeiλ

lpxqKl . (B.2.11)

We can then compute the Maurer-Cartan 1-form

U´1
BµU “ iΛ α

µ Pα ` i
`

´µQδ
0
µ ` Bµπ ` µQΛ 0

µ

˘

Q` e´iη
lλlBµe

iηlλl , (B.2.12)

where the last term is not developed because we will not need it. Because, as we will
see, the boost modes will be entirely expressed in terms of the Up1q mode and from
(B.2.10), it will also construct the coset connection that we are not going to use since we
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will remain at lower order in derivatives (and/or because we will anyway have a general
enough expression). To get (B.2.12), we used the Mτµ labelling of the Lorentz generators:

pMτµq
α
β “ ´δ α

µ ητµ ` δ
α
τ ηµβ ,

pKlq
α
µ “ pM0lq

α
µ “ ´δ αl η0µ ` δ

α
0 ηlµ ,

Λ α
µ “

´

eλ
lKl

¯ α

µ
.

(B.2.13)

(B.2.14)

(B.2.15)

We introduce the field ψ “ π ´ µQt, and we get that the Maurer-Cartan coefficient
associated to Q is

eµpx, ψ, λq “
`

Λ´1
˘ α

µ

`

Bαψ ` µQΛ 0
α

˘

“
`

Λ´1
˘ α

µ
Bαψ ` µQ δ

0
µ . (B.2.16)

Because
 

P̄k
(

and also tQu are multiplets of H̃, we could impose ekpx, ψ, λq “ 0 with-
out spoiling the symmetries and without trivialising the theory. This would correspond
to IHCs to eliminate the boost modes since we have (B.2.8). In our physical situation,
this is a physically consistent constraint. We can show it with the argument (5.2.69). The
fundamental field can be considered as a complex scalar field condensing into a VEV of
the form veiµQt where v is a constant. The realisation of the broken generators on this
background is

Ki “ i
`

t Bi ´ x
i
Bt
˘

,

Q “
1

µQ

`

P0 ´ P̄0

˘

“
i

µQ
Bt ,

(B.2.17)

(B.2.18)

where P̄0 “ 0 on the VEV because it is unbroken. We have that

`

iπQ` iλlKl

˘

veiµQt “ 0

ô π “ xlλl .

(B.2.19)

(B.2.20)

We conclude that, for each spacetime modulated boost Kl on the VEV, there is a space-
time modulation of the action of Up1q on the same VEV that reproduces the same fluc-
tuation. Hence, the boost NG candidates are all equivalent to the Up1q NG candidate.
We can therefore safely impose the IHC

ekpx, ψ, λq “ 0 ô λk “ ´
Bkψ

B0ψ
. (B.2.21)

The building block of our EFT can then be computed. In (B.2.16), by expanding Λ´1

based on (B.2.15) till the second order and by using (B.2.21), we have

e0px, ψ, λq “
`

Λ´1
˘ α

0
Bαψ ` µQ

“ B0ψ ´
1

2

BlψBlψ

B0ψ
` µQ

“
a

B0ψB0ψ ´ BlψBlψ ` µQ

“
a

BµψBµψ ` µQ ,

(B.2.22)

(B.2.23)

(B.2.24)

(B.2.25)
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where to reach the third line, we Taylor developed the square root since (B.2.21) indicates
B0ψ to be much larger than Bkψ considering λk to be a small perturbation.

Because µQ is a constant, we can get rid of it. Also, the coset vielbein is a Lorentz
matrix, which mean that its determinant is one. Thus, d4x is an invariant measure. A
general EFT at leading order is then

S “

ż

d4xP
´

a

BµψBµψ
¯

, (B.2.26)

where P is a generic polynomial function. This result is of course far from being an
original computation, the coset approach for superfluids has already been widely studied
in the literature, e.g. [76, 134]. The result (B.2.26) has been first derived through other
methods [138] and thus, it corresponds to a consistency check of the coset construction
for spacetime symmetries. The generic P function has to be determined either by the
fundamental theory or by experiments [153].

Let us notice that the counting rule of Theorem 6 is verified with n1 “ 1 (the EFT is
relativistic, so the NG mode is type A and type I) and n2 “ n3 “ n4 “ 0.
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Spontaneous symmetry breaking of
dilatation and spatial translations
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Preamble Part II

We have seen in Part I that the spontaneous symmetry breaking mechanism for spacetime
symmetries is both conceptually and technically involved. In this part of the dissertation,
we build and analyse toy models which respectively display a spontaneous symmetry
breaking of dilatation and a concomitant spontaneous breaking of dilatation and spatial
translation symmetries. The goal is to put ourselves close to the edge, and even a bit
beyond, of the validity range of the already established conjectures and theorems on
spacetime symmetry breaking, see Part I. This in order to acquire intuition on how generic
these currently known results are. Another aim for these explicit field theory computations
is to develop new tools to efficiently study a given symmetry originated spectrum, i.e. from
the dispersion relations, to be able to discriminate which NG candidates led to which
dispersion relations. The Ward-Takahashi identities will prove to be useful for that.

This field theory toy model approach is mainly inspired from [116]. It should be
mentioned that it already exists holographic models which study the spontaneous breaking
of dilatation [31, 154, 155] and translations [21, 47]. However, the bottom-up approach of
the holographic duality is blind with respect to the exact shape of the field theory it
describes through the gravitational theory6. In holography, we have a control on the
parameters which tune the spontaneous and the explicit symmetry breaking as well as
other physical quantities as the chemical potential for example but, we do not have access
to the free parameters of the QFT. Hence, we cannot see how a given term in the action
influence the final spectrum. Since we do not have the full story, part of the behaviour
of the dispersion relations cannot be explained. As we will see in Chapter 8, it is the
emergent symmetries in the EFT of the toy model at study which permits to explain
some of the specific features of the dispersion relations. It would have been difficult to
observe this phenomenon from a pure holographic toy model. So, holography offers a
powerful tool to study particular exotic examples of some symmetry breaking patterns
but we have to know in advance what we should expect from these holographic analyses
such that we understand which correlators to compute (often, we want to recover the
Ward-Takahashi identities) and how to interpret the obtained dispersion relations. Field
theory toy models are therefore necessary.

The motivation to focus specifically on dilatation symmetry and spatial translation
symmetry is that these two symmetries play a major role in condensed matter. In the con-
text of phase transitions, the physics around critical points in the phase diagram is scale
invariant, moving away from these points generates, or is induced by, a breaking of dilata-
tion. The study of the breaking of spatial translation has the aim to offer a fundamental
description to lattices formation and to the associated phonons (the lattice oscillations).
Indeed, the effective field theories of phonons are usually built on an already given lattice
structure7. It could be fulfilling to provide possible models which can phenomenologically

6We have briefly introduced what holography is in Part I Chapter 6, we will come back in more details
on this duality in Part III.

7In typical condensed matter circumstances, there is a large hierarchy in energy between the physics
of a crystal formation/melting and its low-energy excitations. These latter determine the thermodynamic
and linear response properties, which can be usually described by low-energy effective theories without

119



Preamble Part II

describe phonons by seeing them as emerging from the spontaneous symmetry breaking of
spatial translations in a continuous fundamental theory. However, because it is a first step
towards toy model building, in this thesis we are going to concentrate on homogeneous
symmetry breaking8 of spatial translation because these symmetry breaking patterns are
technically easier to handle. It does not permit to describe lattices since the observables
(e.g. energy density) remain homogeneous despite the breaking of translation. More con-
cretely, with a homogeneous symmetry breaking of translation, in the wavevector space,
there is no unit cells which are defined. Hence, we are not describing modes evolving
on a lattice with discrete translation symmetries (e.g. the Bloch’s waves [25]). A brief
comment on the non-homogeneous breaking case is made in Appendix C.

In practice these toy models will be build following some guidelines allowing us to
write the simplest models as possible with the required features. In usual field theories,
the scaling symmetry is not present because the parameters of the theory have non-
zero canonical dimensions which introduce specific scales into the system. Hence, a way
to make such theories scale invariant (at least at classical level) is to promote these
parameters to be compensator fields and to add kinetic terms for the latter to make
them dynamical. To break spontaneously the scale symmetry, we need a non-trivial
background, since the canonical dimensions (and so, the scaling dimensions at classical
level) of the fields are non-zero (we will pay attention to be in the right dimensions of
spacetime). To do so, we can start with the standard Up1q Mexican hat theory (cf. Part
I Section 3.4) and promote scaling parameters to be compensator fields. The additional
Up1q symmetry will as well allow us to switch on a chemical potential to probe situations
closer to standard laboratory conditions. The non-trivial background will spontaneously
break dilatation and Up1q symmetry, which offers the opportunity to study the interplay
between these two symmetries. Being relativistic, the zero chemical potential case is in
the exact framework of the conjecture on inverse Higgs constraints (Subsection 5.2.8 in
Part I). When the chemical potential is switched on, we slightly evade the hypotheses
of the conjecture since time translation will be homogeneously broken. Furthermore, by
breaking the dilatation, we moderately run away also from the assumptions of Theorem
6.

To break homogeneously one spatial translation symmetry, we will proceed as in [116].
The idea comes from Q-lattice holography [47] where the original instigator can be traced
back to be Coleman for his Q-ball solutions [156]. The guidelines are the following, we
need an additional uniform symmetry breaking in order to compensate the translation
symmetry breaking and make it to be homogeneous. This additional symmetry will be
Up1q (or internal shifts according to the situation) and we will start with a Mexican hat
potential to break the latter spontaneously. According to Derrick’s theorem [24], we need
higher spatial derivative terms to allow for a space modulated solution. Thus, the usual
Mexican hat potential will now be built with gradient terms, i.e. the quadratic part of
the potential will contain two spatial derivatives and the quartic term will contain four
spatial derivatives. Contrary to the “pure field” Mexican hat potential, the gradient one
has many possibilities for the terms it involves (the different possible ways to combine
four derivatives). We will keep it as simple as possible by considering terms with as many
fields as there are derivatives. We will also consider only one quartic term. The results will

considering the dynamical origin of the lattice.
8See Subsection 2.5.2 in Part I.
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then be generalised by adding complementary allowed quartic terms. The Up1q symmetry
will also be used to switch on a chemical potential. Let us observe that the considered
symmetry breaking pattern evade us a little bit from the assumptions of the conjecture
on IHCs in Subsection 5.2.8 (because we break spatial translation) and we clearly evade
the hypotheses of Theorem 6 since we are dealing with a non-relativistic model and we
are breaking dilatation symmetry as well as a spatial translation symmetry.

All these toy models are tuned in order to respect the required symmetries but also
to allow for non-trivial background in order to spontaneously break these symmetries.
It means that the parameters have to be related to each other in specific fashions (for
example, in the standard Mexican hat potential, the mass parameter should have an
opposite sign compared to the coupling constant). But this is not fine-tuning since these
parameters can anyway have a range of continuous possible values. Moreover, these
models are tuned as well because we look for the simplest cases in order to enable us to
do an analytic analysis. Hence, all the possible terms are not considered. Nevertheless,
the sensitivity of our results will be tested by the introduction of additional possible terms
(and/or by discussing the influence of the dimension of spacetime and by looking for other
solitonic backgrounds).

Finally, we will remain at the classical level. This can be physically relevant in the
perspective of Ginzburg- Landau-like models. In particular, our theories have the required
characteristics to describe superfluid phases (cf. Appendix B in Part I). Let us mention
that we expect our fundamental toy models to be non-renormalisable9 and therefore, they
should be seen as effective field theories.

Let us emphasise that chapters 7, 8 and appendices E, F, G are a minor editing of the
papers [157] and [125], which are published works by the author and his collaborators.
Appendix C corresponds to carefully selected parts of the publication [45] written by
Daniele Musso and by the author of this thesis.

9Introducing a compensator field, asking for dilatation symmetry and tuning the coefficients to allow
for spontaneous symmetry breaking reduce the (relative) number of available independent bare param-
eters of the theory (compared to the number of different fields). We then might not have enough bare
parameters to absorb the divergences. Furthermore, anomalies might appear and evade us from the (clas-
sical) fixed point. By power counting, derivatives tend to reduce the scaling dimension of the coefficients
associated to higher derivative terms. So, outside the fixed point, we might have coefficients with negative
scaling dimension which would make the theory (superficially) non-renormalisable. Of course, all these
ideas should be formally verified by an explicit quantum analysis of the models.
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Chapter 7

Gapped dilatons in scale invariant
superfluids

In this chapter, slightly edited from the paper [157] published by the author of this
dissertation and by his collaborators, we study a paradigmatic model in field theory where
a global Up1q and scale symmetries are jointly and spontaneously broken. At zero density
the model has a non-compact flat direction, which at finite density needs to be slightly
lifted. The resulting low-energy spectrum is composed by a standard gapless Up1q Nambu-
Goldstone mode and a light dilaton whose gap is determined by the chemical potential
and corrected by the couplings. Even though Up1q and scale symmetries commute, there
is a mixing between the Up1q Nambu-Goldstone and the dilaton that is crucial to recover
the expected dynamics of a conformal fluid and leads to a phonon propagating at the
speed of sound. The results rely solely on an accurate study of the Ward-Takahashi
identities and are checked against standard fluctuation computations. We extend our
results to a boosted superfluid and comment the relevance of our findings to condensed
matter applications.

7.1 The context

Scale invariance plays a special role in many-body and high-energy physics. It underlies
the emergence of universality in many instances, such as critical phenomena, Landau-
Fermi liquids or cold atoms at unitarity, to name a few. Scale transformations are a
symmetry either at very low or very high energies compared to the intrinsic scales. In
most cases they represent only an approximate symmetry valid in a restricted regime,
requiring typically a certain degree of fine-tuning in the interactions, the thermodynamic
variables, the external parameters, or the support of additional symmetries. When a scale
invariant system is considered at non-zero particle number or at finite charge density, scale
symmetry is spontaneously broken; such breaking is directly relevant to characterise the
dynamics of the system mentioned above but it can also be useful to extract properties
of large charge operators of a CFT via the state-operator correspondence [158–161].

From Part I of this thesis, we know through Goldstone’s theorem that whenever global
continuous symmetries are spontaneously broken, one expects to encounter gapless exci-
tations in the form of Nambu-Goldstone (NG) modes. When the breaking involves space-
time symmetries, the counting of modes is involved and not yet well established, yet the
presence of a Nambu-Goldstone mode associated to scale invariance, commonly known as
dilaton, is still a possibility.

In the pure internal breaking case, we have seen that in the presence of a non-zero
charge density µ for a conserved charge Q, gapped modes emerge when the effective
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Hamiltonian1
rH “ H ´ µQ does not commute with the broken generators. The gap is

fixed by group theory considerations and is proportional to the chemical potential. In
general, there can also be additional modes whose gap, although proportional to µ, is not
protected by symmetry.

The breaking of scale invariance at finite density presents some similarities with the
story above due to the fact that the generator of dilatations D does not commute with the
Hamiltonian rD,Hs “ iH.2 Accordingly, the commutator with the effective Hamiltonian
is

r rH,Ds “ ´iH . (7.1.1)

For simplicity let us assume that Q is the generator of an Abelian Up1q symmetry. If this
symmetry is spontaneously broken, the ground state is not an eigenstate of Q. However,
it must be by definition an eigenstate of rH, so time-translations generated by H are
spontaneously broken too. In fact, time translations and the Up1q symmetry are broken
to a diagonal subgroup and there is just a single NG mode associated to both generators.

Equation (7.1.1) implies that there is a mixing between the Up1q NG and the dilaton,

then – even though Q commutes with rH – the state produced by the corresponding
charge density J0 applied to the vacuum at some initial time is not an eigenstate of
time evolution. If the dilaton were not dynamical, or if it were integrated out, the mixing
implied by (7.1.1) would be manifested in the form of an inverse Higgs constraint. Indeed,
H̃ is interpreted as an unbroken time translation generator, and H which is locked with
Q corresponds to a broken generator associated to the Up1q NG candidate. We therefore
are in the condition of possibly imposing an IHC which would express the dilaton in terms
of the Up1q mode.

Although interesting, one might wonder whether it is sensible to discuss the physics
of a dilaton in the first place, since the energy density is in general non-zero at non-zero
charge density3. In that case, a scale transformation would change the vacuum energy
density (as determined by the temporal component of the energy-momentum tensor T µν)
by an amount proportional to itself

δ
@

T 00
D

„
@

´irD,T 00
s
D

“ pd` 1q
@

T 00
D

, (7.1.2)

where d`1 is the number of spacetime dimensions. Both here and henceforth, we assume
a relativistic theory, thus there cannot be a NG mode associated to the spontaneous
breaking of scale invariance unless xT 00y “ 0.4 This is quite restrictive. Since a gapless
mode requires a degeneracy of ground states, the theory needs to have a moduli space of

1We are proceeding in analogy to [11,12,135,162].
2Nevertheless, it is a conserved charge because BtD “ H, so its total time-derivative in the Heisenberg

picture vanishes.
3Generically, we have massless modes when the potential has flat directions around the considered

background. If we consider constant solutions, this requirement is recovered at the level of the energy:
we should have flat directions for the energy. Since energy has scaling dimensions, the only possibility
to have a flat direction in the direction of dilatation is that the energy is zero for a non-trivial constant
(scaling) background. Notice that these flat directions associated to dilatation are non-compact. Hence,
from the energetic viewpoint, the requirement to be able to speak of a dilaton is to have a zero energy
at a constant solution and non-compact flat directions around it.

4Note also that the combination of Lorentz invariance (which fixes the expectation value of the energy-
momentum tensor to xTµνy “ Ληµν) and the Ward-Takahashi identity for scale invariance,

@

Tµµ
D

“ 0,

fixes
@

T 00
D

“ 0.
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vacua in addition to scale invariance: these are flat directions in the potential, supposing
we refer to a field theory with a Lagrangian.5

Maybe contrary to expectations, the situation at finite density is similar despite the
fact that the energy density is non-vanishing. If the ground state is homogeneous and
isotropic, the expectation value of the components of the energy-momentum tensor cor-
respond to constant energy density and pressure

@

T 00
D

“ ε,
@

T ij
D

“ p δij . (7.1.3)

Scale invariance implies that the expectation value of the trace of the energy-momentum
tensor will vanish

@

T µµ
D

“ 0, which fixes the equation of state ε “ dp, where d is the num-
ber of spatial dimensions. In addition, we have the usual relation between thermodynamic
potentials at zero temperature, ε ` p “ µρ, where ρ “ xJ0y is the Up1q charge density.
Combining the two, the energy density of the scale invariant theory is ε “ d{pd ` 1qµρ.
At finite density the relevant quantity is not the energy density, but the free energy (den-
sity) given by the effective Hamiltonian T 00 ´ µJ0. A scale transformation changes the
expectation of the effective energy density as follows:

δ
@

T 00
´ µJ0

D

„
@

´irD,T 00
s
D

´ µ
@

´irD, J0
s
D

“ pd` 1qε´ dµρ “ 0 . (7.1.4)

Then, under quite general assumptions, scale transformations do not shift the free energy
of a finite density state in a scale invariant theory and it is legitimate to discuss the
physics of a dilaton mode, at least at zero temperature6.

The observation above does not directly imply the existence of a gapless (or gapped)
mode. In the absence of a general argument that would allow us to fix the properties of a
dilaton mode, we study a concrete model of spontaneous breaking of scale invariance at
non-zero density. We restrict the analysis to a relativistic theory in 3` 1 dimensions, and
keep the analysis classical. Such simple model is informative because it can be interpreted
as an effective action à la Ginzburg-Landau for the order parameter.

The principal highlights of the present study are two. On one side, the characterisation
of the dilaton dispersion relation and particularly its gap. This concerns mainly the effects
of the chemical potential and its role in defining the effective low-energy spectrum. On the
other side, we propose and check a method based uniquely on the study of Ward-Takahashi
identities, that in our setup just correspond to classical conservation equations.

The current chapter is structured as follows. Section 7.2 introduces the model at
zero density, where we emphasise the need for flat directions in the potential. This
condition is relaxed in Section 7.3, where we study the model at non-zero density. In
Section 7.4 the analysis is extended to allow for non-zero superfluid velocity. Each section
has a subsection dedicated to the analysis of the Ward-Takahashi identities, together
with a check of the latter method against standard Lagrangian computations for the
fluctuations. We conclude the chapter in Section 7.5 with further comments on the results,
their interpretation, their applications and possible extensions.

5A related discussion about fine-tuning the cosmological constant to zero in order to have a flat
dilatonic direction is contained in [163–166].

6Let us notice that from the point of view of the free energy, we are looking at a constant background
since it is an eigenstate of H̃.
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7.2 The Model

Consider the standard Goldstone model for a global Up1q symmetry in 4 spacetime di-
mensions

S “

ż

d4x
“

BµψB
µψ˚ ´ λp|ψ|2 ´ v2

q
2
‰

, (7.2.1)

where ψ is a scalar complex field charged under the Up1q symmetry, which acts as ψ Ñ
eiαψ, while λ and v represent – respectively – a dimensionless and a dimensionful coupling.
Given the presence of a dimensionful coupling, the model (7.2.1) does not enjoy scale
invariance. We can nonetheless make it scale invariant if we replace v with a dynamical
real scalar field ξ acting as a compensator:

S “

ż

d4x

„

BµψB
µψ˚ `

1

2
BµξB

µξ ´ λp|ψ|2 ´ ξ2
q
2



. (7.2.2)

The equations of motion are given by

B
2ψ ` 2λp|ψ|2 ´ ξ2

qψ “ 0 , B
2ξ ´ 4λp|ψ|2 ´ ξ2

qξ “ 0 , (7.2.3)

and the generic stationary solution is

ξ “ v , |ψ|2 “ v2 . (7.2.4)

The space of solutions (7.2.4) has two moduli, ξ itself and the phase of ψ. Consider the
fluctuations around (7.2.4), parameterised as follows

ψ “ e
i ϑ?

2v

ˆ

v e
τ?
3v `

ρ
?

6

˙

» v `
τ
?

3
`

ρ
?

6
` i

ϑ
?

2
,

ξ “ v e
τ?
3v ´ 2

ρ
?

6
» v `

τ
?

3
´ 2

ρ
?

6
,

(7.2.5)

where τ , ρ and θ are real. The quadratic action for the fluctuations is given by

Squad “

ż

d4x

„

1

2
BµτB

µτ `
1

2
BµρB

µρ`
1

2
BµϑB

µϑ´ 6λv2ρ2



. (7.2.6)

We thus see that ρ gets a mass 12λv2 while τ and ϑ are massless. We identify the latter
two with the Goldstone bosons for broken scale invariance, the dilaton, and for broken
Up1q symmetry, the Up1q NG. The dispersion relations are trivially relativistic, since
Lorentz symmetry is preserved.

In order to study the low-energy modes about (7.2.4), one can alternatively rely en-
tirely on symmetry considerations and, specifically, on the Ward-Takahashi identities. As
we will show in the next subsection, such symmetry-aware approach permits to obtain
the equations of motion for the low-energy modes in a direct way, which is usually more
transparent than the standard Lagrangian study of the fluctuations.
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7.2.1 Ward-Takahashi identities and low-energy modes

Model (7.2.2) features a conserved Up1q current given by

Jµ “ ipBµψ
˚ψ ´ ψ˚Bµψq , B

µJµ “ 0 , (7.2.7)

while the improved energy-momentum tensor is

Tµν “ 2Bpµψ
˚
Bνqψ ` BµξBνξ ´ ηµνL`

1

3
pηµνB

2
´ BµBνq

ˆ

1

2
ξ2
` |ψ|2

˙

. (7.2.8)

This expression satisfies on-shell the following Ward-Takahashi identities 7

Trµνs “ 0 , B
µTµν “ 0 , T µµ “ 0 . (7.2.9)

We expand around the vacuum (7.2.4) by considering the fluctuation parametrisation
(7.2.5). Up to linear order in the fields, the Up1q current is given by

Jµ »
?

2vBµϑ , (7.2.10)

so that its conservation equation gives the equation of motion for the Up1q NG mode

0 “ BµJµ »
?

2vB2ϑ . (7.2.11)

The energy-momentum tensor expanded to linear order is

Tµν »
v
?

3
pηµνB

2
´ BµBνqτ , (7.2.12)

and the trace Ward-Takahashi identity yields the equation of motion for the dilaton

0 “ T µµ »
?

3vB2τ . (7.2.13)

From (7.2.11) and (7.2.13) we can observe that we recover the two massless modes of
(7.2.6). The Ward-Takahashi computation, however, descends directly from symmetry
arguments, being therefore more convenient (and easier) to apply, especially when dealing
with models more complicated than (7.2.2). In particular, this approach allows to identify
immediately and without ambiguities the nature of each Goldstone boson, simply by
associating every (gapless) mode to the Ward-Takahashi identity that yields its equation
of motion.

It is important to stress that the model (7.2.2) is fine-tuned. Indeed, (classical) scale
invariance dictates that the potential should contain only quartic terms in the scalars,
but the fact that the potential is a perfect square constitutes a fine-tuning, specifically
considered to the purpose of having a flat direction. The latter is of course a necessary
condition for the presence of a low-energy dilaton mode.

The simple argument is as follows. In such a relativistic set-up, scale invariance implies
the absence of any reference scale in the (effective) Lagrangian. If scale invariance is to
be broken spontaneously by a vacuum expectation value (VEV), then the latter must

7The trace Ward-Takahashi identity requires the improvement introduced in (7.2.8).
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be arbitrary. Hence this VEV parameterises a non-compact flat direction. Moreover,
the absence of any reference scale means that the flat direction must also correspond to
a vanishing vacuum energy. The particle which corresponds to moving along this flat
direction is the dilaton. We conclude that any effective theory that aims at describing
spontaneous scale symmetry breaking (among others), must allow for a non-compact flat
direction in its potential.

For instance, if we added a generic term preserving scale invariance but breaking the
exchange symmetry between |ψ| and ξ, namely (without loss of generality)

V “ λp|ψ|2 ´ ξ2
q
2
` λ1p|ψ|2q2 , (7.2.14)

the equations extremizing the potential would become

λψp|ψ|2 ´ ξ2
q “ ´λ1|ψ|2ψ ,

λξp|ψ|2 ´ ξ2
q “ 0 .

(7.2.15)

(7.2.16)

Considering λ1 ą 0 for V to be bounded from below, the only solution is ξ “ 0 “ ψ, i.e.
the flat direction is completely lifted, even though scale invariance is respected.

7.3 Spontaneous symmetry breaking at finite density

In this section we depart from the Lorentz-invariant set-up discussed above, by introducing
a non-zero chemical potential µ for the charge associated to the global Up1q symmetry.
As we will see, we will still be able to identify the dilaton and the Up1q NG, though their
dispersion relations will be modified in an interesting way.

We start with a scale-invariant theory defined by the action

S “

ż

d4x

„

Bµψ
˚
B
µψ `

1

2
BµξB

µξ ´ λp|ψ|2 ´ ξ2
q
2
´ λ1p|ψ|2q2



, (7.3.1)

whose potential corresponds to the extension already introduced in (7.2.14). We are going
to switch on a chemical potential µ for the Up1q symmetry. As it will be seen later on, this
chemical potential introduces a quadratic term going as ´µ2 in the potential which tends
to give a run away behaviour. This is the reason why we introduced the additional λ1 term
into (7.3.1), to stabilise the theory. This will be further commented. As discussed before,
at finite chemical potential, the ground state is no longer determined by the Hamiltonian
H but by the effective Hamiltonian rH “ H´µQ, where Q is the Up1q charge operator. As
we will discuss, this modifies the effective potential of the theory and allows the fields to
acquire a non-zero value. Notably, one can recover the zero chemical potential symmetry
breaking case described by (7.2.2) by means of an appropriate limit for both µ and λ1.
The main result of the present section is to show that the dilatonic mode acquires a gap,
which depends on µ and λ1.

A nonzero chemical potential can be implemented by extracting a time-dependent
phase from the complex field

ψ “ eiµtφ , ψ˚ “ e´iµtφ˚ . (7.3.2)
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The equations of motion then read

B
2φ` 2iµ B0φ´ µ

2φ` Bφ˚V p|φ|, ξq “ 0 , B
2ξ ` BξV p|φ|, ξq “ 0 , (7.3.3)

where V p|φ|, ξq ” V p|ψ|, ξq is given by (7.2.14). Note that these equations can equivalently
be obtained introducing (7.3.2) in (7.3.1), identifying a new effective potential Vφp|φ|, ξq “
V p|φ|, ξq ´ µ2|φ|2 and taking the variation with respect to φ˚, ξ. Although Vφ is not the
true potential (indeed, the energy density is E „ V p|φ|, ξq ` µ2|φ|2), the extrema of Vφ
correspond to solutions of the equations of motion of the original action (7.3.1). We will
show in the following that Vφ determines the ground state for the effective Hamiltonian
rH.

7.3.1 Effective Hamiltonian and ground state

In order to determine the effective Hamiltonian and the associated ground state we need to
find expressions for the Up1q charge Q and Hamiltonian. We will use the usual definitions
in terms of the temporal components of the energy-momentum tensor Tµν and Up1q current
Jµ

H “

ż

d3xT00 , Q “

ż

d3x J0 . (7.3.4)

Then, the effective Hamiltonian at finite chemical potential is determined by the temporal
component of an effective energy-momentum tensor tµν

rH “

ż

d3x pT00 ´ µJ0q ”

ż

d3x t00. (7.3.5)

The Up1q current can be written as follows

J0 “ 2µ|φ|2 ` j0 , Ji “ ji , (7.3.6)

where

jµ “ ipBµφ
˚φ´ φ˚Bµφq . (7.3.7)

Similarly, for the energy-momentum tensor8

T00 “ µJ0 ` t00,

T0i “ Ti0 “ µJi ` t0i “ µji ` t0i,

Tij “ tij ` δij
`

µJ0 ´ 2µ2
|φ|2

˘

“ tij ` δijµj0,

(7.3.8)

(7.3.9)

(7.3.10)

where

tµν “ 2Bpµφ
˚
Bνqφ` BµξBνξ ´ ηµνLφ `

1

3
pηµνB

2
´ BµBνq

ˆ

1

2
ξ2
` |φ|2

˙

, (7.3.11)

and

Lφ “ Bµφ˚Bµφ`
1

2
BµξB

µξ ´ λp|φ|2 ´ ξ2
q
2
´ λ1p|φ|2q2 ` µ2

|φ|2. (7.3.12)

8The notations are such that the capital letters (T00 etc.) refer to the dynamics of pψ, ξq (and by
extension, of φ) dictated by (7.3.1). The low case letters refer instead to the dynamics given by (7.3.12)
which is not the Lagrangian for pφ, ξq but it shares the same potential.
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Notice that from (7.3.9) we have that T0i “ Ti0 implying that the Ward-Takahashi iden-
tities for boost transformations are satisfied, so that the full Lorentz symmetry is still
preserved in the presence of a non-vanishing chemical potential.

The effective potential for Lφ is the one we had identified previously in the equations
of motion (7.3.3)

Vφ “ λp|φ|2 ´ ξ2
q
2
` λ1p|φ|2q2 ´ µ2

|φ|2, (7.3.13)

Since t00 determines the effective Hamiltonian (7.3.5), we see that the ground state will
correspond to the minimum of the effective potential. The effective potential has three
extrema9

ξ “ φ “ 0 ; ξ “ 0, |φ|2 “ v2
“

µ2

2pλ` λ1q
; ξ2

“ |φ|2 “ v2
“

µ2

2λ1
. (7.3.14)

Out of the three extrema (7.3.14), the first two are saddle points and only the last is a
minimum, which is the true ground state of the system. Note that for the true minimum
to exist, and for Vφ to be bounded from below, we need to have λ1 ą 0. In other words,
we need to lift the flat direction that we had at µ “ 0 in order to have a minimum, and
symmetry breaking, when µ ‰ 0.

We now proceed to investigate the low-energy spectrum around this (degenerate) min-
imum.

7.3.2 Nambu-Goldstone dynamics from Ward-Takahashi identi-
ties

We perturb the fields around the ground state ξ2 “ |φ|2 “ v2 “
µ2

2λ1
. We use the same

parameterisation as in (7.2.5), though adapted to the field φ

φ “ e
i ϑ?

2v

ˆ

ve
τ?
3v `

1
?

6
ρ

˙

, ξ “ ve
τ?
3v ´

2
?

6
ρ . (7.3.15)

As before, the kinetic terms are diagonal and canonically normalised for ϑ, τ and ρ. We
still identify ϑ as the fluctuation of the phase of the condensate and τ as a fluctuation
of its magnitude, while ρ corresponds to an orthogonal direction of increasing potential
energy. For µ “ 0, ϑ and τ are naturally associated to the Up1q NG and dilaton, while ρ
enters as a Higgs fluctuation. This simple picture is a bit complicated when µ ‰ 0, as the
would-be Goldstones undergo some mixing and also a non-vanishing gap for one linear
combination. We will study this effect in some approximation here and in more detail in
the next section.

When the perturbation (7.3.15) is introduced in the effective potential (7.3.13) and
expanded to quadratic order, one finds no term for ϑ and the following mass matrix for
pτ, ρq

M “
4v2

3

ˆ

2λ1
?

2λ1
?

2λ1 λ1 ` 9λ

˙

. (7.3.16)

In principle both perturbations are massive and mixed, but in the limit λ1 ! λ in which
there is an almost flat direction in the original potential (7.2.14), the mixing becomes

9Note that these uniform and static solutions are extrema of the effective potential (7.3.13), but not
of the energy (7.3.8).
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very small and there is a large hierarchy between the mass of τ , m2
τ „ λ1v2 „ µ2, and the

mass of ρ, m2
ρ „ λv2. In the following we will assume that we are in this situation, in

which case the Higgs fluctuation ρ can be set to zero in the low energy description to a
good approximation10.

The dynamical equations for the remaining fluctuations can be derived from the Ward-
Takahashi identities. When evaluated on-shell the Up1q current should be conserved and
the trace of the energy momentum tensor should vanish

BµJ
µ
“ 0 , T µµ “ 0. (7.3.17)

This gives two equations, which is sufficient to determine the dynamics of ϑ and τ . The
trace of the energy-momentum tensor, to linear order in the fluctuations, is

T µµ »
?

3v

˜

B
2τ `

4

3
µ2τ ´ 2

c

2

3
µB0ϑ

¸

, (7.3.18)

whereas the divergence of the current is

B
µJµ »

?
2v

˜

B
2ϑ` 2

c

2

3
µB0τ

¸

. (7.3.19)

This translates into the set of coupled equations

B
2τ `

4

3
µ2τ ´ 2

c

2

3
µB0ϑ » 0 ,

B
2ϑ` 2

c

2

3
µB0τ » 0 .

(7.3.20)

As suggested by the general analysis in the introduction, the chemical potential introduces
a mixing between the Up1q NG and the dilaton. The equations can be diagonalised using
expansions in Fourier modes

τpx0,xq “

ż

dωd3q

p2πq4
e´iωx

0`iq¨x
rτpω,qq , ϑpx0,xq “

ż

dωd3q

p2πq4
e´iωx

0`iq¨x
rϑpω,qq .

(7.3.21)

Expanding at low momentum q2{µ2 ! 1, the equations have solutions when the modes
satisfy the dispersion relations

ω2
»
q2

3
, ω2

» 4µ2
`

5

3
q2. (7.3.22)

Therefore, there is a gapless mode π and a gapped mode σ, which at low momentum
correspond respectively to the combinations

rπ » rϑ´ i signpω{qq
q
?

2µ
rτ , rσ » rτ ´ i

c

2

3
signpω{µq

ˆ

1`
q2

24µ2

˙

rϑ. (7.3.23)

10In the EOM, at low energy, the derivative terms will be negligible compared to the massive term
(it is explicitly seen with the Fourier transformation). At zero order, only the mass term remain which
algebraically set to zero the associated field on-shell.
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A few comments are in order. In the first place, the dispersion relation of π in (7.3.22) is
such that it moves at the speed of sound as fixed by conformal invariance11 c2

s “ 1{3, i.e.
it can be identified as a conformal superfluid phonon, while σ is the gapped dilaton. This
identification is consistent with an effective field theory approach, see e.g. [161]. Note that
the mixing is necessary for this to happen, otherwise the phonon would move at the speed
of light due to relativistic invariance of the rest of the terms. The second observation
is that the gap of σ is fixed by the chemical potential mσ “ 2µ, and independent of
the couplings λ and λ1 in this approximation. This is very reminiscent of the massive
Goldstone bosons appearing when internal symmetries are spontaneously broken in the
presence of a chemical potential. A last observation is that because of the mixing, it is
no longer true that each Ward-Takahashi identity is tied to one specific mode. Indeed
reexpressing τ and ϑ in terms of π and σ, one can easily see that both fields appear in
both equations (7.3.20).

7.3.3 Exact dispersion relations

The results obtained from the Ward-Takahashi identities are easy to interpret physically
but we had to introduce several approximations to derive them, in particular we used the
hierarchy between the masses of the Higgs fluctuation and the dilaton to freeze out the
first. In order to go beyond this approximation we need to include the Higgs mode in
the analysis, whose dynamics is not captured by the Ward-Takahashi identities since it
is not a symmetry originated mode. This can be more simply done using the effective
Lagrangian.

Consider again the vacuum ξ2 “ |φ|2 “ v2 “
µ2

2λ1
and the fluctuations (7.3.15) around

it. The quadratic Lagrangian for the fluctuations is

Lquad “
1

2
BµρB

µρ`
1

2
BµϑB

µϑ`
1

2
BµτB

µτ

` 2

c

2

3
µ τBtθ `

2
?

3
µ ρBtθ ´

2

3

?
2µ2τρ´

2

3
µ2τ 2

´ µ2 9λ` λ1

3λ1
ρ2 .

(7.3.24)

By going to Fourier space, we get

Lquad “
1

2
yT p´ω,´qq ¨Mpω, qq ¨ ypω, qq , y “ pϑ, ρ, τq , (7.3.25)

where

M “

¨

˚

˝

ω2 ´ q2 i 2?
3
µω i2

?
2?
3
µω

´i 2?
3
µω ω2 ´ q2 ´

2p9λ`λ1q
3λ1

µ2 ´2
?

2
3
µ2

´i2
?

2?
3
µω ´2

?
2

3
µ2 ω2 ´ q2 ´ 4

3
µ2

˛

‹

‚

. (7.3.26)

11A conformal field theory has Tµµ “ 0. By looking at a free theory, its stress energy tensor corresponds
to the one of a perfect fluid. Hence, in 3 ` 1 dimension, we have ε “ 3p. The speed of first sound in
hydrodynamics is given by

a

Bε{Bp “
a

1{3. By an explicit computation, it is shown that the slope of the
dispersion relation of a Up1q NG mode in a relativistic theory at zero temperature and finite density is
a

Bε{Bp. Since the relativistic massless Up1q NG mode is driven by a free theory, we expect the conformal

result
a

Bε{Bp “
a

1{3 [8]. The coset construction approach is to particularise (B.2.26) to the conformal
case. It means to get the stress energy tensor of the EFT (by deriving the action with respect to the
metric) and impose Tµµ “ 0. It will fix up to a global constant the function P . Then, the first speed of
sound can be extracted. In 4-dimensional spacetime, it provides c2s “ 1{3 [167,168].
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Studying the zeros of the determinant of M , one finds one massless mode, the Up1q NG
boson, and two gapped modes:

ω2
1|q“0 “ 0 ,

ω2
2,3|q“0 “

3µ2

λ1

˜

λ` λ1 ˘

c

λ2 ´
2

3
λλ1 ` λ12

¸

.
(7.3.27)

Expanding for low momentum q and for λ1 ! λ, we get

ω2
1 »

1

3
q2 ,

ω2
2 » 6µ2 λ

λ1

ˆ

1`
λ1

3λ

˙

`

ˆ

1`
2λ1

9λ

˙

q2 ,

ω2
3 » 4µ2

ˆ

1´
λ1

3λ

˙

`

ˆ

5

3
´

2λ1

9λ

˙

q2 .

(7.3.28)

(7.3.29)

(7.3.30)

Comparing with the dispersion relations in (7.3.22), we observe that the speed of the
phonon is not modified by corrections depending on λ1, while the mass of the gapped
dilaton is corrected, though mildly. Indeed, contrary to massive NG bosons associated to
internal symmetries, the mass of the gapped dilaton is not protected by the symmetry.

For λ1 ! λ, ω2
1 and ω2

3 reduce to the dispersion relations obtained in (7.3.22) from the
study of the Ward-Takahashi identities, and we have a hierarchy between the two massive
modes. Furthermore, in the limit

µÑ 0 , λ1 Ñ 0 with
µ2

2λ1
Ñ v2 , (7.3.31)

we recover the masses (7.2.6) of the relativistic model (7.2.2)

ω2
1|q“0 “ 0 ,

ω2
2|q“0 “ 12v2λ ,

ω2
3|q“0 “ 0 ,

(7.3.32)

and ω3 describes the massless dilaton. This suggests a connection between the corrections
to the mass of the gapped dilaton at finite chemical potential and the lack of a flat
direction in the potential at zero chemical potential. Indeed, at zero chemical potential,
the λ1 term lifts the flat directions which means that the dilaton in (7.3.1) is already
massive even before switching on the chemical potential. The masses of gapped NGs
might be protected only if there are flat directions associated to them, of course this will
always be the case for internal symmetries.

7.4 Boosted superfluid

Since the chemical potential breaks Lorentz invariance, it is interesting to study the effect
on the NG modes when the superfluid is set on motion relative to the frame determined by
the effective Hamiltonian induced by the chemical potential, that one can identify as the

133



Chapter 7. Gapped dilatons in scale invariant superfluids

“laboratory” frame. We consider again (7.2.2) and introduce both a chemical potential
and a superfluid velocity

ψ “ eiµ0uµxµφ , ψ˚ “ e´iµ0uµxµφ˚. (7.4.1)

Where uµ “ γp1,´~βq, γ “ 1{
a

1´ |β|2 is a time-like four-velocity uµu
µ “ `1. The

chemical potential is µ “ γµ0, and the time direction in the laboratory frame is x0. The
background plane wave (7.4.1) is the same as (7.3.2) seen by a boosted observer, compared
to the laboratory frame. Since (7.2.2) is Lorentz invariant, the dispersion relations for
the gapless low-energy modes can be obtained by boosting those obtained from (7.3.1)
(i.e. the case with just a chemical potential). For the sake of providing an explicit check,
we repeat the exercise of computing them directly through the Ward-Takahashi identities
and through the perturbative Lagrangian approach.

7.4.1 Effective Hamiltonian and ground state

We proceed in a similar fashion to the case of zero velocity. The Hamiltonian and the
charge are still determined by the energy-momentum tensor and the current as in (7.3.4),
and the effective Hamiltonian at nonzero chemical potential by (7.3.5). Because of the
boost, the expressions for the current and the energy-momentum tensor are slightly mod-
ified.

Jµ “ 2µ0|φ|
2uµ ` jµ ,

Tµν “ 2µ2
0uµuν |φ|

2
` µ0puµjν ` uνjµq ´ ηµνµ0u

αjα ` tµνpµ0q .
(7.4.2)

Where jµ and tµν take the same form as before (7.3.7) and (7.3.11), replacing µ by µ0.
Recalling that the chemical potential is µ “ µ0u0 “ µ0γ, the effective Hamiltonian is

H ´ µQ “

ż

d3x pT00 ´ µJ0q “

ż

d3x pt00pµ0q ´ µ~β ¨~jq. (7.4.3)

Since ji vanishes for constant φ, the extrema of the effective potential are the same as
before (7.3.14) replacing µ by the effective chemical potential in the rest frame of the fluid

µ0. The ground state is thus ξ2 “ |φ|2 “ v2
0 “

µ2
0

2λ1
.

7.4.2 Nambu-Goldstone dynamics from Ward-Takahashi identi-
ties

We can use the same parametrisation for perturbations of the ground state as in (7.3.15),
replacing v by v0. The same considerations about the mass hierarchy of τ and ρ apply, so
in this analysis we will assume λ1 ! λ and freeze ρ. The dynamics of the low-energy modes
are determined by the conservation equations for the current and the energy-momentum
tensor. For the boosted superfluid they take the form

B
µJµ “ 2µ

´

B0 `
~β ¨ ~∇

¯

|φ|2 ` Bµjµ,

T µµ “ 2µ2
0|φ|

2
´ 2µ0u

µjµ ` t
µ
µpµ0q “ 2µ2

0|φ|
2
´ 2µpj0 `

~β ¨~jq ` tµµpµ0q.
(7.4.4)
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Therefore, we should just replace the terms with a single time-derivative by the material
derivative µB0 Ñ µD0 “ µpB0 `

~β ¨ ~∇q and otherwise change µ by the effective µ0:

B
µJµ »

?
2v0

˜

B
2ϑ` 2

c

2

3
µD0τ

¸

,

T µµ »
?

3v0

˜

B
2τ `

4

3
µ2

0τ ´ 2

c

2

3
µD0ϑ

¸

.

(7.4.5)

From this, we obtain the equations

B
2τ `

4

3
µ2

0τ ´ 2

c

2

3
µD0ϑ » 0 ,

B
2ϑ` 2

c

2

3
µD0τ » 0 .

(7.4.6)

The dispersion relation for the gapless mode can be more easily found by noting that
µ “ γµ0 and using comoving coordinates. Taking ~β parallel to the x3 direction, we
introduce

x0
“ γpx0

β ` βx
3
βq , x3

“ γpx3
β ` βx

0
βq , x1

“ x1
β , x2

“ x2
β. (7.4.7)

Then
B

Bx0
β

“ γpB0 ` βB3q ,
B

Bx3
β

“ γpB3 ` βB0q , B
2
“ B

2
β . (7.4.8)

The equations become

B
2
βτ `

4

3
µ2

0τ ´ 2

c

2

3
µ0Bx0

β
ϑ » 0,

B
2
βϑ` 2

c

2

3
µ0Bx0

β
τ » 0.

(7.4.9)

These are the same as before (7.3.20), replacing µ by µ0. We introduce an expansion of
the modes in the rest frame in plane waves

τpx0
β,xβq “

ż

dωβd
3qβ

p2πq4
e´iωβx

0
β`iqβ ¨xβ

rτpωβ,qβq,

ϑpx0
β,xβq “

ż

dωβd
3qβ

p2πq4
e´iωβx

0
β`iqβ ¨xβ rϑpωβ,qβq.

(7.4.10)

We recover the expected low momentum dispersion relations in the rest frame

ω2
β » c2

sq
2
β , ω2

β » 4µ2
0 `

5

3
q2
β , (7.4.11)

where c2
s “ 1{3 is the speed of sound of the scale invariant theory. These expressions can

be translated to frequency and momentum in the laboratory frame using that

ω “ γpωβ ` βqβ 3q , q3 “ γpqβ 3 ` βωβq , q1 “ qβ 1 , q2 “ qβ 1. (7.4.12)
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Note that the dispersion relations (7.4.11) are valid for low momentum in the rest frame
of the fluid |qβ| ! |µ0|. For the gapless modes they can be matched with a low momentum
expansion in the laboratory frame |q| ! |µ|, however for the gapped modes this is not
possible, as for generic β, q3 „ ωβ „ µ. Therefore, finding the dispersion relations of the
gapped modes at low momentum in the laboratory frame requires solving (7.4.6) directly.

We classify the dispersion relations of the gapless modes taking as reference the direc-
tion of the superfluid velocity in the laboratory frame. The dispersion relations for the
longitudinal modes are

ω‖ “ ˘
cs ˘ β

1˘ βcs
q3 , q1 “ q2 “ 0 , (7.4.13)

while the dispersion relation for the transverse modes is

ω2
K “ c2

s

q2
1 ` q

2
2

γ2p1´ β2c2
sq
, q3 “ 0 . (7.4.14)

These expressions agree with the ones obtained by relativistic addition of velocities. Note
that for |β| ą cs both (positive frequency) longitudinal modes (7.4.13) propagate in the
same direction as the superfluid velocity. This is the reason why we expressed linearly
the dispersion relations.

For the gapped modes, the low momentum dispersion relations are

ω‖ “ 2
a

1´ β2c2
sµ´

2

3

βq3

1´ β2c2
s

`
5` β2c2

s

12γ2p1´ β2c2
sq

5{2

q2
3

µ
, q1 “ q2 “ 0,

ω2
K “ 4p1´ β2c2

sq
2µ2

`
5´ β2

3p1´ β2c2
sq
pq2

1 ` q
2
2q , q3 “ 0 ,

(7.4.15)

where again the longitudinal dispersion relation is expressed linearly. The gap is reduced
by the superfluid velocity, but in this approximation remains finite even in the limit
β Ñ 1, where the condensate vanishes (i.e. at fixed µ). Also note that at leading order
for momenta in the same direction of the flow, the frequency is reduced.

7.4.3 Exact dispersion relations

We now study the effects of including the Higgs fluctuation ρ, and the corrections for
finite λ1{λ. We thus resort to expanding the full Lagrangian. According to (7.4.1), we
switch on a chemical potential µ “ µ0γ and a background wave vector k3 “ µ0γβ. The
effective potential is now:

V “ λp|φ|2 ´ ξ2
q
2
` λ1|φ|4 ´ pµ2

´ k2
3q|φ|

2 , (7.4.16)

For stationary solutions, the situation is not very different from the case with just µ, in
fact one just needs to replace µ2 by pµ2´ k2

3q “ µ2
0 in (7.3.13). Therefore, we consider the

solution

ξ2
“ |φ|2 , |φ|2 “

µ2
0

2λ1
. (7.4.17)
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The fluctuation around (7.4.17) are still given by (7.3.15) where however v “ v0 “
µ0?
2λ1

.
Writing k3 “ βµ, the quadratic Lagrangian for the fluctuations is

Lquad “
1

2
BµρB

µρ`
1

2
BµϑB

µϑ`
1

2
BµτB

µτ

` 2

c

2

3
µ τpBt ` βB3qθ `

2
?

3
µ ρpBt ` βB3qθ

´
2

3

?
2µ2

0ρ τ ´
2

3
µ2

0τ
2
´ µ2

0

9λ` λ1

3λ1
ρ2 .

(7.4.18)

In analogy to (7.3.25) and (7.3.26), by going to Fourier space we get the kinetic matrix:

¨

˚

˝

ω2 ´ q2 i 2?
3
µ pω ´ βq3q i2

?
2?
3
µ pω ´ βq3q

´i 2?
3
µ pω ´ βq3q ω2 ´ q2 ´

2p9λ`λ1q
3λ1

µ2
0 ´2

?
2

3
µ2

0

´i2
?

2?
3
µ pω ´ βq3q ´2

?
2

3
µ2

0 ω2 ´ q2 ´ 4
3
µ2

0

˛

‹

‚

. (7.4.19)

From the determinant of (7.4.19), one can find the exact dispersion relations. First of all,
setting the momenta q “ 0 one finds that there is a massless mode corresponding to the
Up1q NG boson and two gapped modes:

ω2
1|q“0 “ 0 ,

ω2
2,3|q“0 “

3

λ1

„

λµ2
0 ` λ

1µ2
p1´ c2

sβ
2
q

˘

c

λ2µ4
0 ´

2

3
λµ2

0λ
1µ2p1´ c2

sβ
2q ` λ12µ4p1´ c2

sβ
2q2



,

(7.4.20)

where cs “ 1{3 as before.
Now, expanding at low frequencies and momenta, one can extract analytically the

dispersion relation for the Up1q NG mode:

ω1 “
cs

1´ c2
sβ

2

ˆ

2csβq3 ˘

b

p1´ β2q2q2
3 ` p1´ β

2qp1´ c2
sβ

2qpq2
1 ` q

2
2q

˙

. (7.4.21)

Notice that the above expression is independent of the ratio λ1{λ. Indeed, one can
check that in the longitudinal and transverse case, it correctly reproduces the expres-
sions (7.4.13) and (7.4.14), respectively.

For the massive modes, one has to expand the frequencies around the respective gaps.
To first order in momenta and in λ1{λ, the dispersion relations for the gapped dilaton are:

ω
pgappedq
‖ “ 2µ

a

1´ c2
sβ

2

„

1´
λ1

6λ

1´ c2
sβ

2

1´ β2



´
2β

3p1´ c2
sβ

2q

„

1´
λ1

3λ

1´ c2
sβ

2

1´ β2



q3 ` . . .

ω
pgappedq
K “ 2µ

a

1´ c2
sβ

2

„

1´
λ1

6λ

1´ c2
sβ

2

1´ β2



`
1

12
a

1´ c2
sβ

2

„

5´ β2

1´ c2
sβ

2
`
λ1

6λ



q2
1 ` q

2
2

µ
` . . .

(7.4.22)
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For λ1{λ “ 0 they agree with the dispersion relations obtained from the Ward-Takahashi
identities (7.4.15). Again, we observe that the gap receives corrections in λ1{λ, so it is not
protected by the symmetry.

Finally, we present the dispersion relations of the Higgs mode, to the same order:

ω
(heavyq
‖ “

c

6λ

λ1

a

1´ β2 µ

„

1`
λ1

6λ

1´ c2
sβ

2

1´ β2



´
2λ1

9λ

β

1´ β2
q3 ` . . .

ω
(heavyq
K “

c

6λ

λ1

a

1´ β2 µ

„

1`
λ1

6λ

1´ c2
sβ

2

1´ β2



`
1

2
a

1´ β2

c

λ1

6λ

q2
1 ` q

2
2

µ
` . . .

(7.4.23)

Note that the β Ñ 1 limit at fixed µ seems to be ill-defined. However, this is an artifact
of the expansion. For instance, inspecting (7.4.20) and noticing that in this limit µ0 Ñ 0,
we find that the gap of the dilaton actually goes to zero, while the gap of the Higgs mode
stays finite, but scales with µ, which might be slightly non-intuitive (recall that in this
limit there is no condensate).

7.5 Summary and discussion

The two main highlights of the present chapter are:

1. The analysis of the low-energy mode associated to spontaneously broken scale sym-
metry and the characterisation of how its zero-temperature gap depends on the
finite density.

2. The description of a generic method based on Ward-Takahashi identities alone to
study the low-energy modes of an effective field theory.

The analysis pursued in the present chapter indicates that the spontaneous breaking
of the scale symmetry at zero temperature gives rise to a light dilatonic mode whose gap is
directly proportional to the chemical potential. This generic expectation can be relevant
for the low-energy content of zero-temperature systems where the chemical potential, too,
is small with respect to the UV cut-off of the effective description (related to some other
physical scale such as an external magnetic field [169]).

Ward-Takahashi identities in quantum field theory are known to be a key tool for
the study of symmetries, either when these are preserved or broken, and even when the
breaking is explicit [39,109]. The present chapter stresses that Ward-Takahashi identities
alone seem to provide a sufficient framework to study the dispersion relations of the low-
energy modes of an effective field theory, providing an alternative – generally simpler –
approach than the direct fluctuation analysis at the level of the Lagrangian. The method
is generic, but we applied it to the specific study of scale symmetry breaking to the
purpose of elucidating the characteristics of the resulting low-energy dynamics. It would
be interesting to look for a gapped dilaton in a strongly coupled theory, by means of
the holographic duality. This might be achieved by combining holographic models with a
gapless dilaton in Poincaré invariant vacua [155,170] (see also [171]) and models with type
II and gapped NG modes [172,173]. In Part IV, an explicit holographic will be discussed.

We first examined a relativistic field-theory model (7.2.2) in four spacetime dimensions
where scale symmetry and a global Up1q symmetry are concomitantly and spontaneously
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broken. The scale-invariant potential must have two flat directions which translate into
two gapless NG modes, the dilaton and the Up1q NG both relativistic and both propa-
gating at the speed of light, (7.2.11) and (7.2.13). These results are consistent with the
results of Part I. From the point of view of the inverse Higgs constraints, we indeed have
two independent NG candidates since rD,Pµs “ iPµ and rQ,Pµs “ 0. No IHC can be
imposed, furthermore, the EFT for the NG modes is relativistic (we did not break Lorentz
symmetry). Therefore, there is no canonical conjugation among the NG candidates. We
could have indeed predicted the two massless modes. The counting rule of Nielsen and
Chadha, even if we are out of the scope of the hypotheses, is holding as well: nI “ 2,
nII “ 0, so nI ` 2nII ě nBG. Being relativistic, the classification of Theorem 3 systemat-
ically consider all the NG modes as being type A and despite being out of the range of
the assumptions, it gives the right number of NG modes.

In order to realise the same symmetry-breaking pattern at finite density, the model
must be stabilised by means of an extra scale-invariant term (7.3.1) which lifts the dilatonic
flat direction without affecting the spontaneous nature of the breaking. The resulting low-
energy modes are nonetheless altered: the Up1q NG remains gapless but propagates at
the conformal speed of sound, like a superfluid phonon; the dilaton acquires a gap of
the order of the chemical potential µ whose value is however not protected by symmetry
(7.3.22). The dilaton is light compared to other gapped modes only when the coefficient
of the term that lifts the flat direction (7.3.1) is tuned to be very small, in that case we
observe that the dilaton gap becomes independent of the couplings. Despite being slightly
outside the range of the conjecture of Subsection 5.2.8 because time translation is broken,
the counting rule based on IHCs provide the right number of massless modes. This time
the IHC (7.1.1) is imposed which reduces the number of massless NG candidates to the
number of one. From Goldstone’s theorem we know there should be at least one NG
mode. Hence, we could have predicted that only one massless mode would appear in the
spectrum12. It is interesting to notice that related to Theorem 6, there is no category 2
and category 3 massive modes but there is anyway one category 4 massive mode. This is
of course not in conflict with Theorem 6 since we are outside the range of the hypotheses
(dilatation breaking and a phase transition occurring in the naive µ Ñ 0 limit). But it
could be worth to notice that the dilatation breaking offers a new mechanism to create a
category 4 massive mode (and that in this situation, the IHC would eliminate a physical
massive mode). If we observe the situation through the eyes of Theorem 4, we can obtain
the correct result for the massless modes by considering the fact that dilatation is not a
symmetry of the free energy (7.1.1), only the Up1q symmetry is, which explain the single
gapless mode. The number of gapped fixed mode is correctly guessed to be zero. And of
course, the massive dilaton being an unfixed gapped mode could not have been derived
from Theorem 4 this because even in the pure internal case, the theorem is blind with
respect to this type of massive NG modes.

Our results at nonzero density belong to the line of research on gapped NG modes [11–
13,105,174]. In this context, a natural future perspective is to embed the present analysis
into a systematic Maurer-Cartan effective framework, thus assessing its universality and
possible generalisations.

12The Lorentz boosts are as well broken when the chemical potential is switched on. As for the
superfluid case in Appendix B in Part I, there is no additional massless NG modes because boosts and
Up1q are locked together through IHCs.
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One interesting field of applications is provided by condensed matter. The presence of
a wide critical region in the phase diagram is a characteristic shared by many – generally
strongly correlated – systems, among which the cuprates. The critical phase is associated
to interesting phenomena like bad and strange metallicity and non-Fermi liquid behaviour
[175]. It is also often conjectured to lie at the basis of the mechanism for high-temperature
superconductivity, see for instance [176].

The defining property of such critical region is the validity of simple scaling rules
whose origin, however, can involve complicated and often elusive dynamics related to the
presence of a quantum critical point [177–179] or, more generally, to the presence of a
scaling sector [176, 180]. This is sometimes referred to as generic scale invariance [181]
and can be assumed among the defining symmetries of an effective description.

Another paradigmatic example is provided by cold atoms at unitarity, where there is
an emergent non-relativistic conformal symmetry [182], known as Schroedinger symmetry.
Gapped NG modes are known to appear when the Hamiltonian is deformed by some of
the symmetry generators of the Schroedinger algebra [183]. An extension of our analysis,
along the lines of [162], to systems with Galilean rather than Lorentz invariance would be
quite interesting.

As another remark, still related to condensed matter but in the context of standard
metals, it is relevant to mention that the low-energy modes of our analysis would not
destabilise a Landau-Fermi liquid coexisting with them. This can be appreciated by means
of an extension of the results of [184] to dilatations, a symmetry which does not commute
with either spatial or temporal translations: one can show that the linear interaction term
between the fermionic quasiparticles and, respectively, the Up1q NG and the dilaton are
both vanishing.

The model adopted here allows for generalisations in which the Up1q symmetry is
coupled to translations and the symmetry-breaking preserves only a linear combination
of the two [116]. This would realise a spatial version of the pattern described above
when µ ‰ 0 and only a diagonal component of the product of internal Up1q and time
translations was preserved. Such breakings are referred to as homogeneous because they
do not yield any spacetime modulation of the energy density,13 they however provide
acoustic phonon modes. It is an interesting open question to study whether and how
these phonons would coexist with a dilatonic mode [125]. The relevance of the question
is three-fold: it relates to the counting problem of NG modes for spacetime symmetries
[10, 127]; it concerns condensed matter systems where a critical scaling and the breaking
of translations are intertwined;14 it provides insight regarding holographic models where
scaling and translation symmetries are broken together [21,186–188].15 This concomitant
breaking between translation and dilatation from the field theory perspective is the subject

13An example of inhomogeneous breaking of spatial translations in field theory was studied in [45].
Studying the cubic polynomial in ω2 associated to (7.3.26), one can exclude the presence of complex
solutions. Similarly, a numerical study of (7.4.19) showed no hints of finite-momentum instabilities.
Thus, for the purpose of studying translation symmetry breaking, the models introduced in the main
text need to be enriched and generalised.

14Such as in the region of the phase diagram of cuprates overlapping with the critical, strange metal
phase and the so-called pseudo-gap phase [175,185].

15Merging the last two points, there is a current in the literature addressing the critical breaking of
translations relevant for the study of strongly-correlated electron systems (specifically strange and bad
metals), see for instance [47,189–195].
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of the next chapter.
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Chapter 8

Fractons in effective field theories for
spontaneously broken translations

This chapter is minorly edited from the original work of the author and his collaborators
published in the paper [125].

We study the concomitant breaking of spatial translations and dilatations in Ginzburg-
Landau-like models, where the dynamics responsible for the symmetry breaking is de-
scribed by an effective Mexican hat potential for spatial gradients. We show that there
are fractonic modes with either subdimensional propagation or no propagation altogether,
namely, immobility. A journalistic overview on fracton physics is provided in Appendix
D. The class of effective field theories studied in this chapter encompasses instances of
helical superfluids and meta-fluids, where fractons can be connected to an emergent sym-
metry under higher moment charges, leading in turns to the trivialisation of some elastic
coefficients. The introduction of a finite charge density alters the mobility properties of
fractons and leads to a competition between the chemical potential and the superfluid ve-
locity in determining the gap of the dilaton. The mobility of fractons can also be altered
at zero density upon considering additional higher-derivative terms.

8.1 The context

An interesting aspect of low-energy effective theories is that of emergent symmetries1.
In the simplest setup of a complex scalar field with a Mexican hat potential, the Up1q
symmetry associated to phase rotations of the scalar is spontaneously broken and the low-
energy effective theory is described by a massless Nambu-Goldstone boson. At sufficiently
low energies, the effective action of the theory is that of a massless scalar field, which not
only enjoys the original Up1q symmetry in the form of a constant shift of the Nambu-
Goldstone field, but it is also conformal invariant and has an infinite set of conserved
higher-spin currents associated to coordinate-dependent shifts of the Nambu-Goldstone
field. Neither the conformal nor the coordinate-dependent shifts are symmetries of the full
theory, and they are broken when higher-derivative corrections to the low-energy action
are considered. Nevertheless, they can leave an imprint in the properties of the low-energy
effective theory.

Similar emergent symmetries at low energies appear in other contexts like low-energy
excitations of a Fermi surface, independent spin and spatial rotation symmetries in non-
relativistic theories, etc. Here we want to explore low-energy effective theories with

1Emergent symmetries are symmetries which are not present in the fundamental theory but while
integrating out the higher energy modes, i.e. following the RG flow, the parameters of the theory change
and this rearrangement might lead to additional symmetries in the EFT. These supplementary symmetries
are the emergent symmetries.
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emergent symmetries that lead to (gapless) fractonic modes. Fractons are excitations
that are able to move only along a restricted set of spatial directions, or are even com-
pletely immobile [196, 197]. Gapless fractons appear in a variety of systems such as
spin liquids [198–202], dipole-conserving lattice models [203–207] and quantum elastic-
ity [208–219]. Hydrodynamics of fractons has been studied in [220–222]. Models with
spontaneous breaking of symmetries have also been studied [223, 224]. At low energies,
the models we are going to discuss have similarities to these last, but with the impor-
tant difference that it is not necessary to impose any exact coordinate-dependent phase
rotation or shift symmetry in order to obtain fractonic dispersion relations.2

A second aspect that we want to explore is the effect of spontaneous breaking of space-
time symmetries in the counting of Nambu-Goldstone bosons. In the previous chapter, we
observed that an interesting case is when time translation is broken by a finite chemical
potential. If scale invariance is spontaneously broken together with a global symmetry,
the dilaton will get a gap proportional to the chemical potential since the generator of
dilatations does not commute with the Hamiltonian. Integrating out the gapped modes
and keeping only the gapless modes would be equivalent to applying the inverse Higgs
constraints.

If, instead of time translations, space translations are homogeneously broken, we ex-
pect to find some qualitative similarities. There will be unbroken generators of space
translations of the form rPi “ Pi ´ kiaQ

a, where Pi are the ordinary generators of space
translations and Qa are the generators of spontaneously broken global symmetries. The
generator of dilatations D does not commute with the unbroken generators rD, rPis “ iPi,
so this might produce a gap for the dilaton dependent on kia. However, due to the break-
ing of spatial symmetries, the dispersion relations of the modes can depend in a non-trivial
way on the spatial momenta, so the intuition from the chemical potential does not entirely
apply to this more complicated situation. A more straightforward intuition could also be
that our models in this chapter are non-relativistic, there is no equivalence between time
and space in such theories.

What we will do in this part of the dissertation is to examine these questions using a
simple 2 ` 1-dimensional model which can be viewed as a generalisation of the ordinary
Mexican hat model for spatial derivative terms of a complex scalar field. Scale invariance
is ensured by introducing an additional real scalar acting as a compensating field. It turns
out that there is a large space of possible ground states breaking translation invariance,
and the effective theory depends crucially on the symmetry realisation of the ground
state. We restrict to states leading to homogeneous effective theories. We find emergent
symmetries leading to fractonic dispersion relations and a strong dependence on spatial
momentum that affects both the dispersion relations and the composition of the modes.
We also study generalisations to finite chemical potential and to 3`1 dimensions for some
cases (see Appendix G).

The chapter is organised as follows. In Section 8.2 we introduce the model and discuss
its ground states and symmetries. In Section 8.3 we compute the dispersion relations
for linearised fluctuations around the ground states and identify the associated Nambu-

2Let us emphasise that, as the cited references in this paragraph suggest, the term “fracton” is
interpreted in extended ways compared to its original introduction in condensed matter. In this work, we
use the term “fracton” in the already customary wider sense, encompassing both discrete and continuum
theories.
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Goldstone modes. In Section 8.4 we extend our results to finite density and in Section 8.5
we introduce a deformation that removes some of the degeneracy of the simpler model
and study its effect on the dispersion relations. In Section 8.6 we try to compare our
results with theorems determining the number of gapless Nambu-Goldstone bosons and
finally we conclude in Section 8.7 with a discussion of possible physical systems where
similar symmetry realisations and exotic Nambu-Goldstone modes might be found. We
have collected several technical results and generalisations to 3 ` 1 dimensions in the
Appendices.

8.2 Translation-breaking Mexican hat model

We consider a 2` 1-dimensional model with two scalar fields, one complex and one real,
governed by the following Lagrangian density

L “ BtΦ˚BtΦ` ABiΦ˚BiΦ`
1

2
BtΞBtΞ´

1

2
BiΞBiΞ´B

pBiΦ
˚BiΦq

2

Ξ6
´HΞ6 . (8.2.1)

The “couplings” A, B and H are all real and positive. The real scalar field Ξ presents a
standard kinetic term and plays the role of a “compensator field,” introduced in order to
ensure scale invariance. The detailed scaling dimensions of the couplings and of the fields
(and of the expectation values that we will introduce below) are

rAs “ rBs “ rHs “ 0 , rΦs “ rρs “
1

2
, rΞs “ rvs “

1

2
, rks “ rBs “ 1 , (8.2.2)

where we considered natural units of energy.
The complex scalar field Φ presents instead a non-standard kinetic term. Specifically,

given the positivity of A, the quadratic term with spatial gradients has the opposite sign
with respect to the standard relativistic action. This is a key ingredient for triggering the
breaking of translation symmetry through configurations with non-vanishing gradients.
Intuitively, the “wrong” sign in the gradient term for Φ can be thought in analogy to the
negative squared mass term of the standard Mexican hat potential. Thus, we say that
(8.2.1) features a “gradient Mexican hat” for Φ [45,116].

The condition A ą 0 corresponds to a gradient instability. An example where such
a feature can play an important role is in cosmological scalar models for dark energy,
where it relates to experimentally testable properties of the cosmological equation of
state [225,226]. In the context of spatially-modulated phases, a similar Lorentz-invariant
model has been studied in [227]. The term associated to the B coupling in (8.2.1) has
been devised for the symmetry-breaking purposes of the present study. Its real-world
realizability as an effective description of the broken phase is not obvious and needs
further investigation.

The equations of motion are given by

B
2
tΦ` A B

2
i Φ´ 2B Bi

ˆ

BiΦ

Ξ6
BjΦ

˚
BjΦ

˙

“ 0 ,

B
2
tΞ´ B

2
i Ξ´

6

Ξ

«

B
pBiΦ

˚BiΦq
2

Ξ6
´HΞ6

ff

“ 0 .

(8.2.3)

(8.2.4)
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8.2.1 Ground states

There is a large class of possible ground states that break spontaneously translation
invariance with different patterns, but it is strongly restricted if we demand that the
effective action for perturbations around the ground state is homogeneous, leaving just
two possible types (see Appendix E). Following the symmetry breaking pattern they
exhibit we dub the first “helical superfluid” and the second “meta-fluid”. We will discuss
both, pointing out the similarities and differences between the two types of ground states.

� Helical superfluid:
We consider the following static ansatz for the solutions

Φpt, x, yq “ ρ eikx ,

Ξpt, x, yq “ v ,

(8.2.5)

(8.2.6)

where the compensator field is spatially constant, while the complex field config-
uration corresponds to a plane-wave of amplitude ρ and wave-vector k. All the
parameters in the ansatz, ρ, k and v, are assumed to be non-zero, and without loss
of generality also real and positive.

The equations of motion descending from (8.2.1), when considered upon the ansatz
(8.2.5) and (8.2.6) reduce to

ρ2k2
`

2Bk2ρ2
´ Av6

˘

“ 0 ,

Bk4ρ4
´Hv12

“ 0 .

(8.2.7)

(8.2.8)

We can rewrite (8.2.7) and (8.2.8) as follows:

A “ 2Bξ ,

H “ Bξ2 ,

(8.2.9)

(8.2.10)

where we have introduced the dimensionless combination

ξ “
k2ρ2

v6
“

A

2B
“

c

H

B
, (8.2.11)

which parameterises the space of non-trivial static solutions. Positivity (and reality)
of ξ implies AB ą 0 and HB ą 0. This is indeed satisfied by our choice of taking
A, B and H all positive. Consistency of all the relations in (8.2.11) requires the
following relation on the Lagrangian coefficients

H “
A2

4B
, (8.2.12)

necessary to have non-trivial solutions, i.e. v ‰ 0, k ‰ 0 and ρ ‰ 0; notice that
this amounts to a fine-tuning. The significance of the fine-tuning becomes apparent
when looking at the energy density for a static configuration. For (8.2.12) it takes
the form of a complete square

ε “ BΞ´6

ˆ

BiΦ
˚
BiΦ´

A

2B
Ξ6

˙2

“ Bv´6
`

k2ρ2
´ ξv6

˘2
. (8.2.13)
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When evaluated on (8.2.11), the energy density is zero, so these are minimal energy
solutions.

It is easy to see that there are two directions of marginal stability; in fact, we are
fixing only the combination ξ given in (8.2.11), but the ansatz (8.2.5) and (8.2.6)
has three independent parameters. In other words, we have a two-dimensional space
of ground states for this particular ansatz.

We will expand for small fluctuations around this ground state using the parame-
terisation

Φpt, x, yq “ ρ eikx r1` φpt, x, yqs “ ρ eikx r1` σpt, x, yq ` iχpt, x, yqs ,

Ξpt, x, yq “ v r1` τpt, x, yqs .

(8.2.14)

(8.2.15)

� Meta-fluid:
We still consider model (8.2.1), but with a different background ansatz, namely

Φ “ b px` iyq ,

Ξ “ v ,

(8.2.16)

(8.2.17)

where b and v are respectively a complex and a real constant. In principle there
can be more complicated solutions of this type where one introduces two complex
constants bx and by such that Φ “ bxx ` byy. The main difference with the case
we study is that (8.2.16) keeps a combination of spatial and phase rotations of the
complex field unbroken, while the more general solution does not. Since we are
mainly interested in the breaking of translation symmetry, we keep to the isotropic
case in order to avoid further complications.

The equation of motion (8.2.3) for Φ is automatically solved by the ansatz, while
that for Ξ, (8.2.4), eventually leads to

v6
“

4B

A
|b|2 , (8.2.18)

where we have used the condition on the coefficients (8.2.12). This guarantees that
the energy density of the configuration vanishes, so these are also minimal energy
solutions of the same model. We will perform an expansion of small fluctuations
around the background

Φ “ bpx` iyq ` b ruxpt, x, yq ` iuypt, x, yqs ,

Ξ “ v ` τpx, y, zq .

(8.2.19)

(8.2.20)

The fluctuations ui can be interpreted as displacement fields in a solid, in the spirit
of the effective actions proposed in [134,228,229]. The reason for adopting the name
meta-fluid will become apparent from the study of the elastic response in Section
8.2.3, specifically, from the vanishing of the shear elastic coefficient.

Finally, it is worth mentioning that there is not really an unbroken phase, even for
A ă 0. Indeed, the compensator field Ξ appears in the denominator in the interaction
term with coefficient B in (8.2.1), and hence the limit v Ñ 0 is not well-behaved. We
henceforth always keep v ą 0.
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8.2.2 Symmetries and Ward-Takahashi identities

The action defined by the Lagrangian (8.2.1) presents the following symmetries

� Up1q symmetry:

Φ Ñ eiαΦ , Ξ Ñ Ξ , (8.2.21)

� Complex shift symmetry:

Φ Ñ Φ` aR ` i aI , Ξ Ñ Ξ , (8.2.22)

� Dilatation symmetry:

xµ Ñ e´ηxµ, Φ Ñ eη{2Φ , Ξ Ñ eη{2Ξ , (8.2.23)

Note that the Up1q and complex shift symmetries are not independent, we can always use
a Up1q transformation to rotate a complex shift into a real one. The set of independent
symmetries we discuss will then be dilatations and either the Up1q and real shift or the
complex shifts.

In the helical state the Up1q symmetry is broken together with translations along the
x direction to a diagonal combination. Real shifts and dilatations are also broken. The
symmetry breaking pattern is quite different in the meta-fluid. In this case, it is the
complex shift symmetry the one broken with translations, in both x and y directions,
to a diagonal combination. A Up1q symmetry that combines the phase change of the
complex field and spatial rotations survives, so this phase is rotationally invariant. As in
the previous case, dilatation symmetry is also broken.

The näıve counting of Nambu-Goldstone bosons would give us three gapless modes in
each case: the Nambu-Goldstone modes associated to Up1q, real shift and dilatations in
the helical state and the Nambu-Goldstone modes associated to real and imaginary shifts
and dilatations in the meta-fluid state. As we will see the näıve counting fails and a mode
becomes gapped. We will return to the issue of this counting in Section 8.6.

In the meta-fluid state the identification of the fluctuations is more or less evident,
ui should be associated to spatial translations/complex shifts while τ should correspond to
scale transformations. In the helical state χ is clearly related to Up1q rotations/translations
in the x direction, but the role of σ and τ is not so obvious. In order to help with the
identification of the modes in the following we will consider the Ward-Takahashi identities
associated to symmetries. A more detailed derivation of the identities can be found in
Appendix F.

The Ward-Takahashi identities at linear order in the fluctuations return different com-
binations of the linear equations of motion that we will obtain from the Lagrangian in
(8.3.3), (8.3.4) and (8.3.5). The extra information we get from the Ward-Takahashi iden-
tities is that, when considering the decoupling or high momentum limit (which we will
implement by formally taking k Ñ 0, though of course we keep the premise that k ‰ 0 for
symmetry breaking to happen), one can establish a connection between the fluctuation
fields χ, σ and τ and the Up1q, the real shift and the dilatation symmetries. Similarly, for
the meta fluid one can identify the dispersion relations that correspond to each mode at
high momentum. Note that in the perspective where (8.2.1) is already an effective theory,
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the dispersion relations at high momentum would in principle be modified by putative
higher derivative terms not included in the Mexican hat model we are studying (scale
invariance would be explicitly broken by such corrections). However, those would come
suppressed by a mass scale that we assume to be much larger than any of the scales in
the model, so it is still sensible to discuss a high momentum limit.

Up1q symmetry

The Up1q current corresponding to the Lagrangian BµΦ˚BµΦ has the form

jµ “
i

2
pΦBµΦ˚ ´ Φ˚BµΦq . (8.2.24)

Thus, for the model (8.2.1) we have

J0 “ j0 ,

Ji “ ´

ˆ

A´ 2B
BjΦ

˚BjΦ

Ξ6

˙

ji ,

(8.2.25)

(8.2.26)

whose conservation is encoded in the continuity equation3

B
µJµ “ 0 . (8.2.27)

Expanding to linear order in the fluctuations of the helical superfluid we have

B
2
tχ´ 2ABx rkpσ ´ 3τq ` Bxχs “ 0 , (8.2.28)

In the k Ñ 0 limit one finds

B
2
tχ´ 2AB2

xχ » 0 , (8.2.29)

indicating that at large frequency and momentum compared to k, the perturbation χ
maps to the Nambu-Goldstone boson of the Up1q symmetry, with a dispersion relation

ω2
» 2Aq2

x, qx " k. (8.2.30)

This mode has an unusual dispersion relation, and we will refer to it as a ‘lineon’ since it
moves on a line. We will discuss this in more detail when we introduce the connection to
fractons.

Shift symmetry

The (complex) shift current corresponding to the Lagrangian BµΦ˚BµΦ is given by

jpsqµ “ BµΦ , (8.2.31)

3In our conventions Bµ “ pBt,´Biq.
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where the s label stands for “shift”. The current is linear in the field because the field
variation is a constant. Using (8.2.31), the current for the model (8.2.1) can be expressed
as follows:

J
psq
0 “ j

psq
0 ,

J
psq
i “ ´

ˆ

A´ 2B
BjΦ

˚BjΦ

Ξ6

˙

j
psq
i .

(8.2.32)

(8.2.33)

The associated continuity equation is

B
µJ psqµ “ 0 , (8.2.34)

which, at linear level in the fluctuations of the helical superfluid, gives two linearly inde-
pendent equations, (8.2.28) and

B
2
t σ ` 2Ak rkpσ ´ 3τq ` Bxχs “ 0 . (8.2.35)

In the k Ñ 0 limit, we get

B
2
t σ » 0 . (8.2.36)

Therefore, at large frequencies and momenta compared to k, the perturbation σ can be
identified with the Nambu-Goldstone mode of (real) shifts. Again, the unusual dispersion
relation ω2 » 0 will be discussed later on.

For the meta-fluid it is convenient to study only the Ward-Takahashi identity of com-
plex shifts. To linear order in the fluctuations the conservation of the complex shift current
produces the equations

v
`

B
2
t ui ´ ABiBkuk

˘

` 6ABiτ “ 0 . (8.2.37)

At high momentum, τ is decoupled and the displacements ui combine in two modes with
dispersion relations

ω2
» 0 , ω2

» Apq2
x ` q

2
yq , (8.2.38)

where the trivial mode corresponds to the transverse component Bkuk “ 0 and the prop-
agating mode to the longitudinal component.

Dilatation symmetry

The Lagrangian (8.2.1) being scale invariant ensures us that we can improve the
energy-momentum tensor such that the dilatation conserved current takes the form

Dµ
“ T µ

νx
ν
´ V µ , (8.2.39)

where V µ is called the virial current. Therefore, the conservation equation

BµD
µ
“ 0 (8.2.40)

is equivalent to say that, on-shell, the trace of the improved energy-momentum tensor is
zero up to a total divergence of the virial current

T µ
µ “ B

µVµ . (8.2.41)
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The improved energy-momentum tensor contains the following terms

T µ
ν ” T µν ` plδ

µ
ν ´ B

µ
Bνq

ˆ

1

4
|Φ|2 `

1

8
Ξ2

˙

`
A` 1

2
θµν (8.2.42)

where

T µν “
δL

δBµXI
BνX

I
´ δµνL ,

θij ”
`

B
2
kδij ´ BiBj

˘

|Φ|2 .

(8.2.43)

(8.2.44)

By injecting the equations of motion in the trace of (8.2.42), we have that the virial
current is given by

V0 “ 0 ,

Vi “
B

Ξ6
pBkΦ

˚
BkΦq Bi|Φ|

2 .

(8.2.45)

(8.2.46)

We now have an explicit expression for (8.2.41), which at linear order in the fluctuations
of the helical superfluid gives

v2
pB

2
i τ ´ B

2
t τq “ 2ρ2

B
2
t σ ` 8kρ2A pkp3τ ´ σq ´ Bxχq . (8.2.47)

In the k Ñ 0 limit (assuming v, ρ can be kept fixed), one obtains

BiB
iτ ´ B2

t τ “ 0 , (8.2.48)

where we have used (8.2.36). Then, for large values of frequency and momenta, τ can be
identified with the Nambu-Goldstone boson for dilatations. In this case the dispersion
relation is the usual one for a relativistic massless mode

ω2
» q2

x ` q
2
y . (8.2.49)

For the meta-fluid, the dilatation Ward-Takahashi identity produces the following
equation

`

B
2
i ´ B

2
t

˘

τ “
12A|b|2

v2

`

6τ ´ vBku
k
˘

. (8.2.50)

At high momentum, the displacement fields decouple and the dilaton has a relativistic
dispersion relation (8.2.49) as in the helical superfluid.

8.2.3 Connection to fractons

The unusual dispersion relations we have found in (8.2.30) and (8.2.36) are not just a
peculiarity of the decoupling limit but they are also observed at small frequency and
momentum, as we will show in the next sections. A possible way to understand their
origin is through emergent symmetries of linearised perturbations around the translation-
breaking ground states. These symmetries involve coordinate-dependent shifts of the
fields similar to those introduced in fracton models [196,197] and are linked to excitations
that are immobile or restricted to move in a subdimensional space.

In order to identify the emergent symmetry more easily, we will proceed by studying
the quadratic Lagrangian of the perturbations and integrating out the gapped mode. The
resulting effective Lagrangian admits a derivative expansion where the symmetry becomes
manifest.
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Helical superfluid

The action to quadratic order in the fluctuations is

L “ v2

2
BµτB

µτ ` ρ2
pBtχq

2
` ρ2

pBtσq
2
´ 2Aρ2

rBxχ` kpσ ´ 3τqs2 . (8.2.51)

In this form, we already observe emergent coordinate-dependent shift symmetries, namely

δχ “ αpyq ` βpx, yq, δσ “ ´
1

k
Bxβpx, yq ` 3δ ` 3γix

i, δτpx, yq “ δ ` γix
i. (8.2.52)

The emergence of these symmetries may explain in part the fractonic behaviour observed
from the analysis of the Ward-Takahashi identities. The dilaton τ has the symmetry of
a massless field, the symmetry under the transformation β can be used to introduce an
arbitrary dependence on both x and y in σ while the remaining transformation α allows
an arbitrary dependence on y in χ. In this way, the identification of σ as a fracton and
χ as a lineon appears naturally. Note that these are not symmetries of the full action, so
it is expected that terms of higher order in the fluctuations will not be invariant under
them, however this only affects indirectly the dispersion relations by radiative corrections.

We can diagonalise the mass terms by performing a rotation of the fields

ˆ

vτ
?

2 ρσ

˙

“

ˆ

cos θ sin θ
´ sin θ cos θ

˙ˆ

η
ϕ

˙

, (8.2.53)

by an angle

tan θ “
v

3
?

2 ρ
. (8.2.54)

The action becomes

L “ ρ2
pBtχq

2
`

1

2
pBtϕq

2
`

1

2
pBtηq

2
´

1

2
rBipcos θη ` sin θϕqs2

´ 2Aρ2

„

Bxχ´
mη

2
?
Aρ

η

2

.
(8.2.55)

The mass of η equals to

m2
η “

36Ak2ρ2

v2

ˆ

1`
v2

18ρ2

˙

“ 2Ak2

ˆ

1` 18
ρ2

v2

˙

. (8.2.56)

We can now group terms linear in η inside a squared term (after integrating by parts)
and subtract the appropriate η-independent terms

L “1

2
pBtηq

2
´

1

2
cos θ2

pBiηq
2
´ 2Aρ2

„

Bxχ`
sin θ cos θ

2mη

?
Aρ
B

2
iϕ´

mη

2
?
Aρ

η

2

` ρ2
pBtχq

2
`

1

2
pBtϕq

2
´

1

2
sin2 θpBiϕq

2

`
2
?
Aρ

mη

sin θ cos θBxχB
2
iϕ`

sin2 θ cos2 θ

2m2
η

pB
2
iϕq

2 .

(8.2.57)
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Next, we integrate out η expanding its solution in derivatives, starting at lowest order
with

η »
2
?
Aρ

mη

ˆ

Bxχ`
sin θ cos θ

2mη

?
Aρ
B

2
iϕ

˙

. (8.2.58)

Then, up to the fourth order in derivatives, we get

L “ρ2
pBtχq

2
`

1

2
pBtϕq

2
´

1

2
sin2 θpBiϕq

2
`

2
?
Aρ

mη

sin θ cos θBxχB
2
iϕ

`
2Aρ2

m2
η

“

pBtBxχq
2
´ cos2 θpBiBxχq

2
‰

`
sin2 θ cos2 θ

2m2
η

pB
2
iϕq

2 .

(8.2.59)

Both χ and ϕ are gapless and have constant shift symmetries so there are corresponding
conserved charges. Furthermore, up to total derivatives in the Lagrangian (8.2.59), χ can
be shifted by a term depending on the coordinates

χÑ χ` aix
i
` cijx

ixj ` fpyq . (8.2.60)

Symmetry under shifts by linear terms imply that the dipole moment of the charge is
conserved, while shifts under quadratic terms imply the conservation of quadrupole and
second radial moment. This is characteristic of models of fractons that are immobile.
Although higher derivative terms might spoil the shift symmetries, this would only affect
the dispersion relations at higher order.

To quadratic order in momentum, the dispersion relations of the gapless fluctuations
are

ω2
χ » 0 ,

ω2
ϕ » sin2 θ q2

i “
v2

18ρ2 ` v2
q2
i .

(8.2.61)

Meta-fluid

To linear order, the spatial derivatives of Φ are

BiΦ “ bpδxi ` iδ
y
i q ` bpBiux ` iBiuyq ñ BiΦ

˚
BiΦ “ |b|

2
`

2` 2Biui ` pBiujq
2
˘

.

(8.2.62)
Then, expanding the action to quadratic order in the fields, we find

L “ 1

2
BµτB

µτ ` |b|2BtuiBtui ´ A|b|
2

ˆ

Biui ´
6

v
τ

˙2

. (8.2.63)

We can also write this action in the following way

L “ 1

2
BµτB

µτ ´
1

2
m2
ττ

2
` |b|2

ˆ

BtuiBtui ´ C
ijkl
BiujBkul `

12K

v
τBiui

˙

. (8.2.64)

The coefficients Cijkl are the components of the elasticity tensor, that in this case only
has a bulk component

Cijkl
“ Kδijδkl, K “ A , (8.2.65)
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with K the bulk modulus, which also enters in the coupling between the dilaton and the
bulk strain. The mass of the dilaton is

m2
τ “ 72K

|b|2

v2
. (8.2.66)

A large v limit would make the dilaton massless and decoupled from the elastic theory
at low energies, this latter remaining otherwise unaffected. Roughly, if there is a big
hierarchy between the spontaneous breaking of dilatations and that of translations, one
does not expect the low-energy elastic theory to be sensitive to the dilaton physics.

Since the shear modulus vanishes, any deformation with τ “ 0, Biui “ 0 has zero
energy. Then, the elastic part describes a fluid or a meta-fluid. Note that constant
changes in volume can be compensated with a shift of the dilaton, so scale invariance is
preserved in this sense. This implies that there is a zero mode associated to the dilatation
symmetry and a massive mode which corresponds to the combination squared in (8.2.63).

We can separate the gapped and gapless modes by doing the shift

τ Ñ σ `
v

6
Biui . (8.2.67)

Then

L “ 1

2
BµσB

µσ ´
1

2
m2
τσ

2
`
v

6
BµσB

µ
Biui ` |b|

2
BtuiBtui `

v2

72
BµBiuiB

µ
Bjuj . (8.2.68)

We can further complete the square

L “ 1

2
BµσB

µσ ´
1

2
m2
τ

ˆ

σ `
v

6m2
τ

BµB
µ
Biui

˙2

` |b|2BtuiBtui

`
v2

72
BµBiuiB

µ
Bjuj `

v2

72m2
τ

pBµB
µ
Biuiq

2 .

(8.2.69)

Integrating out σ implies solving order by order in derivatives with the leading term

σ » ´
v

6m2
τ

BµB
µ
Biui . (8.2.70)

To sixth order in derivatives in the action, we are left with

L » |b|2BtuiBtui `
v2

72
BµBiuiB

µ
Bjuj `

v2

72m2
τ

pBµB
µ
Biuiq

2 . (8.2.71)

In this form, we also observe that the shear strain has zero energy and that the action is
symmetric under constant changes of the bulk strain. This implies that there are linear
and quadratic shift symmetries

δui “ ai ` bijx
j
` cijkx

jxk . (8.2.72)

Then, we have that, not only the charges associated to the constant shifts, but also
their dipole and second moments are conserved, this is characteristic of fractonic models.
The larger symmetry associated to arbitrary shear and rotational strains corresponds to
transverse transformations

δui “ εikBkωpxq `
`

BiBj ´ δijB
2
k

˘

V j
pxq . (8.2.73)
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8.3 Dispersion relations

By a standard perturbation analysis of the model (8.2.1) around the respective back-
grounds of the helical superfluid and the meta-fluid, we will compute the dispersion
relations of the fluctuations. This will support and refine some of the results and in-
terpretations which we already derived in the preceding sections.

8.3.1 Helical superfluid

As stated in Subsection 8.2.1, we perform a fluctuation of the model (8.2.1) around a
plane-wave background where we consider the parameterisation

Φpt, x, yq “ ρ eikx r1` φpt, x, yqs “ ρ eikx r1` σpt, x, yq ` iχpt, x, yqs ,

Ξpt, x, yq “ v r1` τpt, x, yqs .

(8.3.1)

(8.3.2)

The equations of motion at linear order for the fluctuations are4

2Apk ` iBxq rkpσ ´ 3τq ` Bxχs ` B
2
t pσ ´ iχq “ 0 ,

2Apk ´ iBxq rkpσ ´ 3τq ` Bxχs ` B
2
t pσ ` iχq “ 0 ,

12Akρ2
rkpσ ´ 3τq ` Bxχs ´ v

2
`

´B
2
x ´ B

2
y ` B

2
t

˘

τ “ 0 .

(8.3.3)

(8.3.4)

(8.3.5)

Going to Fourier space, we obtain a homogeneous algebraic system determined by the
kinetic matrix:

M “ ρ2

¨

˝

ω2 ´ 2Ak2 ´2iAkqx 6Ak2

2iAkqx ω2 ´ 2Aq2
x ´6iAkqx

6Ak2 6iAkqx
1
2

`

ω2 ´ q2
x ´ q

2
y

˘

v2

ρ2 ´ 18Ak2

˛

‚ , (8.3.6)

where the first row corresponds to σ, the second one to χ and the third one to τ .
In order to have non-trivial solutions for the fluctuations, the determinant for the

kinetic matrix should vanish,

detpMq “
ω2ρ4

2

 

v2
`

ω2
´ q2

x ´ q
2
y

˘ “

ω2
´ 2A

`

k2
` q2

x

˘‰

´ 36Ak2ω2ρ2
(

“ 0 . (8.3.7)

This leads to a set of conditions for the frequency and momenta that determine the
dispersion relations. The fluctuation determinant (8.3.7) has a ω2 factor, producing a
gapless mode whose dispersion relation is trivial, i.e. identically zero, ω “ 0. Apart from
such a trivial mode, the spectrum features a gapless and a gapped mode

m2
2 “ 0 ,

m2
3 “ 2Ak2

ˆ

1` 18
ρ2

v2

˙

.

(8.3.8)

(8.3.9)

4We remind the reader that the parameters k, ρ and v are not independent, but related by (8.2.11).
We will refrain from expressing one of the parameters in terms of the others, but instead aim at writing
the various expressions in their simplest form, here and in the rest of the chapter.
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Let us remark that the mass (8.3.9) agrees with the mass coming from the effective field
theory analysis (8.2.56), m3 ” mη.

Proceeding to compute the dispersion relations, we obtain:

ω2
1 “ 0 ,

ω2
2,3 “

1

2

”

2Aq2
x ` q

2
x ` q

2
y `m

2
η ¯

?
∆
ı

,

(8.3.10)

(8.3.11)

with

∆ “
 

2Aq2
x ` q

2
x ` q

2
y `m

2
η

(2
´ 8A

`

k2
` q2

x

˘ `

q2
x ` q

2
y

˘

. (8.3.12)

First note that ∆2 ď p2Aq2
x ` q2

x ` q2
y ` m2

ηq
2 so that, if ∆ ě 0, ω2

2,3 ě 0 leads to a
real dispersion relation. Indeed one can see this is the case for all momenta, by using
the expression for mη, which is given by (8.3.9), we see that p2Aq2

x ` q2
x ` q2

y ` m2
ηq

2 ě

p2Apk2 ` q2
xq ` q

2
x ` q

2
yq

2. From this, it follows that ∆ ě
`

2Apk2 ` q2
xq ´ pq

2
x ` q

2
yq
˘2
ě 0.

The expansion at low momenta provides

ω2
1 “ 0 ,

ω2
2 “

v2

18ρ2 ` v2

`

q2
x ` q

2
y

˘

`Opq4
q ,

ω2
3 “ m2

η ` 2Aq2
x `

18ρ2

18ρ2 ` v2

`

q2
x ` q

2
y

˘

`O
`

q4
˘

.

(8.3.13)

(8.3.14)

(8.3.15)

To recover the results obtained from the Ward-Takahashi identities of Section 8.2.2, and in
particular the fractonic behaviour, we consider the large-momentum behaviour of (8.3.11).
Of course, the exact trivial mode will remain trivial in any q limit. In order to take the
large-momentum limit, we simply take qx, qy " mη. Then, we find

ω2
2 »

"

q2
x ` q

2
y if p2A´ 1qq2

x ´ q
2
y ą 0

2Aq2
x if p2A´ 1qq2

x ´ q
2
y ă 0

, (8.3.16)

and

ω2
3 »

"

2Aq2
x if p2A´ 1qq2

x ´ q
2
y ą 0

q2
x ` q

2
y if p2A´ 1qq2

x ´ q
2
y ă 0

. (8.3.17)

Thus, ω2 and ω3 swap their roles depending on the sign of p2A´1qq2
x´q

2
y, which in general

depends on the direction in the momentum plane. Note that if A ď 1{2 this quantity is
always negative, so in that case ω2 and ω3 do not change with direction.

8.3.2 Identification of the modes

In order to study the Nambu-Goldstone nature of (8.3.13), (8.3.14) and (8.3.15), we need
to determine how they relate to a local spacetime modulation of the various symmetry-
originated zero modes. The study of the Ward-Takahashi identities gave us already a
glance into such associations at large momentum. At low momentum, instead, one can get
useful information from the effective action, which we have already derived to establish the
connection to fractons. Accordingly, we will identify χ with the Up1q Nambu-Goldstone
mode and τ and σ with the dilaton and shifton respectively.
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1. Low momentum:
Comparing (8.3.13), (8.3.14) and (8.3.15) with (8.2.61) and (8.2.56), we can make
the following identifications

i Trivial mode: ω1, mostly χ.

ii Gapless mode: ω2, mixture of τ and σ. According to (8.2.53) and (8.2.54) if
v " ρ (k{ρ2 " 1) it would be mostly τ and if v ! ρ (k{ρ2 ! 1) it would be
mostly σ.

iii Gapped mode: ω3, mixture of τ and σ orthogonal to the gapless mode.

2. High momentum:
Comparing (8.2.36), (8.2.30) and (8.2.48) with (8.3.16) and (8.3.17), we can identify

i Trivial mode: ω1 mostly σ.

ii Lineon: ω3 (for p2A´ 1qq2
x ´ q

2
y ą 0) or ω2 (for p2A´ 1qq2

x ´ q
2
y ă 0), mostly χ.

iii Relativistic mode: ω2 (for p2A´ 1qq2
x ´ q

2
y ą 0) or ω3 (for p2A´ 1qq2

x ´ q
2
y ă 0),

mostly τ .

These identifications unveil a strong change in the nature of the modes as a function
of momentum, this being a reflection of the mixing induced by the breaking of translation
symmetry. Indeed, the breaking of translation requires higher derivative terms which
lead to a non-trivial dependency in momentum in the kinetic matrix, and in particular
in the non-diagonal terms. Furthermore, the breaking of translation following one spatial
direction introduce anisotropy in the kinetic matrix. For A ą 1{2, the transmutation does
not only occur in the transition from low to large momentum but also depending on the
direction in the momentum plane.

We would like now to pause a moment to comment on the relation with the non-scale
invariant model of [116], where precisely the helical ground state was considered. The
model is basically the same as the present one, where however the fluctuation τ is frozen.
The spectrum is easily obtained from the determinant of the upper-left 2-by-2 submatrix
of (8.3.6). It consists of a trivial fractonic mode, and a gapped lineon. Hence, we see
that the compensator field enforcing scale invariance is a highly non-trivial addition to
the model, yielding non-trivial mixing among the modes, and their identification.

8.3.3 Meta-fluid

In order to get the dispersion relations for the meta-fluid, we proceed in a similar fashion
as for the helical superfluid. By referring to Section 8.2.1, we study the fluctuations of
the model (8.2.1) around the background given in (8.2.16) and (8.2.17) with the following
parametrisation:

Φpt, x, yq “ b
”

x` iy ` uxpt, x, yq ` iuypt, x, yq
ı

,

Ξpt, x, yq “ v ` τpt, x, yq .

(8.3.18)

(8.3.19)
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At first order in the fluctuations, the equations of motion are given by

B
2
t ux ´ ABx

ˆ

Bxux ´
6

v
τ

˙

“ 0 ,

B
2
t uy ´ ABy

ˆ

Byuy ´
6

v
τ

˙

“ 0 ,

B
2
t τ ´ B

2
i τ ` 12A

|b|2

v

ˆ

6

v
τ ´ Biui

˙

“ 0 .

(8.3.20)

(8.3.21)

(8.3.22)

The quadratic fluctuation matrix in Fourier space is

M “ |b|2

¨

˝

ω2 ´ Aq2
x ´Aqxqy ´6iA

v
qx

´Aqxqy ω2 ´ Aq2
y ´6iA

v
qy

6iA
v
qx 6iA

v
qy

1
2|b|2

`

ω2 ´ q2
x ´ q

2
y

˘

´ 36 A
v2

˛

‚ , (8.3.23)

where the two first lines correspond to ux and uy while the last line is associated to τ .
The determinant of this matrix is given by

detpMq “
|b|4ω2

2

„

pω2
´ q2

qpω2
´ Aq2

q ´ 72
A|b|2

v2
ω2



, (8.3.24)

where we have used q2 “ q2
x ` q2

y. Take notice that the above expression is completely
isotropic. The dispersion relations, given by the roots of the determinant, are the following

ω2
1 “ 0 ,

ω2
2,3 “

1

2

"

p1` Aqq2
`m2

τ ¯

b

rp1` Aqq2 `m2
τ s

2
´ 4Aq4

*

,

(8.3.25)

(8.3.26)

where we have used (8.2.66). Again, one can see that the argument of the square root is
always strictly positive, and ω2

2 ě 0.
At low momenta, we find the following dispersion relations:

ω2
1 “ 0 ,

ω2
2 “

A

m2
τ

q4
`O

`

q6
˘

,

ω2
3 “ m2

τ ` p1` Aqq
2
`O

`

q4
˘

.

(8.3.27)

(8.3.28)

(8.3.29)

We obtain a similar mass spectrum as for the helical superfluid: two massless modes, one
being exactly trivial, and a gapped mode. However, we have some qualitative differences in
the dispersion relations. Indeed, the non-trivial massless mode has a quadratic dispersion
relation while in the helical background it has a linear behaviour. This can be traced
back to the effective theory for gapless modes (8.2.71), where there are terms with two
time-derivatives and four spatial derivatives but there are no terms with just two spatial
derivatives.

An additional qualitative difference with the helical case is that all the dispersion
relations are isotropic in the meta-fluid case. As it was mentioned in Section 8.2.2, the
meta-fluid background preserves an effective rotation symmetry from the diagonal break-
ing of Up1q and spatial rotations. This is actually due to the particular ansatz (8.2.16) for
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the solution. It is possible to choose a more general solution which will lead to anisotropies
in the determinant of the kinetic matrix and hence in the spectrum. The other features
of the latter would however be unchanged. Hence, we prefer to deal with the isotropic
meta-fluid, for a better clarity of the resulting expressions. On the other hand, in the
plane wave background spatial rotations are necessarily broken by the choice of a preferred
direction in the solution.

At small momentum, the massive mode (8.3.29) is associated to the fluctuation τ , as
it can be observed in the diagonalisation of (8.3.23) in the qi Ñ 0 limit. We notice that
the association to τ matches the effective study of Section 8.2.3 and that we recover the
mass (8.2.66).

For large momenta, the non-trivial modes have the following dispersion relations

ω2
2,3 »

q2

2

”

1` A¯ |1´ A|
ı

, (8.3.30)

so that when A ď 1 we have that ω2 »
?
A|q| and ω3 » |q| (with |q| “

a

q2), while when
A ą 1 we have the opposite, ω2 » |q| and ω3 »

?
A|q|. By looking at the kinetic matrix

in the large q limit, i.e. neglecting all non-leading terms in ω or q, we find that the mode
with ω » |q| is always aligned with τ , while the mode with ω »

?
A|q| is aligned with the

longitudinal combination of the ui (the other being always the trivial immobile mode).
Hence, when A ą 1, the modes ω2 and ω3 switch nature when going from low to high
momenta. On the other hand, note that for the meta-fluid, the trivial mode is always the
transverse part of ui, for all momenta.

Again, let us comment briefly on the possibility to have a meta-fluid ground state in
the model of [116], where τ is frozen. In this case, we can easily see that there is no
scale in the spectrum. Eventually, the spectrum consists of a trivial fractonic mode, and
a gapless isotropic mode with linear dispersion relations. Hence, we notice that also in
this case, the addition of the compensator field changes quite radically the spectrum, due
to non-trivial mixing.

8.4 Finite density

As it has already been established for internal compact symmetries, working at finite
density modifies the spectrum of Nambu-Goldstone modes associated to spontaneous
symmetry breaking [11–13, 157]. We would like to probe how these results extend in
our specific spacetime symmetry breaking pattern. To do so, we switch on a chemical
potential µ for the Up1q symmetry of the theory (8.2.1) in the framework of the helical
superfluid background. We do not extend the analysis to the meta-fluid because in the
presence of a chemical potential the effective action is no longer homogeneous.

The chemical potential introduces a new term in the effective potential „ ´µ2ρ2, that
makes it unbounded from below and would produce a run away behaviour. Something
similar occurs in the model of the previous chapter for the simultaneous breaking of
scale invariance and an internal symmetry. In that simpler case the issue was solved by
introducing a small deformation of the model that lifts the space of minimal energy states
at zero chemical potential and stabilises it at finite chemical potential. The results at
zero density can be recovered by simultaneously sending the chemical potential and the
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deformation to zero. Following the same reasoning we introduce a new term with coupling
λ2 that preserves the Up1q and dilatation symmetries

L “ BtΦ˚BtΦ` ABiΦ˚BiΦ`
1

2
BtΞBtΞ´

1

2
BiΞBiΞ´B

pBiΦ
˚BiΦq

2

Ξ6
´HΞ6

´ λ2
pΦ˚Φq3 .

(8.4.1)

The additional term breaks explicitly the shift symmetry, and would introduce an explicit
dependence on the coordinates in the effective action of the meta-fluid.

The equations of motion are given by

B
2
tΦ` A B

2
i Φ´ 2B Bi

ˆ

BiΦ

Ξ6
BjΦ

˚
BjΦ

˙

` 3λ2Φ˚2Φ3
“ 0 ,

B
2
tΞ´ B

2
i Ξ´

6

Ξ

«

B
pBiΦ

˚BiΦq
2

Ξ6
´HΞ6

ff

“ 0 .

(8.4.2)

(8.4.3)

To achieve a similar spontaneous symmetry breaking pattern as in Sections 8.2.1 and 8.2.2,
we mimic the helical ansatz (8.2.5), (8.2.6) where the chemical potential is implemented
by a time-dependent phase in the Up1q-direction. Written explicitly, it provides

Φpt, x, yq “ ρ eipµt`kxq ,

Ξpt, x, yq “ v ,

(8.4.4)

(8.4.5)

where the parameters v, ρ, k and µ are all real and non vanishing, and assumed to be
positive for simplicity. The equations of motion are

ρ2

ˆ

Ak2
´

2Bk4ρ2

v6
´ 3ρ4λ2

` µ2

˙

“ 0 ,

Bk4ρ4
´Hv12

“ 0 .

(8.4.6)

(8.4.7)

We keep the same relation between the coefficients of the action

H “
A2

4B
, (8.4.8)

so that the relation (8.2.11) remains unchanged, but there is an additional condition

µ2
“ 3ρ4λ2 . (8.4.9)

Therefore ρ is fixed in terms of µ{λ. The zero density limit can be taken keeping ρ fixed
if both µ and λ are taken to zero at the same rate.

The chemical potential µ is seen as an external parameter that fixes the ensemble.
Therefore, ρ, k and v are parameters of the solution that should be solved in terms of A,
B and µ. This can alternatively be achieved by minimizing the effective potential:5

Veff “
B

v6

ˆ

k2ρ2
´

A

2B
v6

˙2

` λ2ρ6
´ µ2ρ2 . (8.4.10)

5The terminology “effective” comes from the fact that at finite density, it is customary to look for
ground states which minimise the effective Hamiltonian H̃ “ H ´ µQ where Q is the Up1q conserved
charge. This formulation is equivalent to searching for ground states of the Hamiltonian H, evolving
in time along the Up1q-direction. Our ansatz (8.4.4), (8.4.5) is precisely doing so, and by considering
µ as being an external parameter, ρ, k and v parametrise a static solution minimizing the effective
Hamiltonian.
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In the present case the ratio v{ρ is fixed by k{µ, more precisely v6{ρ6 „ k2{µ2. Then, if
k " µ we expect the results to be quite similar to the µ “ 0 case with v{ρ " 1, in which
case the gapless mode would be mostly τ . On the other hand, for µ " k they are expected
to be closer to the case v{ρ ! 1, where the mode with a gap proportional to k is mostly
τ .

8.4.1 Dispersion relations

We are now ready to perform the fluctuations around our background. The fluctuations
are parameterised as follows:

Φpt, x, yq “ ρ eipµt`kxq r1` φpt, x, yqs “ ρ eipµt`kxq r1` σpt, x, yq ` iχpt, x, yqs ,

Ξpt, x, yq “ v r1` τpt, x, yqs .

(8.4.11)

(8.4.12)

The linearised equations of motion are6

2Apk ` iBxq rkpσ ´ 3τq ` Bxχs ` B
2
t pσ ´ iχq ` 2iµBtpσ ´ iχq ` 4µ2σ “ 0 ,

2Apk ´ iBxq rkpσ ´ 3τq ` Bxχs ` B
2
t pσ ` iχq ´ 2iµBtpσ ` iχq ` 4µ2σ “ 0 ,

v2
`

´B
2
x ´ B

2
y ` B

2
t

˘

τ ´ 12Akρ2
rkpσ ´ 3τq ` Bxχs “ 0 .

(8.4.13)

(8.4.14)

(8.4.15)

Notice that the term 4µ2σ in (8.4.13) and (8.4.14) spoils the space-modulated shift sym-
metry we had in the case µ “ 0 “ λ. We therefore do not expect a trivial mode in the
spectrum.

In Fourier space, the kinetic matrix for the fluctuations is

M “ ρ2

¨

˝

ω2 ´ 2Ak2 ´ 4µ2 ´2ipAkqx ` ωµq 6Ak2

2ipAkqx ` ωµq ω2 ´ 2Aq2
x ´6iAkqx

6Ak2 6iAkqx
1
2

`

ω2 ´ q2
x ´ q

2
y

˘

v2

ρ2 ´ 18Ak2

˛

‚ , (8.4.16)

where, as before, the first line corresponds to σ, the second one to χ and the third one to
τ . Its determinant is given by

detM “
ρ4

2

!

ω2v2
`

ω2
´ 8µ2

˘ `

ω2
´ q2

x ´ q
2
y

˘

´ 2A
“

v2
`

ω2
´ q2

x ´ q
2
y

˘ `

ω2
`

k2
` q2

x

˘

` 4kωqxµ´ 4q2
xµ

2
˘

`18k2ρ2ω2
`

ω2
´ 8µ2

˘‰

)

.

(8.4.17)

Setting the momenta to zero, one gets

detM “
ρ4ω2

2

“

ω2v2
`

ω2
´ 2Ak2

´ 8µ2
˘

´ 36Ak2ρ2
`

ω2
´ 8µ2

˘‰

, (8.4.18)

whose zeros give the mass spectrum. One thus finds a gapless mode m2
1 “ 0 and two

gapped modes, whose squared gaps are

m2
2,3 “ Ak2

ˆ

18
ρ2

v2
` 1

˙

` 4µ2
¯

d

„

Ak2

ˆ

18
ρ2

v2
` 1

˙

` 4µ2

2

´ 288Ak2µ2
ρ2

v2
, (8.4.19)

6We remind that here and in the following we keep using the parameters that make the expressions
simplest. However, we must always recall that the relations (8.2.11) and (8.4.9) hold.
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both real and positive. The reduction of the number of massless modes compared to the
zero-density case is expected due to the explicit breaking of the shift symmetry by the
pair µ and λ. Intuitively, such breaking leads to one less flat direction and hence, to one
fewer gapless mode.

If we take µ ! k while keeping ρ and v fixed, one gets

m2
2 “

144ρ2

18ρ2 ` v2
µ2
`O

ˆ

µ4

k2

˙

,

m2
3 “ m2

η `Opµ2
q ,

(8.4.20)

(8.4.21)

where we recall that m2
η as given in (8.3.9) is of Opk2q. Note that since as we already

noticed, we have that µ{k „ pρ{vq3, the leading term in (8.4.20) goes to zero really as
m2

2 „ µ8{3k´2{3. In any case, the zero density limit returns the spectrum computed in
Section 8.3.1 as expected.

In the opposite limit, k ! µ, we have

m2
2 “ 36Ak2ρ

2

v2
`O

ˆ

k4

µ2

˙

,

m2
3 “ 8µ2

`Opk2
q .

(8.4.22)

(8.4.23)

Again, note that taking into account the behaviour of ρ{v in the limit, we have that
m2

2 „ k4{3µ2{3, still very much suppressed with respect to m2
3 „ µ2. The upshot is thus

that in both limits there is a large separation between the larger and smaller gap m3 " m2.
It is also possible to compute analytically the dispersion relation for ω1, by taking the

limit ω, q ! µ, k in (8.4.17). Actually, one can solve the resulting equation by further
postulating ω ! q, so that we get:

ω2
1 “

v2

36ρ2k2
q2
x

`

q2
x ` q

2
y

˘

`Opq5
q . (8.4.24)

Note that this expression is valid for momenta smaller than the chemical potential. Taking
the zero density limit for any fixed momentum one recovers that ω1 is the trivial mode.
At large momentum, in any non-zero qx direction, we can again solve for ω, k, µ ! qx and
get

ω2
1 “ 4µ2

`O
ˆ

µ4

q2
x

˙

, (8.4.25)

while in the pure transverse direction we have the exact dispersion relation:

ω1p0, qyq “ 0 , (8.4.26)

as can be seen from the fact that in this case an ω2 factorises again in (8.4.17). So, up to
a correction that shifts the dispersion relation by a constant proportional to the chemical
potential, ω1 should be identified with the trivial mode.

For generic momenta, we compute the dispersion relations of the modes numerically
and plot them in Figure 8.1. The asymptotic dispersion relations shown in (8.4.24),
(8.4.25) and (8.4.26) match the blue curve in the numerical results of Figure 8.1. We
further provide two three-dimensional plots of the low-momentum dispersion relations of
ω1 in Figure 8.2.
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Figure 8.1: This figure displays the dispersion relations of the three modes ω1 (blue), ω2

(red) and ω3 (green). They have been obtained by a numerical analysis of the roots of the
determinants (8.3.7) and (8.4.17). The array of plots is such that each line corresponds
respectively to the longitudinal direction (qy “ 0) and the transverse direction (qx “ 0).
The columns refer to the case of zero and non-zero chemical potential – to make it more
visual, the zero chemical plots are the solid curves while the non-zero chemical ones are
dashed. All plots are done with A “ 0.125, B “ 0.25, k “ 1.5; the left column is obtained
with µ “ 0 “ λ while the right column is obtained with µ “ 1 and λ “ 0.5. The VEV
value ρ is fixed in the µ ‰ 0 case by the preceding cited parameters but it is not so in the
zero chemical potential case. For practicality, we took the same value for ρ in both cases.
Since k ą µ, it means that v ą ρ. Hence, at low momentum, the green curve is mostly
shiftonic while the red curve is mostly dilatonic.

8.4.2 Identification of the modes

The presence of a chemical potential does not fundamentally alter the equations of motion
at very large momentum discussed in Section 8.3.1. Therefore, we expect that the high
momentum identification of the modes remains unchanged at finite density, with the
trivial mode ω1 being mostly σ, the lineon ω2 or ω3 being mostly χ (depending on the
value of A and the direction in the momentum plane) and the relativistic mode ω3 or ω2

being mostly τ . This is confirmed by Figure 8.1 where we have the same trends at large
momentum for µ “ 0 and µ ‰ 0, the only difference being the non-zero plateau of the
blue curve, which formally is produced by a subleading contribution at high momentum.

Similarly, in the regime k " µ we do not expect the identification at low momenta of
the modes to be significantly altered. Therefore ω1 would be mostly χ and, given that
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Figure 8.2: This figure displays the numerical ω1 mode at low momentum, i.e. the Up1q
Nambu-Goldstone mode. Both plots represent the same graph and have been obtained
with A “ 0.125, B “ 0.25, k “ 1.5, µ “ 1 and λ “ 0.5. On the left, a 3D plot is provided
while on the right it is a contour plot.

v{ρ " 1 in this regime, the lower gapped mode ω2 with gap m2 „ pµ4{kq1{3 would be
mostly τ and the higher gapped mode ω3 with gap m3 „ k would be mostly σ.

Finally, when µ " k the most relevant terms producing the mixing of different modes
is changed. Taking the matrix (8.4.16) at zero momentum and µ " k leads to

Mq“0, µ"k “ ρ2

¨

˝

ω2 ´ 4µ2 ´2iωµ Opk2q

2iωµ ω2 0

Opk2q 0 1
2
ω2 v2

ρ2 `Opk
2q

˛

‚ . (8.4.27)

In principle both χ and τ become gapless in this limit (they are eigenvectors of M with
zero eigenvalue for ω “ 0). However, taking into account the Opk2q corrections we see that
τ acquires a gap proportional to k while χ remains as the true gapless mode to leading
order. Finally, the gapped mode with ω » 2

?
2µ is a linear combination „ σ ´ i?

2
χ.

Summarizing, the identification of the modes is

k " µ " q µ " k " q q " k, µ; A ă 1{2
ω1 χ χ σ
ω2 τ τ χ
ω3 σ σ ´ i?

2
χ τ

8.5 Removing the degeneracy

The Mexican hat model we have studied in the previous sections has a large emergent
symmetry that results in the presence of trivial modes in the spectrum. We can remove
partially the emergent symmetry and generate non-trivial dispersion relations for all the
modes by introducing additional terms to the action, while at the same time keeping the
same symmetry breaking pattern. At fourth order in spatial derivatives and fields, there
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are two possible extensions7

∆L “ GΞ´6
BiΦ

˚
BiΦ

˚
BjΦBjΦ` F Ξ´6Φ˚ΦBiBjΦ

˚
BiBjΦ . (8.5.1)

However, they do not produce qualitatively different results. For simplicity we will set
F “ 0 in the following. We will then study the extended model

L “BtΦ˚BtΦ` ABiΦ˚BiΦ`
1

2
BtΞBtΞ´

1

2
BiΞBiΞ

`
1

Ξ6

“

´B pBiΦ
˚
BiΦq

2
`G BiΦ

˚
BiΦ

˚
BjΦBjΦ

‰

´HΞ6 ,
(8.5.2)

where the G-term is the additional part.
In general, the new term will change the energy of the solutions. If we want to ensure

that the helical superfluid background (8.2.5), (8.2.6) is a minimal energy solution we
have to modify the relation between the coefficients to

H “
A2

4pB ´Gq
. (8.5.3)

With this choice the dimensionless combination

ξ “
k2ρ2

v6
, (8.5.4)

remains fixed as a function of the coefficients of the action through the relation

A “ 2pB ´Gqξ . (8.5.5)

Equation (8.5.4) leaves therefore a moduli space with two flat directions since the static
energy on-shell is identically zero.

Using the same basis of fluctuations for the helical superfluid (8.3.1)–(8.3.2), the new
term introduces a contribution to the quadratic action of the form

LG “ ´4GξpByσq
2. (8.5.6)

This breaks partially the symmetry characterised by the transformation β in (8.2.52).
With the new term, β is restricted to be a function at most linear in y, but yet arbitrary
in x. So, the emergent symmetry with nonzero G is

δχ “ αpyq ` βpxq ` εpxqy, δσ “ ´
1

k
rβ1pxq ` ε1pxqys ` 3δ ` 3γix

i,

δτpx, yq “ δ ` γix
i.

(8.5.7)

Following the same reasoning we did previously, we expect χ and σ to be both lineons,
with χ moving along the x direction and σ along the y direction.

For the meta-fluid the ansatz (8.2.19) introduces a term in the action for fluctuations

LG »
2Gp|b|2q2

v6
uijuij “

4Gp|b|2q2

v6
BiujBiuj , (8.5.8)

7We can also have additional higher derivative terms for the real scalar Ξ, but since the background
value of Ξ is constant we are not interested in those.
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where uij “ Biuj ` Bjui ´ δijBkuk is the shear strain, and the second equality is obtained
up to total derivatives. Note that, in contrast to the helical superfluid, we do not have
to change the relation of H with the other coefficients since this term does not give a
contribution to the energy density of the background. Furthermore, the meta-fluid is
stable for G ă 0, while the helical fluid is stable for G ą 0, since this gives the right sign
to the kinetic terms in (8.5.6) and (8.5.8). So, with the new term, only one of the two
states would be realised depending on the values of the coefficients we choose to extend
the model.

In the meta-fluid the new term introduces a shear modulus G “ ´4G|b|2{v6, that
removes most of the symmetries in (8.2.72) and (8.2.73), leaving just the symmetries for
massless fields.

Integrating out the massive dilaton as before will remove the zero-momentum bulk
modulus, but the higher derivative terms only affect the dispersion relation at higher
order in momentum. Then, the effective low-energy theory is almost the same as ordinary
elasticity, the dispersion relation for the fluctuations ui is at lowest order in momentum

ω2
» Gq2 . (8.5.9)

8.5.1 Ward-Takahashi identities

Helical superfluid

For the helical superfluid the Up1qWard-Takahashi identity (8.2.28) does not change when
G is introduced, so the Up1q Nambu-Goldstone mode has the same dispersion relation at
high momentum. The real shift symmetry Ward-Takahashi identity becomes

B
2
t σ ´ 4ξGB2

yσ ` 2Ak rkpσ ´ 3τq ` Bxχs “ 0 . (8.5.10)

The dilatation Ward-Takahashi identity also acquires a new contribution

v2
pB

2
i τ ´ B

2
t τq “ 2ρ2

`

B
2
t σ ´ 4ξGB2

yσ
˘

` 8kρ2A pkp3τ ´ σq ´ Bxχq . (8.5.11)

Since ξ is a fixed quantity, in the high momentum limit k Ñ 0, the dispersion relation of
the shifton is modified to

ω2
σ » 4ξGq2

y “
2AG

B ´G
q2
y . (8.5.12)

On the other hand, the dilaton keeps a relativistic dispersion relation in this limit. This
confirms our analysis of the emergent symmetries where we predicted that σ would behave
as a lineon moving along the y direction.

Meta-fluid

When G is introduced, the dilatation Ward-Takahashi identity for the meta-fluid does not
change, but there is a new term in the complex shift Ward-Takahashi identity

vpB2
t ui ´ ABiBku

k
´ GB2

kuiq ` 6ABiτ “ 0. (8.5.13)

At high momentum this gives two modes with dispersion relations

ω2
» Gq2, ω2

» pA` Gqq2, (8.5.14)
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with the first mode corresponding to the transverse and the second to the longitudinal
components of ui.

8.5.2 Dispersion relations for the helical superfluid

We obtain the following equations of motion at linear order for the fluctuations:

2Apk ` iBxq rkpσ ´ 3τq ` Bxχs ` B
2
t pσ ´ iχq ´ 4GξB2

yσ “ 0 ,

2Apk ´ iBxq rkpσ ´ 3τq ` Bxχs ` B
2
t pσ ` iχq ´ 4GξB2

yσ “ 0 ,

12Akρ2
rkpσ ´ 3τq ` Bxχs ´ v

2
`

´B
2
x ´ B

2
y ` B

2
t

˘

τ “ 0 .

(8.5.15)

(8.5.16)

(8.5.17)

Sending the parameter G to zero (keeping the parameter k, ρ and v fixed) permits to
recover the vacuum as well as the equations of motion of the G “ 0 model (8.2.1). Hence,
in this specific limit, we expect to recover smoothly the original spectrum.

Going to Fourier space, we obtain a homogeneous algebraic system for the equations
of motion driven by the kinetic matrix:

M “ ρ2

¨

˝

ω2 ´ 2Ak2 ´ 4Gξq2
y ´2iAkqx 6Ak2

2iAkqx ω2 ´ 2Aq2
x ´6iAkqx

6Ak2 6iAkqx
1
2

`

ω2 ´ q2
x ´ q

2
y

˘

v2

ρ2 ´ 18Ak2

˛

‚ (8.5.18)

The determinant evaluates to

detpMq “ detpMqG“0 ´ 2Gξρ4q2
y

“

v2
pω2

´ q2
x ´ q

2
yqpω

2
´ 2Aq2

xq ´ 36Ak2ρ2ω2
‰

, (8.5.19)

where detpMqG“0 is given by (8.3.7).

If we specifically look for a trivial root of the determinant, we do not find one:

detpMq|ω“0 “ ´4AGξρ4v2q2
xq

2
y

`

q2
x ` q

2
y

˘

. (8.5.20)

This immediately tells us that there is no longer a trivial mode. This is consistent with
the analysis we made based on the emergent shift symmetries.

The spectrum features two gapless modes and one gapped mode

m2
1 “ 0 ,

m2
2 “ 0 ,

m2
3 “ 2Ak2

ˆ

1` 18
ρ2

v2

˙

.

(8.5.21)

(8.5.22)

(8.5.23)

Notice that the difference with the case G “ 0 is hidden in the relation among the
parameters, where the correction is given by a factor pB ´ Gq instead of simply B. So
sending G to zero smoothly provides the masses of the G “ 0 case.
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Proceeding to compute the dispersion relations at small momenta, we obtain:

ω2
1 “

4Gρ2v2pq2
x ` q

2
yqq

2
xq

2
y

72k2ρ4Gq2
y ` v

8pq2
x ` q

2
yq
`Opq6

q ,

ω2
2 “

v2

18ρ2 ` v2

„

q2
x `

ˆ

1`
72Gk2ρ4

v8

˙

q2
y



`Opq4
q ,

ω2
3 “ 2Ak2

ˆ

1` 18
ρ2

v2

˙

` 2Aq2
x

`
18ρ2

18ρ2 ` v2

„

q2
x `

ˆ

1`
4Gk2ρ2

v6

˙

q2
y



`O
`

q4
˘

.

(8.5.24)

(8.5.25)

(8.5.26)

We recover smoothly the G “ 0 case in the limit of zero G.
Note that the expression for the mode ω1 has an unusual non-analytic dependence with

momentum but overall it goes like ω1 „ q2, while the other gapless mode is linear ω2 „ q.
The dispersion relation of ω1 is confirmed by the numerical study of Figure 8.3. In fact,
the plots display the trivialisation of the dispersion relations for qx “ 0 and qy “ 0, and
the non-trivial bump in the quadrant in between. Also, the analytic expression predicts
the changes in slope we observed in the 3D plot. Indeed, according to (8.5.24), the starting
slope of the dispersion relation at fixed qx ą 0 is larger than the starting slope at fixed
qy ą 0. Hence, in order for the dispersion relations to join continuously, the fixed qx ą 0
dispersion relation should bend downwards.

A final comment is that at large momentum we observe that (8.5.18) diagonalises. In
particular, the modes ω1 and ω2 are respectively transverse and longitudinal lineons with
the dispersion relations

ω1 „ 2
a

Gξ qy , ω2 „
?

2Aqx when qx, qy " k . (8.5.27)

This is in agreement with the analysis of Ward-Takahashi identities we did previously.
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Figure 8.3: This figure displays the numerical ω1 mode at low momentum, i.e. the Up1q
Nambu-Goldstone mode. Both plots represent the same graph and have been obtained
with A “ 2, B “ 1.5, G “ 1, k “ 1, ρ “ 0.54 and µ “ 0 “ λ. On the left, a 3D plot is
provided while on the right it is a contour plot.
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Identification of the modes

Since the new term proportional to G adds a contribution to the kinetic matrix propor-
tional to q2

y, the separation between gapless and gapped modes at low momentum is the
same as for G “ 0. Indeed, the gap in (8.3.15) and the velocity in the x direction of
the gapless mode (8.3.14) are the same with nonzero G (8.5.24). The nature of the high
momentum modes is easily identified with the help of the Ward-Takahashi identities. So,
the identification of the modes is essentially the same as in section 8.3.2, except ω1 has
a non-analytic behaviour at low momentum and becomes a lineon propagating in the y
direction at high momentum.

8.5.3 Dispersion relations for the meta-fluid

Let us directly consider the kinetic matrix

M “ |b|2

¨

˝

ω2 ´ Aq2
x ´ Gq2 ´Aqxqy ´6iA

v
qx

´Aqxqy ω2 ´ Aq2
y ´ Gq2 ´6iA

v
qy

6iA
v
qx 6iA

v
qy

1
2|b|2

pω2 ´ q2q ´ 36 A
v2

˛

‚ , (8.5.28)

where we recall that G “ ´4G|b|2{v6 ą 0. We notice that only the first two diagonal
terms are modified compared to the G “ 0 case. Therefore, we expect that only two of
the three dispersion relations will be more significantly affected by the correction, namely
the lightest modes.

The determinant of the kinetic matrix reads as follows

detpMq “
|b|4

2
pω2

´ Gq2
q

”

pω2
´ q2

qpω2
´ Aq2

´ Gq2
q ´m2

τ pω
2
´ Gq2

q

ı

. (8.5.29)

It rightly reduces to (8.3.24) when G “ 0. From this expression one can immediately
see that what was formerly the immobile fracton, acquires isotropic and linear dispersion
relations which are valid for any momenta, and are entirely controlled by G. One can
further find the exact analytical expression for the other two modes, which will depend
non-trivially both on G and mτ . At low-momentum ω, q ! mτ , one can see that the
condition detpMq “ 0 gets an additional factor of pω2 ´ Gq2q, giving the two gapless
modes expected from the low-energy effective theory.

In more detail, at low momentum we have the expansions

ω2
1 “ Gq2 ,

ω2
2 “ Gq2

` Ap1´ Gq q
4

m2
τ

`O
`

q6
˘

,

ω2
3 “ m2

τ ` p1` Aqq
2
`O

`

q4
˘

.

(8.5.30)

(8.5.31)

(8.5.32)

We recover the expected results from the effective analysis as well as the idea that two of
the three modes are more substantially affected by G. Looking at (8.5.30), (8.5.31) and
(8.5.32) we get back the dispersion relation of the original model when we send G to zero.

At large momentum we can drop the last term in (8.5.29), so that the determinant
completely factorises and the modes will behave as

ω1 “
?
G|q| , ω2 »

a

pA` Gq|q| , ω3 » |q| . (8.5.33)
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When GÑ 0, we recover the original large momentum behaviour.
According to our previous analysis, at low momentum we can identify ω1 with the

transverse component of the displacement ui, while ω2 corresponds to the longitudinal
part. The gapped mode is mostly the dilaton. At high momentum, the Ward-Takahashi
identities keep the same identification for the modes as for low momentum.

8.5.4 Extended model at finite density

We generalise the helical superfluid solutions to finite density, as already done in Section
8.4 for G “ 0. In order to stabilise the ground states, we add a shift symmetry breaking
λ-term in the Lagrangian,

L “BtΦ˚BtΦ` ABiΦ˚BiΦ`
1

2
BtΞBtΞ´

1

2
BiΞBiΞ

`
1

Ξ6

“

´B pBiΦ
˚
BiΦq

2
`G BiΦ

˚
BiΦ

˚
BjΦBjΦ

‰

´HΞ6
´ λ2

pΦ˚Φq3 .
(8.5.34)

Given the condition (8.5.3), the plane wave ansatz (8.4.4)–(8.4.5) is a solution to the
equations of motion minimizing the effective potential provided

v6
“

2pB ´Gq

A
k2ρ2 , ρ2

“

ˇ

ˇ

ˇ

ˇ

µ
?

3λ

ˇ

ˇ

ˇ

ˇ

. (8.5.35)

Setting G to zero, we recover the background solution of the finite density G “ 0 model.
The linearised equations of motion are

2Apk ` iBxq rkpσ ´ 3τq ` Bxχs ` B
2
t pσ ´ iχq

´4GξB2
yσ ` 2iµBtpσ ´ iχq ` 4µ2σ “ 0 ,

2Apk ´ iBxq rkpσ ´ 3τq ` Bxχs ` B
2
t pσ ` iχq

´4GξB2
yσ ´ 2iµBtpσ ` iχq ` 4µ2σ “ 0 ,

v2
`

´B
2
x ´ B

2
y ` B

2
t

˘

τ ´ 12Akρ2
rkpσ ´ 3τq ` Bxχs “ 0 .

(8.5.36)

(8.5.37)

(8.5.38)

The kinetic matrix associated to the equations of motion is

M “ ρ2

¨

˝

ω2 ´ 2Ak2 ´ 4µ2 ´ 4Gξq2
y ´2ipAkqx ` ωµq 6Ak2

2ipAkqx ` ωµq ω2 ´ 2Aq2
x ´6iAkqx

6Ak2 6iAkqx
1
2

`

ω2 ´ q2
x ´ q

2
y

˘

v2

ρ2 ´ 18Ak2

˛

‚ .

(8.5.39)

Since G only contributes by terms proportional to the momentum, there are no qualitative
differences in the gaps, it is enough to replace B Ñ B ´ G in the expressions found in
Section 8.4. The high momentum behaviour will once more be the same as for zero density.
For low and intermediate momenta, we resort to numerics, our results are plotted in Figure
8.4 and in Figure 8.5. Comparing with Figure 8.3, we observe that the ω1 mode is lifted
at qy “ 0 when µ ‰ 0, as also happened at G ‰ 0. On the other hand, comparing Figure
8.2 and Figure 8.5, the effect of G is to introduce a change in the slope of the dispersion
relation in the qx direction. The identification of the modes will be the same as that made
at G “ 0 in Section 8.4.
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Figure 8.4: This figure displays the dispersion relations of the three modes (each mode
has its own colour, as in Figure 8.1). The array of plots is such that each lines corresponds
respectively to the longitudinal direction (qy “ 0) and the transverse direction (qx “ 0).
The columns refer to the case of zero and non-zero chemical potential – to make it more
visual, the zero chemical plots are the solid curves while the non-zero chemical ones are
dashed. All plots are done with A “ 0.125, B “ 0.5, G “ 0.25, k “ 1.5; the left column
is obtained with µ “ 0 “ λ while the right column is obtained with µ “ 1 and λ “ 1.
The VEV value ρ is fixed in the µ ‰ 0 case by the preceding cited parameters but it is
not so in the zero chemical potential case. We took the same value for ρ in both cases
for practical reasons. We have that v ą ρ, hence, at low momentum, the green curve
is mostly shiftonic while the red curve is mostly dilatonic. Notice that since µ ă k, the
identification of the modes for the finite density case matches the one with zero chemical
potential.

8.6 Counting the Nambu-Goldstone modes

A comparison of the specific results found above with the general knowledge on Nambu-
Goldstone counting (see Part I) is interesting because non-trivial. To this purpose, we
recapitulate in Table 8.1 the Nambu-Goldstone modes found explicitly from the study of
the helical fluid and meta-fluid fluctuation Lagrangians, as well as their dispersion and
analyticity properties. In particular, we stress that we found in general two gapless and
a gapped mode.

For internal symmetries, the number of Nambu-Goldstone modes nNG is generically
bounded by the number of spontaneously broken symmetries nBG. If there are no terms
with single time-derivatives in the effective action, however, all the Nambu-Goldstone
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Figure 8.5: This figure displays the numerical ω1 mode at low momentum, i.e. the Up1q
Nambu-Goldstone mode. Both plots represent the same graph and have been obtained
with A “ 2, B “ 1.5, G “ 1, k “ 1, µ “ 0.5 and λ “ 1. On the left, a 3D plot is provided
while on the right it is a contour plot.

vacuum ω1 ω2 ω3

Helical pG “ 0q 0 q‹ gapped
Helical pG ‰ 0q q2

‹ q‹ gapped
Meta-fluid pG “ 0q 0 q2 gapped
Meta-fluid pG ‰ 0q q‹ q‹ gapped

Table 8.1: Dispersion and analyticity properties of the Nambu-Goldstone modes as found
from the low-energy study of the fluctuation Lagrangian. The ‹ subindex indicates non-
analyticity.

modes are of type A in the classification of [77, 78] and we have nNG “ nBG. A priori,
that would be the case for the effective actions we found (we set µ “ 0 for the moment).
However, we are not dealing with internal symmetries only, hence the notion of nBG has
to be qualified, as we will do shortly.

An alternative classification, perhaps more pertinent to our situation, is provided by
counting theorems which split the total number of Nambu-Goldstone modes nNG according
to specific dispersion properties. Defining as type I/type II the modes with an odd/even
dispersion relation, respectively, [70] established that

nI ` 2nII ě nBG . (8.6.1)

Turning to broken spacetime symmetries, there are no general counting rules (e.g.
the counting rule (8.6.1) is out of the scope because it has been derived considering
the breaking of uniform symmetries, where for us, dilatation is not uniform), yet it is
known that the number of independent modes can be reduced [13, 96, 127–129, 131, 133].
In essence, if Qa denotes the generators of broken symmetries, Pi denotes the unbroken
translations and xΦpxqy denotes the expectation value of the order parameter, then the
following set of identities allows to reduce the number of independent fields

rPi, Qas xΦpxqy “ ciabQb xΦpxqy , (8.6.2)
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where ciab indicates the relevant structure constant of the symmetry algebra. This intro-
duces a constraint such that would-be Nambu-Goldstone bosons appearing on each side
of the identity are not independent in general.

Let us discuss how the explicit results found in the previous sections relate to the
general counting rules. To the counting purposes, we have to consider the following
symmetries:

� Spacetime: Translations P1, P2, rotations R and dilatations D;

� Internal: Up1q transformations (phase rotations) Q, complex (i.e. real + imaginary)
shifts SR, SI .

Let us report the symmetry content of the two kinds of ground states separately.

Helical superfluid: the unbroken symmetries are two translations

P1 ´ kQ , P2 , (8.6.3)

which leaves in principle five broken symmetries nBG “ 5. However, the commutation
relation of unbroken translations with the broken generators results in additional condi-
tions

rP1 ´ kQ,Ds9P1, rP2, Rs9P1,

rP1 ´ kQ, SRs9SI , rP1 ´ kQ, SIs9SR .
(8.6.4)

This would imply that rotations, dilatations and broken translations are described by a
single mode, and there would be a single mode associated to both real and imaginary
shifts (indeed, we had already commented earlier on about this). Effectively we would

be left with a number of independent broken symmetries n
pinq
BG “ 2, where the up index

stands for independent (we speak of independent broken generators in the perspective of
independent massless NG modes).

Meta-fluid: the unbroken symmetries are two translations and a rotation

P1 ´ SR , P2 ´ SI , R ´Q , (8.6.5)

so there would be four broken symmetries in this case nBG “ 4. The commutation rela-
tions of the unbroken translations with the broken symmetries would produce additional
conditions

rP1 ´ SR, Ds9P1, rP2 ´ SI , Ds9P2. (8.6.6)

Note that commutators with R ` Q result in unbroken translations. This would imply
that broken translations and dilatations are described by a single mode. Effectively this
reduces the number of independent broken symmetries to n

pinq
BG “ 2.

We report the values of the countings in Table 8.2, which requires some discussion.
For G “ 0 in the helical superfluid, there is a trivial gapless mode and a type I mode. The
trivial mode could be counted as type I or II. Still in the helical case, when G ‰ 0, we have
almost the same type of modes except that the trivial mode has a non-analytic dispersion
relation, but we will still consider it as type II, since at low momenta ω „ Opq2q. In

173



Chapter 8. Fractons in effective field theories for spontaneously broken translations

vacuum nI nII n0 nBG n
pinq
BG nA “ nNG nI ` 2nII

Helical pG “ 0q 1 0 1 5 2 2 2 or 3
Helical pG ‰ 0q 1 1 0 5 2 2 3

Meta-fluid pG “ 0q 0 1 1 4 2 2 3 or 4
Meta-fluid pG ‰ 0q 2 0 0 4 2 2 2

Table 8.2: Summary of the countings for the two kinds of vacuum. With n0 we denote
the number of trivial modes.

so doing, the counting rule (8.6.1) is satisfied if we use n
pinq
BG as the number of broken

symmetries.
Turning to the meta-fluid case, for G “ 0 there is an analytic/type II mode and the

trivial mode, which could be counted either as type I or II. On the other hand, if G ‰ 0,
the two gapless modes are type I/non-analytic. Also in this case we observe that the

counting rule (8.6.1) is satisfied with n
pinq
BG as the number of broken symmetries.

Finally, switching on a chemical potential in the helical superfluid gaps one of the two
massless modes. This could be seen as a consequence of introducing a mixing through a
single time-derivative term in the effective Lagrangian, so effectively we would be left with
a single type B Nambu-Goldstone mode in the classification of [77, 78], which turns out
to be also type II if we just count the power of the momentum and ignore the breaking
of rotational invariance. Note that in going to finite density we introduced an additional
coupling that breaks the shift symmetry, so that in this case the remaining gapped mode is
a pseudo-Goldstone mode and not a true massive Nambu-Goldstone. The single massless
mode at finite density can also be recovered through the IHCs. Now that the shift
symmetries are explicitly broken, the spontaneously broken generators are P0, P1, R,
D and Q. The homogeneous breaking of time translation and spatial translation leaves
one independent broken generator among P0, P1 and Q. Moreover, we can impose two
IHCs:

rP1 ´ kQ,Ds9P1, rP2, Rs9P1 . (8.6.7)

Thus, it remains one single independent broken generator to create one massless NG
mode. A final comment is the following. A finite chemical potential can be implemented
as a linear time dependence in the phase of the charged field. In so doing, however,
time-translations would be broken by our choice of ensemble and not, strictly speaking,
by a dynamical feature described at the level of the Lagrangian. In contrast, the space
modulations that we consider in the helical case, although being formally similar in some
aspects, are determined by the gradient Mexican hat potential. Some further comments
on this are given in relation to ghost condensation in the next section.

8.7 Discussion

The concomitant breaking of dilatations and spatial translations constitutes the main
focus of the present study, which adopts the framework of effective field theory. Together
with dilatations and translations, an internal Abelian symmetry is broken, too. This
symmetry serves two purposes, one physical and another technical. The former consists in
modelling a conserved current, thus providing the possibility of considering finite density
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circumstances; the latter consists in the fact that the breaking of translations and a Up1q
symmetry to their diagonal subgroup allows for homogeneous symmetry breaking, in the
spirit of Q-lattice models [47].

We have utilised a simple non-relativistic field theoretical setup which allows one
to characterise the low-energy modes and derive their effective description in different
regimes. The breaking of translations is dynamically induced by a gradient Mexican hat
mechanism, namely the competition among a quadratic gradient term driving towards
instability then stabilised by higher terms [116]. The gradient Mexican hat, when discre-
tised, connects to lattice models with frustrated interactions [230].

By means of a neat particular example, we clarified the generic fact that the analysis
of the modes revolves about three relevant bases: the basis given by the fluctuations of
the fields appearing in the Lagrangian; the basis of the fluctuations which diagonalise the
lowest-order dynamics at low energy; and the basis associated to the symmetries of the
model (this latter is possibly incomplete). Whenever the connection among such bases
is non-trivial, we have mixing phenomena. For instance, the Nambu-Goldstone mode
associated to a specific symmetry can results from different combinations of the UV or
the IR modes, as a function of momenta.

We showed the presence of two degenerate classes of vacua, one associated to a plane
wave configuration and possessing a helical structure (i.e. a global phase rotation can
be compensated by a suitable translation along the wave-vector of the plane wave), the
other associated to complex field configurations which are linear in the coordinates. The
latter class admits a specific subclass of isotropic solutions, where a global phase rotation
of the background can be compensated by a suitable spatial rotation. We referred to the
latter subclass as meta-fluids, because they show a trivial shear elastic response alongside
isotropy.

An important feature of the model studied here is the presence of low-energy modes
with reduced propagation properties. This fractonic behaviour can be associated to en-
hanced polynomial shift symmetries of the low-energy, linear effective theory and trans-
lates into the trivialisation of some elastic coefficients. More specifically, we have encoun-
tered both completely immobile modes and subdimensional modes, like lineons propagat-
ing only along one spatial direction. The immobile fractons can be thought intuitively as
plastic deformations which cost zero energy, corresponding to an enlarged vacuum degen-
eracy, a property which can be compared to the diverging zero-temperature entropy of
some fractonic lattice models in their continuum limit [231].

Despite describing an elastic effective field theory with fractonic excitations, the models
studied in the present chapter differ from the setup where fracton-elasticity duality has
been demonstrated [211, 212]. There, the two gapless modes of a symmetric gauge field
represent the dual encoding of the transverse and longitudinal phonons. Our models
lack a gauge field and encode the phonons as Nambu-Goldstone modes, dynamically
generated by the interactions. Furthermore, the fractons described in the present chapter
do not correspond to defects or non-perturbative configurations. They are the low-energy
encoding of a trivial (or partially trivial) elastic response.

Immobile fractons cannot move when in isolation but can move due to interactions
[211]. Analogously, we expect that the flat fractonic dispersion relations that we en-
countered are in general “bent” when considering higher non-linear terms in the effective
theory, leading to non-trivial propagation.
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To conclude, we briefly comment the relation of the present study with some applica-
tions in condensed matter and cosmology.

1. LOFF (or FFLO) superconductors: The Larkin-Ovchinnikov-Fulde-Ferrell state
(LOFF state) [232, 233] is characterised by a spatially modulated order parameter
and a gapless phonon associated to the breaking of translation invariance, and it
might be realised in some unconventional superconductors [234, 235]. A similar
colour superconducting state can also arise at high density in QCD [236,237]. The
Mexican hat model is similar to the Ginzburg-Landau functional used to describe
superconducting states in the particle-hole symmetric case [238,239]. It could be in-
teresting to revisit the description of the LOFF state and other translation-breaking
superconducting states to explore possible emergent symmetries and the fractonic
nature of the associated modes.8

2. Wigner crystals: In the low electron density regime, Wigner crystals can be
treated according to classical elastic theory [243,244]. There, the chemical potential
µ can possibly be sufficiently low as to allow for a µ-gapped dilaton to become rele-
vant for the low-energy collective-mode description of the crystal response. Despite
the non-vanishing µ, in a clean Wigner crystal, all the phonons (either longitudinal
or transverse) are gapless. This matches with what we observed in the meta-fluid
model, which however suggests that the standard elastic description for Wigner
crystals could lack an extra (gapped) dilatonic degree of freedom.

3. Charge density waves: Optical conductivity measurements show a rich structure
of peaks [245,246]. In the presence of disorder, the general pattern is characterised
by a low-frequency gapped mode corresponding to a pinned collective sliding mode
of the density wave condensate. At the opposite end of the spectrum, there is a high-
frequency mode associated to the single excitation through the density wave gap.
The intermediate region features non-universal peaks corresponding to substrate
modes, e.g. due to the impurities. It would be interesting to investigate whether
the intermediate structure could conceal a gapped dilatonic peak.9

4. Ghost condensates: In the search of possible infrared modifications of General
Relativity, a mechanism similar to the gradient Mexican hat has been proposed in
the time-derivative sector, this is usually referred to as ghost condensation [225].10

A relativistic generalisation of (8.2.1) is possible, yet it leads to trivial results.
Specifically, one can consider the model

L “ ABµΦ˚BµΦ´B
pBµΦ˚BµΦq2

Ξ6
´

1

2
BµΞBµΞ´HΞ6

´ λ2
pΦ˚Φq3 . (8.7.1)

For λ ‰ 0 the equations of motion imply Φ “ 0. Whereas, for λ “ 0, the resulting
low-energy effective theory features just a relativistic gapless mode, the other two

8A holographic discussion of FFLO phases has been commented in [240–242].
9An analogous question would be interesting also in relation to holographic realisations of charge

density waves, see for instance [190,191,194,195,247].
10We refer to [248] for a discussion involving a dilatonic ghost. Ghost condensation is related to the

spontaneous development of a harmonic time dependence, as such, is related to Floquet systems (see for
a holographic discussion [249]).
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degrees of freedom in (8.7.1) being associated to an emergent gauge redundancy at
the quadratic level in the fluctuations.
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Chapter 9

Key points of the field theory
analysis

In this part of the thesis, we studied field theory toy models displaying the breaking of
customary spacetime symmetries, namely the dilatation and the translation symmetries.
The first observation we can make is that even the simplest cases are complicated! This
is in agreement with the specificities of spacetime symmetries we mentioned in Section
5.1 in Part I. We considered symmetry breaking patterns which were slightly evading
the hypotheses of validity of the different known results for NG modes presented in Part
I. The outcome is that these general knowledge on NG modes seems to hold. Indeed,
the analysis of the symmetry originated massless spectrum was systematically correctly
guessed by imposing the IHCs and with a discussion on the canonical structure of the
EFT we will have; for an EFT where the dominant term is a double time-derivative (e.g.
relativistic EFTs), we do not expect canonical conjugation among the modes but when we
introduce a chemical potential, we have to be more cautious since a single time-derivative
term in the EFT might be introduced leading to a possible conjugation among the NG
candidates. The classification of Nielsen and Chadha as well as the associated counting
rule appeared to be appropriate in situations involving spacetime symmetry breaking, on
the condition to be a bit loose concerning the analyticity of the dispersion relations (e.g.
ω “

a

q2
x ` q

2
y should be considered as linear despite it has no Taylor expansion).

Concerning massive NG modes coming from the introduction of a chemical potential,
some subtleties where observed. The model in Chapter 7 suggests that dilatation breaking
through a chemical potential leads to a creation mechanism of an unfixed gapped NG mode
which is not predicted in Theorem 6 (this is not in conflict with the latter theorem since
we are out of the scope of the assumptions). Working at finite density in the context of
dilatation symmetry breaking imposed us to lift the flat directions1. Which means that
at zero chemical potential (still with the flat directions lifted), no condensate would be
present and the dilaton would be massive. This (partially) explains why the gap of the
dilaton cannot be fixed solely by the chemical potential and by group theory, its gap
already has a model dependent contribution coming from lifting the flat directions. The
situation in the model of Chapter 8 is even more subtle because we have noticeably more
symmetries at hand and only three real degrees of freedom (the three fluctuation modes).
Lifting the flat directions in order to be able to switch on a chemical potential without
destabilising the theory breaks explicitly the symmetries of internal shift. We already
had a massive mode, so the fact to explicitly break symmetries would lead to the second

1In the pure internal case, the run away behaviour introduced by the term ´µ2φ2 is already involved
in the wrong sign of the mass of the Mexican hat potential. So, the theory is qualitatively speaking
already stabilised with respect to such run away quadratic behaviour. In scale invariant theories, we do
not have such a mass term. Hence, the run away behaviour due to the chemical potential is new and it
destabilises the theory. This is corrected by lifting the flat directions.
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observed massive mode (we have a non-trivial mixing among the NG candidates in the
final spectrum, hence, the shiftonic part of the dispersion relation can provide it a mass).
The remaining massless mode is explained by Goldstone’s theorem which ensures at least
one massless mode. Therefore, because the additional massive mode can be traced back to
an explicit symmetry breaking (which also explains the dependence in both the chemical
potential and the coupling parameter lifting the flat directions), it can be interpreted as
a pseudo NG mode rather than a massive NG mode.

These toy models analysis permitted us as well to emphasise a possible link between
two main currently active research topics in physics, namely Goldstone physics and fracton
physics. The present-day paradigm for the study of fractonic modes in continuous model
is to search for guidelines which would permit to build continuous field theories showing
fractonic behaviour. The main direction of research to reach this goal is to directly start
with models which enjoy strong subsystem symmetries or at least conservation of multipole
moments. Our fundamental Goldstone model for translation symmetry breaking does not
have such symmetries, however, it has the interesting feature that subsystem symmetries
are emerging in the IR. And indeed, we recovered fractonic dispersion relations in our
spectrum. The intuition is the following, in order to spontaneously break translation, we
need higher derivative terms. It suggests that the effective theory for NG modes coming
from the breaking of translations and of additional internal symmetries will have higher
derivative terms. Usual NG modes already have shift like symmetries. Thanks to these
higher derivative terms, these shift like symmetries might be promoted to polynomial
shift symmetries2. It would then induce a conservation of multipole moments and so,
a possible restriction on the modes’ motion. If the derivatives of higher order are well
arranged, we could even have the emergence of strong subsystem symmetries, for instance,
an arbitrary space modulated shift symmetry. Therefore, all the intuitive requirements
to have fractonic modes are met!

Beside the conceptual questionings on NG modes, some technical aspects have also
been worked out. Usually, the parametrisation of the NG candidates is different from the
way we parametrise the fluctuations around the background fields which is itself different
from the parametrisation which diagonalises the kinetic matrix. The consequence is that
the dispersion relations we obtain at the end are the ones associated to the diagonalising
parametrisation. To discriminate which dispersion relations is connected to which NG
candidates is highly involved. Even more that these connections depend on the norm of
the spatial-momentum but also on its orientation. The breaking of translation symmetry
has the tendency to display such intricate connections. Indeed, by breaking translation
in one specific spatial direction, we establish anistropy. Moreover, the necessary higher
derivative terms in the fundamental theory leads to a non-trivial dependence on the
spatial-momentum in the kinetic matrix which leads to a non-trivial spatial-momentum
dependent mixing while diagonalising the matrix. In the process of discriminating the
NG candidates from the spectrum, we noticed that the Ward-Takahashi identities proved
to be useful. Indeed, hasty said, it directly provides the dynamics of the associated NG
candidates while the EOM provide the dynamics of all the fluctuations where the NG
candidates are mixed between them and with the other degrees of freedom. In practice,
it is of course not so black-and-white but it gives a basis on which to start to work on.

2The idea that the most relevant terms of the EFT describing NG modes enjoy polynomial spatial
shift symmetries has already been suggested and studied in [106,250,251].
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The reason the Ward-Takahashi identities focus on the dynamics of the associated NG
candidates could be seen from the way the conserved current is defined in standard QFT
textbooks. A usual method, sometimes known under the name “Noether’s trick”, is to
promote the global continuous symmetry to be local, its parameter is now a spacetime
function αpxq. We then vary the action along the artificially-gauged transformation and
we notice that we can re-write this variation under the form [5,252]

δαpxqS “ ´

ż

ddx Bµj
µ
pxqαpxq, (9.0.1)

which defines the conserved current jµpxq. We know that on-shell Bµj
µ “ 0 which ensures

that on-shell δαpxqS “ 0 for any spacetime modulated variation αpxq in the considered
symmetry direction. The EOM are the equations which should be satisfied in order for the
fields to be a stationary point of the action. Hence, the classical Ward-Takahashi identity
Bµj

µ “ 0 is equivalent to the equation of motion for a fluctuation parametrised in the
direction of the symmetry. It is the equation of motion of the NG candidate associated
to the symmetry leading to the considered Ward-Takahashi identity. In practice the
parametrisation of the fundamental fields is not necessarily the parametrisation which
explicitly displays the NG candidates. This is why the Ward-Takahashi identities usually
involve a mixing in the parametrisations and so, do not permit a clear discrimination
among the modes. But by playing with some decoupling limits, we can extract some
information.

The natural prospect is to look for more complex systems with the same symmetry
breaking patterns. Holographic models are good candidates (specifically these are quan-
tum computations with strong interactions), this will be briefly discussed in Part IV.
On a larger time scale, a generic approach based on the coset construction could be im-
plemented. In particular, concerning the link between fractons and NG modes, a coset
construction similar to [253] could be considered where a polynomial shift symmetry is
spontaneously broken. In addition, it will provide general knowledge on non-uniform
symmetry breaking patterns.

By remaining in the realm of field theory toy models, we could focus on the relations
between fractons and translation symmetry breaking by considering models displaying
solely translation breaking rather than the concomitant breaking of dilatation and trans-
lation. A starting point will then be the model of [116]. Since the emergence of fractons
from fundamental toy models displaying translation symmetry breaking does not require
subsystem symmetries for the UV theory, we can try to build a toy model which reduces
to the Shao-Seiberg’s model in the IR after an SSB. It would provide some clues on the
questions relative to the IR/UV mixing, and possibly solving it since we would have a
scale, the VEV, at which the Shao-Seiberg’s model would be cut-off. Another direction for
toy model building could be to find higher derivative models with a usual kinetic term (the
usual sign for the double spatial derivative term) enjoying translation SSB. It would help
to make connections with known physical theories. From high energy physics perspective,
it could be interesting to find relativistic UV completion theories of our non-relativistic
toy models. And from experimental physics viewpoint, it would be worth to investigate if
our toy models can play the role of phenomenological models for some physical processes.

Finally, the discussion should be extended to the non-homogeneous breaking of trans-
lation symmetries, in order to be able to describe the emergence of lattice structures. A
glance at such kind of breaking pattern is provided in Appendix C.
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Appendix C

A glance at non-homogeneous spatial
translation symmetry breaking

In the present appendix, which entirely relies on the paper [45] written by Daniele Musso
and by the author of this thesis, we present some of the peculiarities of a non-homogeneous
breaking of spatial translation symmetry. It will provide the gist of the reason why such
breaking is more involved compared to the homogeneous one. However, we will restrain
our discussion to the breaking of continuous spatial translation symmetries to a discrete
subgroup. The motivation is two-fold, the discussion will be simpler and it is physically
relevant because the aim is to describe crystal structures, and their excitation modes,
emerging from continuous fundamental theories.

The guidelines to build toy models showing such a symmetry breaking pattern re-
main the same as for the homogeneous breaking, namely we have to write a Mexican
hat potential for the spatial gradients. Nevertheless, we do not need anymore an addi-
tional uniform symmetry to compensate the breaking of translation. Hence, the simplest
model will then contain only one real scalar field in 1` 1-dimensional spacetime with no
(apparent) symmetries beside the spacetime translation symmetry. This model will then
be slightly changed to incorporate a shift symmetry as well, this in order to discuss the
possible interplay between two symmetries which are spontaneously broken.

C.1 A real scalar model in p1` 1q dimensions

We consider a canonical kinetic term, in particular we avoid higher time-derivatives which
would lead to Ostrogradsky instabilities [90,92]. We impose both spatial parity, Bx Ø ´Bx,
and field-space parity, φØ ´φ. In an effective field theory spirit, we consider only terms
up to the 4th order in φ and up to the 8th order in the spatial derivatives. Specifically, we
take the model1

L “ 1

2
9φ2
´
A

2
φ12 ´

m2

2
φ2
`
B

4
φ14 `

C

2
φ12φ22 `Dφ24 , (C.1.1)

where the dot indicates a time-derivative while the prime denotes a derivative along the
only spatial direction x. We have considered a mass term so to break the rigid shifts
φÑ φ` c in the simplest possible way. The equation of motion descending from (C.1.1)
is

:φ “ φ2
`

A´ 3Bφ12 ` 4Cφ3φ1 ` 24Dφ32
˘

` Cφ23 ` Cφ12φ4 ` 12Dφ22φ4 ´m2φ .
(C.1.2)

1This is not the most general Lagrangian we could write under our requirements. Nevertheless, the
terms in (C.1.1) provide a simple setup able to capture the translation symmetry breaking mechanism
that constitutes the focus of the present analysis.
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We consider the static and harmonic ansatz

φpt, xq “ ρ cospkxq , (C.1.3)

characterised by a constant modulus ρ and a constant wave-vector k. It spontaneously
breaks the translation symmetry along x to a discrete subgroup. In fact, the discrete
symmetry transformations

xÑ x`
2π n

k
, (C.1.4)

where n P Z, remain unbroken. Plugging the ansatz (C.1.3) into the equation of motion
(C.1.2), we get

3k4ρ2
“

B ` 2k2
pC ´ 6Dk2

q
‰

sin2
pkxq

´
`

Ak2
` Ck6ρ2

´ 12Dk8ρ2
`m2

˘

“ 0 ,
(C.1.5)

which is satisfied for

A “ ´
m2

k2
´ k4ρ2

`

C ´ 12Dk2
˘

,

B “ ´2k2
pC ´ 6Dk2

q .

(C.1.6)

(C.1.7)

Of course, these two equalities have to be reversed to rather expressed ρ and k in terms
of the free parameters of the theory. To keep the mathematical developments brief, we
will fix ρ and k and set accordingly A and B. This is not a fine tuning since we do not
have apparent constraints on which values we chose for ρ and k.

We compute the diagonal components of the stress-energy tensor for a solution (C.1.3),

Ttt “
1

8

 

4ρ2
`

m2
´ 4Dk8ρ2

˘

cosp2kxq

`k6ρ4
“

´C ` 12Dk2
`
`

C ´ 4Dk2
˘

cosp4kxq
‰(

,
(C.1.8)

and

Txx “ ´
1

2
ρ2

`

m2
` 6Dk8ρ2

˘

. (C.1.9)

The model is invariant under translations, which translates into the Ward-Takahashi
identity

BµT
µ
ν “ BxTxx “ 0 . (C.1.10)

Given the static character of the solution (C.1.3), in order to satisfy the 1-point Ward-
Takahashi (C.1.10), the pressure Txx needs to be x-independent. Nonetheless, the energy
density Ttt is spatially modulated. This constitutes a signature of the non-homogeneous
breaking of spatial translation symmetry.

We define the fluctuations

φpt, xq “ ρ cospkxq ` ϕpt, xq . (C.1.11)

The Lagrangian at linear order in the fluctuations is a total derivative, L1 “ B1, where

B “ ´k4ρ3 cospkxq
`

4Dk2 cospkxq2 ` C sinpkxq2
˘

ϕ1 ´
m2ρ sinpkxqϕ

k
. (C.1.12)
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The quadratic Lagrangian density is

L2 “
1

2
9ϕ2
´

1

2
m2ϕ2

`
2m2 ´ 3k6ρ2pC ´ 4Dk2q ` k6ρ2 cosp2kxqp7C ´ 36Dk2q

4k2
ϕ12

`
1

2
k2ρ2

“

C sin2
pkxq ` 12Dk2 cos2

pkxq
‰

ϕ22 ` Ck3ρ2 sinp2kxqϕ1ϕ2 .

(C.1.13)

The coefficients of the quadratic Lagrangian (C.1.13) are space-dependent. This is
by definition the difference between homogeneous and non-homogeneous breaking of the
spatial translation symmetry. Let us notice that the explicit dependence in x are through
trigonometric functions such that the discrete transformations (C.1.4) are indeed still
symmetries. This explicit space-dependency will be recovered in the EOM where the latter
will be a linear differential equation with non-constant coefficients. Therefore, a single
wave function in general will not be a solution anymore. We will thus need to redefine
what we mean by modes. Moreover, energy is still well defined but not momentum since
we lost the continuous spatial translation symmetry. Hence, a discussion will be needed
to clarify what a mass is and what a dispersion relation is. Fortunately for us, the discrete
translation symmetry will allow us to extend our already established definitions.

Despite the explicit space coordinate dependence, let us go to Fourier space and, as we
could have expected, the various harmonic components of the fluctuation field are thereby
mixed,

L̃2 “a0pk, ω, qqϕ̃p´ω,´qqϕ̃pω, qq ` a`pk, ω, qqϕ̃p´ω,´2k ´ qqϕ̃pω, qq

` a´pk, ω, qqϕ̃p´ω, 2k ´ qqϕ̃pω, qq ,
(C.1.14)

where we only show the schematic form of the Fourier Lagrangian in a way that the
important features are emphasised. What should be noticed is that the mixing occurs
only among modes with fluctuation momenta that differs by 2k, which is reminiscent from
the discrete symmetry (C.1.4).

This peculiar mixing informs us that a solution will be a combination of plane waves
where the wave vectors differ by an integer multiple of 2k and all these plane waves will
have the same pulsation ω. We call the crystal wave vector, qcryst., the class of equivalent
wave vectors2 where the equivalence relation is that we identify all the wave vectors which
differ by 2k n, with n P Z: q „ q` 2k n. Thus, a solution of the EOM can be labelised by
one ω and one qcryst.. Indeed, these two quantities are conserved through the evolution
of the solution. The pulsation will be seen (quantumly speaking) as the energy and the
crystal wave vector as a generalisation of the momentum. This is standard in condensed
matter textbooks [25]. We can now extend what a mode is. A mode is a combination of
solutions pω, qcryst.q where ω is a periodic function of q of period 2k. A massless mode is
a mode for which it exists a particular crystal wave vector q˚ which can be continuously
approached such that

lim
qÑq˚

ωpqq “ 0 . (C.1.15)

It is the generalisation of the definition we provided in Section 2.5 in Part I where the
philosophy remains the same, a massless mode is a mode which can be static.

2In practice, qcryst. is the representative of the equivalence class and we take it to be in r0, 2kr.
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For the analytic discussion on the stability of the fluctuations and on the resolution
of the equation of motion, we refer to [45]. The goal of this appendix is to go straight to
the point, for that reason we solely analyse a numerical resolution.

Depending on the specific values of the coefficients in the Lagrangian (C.1.1), one can
find either stable or unstable modulated solutions. We consider a specific stable case,
which is representative of a stability region within the coupling space, namely we take

m “ 1 , C “ ´1 , D “ ´
1

10
, (C.1.16)

We fix the coefficients A and B in the Lagrangian (C.1.1) according to (C.1.6) and (C.1.7)
and requiring that the model admits a solution (C.1.3) with

k “ 1 , ρ “ 1 . (C.1.17)

The numerics dispersion relations are provided in Figure C.1. The whole mode structure
features two kinds of dispersion relations: an acoustic “bouncing” lower branch and optical
upper branches which are concave and repeated for any multiple of 2k. Usually in QFT
we have one dispersion relation per real scalar fluctuation field. This is because the kinetic
matrix can be diagonalised and that one single wave vector can be a solution. Therefore,
each real scalar fluctuation has one dispersion relation. In our case, the situation is much
more intricate, and due to the mixing among plan waves, several dispersion relations are
possible despite having only one real scalar field. This is why we have this tower of modes
in Figure C.1.
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Figure C.1: Spectrum of the the linear fluctuations of model (C.1.1) around a solution
(C.1.3) (the plots refer to the specific case (C.1.16) and (C.1.17)). Left: lower bouncing
branch corresponding to acoustic phonons; the dashed line indicates the phonon prop-
agation speed for q „ k “ 1. Right: The blue line is again the same acoustic phonon
branch of the left panel, the black lines are instead the optical branches; these latter have
polynomial concave shape (see Figure C.2, right panel) and there is a branch for any 2k
multiple.

Formally, we already noticed that we have a Brillouin zone structure in the reciprocal
space through the definition of qcryst.. Thanks to Figure C.1, we can now concretely
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visualise the periodicity of 2k of ωpqq and how it permits to represent all the modes in
only the first Brillouin zone (the right panel of Figure C.1). We therefore are getting
closer to the description of a lattice structure. Our fluctuation is a continuous field and
so, it could represent a lattice of periodicity given by (C.1.4) with an infinite number
of elementary constituents (atoms, molecules . . .) per unit cell. This interpretation is
confirmed by recalling that the lowest phononic branch of a chain with any number of
different atoms in the unit cell can be thought of as the mode of a chain with only one
kind of atom; in fact, the lowest mode corresponds to the unit cell moving rigidly without
deforming. Thus, we can compare our acoustic branch to the eigenfrequencies of the chain
with only one kind of elementary constituent (such chain is modelled as a discrete chain
of balls and springs) given by (see for instance [254])

ωpqq “ 2

c

g

m̄

ˇ

ˇ

ˇ
sin

´q

2

¯
ˇ

ˇ

ˇ
, (C.1.18)

where m̄ is the mass of the balls and g is the second derivative of the potential between
two neighbouring balls. The comparison is made in Figure C.2. To push further the
comparison to discrete chains, if we look to a chain with several types of atoms, the
internal oscillations within a unit cell correspond to optical modes. This might give a
physical picture of the reason why we have a tower of optical modes in our continuous
model.

1 2 3 4 5 6
q
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Ω

Figure C.2: Comparison of the phonon dispersion relation of model (C.1.1) with that of
the one-dimensional chain: the black dashed line corresponds to (C.1.18) with q Ñ πpq´1q
and g

m̄
“ 1

4
; the blue line is the phonon dispersion relation of Figure C.1; the red line is

the phonon dispersion relation obtained with k “ ρ “ m “ 1 and C “ ´173
50

, D “ ´2,
which approximates (C.1.18) to the .001 level.

Finally, we have broken one global continuous symmetry, according to Goldstone’s
theorem there should be a massless mode in the spectrum. In Figure (C.1) on the left
panel, we do indeed observe a massless mode where the crystal wave vector corresponding
to the static fluctuation is q˚ “ 1 “ k where we recall that for our numerical resolution
k “ 1. This value for the crystal wave vector can be understood. Our background (C.1.3)
is static and under the infinitesimal action of translation symmetry parametrised by a, it
provides a new static solution

φ̃pt, xq “ ρ cospkxq ´ ρ a k sinpkxq . (C.1.19)
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We observe that the static fluctuation along the direction of the broken symmetry has a
wave vector equal to k, this because our original background has itself a spatial modulation
parametrised by k. Hence, our massless NG mode will be static when q˚ “ k. We
name this NG mode as phonon due to its translation symmetry breaking origin. Let
us mention that for the case of the breaking of internal symmetries, the background is
constant, therefore, a linear transformation under the action of a symmetry provides a
static fluctuation which is also constant. This is why the static part of NG modes takes
place when their momentum is zero.

C.2 A shift-symmetric model

We modify (C.1.1) setting to zero the mass term and introducing a term with third
derivatives,3

L “ 1

2
9φ2
´
A

2
φ12 `

B

4
φ14 `

C

2
φ12φ22 `Dφ24 ` Eφ12φ32 . (C.2.1)

The field φ appears in the Lagrangian only through its derivatives, so constant field shifts
are a symmetry of (C.2.1). We consider again the ansatz (C.1.3), thus obtaining the
following equation of motion

3k4ρ2 sin2
pkxq

 

B ` 2k2
“

C ` 2k2
p5E ´ 3Dq

‰(

´ k2
 

A` k4ρ2
“

C ` 12k2
pE ´Dq

‰(

“ 0 ,
(C.2.2)

which is solved by

A “ k4ρ2
“

12k2
pD ´ Eq ´ C

‰

,

B “ ´2k2
“

C ` 2k2
p5E ´ 3Dq

‰

.

(C.2.3)

(C.2.4)

The ansatz (C.1.3), when considered as a solution for model (C.2.1), breaks both
translations and shift symmetry. We thus expect to have a massless mode both around
q˚ “ 0 (the shifton4) and around q˚ “ k (the phonon).

The quadratic Fourier Lagrangian is still of the form (C.1.14) but with other coeffi-
cients. Since the quadratic Lagrangian connects only wavevectors which differ by even
multiples of k, the modes about q “ 0 and those about q “ k can be studied separately
and the shifton and phonon sectors “decouple”.

Once again, we refer to [45] for the discussion on the analytic resolution. We restrict
ourselves here to the numerical resolution. We consider the specific case5.

C “ 0 , D “ ´1 , E “ ´
1

10
, (C.2.6)

3The new higher-derivative term appeared to be necessary to obtain stable backgrounds
4An infinitesimal transformation parametrised by a of the background along the shift symmetry di-

rection is of the form

φ̃pt, xq “ ρ cospkxq ` a . (C.2.5)

The associated static fluctuation has no modulation along the spatial direction, which is the reason why
we expect a massless mode around q˚ “ 0.

5If we just take m “ 0 in (C.1.16), so considering m “ 0, C “ ´1, D “ ´1{10 and E “ 0, we find a
case that features an imaginary propagation speed for the phonon.
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and determine A and B using (C.2.3) and (C.2.4) upon requiring to have a solution for

k “ 1 , ρ “ 1 . (C.2.7)

In Figure C.3 we see that the acoustic phonon branch has developed shiftonic dips.
The overall periodicity is still 2k, but we have light modes for any integer multiple of k.
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Figure C.3: Spectral structure of the shift-symmetric model (C.2.1) in the case (C.2.6)
and (C.2.7). Left: acoustic branch featuring shifton (q „ 0`2k) and phononic (q „ k`2k)
linear dispersion regions. Right: Tower of optical modes; the flat blue line coincides with
the bouncing dispersion curve of the left plot.

Let us discuss the number of massless NG modes based on the general arguments
presented in Part I of this dissertation. Strictly speaking, we have one massless mode
which corresponds to the acoustic branch in Figure C.3 on the left panel. This can be
explained by the argument (5.2.69). Indeed, if Px and Ps are the generators of respectively
the spatial translation transformation and the internal shift transformation, we have

´

ξpt, xqPx ` αpt, xqPs

¯

φpxq “ 0 ,

ô

´

´ ξpt, xqBx ρ cospkxq ` αpt, xq
¯

“ 0 ,

ôαpt, xq “ ´ξpt, xq ρ k sinpkxq .

(C.2.8)

(C.2.9)

(C.2.10)

Through their intrinsic definitions, the shifton and the phonon are equivalent. Only
one massless NG modes is resulting. It is interesting to notice that the inverse Higgs
constraints do not recover this result. The only unbroken translation symmetry is time
translation (P0) and we have

rP0, Pxs “ 0 , rP0, Pss “ 0 . (C.2.11)

None IHC can be imposed. We are out of the scope of the conjecture of Susection 5.2.8 in
Part I and it appears that from the non-homogeneous breaking of translation, imposing
all the IHCs is not enough to obtain all the independent massless NG mode prior any
dynamical considerations.
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Nevertheless, the discussion is subtler because if we go at enough low energy, the
acoustic branch in Figure C.3 is truncated. Effectively, we then observe two distinct
dispersion relations and so, two massless modes. We recover the same kind of discussion
in Bose-Einstein condensate superfluid literature [8] where in Figure B.1, the linear part
of the curve is seen as one excitation mode and where the local quadratic minimum is seen
as another excitation mode. The thermal properties of superfluids at low temperature are
computed with these two separated excitation spectra and it provides results fitting with
experiments.

The goal of this appendix was not to present a self-contained and a self-explanatory
discussion on the non-homogeneous breaking of translation symmetries but rather to
display the difficulties associated to such breaking pattern. As we have seen, compared
to standard QFTs, the definitions of modes and mass should be re-think, the dispersion
relations are more involved and the discussion on the numbering of massless NG modes
is subtle and might differ from the general statements of Part I of this thesis.
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Journalistic overview of fracton
physics

In this appendix, we do a journalistic overview of a specific species of excitation modes,
namely the fractonic modes. It is a recent research area which started in the mid 2010
decade and which has ramifications in a wide variety of domains in physics, ranging from
condensed matter lattice spin models to fundamental QFT passing by elasticity theory,
higher rank gauge theories and many other areas. Since the study of fractonic modes is
a new research topic with implications and promising results in many fields, it is a very
dynamical subject with still a large number of open questions. The literature associated
to fractonic modes is then vast and evolving on a daily basis. This is the reason why
we emphasise the fact that we are going to do here only a journalistic introduction to
the field. This introduction is mainly based on the three following reviews [196,197,255].
We refer the reader to the references therein for more details. However, concerning the
necessary elements of fracton physics needed for this thesis, the specific papers will be
explicitly cited and commented.

A fractonic mode is an excitation, or a perturbation, with reduced mobility. It means
that it cannot propagate by its own in some spatial directions: either we need to activate
some additional excitations (i.e. we need to pay an extra energy cost) to make our initial
fractonic mode move either our fractonic mode is moving with no additional energy cost
but, other excitations already existent in the system should move according to the motion
of the fractonic mode. This definition of reduced mobility will be illustrated via some
examples all along this appendix. When a mode is totally immobile, we call it a fracton1.
When a mode can only move along a line, we call it a lineon and if it can only move along
a plane, we call it a planeon.

There are several motivations to be interested in the study of fractonic modes. One
could be their universality, the definition of reduced mobility is generic and so, it is not
surprising to recover this concept in many areas of physics. Schematically, we could think
to lattice spin models where a local excitation, by moving, tends to modify the spins
orientation in its neighbourhood and so inducing additional local excitations along its
trajectory. We could as well think of crystal structure where it is already known that
crystal defects such as disclinations have constrained motion. From elasticity theory we
can then make a connection with field theory and naively, recover the notion of fractonic
modes in QFT. Another motivation for performing research on fractonic modes could
be the fact that they can have explicit phenomenological signature. For example, their
immobility tends to make them harder to thermalise and so, we have an observable increase
of the thermalisation time. A third motivation is the potential usability of fractonic modes

1It should be mentioned that the term “fracton” has been previously used to refer to small-scale
thermal vibrations of fractal structures [256].
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in applied science, e.g. their reduced mobility in q-bit lattice systems could be exploited
for quantum information storage (“hard drive” for quantum computers). Finally, the
study of fractonic modes leads to conceptual questions. As we will see, it challenges
some of the paradigms in QFT, in particular the effective field theory approach. This
last motivation is maybe the most important for us since the main interest of Goldstone
physics relies on the Wilsonian effective field description. We will illustrate the UV/IR
mixing at the origin of this conflict between QFT for fractonic modes and standard QFT
but, we will not expand on it. This because the discussion is still open in the literature
and also (mainly) because the author is not familiar with a pure axiomatic approach of
QFT.

D.1 Fractonic modes in solvable lattice models

The term “fractonic mode”, in the sense of reduced mobility, appeared for the first time
in the literature of lattice spin systems. Of course, prior to the introduction of this
nomenclature in 2015, there were already existing (lattice) models displaying excitations
with constrained motion, e.g. [257, 258]. It is in [259], that Vijay, Haah and Fu, noticed
this recurrent kind of excitations with specific features and proposed the term “fracton”.
In their paper [260], they offer a first attempt of a generic description and classification
of fractonic modes. Since discrete models are not encompassed in the framework of this
thesis which focus on continuous field theories, we are going to restrict ourselves to an
example of fractonic lattice model and illustrate through this example the philosophy of
the generic approach initially proposed by Vijay, Haah and Fu. The continuous case will
be discussed more thoroughly in the next section.

A standard example of a solvable lattice spin model displaying fractonic modes is the
X-cube model. The geometry is a 3 spatial-dimensional cubic lattice with a q-bit (i.e.
a spin 1

2
) at each edge, as represented in Figure D.1. The Hamiltonian is academically

given by

H “ ´
ÿ

c

Bc ´
ÿ

v

`

Avx ` Avy ` Avz
˘

, (D.1.1)

where c runs over all the cubes and v runs over all the vertices of the cubic lattice. The
Bc and Avj (j “ x, y, z) operators are defined as

Bc “
ź

i

σzci , Avj “
ź

k

σxvj,k , (D.1.2)

where σl is a Pauli matrix (l “ x, y, z) with the subscript indicating on which q-bit it
acts on. We have that i runs over all the q-bits of the considered cube c (so, a product
of 12 Pauli matrices) and where k runs over all the q-bits which are direct neighbours to
the considered vertex v and which lie in the plane orthogonal to the j-direction2 (so, a
product of 4 Pauli matrices). For a schematic visualisation3, cf. Figure D.1.

The X-cube model is solvable because the operators H, Bc and Avj mutually commute
with each other @c, vj. Indeed, rBc, Avj s “ 0 is direct if v R c since they do not share any

2I.e. the normal vector of the considered plane is parallel to the j-direction.
3The cubic and crosslike geometries of the interactions motivate the name “X-cube” model.
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Figure D.1: On the left, an elementary cube of the cubic lattice is represented. At each
red dots there is a q-bit. These red dots indicate as well where the 12 Pauli matrices σz of
the operator Bc act on. On the right, it is the disposition of the closest neighbour q-bits
seen by a vertex. It permits to visualise the definition of the Avj operators. For example,
Avx “ σxvx,2σ

x
vx,6
σxvx,4σ

x
vx,5

. These cartoons have been modified from [197].

q-bits. If v P c, the vertex and the cube share 2 q-bits, so

BcAvj “
ź

i

σzci

ź

k

σxvj,k “ p´1q2
ź

k

σxvj,k

ź

i

σzci “ Avj Bc , (D.1.3)

where we used σzσx “ ´σxσz. Finally, rBc, Bc1s “ 0 “ rAvj , Av1ks because rσl, σls “ 0
with l “ x, y, z. Therefore, schematically we have

rH,Bs “ rH,As “ rB,As “ rB,Bs “ rA,As “ 0 . (D.1.4)

We can then simultaneously diagonalise them. Let us consider a ground state |0y where
we normalise the ground state energy to zero, so, our chosen ground state is such that

H |0y “ 0 |0y ,
Bc |0y “ bc |0y ,
Avj |0y “ avj |0y ,

(D.1.5)

(D.1.6)

(D.1.7)

where bc and avj are real numbers, since Bc and Avj are Hermitian (pσlq: “ σl).
An important remark is that the ground state is largely degenerate. This is due to a

large number of symmetries that the Hamiltonian has. Indeed, we can flip all the spins
on a given plane of the cubic lattice, the obtained spin configuration will have the same
energy than the state we started with. And this is true for any planes. Formally, flipping
a spin is done by applying the σx operator on it: σzσx “ ´σxσz. It is direct that the
operators A commute with the symmetry operator (rσx, σxs “ 0). When we flip all the
spin of a given plane, each cube sees either zero of its spin flipped or four of them. In any
case, the operators B commute with the symmetry operator (commuting four σx operators
on a B operator brings a factor p´1q4 “ 1). So, we indeed have that H commutes with
the symmetry operator. These kinds of symmetries which act on a subregion of the lattice
are called subsystem symmetries. In the language of QFT, a subsystem symmetry is a
symmetry which acts on a subregion of the spatial part of spacetime. In the framework of
our classification of symmetries established in Section 2.2 in Part I, subsystem symmetries
are symmetries with generators that act non-trivially only on a spatial sub-manifold of
the system [261]. They belong to the set of non-uniform symmetries.
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It is not explicit in our development that the ground state |0y spontaneously breaks
the planar subsystem symmetries but, from the literature, it does and it leads to a ground
state degeneracy GSD on a Lx ˆ Ly ˆ Lz cube of [196]

log2 GSD “ 2pLx ` Ly ` Lzq ´ 3 . (D.1.8)

The dependence on the size of the system can be understood by the fact that bigger the
system is, more planes are available. And so, the number of planar subsystem symme-
tries is larger, which leads to an increase of the ground state degeneracy. A non-trivial
computation leads to this exponential scaling with the size of the system, this is peculiar.
Furthermore, this large GSD is not due to a fine tuning. Indeed, the subsystem symme-
tries are not affected by a tuning of the coefficients in H. Furthermore, we cannot lift the
degeneracy with a local operator since a lot of planar subsystem symmetries will remain
anyway. So, this exponential GSD scaling with the size of the lattice is robust.

Let us now focus on the core of this appendix: fractonic modes. We define, a priori,
an excitation of only one cube, the cube c1. The system state |1c1y is such that

Avj |1c1y “ avj |1c1y ,

Bc |1c1y “
"

bc |1c1y if c ‰ c1

´bc1 |1c1y if c “ c1
,

ñH |1c1y “ 2bc1 |1c1y .

(D.1.9)

(D.1.10)

(D.1.11)

To create such state from |0y, we have to act σx on one of the q-bit c1i belonging to the
cube c1: Bc1σ

x
c1i
“ ´σxc1i

Bc1 . But by doing so, we excite as well the 3 other cubes which

share with c1 the q-bit c1i. Hence, it is impossible to excite a single isolated cube from
the vacuum4. However, we can get an isolated cube excitation by creating several cube
excitations distant from each other. To do so, we have to apply a non-local operator,
in this case, a membrane operator. Such operator is defined geometrically: we consider
a rectangle R of finite size perpendicular to one of the Cartesian directions of the cubic
lattice. To each edge it intersects, we apply σx on the q-bit associated to the vertex, cf.
Figure D.2 for an illustration. So, if R

Ş

c “ 0 then the cube c is not excited. If R
Ş

c ‰ 0
and c is not at a corner of R, then there is an even number (either 2, either 4) of σx acting
on c. Thus c is not excited. Finally, if R

Ş

c ‰ 0 and c is at a corner of R, there is
only one σx acting on c. As we have seen before, it means that this cube is excited. We
end up with four isolated cube excitations, one at each corner of the membrane operator.
To create these cube excitations, due to the discretisation of the energy spectrum of the
quantum lattice model, it required a finite amount of energy (as it can be seen from
(D.1.11)). Hence, we call such kind of excitations gapped modes.

One excited cube (obtained from the process described above) cannot propagate by its
own. To individually propagate such excitation, we need to apply σx on one of the q-bit
belonging to the cube. As we have seen, instead of just killing the cube excitation and
create another one step further, it creates 3 excited cubes (see Figure D.2 for a cartoon of
this reasoning). So, to move our initial excitation, we need to pay an extra cost in energy.
This is what we mean by an immobile mode. One isolated excited cube is a fracton!

4Thus, the state |1c1y does not formally exist, it has been introduced to define the notion of an isolated
excited cube.
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Let us notice that starting from our four isolated fractons at the corner of our mem-
brane operator, we can move them without an additional energy cost by applying the
same membrane operator but bigger. A collective motion is thus tolerated, on the condi-
tion that it respects this “quadrupole” layout. As we will see with the continuous models,
this analogy to the quadrupole moment conservation is not innocuous.

Figure D.2: On the left, we have a schematic representation of the action of a finite
size membrane operator on the cubic lattice. The red edges are the ones on which a
σx has been applied on. On the right, we illustrate the creation of two additional cubic
excitations while trying to move a single isolated cubic excitation. These cartoons have
been taken and modified respectively from [196] and [197].

The X-cube model possesses another fractonic mode. To see it, let us define the
excitation of a vertex v1 by the application of a σz on one of the closest neighbour q-bits
to v1. It then excites two of the three operators Av1j . We cannot create one single isolated

vertex excitation from |0y. This due to the fact that exciting v1 excites as well the vertex
linked to v1 through the edge containing the q-bit acted on with σz. However, by applying
a non-local operator on |0y, we can create two isolated vertex excitations. This time, the
non-local operator is a straight line joining the two vertices v1 and v2 (see Figure D.3).
On each q-bit on this line, we apply a σz. So, each vertex which is not at an extremity of
the line (i.e. which is neither v1 nor v2) has two σz along a line acting on them, thus, none
of the three Avj operators are excited. But the extremities, namely v1 and v2, have only
one σz acting on them, so two of the three Avj operators are excited. Hence, the vertices
at the extremities of the straight line operator are excited. One vertex excitation can
move alone and without any additional energy cost only in the same direction than the
line operator which has created it. To do so, we just need to apply σz on the next vertex
in the line direction. If we make a perpendicular turn, then our initial excited vertex is
still excited (but this time it is another pair of the three Avj operators which are switched
on) as well as the vertex at the new extremity of the line operator. So, it required an
additional excitation to make this turn. We conclude that a vertex excitation is a lineon!

Morally, the existence of fractonic modes in a lattice system can be explained by the
strong conservation laws associated to the subsystem symmetries [261]. This intuitive
reasoning is supported by the cartoon of Figure D.4. A symmetry charge associated to a
planar subsystem symmetry, by charge conservation, can only move in the plane of this
planar subsystem symmetry, it is a planeon. A similar charge at the intersection of 3
mutually orthogonal planes cannot move at all – it is a fracton, if the number of planes
is reduced to 2, then the charge can only move along the intersection line of the 2 planes
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Figure D.3: This figure [196] shows the action of a line operator where on each blue edge,
a σz operator has been applied. The two black dots correspond to the excited vertices.

– it is a lineon.

Figure D.4: From left to right, we have a charge fracton, a charge lineon and a charge
planeon. This cartoon has been taken from [261].

In 2016, Vijay, Haah and Fu, proposed a first systematical approach to search for and
to characterise fractonic modes [260]. Their idea is that a fractonic spin lattice model
is dual to a generalised gauge lattice model obtained from the gauging of the subsystem
symmetries that another spin lattice model has. The term “generalised” means that the
gauge fields are at the center of the plaquettes (i.e. the faces of the cubes) rather than
at the edges as usual. The duality is in the sense that the gauge model and the fractonic
model share the same vacuum properties (e.g. the ground state degeneracy) and have
the same excitation spectrum (e.g. the fractonic modes). The analysis of Vijay, Haah
and Fu has been extended and improved by several other physicists. A starting point to
look for the recent developments in this path to fracton classification could be [261]. In
particular, we are going to use the general procedure for gauging subsystem symmetries
proposed in [261] to display the dual gauge model of the X-cube model.

We consider a 3 spatial-dimensional cubic lattice model with a q-bit at each vertex v.
The Hamiltonian is given by

H 1
“ ´

ÿ

v

τ zv , (D.1.12)

where the τv operators are interpreted as the matter “fields”. This model is relatively
simple and H 1 is directly invariant under the local action of τ zv1 on any vertices v1 of the
lattice. The X-cube model is one of the simplest examples of fractonic models, maybe
“too simple”, which might lead to some triviality when applying the procedure proposed
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by [260, 261]. So, just for the purpose of illustration, let us ignore that H 1 is already
gauge invariant and let us apply the gauging procedure of [260, 261]. H 1 has the planar
subsystem symmetries

Un,j “
ź

vn,j

τ zvn,j , (D.1.13)

where j “ x, y, z gives the perpendicular direction of the considered plane, n P N labelises
the possible planes perpendicular to the j-direction and vnj are all the vertices inside the
considered plane. To gauge these subsystem symmetries, we switch on gauge “fields” by
introducing σl operators at the center of each plaquette of the cubic lattice, where l “ x, z.
The gauge symmetry we are going to implement is

Gv1 “ τ zv1 Bv1 , (D.1.14)

where

Bv1 “
ź

i

σzv1i , (D.1.15)

with i running over the 12 closest plaquette neighbours of v1. The gauge invariant model
proposed by the procedure is

H 1
g “ ´

ÿ

v

τ zv ´
ÿ

c,j

ź

i

σxc,ij , (D.1.16)

where i runs over all the plaquettes of the cube c except the two plaquettes with their
normal vector parallel to the j-direction (j “ x, y, z). Pictorially,

ś

i σ
x
c,ij

has a matchbox
configuration, as represented in Figure D.5. H 1

g indeed commutes with Gv1 @v
1, it is direct

for the first term in H 1
g. Concerning the second term, the matchbox configuration of a

given cube c shares either zero or two gauge fields with the closest gauge field neighbours
of v1. Thus, the commutation leads to a factor of 1 or of p´1q2 “ 1.

Figure D.5: This figure displays a pictorially visualisation of the operator
ś

i σ
x
c,ij

. For
example, the rightest cartoon corresponds to

ś

i σ
x
c,ix where the grey plaquettes of the

considered cube are the ones on which a σx is applied on. This figure has been taken
from [262].

The extremely large degeneracy of states due to the gauge symmetry is unphysical.
Hence, we have to fix the gauge. Let us impose the physical states of the system to be
gauge invariant

Gv1 |ψy “ |ψy , @v1 ô τ zv1 Bv1 |ψy “ |ψy , @v1 . (D.1.17)
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This can be satisfied with
Bv1 |ψy “ τ zv1 |ψy , @v1 , (D.1.18)

because pτ zv1q
2
“ I, the identity. So, on our physical Hilbert space, our gauge model

becomes (τ zv Ø Bv)

H 1
g,fixed “ ´

ÿ

v

Bv ´
ÿ

c,j

ź

i

σxc,ij . (D.1.19)

We can redraw the cubic lattice model in order to place the gauge fields on the edges
of the cubes rather than at the center of the plaquettes. With a non-trivial geometrical
visualisation, we can convince ourselves that we recover the X-cube model:

H 1
g,fixed “ ´

ÿ

c

Bc ´
ÿ

v

`

Avx ` Avy ` Avz
˘

“ H . (D.1.20)

Beside the illustration of the duality proposed by Vijay, Haah and Fu, this computation
offers an additional interpretation that as we will see, we recover in the continuous models.
We can notice that (D.1.18) can be interpreted as a Gauss law if we see σz as the electric
field. Indeed, if we develop the Bv1 operator, we have

ź

i

σzv1i |ψy “ τ zv1 |ψy , @v1 . (D.1.21)

This equality tells us that the “integration” of the electric field σz on a closed surface
around the vertex v1 gives the matter field at this vertex. This is similar to the standard
Maxwell Gauss law

¿

S

~dS ~E “ Q , (D.1.22)

where Q is the electric charge (more generically, the gauge charge) inside the volume

surrounded by the closed surface S and ~E is the Maxwell electric field. Since Bv becomes
Bc, and since we have seen that the excitation of a Bc is a fracton, the Gauss law (D.1.21)
suggests that the fractons can be interpreted as the gauge charges of the gauge model
dual to our fractonic model.

Through the example of the X-cube model we have displayed some of the main aspects
of fracton physics in lattice models. Lattice models with fractonic modes are a still
ongoing active research topic. Some of the directions of investigation are the influence of
the geometry, of the topology and of the dimension of the manifold on which the lattice is
drawn, the generalisation of the known toy models, the search of a generic classification
of fractonic modes, the modelling of physical models allowing for experimental testing,
the experimental measurements of fractonic modes and the engineering applications.

Key points of fractonic lattice models

What should be remembered about factonic lattice models is that such models display

1. A robust large ground state degeneracy which scales with the size of the system.

2. Excitations with reduced mobility, called fractonic modes. To create such excita-
tions, due to the discretisation of the energy spectrum of quantum lattice models,
the energy cost is finite. We therefore speak of gapped fractonic modes.
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3. Subsystem symmetries. Morally, these subsystem symmetries imply the two first
points of this list: point 1 because of spontaneous symmetry breaking, point 2
due to the conservation laws restraining the charges’ motion. It is interesting to
notice that gauging subsystem symmetries seems to play a role through the duality
initially established in [260]. Especially, the fact that gauge charges appear to be
the fractonic modes.

D.2 Fractonic continuous models

The paradigm of the Wilsonian renormalisation group flow is that low-energy physics
is well captured by a (quantum) field theory description. According to this mindset,
there exists an effective field theory for each lattice model, the latter being seen as the
UV theory of the EFT. In particular, it should be true for fractonic lattice models and
so, there should be an equivalent notion of fractonic modes in continuous field theory.
However, the particular features of the fractonic lattice models that we recapitulated
at the end of the previous section challenge our usual vision of field theory. Indeed,
we should be able to find QFTs with a large number of degenerate vacua where this
degeneracy scales with the dimension of the system. From standard QFT textbooks, we
do not have explicit examples of such kind of field theories. In addition, we should also
find a way to describe the robustness of this large degeneracy. The large number of vacua
in spin lattice models means that there are many possible spin configurations giving the
same zero energy. Among these spin configurations, some of them spatially change rapidly
and can thus be interpreted as states with high momenta, despite the fact that they have
a zero energy. We observe that we have a UV/IR mixing which comes into conflict with
EFTs where physics at large distance is considered as equivalent to low energy. We can
push a bit further the discussion by mentioning that a rapid spatial modulation of a state
in a lattice could correspond to a non-continuous field configuration, which is usually not
described by standard QFTs. Dealing with subsystem symmetries (and their gauging) is
also a singular notion that we do not recover in the textbooks. Finally, fractonic modes
in lattice models are gapped and so, a priori, they should not be captured by EFTs. On
this last comment, as we will see, we will introduce a notion of gapless fractonic modes
in the framework of continuous field theory5.

Hence, the quantum field theories featuring fractonic behaviour are quite peculiar and
might lead us to revisit the fundamental notions of QFT. Specifically for this thesis, this
conflict with the standard EFT approach challenges some aspects of Goldstone physics,
in particular the naive notion that NG modes can universally capture low-energy physics.
That is, by definition, what makes an interesting and rich research topic!

As we have argued, continuous models for fractonic physics are involved. Thus, before
trying to establish a generic description and classification of these models, the current
strategy in the literature is to find toy models displaying the desired features and by
doing so, to acquire some knowledge and intuition on the characteristics of fractonic
continuous models. To achieve this goal, there is the top-down approach which consists of
considering particular fractonic lattice models and to explicitly compute their continuous

5But it should be emphasised that in the literature (some) gapped fractonic modes are successfully
described by field theories by considering them as defects of the field configuration [263].
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limit. The other approach is the bottom-up one which, based on general concepts such as
subsystem symmetries, tries to directly write field theories which have fractonic behaviour.
For this journalistic overview, we are going to mainly focus on the bottom-up approach
since it is the less “axiomatic” QFT perspective and so, this approach fits better with the
guideline of this thesis: considering non-trivial toy models to display particular features
of Goldstone physics and in this case, make a connection with fractonic modes.

D.2.1 Higher rank gauge theories

Historically, it is Pretko who, for the first time, noticed and labelised as it a fractonic
behaviour in a field theory [200]. In the context of spin liquids, Pretko used spatial higher
rank symmetric gauge theories, i.e. theories where the gauge field is of the form Aijpxq,
and observed that the gauge charges display a reduced mobility. The intuition is that
gauge theories lead to gauge constraints, which are made explicit in the Hamiltonian
formalism [264]. The Gauss law of Maxwell electromagnetism (D.1.22), where the electric
field is the canonical conjugate momentum of the spatial components of the four-potential
Aµ, is an example of such gauge constraints. If we switch on a source for the gauge field,
these gauge constraints can be considered as conservation laws for the external sources.
For higher rank gauge theories, we have more gauge constraints than compared to the
usual 1-form gauge theories. Hence, the external sources are constrained by additional
conservation laws which leads to a reduced mobility.

One of the less involved examples is the one of a gauge field transforming as Aij Ñ
Aij ` BiBjα for an arbitrary function of space α. The associated generalised Gauss law is

BiBjE
ij
“ ρ , (D.2.1)

where Eij is the generalisation of the electric field (canonical conjugate momentum of Aij)
and ρ is an external source, we can refer to it as well under the nomenclature of gauge
density charge. This Gauss law implies some constraints on ρ:

ż

dV ρ “

ż

dV BiBjE
ij
“ 0 ,

ż

dV xkρ “

ż

dV xkBiBjE
ij
“ ´

ż

dV BjE
kj
“ 0 ,

(D.2.2)

(D.2.3)

where the integration is on the entire space volume of Minkowski spacetime. We observe
that the total net gauge charge should be zero and that the total dipole moment should
as well be zero, and this, at any time. We thus have a global charge conservation and
a total dipole moment conservation. It leads to a reduced mobility of the gauge charge.
Indeed, in Figure D.6 on the left, we have an already existent positive pointlike charge
(we suppose that somewhere else in space, there are other charges to have a global zero
net charge). If we move only this pointlike charge, the dipole moment of the system will
change. Thus, the motion is forbidden by the conservation rules, and so, in this system, a
pointlike charge is a fracton. On the right side of Figure D.6, we have a dipole (once again,
we assume there are other charges in space to satisfy (D.2.2) and (D.2.3)) and this dipole
can translate without contradicting (D.2.3). We recover the idea that (some) collective
motions of fractons are tolerated. We can also make a parallelism with the comment
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we made in the paragraph below (D.1.22). Finally, other transformation laws for the
gauge field can be considered, leading to other generalised Gauss laws. In particular, the
restriction in mobility is recovered with the conservation of other multipole moments.

Figure D.6: On the left, an isolated pointlike charge is shown. On the right, it is an
isolated dipole. These cartoons have been taken and modified from [200].

These spatial symmetric higher rank gauge theories are rather exotic compared to
the usual 1-form gauge theories. There are still work to do to verify that such exotic
gauge theories are well defined and that they do not lead to unphysical results. It should
be mentioned that some checks and studies have already been performed, e.g. [201, 265].
Furthermore, it seems that spatial symmetric higher rank gauge theories are not only
an academic curiosity but can have connection with real world physics. In fact, a clear
connection between such theories and crystal elasticity has been made [211,212].

D.2.2 Matter field theories

The preceding discussion suggests the idea that it should be possible to write matter field
theories displaying reduced mobility, at least to separately describe the intrinsic dynamics
of the gauge charge. Pretko successfully wrote such a model by looking for a theory which
has for Noether conserved charges a Up1q charge and the associated dipole [14]. Later
on, Seiberg proposed a more general approach to find fractonic matter field theories [15].
We are now going to give a glimpse of the Seiberg strategy and from it, derive the Pretko
model of [14] as well as the Shao-Seiberg model [263]. The obtained matter models can be
gauged in order to make a connection with the preceding discussion on spatial symmetric
higher rank gauge theories. But in the perspective of Goldstone physics, our primary
interest does not lie in gauge theories (because gauge symmetries do not lead to NG
modes). Hence, we will not further comment the gauging.

The intuition behind Seiberg approach is that dipole symmetry seems to be somehow
connected with the notion of restricted mobility. A conserved dipole is a spatial vector
Noether charge (as it can be seen from the matter description of the conservation law
(D.2.3)). The first step in this intuitive reasoning is then to generalise this idea and
to look for theories with (spatial) vector Noether charges, the associated symmetries
are called (spatial) vector global symmetries. The conserved currents of this kind of
symmetries have two symmetric indices, we could, for example, think of the stress-energy
tensor T µν associated to the 4-momentum vector charge P µ. But we can go further and
somehow get rid of the Noether symmetry vision. To do so, the starting point is not
the symmetries acting on the fields anymore but rather the assumption of the existence
of a conserved current with two indices not necessarily symmetric (in particular, it can
allow some connections with higher form symmetries). From the discussion on the spatial
higher rank gauge symmetries, we know that time and space are not dealt with on the
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same footing. Based on this observation, we are going to ask our matter field theories to
be non-relativistic. Thanks to that, we will be able to have richer conservation equations
and so, richer conserved quantities. This will ensure the restriction on the mobility.

Seiberg point of view [15] is to assume that the fractonic matter toy model we are
looking for contains a conserved current Jµν satisfying

BµJ
µi
“ B0J

0i
` BjJ

ji
“ 0 ,

BµJ
µ0
“ B0J

00
` BiJ

i0
‰ 0 .

(D.2.4)

(D.2.5)

Thanks to (D.2.4), the following quantity

Qj
“

ż

dV J0j , (D.2.6)

where the integration is on the entire spatial volume of Minkowski spacetime, is conserved
(B0Q

j “ 0).
One way to realise (D.2.4) and (D.2.5) is to consider that the particular toy model we

are looking for possesses a current pj0, jijq such that

B0j
0
“ BiBjj

ij . (D.2.7)

Then, we define

J0j
“ xjj0 ,

J ij “ ´xjBkj
ki
` jij ,

(D.2.8)

(D.2.9)

and by a direct computation, we see that (D.2.4) and (D.2.5) are satisfied.

D.2.3 Pretko’s model

We now show that we can write a matter field theory with a dipole moment conservation
and which displays a fractonic behaviour. From j0, we can define the conserved charge

Q “

ż

dV j0 , (D.2.10)

thanks to (D.2.7). Then, by using (D.2.8), (D.2.6) is the dipole associated to Q:

Qj
“

ż

dV xj j0 , (D.2.11)

where we already know that it is conserved.
In order to find a model with these conservation properties, we consider that Q is a

Up1q charge. It means that Q acts like a phase on the complex matter field φ. Indeed,
hastily said, j0 is the number density (as it will be verified a posteriori) j0 „ φB0φ

˚ „ φPφ,
where Pφ is the canonical conjugate momentum of φ. Hence,

tαQ, φuP.B. „ α tφPφ, φuP.B. „ αφ , (D.2.12)
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where we used the canonical conjugation through the Poisson brackets and α is a constant.
From the expression (D.2.11) of Qj, it means that it acts like a linear phase on the matter
field. Therefore, the conserved charges Q and Qj generates the symmetry

φÑ eipα`βjx
jqφ , (D.2.13)

where βj is a constant spatial vector. A possible invariant theory is

L “B0φB0φ
˚
´m2

|φ|2 ´
λ

4

`

|φ|2
˘2
´ c1Bi|φ|

2
Bi|φ|

2

´ c2|φBiBjφ´ BiφBjφ|
2
´ c3

“

pφ˚q2 pφBiBiφ´ BiφBiφq ` c.c.
‰

,
(D.2.14)

where c.c. stands for complex conjugate. This is the Pretko model from his paper [14],
the explicit expression (D.2.14) is taken from the review [255]. We can indeed verify a
posteriori that

j0
“

BL
BpB0φq

φ “ φB0φ
˚ . (D.2.15)

Taking m2 ą 0 and λ ą 0, we have that the vacuum is φ “ 0. A small perturbation
δφ around it provides

Lquad « B0δφ B0δφ
˚
´m2

|δφ|2 . (D.2.16)

The dispersion relation is ω “ m, meaning that the on-shell field configuration can have
any spatial dependence and that the time evolution is just given by a phase eimt. To
understand this peculiarity, let us do the field redefinition

δφ “ eimtϕ , (D.2.17)

then

Lquad « B0ϕ B0ϕ
˚
´ im pϕ˚B0ϕ´ B0ϕ

˚ϕq . (D.2.18)

We can observe that a strong subsystem symmetry has emerged. In fact, the Lagrangian
transforms up to a global derivative under an arbitrary space modulated complex shift

ϕÑ ϕ` cp~xq ñ δLquad « ´im B0pc
˚ϕ´ ϕ˚cq . (D.2.19)

This arbitrary spatially modulated shift informs us that any space dependence of ϕ can
be a solution, and it reflects on δφ. This provides an explanation for the ω “ m dispersion
relation.

If m is set to zero, the dispersion relation is ω “ 0. We have a massless mode which, in
the language of plane waves, does not propagate. Furthermore, the plane waves solution
of the theory can have any momenta. First, the vacuum is then highly degenerate with
an infinite number of possible momenta. Second, we have a UV/IR mixing because even
at large momenta, we remain at ω “ 0. We see that Pretko’s model recovers the main
features of fractonic lattice models: reduced mobility (but the mode is gapless instead of
being gapped), large vacuum degeneracy (but no notion of system size nor robustness),
UV/IR mixing and all that is induced by a subsystem symmetry – the arbitrarily spatial
modulated shift.

The intuition that dipole moment conservation leads to fractonic behaviour is not
always correct. Indeed, if we switch the sign of m2, now it is m2 ă 0, we obtain a
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Mexican hat potential. This allows a non-trivial vacuum φ “ v. If we focus on the free
theory of the NG field π associated to the SSB of Up1q, the perturbation parametrisation
is as follow

φ “ v eiπ , (D.2.20)

and the theory is [255]

L « v2
pB0πq

2
´ c2 v

4
pBiBjπq

2
´ c3 v

4
pBiBiπq

2 . (D.2.21)

The subsystem symmetry is reduced compared to the unbroken case since now it is an
affine shift symmetry:

π Ñ π ` α ` βj x
j . (D.2.22)

Actually, it is the usual non-linear realisation of the spontaneously broken symmetries
acting on the NG fields. Hence, we can even say that compared to the fundamental
theory (D.2.14), there is no emergent new subsystem symmetries. The dispersion relation
is of the form ω2 „ k4 which does not display a reduced mobility of the associated plan
waves. The subsystem symmetry is not constraining enough. This result of superfluid
fractonic models is studied in [223,224].

With the approach proposed by Seiberg, we have recovered Pretko’s model. An alter-
native method is the “Noether vision” which consists into directly impose some symmetries
on the theory, i.e. we start with explicit transformation laws acting on the fields, and
make such symmetries strong enough to reduce the possible motion of the modes. This
was the original approach of Pretko [14]. This construction of fractonic toy models by
explicit symmetries relies on the intuition that multipole moments should be conserved
(but, as we have seen there are counter-examples). Therefore, Gromov classified the al-
gebras (called the multipole algebras) leading to such conserved quantities [266]. Among
these algebras, there are the ones generating polynomial shift symmetries. It should be
emphasised that the discussion on polynomial shift symmetries was first introduced, for
a non-oriented fractonic purpose, in [17] where they recover Pretko’s like models. The
simplest polynomial shift symmetry is the affine shift symmetry which leads to a dipole
conservation. As we have already seen the transformation law is

φÑ φ` α ` βj x
j . (D.2.23)

In order for the Lagrangian to be invariant, it should be a functional of higher spatial
derivative terms so, it depends on B0φ and BiBjφ for the simplest case. To compute the
associated Noether currents, we have to use the Noether theorem for Lagrangian with
higher derivatives [46]:

j0
α “

BL
BpB0φq

” ρ , jiα “ ´Bj
BL

BpBiBjφq
” Bjj

ij
α ,

ji0β “ ρ xi , jijβ “ xijiα ´ j
ij
α .

(D.2.24)

(D.2.25)

Which indeed leads to the conservation of the shift charge and the associate dipole moment

Q “

ż

dV ρ , Qi
“

ż

dV xi ρ . (D.2.26)
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Let us notice that from Bµj
µ
α “ 0, we have

B0 j
0
α “ BiBj j

ij
α . (D.2.27)

Hence, like the Up1q affine symmetry, the affine shift symmetry is encompassed in the
Seiberg prescription (D.2.7).

D.2.4 Shao-Seiberg’s model

Seiberg method should be seen as a guideline to help us to be creative on writing fractonic
continuous models. With the same start than for Pretko’s model, we will derive another
important fractonic model in the literature: the Shao-Seiberg model [263].

We want a fractonic toy model in 2` 1 Minkoswki spacetime. To satisfy (D.2.4) and
(D.2.5), we again assume that our theory has a current pj0, jijq verifying (D.2.7). In
addition, we demand jij to be symmetric with jxx “ 0 “ jyy. Out of j0, we build the
usual conserved charge

Q “

ż

dxdy j0 , (D.2.28)

which generates a Up1q symmetry on a complex scalar field φ. But this time, we are
going to focus on the phase of φ and so, we write an action for a real scalar field θ which
transform as a shift under a finite transformation generates by Q: θ Ñ θ`α. Furthermore,
we arbitrarily add the requirement that

Qc ”

ż

dxdy cpx, yq j0 , (D.2.29)

is a conserved quantity. Of course, it is motivated by the fact that we want to constrain
as much as possible the dynamics (without making it trivial) in order to get fractonic
modes. For Qc to be indeed conserved, we need

B0Qc “

ż

dxdy cpx, yq B0j
0
“

ż

dxdy cpx, yq 2BxByj
xy

“

ż

dxdy BxBycpx, yq 2jxy “ 0 ,

ðBxBycpx, yq “ 0 ô cpx, yq “ cxpxq ` cypyq ,

(D.2.30)

(D.2.31)

(D.2.32)

where ci is an arbitrary function of xi. We have that Qc induces the subsystem symmetry

θ Ñ θ ` cxpxq ` cypyq . (D.2.33)

A possible theory invariant under (D.2.33) is

L “ pB0θq
2
´ µpBxByθq

2 . (D.2.34)

This is the Shao-Seiberg model [263]. It has the gapless dispersion relation

ω2
“ µ k2

xk
2
y . (D.2.35)
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If we put either kx or ky to zero, we can make similar comments than the ones we made for
the model of Pretko: for any value of the non-zero momentum, ω remains at zero. Thus,
we have a ground state degeneracy, a UV/IR mixing and non-propagating plane waves.
The arbitrary spatial modulation we can have along one direction when we set to zero the
momentum in the other direction can be traced back to the subsystem symmetry (D.2.33).
Finally, the field theory (D.2.34) is as well perculiar because it tolerates discontinuous field
configurations. For example, θ can depends only on x and be discontinuous, the derivative
along y will erase θ (if we permute the derivatives, we will first get Dirac deltas at the
discontinuity points and By will make them disappear) and so, the theory is blind with
respect to these discontinuities. From the mode point of view, once we set ky to zero, we
can send kx to infinity and still keep a finite energy (ω “ 0).

Another counter-example that dipole moment conservation does not systematically
lead to fractonic modes can be obtained by relaxing the requirement that the theory
should be invariant under (D.2.33). Let us ask it to be invariant under (D.2.33) but with
ci as affine functions in xi. In this case, Qc is a dipole and a possible extension of (D.2.34)
could be

L “ pB0θq
2
´ µpBxByθq

2
´ µxpB

2
xθq

2
´ µypB

2
yθq

2 , (D.2.36)

where now the dispersion relation is of the form (without the coefficients) ω2 „ k2
xk

2
y `

k4
x ` k

4
y. This dispersion relation does not display fractonic features.

A brief additional comment should be made on the Shao-Seiberg model. This model
is motivated by lattice physics and has been originally introduced from a top-down per-
spective, i.e. to find the field theory which corresponds to the continuous limit of a given
fractonic lattice model. Shao-Seiberg model is then the effective theory of a fractonic
lattice model. Once again, we can observe in (D.2.34) a pecularity for this EFT: it has
higher spatial derivative terms as relevant term. It displays once again the UV/IR mixing.

In this overview of fracton physics, we focused solely on the bottom-up approach. For
the top-down perspective, the reader can refer to [263,267] and the associated companion
papers. It permits to establish more rigorously the link between the fractonic excitations
in lattice models and the features of the fractonic field theories, e.g. how to describe
gapped fractonic modes while here we discussed gapless fractonic modes.

D.2.5 Key points of fractonic continuous models

We have seen that the QFT description of the fractonic excitations we have in some
lattice models is involved and challenges the fundamentals of QFT. We do not know yet
what are the necessary conditions and what are the sufficient conditions to have a field
theory displaying fractonic behaviour. The current status of research is to find fractonic
continuous toy models to acquire intuition. To find such models, it is not straightforward.
We rely either on a top-down approach (continuous limit of a given fractonic lattice
model) or on a bottom-up approach (model building based on general principles). In
both cases, strong subsystem symmetries appear to be needed. To build a model with
such symmetries (and so, we hope, with fractonic features), we either impose them by
hand (that is what we did for the Shao-Seiberg model) or we start with a theory with
multipole moment conservations and subsystem symmetries might emerge from it (as it
happened for the Pretko model). One of the highlights of Part II of this thesis is that
there might be another way to build toy models with emergent subsystem symmetries. In
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order to spontaneously break translations, we need higher derivative terms. It suggests
that the effective theory for NG modes coming from the breaking of translations and
of additional internal symmetries will have higher derivative terms. Usual NG modes
already have shift like symmetries. Thanks to these higher derivative terms, these shift
like symmetries might be promoted to polynomial shift symmetries6. It would then induce
a conservation of multipole moments and so, a possible restriction on the modes’ motion.
If the derivatives of higher order are well arranged, we could even have the emergence of
strong subsystem symmetries, for instance, an arbitrary space modulated shift symmetry.
Therefore, all the intuitive requirements to have fractonic modes are met!

We close this appendix with a final comment about semantic. In Part II of this thesis,
when we mention the term “fractonic modes”, we refer to gapless modes with dispersion
relations such that plane waves with (specific) non-zero momentum do not propagate.
It is therefore not the gapped excitations we have in fractonic lattice models, but the
philosophy is the same: a reduced mobility.

6The idea that the most relevant terms of the EFT describing NG modes enjoy polynomial spatial
shift symmetries has already been suggested and studied in [106,250,251].
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Appendix E

Homogeneous vacua

In this appendix we motivate the choice of the two different symmetry breaking vacua
that we have discussed in the main text, namely the helical superfluid and the meta-fluid.

Solutions to the equations of motion (8.2.3) and (8.2.4) which minimise the energy
necessarily imply a constant Ξ and a static Φ. The space-dependence of Φ is further
constrained to satisfy1

BiΦ
˚
BiΦ “

A

2B
v6
” c2 . (E.0.1)

In principle, to explore the space of time-independent solutions, one must consider the
most general Φ satisfying (E.0.1). Since we are considering field theories with 2 spatial
dimensions, the field Φ represents a map from the real plane to the complex plane. The
condition (E.0.1) restricts to maps whose complex gradient has constant modulus. The
(functional) space of solutions is clearly very large.

However, we will add one physically motivated constraint, which is to require that the
effective theory of the fluctuations around the vacuum solution be completely homoge-
neous. In other words, we require the effective Lagrangian of the fluctuating fields not to
have any explicit space dependent function.

Suppose Φ0pxiq is a solution of (E.0.1). We expand the field around such solution as

Φpt, xiq “ Φ0pxiq ` fpxiqϕpt, xiq , (E.0.2)

where ϕ is the fluctuating field, and fpxiq is a complex function, depending only on space
coordinates, that takes into account the freedom in the definition of the fluctuating field.
It will be fixed in order to have a homogeneous effective Lagrangian.

Let us first consider the term with the time-derivatives:

BtΦ
˚
BtΦ “ |f |

2
Btϕ

˚
Btϕ . (E.0.3)

Homogeneity is achieved requiring |f |2 to be spacetime independent. Hence, f can be
considered to have only a space-dependent phase.

Consider now the expansion of the expression squaring to the ‘gradient Mexican hat,’
to linear order in the fluctuations:

BiΦ
˚
BiΦ´ c

2
“ BiΦ

˚
0BiΦ0 ` BiΦ

˚
0pBifϕ` fBiϕq ` BiΦ0pBif

˚ϕ˚ ` f˚Biϕ
˚
q ´ c2

“ BiΦ
˚
0Bifϕ` BiΦ0Bif

˚ϕ˚ ` BiΦ
˚
0fBiϕ` BiΦ0f

˚
Biϕ

˚ . (E.0.4)

The quadratic Lagrangian involves the square of the above expression, and will be homo-
geneous if and only if each coefficient of the four terms above is itself space-independent (or

1An analogous equation is described in [268] in relation to superfluids with constant superfluid velocity.
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zero). Taking into account that they come in complex pairs, we have the two conditions
relating f and Φ0:

fBiΦ
˚
0 “ iai , BifBiΦ

˚
0 “ b , (E.0.5)

where ai and b are generic complex space-independent constants.
Let us now implement the fact that f must have all its space-dependence in a real

phase:

fpxiq “ f0e
iθpxiq . (E.0.6)

From the first of (E.0.5) we get

BiΦ
˚
0 “ i

ai
f0

e´iθ . (E.0.7)

From the fact that BiBjΦ
˚
0 “ BjBiΦ

˚
0 we get that

aiBjθ “ ajBiθ . (E.0.8)

The second of (E.0.5) gives now

aiBiθ “ ´b . (E.0.9)

These last two sets of equations imply that Biθ are both constant (and must be real for
consistency).

If at least one of the constants is not zero (i.e. b ‰ 0), then we can write θ “ kixi, and
we have f9Φ0 “ ρ eikixi , i.e. the helical solution (rotated towards a generic direction).

If on the other hand both constants are zero (i.e. b “ 0), then θ is a constant that can
be reabsorbed in f0, the constant value of f . Then Φ0 is linear, Φ0 “ bixi, i.e. we have
the meta-fluid solution (generalised to the non-isotropic case).
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Ward-Takahashi identities

The model in 2` 1 dimensions has a Lagrangian density

L “ LpB0X
I , BiX

I
q , XI

“ tΦ,Φ˚,Ξu , (F.0.1)

where

L “ |B0Φ|2 `
1

2
pB0Ξq2 ` A|BkΦ|

2
´

1

2
pBkΞq

2
´HΞ6

´BΞ´6
|BkΦ|

4
`GΞ´6

|BkΦ
˚
BkΦ

˚
|
2.

(F.0.2)

The Noether energy-momentum tensor is

T µν “
δL

δBµXI
BνX

I
´ δµνL. (F.0.3)

One can check that it is conserved on-shell BµT
µ
ν “ 0. The spatial components are

symmetric

T
p0q
ij “ 2ABpiΦ

˚
BjqΦ´ BiΞBjΞ´ δijL,

TBij “ ´4BΞ´6
pBkΦ

˚
BkΦqBpiΦ

˚
BjqΦ,

TGij “ 2GΞ´6
rpBkΦ

˚
BkΦ

˚
qBiΦBjΦ` c.c.s ,

(F.0.4)

so the complete stress tensor is

Tij “ T
p0q
ij ` T

B
ij ` T

G
ij . (F.0.5)

The T00 component is

T00 “ 2B0Φ˚B0Φ` pB0Ξq2 ´ L. (F.0.6)

Then, the trace is

T µµ “ T00 ` δ
ijTij. (F.0.7)

The traces are
δijT

p0q
ij “ 2ABkΦ

˚
BkΦ´ BkΞBkΞ´ 2L,

δijTBij “ ´4BΞ´6
pBkΦ

˚
BkΦq

2,

δijTGij “ 4GΞ´6
|BkΦ

˚
BkΦ

˚
|
2,

(F.0.8)

All together

T µµ “ ´|B0Φ|2 ´
1

2
pB0Ξq2 ´ A|BkΦ|

2
`

1

2
pBkΞq

2
` 3HΞ6

´BΞ´6
|BkΦ|

4
`GΞ´6

|BkΦ
˚
BkΦ

˚
|
2.

(F.0.9)

Using the equation of motion for Ξ, we can write this as

T µµ “ ´|B0Φ|2 ´ A|BkΦ|
2
´

1

4

`

B
2
0 ´ B

2
k

˘

Ξ2

` 2BΞ´6
|BkΦ|

4
´ 2GΞ´6

|BkΦ
˚
BkΦ

˚
|
2.

(F.0.10)
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Using now the equations of motion for Φ, Φ˚

T µµ “ ´
1

2
pB

2
0 ` AB

2
kq|Φ|

2
´

1

4

`

B
2
0 ´ B

2
k

˘

Ξ2

` Bk
`

BΞ´6
|BmΦ|2Bk|Φ|

2
˘

´
1

2
Bk

“

GΞ´6
pBmΦ˚BmΦ˚qBkΦ

2
` c.c.

‰

.
(F.0.11)

We can partially improve the energy momentum tensor

T µ
ν “ T µν `

1

4
plδµν ´ B

µ
Bνq

ˆ

|Φ|2 `
Ξ2

2

˙

` θµν . (F.0.12)

Where Bµ “ ηµαBα, l “ ηαβBαBβ and the non-zero components of θµν are

θij “
1

2
pA` 1q

`

B
2
kδ
i
j ´ BiBj

˘

|Φ|2. (F.0.13)

Then, the trace is

T µ
µ “ B

µVµ, (F.0.14)

where V 0 “ 0 and

Vi “ BΞ´6
|BkΦ|

2
Bi|Φ|

2
´

1

2

“

GΞ´6
pBkΦ

˚
BkΦ

˚
qBiΦ

2
` c.c.

‰

. (F.0.15)

There is a conserved current associated to scale transformations

Dµ
“ T µ

αx
α
´ V µ, BµD

µ
“ T µ

µ ´ B
µVµ “ 0. (F.0.16)

Then, (F.0.14) is the Ward-Takahashi identity associated to dilatations.

F.1 Conserved current

The current is

Jµ “
i

2

„

Φ
δL
δBµΦ

´ c.c.



. (F.1.1)

The ordinary current is

jµ “
i

2
pΦBµΦ˚ ´ Φ˚BµΦq . (F.1.2)

In this model, the components of the conserved current are

J0 “ j0,

Ji “ ´
`

A´ 2BΞ´6
|BkΦ|

2
˘

ji ´ iGΞ´6
“

pBkΦ
˚
q
2ΦBiΦ´ pBkΦq

2Φ˚BiΦ
˚
‰

.
(F.1.3)

And the current conservation equation is

B
µJµ “ 0. (F.1.4)
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F.2 Shift symmetries

The Lagrangian has additional shift symmetry (we consider here only real shifts, to avoid
overcounting)

Φ Ñ Φ` α, Φ˚ Ñ Φ˚ ` α. (F.2.1)

The Noether currents associated to this symmetry is

Jµs “
δL
δBµΦ

`
δL

δBµΦ˚
. (F.2.2)

If the action only depends on derivatives of Φ, then the current is conserved, since it is a
combination of the equations of motion for Φ, Φ˚

B
µJs µ “ 0. (F.2.3)

Note that adding this equation makes the system of equations from the Ward-Takahashi
identities equal to the system of equations from the Lagrangian, we have to solve for all
the modes.

The components are

Js 0 “ B0Φ` B0Φ˚,

Js i “ ´A pBiΦ` BiΦ
˚
q ` 2BΞ´6

|BkΦ|
2
pBiΦ` BiΦ

˚
q

´ 2GΞ´6
pBkΦ

˚
BkΦ

˚
BiΦ` BkΦBkΦBiΦ

˚
q .

(F.2.4)

F.3 Adding a chemical potential

We introduce a chemical potential

Φ “ eiµtφ, Φ˚ “ e´iµtφ˚. (F.3.1)

Then, the charge density becomes

J0pΦq “ j0pΦq “ 4µ|φ|2 ` j0pφq ” J0pφq. (F.3.2)

The time-time component of the energy-momentum tensor changes to

T00pΦq “ 2µ2
|φ|2 ` 2iµpφB0φ

˚
´ φ˚B0φq ` T00pφq “ µJ0pφq ` t00pφq, (F.3.3)

where

t00pφq “ T00pφq ´ 2µ2
|φ|2. (F.3.4)

The effective Lagrangian is

Lφ “ L` 2µ2
|φ|2. (F.3.5)

The change in the trace is

T µµpΦq “ T µµpφq ´ µ
2
|φ|2 ´ iµpφB0φ

˚
´ φ˚B0φq. (F.3.6)
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Appendix G

Generalisations to 3+1 dimensions

In this appendix, we briefly outline generalisations of Chapter 8 to 3 ` 1-dimensional
systems, to show that the essential features of both the helical superfluid and the meta-
fluid are unchanged. The only difference is that we have to use different models to
generalise the helical superfluid and the meta-fluid, respectively. We will keep the analysis
of both models to a minimum, since it turns out that they are very similar to their 2` 1-
dimensional cousins.

G.1 3+1-dimensional helical superfluid

In order to generalise the helical superfluid, we keep the field content to be a complex
scalar Φ and a real scalar Ξ. Only the scaling dimensions of the scalars changes, and
hence the compensating powers of Ξ.

We thus start with the following Lagrangian, where we have already implemented a
condition like (8.2.12):

L “ BtΦ˚BtΦ`
1

2
BtΞBtΞ´

1

2
BiΞBiΞ´

B

Ξ4

ˆ

BiΦ
˚
BiΦ´

A

2B
Ξ4

˙2

. (G.1.1)

The equations of motion are solved for

Φ “ ρ eikx , Ξ “ v , with
k2ρ2

v4
“

A

2B
. (G.1.2)

The expansion is exactly as before

Φ “ ρ eikxp1` σ ` iχq , Ξ “ vp1` τq , (G.1.3)

so that the effective quadratic Lagrangian for the fluctuations about the helical vacuum
is

L “ v2

2
BµτB

µτ ` ρ2
pBtχq

2
` ρ2

pBtσq
2
´ 2Aρ2

rBxχ` kpσ ´ 2τqs2 , (G.1.4)

which is exactly similar to (8.2.51) except for a numerical coefficient. The spectrum
will then be exactly the same: there is an immobile fracton, a gapless mode which has
linear and isotropic dispersion relations at low momentum, but becomes a lineon at high
momentum (propagating along x, now one out of three directions), and a gapped mode
which has relativistic dispersion relations at high momentum (this is the spectrum for
A ď 1{2; if A ą 1{2 then as before the lineon and the relativistic mode switch roles
according to the direction of propagation). The gap is given by

m2
“ 2Ak2

ˆ

1` 8
ρ2

v2

˙

. (G.1.5)
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G.2 3+1-dimensional meta-fluid

In order to generalise the meta-fluid, the model has to contain as many (real) scalar fields
as space directions, plus the compensator scalar field. Hence, we start with 3 real scalar
fields Φi, to which we add Ξ. The Lagrangian is now

L “ 1

2
BtΦiBtΦi `

1

2
BtΞBtΞ´

1

2
BiΞBiΞ´

B

Ξ4

ˆ

BiΦjBiΦj ´
A

2B
Ξ4

˙2

. (G.2.1)

The solution to the equations of motion is

Φi “ b xi , Ξ “ v , with
3b2

v4
“

A

2B
. (G.2.2)

We take the fluctuations to be

Φi “ bpxi ` uiq , Ξ “ v ` τ , (G.2.3)

and the quadratic Lagrangian becomes

L “ 1

2
BµτB

µτ `
1

2
b2
BtuiBtui ´

2

3
Ab2

ˆ

Biui ´
6

v
τ

˙2

. (G.2.4)

Again, this is very similar to (8.2.63), up to some numerical coefficients. However, now
it involves 4 modes instead of three. But we can immediately see that the only modes
that will have non-trivial dispersion relations are the mixtures of τ and the longitudinal
component of ui. Then, both transverse modes of ui will be immobile fractons.

As for the non-trivial modes, one is gapped with gap given by

m2
“ 48A

b2

v2
, (G.2.5)

and relativistic dispersion relation at high momentum, while the other is gapless with
quadratic dispersion relation at low momentum

ω2
“

4

3

A

m2
q4
`Opq6

q , (G.2.6)

and linear dispersion relation given by

ω2
»

4

3
Aq2 , (G.2.7)

at high momentum. If A ą 3{4, the high momentum behaviour is switched between the
two modes.

To summarise, we see that the generalisation to 3+1 dimensions yields physics very
similar to the 2 ` 1-dimensional case that we have analysed in detail, so that we expect
that the latter transposes to 3` 1 dimensions straightforwardly.
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Are there Goldstone bosons in
d ď z ` 1 ?
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Preamble Part III

This part of the thesis is in the framework of the extension of Coleman’s theorem for
non-relativistic theories [16, 106, 122, 123]. More specifically, we are going to study spon-
taneous symmetry breaking patterns which lead to solely type A NG modes. Since we
use the classification type A/type B, it is implicit that we set ourselves in the range
of the hypotheses of Theorem 3. At sufficiently low energy, type A NG modes have a
non-relativistic scaling symmetry where space scaling dimension is canonically 1 and time
scaling dimension is n – see (4.5.14). The scaling dimension of the NG modes is then
∆ “ pd´ 1´nq{2. By a scaling argument, we have seen in Part I Subsection 4.5.2 that it
has been conjectured that no spontaneous symmetry breaking can happen when ∆ ď 0,
i.e. when d ď n ` 1 [106]. Interestingly, in contrast to relativistic QFTs where only two
dimensions are singled out as a particular case, in non-relativistic QFTs there is a whole
range of dimensions in which spontaneous symmetry breaking is in principle forbidden.
We will make an explicit QFT computation to confirm this conjecture. Furthermore, to
give a physical motivation, we are going to perform this computation for Lifshitz theories
invariant under time reversal – this particularisation to Lifshitz theories will not induce a
loss of generality. As we will explain in the next paragraph, Lifshitz theories are directly
connected with phenomenology in condensed matter and offer the expected scaling sym-
metry for the NG modes. The requirement for being time reversal invariant is to ensure
to have a double time-derivative in the low-energy theory for the NG modes and so, to
indeed describe type A NG modes.

Lifshitz theories are field theories invariant under spacetime translations, spatial ro-
tations and which have the Lifshitz scaling symmetry

tÑ λzt , xi Ñ λxi , (9.2.8)

where z P R is called the dynamical critical exponent [269]. These theories permit to
portray physics around quantum critical points [270]. From phase transition physics,
we know that at a critical point, the physics is scale invariant because the correlation
length is undefined. In the language of field theory, the Landau-Ginzburg model has a
scale symmetry such that the correlation length of the two-point correlators diverges. A
quantum critical point is a critical point at zero temperature where phase transitions are
driven by quantum effects. Around quantum critical points in the coupling space, the
correlation length ξ evolves as

ξ´1
„ |g ´ gc|

γ , (9.2.9)

where g is a coupling of the Landau-Ginzburg model and gc is its critical value, γ is
the associated critical exponent. Moreover, it is observed that the gaps ∆ go to zero
(otherwise there is no scaling symmetries) following

∆ „ ξ´z . (9.2.10)

From the latter equation, the scaling dimensions are

rxis “ rξs
!
“ 1 , rts “ r∆´1

s “ z rξs “ z . (9.2.11)
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Thus, we see that the scaling symmetry at a quantum critical point is the Lifshitz scaling
symmetry (9.2.8). Let us emphasise that the parameter z is a measured parameter and so,
it can take any real values. We refer the reader to [271–273] for concrete physical examples
of Lifshitz systems and in particular to [270,274] for an example where z is not an integer.
The Lifshitz EFT is a theory for NG modes with a more general scaling symmetry than
the one considered in Subsection 4.5.2 where only integer value were considered for the
exponent n (notice that we recover the relativistic case when z “ 1). It means that we
generalise the conjecture by stating that no spontaneous symmetry breaking leading to
solely type A NG modes can occur when d ď z ` 1.

As for the relativistic case [26–28,121], we can probe if this statement holds true or not
for strictly large N theories by performing a holographic computation for Lifshitz QFTs
(see [269,275–281]). An introduction to bottom-up holography is provided in Appendix H.
Based on the relativistic experience, we guess it will not be true anymore. Therefore, we
are looking for a counter-example rather than a generic argument. This allows us to try
with a minimalist holographic model and to choose the parameters of the theory to ease
as much as possible the computation. We will anyway remain generic in the discussion
for spacetime dimension and for the critical exponent by only requiring d ď z` 1 instead
of completely fixing d and z in the window d ď z` 1. Beside the motivation of Goldstone
physics, we expect the holographic computation to be as well interesting from the point
of view of holography in itself. Indeed, our arguments rely on symmetric arguments and
so, consistency checks of the holographic conjecture for non-relativistic systems can be
performed (e.g. recovering the Ward-Takahashi identities). Furthermore, the holographic
renormalisation procedure heavily depends on the dimension of spacetime and on the
asymptotic boundary expansion of the gravity-side fields. These expansions encode the
scaling dimension of the QFT operators. Since we are precisely working with unusual
scaling dimensions (negative ones instead of positive ones), we expect some subtleties in
the holographic renormalisation procedure. The scaling dimension of an internal conserved
current is d ´ 1. It can be seen from the variation of the action under the considered
symmetry

δαS „

ż

ddxα Bµj
µ . (9.2.12)

The holographic dictionary tells us that a conserved current is sourced by a gravity-side
gauge field Aµ. With

SQFT Ą

ż

ddx jµAµ , (9.2.13)

we see that the canonical dimension of Aµ is z. In the holographic language, in the
temporal vector sector, we have that the source has a canonical dimension z and that the
response has a canonical dimension d ´ 1. In the limit case d “ z ` 1, the source and
the response are then at the same order in the asymptotic expansion. We then lose the
intuitive idea that the leading coefficient is the source and that the subleading one is the
response. We might be obliged to make well considered choices to be able to describe
spontaneous symmetry breaking (or at least to extract the desired correlators to build
the Ward-Takahashi identities), in addition to the technical difficulty of the apparition of
logarithmic terms due to the mixing of the source and the response1.

1For the critical relativistic case, z “ 1 and d “ 2, with the same scaling argument, we can predict
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This part of the dissertation is organised as follows. In Chapter 10 we consider a QFT
invariant under the Lifshitz group, time-reversal and a global Up1q symmetry. We discuss
under which conditions a one-point function vacuum expectation value survives quantum
corrections. We find the condition to be d ą z`1, in agreement with a naive dimensional
argument. We then proceed in Chapter 11 to analyse an equivalent holographic set-up.
With the usual artillery of holographic renormalisation, we establish which counterterms
need to be selected in order to obtain the correct gauge invariance of the generating
functional, and hence reproduce the usual Ward-Takahashi identities for the conserved
current. Such counterterms impose alternative quantisation for the temporal component
of the bulk vector, i.e. the leading term in the near boundary expansion is identified with
the VEV rather than the source. Finally, in Chapter 12 we comment on a few open
questions.

Besides appendices H, I, J, K, this part of the thesis is a slight editing of the paper [125]
of the author of this dissertation and his collaborators.

that both the temporal and the spatial vector sector will be at the Breitenlohner-Freedman bound. This
prediction is indeed verified in [121], a paper of the author and his collaborators.

221



Preamble Part III

222



Chapter 10

Quantum corrections to the
symmetry breaking VEV

We present in this chapter a generalisation of the argument by Coleman [16] for quantum
field theories with Lifshitz scaling. As a reminder, Coleman’s theorem states that for a
relativistic theory in two-dimensional spacetime, at the quantum level, there cannot be
any spontaneous breaking of symmetries that would lead to Goldstone bosons. The idea
behind this argument is that for this specific spacetime dimension, massless scalars are ill-
defined and so is the “would-be” Goldstone boson associated to the symmetry breaking.
Physically, the interpretation is that quantum fluctuations are large enough to erase any
notion of order, leading to the impossibility of having spontaneously broken symmetries.

The different Lifshitz theories being studied are identified by the number of spacetime
dimensions d and the value of the dynamical critical exponent z. The argument is built
with respect to a general action of the Lifshitz type invariant under a global continuous
symmetry group. For simplicity, we consider the theory of a complex scalar ψ that is
charged under a Up1q global symmetry, invariant under time-reversal1 and that possesses
a potential V depending only on the modulus of ψ. To trigger the spontaneous symmetry
breaking at the classical level, we suppose that V is minimal around a vacuum expectation
value v for |ψ|, and there it takes the value zero for simplicity. The action is then given
by

S rψs “

ż

dtdd´1x
`

BtψBtψ
˚
´ p´1qzξ2ψ∇2zψ˚ ´ V pψψ˚q

˘

, (10.0.1)

where z is the dynamical critical exponent, we take z ě 1 for causality considerations, ξ
is a positive real number without dimensions and d ě 2 (to discuss Lifshitz scaling we
need at least one spatial direction and one time direction). In Section I.1 of Appendix I
we present low-energy Lifshitz theories and detail why the choice z ě 1 is made. We note
that ψ has dimension

rψs “
d´ 1´ z

2
. (10.0.2)

Doing a perturbation around the classical VEV, the physical field can be written as

ψpxq ” pv ` σ pxqq eiθpxq , (10.0.3)

where σ and θ are small fluctuations. The phase-field θ corresponds to the longitudinal
direction of the action of Up1q on the physical field, hence, it corresponds to the Goldstone
boson if spontaneous symmetry breaking is allowed. Since we perform an analysis till the

1Namely, we want to study type A NG modes, time reversal symmetry ensures that the EFT will be
type A like and since type A NG modes are canonically independent, there is not loss of generality to
consider the Up1q case.
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quadratic order (small perturbations), the dynamics of θ is dictated by the free effective
action

S rθs “

ż

dtdd´1x v2
`

BtθBtθ ´ p´1qzξ2θ∇2zθ ´ ξ2λ2zθ2
˘

. (10.0.4)

A mass term for θ with parameter λ is added by hand in order to confront the cases of
spontaneous and explicit symmetry breaking. This parameter can also be viewed as an
infrared regulator. Let us notice that we in fact recover the EFT of a type A NG mode
with the desired scaling symmetry.

All we need for our argument is the two-point function of θ

〈θpt, ~xqθp0q〉|λ “
π

p2πqdξv2

ż

dd´1p
ei~p¨~x´iξ

?
p2z`λ2zt

a

p2z ` λ2z
. (10.0.5)

where p ”‖ ~p ‖. On purely dimensional grounds, as displayed in Subsection 4.5.1 , the
behaviour at large (spatial) separation of the propagator for θ is dictated, in the massless
limit, by the dimension of ψ, (10.0.2). We thus expect the correlations to vanish at large
separations only for positive dimensions, i.e. for d ą z ` 1. Conversely, for d ď z ` 1, we
expect large long range correlations that can potentially spoil any vacuum expectation
value.

We are now going to show that indeed, after renormalisation, the VEV is preserved in
the former case, and is set to zero in the latter. We will follow an argument similar to the
one given in [118] for the relativistic case, which is essentially equivalent to computing
the one-loop correction to the ψ-tadpole2.

First of all, if θ is approximated by a free field, we can write θ ” θ` ` θ´ where θ` is
associated to the positive energy modes and is proportional to an annihilation operator,
θ´ is associated to the negatives energy modes and is proportional to a creation operator.
If we consider the two-point function of θ, we find

〈θpxqθp0q〉 “
〈
θ`pxqθ´p0q

〉
“
〈“
θ`pxq, θ´p0q

‰〉
. (10.0.6)

We now evaluate the one-point function of ψ using its decomposition in terms of the
fluctuations σ and θ

〈ψpxq〉 “ v
〈
eiθpxq

〉
“ v

〈
eiθ

´pxqeiθ
`pxqe1{2rθ´pxq,θ`pxqs

〉
“ v e´1{2〈rθ`pxq,θ´pxqs〉

“ v e´1{2〈θp0qθp0q〉 , (10.0.7)

where we used, besides the previous arguments, also the fact that σ is a massive pertur-
bation around v. We thus see that in order to certify whether the VEV is maintained at
the quantum level, we need the two-point function for θ at vanishing distance in time and
space.

Obviously, such a limit pt, ~xq Ñ 0 can lead to a UV divergence, naively giving an ill-
defined one-point function above. However, it is known how to deal with such divergence
through renormalisation. In order to disentangle potential IR divergences, we use the
theory regulated by the small mass λ, guided by the expectation that explicit symmetry

2As it will be seen later, we will compute the propagator of θ between the two same spacetime points,
which indeed corresponds to a loop.
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breaking is always viable (switching on a mass for the NG modes is equivalent to see them
as pseudo-Goldstone mode, which is a signature of an explicit symmetry breaking) and a
non-zero value for the order parameter should be found in that case. In consequence, the
limit λ Ñ 0 alone must have something to tell us about the possibility of spontaneous
symmetry breaking.

We now use (10.0.5) evaluated at coinciding points to find the needed expression.
Analogously, this computation can be seen as the evaluation of the one-loop correction
to the tadpole. Following standard manipulations (see e.g. [282] or [283] for a similar
context), we have

〈θp0qθp0q〉|λ “
π

p2πqdξv2

ż

dd´1p
1

a

p2z ` λ2z

“
Γ ppd´ 1q{2zq Γ ppz ` 1´ dq{2zq

p4πqd{2Γppd´ 1q{2q z ξv2
λd´1´z . (10.0.8)

Cf. Appendix K Section K.1 for the details of the computation. We immediately note that
the IR behaviour will be dictated by the power of λ, while the UV behaviour depends on
the argument of the Gamma function Γ ppz ` 1´ dq{2zq because the latter is independent
of λ and it depends on d and z which set the scaling dimension of the NG field, i.e. the
shape of the two-point correlator (cf. (4.5.21)). The IR behaviour will give a vanishing
result for d ą z ` 1, and a diverging one for d ă z ` 1. At the same time, the Gamma
function is always regular for d ă z`1, while it can have singularities for d ě z`1 (more
specifically, it diverges for d “ z`1`2nz, with n a positive or null integer). The limiting
case is obviously d “ z ` 1, actually the only one where we need to disentangle UV and
IR divergences.

For d “ z ` 1, let us treat this case with dimensional regularisation. Setting d Ñ
z ` 1´ 2zε gives first

〈θp0qθp0q〉|ελ “
Γ p1{2q

p4πqpz`1q{2Γpz{2q z ξv2

`

ε´1
` const.´ 2z lnλ`Opεq

˘

. (10.0.9)

We obtain a UV-regular expression keeping only the finite λ-dependent piece (and intro-
ducing for dimensional reasons the renormalisation scale µ):

〈θp0qθp0q〉|RUV

λ ” lim
εÑ0`

´

〈θp0qθp0q〉|ελ ´ 〈θp0qθp0q〉|εµ
¯

“ ´
Γ p1{2q

p4πqpz`1q{2Γpz{2q ξv2
ln pλ{µq2 . (10.0.10)

This expression is free from UV divergence thanks to renormalisation, but still has an IR
divergence when λ Ñ 0. We can thus conclude that the massless same-point correlator
diverges to `8 when d “ z ` 1.

For d ă z`1, we see from (10.0.8) that in the limit λÑ 0 the expression also diverges
to `8 (recall we assume d ě 2), without any need to regularise and renormalise in the
UV.

For d ą z`1, we would need to regularise and renormalise in certain cases as discussed
above. However, we see in (10.0.8) that the result is multiplied by a positive power of
λ, which will always win in the λ Ñ 0 limit against any term involving lnλ. We thus
conclude that the correlator in this case always vanishes in the massless limit.

225



Chapter 10. Quantum corrections to the symmetry breaking VEV

Now, going back to the expression (10.0.7), inserting the UV-renormalised two-point
function, we observe that the VEV is preserved when d ą z ` 1 while it is set to zero
when d ď z ` 1. We summarise the results in the table below.

Condition
for d and z

limλÑ0

〈θp0qθp0q〉|RUV

λ

〈ψpxq〉RUV
Spontaneous

symmetry breaking

d ą z ` 1 0 v yes
d ď z ` 1 `8 0 no

We have thus generalised the Coleman theorem on the possibility of having sponta-
neous symmetry breaking to Lifshitz theories with time reversal invariance. The argument
is essentally based on contradiction. By considering a generic Up1q theory presenting Lif-
shitz scaling symmetry, the hypothesis that Up1q is spontaneously broken leads to the
presence of a massless field, the would-be Goldstone boson. We then observed that for
d ď z` 1 the latter is not well defined, leading to large quantum fluctuations that set the
VEV to zero. Hence no spontaneous symmetry breaking can occur in those dimensions.

We now turn to discuss the same kind of theory, but with a large N number of
constituents. We employ holography to study it, and enquire whether the large N limit
can restore an ordered vacuum.
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Holographic renormalisation and
symmetry breaking in d ď z ` 1

By experience from the relativistic case [26–28,121], we expect that spontaneous symmetry
breaking might occurs in d ď z`1 when we consider strict large N theories. Therefore, we
look for a counter-example of the statement made in the preceding chapter for such exotic
QFTs. Thus, we consider a theory with the exact same symmetry properties, but from
a holographic perspective. This is tantamount to say that the QFT under consideration,
besides being in the large N limit, is also generically strongly coupled. Since we look
for one counter-example, we can try with a minimal holographic model and tune the
parameters such as the mass in order to make the holographic renormalisation easier. We
will remain quadratic in the fluctuations. Indeed, our goal is to build the two-point Ward-
Takahashi identity to probe for spontaneous symmetry breaking (2.1.16). Therefore, a
quadratic renormalised holographic action is sufficient. Furthermore, we will not consider
correlators involving the stress-energy tensor (we are dealing with internal symmetries,
not spacetime ones). The metric can thus be considered as fixed. Because the Ward-
Takahashi identities rely only on the relative values between correlators, we do not need
an explicit expression for the latter. Hence, only a boundary analysis is sufficient and it
can be a posteriori verified that the backreaction we would have had if we considered a
dynamical metric is not modifying our final results. We will use a set-up in all similar to
the one considered in [281] (a paper by the author and his collaborators), though we will
implement time-reversal symmetry to be consistent with the discussion in the previous
section.

On the bulk, gravity side of the holographic correspondence, we thus introduce a
complex scalar φ charged under a Up1q gauge symmetry. The charge is set to unity and
the corresponding gauge field is A. To reproduce a QFT invariant under Lifshitz scaling,
this matter content has to live on a curved spacetime in d ` 1 dimensions dominated by
the presence of a background massive vector field B [276]. If it is defined as1

B ”
β

rz
dt with β ”

c

2pz ´ 1q

z
, z ě 1 , (11.0.1)

then the background metric reads (with a radius set to unity)

ds2
” gmndxmdxn “

dr2

r2
´

dt2

r2z
`

dx2
j

r2
, (11.0.2)

with j running from 1 to d´ 1, and is isometric under a Lifshitz scaling and the rotations

1Besides the obvious requirement of keeping β real, the condition z ě 1 has strong physical motivations,
both in QFT and in holography [284]. Essentially z ă 1 would lead to causality violations, see Section
I.1, and might lead to a violation of the strong energy condition, see Section K.2.
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of space coordinates. The part of this metric that is orthogonal to B is given by

γmn ” gmn ` β
´2BmBn so that γmnB

n
“ 0. (11.0.3)

A general action invariant under the Lifshitz symmetry group and time-reversal for a
scalar φ and a massless vector A is then given by

S rAm, φs “

ż

dd`1x
?
´g

#

´
1

4
γmn

ˆ

γpq ´
2κ

β2
BpBq

˙

FmpFnq

´

ˆ

γmn ´
1

c2β2
BmBn

˙

pDmφq
˚Dnφ´m

2φ˚φ

+

. (11.0.4)

where Fmn “ BmAn ´ BnAm and Dm “ Bm ´ iAm as usual. Here, B as well as the metric
g are meant as non-dynamical fields. Similarly, we will neglect backreaction of the scalar
on them (in Section K.4, it is argued that this approximation has no influence on final
results). This theory has three free parameters : κ, c2 and m2. Let us mention that
for κ “ 1 we recover the Maxwell kinetic term for the vector field and when c2 “ 1, we
retrieve the Klein-Gordon kinetic term for the scalar field.

We list here the equations of motion that are obtained from the action above

Bm

ˆ?
´g

2

ˆ

γmn
ˆ

γpq ´
2κ

β2
BpBq

˙

´ γpn
ˆ

γmq ´
2κ

β2
BmBq

˙˙

Fnq

˙

´i
?
´g

ˆ

γpq ´
1

c2β2
BpBq

˙

`

φ˚Dqφ´ φ pDqφq
˚
˘

“ 0 ,(11.0.5)

Dm

ˆ

?
´g

ˆ

γmn ´
1

c2β2
BmBn

˙

Dnφ

˙

´
?
´gm2φ “ 0 .(11.0.6)

Of course, when taking the variation of the action with respect to the dynamical degrees
of freedom, one has to pay attention to the boundary terms that will play a prominent
role in the holographic renormalisation.

Since the radial mode of the vector A does not source any operator on the QFT side
of the correspondence, we can partially fix the gauge freedom by putting it to zero (i.e. we
work in the radial, or holographic, gauge)

Ar “ 0 . (11.0.7)

The spatial modes can be split into transverse and longitudinal modes

Ai ” Ti ` BiL with the condition BiTi “ 0 . (11.0.8)

Finally, we consider the real and imaginary parts of the scalar separately

φ ”
ρ` iπ
?

2
. (11.0.9)

The gauge transformations in their infinitesimal form for the newly introduced fields
read

δαρ “ ´απ , δαπ “ `αρ , δαAt “ Btα , δαL “ α , (11.0.10)
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where α is now a function of t and ~x only (to preserve the holographic gauge). All other
quantities are gauge invariants.

We now want to switch on a background for the scalar to enforce the symmetry
breaking in the QFT. So, we introduce φB that only depends on the r coordinate (we do
not want to spontaneously break spacetime symmetries of the boundary QFT), and shift

ρ Ñ φB ` ρ . (11.0.11)

Moreover, we prescribe that all the degrees of freedom that we described in the previous
section are small fluctuations on top of this background. Assuming the gauge parameter
is similarly small, gauge transformations now read

δαρ “ ´απ « 0 , δαπ “ `αpφB ` ρq « αφB ,
δαAt “ Btα , δαL “ α .

(11.0.12)

First, we find the equation for the background from (11.0.6) :

rBr prBrφBq ´ pd` z ´ 1qrBrφB ´m
2φB “ 0 . (11.0.13)

The gauge fixing we performed in (11.0.7) gives us, taking p “ r in (11.0.5), the constraint

´κr2z
BrBtAt ` r

2
B

2
j BrL´ φBBrπ ` πBrφB “ 0 . (11.0.14)

Taking p “ t and p “ j in (11.0.5) gives the equations for the temporal and spatial
modes of the vector. We also apply the projectors pδijB

2
k ´ δikBkBjq {B

2
k and Bj{B

2
k on the

p “ j equation to separate equations for the transverse and longitudinal modes. The real
and imaginary parts of (11.0.6) give rise to equations for the real and imaginary parts of
the scalar respectively. All in all, the equations of motion for the dynamical degrees of
freedom are

rBr prBrAtq ´ pd´ z ´ 1qrBrAt ` r
2
B

2
j pAt ´ BtLq `

1

κc2

`

φBBtπ ´ φ
2
BAt

˘

“ 0 , (11.0.15)

rBr prBrTiq ´ pd` z ´ 3qrBrTi ´ κr
2z
B

2
t Ti ` r

2
B

2
jTi ´ φ

2
BTi “ 0 , (11.0.16)

rBr prBrLq ´ pd` z ´ 3qrBrL´ κr
2z
Bt pBtL´ Atq ` φB pπ ´ φBLq “ 0 , (11.0.17)

rBr prBrρq ´ pd` z ´ 1qrBrρ´
r2z

c2
B

2
t ρ` r

2
B

2
jρ´m

2ρ “ 0 , (11.0.18)

rBr prBrπq ´ pd` z ´ 1qrBrπ ´
r2z

c2

`

B
2
t π ´ φBBtAt

˘

`r2
B

2
j pπ ´ φBLq ´m

2π “ 0 . .(11.0.19)

Since we considered small fluctuations for the dynamical degrees of freedom, those equa-
tions are linear in the fields. The degrees of freedom ρ and Ti are both decoupled from
the others.

We now turn to the asymptotic expansions of the fields near the boundary. Starting
from the background for the scalar field, the exact solution is

φB “ w r
d̃
2
´ν
` v r

d̃
2
`ν , (11.0.20)
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where w and v are real numbers and we have defined

d̃ ” d` z ´ 1 and ν ”

d

d̃2

4
`m2 . (11.0.21)

This notation is convenient to draw a comparison with usual AdS holography. For sim-
plicity we will take 0 ă ν ă 1.2 For the fluctuations, the radial behaviour captured in the
equations of motion imposes the following expansions. Leaving aside the spatial index i
for the mode Ti, we get

ρ
rÑ0
„ ρ0 r

d̃{2´ν
` ρ̃0 r

d̃{2`ν
` ¨ ¨ ¨ (11.0.22)

π
rÑ0
„ π0 r

d̃{2´ν
` π̃0 r

d̃{2`ν
` ¨ ¨ ¨ (11.0.23)

At
rÑ0
„ ã0 r

´p2z´d̃q
` ¨ ¨ ¨ ` a0 ` ¨ ¨ ¨ (11.0.24)

T
rÑ0
„ t0 ` ¨ ¨ ¨ ` t̃0 r

d̃´2
` ¨ ¨ ¨ (11.0.25)

L
rÑ0
„ l0 ` ¨ ¨ ¨ ` l̃0 r

d̃´2
` ¨ ¨ ¨ (11.0.26)

where all coefficients are fields with a pt, xiq dependence. We have anticipated here the
special case where d ď z ` 1 (i.e. 2z ě d̃), the opposite case was treated in [281]. Dots
between leading and subleading orders mean that one can find some more terms by adding
powers of r two by two, if d̃´ 2 ą 2 and/or 2z ´ d̃ ą 2. Logarithms should also be taken
into account starting from the order r0 in the expansion of At if d̃´ 2z is even and from
rd̃´2 in the expansions of Ti if d̃ ´ 2 is even. Finally, because of the presence of the
background φB, and the particular shape of the Lifshitz metric, further powers in the
expansions above appear. However, it can be checked that they are all subdominant with
respect to the ones shown above (provided all our previous assumptions, that is ν ă 1,
z ě 1 and d ě 2).

Coefficients crowned with a tilde symbol are leading or subleading modes that we do
not want to play the role of sources in QFT. For the scalars, it is just a matter of choice
(in this case, it identifies w as an explicit symmetry breaking parameter and v as a VEV),
while for the gauge field, it is important because only vector modes without tilde symbol
transform non-trivially under the gauge group and can actually play the role of sources
for a conserved current in QFT.

Indeed, we can determine the gauge transformations for the coefficients. Since ρ
does not transform at linear order under the gauged Up1q, we have non-trivial rules for
coefficients of π only

δαπ0 “ αw , δαπ̃0 “ αv . (11.0.27)

For the gauge vector, only two coefficients transform under the gauge transformation

δαa0 “ Btα , δαl0 “ α . (11.0.28)

It is important for the following to note that ã0 is a gauge invariant quantity and therefore
cannot be the source for the temporal part of a conserved current.

2Taking ν ě 1 makes the procedure of renormalisation more involved. Note also that for ν ą d̃{2, we
would need to set w “ 0 in order for the background not to spoil the asymptotic Lifshitz scaling. See
Section K.3 for additional details.
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Note that in the limiting, relativistic, case where d “ 2 and z “ 1, i.e. d̃ “ 2, all
leading and subleading terms of the vector modes have the same order in r respectively :

At
rÑ0
„ ã0 ln r ` a0 ` ¨ ¨ ¨ (11.0.29)

d̃ “ 2 : T
rÑ0
„ t̃0 ln r ` t0 ` ¨ ¨ ¨ (11.0.30)

L
rÑ0
„ l̃0 ln r ` l0 ` ¨ ¨ ¨ (11.0.31)

This case was already discussed in an author and his collaborators’ paper [121] – (see
also [285,286]) so we will keep d̃ ą 2 from now on.

We can now apply the procedure of holographic renormalisation [287, 288]. Applying
the equations of motion in the expression (11.0.4), we find an action on the boundary.
To regularise divergences, we evaluate it on a slice r “ ε close to r “ 0. This procedure
defines the regularised action :

Sreg ”

ż

r“ε

ddx
r´d̃

2

!

r2Ti rBrTi ´ r
2L rBrB

2
jL´ κr

2zAt rBrAt

`φB rBrφB ` 2ρ rBrφB ` ρ rBrρ` π rBrπ
)

. (11.0.32)

We need to add some counterterms to get rid of the divergences and to see clearly which
coefficient of each expansion seen before is a source for the action. To do it properly,
we look at the variation that has to vanish to satisfy the variational principle (note that
δSreg is not the variation of Sreg given above, but the regularised variation of the action
(11.0.4))

δSreg “

ż

r“ε

ddx r´d̃
!

r2δTi rBrTi ´ r
2δL B2

j rBrL´ κ r
2zδAt rBrAt

`δρ rBr pφb ` ρq ` δπ rBrπ
)

. (11.0.33)

We will now renormalise this expression for the different sectors separately. We antici-
pate that the sector that will contain all the subtleties is the one of the temporal and
longitudinal components of the vector. We start by treating the other sectors.

For the scalar sector, the procedure goes exactly as in [281]. We add the counterterm

Sφct ”

´

d̃{2´ ν
¯

ż

r“ε

ddx r´d̃
"

φ˚φ´
φ2
B

2

*

. (11.0.34)

Using it to define the renormalised action for the scalar part, we find (neglecting terms
of zeroth order in the fluctuations, which do not concern us here)

Sφren ” lim
εÑ0

´

Sφreg ´ S
φ
ct

¯

“ ν

ż

ddx t2vρ0 ` ρ0 ρ̃0 ` π0 π̃0u . (11.0.35)

Then the overall variation reads

δSφren “ lim
εÑ0

´

δSφreg ´ δS
φ
ct

¯

“ 2ν

ż

ddx tδρ0 pρ̃0 ` vq ` δπ0 π̃0u , (11.0.36)
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showing explicitly that our counterterm selects ρ0 and π0 to play the role of the sources,
i.e. their variations have to vanish on the boundary r “ 0 to satisfy the variational
principle.

For the transverse sector renormalisation, it is again exactly as in [281], to which we
refer for the details. Suffice here to state the only relevant piece in the renormalised action

STren “

ż

ddx
´

d̃{2´ 1
¯

pt0qi
`

t̃0
˘

i
, (11.0.37)

up to possible local terms when d̃ is even and strictly bigger than 4. Considering the
variation, we find that t0 is identified with the source, as expected.

We finally consider the renormalisation of the temporal and longitudinal sectors. We
will treat the case d “ z ` 1 (i.e. d̃ “ 2z) in detail and see how the result is generalised
to any d and z satisfying d ă z ` 1.

When d “ z ` 1, the expansions for the temporal and longitudinal modes until sub-
leading order reads3

At
rÑ0
„ ã0 ln r ` a0 ` ¨ ¨ ¨ (11.0.38)

L
rÑ0
„ l0 ` l̃0 r

2pz´1q
` ¨ ¨ ¨ (11.0.39)

It leads to

St{Lreg “

ż

r“ε

ddx
!

´ pz ´ 1ql0 B
2
j l̃0 ´

κ

2
ã0 ã0 ln r ´

κ

2
a0 ã0 ` ¨ ¨ ¨

)

(11.0.40)

and, for the variation

δSt{Lreg “

ż

r“ε

ddx
!

´ 2pz ´ 1qδl0 B
2
j l̃0 ´ κ δã0 ã0 ln r ´ κ δa0 ã0 ` ¨ ¨ ¨

)

.(11.0.41)

We see that the only divergence is logarithmic and takes place for the temporal component
of the vector.

As in [121], we explore now two ways of renormalising this sector. Adding a mass-like
counterterm

S̃
t{L
ct ” ´κ

ż

r“ε

ddx
pAt ´ BtLq

2

2 ln r
(11.0.42)

gives the following renormalised expression for the variation

δS̃t{Lren “

ż

r“ε

ddx
!

´ 2pz ´ 1qδl0 B
2
i l̃0 ´ κ ã0 Btδl0 ` κ δã0 pa0 ´ Btl0q

)

. (11.0.43)

which exhibits ã0 and l0 in the role of the sources. This choice, which we can call ordinary
quantisation, is not good since ã0 does not transform under the residual gauge transfor-
mation. Hence, it cannot reproduce a source for Jt on the QFT side of the correspondence
if Jµ is a conserved current.

3Note that in general, the equation of motion (11.0.17) leads to a simplification for the expansion of
L, setting to zero all the possible coefficients between l0 and l̃0, and without logarithms for any d̃.
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Inspired again by [121], we propose the following counterterm4

Stct ” ´κ

ż

r“ε

ddx
ln r

2
prBrAtq

2 . (11.0.44)

We note that it can be obtained by adding a term of the Legendre transform kind5 to
(11.0.42):

lim
εÑ0

Stct “ lim
εÑ0

¨

˝´κ

ż

r“ε

ddx
!

pAt ´ BtLq rBrAt

)

´ S̃
t{L
ct

˛

‚ . (11.0.45)

We find

St{Lren ” lim
εÑ0

`

St{Lreg ´ S
t
ct

˘

“

ż

ddx
!

´ pz ´ 1ql0 B
2
j l̃0 ´

κ

2
a0 ã0

)

, (11.0.46)

and the expression for the variation

δSt{Lren “

ż

r“ε

ddx
!

´ 2pz ´ 1qδl0 B
2
j l̃0 ´ κ δa0 ã0

)

, (11.0.47)

which is consistent with a0 having the correct gauge transformation for being the source
of the temporal component of a conserved current. Since the source is the subleading
term in the expansion, we see that we have to choose “alternative quantisation” [291] for
the bulk field At, and just for it.

Using the constraint (11.0.14), l̃0 can be expressed in terms of other coefficients

´κBtã0 ` p2z ´ 2qB2
j l̃0 ´ 2νwπ̃0 ` 2νvπ0 “ 0 . (11.0.48)

Plugging it inside our renormalised action, we find

St{Lren “

ż

ddx
!

´
κ

2
l0 Btã0 ´ ν l0 pwπ̃0 ´ vπ0q ´

κ

2
a0 ã0

)

“

ż

ddx
!

´
κ

2
pa0 ´ Btl0q ã0 ´ ν l0 pwπ̃0 ´ vπ0q

)

. (11.0.49)

Generalizing now to the case d ă z ` 1, the near boundary expansions of the bulk
fields remain the same except for the temporal sector, where it is given by (11.0.24)

At
rÑ0
„ ã0 r

´p2z´d̃q
` ¨ ¨ ¨ ` a0 ` ¨ ¨ ¨ (11.0.50)

with possibly also a ln r term if z ´ d̃{2 is a positive integer.
As in the case d “ z` 1, the longitudinal sector will not bring any divergence. Hence,

we focus on the variation of the temporal part, whose relevant terms are

δStreg “ κp2z ´ d̃q

ż

r“ε

ddx
!

δã0 ã0r
´p2z´d̃q

` ¨ ¨ ¨ ` δa0 ã0 ` ¨ ¨ ¨

)

. (11.0.51)

4See also [289,290] for similar counterterms, in different set-ups.
5Where the variables are pAt´BtLq and rBrAt which are gauge invariant under the radial gauge choice.
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We directly go to alternative quantisation to see if an adapted version of the counterterm
(11.0.44) remains a good choice. The numerical coefficient is fixed to cancel the hardest
divergence of the regularised action. We propose

Stct ”
κ

2

ż

r“ε

ddx r2z´d̃ prBrAtq
2

2z ´ d̃
. (11.0.52)

Note that this term carries the correct power of r to be covariantly defined with respect
to the metric near the boundary. If 2z ´ d̃ ą 2, we will also need to introduce further
counterterms of the same kind as the one above to compensate all subleading divergences

Stctpkq ” ´
κ

2

ż

r“ε

ddx r2z´d̃`2k
prBrAtq B

2k
j prBrAtq

ck
, (11.0.53)

with k positive integers and ck numerical coefficients that are straightforward to determine.
None of the counterterms will affect the finite term proportional to ã0 in Streg. As a
consequence, a0 remains a source of the renormalised action, as (11.0.51) is pointing.
Putting temporal and longitudinal pieces together, we find

St{Lren “

ż

ddx
!

κpz ´ d̃{2q a0 ã0 ´ pd̃{2´ 1q l0B
2
j l̃0

)

, (11.0.54)

and for the variation

δSt{Lren “

ż

ddx
!

κp2z ´ d̃q δa0 ã0 ´ pd̃´ 2q δl0B
2
j l̃0

)

. (11.0.55)

To get rid of l̃0, we use again the constraint (11.0.14). Its first order now gives

κp2z ´ d̃qBtã0 ` pd̃´ 2qB2
j l̃0 ´ 2νwπ̃0 ` 2νvπ0 “ 0 . (11.0.56)

Then, we find

St{Lren ra0, l0, π0s “

ż

ddx
!

κpz ´ d̃{2q pa0 ´ Btl0q ã0 ´ ν l0 pwπ̃0 ´ vπ0q

)

,(11.0.57)

up to possible local terms if z ´ d̃{2 is a positive integer. The latter would come from
(11.0.53), these finite terms would be of the form a0a0. These will not intervene in the
Ward-Takahashi identities we will compute.

We can summarise our results for all d ď z ` 1 into the expression

St{Lren “

ż

ddx
! κ̄

2
pa0 ´ Btl0q ã0 ´ ν l0 pwπ̃0 ´ vπ0q

)

, (11.0.58)

with

κ̄ ”

"

´κ if d “ z ` 1 ,

κp2z ´ d̃q if d ă z ` 1 .
(11.0.59)

The sum of the renormalised actions for every sector gives the complete gauge invariant
effective action that can be used to define the partition function of the QFT

Sren ” STren ` S
t{L
ren ` S

φ
ren . (11.0.60)
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Thus, we find

Sren rt0, a0, l0, ρ0, π0s “
1

2

ż

ddx
!

pd̃´ 2qpt0qipt̃0qi ` κ̄ pa0 ´ Btl0q ã0

`2ν
´

ρ0ρ̃0 ` pπ0 ´ wl0q pπ̃0 ´ vl0q

` v p2ρ0 ` 2π0l0 ´ wl0l0q
¯)

. (11.0.61)

The equations of motion for the fluctuations relate, through the deep bulk (IR) bound-
ary conditions, the gauge invariant combinations of the tilded coefficients to the gauge
invariant combinations of the sources by non-local operators

ã0 “ Fa pa0 ´ Btl0q ` Fπ pπ0 ´ wl0q , (11.0.62)

ρ̃0 “ Gρ ρ0 , (11.0.63)

π̃0 ´ vl0 “ Ha pa0 ´ Btl0q ` Hπ pπ0 ´ wl0q , (11.0.64)

pt̃0qi “ It pt0qi , (11.0.65)

where all these operators are non-polynomial functions of the derivatives Bt and B2
i , and

we have taken into account that the transverse and ρ sectors are decoupled.
We can thus finally write the renormalised action taking this into account

Sren rt0, a0, l0, ρ0, π0s “
1

2

ż

ddx
!

pd̃´ 2qpt0qi It pt0qi

`κ̄ pa0 ´ Btl0q
´

Fa pa0 ´ Btl0q ` Fπ pπ0 ´ wl0q
¯

`2ν ρ0Gρ ρ0 ` 2ν pπ0 ´ wl0q
´

Ha pa0 ´ Btl0q ` Hπ pπ0 ´ wl0q
¯

`2νv
´

2ρ0 ` 2π0l0 ´ wl0l0

¯)

. (11.0.66)

Now, considering

SQFT Ą

ż

ddx
!

pt0qiJ T
i ´ l0BiJi ´ a0Jt ` ρ0ReO ` π0ImO

)

, (11.0.67)

and the holographic correspondence, we can write for example

〈ReOpxq〉 “
δiSren
δiρ0pxq

, (11.0.68)

or

〈ImOpxqBiJipyq〉 “
δ2iSren

δiπ0pxqδp´il0pyqq
. (11.0.69)

In this way, we find

〈ReOpxq〉 “ 2vν , (11.0.70)

〈ImOpxqImOp0q〉 “ ´i2νHπδ
d
pxq , (11.0.71)

´ 〈ImOpxqBtJtp0q〉` 〈ImOpxqBiJip0q〉 “ p´i2wνHπ ` 2ivνq δdpxq . (11.0.72)
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Technically speaking these are rather the connected correlators. In Section K.5, we argue
that they are equal to the “full” propagators. These obtained relations can be reexpressed
as

´ 〈ImOpxqBtJtp0q〉` 〈ImOpxqBiJip0q〉 “ w 〈ImOpxqImOp0q〉` i 〈ReO〉 δdpxq ,
(11.0.73)

which are the Ward-Takahashi identities for a current associated to a symmetry which
is broken both spontaneously (by v) and explicitly (by w) – see Appendix J for the
construction of the Ward-Takahashi identities when Up1q is explicitly broken.

In the purely spontaneous case, the Ward-Takahashi identities imply the presence of
a gapless mode, i.e. a Goldstone boson (see Section I.2). What our holographic analysis
has shown is that the procedure of holographic renormalisation is still consistent with the
presence of a non-zero VEV v. This then indicates that spontaneous symmetry breaking
is indeed possible in holographically realised Lifshitz theories in d ď z ` 1.
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Chapter 12

Discussion and outlooks

In this part of the thesis, we have analysed the possibility to have spontaneous symmetry
breaking in theories with Lifshitz scaling, depending on the dimensionality of spacetime.
First, we considered the issue from the purely field theoretic perspective, and found the
expected result: when the mass dimension of a scalar is zero or negative, i.e. when d ď
z ` 1, large quantum fluctuations in the massless case erase any possibility of having an
order, i.e. a VEV. We then proceeded to consider the same situation in a holographic
set-up, suitable for a large N theory. We found that there is no consistency problem in
having a non-zero VEV,1 and hence a propagating massless scalar. This is consistent with
the expectation that order can be restored in the N Ñ 8 limit.

With respect to the previous analysis of the relativistic case in [121], we have seen
that also in the present case we have to resort to alternative quantisation for the vector.
However, and this is a novel feature, only the temporal component of the vector has to
be treated in this way. Actually, it is the expected gauge symmetry of the renormalised
action that ultimately dictates to us this asymmetric treatment of the temporal and
spatial components of the bulk vector.2

We now comment on some issues that we did not address in the present part of the
thesis, but that could be worth investigating.

� Having shown in this part that the holographic approach, being pertinent to the
N Ñ 8 limit, allows for spontaneous symmetry breaking, one can ask whether 1{N
corrections can spoil this result and set the VEV to zero when d ď z ` 1. This
amounts to computing corrections at leading order in the bulk interactions. Even-
tually, one is led to perform a one-loop integral in all similar to the one performed
in section 10. This approach was followed in [292] for the case of d “ 3 and finite
temperature, finding that indeed large fluctuations erase the bulk scalar profile dual
to the VEV. We expect a similar result also in the cases considered in the present
part of the dissertation.

� Further, we can ask what happens when temperature is turned on. At high tem-
perature, all the scales become negligeable and we might wonder if it is consistent
to speak of Lifshitz scaling symmetry where time is dealt in a different way with
respect to space. However, above a critical temperature, the thermal fluctuations
do not tolerate an SSB in any cases. The question of SSB at lower dimension for
Lifshitz theories is then consistent only if we look at finite temperature below a

1For instance, in principle a legitimate alternative result could have been to find that it was impossible
to cancel all divergencies for v ‰ 0.

2Note that a precondition to have a situation opposite to the one that we described, i.e. alternative
quantisation only for the spatial components of the vector and ordinary quantisation for the temporal
component, is to have 2z ă d̃ ă 2, i.e. z ă 1. We can thus conclude that this possibility does not arise in
physically sensible set-ups [284].
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given scale, which could be the VEV. On the QFT side, a general argument like
in [118] from thermal field theory (see for instance [33]) gives for a massless mode
at finite temperature T “ 1{β

〈θp0, ~xqθp0q〉T 9
ż

dd´1p
ei~p¨~x

pz

ˆ

1`
2

eβpz ´ 1

˙

„ 2T

ż

dd´1p
ei~p¨~x

p2z
` . . . , (12.0.1)

where in the last step we have isolated the most IR divergent term. From the
latter, we observe that at T ą 0, such integral is generically IR divergent when
d ď 2z`1, hence increasing the critical dimension below which spontaneous breaking
of continuous symmetries is prevented. Note that for z “ 1, we recover the Mermin-
Wagner-Hohenberg theorem [122, 123].3 In holography, one should study scalar
profiles in Lifshitz black hole spacetimes (see e.g. [293–297]). In the latter set-up,
since our analysis was purely a boundary analysis, one does not expect any variation
with respect to our results if the spacetime metric is asymptotic to the pure Lifshitz
one. Bulk 1{N corrections should on the other hand be sensitive to the presence of
the black hole horizon.

� On the conceptual level, it could be worth to understand how from some UV rela-
tivistic theories we could retrieve Lifshitz EFTs. This is partially discussed in [281].

� It would be interesting to explore possible realistic systems which display Lifshitz
scaling (see [270] and references therein), in the d ď z ` 1 regime, to verify that
indeed the spontaneous breaking of continuous symmetries does not take place.
That would apply to systems in two spatial dimensions with z ě 2, or in three
spatial dimensions with z ě 3. Finding such systems could open the way to an
experimental verification of the phenomenon discussed in this part of the thesis.

� Finally, as usual in Goldstone physics, we can wonder how the known results for
internal symmetries extend to spacetime symmetries. In this case, how Coleman’s
theorem should be adapted to encompass the spontaneous breaking of global con-
tinuous spacetime symmetries. Some subtleties we might expect could be that when
we spontaneously break spatial translation symmetries, it can be seen as an effec-
tive reduction of spacetime dimension. We can think of an infinite membrane for
example, where the fluctuations live on the membrane and so are effectively de-
fined on a lower dimensional spacetime than the original spacetime into which the
membrane is embedded. A similar, but less straightforward, reasoning can be made
for the breaking of continuous translation symmetry towards crystal structures4.
Thus, the Coleman critical dimension of spacetime will it be with respect to the
original spacetime or to the effectively “reduced” spacetime ? Another specificity
of spacetime symmetry breaking that might arise is that the NG modes could be
fermionic. A Dirac free fermion has a single time-derivative in its Lagrangian. So, it

3Without time-reversal invariance, a similar argument would suggest that the critical dimension is
now d ď z ` 1. These theories do not seem to respect the Mermin-Wagner-Hohenberg theorem, in the
same way as they do not with the Coleman theorem at zero temperature.

4Let us emphasise that it is known that 4He does not solidify at zero temperature and at atmospheric
pressure due to large phonon vibrations compared to the lattice spacing [144]. This is a similar reasoning
to what we did for the internal symmetries.
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might lead to an ambiguity on the classification type A VS. type B NG modes (con-
sidering that we can extend this classification to non-uniform symmetries). From
the experience we acquired from the internal symmetry case, it seems that what
matters is if the massless NG mode has an associated massive partner or not. The
intuition would then be that following the fermionic NG mode being independent
or canonically conjugated to another NG candidate, it will lead to no spontaneous
symmetry breaking allowed or to SSB allowed. If we are in the first situation, the
fact that we have now a single time-derivative will influence the dispersion relation
and then, probably the value of the critical dimension of spacetime.
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Appendix H

Bottom-up approach of holography

In this appendix we present what holography is. More specifically, we focus on its bottom-
up approach, which is the perspective used in this thesis. Holography is the conjecture that
some physical systems can both be described by a quantum field theory in d dimension
spacetime and by a gravitational theory in d ` 1 spacetime1 [298]. The main interesting
point of holography is that it is a strongly VS. weakly coupled duality, when the QFT
is strongly coupled, the gravitational theory is not and vice versa. It is not yet well
established under which conditions a QFT can be dual to a gravitational theory. However,
it seems that to be a large N theory is one of the criteria. In order to have a feeling on
why such kind of dualities should hold and also, to intuitively understand why the large
N aspect plays a role, we start by briefly commenting the genesis of holography. Then,
we will state general principles on which a holographic duality can be built on and how
to extract information from it.

The historic duality is between a CFT and a gravitational theory living on anti-de
Sitter spacetime (AdS), it has been derived by Maldacena in the end of the nineties [29].
In his paper, Maldacena considered a type IIB string theory withN D3-branes and studied
it in two different regimes. In the perturbative low-energy regime, only the massless modes
of the theory are surviving and the open strings ending on the N D3-branes lead to a
SUpNq N “ 4 supersymmetric Yang-Mills theory (SYM) in 4-dimensional flat spacetime.
In the classical limit, at low energy, the considered string theory reduces to a supergravity
living on an AdS5 ˆ S

5 background geometry, where AdS5 is AdS in five dimensions and
S5 is the five-sphere. These two radically different theories (SYM and supergravity) come
from the same fundamental theory in two different regimes. If the fundamental theory
behaves continuously going from one regime to the other, then the field theory is describing
the same physics as the gravitational theory. This smooth transition is not proven and
this is why the holographic duality is a conjecture. Nevertheless, many non-trivial checks
of the duality have been performed by computing physical quantities on both sides [299].
To understand why holography provides us a tool to study strongly coupled large N field
theories, we have to look at the coupling parameters of the involved theories. The SYM
has its coupling gYM which is related to the string coupling following g2

YM „ gs. If we take
N to be large, from large N QFTs, we know that the effective coupling is the t’Hooft
coupling [300] λ ” Ng2

YM „ Ngs. Concerning supergravity on AdS5 ˆ S5, the radius L
of AdS is given by L4 „ gsNl

4
s where ls is the string length. The supergravity theory has

been obtained in the classical limit, which corresponds to consider gs Ñ 0 and L " ls.
This is achieved only if gsN " 1 and N Ñ `8. If the holographic conjecture holds true,
the supergravity theory describes the same physics as a (strictly) large N SYM theory
with a large t’Hooft coupling λ „ Ngs " 1. We can therefore use a classical gravitational

1In optical physics, a hologram represents a 3D image on a 2D object. In our case, it is the same
principle: information of a d`1-dimensional space is encoded into a d-dimensional space (and vice versa).
This explains the name “holography”.
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theory to obtain information on a strongly coupled large N quantum field theory! Let us
notice that if N is not going strictly to infinity, some quantum corrections might to be
considered in the supergravity theory.

It is believed that the holographic principle is more general than the original exam-
ple, that there exists several QFTs which have a gravitational dual [270]. The historic
conjectured duality as well as its extension has been tested in several physical cases.
For example, a holographic computation permitted to recover some physical properties
of a quark-gluon plasma (theoretical prediction: [301], experimental confirmation: [302]).
These possible extended holographic dualities are studied following two approaches: the
top-down approach and the bottom-up one. The top-down perspective is to start form one
side of the duality and to explicitly build the other side with string theory oriented tools.
It is an involved process but it has the advantage to not take (too much) for granted the
conjecture and that we explicitly know the QFTs and the gravitational theories we are
working with. The top-down construction is in the same fashion as the seminal paper [29].
These string theory considerations are not necessary for this dissertation and we will not
comment them further. The interested reader can look at [303–309] for more information.
In the bottom-up approach, we take for granted the holographic conjecture. Based on
general symmetric principles, we build an explicit gravitational theory which is dual to
a QFT from which we only know the symmetric properties and some operators content.
The disadvantage of the bottom-up approach is that we do not know the explicit expres-
sion of the QFT we are describing, but, the advantage is that it is a generic method and
it is usually simpler compared to a top-down approach. Since the holographic conjecture
has been blindly accepted, a posteriori, some consistency checks are done. For example,
we know that no matter how intricate the QFT is, the symmetry based results such as the
Ward-Takahashi identities should be satisfied. The bottom-up perspective of holography
is the method we are now going to present.

It should be mentioned that holography has a large impact on nowadays theoretical
physics. Currently (early 2020 decade), the seminal paper of holography [29], published
end of the nineties, has an order of magnitude of 17.000 citations while the seminal paper
of Goldstone physics [4], published in the early sixties, has an order of magnitude of 2.000
citations2. By comparison, we understand that we are only doing a superficial presenta-
tion of what holography is. The bottom-up approach will be schematically introduced in
a recipe fashion. This recipe oriented presentation is directly illustrated by the computa-
tions of Chapter 11. For additional technical details and for a pedagogical illustration of
the “recipe”, we refer the reader to the practical handbook [310].

Bottom-up holography consists in building an explicit gravitational theory dual to an
unspecified QFT where only some of the symmetric features of the QFT are known. The
guidelines for the construction of the gravitational model are based on symmetries and
bare the name of “holographic dictionary”. In order for the holographic conjecture to be
true, the symmetries from both sides of the duality should match. Indeed, in the historic
example we have that SYM is a conformal field theory in 4-dimensional flat spacetime, it
has thus the SOp2, 4q symmetry and being a N “ 4 supersymmetric theory, it includes a
SUp4q R-symmetry. The SOp2, 4q symmetry group matches with the isometry group of
AdS5 and SUp4q matches with the SOp6q isometry group of S5. The intuition acquired
from the already established dualities, led to the following statement for the holographic

2These citation numbers comes from Inspire HEP and the data was accessed in April 2022.
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dictionary.

Conjecture 1 (Holographic dictionary). A strictly large N strongly coupled field theory
with a spacetime symmetry group Gst and with an internal continuous symmetry group
Gint living on a d-dimensional flat spacetime is dual to a classical gravitational theory
with a gauge symmetry group Gint living on a d ` 1-dimensional curved spacetime where
the geometry has the isometry group Gst. The correlators of the QFT are obtained by
identifying the generating functionals of the two theories, where the sources of the QFT
correspond to the asymptotic expansion of the field content of the gravitational theory.

For some parts of the preceding statement, we already have a feeling why it is so (cf.
large N , strong coupling, classical gravity, spacetime symmetries VS. isometries and d “ 4
SYM is linked to a d ` 1 “ 5-dimensional AdS5 geometry). Let us comment on the rest
of this assertion.

The additional spacetime dimension of the gravitational theory, the radial direction
of coordinate called r, is considered as a geometrisation of the energy scale of the QFT.
A common interpretation is to consider the QFT living on a hyperplane r “ cst. of the
gravitational theory. We can then have an intuition on how the radial coordinate scales
with the energy scale of the QFT. If we have a physical event taking place in the QFT
which is lying at rQFT, this event is seen gravitationally redshifted by an observer in the
gravitational theory at rO following

νO

νQFT

“

d

g00prQFTq

g00prOq
, (H.0.1)

where g00 is the pure temporal component of the gravitational metric and ν is the fre-
quency and so, a representation of the energy. In the case of AdS, in the Poincaré patch
with the radius of AdS set to one, we have

ds2
“

1

r2

`

dr2
´ dt2 ` dxidxi

˘

, r P r0,`8r . (H.0.2)

The ratio (H.0.1) tends to infinity when we send rQFT towards the asymptotic boundary
rQFT Ñ 0. It is customary to consider the QFT living at the asymptotic boundary of the
gravitational theory, this in order to probe all the energy range of the QFT.

Saying that both side of the duality describe the same physics is concretely realised
by identifying the generating functionals. Because the gravitational theory is classical,
its generating functional reduces to the gravitational action evaluated on-shell thanks to
the saddle point approximation (~ Ñ 0). Since the QFT is interpreted as living at the
asymptotic boundary, the sources of the QFT are identified with the asymptotic expansion
of the fields of the gravitational theory. The holographic prescription is [30]

WQFTrϕ0s “ iSon-shell
grav rϕ0s , (H.0.3)

where ϕ0 is the asymptotic expansion of the field ϕ living in the gravitational theory
sourcing an operator Oϕ of the QFT. WQFT is the generating functional of the connected
correlators of the QFT and Sgrav is the classical action of the gravitational theory.

If the QFT has an internal continuous symmetry group Gint, it means that conserved
currents are defined for this theory. We therefore should be able to compute correlators

243



Appendix H. Bottom-up approach of holography

involving conserved currents and so, we need sources for them. The source of a conserved
current is the gauge field associated to the symmetry leading to the considered conserved
current3. In the context of holography, the sources of the QFT are the field content of the
gravitational theory. Hence, the gravitational theory should contain gauge fields which
intuitively explains why Gint is gauged in the gravitational side of the duality. Let us
notice that the source of the stress energy tensor Tµν is the gravitational metric gµν .

To summarise, the holographic dictionary tells us that the field content of the gravi-
tational theory are the sources of the QFT operators for which we want to compute the
correlators. Namely, a scalar operator is sourced by a scalar field and a conserved current
is sourced by a gauge field. Once we have the field content, we have to build a gravita-
tional action by paying attention that the on-shell metric has the isometry group of the
spacetime symmetries of the QFT. Since the QFT is any way non-specified, it is often
enough to consider a minimal gravitational theory. When we have the gravitational ac-
tion, we use (H.0.3) to obtain the QFT correlators. The simplest example of an AdS/CFT
holographic model is a real scalar φ in AdS

S “ ´
1

2

ż

dd`1x
?
´g

`

gmnBmφBnφ`m
2φ2

˘

, (H.0.5)

where gmn is given by (H.0.2). In this example, for simplicity, the geometry is considered
as being non-dynamical, a thorough discussion is made in Chapter 11 and in Section K.4
concerning this simplification. We will keep developing our generic recipe and illustrate
some steps through this simplest holographic model.

Thus, we have to evaluate the gravitational action on-shell. The variational principle
gives a bulk term and a boundary term. As usual, the bulk term provides the equations
of motion and the boundary conditions are chosen such that the boundary term of the
variational principle vanishes. As we will see later on, the boundary conditions at the
asymptotic boundary (r “ 0 in Poincaré AdS) are subtle and crucial because they in-
fluence the sources. Assuming we have the right boundary conditions, if the EOM are
satisfied then the variational principle is also satisfied. The action on-shell can be simpli-
fied by integrating by part some terms to make appear the EOM inside the action. We
can reduce the on-shell action to a pure asymptotic boundary term. For our example
(H.0.5), we have

Son-shell “
1

2

ż

r“ε

ddx r´d φ r Brφ , (H.0.6)

where we have anticipated a divergence by regularising r “ ε with ε Ñ 0. We consider
minimal gravitational theories, therefore, if we want to compute correlators of one and
two points, quadratic theories are enough (in our case, it will rather be the theory of
the fluctuations which will be quadratic). From now on, we set ourselves in such a case.

3Let us illustrate it with the Up1q example. We consider a Up1q invariant theory Srφs “
ş

L with the
standard nomenclature. If we promote Up1q to be gauged, then S contains as well a gauge field Aµ. The
variation of the theory under a gauge transformation is zero, if we expand, we have

δSrφ,Aµs “
δS

δAµ
δAµ `

δS

δφ
δφ “

ż

δL
δAµ

Bµα´

ż

jµBµα “

ż

´α

ˆ

Bµ
δL
δAµ

´ Bµj
µ

˙

“ 0 . (H.0.4)

As we can see, δL
δAµ

“ jµ . Let us comment that the conserved current here is the one defined with an

opposite sign compared to (2.1.7).
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Hence, because the on-shell action is a pure asymptotic boundary action, the shape of
the correlators is entirely provided by a boundary analysis of our holographic model. Of
course, the explicit values of the QFT correlators depend as well of the deep bulk (r Ñ `8

in Poincaré AdS) because the coefficients of the asymptotic expansion of the fields are
obtained through a resolution of the bulk EOM, in particular the deep bulk boundary
conditions will “propagate” and will affect quantitatively the asymptotic boundary analy-
sis. Nevertheless, in Chapter 11, we are only interested in recovering the Ward-Takahashi
identities. Namely, we are interested in the relative values of the correlators between them
to see if the Ward-Takahashi identities are saturated. Because we do not need the explicit
values of the correlators, we will restrain ourselves to a pure asymptotic boundary study.

The on-shell asymptotic expansion of the fields is of the form [30,291]

φ
rÑ0
„ r∆

pφ0 ` r
2φ1 ` . . .q ` r

∆̃
pφ̃0 ` r

2φ̃1 ` . . .q , ∆ ď ∆̃ , (H.0.7)

where the coefficients are function of the boundary coordinates xµ, and ∆ and ∆̃ depend
on the dimension of spacetime, on the geometry and on the values of the free parameters
of the theory. We present here an expansion for a scalar field but the idea remains the
same for a vector field. The particular shape of this expansion is because generally the
EOM are second order in the radial coordinate and with respect to this coordinate, they
have a Euler’s equation shape (this is coming from the radial dependency of the metric).
For our example (H.0.5), the EOM is

rd`1
Br
`

r´d`1
Brφ

˘

` r2
BµB

µφ´m2φ “ 0 . (H.0.8)

The EOM are solved order by order in the limit r Ñ 0. Because the EOM are of second
order in radial derivatives, we have two independent coefficients: φ0 and φ̃0. The higher
order coefficients are expressed respectively in terms of φ0 and φ̃0 through the EOM. Let
us mention that if ∆̃ differs from ∆ by an even integer, the two independent expansions
overlap at some orders. It then leads to the introduction of logarithmic terms at the
overlapping orders. Among φ0 and φ̃0, one is playing the role of the source, the other
one is called the response. To know which one plays which role, we have that the source
is the coefficient which should be fixed by the boundary conditions at the asymptotic
boundary in order to satisfy the variational principle. I.e. the variation of the source
coefficient is zero and it permits to make vanish the boundary term coming from the
variational principle. We understand that if we add carefully selected boundary terms to
our gravitational theory, we can select which coefficient will be the source. We speak of
ordinary quantisation when it is the dominant coefficient φ0 which is the source and of
alternative quantisation when it is the subdominant coefficient φ̃0 which is the source. We
do not always have the possibility to choose between the two coefficients, sometimes there
are no boundary terms permitting to change the quantisation. This has been generically
studied for respectively a scalar and a vector in AdS. Since our goal is not to do a generic
study of holography, we will not comment on this. We will just check by hand if in our
considered cases (namely Lifshitz holography), we can find alternative boundary terms
or not. The interested reader can look in the literature with the key word “unitarity
bound” [291, 311–314]. When both independent expansion in (H.0.7) starts at the same
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orders, i.e. when ∆̃ “ ∆, an entire expansion will be weighted with a logarithmic factor4.
We call such situation the Breitenlohner-Freedman bound (BF bound) [315]. For our
use of holography, logarithmic terms do not bring additional conceptual difficulties but
rather technical difficulties. The only subtlety can be that when we reach the BF bound
by modifying the spacetime dimension or the parameter values of the theory, what was
before the subleading coefficient (r∆̃ ! r∆ with ∆ ď ∆̃) will sort of become the leading

coefficient (lnprq r∆̃ " r∆ with ∆ “ ∆̃). Thus, if we want to keep sourcing the same
QFT operator, we will need to perform a change of the quantisation (e.g. going from
the ordinary quantisation to the alternative quantisation). This scenario in fact appears
in Chapter 11 and this change of quantisation is crucial to be able to extract the Ward-
Takahashi identities!

An important remark for our specific holographic considerations in Chapter 11 is
that the canonical/scaling dimension of the sourced QFT operators are encoded in the
asymptotic expansion of the gravity-side fields. Indeed, if for example φ0 is the source,
then

SQFT Ą

ż

ddxφ0 Oφ , (H.0.10)

where Oφ is the QFT operator sourced by φ0. The canonical dimensional analysis gives

rOφs “ d´ rφ0s . (H.0.11)

In a gravitational theory of the form (H.0.5), the scalar field φ is non-dimensional. Thus
rφ0s “ ∆, hence,

rOφs “ d´∆ . (H.0.12)

The order at which the field expansion (H.0.7) starts is associated to the scaling dimension
of the QFT operator.

We have commented that the on-shell action reduces to a pure asymptotic boundary
action (e.g. (H.0.6)). Since we are on-shell, we have to inject the boundary asymptotic
expansions of the field content which are of the form (H.0.7). Because the asymptotic
boundary is at r Ñ 0, and that the field expansions might introduce polynomial terms in
r with negative power (and also logarithmic terms), some infinities might appear in our
on-shell gravitational action. We thus have to renormalise our theory, this procedure is
known in the literature under the name of “holographic renormalisation” [287,316–319]. It
consists into adding boundary counterterms to suppress the infinities without drastically
modify our bulk theory. Then, we demand the counterterms to be local (as much as
possible – e.g. with logarithmic divergences, a concession must be made) and invariant
under all the symmetries induced on the boundary by the bulk action (at least on-shell
– to not spoil the symmetries of the QFT correlators). It should be mentioned that the

4In our real scalar field in AdS example, we have

∆ “ d´ ∆̃ , with ∆̃ “
d

2
`

c

d2

4
`m2 . (H.0.9)

We can observe that the solution becomes tachyonic when m2 ď ´d2

4 . Let us notice that a negative mass
for a free theory is energetically tolerated since AdS curvature compensates with a positive contribution

to the energy. In the limit case m2 “ ´d2

4 , we have ∆̃ “ ∆.
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counterterms, being purely boundary terms, do not affect the bulk part of variational
principle. Thus, they do not affect the EOM and so, the asymptotic expansion of the
fields is unchanged. Hence, the nature of the infinities coming from putting the bulk
action on-shell are not modified and we can indeed tune our boundary-counterterms to
suppress them5. A particularity of logarithmic divergences is that it requests boundary
counterterms weighted by logarithms. This means that we can also add finite boundary
terms which are the same as the boundary counterterms but without the logarithms.
Hence, the holographic renormalisation is not unique when there are logarithms in the
expansion (H.0.7). The obtained results from the holographic model are then said to be
scheme dependent.

The boundary counterterms do not alter the bulk part of the variational principle but
they do intervene in the boundary part. Therefore, they can influence which coefficient
between φ0 and φ̃0 should be fixed by the asymptotic boundary condition in order for
the variational principle to be satisfied. In other words, the holographic renormalisation
allows us to select which coefficients of the asymptotic expansion of the fields will be the
sources (as previously commented, sometimes only one choice is possible).

Once we have the renormalised action evaluated on-shell, it depends only on the sources
and the responses. The final step is to express the responses in term of the sources
in order to be able to implement the holographic prescription (H.0.3). By definition,
QFT correlators are non-local functions since they are evaluated at separate spacetime
positions. The derivation of our gravitational action with respect to the sources gives
the correlators. This means that the responses are necessarily non-local functions of
the sources. To get these dependencies, we need to solve the bulk EOM and to impose
boundary conditions in the deep bulk (r Ñ `8 in Poincaré AdS). The latter should
not alter the symmetries of the gravitational theory, for example, if we have a gauge
symmetry, we know that the deep bulk boundary conditions will express a gauge invariant
combination of responses in terms of a gauge combination of sources. Hence, without
explicitly solve the bulk EOM, we can already guess how the responses will be expressed
in terms of the sources up to unknown non-local functions. With this information, it
is possible to verify if the Ward-Takahashi identities are saturated or not because these
identities depend only on the relative values of the correlators and so, the dependence on
the unknown non-local functions drops out.

Strategy to describe symmetry breaking in holography

In order to probe for spontaneous symmetry breaking in a QFT, we have to evaluate the
VEV of an operator transforming non-trivially under the considered symmetry. Since in
this part of the thesis we are interested in global internal symmetries, a (group multiplet)
scalar operator is enough. The gravitational dual theory will then contain a (group
multiplet) scalar field. To implement the QFT global internal symmetry, we need to
gauge it in the gravitational part of the duality. Hence, we have the minimal field content
of our holographic model: a scalar field, a gauge field and a metric. Since the QFT is any
way unspecified, we build a minimal holographic model.

5A good practice is usually to find the counterterms which permit to delete the stronger infinities.
The latter are mainly coming from a φ0φ0 product (“maximally dominant terms”). Then the weaker
divergences come typically from a φ0φn product. We can then use the same counterterm as before but
replace one φ0 in terms of φn thanks to the EOM. For a concrete example, see the practical handbook [310].
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Then, we look for a background, i.e. a particular solution of the EOM, which reproduce
the symmetry breaking pattern we want to study. It means that we look for a metric with
the right isometry group and for a scalar field profile which (classically) spontaneously
breaks the gauge symmetry following the desired breaking pattern (the gravitational back-
ground can sort of be seen as the vacuum of the QFT). If the asymptotic behaviour of the
field background is of the same order as the source (computed later with the fluctuations)
then, switching on a background is similar to switching on permanently a source. We
are then explicitly deforming the QFT theory with an operator transforming under the
symmetry. We are describing an explicit symmetry breaking. If the background field is
of the same order than the response, we are describing a spontaneous symmetry breaking
of the symmetry. These assertions are formally verified by a computation in our specific
case in Chapter 11. To obtain the dynamics, i.e. the correlators, we perform a fluctua-
tion around the background and we follow the “recipe” presented before. Following how
the Ward-Takahashi identities are satisfied, we will know if indeed we succeed to build
a holographic model displaying the right symmetries and if we succeed to reproduce the
symmetry breaking pattern we wanted. We refer the reader to Appendix J to see what
are the general shapes of the Ward-Takahashi identities when Up1q symmetry is spon-
taneously broken and when it is explicitly broken. Based on an analysis of the poles of
the correlators intervening in the Ward-Takahashi identities, we are able to predict the
presence of NG modes or not and as well some qualitative features on their dispersion
relations. To know entirely the dispersion relations, a resolution of the EOM in the bulk is
necessary as well as imposing boundary conditions in the deep bulk; this in order to deter-
mine the non-local functions of the correlators which are undetermined by the asymptotic
boundary analysis.

Why should we do holography in the context of Goldstone physics ?

Holography is a conjecture, it means that its validity relies on multiple consistency checks.
This is even more crucial when we look for holographic models which moves away from the
standard AdS/CFT duality. In Goldstone physics, we are dealing with symmetry based
results, hence, no matter how intricate the considered QFT is, we expect the results to
hold true. In particular, the Ward-Takahashi identities should be saturated. Furthermore,
Goldstone physics is taking place in non-relativistic theories, we are thus out of the scope
of CFTs. Therefore, Goldstone physics provide well know examples in order to perform
consistency checks of holographic dualities away from AdS/CFT. It permits to better
understand the holographic dictionary, the holographic renormalisation procedure and
the holographic conjecture in general.

The other way around, holography provides a tool to study exotic strongly coupled
field theories at quantum level. It thus allows us to probe how the general results of
Goldstone physics behave for such intricate QFTs.

To summarise these argumentations, we can mention the paper written by the author
and his collaborators [173] where type B Goldstone bosons have been retrieved from a non-
relativistic holographic model purely based on a boundary analysis. The Ward-Takahashi
identities have been saturated, confirming the consistency of the holographic model. From
the latter, the existence of NG modes and the shape of their dispersion relations have been
extracted (cf. Section I.2 to see how it could be done). This strengthens the idea that
Theorem 3 remains true even for exotic QFTs.
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Ward-Takahashi identities in Lifshitz
invariant field theories

In this appendix we collect some results concerning Ward-Takahashi identities and Gold-
stone bosons in Lifshitz field theories [281]. We start by deriving mixed correlators be-
tween currents and order parameters in low-energy effective field theories of Goldstone
bosons. We then discuss how the qualitative features of these correlators can be extracted
from the Ward-Takahashi identities.

I.1 Low-energy theories for Goldstone bosons

Consider the low-energy effective action for a Goldstone boson in a field theory which
enjoys Lifshitz scaling tÑ λzt, xi Ñ λxi, and which is invariant under time reflections [17,
106,250,320]:

S “

ż

dtdd´1x
1

2

`

BtφBtφ´ p´1qzξφ∇2zφ
˘

, (I.1.1)

where ∇2 “ BiBi, and the sign in front of the second term is chosen such that the dispersion
relation reads

ω2
“ ξk2z , (I.1.2)

so that we can set ξ real and positive to avoid tachyonic behaviour.
The relativistic case is z “ 1, ξ “ 1. It can be more reassuring to think of z as an

integer, but z is a measured parameter, so it can take any finite real values. To avoid
any causality issues, we are going to restrain ourselves to the case z ě 1. Indeed, from
(I.1.2) we see that phase velocity and group velocity scale as kz´1. When z ě 1, at low
momentum the velocities tend to zero. At large momentum the velocities tend to infinity
but the energy ω tends as well to infinity. We know that our Lifshitz theory being non-
relativistic must be UV completed by a relativistic theory. Hence, there is a UV cut-off
and our Lifshitz theory remains consistent only if we look at momenta below the cut-off.
Therefore, we do not see the infinite velocities. However, when z ă 1, the velocities tend
to infinity at low momenta and low energy. These supraluminal velocities indicate that
our Lifshitz theory cannot be seen as the IR theory of a fundamental relativistic theory.
The case z ă 1 seems to be physically pathological.

Assuming ξ does not scale, the scaling dimensions are the following:

rBts “ z , rBis “ 1 , rφs “
d´ 1´ z

2
. (I.1.3)

The propagator for φ that one can extract from (I.1.1) is the following, in Fourier
space:

xφpω, qqφp´ω,´qqy “
i

ω2 ´ ξk2z
. (I.1.4)
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It can be checked that it has the correct scaling dimension1.
The action (I.1.1) has a shift symmetry φ Ñ φ ` vα, with v the VEV and α the

parameter of the transformation. This is indeed expected for a Goldstone boson.
In order to find the current that generates this symmetry (which is broken by the VEV

v) we promote α to a spacetime dependent function, and define

δS “

ż

dtdd´1x pBtαJt ´ BiαJiq . (I.1.5)

We then obtain

Jt “ vBtφ , J i “ p´1qz´1ξvBi∇2z´2φ . (I.1.6)

They are linear, as it befits currents of a broken symmetry (at the lowest order). The
conservation law is

BtJt ´ BiJi “ vpB2
t ` p´1qzξ∇2z

qφ “ 0 (I.1.7)

using the EOM. Note that it reads exactly as in the relativistic case, however the dimen-
sions of the currents are now different:

rJts “ d´ 1 , rJis “ d` z ´ 2 . (I.1.8)

We can now check how the conservation law appears in two-point functions, i.e. in the
Ward-Takahashi identities. Recall that here the operator breaking the symmetry is φ
itself, with xδαφy “ v.

Using (I.1.4), we have

xJtφy “ ´ivωxφφy “
vω

ω2 ´ ξk2z
,

xJiφy “ iξvkik
2z´2

xφφy “ ´
ξvkik

2z´2

ω2 ´ ξk2z
,

(I.1.9)

(I.1.10)

so that

iωxJtφy ` ikixJiφy “
ivω2

ω2 ´ ξk2z
´

iξvk2z

ω2 ´ ξk2z
“ iv . (I.1.11)

This is the Ward-Takahashi identity

´BtxJtφy ` BixJiφy “ ixδαφy . (I.1.12)

Forsaking T-invariance

We can briefly consider the case of a theory which has Lifshitz scaling but not time reversal
symmetry. The low-energy action is then2

S “

ż

dtdd´1x piφ˚Btφ´ p´iq
zζφ˚∇zφq . (I.1.13)

1We are considering normalised correlator xφpxqφpyqy “
ş

Dφφpxqφpyq eiSrφs

ş

Dφ eiSrφs so, the canonical dimension

of a n-point correlator is the canonical dimension of the product of the operators. Going to Fourier space
includes an additional canonical dimension coming from the integration measure: hpkq “

ş

ddxhpxqeikx.
Thus, the Fourier transform of an n-point correlator is given by n rφs ´ pz ` pd´ 1qq.

2We need to write an action for a complex scalar, leading however to only one massless physical degree
of freedom, the Goldstone boson, because of linearity in time-derivatives. Note that we assume boundary
terms that make the action real.
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Again, it is easier to consider z even, but it can be more general. Now the dimension of
the Goldstone field is

rφs “
d´ 1

2
. (I.1.14)

Note that it is always positive as long as d ą 1. Its propagator is

xφφ˚y “
i

ω ´ ζkz
. (I.1.15)

The currents read

Jt “ ´ivφ , Ji “ ´p´iq
zζvBi∇z´2φ . (I.1.16)

Their correlators are

xJtφ
˚
y “

v

ω ´ ζkz
,

xJiφ
˚
y “ ´

ζvkik
z´2

ω ´ ζkz
,

(I.1.17)

(I.1.18)

so that the Ward-Takahashi identities are realised again

iωxJtφ
˚
y ` ikixJiφ

˚
y “

ivω

ω ´ ζkz
´

iζvkz

ω ´ ζkz
“ iv . (I.1.19)

I.2 From Ward-Takahashi identities to the Goldstone

boson

Having seen how the Ward-Takahashi identities are realised in the prototypical example
of the low-energy effective theory of the Goldstone bosons, we now reverse the logic and
start from the Ward-Takahashi identities in order to find the Goldstone boson, i.e. a
low-energy mode with gapless dispersion relation. We have

´BtxJtOy ` BixJiOy “ ixOy , (I.2.1)

for some operator which transforms under the symmetry generated by the currents, and
which has a VEV that breaks the symmetry.

Using rotational symmetry, we parametrise the correlators in Fourier space as follows:

xJtOy “ fpω, kq , xJiOy “ kigpω, kq . (I.2.2)

Note that rf s “ ∆´ z and rgs “ ∆´ 2, where ∆ is the dimension of the operator O. The
Ward-Takahashi identity then implies

ωf ` k2g “ xOy . (I.2.3)

Obviously, assuming xOy finite and non-zero, when ω, k Ñ 0, either f or g, or both,
have to blow up, signalling the presence of a massless particle in the spectrum, the Gold-
stone boson.
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Let us be more precise. Take first k Ñ 0 with ω ‰ 0. Then, assuming g finite in this
limit, we have f Ñ xOy

ω
. similarly, when ω Ñ 0 at k ‰ 0, we have g Ñ xOy

k2 . We can then
rewrite

f “
xOy
ω
f̃ , (I.2.4)

where f̃ is a dimensionless function of ω and k, and by virtue of the Ward-Takahashi
identity

g “
xOy
k2
p1´ f̃q . (I.2.5)

There are two trivial ways to satisfy the Ward-Takahashi identity, which is setting either
f̃ “ 1 or f̃ “ 0. These two choices do not correspond to propagating degrees of freedom
in the usual sense (i.e. they lead to degenerate dispersion relations ω “ 0 or k2 “ 0
respectively). We thus consider the only interesting case where f̃ is a non-trivial function.
Requiring that the low-energy theory has Lifshitz scaling, then it must be a function of
the ratio x “ kz

ω
. If we also impose time reversal symmetry, then it must be a function of

x2. The conditions on the k Ñ 0 and ω Ñ 0 limits translate into

f̃px “ 0q “ 1 , f̃px “ 8q “ 0 . (I.2.6)

We can readily find simple functions that satisfy the above requirements and reproduce
the correlators obtained previously. Without imposing time reversal symmetry, we can
take

f̃ “
1

1´ ζx
(I.2.7)

so that

xJtOy “
xOy
ω

1

1´ ζ k
z

ω

“
xOy

ω ´ ζkz
,

xJiOy “ ki
xOy
k2

ˆ

1´
1

1´ ζ q
z

ω

˙

“ ´
ζkik

z´2xOy
ω ´ ζkz

.

(I.2.8)

(I.2.9)

These have the same form as (I.1.17)–(I.1.18).
Imposing now time reversal invariance, we can take

f̃ “
1

1´ ξx2
(I.2.10)

so that

xJtOy “
xOy
ω

1

1´ ξ k
2z

ω2

“
ωxOy

ω2 ´ ξk2z
,

xJiOy “ ki
xOy
k2

˜

1´
1

1´ ξ k
2z

ω2

¸

“ ´
ξkik

2z´2xOy
ω2 ´ ξk2z

.

(I.2.11)

(I.2.12)

These have the same form as (I.1.9)–(I.1.10).
Note that in both cases, more complicated functions can be taken. However, as soon

as there is a denominator with a polynomial in x (or x2), near its roots the function will
be very close to the ones we have taken. It would be nice to understand better from
general principles what possible analytic structures f̃ can have.

252



Appendix J

Explicit symmetry breaking and
Ward-Takahashi identities

In this appendix, we illustrate how the Ward-Takahashi identities for a global internal
Up1q symmetry are modified when we consider its explicit breaking. We first comment
the classical case and then derive the quantum version. This appendix is inspired by [310].

J.1 Classical Ward-Takahashi identities

We know that from a Up1q invariant action

Sinvrφs “

ż

ddxLinvpφ, Bφq , (J.1.1)

where φ is a generic field transforming under Up1q, we can obtain a conserved current by1

jµ ” ´
1

α

ˆ

δLinv

δpBµφq
δαφ

˙

. (J.1.2)

For simplicity, we considered Linvpφ, Bφq to be invariant rather than invariant up to a
global derivative. The classical Ward-Takahashi identity is

Bµj
µ
“ 0 , (J.1.3)

when φ satisfies the EOM, namely the Euler–Lagrange equation

δLinv

δφ
´ Bµ

ˆ

δLinv

δpBµφq

˙

“ 0 . (J.1.4)

Let us consider a complex operator Opφq transforming under Up1q following the stan-
dard representation

δαO “ iαO , ñ

"

δαReO “ ´αImO
δαImO “ `αReO . (J.1.5)

We introduce this operator into the theory in order to break spontaneously the Up1q
symmetry. We have

Stot “ Sinv ` Sw , with Sw “
1

2
w

ż

ddx pOpφq `O˚
pφqq “ w

ż

ddxReOpφq. (J.1.6)

1Let us notice the change of sign compared to (2.1.16) – a global sign does not alter the conservation
property.
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The Euler–Lagrange equation is now

δLinv

δφ
` w

δReO
δφ

´ Bµ

ˆ

δLinv

δpBµφq
δφ

˙

“ 0 . (J.1.7)

However, the invariant action Sinv is still invariant, so evaluated on-shell and under a Up1q
transformation, we obtain

δαSinv “

ż

ddx δαLinv

“

ż

ddx

„

δLinv

δφ
δαφ`

δLinv

δpBµφq
Bµδαφ



“

ż

ddx

„ˆ

δLinv

δφ
´ Bµ

ˆ

δLinv

δpBµφq

˙˙

δαφ` Bµ

ˆ

δLinv

δpBµφq
δαφ

˙

“

ż

ddx r´wδαReO ´ αBµjµs

“

ż

ddx rwαImO ´ αBµjµs

“ 0 .

(J.1.8)

(J.1.9)

(J.1.10)

(J.1.11)

(J.1.12)

(J.1.13)

We used (J.1.7) and (J.1.2). The last line is by definition of Sinv and so, for an explicit
symmetry breaking of the form (J.1.6), the Ward-Takahashi identity takes the form

Bµj
µ
“ w ImO . (J.1.14)

J.2 Quantum Ward-Takahashi identities

If we consider a generic function of the field Fpφq, the associated correlator is given by2

xFpφpxqqy “
ż

DφFpφpxqq eiStotrφs . (J.2.1)

The right-hand side of the equality is invariant with respect to a field redefinition. Let us
assume that the functional integration measure is invariant under a Up1q redefinition of
the field Dφ1 “ Dφ. This a standard assumption when discussing symmetries at quantum
level, it puts aside the treatment of the anomalies. If we take F “ I, from an infinitesimal
gauge Up1q field redefinition, we have

0 “ δα

ż

Dφ eiStotrφs

“

ż

Dφ δαeiStotrφs

“

ż

Dφ iδα pSinv ` Swq e
iStotrφs

“

ż

Dφ i
ż

ddx p´jµBµα ´ αwImOq eiStotrφs

“ iα

ż

ddx

„
ż

Dφ Bµjµ eiStotrφs ´

ż

DφwImO eiStotrφs



.

(J.2.2)

(J.2.3)

(J.2.4)

(J.2.5)

(J.2.6)

2The normalisation
ş

Dφ eiStotrφs !
“ 1 is considered.

254



Appendix J. Explicit symmetry breaking and Ward-Takahashi identities

It gives us the relation

xBµj
µ
y “ w xImOy , (J.2.7)

which is the quantum version of (J.1.14).
If now we consider F “ ImO, the gauge Up1q invariance of the path integral gives

0 “ δα

ż

Dφ ImOeiStotrφs

“

ż

Dφ
“

δαImO eiStotrφs ` ImO δαe
iStotrφs

‰

“

ż

Dφ
„

αReO eiStotrφs ` ImO i

ż

ddx pBµj
µα ´ αwImOq eiStotrφs



“ iα

ż

ddx

„
ż

Dφpx1q
`

´iReOδdpx´ x1q ´ wImOpxqImOpx1q ` ImOpx1qBµjµpxq
˘

eiStotrφpx1qs
‰

.

(J.2.8)

(J.2.9)

(J.2.10)

(J.2.11)

As a consequence, we have the Ward-Takahashi identity taking place when an explicit
symmetry breaking parametrised by w occurs

xImOpxqBµjµp0qy “ i xReOy δdpxq ` w xImOpxqImOp0qy . (J.2.12)

Considering the mostly plus signature for the Minkowski metric, we obtain the holographic
identity of Chapter 11 (see equation (11.0.73)). Let us notice that by setting w “ 0, and
redefining jµ Ø ´jµ, we consistently recover the non-explicitly broken Ward-Takahashi
identity (2.1.16) which is expressed with the mostly minus signature. Equation (2.1.16)
already includes a record of the possible spontaneous symmetry breaking of Up1q via the
VEV xReOy.
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Appendix K

Technicalities

We present here some technical aspects, computations and discussions, associated to Part
III of the thesis.

K.1 Two-point function for a massive Lifshitz free

scalar at null distance

We provide the details of the computation which led to (10.0.8). By path integral com-
putation, from (10.0.4), we get

〈θpt, ~xqθp0q〉|λ, tě 0 “ lim
εÑ0`

ż

dωdd´1p

p2πqd
i e´ip¨x

v2 pω2 ´ ξ2p2z ´ ξ2λ2z ` iεq
. (K.1.1)

where p ”‖~p‖. The residue theorem then leads to

〈θpt, ~xqθp0q〉|λ, tě 0 “
π

p2πqdξv2

ż

dd´1p
ei~p¨~xe´iξ

?
p2z`λ2zt

a

p2z ` λ2z
. (K.1.2)

We use (K.1.2) evaluated at null distance to find the expression below. Despite the
fact that calculation is presented for d ą 2, it can be verified that the final result is also
valid for d “ 2.

〈θp0qθp0q〉|λ “
π

p2πqdξv2

ż

dd´1p
1

a

p2z ` λ2z

dą2
“

π

p2πqdξv2

ż

Sd´2

dd´2Ω

ż 8

0

dp
pd´2

a

p2z ` λ2z

qppq”p{λ
“

πVolpSd´2q

p2πqdξv2
λd´1´z

ż 8

0

dq
qd´2

a

q2z ` 1
. (K.1.3)
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Using VolpSd´2q “ 2πpd´1q{2{Γppd´ 1q{2q for d ą 2 and the Gaussian integral,

〈θp0qθp0q〉|λ “
2πpd`1q{2

p2πqdΓppd´ 1q{2q ξv2
λd´1´z

ż 8

0

dq qd´2

ż 8

0

da 2
e´pq

2z`1qa2

?
π

bpqq”a2q2z

“
1

2d´2πd{2Γppd´ 1q{2q ξv2
λd´1´z

ż 8

0

da

ż 8

0

db bpd´1q{2z´1e´b
e´a

2

2z apd´1q{z

“
Γ ppd´ 1q{2zq

2d´1πd{2Γppd´ 1q{2q z ξv2
λd´1´z

ż 8

0

da
e´a

2

apd´1q{z

cpaq”a2

“
Γ ppd´ 1q{2zq

2dπd{2Γppd´ 1q{2q z ξv2
λd´1´z

ż 8

0

dc cpz`1´dq{2z´1e´c . (K.1.4)

From the last integral, we recognise the expression of the Gamma function, which finally
gives

〈θp0qθp0q〉|λ “
Γ ppd´ 1q{2zq Γ ppz ` 1´ dq{2zq

p4πqd{2Γppd´ 1q{2q z ξv2
λd´1´z . (K.1.5)

K.2 Taking z ě 1 satisfies the strong energy condition

We show that considering z ě 1 ensures us to respect the strong energy condition of
general relativity. From the Lifshitz metric

ds2
“
dr2

r2
´
dt2

r2z
`
dx2

j

r2
, (K.2.1)

we extract the Ricci tensor [269]

Rrr “ ´
1

r2
pz2
` d´ 2q , Rtt “

1

r2z
zpz ` d´ 2q ,

Rij “ ´
1

r2
pz ` d´ 2qδij . (K.2.2)

Considering d ě 2 and z ě 1, for any timelike vector vn, i.e.

gmnv
mvn “

1

r2
vrvr ´

1

r2z
vtvt `

1

r2
vivi ď 0 , (K.2.3)

we have

Rmnv
mvn “ ´

1

r2
pz2
` d´ 2qvrvr `

1

r2z
zpz ` d´ 2qvtvt ´

1

r2
pz ` d´ 2qvivi

ě ´
1

r2
pz2
` d´ 2qvrvr `

1

r2
zpz ` d´ 2qpvrvr ` viviq

´
1

r2
pz ` d´ 2qvivi

“
pz ´ 1qpd´ 2q

r2
vrvr `

pz ´ 1qpz ` d´ 2q

r2
vivi

ě 0 , (K.2.4)
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where to go from the first to second line, we used (K.2.3) and zpz ` d´ 2q ě 0. The last
line is concluded directly thanks to d ě 2 and z ě 1.

The strong energy condition (K.2.4) is satisfied and it implies that the null energy
condition is fulfilled as well. Pathologies arising from the violation of the null energy
condition when z ă 1 are discussed in [284].

K.3 Hypothesis on the mass of the scalar field

For the background of the scalar field and for its asymptotic boundary expansion, we
restrain ourselves to the case 0 ă ν ă 1 with

ν ”

d

d̃2

4
`m2 . (K.3.1)

This is equivalent to constrain the mass m in terms of the considered spacetime dimension
d and the considered dynamical scaling z. We clarify here why taking 0 ă ν ă 1 permits
to ease the holographic computation. The discussion holds both for the real part and
for the imaginary part of the scalar field. Based on (11.0.22) and (11.0.23), let us then
generically write

φ
rÑ0
„ r∆´φ0 ` . . .` r

∆`φ̃0 ` . . . , (K.3.2)

for the asymptotic expansion of the scalar field, with

∆˘ “
d̃

2
˘ ν . (K.3.3)

Let us remind that the background field is given by

φB “ w r∆´ ` v r∆` . (K.3.4)

Why ν ą 0 ?

The parameter ν is positive and if we take it to be zero, the order of the subleading
coefficient and of the leading coefficient in (K.3.2) would be equal and we would need
to introduce a logarithm in one of the two independent expansions. The same comment
holds for the background (K.3.4). We would then be at the BF bound1.

Why ν ă 1 ?

The case ν ě 1 leads to several possible issues and/or additional technicalities:

� If ν is an integer, at some order, the two independent expansions in (K.3.2) will
overlap at some orders, the ones in the second ellipses of the sum. Logarithms
would then be needed at these orders.

1Notice that the minimal value for m2 is m2 “ ´ d̃2

4 otherwise we would get an imaginary power in
the field expansion. This is the same lower bound than for AdS where the spacetime dimension d has
been replaced by the effective one d̃.
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� In the QFT, in the ordinary quantisation, the source term is

ż

ddxφ0 O , (K.3.5)

and it is finite. We have that

rOs “ d̃´ rφ0s “ d̃´∆´ “ ∆` “ rφ̃0s . (K.3.6)

In the alternative quantisation, we would have had

rOs “ d̃´ rφ̃0s “ d̃´∆` “ ∆´ “ rφ0s . (K.3.7)

In both quantisation, the scaling dimension of the operator is the canonical dimen-
sion of the response. The fact that (K.3.5) is finite, suggests that the product φ0φ̃0

will be finite in the boundary regularised action. Thus, all orders below r∆´r∆` “ rd̃

will diverge and all orders above will vanish in the regularised boundary action. This
can be a posteriori verified by looking at (11.0.33) – notice that each radial derivative
in (11.0.33) is weighted by an r factor, hence, the orders are not mixed.

We conclude that all the terms which lead to a divergence are the ones between φ0

and φ̃0 in the expansion (K.3.2). By taking ν ă 1, we suppress the first ellipses
in (K.3.2) and so, we reduce drastically the number of divergences (only the strong
divergence φ0φ0 is remaining). Let us mention that the term in the first ellipses of
(K.3.2) can be locally expressed in terms of φ0 thanks to the EOM. Thus, it is not
conceptually complicated to suppress them once we know the counterterm for the
strong divergence. It is just a matter of technical difficulties. Furthermore, they
introduce local terms in the correlators („ φ0B

kφ0 rather than φ0φ̃0 „ φ0φ0{B
k)

which, physically speaking, is not relevant for us since we probe for the poles of the
correlators to get information on the dispersion relations.

� When ν ą d̃
2
, the background takes large values at the asymptotic boundary because

of the term w which is now with negative power in the radial coordinates. It has
two possible consequences. First, the background might start to influence the first
ellipses in the expansions for the vector field (11.0.24), (11.0.25), (11.0.26) and so,
introduce additional divergent terms. Second, the large value of the background
might spoil the assumption that the backreaction of the metric is subleading in the
expansion of the fields (cf. next section).

� In the ordinary quantisation, the canonical dimension of the QFT operator is grow-
ing with ν, see (K.3.6). Thus, bigger is ν, bigger is the possibility that the QFT
contains parameters with negative canonical dimension. The QFT would then be
non-renormalisable in the sense of power counting.

� Finally, by analogy to AdS holography, taking 0 ă ν ă 1 puts us in the window
where both ordinary and alternative quantisation can be performed for the scalar
field [321].
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K.4 Backreaction of the metric

We give a schematic reasoning to argue that if we consider the metric as being dynamical
in our holographic model, the backreaction of the metric on the field expansions will be
subleading and so, it will not influence the qualitative results of Chapter 11. The goal
is thus to establish the order at which starts the asymptotic expansion of the metric
fluctuation.

In natural units, the Einstein equations are

Gmn “ Tmn . (K.4.1)

Let us call hmn the fluctuation of the metric around the Lifshitz geometry (11.0.2). We
then have

Gmnph “ 0q ` δGmnphq “ Tmnph “ 0, φBq ` δTmnph, φ,Amq . (K.4.2)

If we absorb the massive vector field Bm into the definition of Gmn, then we have Gmnph “
0q “ 0 since (11.0.2) is a solution of Einstein gravity. The right-hand side of (K.4.2) is
dominated by the background Tmnph “ 0, φBq „ gmnm

2φ2
B. From perturbative gravity,

δGmnphq „ gmnB
2h. We thus have

B
2h „ φ2

B . (K.4.3)

Our main interest is whether or not we can have a spontaneous symmetry breaking in our
holographic model. Let us then consider the spontaneous symmetry case (w “ 0) which
is

φB “ vr
d̃
2
`ν . (K.4.4)

So,

h „ rd̃`2ν`2 . (K.4.5)

With d̃ ě 2 and 0 ă ν ă 1, we can directly verify that the backreaction of the metric fluc-
tuation will be subleading in the field expansions (11.0.22), (11.0.23), (11.0.24), (11.0.25),
(11.0.26), i.e. the corrections will appear in the second ellipses of the expansion. As we
have seen in the previous section, these terms do not play any role in the holographic
renormalisation and vanish in the renormalised action. Therefore, the correlators will
keep the same qualitative shapes than the ones in fixed geometry. The Ward-Takahashi
identities will still be verified and so, our example of a possible SSB when d ď z ` 1 in
holography is still valid. Of course, the non-local unknown functions of the correlators
will be affected by the dynamics of the metric because we need to solve the theory in the
bulk to get them. The explicit symmetry breaking case requires more discussion but con-
ceptually speaking, we already know that explicit symmetry breaking at low dimensions
is tolerated.

K.5 Ward-Takahashi identities in terms of connected

correlators

Strictly speaking, the holographic prescription provides us with the connected correlators.
In this section, we show that the connected correlators we computed in Chapter 11 are
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equal to their equivalent “full” propagators. Connected propagators are here labelised
with a c subindex.

xImOpxqBµjµp0qy “ xImOpxqBµjµp0qyc ` xImOpxqycxBµjµp0qyc
“ xImOpxqBµjµp0qyc ,

xImOpxqImOp0qy “ xImOpxqImOp0qyc ` xImOpxqycxImOpxqyc
“ xImOpxqImOp0qyc ,

xReOy “ xReOyc ,

(K.5.1)

(K.5.2)

(K.5.3)

where we used xBµj
µp0qyc “ 0 (the one-point Ward-Takahashi identity) and the fact that

the holographic computation gives xImOpxqyc “ 0.
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Part IV

Outlooks and conclusion of the thesis
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Preamble Part IV

To complete this dissertation, we detail a specific selected outlook. The purpose is to
convince ourselves of the consistency of the methodology that we plan to apply in order
to analyse a gapped dilaton in an intricate QFT. This future research project will be in
collaboration with Daniel Areán, Jewel K. Ghosh, Daniele Musso and Ignacio Salazar
Landea.

The closing words of the thesis will consist into a summary of the contributions we
presented in this work to the open problems in Goldstone physics. A selection of concrete
future research perspectives will as well be listed and commented.
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Chapter 13

Towards a holographic gapped
dilaton

In Part II Chapter 7, we observed that the concomitant spontaneous symmetry breaking
of dilatation and Up1q symmetries in a Lorentz invariant toy model at Up1q finite density
leads to, amongst others, a gapped dilaton. Its gap scales with the chemical potential µ
but in a model dependent way. The reason why the gap scales with µ has been traced
back to the inverse Higgs constraint that we can impose between the dilaton and the
Up1q NG mode (the latter is associated to both time translation breaking and Up1q
breaking). The model dependency of the gap has for origin that we needed to modify
the initial fundamental theory to be able to switch on a chemical potential without facing
instabilities. Namely, we had to lift the flat energy directions. Thus, even at zero chemical
potential the dilaton would have been massive. At finite µ, the gap sort of keeps a memory
of this fundamental mass which explains the model-dependency of the gap. We wish to
probe how general these observations are. To do so, as already seen in Part III, holography
is a powerful tool to check some results in highly non-trivial QFTs. Hence, in a future
work with Daniel Areán, Jewel K. Ghosh, Daniele Musso and Ignacio Salazar Landea, we
will build one (or several) holographic model(s) featuring the same symmetry breaking
pattern as the field theory toy model of Chapter 7 and extract from it/them information
on the dilaton at finite density. Holography is also a well suited formalism to introduce
temperature in the discussion, this via setting a horizon in the deep bulk (QFT IR region)
thanks to a black hole solution for example1. On a longer future timescale, the holographic
study of the concomitant breaking of dilatation and translation of Chapter 8 could be
performed through the holographic Q-lattice models. Finally, to study a dilaton, we need
to break the dilatation symmetry of the QFT. It means that a non-trivial RG flow will
be present. Due to the non-standard nature of the QFTs described by holography, it is
already known that some exotic RG flows can be obtained and studied via a holographic
approach [324–326]. Our project might then also provide some insight on this aspect.

Let us emphasise that the purpose of this chapter is to provide a concrete future
perspective of the thesis and to show the feasibility of the proposed project. No spe-
cific original results will be presented here. Many papers have already display dilatation
breaking in a holographic framework, see for example [154,155,327]. The first step of the
project would then be to adapt the associated models to our case, i.e. at finite density,
and to ensure ourselves that the symmetry breaking pattern can be tuned in order to be
spontaneous rather than to be explicit. Afterwards, a Ward-Takahashi identities oriented
analysis will be performed to study the symmetry originated modes. For now, we will

1A black hole temperature can be obtained from its horizon thanks to Hawking’s formula for the
temperature of a black hole. In the philosophy of the “recipe” presented in Appendix H (Part III), the
holographic dictionary tells us that the temperature of a black hole in the gravitational theory corresponds
to the temperature of the dual QFT [322,323].
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concentrate on the model of [327] and show that from it, at finite density, we can get a
spontaneous symmetry breaking of dilatation and Up1q symmetries starting with a UV
conformal field theory. This should convince us that the proposed project is realistic.

13.1 Minimal holographic model

We want the same symmetry breaking pattern than in Chapter 7. We need a fundamental
(i.e. a UV) theory with a Up1q symmetry and it should be invariant under the Lorentz
group and under dilatation. We want to switch on a chemical potential associated to Up1q
and to break spontaneously the dilatation symmetry and the Up1q symmetry. Thanks to
the holographic dictionary, we can get the minimal field content of the gravitational theory.
We require a dynamical metric to compute correlators involving the stress-energy tensor
(we are studying the breaking of spacetime symmetries), a scalar complex field to source a
QFT operator charged under Up1q and under dilatation (i.e. which has a non-zero scaling
dimension) and a Up1q gauge field to switch on a chemical potential and to source the
Up1q conserved current. In order for the fundamental QFT theory to be relativistic and
invariant under dilatation, we will require our on-shell metric to be AdS in the asymptotic
boundary region, the QFT will then be conformal in the UV2.

A possible holographic candidate is then the holographic superconductor [328]:

S “

ż

dd`1x
?
´g

ˆ

R ´
1

4
FABF

AB
´

1

2
|∇Φ´ iqAΦ|2 ´ VpΦ,Φ˚q

˙

`2

ż

ddx
?
´γK ` Sct , (13.1.1)

where g is the metric, γ is the induced metric at the boundary and K is the extrinsic trace
of the boundary, the associated term in the action is called the Gibbons–Hawking–York
boundary term. The counterterms Sct are required for holographic renormalisation3. We
are assuming that the complex scalar field Φ is charged under the Up1q real gauge field
AB and that the potential V is Up1q invariant.

Let us mention that the Gibbons–Hawking–York boundary term is necessary in order
for the variational principle to be satisfied. Indeed, the Ricci scalar R depends on the
second derivative of the metric, schematically B2g. The boundary term of the variational
principle coming from the integration by part will then contain terms involving Bg. By
fixing the metric at the boundary through boundary conditions, δg “ 0, we are also fixing
the tangential derivatives of the metric but not the perpendicular ones (the nomenclature
“tangent” and “perpendicular” refers to the boundary manifold): BKδg ‰ 0. Thus, it will
remain non-zero boundary terms, these terms are cancelled thanks to the introduction of
the Gibbons–Hawking–York boundary term in the action. Because the discussion in this

2We did not expend much on it in the introduction to bottom-up holography, let us briefly comment
it. The AdS metric in the Poincaré patch is given by ds2 “ p1{r2qpdr2 ` dxµdxµq where r P r0,`8r is
the radial coordinate and xµ are the boundary coordinates. We see that the metric is invariant under the
scaling r Ñ λr , xµ Ñ λxµ and that on a slice r “ cst., it is invariant under the Poincaré group acting
on xµ. The AdS metric has indeed the required isometries.

3Capital Latin letters will denote the bulk indices, small Greek letters will denote the boundary
coordinates, and small Latin letters will refer to the boundary spatial coordinates.
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dissertation will remain at the level of the bulk equation of motions, we will not further
develop and comment the boundary terms.

The minimal model (13.1.1) is the starting point of our discussion but as we will see,
we might need richer model to complete the gapped dilaton analysis (an intuition could be
that in our field theory toy model of Chapter 7, we had to consider an additional neutral
scalar compensator field to describe a dilatation invariant theory allowing a Up1q SSB).

13.2 Suitable background

To show the consistency of the proposed project, we will display the existence of a back-
ground solution of the EOM of the theory (13.1.1) which induces the requested symmetry
breaking pattern for the QFT. The bulk part of the variational principle applied on
(13.1.1) gives the EOM

RAB ´
1

2
RgAB “

1

2
FACF

C
B ´

1

8
gABF

2
`

1

2
p∇AΦ´ iqAAΦq˚ p∇BΦ´ iqABΦq

´
1

4
gAB|∇Φ´ iqAΦ|2 ´

1

2
gABVpΦ,Φ˚q ,

∇BFBC ´
iq

2
rΦ˚p∇CΦ´ iqACΦq ´ Φp∇CΦ´ iqACΦq˚s “ 0 ,

1

2
DAD

AΦ´
BVpΦ,Φ˚q
BΦ˚

“ 0 ,

(13.2.1)

(13.2.2)

(13.2.3)

where we have defined DB “ ∇B ´ iqAB. The first equation is the Einstein equation, the
second one is the Maxwell equation, and the third one is the Klein-Gordon equation.

The background we are looking for is non-trivial because we need a metric which
asymptotically has a dilatation isometry but not in the bulk, this in order for our QFT
to have a non-trivial RG flow induced by the breaking of its UV conformal symmetry
group4. Moreover, the background should be non-zero for the scalar field to induce a
spontaneous symmetry breaking of Up1q and initiate the symmetry breaking of dilatation
as well. Finally, the temporal component of the gauge field should also be non-zero to
characterise a chemical potential (cf. later). If we add these difficulties to the fact that
the EOM are a coupled system of non-linear differential equations, we understand that
a natural approach is to set an ansatz and to solve the particularised EOM numerically.
These are the guidelines we will follow.

Thanks to a shooting numerical method, we will screen different possible solutions
until we find one which induces a spontaneous breaking of the symmetries rather than an
explicit breaking. To do so, we have to choose a specific potential VpΦ,Φ˚q in (13.1.1).
To find a suitable potential and to determine the number of parameters on which the
shooting method will be performed, an analytic study of some general properties of the
ansatz and of the symmetries of the EOM will be made. In particular, it will involve a
boundary analysis both in the IR and in the UV.

4Let us remind that the radial coordinate in the bulk is a geometrisation of the energy scale of the dual
QFT. Hence, moving along the radial coordinate is similar than moving along the RG flow. Therefore,
the asymptotic boundary region is called the UV region and the deep bulk region is labelised as the IR
region.
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We can use the following ansatz for the different fields:

ds2
“

dz2

hpzq
` e2Bpzq

`

´hpzqdt2 ` dxidx
i
˘

, A “ χpzqdt, Φ “ φpzq , (13.2.4)

with φ P R. For the choice of the coordinate system, we follow [327]. In the UV, we want
to recover AdS which in the Poincaré patch and in the associated frame of coordinates is
given by

ds2
“

1

r2

`

dr2
` dxµdxµ

˘

, (13.2.5)

where r Ñ 0 is the UV and r Ñ `8 is the IR. Let us do the change of coordinates r “ e´z

(the radius of AdS is set to one). The AdS metric is now

ds2
“ dz2

` e2z
pdxµdxµq , (13.2.6)

with z P s ´ 8,`8r such that z Ñ `8 is the UV and z Ñ ´8 is the IR. As for the
coordinate r, we will also call z the radial coordinate since it plays the same role. We see
that the shape of the ansatz is consistent with the new coordinate system, in the UV we
will require the function B to be linear and the function h to be constant. Moreover, will
consider an RG flow between two fixed points. Hence, we will require that in the IR we
recover as well AdS (not necessarily with the same radius than in the UV).

The choice for the shape of the vector background is justified by the fact that we
want a non-zero Up1q chemical potential. Let us recall that the gauge vector field is the
source for the Up1q conserved current. If we switch on a dominant term in the UV for the
temporal component of the background vector, it corresponds to deform the QFT with a
term5

ż

ddxAt j
t
“ At

ż

ddx ρ “ At

ż

dtQ „

ż

dt µQ , (13.2.7)

where we were able to bring outside the vector field of the integration because it is only
modulated along the radial coordinate. It should be noticed that the temporal component
of a current density is a charge density which by integration gives the charge. We then
end up with a deformation of the theory which has the same form as the deformation of
the free energy due to a chemical potential. This allows us to interpret the asymptotic
dominant term of At to be the chemical potential [322].

Concerning the shape of the scalar background, this is entirely similar to what we did
in Chapter 11. The only additional point of attention is that the response in the UV
asymptotic expansion should have a non-zero scaling dimension in order for the VEV to
transform under dilatation. And so, to induce an SSB of the latter symmetry in addition
to the Up1q symmetry.

For the ansatz (13.2.4), the Einstein tensors are:

Gzz “

pd´ 1q 9B
´

dh 9B ` 9h
¯

2h
,

Gtt “ ´
d´ 1

2
he2B

”

9B 9h` h
´

d 9B2
` 2 :B

¯ı

,

Gij “
e2B

2

”

:h` p2d´ 1q 9B 9h` pd´ 1qh
´

d 9B2
` 2 :B

¯ı

δij .

(13.2.8)

(13.2.9)

(13.2.10)

5We learn this in Chapter 11 for the scalar profile and the explicit breaking of Up1q.

270



Chapter 13. Towards a holographic gapped dilaton

We also record the Ricci tensor

R “ ´
”

:h` dh
!

2 :B ` pd` 1q 9B2
)

` p2d` 1q 9B 9h
ı

. (13.2.11)

The Einstein tensors are related by the Bianchi identity:

∇AGAB “ 0 . (13.2.12)

Therefore, we can consider any two of them to be independent components.
The independent equations of motion are:

2pd´ 1qh :B ` h 9φ2
`
q2χ2φ2

he2B
“ 0 ,

:h` d 9B 9h “
9χ2

e2B
`
q2φ2χ2

he2B
,

:χ` pd´ 2q 9B 9χ´
q2χφ2

h
“ 0 ,

:φ`

˜

d 9B `
9h

h

¸

9φ`
q2χ2φ

h2e2B
´
V 1

h
“ 0 .

(13.2.13)

(13.2.14)

(13.2.15)

(13.2.16)

We have used the following notation

9”
d

dz
, 1

”
d

dφ
; (13.2.17)

and we have defined a potential V pφq such that

V 1pφq “
BVpΦ,Φ˚q
BΦ˚

ˇ

ˇ

ˇ

ˇ

Φ“φ

. (13.2.18)

It is to this potential V pφq that we will refer from now on. The first equation of the
EOM is Einstein equation for the component Gz

z ´ Gt
t “ T zz ´ T tt. The second one

is the equation Gi
i ´ Gt

t “ T ii ´ T tt. In particular, these subtractions permitted to
withdraw the dependency on V in the Einstein equations. The third equation of motion
is the t component of the Maxwell equation, and finally Eq. (13.2.16) is the Klein-Gordon
equation. We also have a constraint equation:

2pd´ 1qh 9B
´

dh 9B ` 9h
¯

´ h
´

h 9φ2
´ 2V

¯

´ e´2B
`

q2φ2χ2
´ h 9χ2

˘

“ 0 . (13.2.19)

13.2.1 Two monotonic functions

In this subsection, we will discuss monotonic properties of the functions χ and h. We
start with the former. We can write Eq. (13.2.15) as:

d

dz

 

epd´2qB 9χ
(

“
q2φ2

hepd´2qB
χ . (13.2.20)

This can be integrated once to find an integro-differential equation:

9χ “ Ce´pd´2qB
` q2e´pd´2qB

ż z

´8

dρ
φ2

hepd´2qB
χ , (13.2.21)
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where C is the integration constant. Notice that this integration constant must be zero,
otherwise χ will diverge at the IR. In fact, in the IR we want to recover AdS, which means
that Bpzq „ z and since d ą 2, expp´pd ´ 2qBq diverges when z Ñ ´8. Therefore, we
can write

9χ “ q2e´pd´2qB

ż z

´8

dρ
φ2

hepd´2qB
χ . (13.2.22)

If χ is positive at the IR, then the right-hand side is positive. That will make 9χ to be
positive. Consequently, that will increase χ. This process will continue, and χ will be a
monotonically increasing function.

If χ is negative at the IR, the reverse will happen and χ will be a monotonically
decreasing function. The other possibility is when χ “ 0 at the horizon. In this case, by
the same argument we can conclude that χ “ 0 everywhere.

The other function having a monotonicity property is h. To show this, we write Eq.
(13.2.14) as:

d

dz

´

edB 9h
¯

“
9χ2

ep2´dqB
`

q2φ2χ2

hep2´dqB
. (13.2.23)

Since the right-hand side is positive definite, edB 9h is a monotonically increasing function.
At the IR, this takes zero value since 9h cannot diverge due to regularity of the spacetime.
Since edB ě 0, 9h is non-negative. Therefore h is a monotonically increasing function of z.

13.2.2 UV analysis

We now analyse the possible asymptotics of the different fields near the UV. The UV is
reached when z Ñ `8. It is desired to recover the AdSd`1 geometry near the UV. To
obtain this, we demand:

Bpzq Ñ
z

`UV
?
hUV

, hpzq Ñ hUV , h
1
pzq Ñ 0 , (13.2.24)

where `UV is the UV AdS length.
We assume that the UV is located at an extremum of the potential, and without a

loss of generality, we can assume that the extremum is located at φ “ 0. Near φ “ 0, we
can expand the potential as:

V pφq “ ´
dpd´ 1q

`2
UV

`
m2
UV φ

2

2
` ¨ ¨ ¨ . (13.2.25)

AdS is the solution of Einstein’s equations without matter with a negative cosmological
constant. Let us notice that the constant term of V plays the role of the cosmological
constant and this is why the UV AdS radius is encoded in this term.

We can now solve Eqs. (13.2.15)-(13.2.16) to find:

χpzq “ µ` Cχe
p2´dqz

`UV
?
hUV ` ¨ ¨ ¨ ,

φpzq “ φ´e
´

∆´z

`UV
?
hUV ` φ`e

´
∆`z

`UV
?
hUV ` ¨ ¨ ¨ ,

(13.2.26)

(13.2.27)

where

∆˘ “
d˘

a

d2 ` 4m2
UV `

2
UV

2
. (13.2.28)
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Considering the ordinary quantisation6, in the dual field theory side, φ´ and φ` are
interpreted as the source and the VEV of an operator O with scaling dimension ∆` dual
to the bulk field φ.

Demanding the reality of the dimension implies that

m2
UV ě ´

d2

4`2
UV

, (13.2.29)

which is the Breitenlohner-Freedman bound. Furthermore, we require ∆` ‰ 0 in order
for the VEV to transform under dilatation and so, to be able to induce a spontaneous
symmetry breaking of the scaling symmetry.

The goal is to fix the IR boundary conditions and to solve numerically the EOM
to extract the parameters of interest: µ, φ´ and φ`. The hope is to obtain a solution
with φ´ “ 0 and φ` ‰ 0 that would represent a spontaneous breaking of the dilatation
symmetry and the Up1q symmetry. This kind of solution will be called a VEV flow. In
the numerical analysis we will screen a range of possible boundary conditions, this is the
shooting method. To know how many independent parameters we can tune to search for
a VEV flow, we will study the scaling symmetries of the EOM. Then, the analytic IR
analysis will provide us the shooting parameters.

13.2.3 Scaling symmetries

In this subsection, we will scrutinise the scaling symmetries of the EOM (they should not
be confused with the QFT dilatation symmetry we have in the UV). In particular there
are two types of scaling symmetry as mentioned in [327]. Here, a scaling transformation
of a quantity is understood as

X Ñ λαX , (13.2.30)

where λ is the scaling parameter and α depends on which scaling symmetry we are fo-
cusing. The following tabular is giving the value of α for each quantity for both types of
scaling symmetry:

type dz eB h χ φ

I 1 0 2 1 0
II 0 1 0 1 0

(13.2.31)

Now we will discuss their implications individually.

13.2.3.1 Type I scaling

If tBpzq, hpzq, χpzq, φpzqu is a set of solution of the equations of motion. Then, one can

show that the following set
!

B̃pzq, h̃pzq, χ̃pzq, φ̃pzq
)

is also a set of solution where,

B̃pzq “ B
´z

λ

¯

, h̃pzq “ λ2 h
´z

λ

¯

, χ̃pzq “ λ χ
´z

λ

¯

, φ̃pzq “ φ
´z

λ

¯

. (13.2.32)

6In the UV we recover the AdS case and so, it is reasonable to re-use the boundary results of AdS
holography.
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This scaling symmetry does not change either the source or the VEV of the scalar operator.
This can be seen as follows. Near the UV pz Ñ `8q, we have the following expansions:

φ̃pzq “ φ̃´e

´∆´z?
h̃UV `UV ` φ̃`e

´∆`z?
h̃UV `UV ` ¨ ¨ ¨ ,

φpzq “ φ´e
´∆´z?
hUV `UV ` φ`e

´∆`z?
hUV `UV ` ¨ ¨ ¨ ,

(13.2.33)

(13.2.34)

where h̃UV and hUV are the UV values of h̃prq and hprq respectively. From Eq. (13.2.32),
they are related by

h̃UV “ λ2hUV . (13.2.35)

Therefore, we can write Eq. (13.2.33) as

φ̃pzq “ φ̃´e
´∆´z

λ
?
hUV `UV ` φ̃`e

´∆`z

λ
?
hUV `UV ` ¨ ¨ ¨ . (13.2.36)

Since φ̃pzq “ φ pz{λq , from Eq. (13.2.34) we have

φ̃pzq “ φ´e
´∆´z

λ
?
hUV `UV ` φ`e

´∆`z

λ
?
hUV `UV ` ¨ ¨ ¨ . (13.2.37)

Comparing Eqs. (13.2.36) and (13.2.37), we can deduce that

φ̃´ “ φ´, φ̃` “ φ` . (13.2.38)

Thus, we can conclude that scaling changes neither the source nor the VEV.

13.2.3.2 Type II scaling

Now we will investigate the implication of the type II scaling symmetry:

χÑ λχ ,

eB Ñ λeB, ñ B Ñ lnλ`B .

(13.2.39)

(13.2.40)

From the transformation

B Ñ lnλ`B , (13.2.41)

we can observe that
dB

dz
Ñ

dB

dz
. (13.2.42)

It means that `UV is invariant under the type II scaling transformation. Therefore

φpzq “ φ´e
´∆´z?
hUV `UV ` φ`e

´∆`z?
hUV `UV ` ¨ ¨ ¨ (13.2.43)

is also invariant. Hence, both the source and the VEV do not change under the scaling.
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13.2.4 IR analysis

We now proceed to the analysis of the deep IR region. Like [327] we demand that the IR
geometry is again an AdSd`1 space. That means we demand that near z Ñ ´8

Bpzq Ñ
z

`IR
, hpzq Ñ 1, 9hpzq Ñ 0 , (13.2.44)

where we set the IR value of the function h to one by using the type I scaling symmetry.
It will not spoil our seek for a VEV flow since we have seen that neither φ´ nor φ` are
affected by such a scaling transformation. Concerning `IR, it is the AdS length at the IR
and it is related to the potential by:

V pφq “ ´
dpd´ 1q

`2
IR

`
m2
IRpφ´ φIRq

2

2
` ¨ ¨ ¨ . (13.2.45)

In the UV, we have considered that the AdS geometry lies at an extremum of the potential.
We reproduced this consideration for the IR, where now the extremum is at φIR and we
have developed V pφq around it.

Concerning the gauge field χ, in the leading order, Eq. (13.2.15) becomes

:χ`
d´ 2

`IR
9χ´ q2φ2

IRχ “ 0 . (13.2.46)

This can be solved with the ansatz

χpzq “ χ`e
∆χz

`IR , (13.2.47)

where ∆χ satisfies the following relation:

∆χp∆χ ` d´ 2q “ q2φ2
IR`

2
IR . (13.2.48)

More explicitly

∆χ “
1

2

„

´pd´ 2q `
b

pd´ 2q2 ` 4q2`2
IRφ

2
IR



, (13.2.49)

where only one of the two solutions of (13.2.48) is considered because we know from
Subsection 13.2.1 that χ is monotonic. Furthermore, we consider the chemical potential
to be positive, to reach it we thus need an increasing monotonic χ with the condition
χ` ą 0. The square root of ∆χ is bigger than d´ 2 which explains why we took this root
for ∆χ, this in order to have an increasing χ along z.

By using the type II scaling symmetry, we can set χ` to one without spoiling the VEV
flow analysis. From now on, we take χ` “ 1.

Using these information, we can integrate Eq. (13.2.14) to find:

hpzq “ 1`

`

∆2
χ ` `

2
IRq

2φ2
IR

˘

2p∆χ ´ 1qpd` 2∆χ ´ 2q
e

2p∆χ´1qz

`IR . (13.2.50)

This requires ∆χ ą 1 for h to be increasing as seen in Subsection 13.2.1. With (13.2.48),
this condition on ∆χ gives

1` q2`2
IRφ

2
IR ě d . (13.2.51)
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The asymptotic behaviour of the scalar field in the IR is obtained by solving (13.2.16)
in the z Ñ ´8 limit and by imposing the solution to reach φIR in this limit. Thanks
to ∆χ ą 1, the term involving the confrontation between χ and expp2Bq vanishes. A
solution is then

φpzq “ φIR ` φ
p´q

IR e
´

∆
p´q

IR
z

`IR , (13.2.52)

where

∆
p´q

IR “
1

2

ˆ

d´
b

d2 ` 4m2
IR`

2
IR

˙

, (13.2.53)

which only works for m2
IR ą 0 such that the square root is bigger than d.

Thanks to the scaling symmetries and to the monotonic behaviours, we have entirely
fixed the IR boundary conditions of h and χ. Moreover, the IR boundary condition of
B is fixed by the potential as well as the value of φIR. We conclude that the only IR
shooting parameter remaining for the numerical analysis is φ

p´q

IR .

13.3 Numerical study

We now proceed to the numerical analysis. Following [327], we choose the potential
VpΦ,Φ˚q to be such that7

V pφq “ ´
dpd´ 1q

`2
UV

`
m2
UV

2
φ2
`
λ

8
φ4. (13.3.1)

We consider m2
UV ă 0 and λ ą 0 to have a Mexican hat potential shape. The extrema

are located at:

φ “ 0, ˘

c

´2m2
UV

λ
. (13.3.2)

Thus, we can observe that this choice of potential is consistent with the UV analysis we
made. We take

φIR “

c

´2m2
UV

λ
. (13.3.3)

By expanding V pφq around φIR, we extract

m2
IR “ ´2m2

UV ,

`2
IR “

2λ`2
UV dpd´ 1q

2dλpd´ 1q ` `2
UVm

2
UV

.

(13.3.4)

(13.3.5)

We select the following parameters

`UV “ 1, m2
UV “ ´2, d “ 3, q “ 2, λ “ 3 . (13.3.6)

Then

m2
IR “ 4 ,

`2
IR “ 0.9 .

(13.3.7)

(13.3.8)

7VpΦ,Φ˚q “ ´dpd´1q
`2UV

`m2
UV ΦΦ˚ ` λ

4 pΦΦ˚q2 .
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We can verify that the requirements coming from our analytic analysis are satisfied:
m2
IR “ 4 ą 0, ∆χ « 1.75 ą 1, m2

UV “ ´2 ě ´pd2q{p4`2
UV q “ ´2.25 and ∆` “ 2 ‰ 0. The

latter, being the scaling dimension of the QFT scalar operator O, ensures that the VEV
does transform under dilatation.

From the IR analysis, we know that there is only one remaining parameter to fix,
namely φ

p´q

IR , in order to completely settle the IR boundary conditions. In Figure 13.1,

a numerical solution for φ
p´q

IR “ 0.1 is presented. As we can see, we indeed describe an
RG flow connecting two fixed points since we have an AdS space both in the UV and in
the IR. If we do the numerics with φ

p´q

IR “ 1, the scalar field changes directions before
reaching to IR as is it can be seen from Figure 13.2. In the literature these types of flows
are termed as bouncing flows [324, 325] and it opens a door for further analysis towards
the study of exotic RG flows.
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Figure 13.1: This figure displays the numerical solution for the four functions constituting
our ansatz (13.2.4). The numerics have be done considering (13.3.6) and taking φ

p´q

IR “ 0.1.
The linear behaviour of Bpzq in the IR and in the UV as well as the constant conduct of
hpzq in these same regions inform that we are indeed describing a geometric kink between
two AdS spaces.

In any case, connecting two AdS spaces through a non-trivial geometric kink corre-
sponds to a breaking of dilatation. It remains to find a solution which corresponds to a
pure spontaneous breaking of dilatation. To do so, we will screen a range of values of φ

p´q

IR

and plot φ` in function of φ´. It will explicitly show if there exists a solution for which
φ´ “ 0 and φ` ‰ 0.

The strategy to extract the source is as follows. We know that the leading behaviour
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Figure 13.2: Here is presented the numerical solution for the scalar field when φ
p´q

IR “ 1.
The other functions Bpzq, hpzq and χpzq keep the same qualitative shape as in Figure
13.1.

of the scalar field is:

φpzq “ φ´e
´

∆´z?
hUV ` ` φ`e

´
∆`z?
hUV ` ` ¨ ¨ ¨ . (13.3.9)

By taking the logarithm, we find that the leading behaviour is:

log |φpzq| “ log |φ´| ´
∆´

?
hUV `

z ` ¨ ¨ ¨ , (13.3.10)

where the terms in ¨ ¨ ¨ are exponentially suppressed in the UV. Therefore, from a linear fit
of log |φ| near the UV, we can extract φ´. To extract φ`, we can construct the following
function

Spzq “ 9φpzq `
∆´

?
hUV `

φpzq . (13.3.11)

From the leading behaviour of φprq, we find that the leading behaviour of S is

Spzq “
∆´ ´∆`
?
hUV `

φ`e
´

∆`z?
hUV ` ` ¨ ¨ ¨ . (13.3.12)

By taking the logarithm of both sides, we can obtain the VEV.
In Figure 13.3, on the left panel, we can observe that it exists a pure VEV flow and

from the right panel, that this pure VEV flow occurs at a finite chemical potential. We
can thus be convinced of the consistency of our holographic study in the goal to describe
a gapped dilaton at finite density.

Of course, this interpretation of spontaneous symmetry breaking should be checked
through a computation of the correlators (at least from a pure asymptotic boundary per-
spective) and through the recovering of the Ward-Takahashi identities associated to the
considered breaking patterns. The generic QFT Ward-Takahashi identities for the sym-
metries at hand will be obtain in a similar fashion than in [21], which is a generalisation
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Figure 13.3: These two plots correspond to the numerics of a screening of the IR boundary
parameter φ

p´q

IR ranging from 0.1 to 1 in increments of 0.01. On the left panel, the VEV
φ` is plotted in function of the source φ´. The curve is anti-clockwise oriented when

increasing φ
p´q

IR . The intersection with the vertical axis happens when φ
p´q

IR “ 0.44˘ 0.01.
On the right panel, the evolution of the chemical potential with φ` is shown. The chemical
potential corresponds to the asymptotic UV value of χpzq. As we can observe, at the VEV

flow φ
p´q

IR “ 0.44˘ 0.01, the chemical potential has a non-zero finite value (µ « 2.5).

of Appendix J Section J.2. Another possible check is to compute some thermodynamical
quantity, for example, is the first law of thermodynamic satisfied ? Information on the dis-
persion relation of the expected gaped dilaton will be obtain from the correlators through
either a pure asymptotic boundary computation for the fluctuations or a numerical bulk
resolution for the fluctuations. To determine how the gap scales with the chemical po-
tential, we should seek for other VEV flows at different µ. The truncated spiral shape of
the plot on the left panel in Figure 13.3 suggests that other VEV flows are present. As
a comparison, we reproduced the numerical analysis for the case µ “ 0. The monotonic
nature of χpzq we discussed in Subsection 13.2.1 indicates that it would correspond to
entirely switch off the gauge field. We did so, and from a first numerical run, it seems that
the VEV goes to zero with the source. We did not find a pure VEV flow. Hence, other
holographic models might be needed to be able to describe both cases: the zero chemical
potential situation and the finite density case. These other holographic models can be
obtained for example by changing the scalar potential of the theory or by enriching the
field content of our original model (following the philosophy of the toy model of Chapter
7, it could be the introduction of a neutral scalar field).

Let us emphasise that the main part of the discussion of the current chapter comes
from [327]. The original features compared to [327] are the bouncing flow we might have

for some values of φ
p´q

IR , the strategy developed to seek for a VEV flow and the fact that
we found a pure VEV flow.

279



Chapter 13. Towards a holographic gapped dilaton

280



Conclusion of the thesis

This dissertation has focused on some specific aspects of Goldstone physics. The latter is a
broad subject due to its main asset: it is a universal approach of the infrared physics which
relies on symmetries. Low-energy physics is mainly our daily life surroundings, which
makes it observable by definition. Therefore, Goldstone Physics is a formal description of
physics but it can almost straightforwardly provide material for phenomenology and for
experiments. This explains the large scope of this area of science.

Goldstone physics is twofold. First, it is the study of the infrared spectrum from
the perspective of symmetry-originated modes. When spontaneous symmetry breaking
occurs, with additional not too restrictive conditions, the spectrum will contain massless
particles (NG modes) and light particles (massive NG modes or pseudo NG modes fol-
lowing the considered mechanism). Theorems exist to provide us information on their
number and their characteristics. An active research direction is to generalise and to en-
rich these theorems. We can emphasise that these predictions provide exact results (e.g.
the masslessness of NG modes is not an approximation). It constitutes another major
asset of Goldstone physics.

Second, Goldstone physics has the aim to build the most general shape of an effective
field theory for a given symmetry breaking pattern. To do so, it uses several building
methods, such as the coset construction. Consequently, it helps to improve these methods.

Putting everything together, knowing both the spectrum content and the shape of
the theory at low energy, entirely fix the dynamics of the infrared physics (up to the
theory parameters which should be obtained either from the ultraviolet theory or from
experimental measurements). The approach is mainly based on symmetry concepts which
are model independent. Hence, the outcomes are generic, which leads to universality.

As we mentioned, the theorems describing the number and the properties of the NG
modes and their possible associated partners need to be extended. Indeed, most of the
generic knowledge we have so far concerns the breaking of internal symmetries while for
the breaking of spacetime symmetries – and non-uniform symmetries in general – we have
some tools at disposal but no clearly established theorems. This problematic constitutes
one direction of research.

Once a theorem is stated, it is done under some assumptions. A systematic hypothesis
of Goldstone physics is that a spontaneous breaking of a global continuous symmetry
group has occurred. Therefore, an upstream work is to be able to determine in advance
if a given physical system can in fact display a spontaneous symmetry breaking. This
is a mathematically involved problem because it requires to understand well the possible
non-trivial solutions of non-linear equations of motion coming from interacting systems
(cf. the quantum tunnelling effect and the singular limits). However, no-go statements
have been made. For relativistic theories, no internal spontaneous symmetry breaking
can occur when the dimension of spacetime is equal to two; this is Coleman’s theorem.
A non-relativistic version of the latter has been conjectured, where the critical dimension
depends on the canonical dimension of the vacuum expectation value.

In order to make progress in the two above mentioned lines of research, the literature
follows some guidelines. This thesis has been structured on the same paradigm. As a
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first step, toy models are studied. These are complex enough to display rich physics but
simple enough to allow an almost complete analytical study. Intuition on general results
is then acquired. The second step is to test this intuition on more intricate quantum
field theories. Holography offers an adapted framework to do so because from a classical
gravitational theory solved perturbatively, we can analyse the correlators of a strongly
coupled large N quantum field theory. Finally, the remaining robust intuitive ideas are
wording as conjectures. From generic effective field theory building tools such as the coset
construction, we have the opportunity to attempt to prove these conjectures in a general
fashion. Of course, some overlaps between the listed steps are seen in the literature; the
sequential listing should not be considered as totally rigid.

Original contributions to the open problems

Our first original investigation (see Part II) has been to build field theories displaying
respectively the spontaneous breaking of dilatation symmetry and the concomitant spon-
taneous breaking of dilatation symmetry and spatial translation symmetry. The physical
motivation to focus on these two kinds of spacetime symmetries is condensed matter ori-
ented. Indeed, dilatation symmetry refers to the scaling symmetry around critical points
and translation breaking refers to crystal structures. It should be mentioned that we
thoroughly studied the homogeneous breaking of translation and only had a glance at
the non-homogeneous breaking. The latter is the one which indeed leads to lattices,
the former is a simpler case which is more convenient for a first approach to translation
breaking.

An observation was that minimal models describing spacetime symmetry breaking are
already complicated, in particular in the case of the breaking of translation symmetry
since higher derivative terms have to be introduced. A consequence was the intricate
relation between the parametrisation of the fluctuations, the parametrisation which di-
agonalises the kinetic matrix – i.e. the one associated to the dispersion relations – and
the parametrisation of the NG modes. The identification of the NG modes based on the
dispersion relations in Fourier space was dependent on the norm of the momentum but
also on its direction. The highlight was to use, amongst other things, the Ward-Takahashi
identities to disentangle the issue of identification.

Let us notice that the brief example of non-homogeneous translation symmetry break-
ing we did showed that the dispersion relations spectrum is more subtle to handle and
necessitates extra discussions on the modes labelling.

In this perturbative analysis, the inverse Higgs constraints were systematically provid-
ing the right number of massless NG modes (modulo a comment on the non-homogeneous
translation symmetry breaking case). Hence, the tools coming from the coset construction
formalism proved to be consistent for the considered breaking patterns even if they have
been used slightly outside the scope of their original hypotheses.

Concerning the model involving the homogeneous breaking of translation symmetry,
its key feature was the emergence of fractonic modes at low energy despite that the
fundamental theory was not showing explicit signs of subsystem symmetries. The intuition
on this peculiarity is the presence of higher derivative terms in the fundamental theory in
order to break spontaneously spatial translation symmetries. The NG modes naturally
display shift symmetries; once we go to low energy, the higher derivative terms rearrange
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themselves such that the shift symmetries are promoted to polynomial shift symmetries
(and even to fully general spatially modulated shift symmetries). The apparition of these
subsystem symmetries explains the reduced mobility observed in the dispersion relations
of the spectrum. It offers a new perspective on how to build toy models for gapless
fractonic modes.

Eventually, in order to be able to switch on a chemical potential without destabilising
the dilatation invariant theories, we had to lift the energetic flat directions. Therefore,
the dilaton was systematically getting a model dependent gap. In the theory displaying
the concomitant breaking of translation and dilatation, lifting the flat directions was also
explicitly breaking a shift symmetry. Therefore, the gapped dilaton has been interpreted
as a pseudo NG modes. However, in the model of the individual breaking of dilatation, the
dilaton had no other choice than being a massive NG mode. In fact, despite being model
dependent, its gap was also scaling with the chemical potential. This type of massive NG
modes is predicted by some of the already known theorems associated to NG modes at
finite density. However, the latter, being mainly for internal symmetries, do not capture
it in their counting rule. Therefore, this generating mechanism for massive NG modes
remains to explore.

Our second original investigation (see Part III) was to confirm the conjectured critical
dimension of spacetime under which a non-relativistic system cannot sustain, at quantum
level, a continuous spontaneous symmetry breaking leading solely to type A NG modes.
With an explicit computation in Lifshitz quantum field theory, without loss of generality,
we attested that indeed this critical dimension is z ` 1, where z is the dynamical critical
exponent. Some relativistic large N field theories have shown that order can be restored
in the N Ñ `8 limit. In fact, thanks to a holographic model, we observed that having
a VEV in d ď z ` 1 does not lead to any pathological behaviour. A memory of the
critical dimension was nevertheless encoded in the system since, during the holographic
renormalisation, for d ď z ` 1, we had to perform an alternative quantisation for the
temporal component of the vector gauge sector in order to be able to source conserved
currents.

The take home message of the original contributions to the open problems in Goldstone
physics made by the author and his collaborators and presented in this dissertation is the
following:

� The Ward-Takahashi identities constitute an appropriated tool to perform the iden-
tification of the NG modes from the dispersion relation spectrum.

� Imposing the Inverse Higgs constraints when considering homogeneous breaking of
translation symmetries appears to be physically consistent and it leads to the right
counting rule for the massless symmetry-originated modes. This observation stands
for spatial translation, as well as for time translation in the context of a non-zero
chemical potential. Concerning an inhomogeneous breaking, the discussion is more
subtle and requires further investigations.

� It seems there is a non-trivial interplay between non-compact flat directions and the
ignition of a non-zero chemical potential. This particular relationship is leading to
an unfixed gap for the massive NG mode associated to the spontaneous breaking of
dilatation symmetry.
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� The effective field theories for NG modes coming from the spontaneous breaking of
translations are excellent candidates to display fractonic behaviours.

� From a generic Up1q invariant Lifshitz theory with time-reversal symmetry, it has
been confirmed that a non-relativistic system cannot sustain, at quantum level, a
continuous spontaneous symmetry breaking leading solely to type A NG modes.

Outlooks

Outlooks can be obtained by generalising the hypotheses on which a given result has
been established. For example, how is Goldstone’s theorem modified for field theories on
curved spacetimes ? Can we generalise this theorem for higher form symmetries ? These
constitute important generic conceptual open questions. In the course of this thesis, we
have provided several perspectives specific to our investigations. We will now recall the
ones which, in a near future, are potentially the most realistic.

One of the main results of the thesis is the possible connection between fractonic
modes and the spontaneous breaking of spatial translation symmetry. Continuous field
theories for excitations with reduced mobility are peculiar because they notably present an
IR/UV mixing. The emergence of fractonic modes in the low-energy limit of a fundamental
theory which does not feature subsystem symmetries could potentially cure the IR/UV
mixing thanks to a natural energetic cut-off coming from a symmetry breaking. Field
theory models for the spontaneous breaking of spatial translation symmetry could be
ideal UV candidates. Therefore, a future project could be to consider such systems and
try to retrieve Shao-Seiberg’s model in the IR. The toy models we considered so far in
Part II have their spatial kinetic term with an opposite sign compared to the canonical
case. Hence, in parallel to the already mentioned model building, we could seek for
higher derivative term models with the usual kinetic term. This in order to facilitate the
connection with phenomenology.

Another highlight of the dissertation was the peculiar gap for the dilaton when a
chemical potential has been switched on. It is an example of a massive NG mode with a
model depend gap. To probe the generality of this observation, a holographic computation
can be done. The details have been provided in the preceding chapter. On a larger time
scale, the concomitant breaking of dilatation and translation can also be holographically
studied through Q-lattice models.

To know whether or not a spontaneous symmetry breaking can occur is one of the
cornerstones of Goldstone physics. It could then be interesting to realise the thermal
version of the QFT computation from Part III to determine the critical dimension of
spacetime when non-relativistic theories are at finite temperature. Because the discussion
has been made so far solely for internal symmetries, similar QFT oriented calculations
– first at zero temperature – could be performed in the framework of the breaking of
spacetime symmetries. Let us notice that the coset construction could provide the free
effective field theory, i.e. the starting point of the computations. Nevertheless, we should
pay attention that a similar mechanism than for the type B NG modes might happen:
massive symmetry originated partners tend to allow the symmetry breaking to occur
at any spacetime dimension. A careful analysis of the inverse Higgs constraints and of
the canonical conjugation structure of the effective field theory will then be necessary to
determine if massive symmetry originated modes are present.
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[195] A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, “Gapless and gapped
holographic phonons,” JHEP 01 (2020) 058, arXiv:1910.11330 [hep-th].

[196] M. Pretko, X. Chen, and Y. You, “Fracton Phases of Matter,” Int. J. Mod. Phys.
A 35 no. 06, (2020) 2030003, arXiv:2001.01722 [cond-mat.str-el].

[197] R. M. Nandkishore and M. Hermele, “Fractons,” Ann. Rev. Condensed Matter
Phys. 10 (2019) 295–313, arXiv:1803.11196 [cond-mat.str-el].

[198] C. Xu, “Gapless bosonic excitation without symmetry breaking: An algebraic spin
liquid with soft gravitons,” Physical Review B 74 no. 22, (Dec, 2006) 224433,
arXiv:cond-mat/0609595.

[199] C. Xu and P. Horava, “Emergent Gravity at a Lifshitz Point from a Bose Liquid
on the Lattice,” Phys. Rev. D 81 (2010) 104033, arXiv:1003.0009 [hep-th].

[200] M. Pretko, “Subdimensional Particle Structure of Higher Rank U(1) Spin Liquids,”
Phys. Rev. B 95 no. 11, (2017) 115139, arXiv:1604.05329 [cond-mat.str-el].

[201] M. Pretko, “Generalized Electromagnetism of Subdimensional Particles: A Spin
Liquid Story,” Phys. Rev. B 96 no. 3, (2017) 035119, arXiv:1606.08857
[cond-mat.str-el].

297

http://dx.doi.org/10.1103/PhysRevLett.120.171602
http://arxiv.org/abs/1711.03100
http://dx.doi.org/10.1007/JHEP05(2014)101
http://arxiv.org/abs/1311.5157
http://dx.doi.org/10.1103/PhysRevD.97.086017
http://arxiv.org/abs/1711.06610
http://dx.doi.org/10.1103/PhysRevLett.120.171603
http://dx.doi.org/10.1103/PhysRevLett.120.171603
http://arxiv.org/abs/1712.07994
http://dx.doi.org/10.1007/JHEP04(2018)053
http://arxiv.org/abs/1801.09084
http://dx.doi.org/10.1016/j.physrep.2020.04.002
http://arxiv.org/abs/1904.01419
http://arxiv.org/abs/1904.01419
http://dx.doi.org/10.1007/JHEP10(2019)068
http://arxiv.org/abs/1904.11445
http://arxiv.org/abs/1904.11445
http://dx.doi.org/10.1007/JHEP01(2020)058
http://arxiv.org/abs/1910.11330
http://dx.doi.org/10.1142/S0217751X20300033
http://dx.doi.org/10.1142/S0217751X20300033
http://arxiv.org/abs/2001.01722
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013604
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013604
http://arxiv.org/abs/1803.11196
http://dx.doi.org/10.1103/physrevb.74.224433
http://arxiv.org/abs/cond-mat/0609595
http://dx.doi.org/10.1103/PhysRevD.81.104033
http://arxiv.org/abs/1003.0009
http://dx.doi.org/10.1103/PhysRevB.95.115139
http://arxiv.org/abs/1604.05329
http://dx.doi.org/10.1103/PhysRevB.96.035119
http://arxiv.org/abs/1606.08857
http://arxiv.org/abs/1606.08857


Bibliography

[202] Y. You, Z. Bi, and M. Pretko, “Emergent fractons and algebraic quantum liquid
from plaquette melting transitions,” Phys. Rev. Res. 2 no. 1, (2020) 013162,
arXiv:1908.08540 [cond-mat.str-el].

[203] S. Pai, M. Pretko, and R. M. Nandkishore, “Localization in fractonic random
circuits,” Phys. Rev. X 9 no. 2, (2019) 021003, arXiv:1807.09776
[cond-mat.stat-mech]. [Erratum: Phys.Rev.X 9, 049901 (2019)].

[204] J. Feldmeier, P. Sala, G. de Tomasi, F. Pollmann, and M. Knap, “Anomalous
Diffusion in Dipole- and Higher-Moment Conserving Systems,” Phys. Rev. Lett.
125 (2020) 245303, arXiv:2004.00635 [cond-mat.str-el].

[205] A. Morningstar, V. Khemani, and D. A. Huse, “Kinetically constrained freezing
transition in a dipole-conserving system,” Phys. Rev. B 101 (Jun, 2020) 214205,
arXiv:2004.00096 [cond-mat.stat-mech].

[206] J. Iaconis, A. Lucas, and R. Nandkishore, “Multipole conservation laws and
subdiffusion in any dimension,” Phys. Rev. E 103 (Feb, 2021) 022142,
arXiv:2009.06507 [cond-mat.stat-mech].

[207] S. Moudgalya, A. Prem, D. A. Huse, and A. Chan, “Spectral statistics in
constrained many-body quantum chaotic systems,” arXiv:2009.11863

[cond-mat.stat-mech].

[208] M. Pretko and L. Radzihovsky, “Symmetry-enriched fracton phases from
supersolid duality,” Phys. Rev. Lett. 121 (Dec, 2018) 235301, arXiv:1808.05616
[cond-mat.str-el].

[209] A. Gromov, “Chiral topological elasticity and fracton order,” Phys. Rev. Lett. 122
(Feb, 2019) 076403, arXiv:1712.06600 [cond-mat.str-el].

[210] A. Kumar and A. C. Potter, “Symmetry-enforced fractonicity and
two-dimensional quantum crystal melting,” Phys. Rev. B 100 (Jul, 2019) 045119,
arXiv:1808.05621 [cond-mat.str-el].

[211] M. Pretko and L. Radzihovsky, “Fracton-elasticity duality,” Physical Review
Letters 120 no. 19, (May, 2018) .
https://doi.org/10.1103%2Fphysrevlett.120.195301.

[212] M. Pretko, Z. Zhai, and L. Radzihovsky, “Crystal-to-fracton tensor gauge theory
dualities,” Phys. Rev. B 100 (Oct, 2019) 134113.
https://link.aps.org/doi/10.1103/PhysRevB.100.134113.

[213] Z. Zhai and L. Radzihovsky, “Two-dimensional melting via sine-gordon duality,”
Phys. Rev. B 100 (Sep, 2019) 094105, arXiv:1905.00905
[cond-mat.stat-mech].

[214] A. Gromov and P. Surówka, “On duality between Cosserat elasticity and fractons,”
SciPost Phys. 8 no. 4, (2020) 065, arXiv:1908.06984 [cond-mat.str-el].

298

http://dx.doi.org/10.1103/PhysRevResearch.2.013162
http://arxiv.org/abs/1908.08540
http://dx.doi.org/10.1103/PhysRevX.9.021003
http://arxiv.org/abs/1807.09776
http://arxiv.org/abs/1807.09776
http://dx.doi.org/10.1103/PhysRevLett.125.245303
http://dx.doi.org/10.1103/PhysRevLett.125.245303
http://arxiv.org/abs/2004.00635
http://dx.doi.org/10.1103/PhysRevB.101.214205
http://arxiv.org/abs/2004.00096
http://dx.doi.org/10.1103/PhysRevE.103.022142
http://arxiv.org/abs/2009.06507
http://arxiv.org/abs/2009.11863
http://arxiv.org/abs/2009.11863
http://dx.doi.org/10.1103/PhysRevLett.121.235301
http://arxiv.org/abs/1808.05616
http://arxiv.org/abs/1808.05616
http://dx.doi.org/10.1103/PhysRevLett.122.076403
http://dx.doi.org/10.1103/PhysRevLett.122.076403
http://arxiv.org/abs/1712.06600
http://dx.doi.org/10.1103/PhysRevB.100.045119
http://arxiv.org/abs/1808.05621
http://dx.doi.org/10.1103/physrevlett.120.195301
http://dx.doi.org/10.1103/physrevlett.120.195301
https://doi.org/10.1103%2Fphysrevlett.120.195301
http://dx.doi.org/10.1103/PhysRevB.100.134113
https://link.aps.org/doi/10.1103/PhysRevB.100.134113
http://dx.doi.org/10.1103/PhysRevB.100.094105
http://arxiv.org/abs/1905.00905
http://arxiv.org/abs/1905.00905
http://dx.doi.org/10.21468/SciPostPhys.8.4.065
http://arxiv.org/abs/1908.06984


Bibliography

[215] D. X. Nguyen, A. Gromov, and S. Moroz, “Fracton-elasticity duality of
two-dimensional superfluid vortex crystals: defect interactions and quantum
melting,” SciPost Phys. 9 (2020) 076, arXiv:2005.12317
[cond-mat.quant-gas].

[216] M. Fruchart and V. Vitelli, “Symmetries and dualities in the theory of elasticity,”
Phys. Rev. Lett. 124 (Jun, 2020) 248001, arXiv:1912.02384 [cond-mat.soft].

[217] N. Manoj, R. Moessner, and V. B. Shenoy, “Tearing Fractons,”
arXiv:2011.11401 [cond-mat.str-el].

[218] P. Surówka, “Dual gauge theory formulation of planar quasicrystal elasticity and
fractons,” arXiv:2101.12234 [cond-mat.str-el].

[219] M. Kleman and J. Friedel, “Disclinations, dislocations, and continuous defects: A
reappraisal,” Rev. Mod. Phys. 80 (Jan, 2008) 61–115, arXiv:0704.3055
[cond-mat.soft].

[220] D. Aasen, D. Bulmash, A. Prem, K. Slagle, and D. J. Williamson, “Topological
Defect Networks for Fractons of all Types,” Phys. Rev. Res. 2 (2020) 043165,
arXiv:2002.05166 [cond-mat.str-el].

[221] K. T. Grosvenor, C. Hoyos, F. Peña-Benitez, and P. Surówka, “Hydrodynamics of
ideal fracton fluids,” arXiv:2105.01084 [cond-mat.str-el].

[222] P. Glorioso, J. Guo, J. F. Rodriguez-Nieva, and A. Lucas, “Breakdown of
hydrodynamics below four dimensions in a fracton fluid,” arXiv:2105.13365

[cond-mat.str-el].

[223] J.-K. Yuan, S. A. Chen, and P. Ye, “Fractonic Superfluids,” Phys. Rev. Res. 2
no. 2, (2020) 023267, arXiv:1911.02876 [cond-mat.str-el].

[224] S. A. Chen, J.-K. Yuan, and P. Ye, “Fractonic superfluids. II. Condensing
subdimensional particles,” Phys. Rev. Res. 3 no. 1, (2021) 013226,
arXiv:2010.03261 [cond-mat.str-el].

[225] N. A. Hamed, H. Cheng, M. Luty, and S. Mukohyama, “Ghost condensation and a
consistent ir modification of gravity,” Journal of High Energy Physics 2004 no. 05,
(May, 2004) 074–074, arXiv:hep-th/0312099.

[226] S. D. Hsu, A. Jenkins, and M. B. Wise, “Gradient instability for w ă ´1,” Physics
Letters B 597 no. 3-4, (Sep, 2004) 270–274, arXiv:astro-ph/0406043.

[227] M. Nitta, S. Sasaki, and R. Yokokura, “Spatially Modulated Vacua in a
Lorentz-invariant Scalar Field Theory,” Eur. Phys. J. C 78 no. 9, (2018) 754,
arXiv:1706.02938 [hep-th].

[228] H. Leutwyler, “Phonons as goldstone bosons,” Helv. Phys. Acta 70 (1997)
275–286, arXiv:hep-ph/9609466.

299

http://dx.doi.org/10.21468/SciPostPhys.9.5.076
http://arxiv.org/abs/2005.12317
http://arxiv.org/abs/2005.12317
http://dx.doi.org/10.1103/PhysRevLett.124.248001
http://arxiv.org/abs/1912.02384
http://arxiv.org/abs/2011.11401
http://arxiv.org/abs/2101.12234
http://dx.doi.org/10.1103/RevModPhys.80.61
http://arxiv.org/abs/0704.3055
http://arxiv.org/abs/0704.3055
http://dx.doi.org/10.1103/PhysRevResearch.2.043165
http://arxiv.org/abs/2002.05166
http://arxiv.org/abs/2105.01084
http://arxiv.org/abs/2105.13365
http://arxiv.org/abs/2105.13365
http://dx.doi.org/10.1103/PhysRevResearch.2.023267
http://dx.doi.org/10.1103/PhysRevResearch.2.023267
http://arxiv.org/abs/1911.02876
http://dx.doi.org/10.1103/PhysRevResearch.3.013226
http://arxiv.org/abs/2010.03261
http://dx.doi.org/10.1088/1126-6708/2004/05/074
http://dx.doi.org/10.1088/1126-6708/2004/05/074
http://arxiv.org/abs/hep-th/0312099
http://arxiv.org/abs/astro-ph/0406043
http://dx.doi.org/10.1140/epjc/s10052-018-6235-9
http://arxiv.org/abs/1706.02938
http://arxiv.org/abs/hep-ph/9609466


Bibliography

[229] D. T. Son, “Effective Lagrangian and topological interactions in supersolids,”
Phys. Rev. Lett. 94 (2005) 175301, arXiv:cond-mat/0501658.

[230] H. Casasola, C. A. Hernaski, P. R. S. Gomes, and P. F. Bienzobaz, “Spontaneous
symmetry breaking and frustrated phases,” arXiv:2105.08740

[cond-mat.stat-mech].

[231] N. Seiberg and S.-H. Shao, “Exotic symmetries, duality, and fractons in
2+1-dimensional quantum field theory,” SciPost Physics 10 no. 2, (Feb, 2021) 27,
arXiv:2003.10466 [cond-mat.str-el].

[232] A. I. Larkin and Y. N. Ovchinnikov, “Nonuniform state of superconductors,” Zh.
Eksp. Teor. Fiz. 47 (1964) 1136–1146.

[233] P. Fulde and R. A. Ferrell, “Superconductivity in a Strong Spin-Exchange Field,”
Phys. Rev. 135 (1964) A550–A563.

[234] Y. Matsuda and H. Shimahara, “Fulde–ferrell–larkin–ovchinnikov state in heavy
fermion superconductors,” Journal of the Physical Society of Japan 76 no. 5,
(May, 2007) 051005, arXiv:cond-mat.supr-con/0702481.

[235] C. Pfleiderer, “Superconducting phases of f-electron compounds,” Reviews of
Modern Physics 81 no. 4, (Nov, 2009) 1551–1624, arXiv:0905.2625
[cond-mat.supr-con].

[236] M. G. Alford, J. A. Bowers, and K. Rajagopal, “Crystalline color
superconductivity,” Phys. Rev. D 63 (2001) 074016, arXiv:hep-ph/0008208.

[237] R. Casalbuoni, R. Gatto, M. Mannarelli, and G. Nardulli, “Effective field theory
for the crystalline color superconductive phase of QCD,” Phys. Lett. B 511 (2001)
218–228, arXiv:hep-ph/0101326.

[238] A. Buzdin and H. Kachkachi, “Generalized ginzburg-landau theory for nonuniform
fflo superconductors,” Physics Letters A 225 no. 4, (1997) 341–348,
cond-mat.supr-con/9611153.

[239] Z. Huang, C. S. Ting, J.-X. Zhu, and S.-Z. Lin, “Gapless Higgs Mode in the
Fulde-Ferrell-Larkin-Ovchinnikov State of a Superconductor,” arXiv:2105.13422

[cond-mat.supr-con].

[240] F. Bigazzi, A. L. Cotrone, D. Musso, N. Pinzani Fokeeva, and D. Seminara,
“Unbalanced Holographic Superconductors and Spintronics,” JHEP 02 (2012)
078, arXiv:1111.6601 [hep-th].

[241] D. Musso, “Minimal Model for an Unbalanced Holographic Superconductor,” PoS
Corfu2012 (2013) 124, arXiv:1304.6118 [hep-th].

[242] D. Musso, “Competition/Enhancement of Two Probe Order Parameters in the
Unbalanced Holographic Superconductor,” JHEP 06 (2013) 083,
arXiv:1302.7205 [hep-th].

300

http://dx.doi.org/10.1103/PhysRevLett.94.175301
http://arxiv.org/abs/cond-mat/0501658
http://arxiv.org/abs/2105.08740
http://arxiv.org/abs/2105.08740
http://dx.doi.org/10.21468/scipostphys.10.2.027
http://arxiv.org/abs/2003.10466
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1143/jpsj.76.051005
http://dx.doi.org/10.1143/jpsj.76.051005
http://arxiv.org/abs/cond-mat.supr-con/0702481
http://dx.doi.org/10.1103/revmodphys.81.1551
http://dx.doi.org/10.1103/revmodphys.81.1551
http://arxiv.org/abs/0905.2625
http://arxiv.org/abs/0905.2625
http://dx.doi.org/10.1103/PhysRevD.63.074016
http://arxiv.org/abs/hep-ph/0008208
http://dx.doi.org/10.1016/S0370-2693(01)00645-1
http://dx.doi.org/10.1016/S0370-2693(01)00645-1
http://arxiv.org/abs/hep-ph/0101326
http://dx.doi.org/https://doi.org/10.1016/S0375-9601(96)00894-8
http://arxiv.org/abs/cond-mat.supr-con/9611153
http://arxiv.org/abs/2105.13422
http://arxiv.org/abs/2105.13422
http://dx.doi.org/10.1007/JHEP02(2012)078
http://dx.doi.org/10.1007/JHEP02(2012)078
http://arxiv.org/abs/1111.6601
http://dx.doi.org/10.22323/1.177.0124
http://dx.doi.org/10.22323/1.177.0124
http://arxiv.org/abs/1304.6118
http://dx.doi.org/10.1007/JHEP06(2013)083
http://arxiv.org/abs/1302.7205


Bibliography

[243] L. Bonsall and A. A. Maradudin, “Some static and dynamical properties of a
two-dimensional wigner crystal,” Phys. Rev. B 15 (Feb, 1977) 1959–1973.

[244] P. B. Littlewood, A. J. Millis, and X. J. Zhu, Wigner Crystals, pp. 171–184.
Springer US, Boston, MA, 1996.
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[247] A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, “Universal relaxation in a
holographic metallic density wave phase,” Phys. Rev. Lett. 123 no. 21, (2019)
211602, arXiv:1812.08118 [hep-th].

[248] F. Piazza and S. Tsujikawa, “Dilatonic ghost condensate as dark energy,” Journal
of Cosmology and Astroparticle Physics 2004 no. 07, (Jul, 2004) 004–004,
arXiv:hep-th/0405054.

[249] A. Biasi, P. Carracedo, J. Mas, D. Musso, and A. Serantes, “Floquet Scalar
Dynamics in Global AdS,” JHEP 04 (2018) 137, arXiv:1712.07637 [hep-th].

[250] T. Griffin, K. T. Grosvenor, P. Horava, and Z. Yan, “Scalar Field Theories with
Polynomial Shift Symmetries,” Commun. Math. Phys. 340 no. 3, (2015) 985–1048,
arXiv:1412.1046 [hep-th].

[251] K. Hinterbichler and A. Joyce, “Goldstones with Extended Shift Symmetries,” Int.
J. Mod. Phys. D 23 no. 13, (2014) 1443001, arXiv:1404.4047 [hep-th].

[252] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge
University Press, 3, 2014.

[253] F. Peña Benitez, “Fractons, Symmetric Gauge Fields and Geometry,”
arXiv:2107.13884 [cond-mat.str-el].

[254] J. M. Ziman, Electrons and phonons: the theory of transport phenomena in solids.
International series of monographs on physics. Clarendon Press, Oxford, 1960.
https://cds.cern.ch/record/100360.

[255] K. T. Grosvenor, C. Hoyos, F. Peña Benitez, and P. Surówka, “Space-Dependent
Symmetries and Fractons,” Front. in Phys. 9 (2022) 792621, arXiv:2112.00531
[hep-th].

[256] S. Alexander and R. Orbach, “Density of states on fractals : “ fractons ”,” Journal
de Physique Lettres 43 no. 17, (1982) 625–631.

[257] C. Chamon, “Quantum glassiness in strongly correlated clean systems: An
example of topological overprotection,” Phys. Rev. Lett. 94 (Jan, 2005) 040402.
https://link.aps.org/doi/10.1103/PhysRevLett.94.040402.

301

http://dx.doi.org/10.1103/PhysRevB.15.1959
http://dx.doi.org/10.1007/978-1-4613-1149-2_10
http://dx.doi.org/10.1103/PhysRevB.44.7808
http://dx.doi.org/10.1103/PhysRevB.44.7808
http://dx.doi.org/10.1080/00018732.2012.719674
http://dx.doi.org/10.1080/00018732.2012.719674
http://arxiv.org/abs/1307.0929
http://dx.doi.org/10.1103/PhysRevLett.123.211602
http://dx.doi.org/10.1103/PhysRevLett.123.211602
http://arxiv.org/abs/1812.08118
http://dx.doi.org/10.1088/1475-7516/2004/07/004
http://dx.doi.org/10.1088/1475-7516/2004/07/004
http://arxiv.org/abs/hep-th/0405054
http://dx.doi.org/10.1007/JHEP04(2018)137
http://arxiv.org/abs/1712.07637
http://dx.doi.org/10.1007/s00220-015-2461-2
http://arxiv.org/abs/1412.1046
http://dx.doi.org/10.1142/S0218271814430019
http://dx.doi.org/10.1142/S0218271814430019
http://arxiv.org/abs/1404.4047
http://arxiv.org/abs/2107.13884
http://dx.doi.org/10.1093/acprof:oso/9780198507796.001.0001
https://cds.cern.ch/record/100360
http://dx.doi.org/10.3389/fphy.2021.792621
http://arxiv.org/abs/2112.00531
http://arxiv.org/abs/2112.00531
http://dx.doi.org/10.1051/jphyslet:019820043017062500
http://dx.doi.org/10.1051/jphyslet:019820043017062500
http://dx.doi.org/10.1103/PhysRevLett.94.040402
https://link.aps.org/doi/10.1103/PhysRevLett.94.040402


Bibliography

[258] J. Haah, “Local stabilizer codes in three dimensions without string logical
operators,” Phys. Rev. A 83 no. 4, (2011) 042330, arXiv:1101.1962 [quant-ph].

[259] S. Vijay, J. Haah, and L. Fu, “A New Kind of Topological Quantum Order: A
Dimensional Hierarchy of Quasiparticles Built from Stationary Excitations,” Phys.
Rev. B 92 no. 23, (2015) 235136, arXiv:1505.02576 [cond-mat.str-el].

[260] S. Vijay, J. Haah, and L. Fu, “Fracton Topological Order, Generalized Lattice
Gauge Theory and Duality,” Phys. Rev. B 94 no. 23, (2016) 235157,
arXiv:1603.04442 [cond-mat.str-el].

[261] W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order from gauging
subsystem symmetries,” SciPost Phys. 6 no. 4, (2019) 041, arXiv:1806.08679
[cond-mat.str-el].

[262] N. Seiberg and S.-H. Shao, “Exotic ZN symmetries, duality, and fractons in
3+1-dimensional quantum field theory,” SciPost Phys. 10 no. 1, (2021) 003,
arXiv:2004.06115 [cond-mat.str-el].

[263] N. Seiberg and S.-H. Shao, “Exotic Symmetries, Duality, and Fractons in
2+1-Dimensional Quantum Field Theory,” SciPost Phys. 10 no. 2, (2021) 027,
arXiv:2003.10466 [cond-mat.str-el].

[264] M. Henneaux and C. Teitelboim, Quantization of gauge systems. 1992.

[265] A. Rasmussen, Y.-Z. You, and C. Xu, “Stable gapless bose liquid phases without
any symmetry,” 2016. https://arxiv.org/abs/1601.08235.

[266] A. Gromov, “Towards classification of Fracton phases: the multipole algebra,”
Phys. Rev. X 9 no. 3, (2019) 031035, arXiv:1812.05104 [cond-mat.str-el].

[267] F. J. Burnell, T. Devakul, P. Gorantla, H. T. Lam, and S.-H. Shao, “Anomaly
Inflow for Subsystem Symmetries,” arXiv:2110.09529 [cond-mat.str-el].

[268] M. G. Alford, S. K. Mallavarapu, A. Schmitt, and S. Stetina, “From a complex
scalar field to the two-fluid picture of superfluidity,” Physical Review D 87 no. 6,
(Mar, 2013) , arXiv:1212.0670 [hep-ph].

[269] M. Taylor, “Lifshitz holography,” Class. Quant. Grav. 33 no. 3, (2016) 033001,
arXiv:1512.03554 [hep-th].

[270] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,”
Class. Quant. Grav. 26 (2009) 224002, arXiv:0903.3246 [hep-th].

[271] S. A. Hartnoll, A. Lucas, and S. Sachdev, “Holographic quantum matter,”
arXiv:1612.07324 [hep-th].

[272] E. Abrahams, J. Schmalian, and P. Wölfle, “Strong-coupling theory of
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Abstract

This thesis lies in the framework of the spontaneous symmetry breaking mecha-
nism. When such a mechanism occurs, Goldstone’s theorem predicts the existence of
massless modes, called Nambu-Goldstone modes (NG modes). The current knowl-
edge on NG modes is classified following the types of symmetries involved in the
considered breaking pattern. Spacetime symmetries are the ones for which most of
the analysis remains to be done. From a perturbative approach, we separately and
concomitantly study the breaking of dilatation symmetry and of spatial translation
symmetry. It allows us to comment on the present-day conjectures concerning the
counting of NG modes associated to breaking patterns involving spacetime sym-
metries. Moreover, we get closer to standard laboratory conditions by investigating
the situation in presence of a chemical potential. The considered Landau-Ginzburg’s
like models constitute plausible effective field theories to describe superfluids. The
higher derivative terms required to spontaneously break translations lead to emer-
gent subsystem symmetries. A connection between NG modes and fractonic modes,
i.e. excitations with reduced mobility, is then made.

Non-relativistic systems are less constrained by the symmetries compared to
Lorentz invariant systems which make the former more general. Even for non-
spacetime symmetries, some uncertainties on the physics of NG modes remain
when dealing with non-relativistic models. One of them is the critical dimension
of Minkowski spacetime under which no spontaneous symmetry breaking can occur.
This dimension has been conjectured and we propose an explicit computation in
order to attest this conjecture. However, through a holographic analysis, we discuss
some way out for large N field theories.

All along the dissertation, concrete future research perspectives on the above-
mentioned discussions are provided.

Key words: Spontaneous symmetry breaking, Goldstone physics, effective field
theories, bottom-up holography.
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