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Abstract By applying the island rule proposed recently, we
compute the entanglement entropy of Hawking radiation and
study the Page curve for the eternal black holes in massive
gravity. We investigate for both the neutral and charged black
holes which the corresponding results of Schwarzschild and
Reissner–Nordström black holes are restored in the limit of
massless graviton. We show for the neutral and non-extremal
charged black holes that the island is not formed at the early
times of the evaporation and hence the entanglement entropy
increases linearly in time. However, for the extremal charged
black hole, the calculation of the entanglement entropy at the
early times without the island is ill-defined because the metric
is divergent at the curvature singularity. This implies that new
physics in the UV region must be taken into account to make
the metric behaving smoothly at the very short distances. At
the late times, with the emergence of one island near the
event horizon, the entanglement entropy is saturated by the
Bekenstein–Hawking entropy of black holes. In addition, we
analyze the impact of massive gravity parameters on the size
of island, the entanglement entropy, the Page time, and the
scrambling time in detail.

1 Introduction

The behavior of back holes as the thermodynamic objects
with the temperature and entropy (which are determined in
terms of the surface gravity and the horizon area, respec-
tively) provides a deep connection between the research areas
of general relativity, thermodynamics, and quantum mechan-
ics [1–5]. In addition, the black hole thermodynamics may
offer indispensable insights into quantum gravity. By taking
into account the quantum effects of the matter fields near the
event horizon, S. Hawking showed that black holes can emit
the radiation with the nearly thermal spectrum [5]. Suppose
that black holes are formed by the gravitational collapse of
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the matter with the initial state in a pure (quantum) state, after
black holes evaporate completely the final state of the system
would be in a mixed (thermal) state. In this way, the quan-
tum information of the initial state is not conserved in the
evaporation process of black holes, leading to the so-called
information loss paradox [6]. On the other hand, the time evo-
lution in this way is contradictory to one of the fundamental
principles of quantum mechanics, namely the unitarity prin-
ciple which requires that the final state must be the pure state
if the system starts from the same kind of the state.

If a black hole is formed from a pure state, then its entropy
is zero. Later, the black hole would evaporate due to emitting
the Hawking radiation. During the early time of the black hole
evaporation, the entanglement entropy of Hawking radiation
should increase in time because more and more Hawking
quanta are emitted and entangled with the remaining black
hole. Whereas, the thermodynamic or Bekenstein–Hawking
entropy of the black hole would decrease due to its horizon
area shrinking. The behavior of the entanglement entropy of
Hawking radiation changes at the time when the Bekenstein
bound is violated. The Bekenstein bound implies that the
fine-grained entropy of the black hole should not be larger
than the Bekenstein–Hawking entropy of the black hole. As
the degrees of freedom of the remaining black hole together
with the outgoing radiation as a whole is pure state, the fine-
grained entropy of the remaining black hole should be equal
to the entanglement entropy of the Hawking radiation. Hence,
at the moment at which the entanglement entropy of Hawk-
ing radiation is equal to the Bekenstein–Hawking entropy of
the remaining black hole, called the Page time, the entangle-
ment entropy of Hawking radiation must decrease and drop
down to zero as the black hole evaporates completely. This
means that the quantum information of the initial black hole
is encoded in the Hawking radiation and the black hole evap-
oration is consistent with the unitarity evolution. In this way,
the unitarity evolution of the black hole evaporation corre-
sponds to that the entanglement entropy of Hawking radia-
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Fig. 1 The Page curve, described by the green dashed line, for the
black hole evaporation consistent with the unitarity evolution

tion follows the Page curve [7,8]: the entanglement entropy
of Hawking radiation increases monotonically at the early
period of the black hole evaporation, then reaches a maxi-
mum value at the Page time, and finally has to go to zero at
the end of the evaporation process, as indicated in Fig. 1. It is
expected that the Page curve is obtained in a theory of quan-
tum gravity. Therefore, reproducing the Page curve for the
time evolution of the black hole evaporation is an important
step towards not only resolving the information loss paradox
of black holes but also understanding completely quantum
gravity.

The recent works have shown a significant progress in
deducing the Page curve for the entanglement entropy of
Hawking radiation by taking into account the configuration
with the islands [9–12]. The islands are some regions I which
are completely disconnected from the region R of Hawking
radiation which is assumed to be far away from black holes
such that the backreaction of Hawking quanta on the space-
time geometry is negligible. The boundaries of the islands
extremize the generalized entropy functional and hence they
are called the extremal surfaces. A density matrix relating
to the states of Hawking radiation is normally calculated by
taking the partial trace over the states in the complementary
part of the radiation region. However, by using the quan-
tum extremal surface technique, it was found that the islands
appear in the complementary region of R at the late times of
the black hole evaporation process and hence the states in the
islands should be eliminated from the states which are traced
out. According to the quantum extremal surface prescription,
the entanglement entropy of Hawking radiation is obtained
as the minimum value of the generalized entropy functional
[9,13–17]

S(R) = min

{
ext

[A(∂ I )

4GN
+ Smat(R ∪ I )

]}
, (1)

where GN is the Newton gravitational constant, ∂ I refers to
the island boundaries, A(∂ I ) is the total area or volume of

Fig. 2 The Page curve, described by the green dashed line, for the
black hole evaporation with the island method

the island boundaries for D = 4 or D > 4, respectively, and
Smat is the von Neumann entropy of the quantum fields on
the union of the radiation and island regions.

The island formula (1) means that the entanglement
entropy of Hawking radiation is obtained as the minimum
value of the generalized entropy functional over all possible
extremal surfaces corresponding to all possible locations of
the island. The entanglement entropy of Hawking radiation
calculated in this method contains two contributions which
come from the area term of the island and the von Neumann
entropy of the quantum fields on the union of the radiation
and island regions. At the early time of the black hole evap-
oration, there is no island forming and since the black hole
entanglement wedge contains all the black hole interior. The
entanglement entropy of Hawking radiation thus is the von
Neumann entropy of quantum fields in the black hole exterior
and it increases as more and more Hawking quanta are emit-
ted. However, at the late time, there is the emergence of the
island whose boundary is very close the black hole horizon
and which extends almost through the whole black hole inte-
rior. Consequently, the partners of Hawking quanta which
fall inside the black hole are almost contained in the island.
This means that the von Neumann entropy of the quantum
fields on the union of the radiation and island regions is small.
On the other hand, the dominant contribution for the entan-
glement entropy of Hawking radiation is from the area term
of the island. When the black hole shrinks due to the evap-
oration, this term would decrease. Therefore, the entangle-
ment entropy of Hawking radiation would go to zero when
the black hole evaporates completely. This means that the
behavior of the entanglement entropy of Hawking radiation
with the island method follows the Page curve, as depicted
in Fig. 2.

Interestingly, it was shown that the configuration with the
island can be emerged from the gravitational Euclidean path
integral using the replica trick [18,19]. In the gravitational
replica method, the different replica sheets with the boundary
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conditions kept fixed are connected together by the so-called
replica wormholes which are new saddle points in the grav-
itational Euclidean path integral. In the semi-classical limit,
they are the dominant contributions to the effective action
for the geometry which is a sum of the gravitational action
and the partition function of the quantum fields. In this way,
the presence of the replica wormholes yields the same island
formula for the entanglement entropy of Hawking radiation
as using the quantum extremal surface technique.

The island rule was initially considered for the two-
dimensional gravitational systems where the explicit com-
putations for the entanglement entropy of Hawking radiation
and the Page curve can be easily performed by using the
semi-classical method due to the presence of the high sym-
metries. For the two-dimensional black holes in the context
of Jackiw–Teitelboim (JT) gravity, the islands are emerged
at the later times of the black hole evaporation and hence
their presence makes the entanglement entropy of Hawking
radiation remaining finite at the late stage of the evapora-
tion process [12,18]. The island consideration in the two-
dimensional models was extended to study the asymptoti-
cally flat 2d dilaton black holes [20], the two-sided Janus
black holes [21], and the evaporating black holes [22–24].

Although the four- and higher-dimensional gravitational
systems are complicated due to the lack of the symmetric
analyses, the recent works have demonstrated that the island
rule is applicable to calculate the entanglement entropy of
Hawking radiation and reproduce the Page curve consistent
with the unitarity time evolution. For the four- and higher-
dimensional eternal Schwarzschild black holes, the authors in
[25] showed the emergence of an island whose dominant con-
tribution leads to the finiteness of the entanglement entropy
of Hawking and the Page curve incorporating the unitarity
principle. Here, the boundaries of the island are located in
the outer vicinity of the event horizon of the Schwarzschild
black holes. For considering the backreaction of Hawking
radiation, which is natural in the context of black holes in
a cosmology supported by the radiation, the existence of
islands was pointed out in the cosmological braneworlds [26].
These results have also been confirmed for the Reissner–
Nordström (RN) black holes [27,28], the charged/neutral
dilaton black holes [29–31], the Kaluza–Klein black holes
[32], and the black holes including the higher derivative
terms [33]. Additionally, the islands corresponding to the
left/right entanglement of a conformal defect was studied in
Randall–Sundrum braneworld model involving weakly grav-
itating bath [34]. In this direction, there are also the investiga-
tions about the entanglement of purification and complexities
for multi-boundary wormhole models of islands [35,36].

As mentioned, the island rule has been extended to cal-
culate the entanglement entropy of Hawking radiation for
various black hole geometries which are well-known in the
literature for the four- and higher-dimensional cases. But,

graviton is massless in the gravity frameworks which are
equipped to derive these black hole geometries. In addition,
it was argued that the island proposal coupling the gravitating
bath induces a mass for the bulk graviton [37]. Whereas, the
authors in [38] argued that the islands might not constitute
the consistent entanglement wedges in the gravity theories
with massless graviton. These results imply that calculating
the entanglement entropy of Hawking radiation and the Page
curve for black holes using the island method would be in
the context of massive gravity.

Considering a nonzero mass of graviton is one of the
infrared (IR) modifications of gravity, which has the cosmo-
logical consequences of which the lately accelerating expan-
sion of the universe can be naturally explained without invok-
ing dark energy.1 There are the first attempts to construct a
gravity theory accompanied with a nonzero mass of graviton,
such as Fierz–Pauli (linear) massive gravity [40] or nonlinear
massive gravity with the Vainshtein mechanism [41]. How-
ever, these massive gravity theories suffer from the patho-
logical problems which are well-known as the van Dam–
Veltman–Zakharov discontinuity [42–44] (the predictions in
the massless limit do not coincide with those of Einstein grav-
ity) and the Boulware–Deser (BD) ghost [45]. These patho-
logical problems thus became the obstacle in establishing a
consistent theory of massive gravity. Until recent years, a
significant progress has been made by de Rham, Gabadadze
and Tolley (dRGT) who proposed a nonlinear massive grav-
ity which is free of the BD ghost and gives the same predic-
tion in the massless limit as Einstein gravity does [46,47].
It was shown that the ghost-free potential structure of mas-
sive gravity does not change under the quantum corrections
at one-loop [48]. In the metric formulation of massive grav-
ity, it is difficult to write down the interactions of different
helicity modes of massive spin-2 field due to the square root
structure of potential. However, using the vierbein language
one can obtain the decoupling limit of massive gravity which
consists of the full interactions of the helicity-1 and helicity-0
modes [49]. For reviews about the recent progress in massive
gravity, see [50,51].

It was also pointed that massive gravity has the interesting
implications for cosmology. The authors in [52] argued that
massive gravity allows open Friedmann–Robertson–Walker
(FRW) cosmological solutions contrary to the no-go result
[53] which does not extend to the open FRW universes. Per-
turbations around FRW background solutions were studied
with the extra metric which is promoted to be dynamical [54].
New massive gravity theories proposed in [55] contain sta-
ble cosmological solutions without the requirement of infi-
nite strong coupling. The approaches towards healthy cos-

1 Recently, an upper bound on the mass of graviton as mg < 1.2 ×
10−22 eV has been derived from the direct observations of the gravita-
tional waves by LIGO [39].
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mological solutions were proposed in [56]. In addition, vari-
ous black hole solutions and their thermodynamic properties
have been extensively investigated in massive gravity [57–
74]. The novel thermodynamic phenomena of black holes
in the extended phase space with the cosmological constant
identified as the thermodynamic pressure have been pointed
out in the context of massive gravity like van der Waals phase
transition of black holes [75], the efficiency of heat engine
provided by black holes [76,77], and Joule-Thomson expan-
sion of black holes [78]. The entanglement entropy in the van
der Waals phase transition in the context of massive gravity
was studied in [79]. For another massive object, the the struc-
ture of neutron star was investigated in the context of massive
gravity [80]. Furthermore, the effects of massive gravity on
s-/p-wave holographic superconductors have been explored
in [81–83].

Because of many interesting aspects of massive gravity,
it is worth to study the entanglement entropy of Hawking
radiation and the Page curve by applying the island rule for
the black hole geometries in the context of massive gravity
and analyze the effects due to the nonzero mass of gravi-
ton on them. We consider the four-dimensional black hole
solutions in massive gravity which were found in [58]. The
presence of graviton mass in massive gravity leads to two
new terms in the black hole solutions. The first term cor-
responds to a linear term in the radial coordinate r which
would play the role of the quintessence matter with the proper
coupling parameter of massive gravity. Whereas, the sec-
ond term corresponds to the global monopole solution which
was obtained in the presence of topological defect as a result
of the spontaneous symmetry breaking in the early universe
[84]. Interestingly, the presence of the linear term leads to
the asymptotically non-flat behavior of black hole geome-
tries. The entanglement entropy of Hawking radiation and
the Page curve are explored by the island method for various
black hole geometries corresponding to the asymptotically
flat (AdS/dS) behavior. Hence, it is worth checking whether
the island method is still able to be applied to the black
hole geometries with the asymptotically non-flat behavior,
which is important to show the wide range of applicability
of the island method. In addition, the linear term and global
monopole term modify the dynamic properties and the evap-
oration of black holes. Thus, these terms would lead to the
changes in the entanglement entropy of Hawking radiation
and the Page curve. We find the expressions for the entan-
glement entropy of Hawking radiation, the Page time, and
the scrambling time in the presence of linear term and global
monopole term and analyze their impacts on these quanti-
ties. We point to that in the limit of massless graviton the
expressions for the entanglement entropy of Hawking radi-
ation, the Page time, and the scrambling time would reduce
to the corresponding expressions in the context of Einstein
gravity. This shows a continuity of dRGT massive gravity

with Einstein gravity in the limit which the graviton mass
approaches zero and thus supports theory of dRGT massive
gravity as the consistent theory of modified gravity.

This paper is organized as follows. In Sect. 2, we introduce
the four-dimensional black hole solutions in massive gravity
which were found in [58]. Then, we determine various related
coordinates and rewrite the metric in the Kruskal coordinate,
which are all basis for the evaluations in the next sections. In
Sect. 3, we calculate the entanglement entropy of Hawking
radiation for the neutral black hole without and with the island
which corresponds to the early and late times of the black hole
evaporation, respectively. In addition, we derive the Page and
scrambling times and study the effects of massive gravity on
these quantities, the location of the island boundaries, and
the entanglement entropy of Hawking radiation. In Sect. 4,
we repeat the calculations of Sect. 3 for the charged black
hole in massive gravity for the non-extremal and extremal
cases. With respect to the non-extremal case, the effects of
massive gravity on the Page time and the scrambling time
are qualitatively the same as the neutral black hole when the
distance between the event and Cauchy horizons is not so
close, but in the contrary they drastically change. The results
found for the extremal case are almost different from the one
of the neutral and non-extremal charged black holes due to
their causal structure. Finally, we conclude in Sect. 5.

2 Black holes in massive gravity

In this section, we review briefly the black hole solutions
in the framework of massive gravity in four dimensions,
found in [58]. Then, we introduce the Kruskal coordinate
and rewrite the line element in this coordinate for various
black hole geometries in massive gravity.

The action of massive gravity coupled to the Maxwell field
in four dimensions is given by

S = 1

16πGN

∫
d4x

√−g

[
R + m2

g

4∑
i=1

ciUi (g, f )

−1

4
FμνFμν

]
, (2)

where R is the scalar curvature of spacetime, mg is the gravi-
ton mass, ci are the coupling parameters, f is the reference
(fiducial) metric which is not dynamical, Ui are symmetric
polynomials which are written in terms of the eigenvalues of
the 4 × 4 matrix Kμ

ν = √gμλ fλν as

U1 = [K],
U2 = [K]2 − [K2],
U3 = [K]3 − 3[K][K2] + 2[K3],
U4 = [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4],
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with [K] = Kμ
μ. The corresponding equations of motion

read

Gμν + m2
gχμν = 1

2
FμλFν

λ − 1

8
gμνF

ρλFρλ,

∇μF
μν = 0, (3)

where

χμν = −c1

2

(U1gμν − Kμν

)

−c2

2

(
U2gμν − 2U1Kμν + 2K2

μν

)

−c3

2
(U3gμν − 3U2Kμν + 6U1K2

μν − 6K3
μν)

−c4

2
(U4gμν − 4U3Kμν + 12U2K2

μν

−24U1K3
μν + 24K4

μν). (4)

With the choice of gauge-fixed ansatz for the reference metric
as

fμν = diag(0, 0, c2
0, c

2
0 sin2 θ), (5)

where c0 is a constant set to be one without loss of generality,
the spherically symmetric black hole solution is found as [58]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d2	2,

Fμν = (δtμδrν − δtνδ
r
μ

)
φ(r), (6)

where

f (r) = 1 − 2M

r
+ Q2

r2 + m2
g

(c1r

2
+ c2

)
,

φ(r) = Q

r2 , (7)

with M and Q to be the ADM mass and the electric charge
of the black hole. We see that this black hole solution would
reduce to the Schwarzschild black hole in the massless limit
mg → 0. The asymptotic behavior of the black hole solu-
tion is dependent on the sign of the coupling parameter c1.
For c1 < 0, the term m2

gc1r/2 in the metric function f (r)
plays the role of the quintessence matter with the quintessen-
tial state parameter ωq = −2/3 [85,86]. In this situation,
besides the solutions of the black hole horizons, the equation
f (r) = 0 leads to the solution of the cosmological horizon.
In this work, we only consider the positive sign of c1 which
corresponds to the absence of the cosmological horizon.

In the following, we introduce the Kruskal coordinate and
rewrite the line element in this coordinate for two cases: (i)
Neutral black hole and (ii) Charged black hole.

2.1 Neutral black hole

As the electric charge of the black hole is zero, i.e. Q = 0,
we obtain the neutral black hole solution. In this case, the

black hole only has one (event) horizon which is denoted by
rh given by

rh = 1

m2
gc1

[√
4Mm2

gc1 + (1 + m2
gc2)2 − (1 + m2

gc2)
]
.(8)

We can rewrite the metric function f (r) in the event horizon
rh as follows

f (r) = m2
gc1

2

(r − rh)(r + rh + δ)

r
, (9)

where

δ ≡ 2(1 + m2
gc2)

m2
gc1

. (10)

By defining the tortoise coordinate as

r∗ =
∫

dr

f (r)
= 1

2κ

[
log

|r − rh |
rh

+
(

1 + δ

rh

)
log

(
r + rh + δ

rh + δ

)]
, (11)

where κ refers to the surface gravity at the event horizon
given by

κ = f ′(rh)
2

= m2
gc1(2rh + δ)

4rh
, (12)

we introduce the Eddington–Finkelstein coordinate con-
structed relying on the paths of the radially incoming and
outgoing photons as follows

u = t − r∗, v = t + r∗. (13)

Then, the Kruskal coordinate is defined as

U = −e−κu, V = eκv. (14)

The line element is rewritten in terms of the Kruskal coordi-
nate as

ds2 = −W 2(r)dUdV + r2d	2
2, (15)

where the conformal factor W 2(r) is given by

W 2(r) = 8

m2
gc1

r3
h (rh + δ)

r(2rh + δ)2

(
r + rh + δ

rh + δ

)− δ
rh

. (16)

2.2 Charged black hole

From the behavior of the black hole mass function in terms
of the horizon radius as depicted in Fig. 3, we see that if the
black hole mass is larger than a minimum value Mmin, the
black hole would possess two different horizons which are
the event (outer) horizon r+ and the Cauchy (inner) horizon
r−, corresponding to the non-extremal case. In this situation,
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Fig. 3 The black hole mass function M(rh) versus the event horizon
radius rh , which is inferred from the equation f (rh) = 0, at Q = 1,
mg = 1, and c1 = 1

by parameterizing the metric function f (r) given in Eq. (7)
in terms of the horizons r±, f (r) is rewritten as

f (r) = m2
gc1

2

(r − r+)(r − r−)(r + r+ + r− + δ)

r2 , (17)

where the ADM mass M and the electric charge Q of the
black hole are expressed in terms of the horizons r± as

M = m2
gc1

4

[
(r+ + r−)(r+ + r− + δ) − r+r−

]
,

Q2 = m2
gc1

2
r+r−(r+ + r− + δ). (18)

The tortoise coordinate is defined as

r∗ =
∫

dr

f (r)
= 1

2κ+
log

|r − r+|
r+

+ 1

2κ−
log

|r − r−|
r−

− m2
gc1

8

(r+ + r− + δ)2(r+ − r−)2

r2+r2−κ+κ−

× log

(
r + r+ + r− + δ

r+ + r− + δ

)
, (19)

where κ± are the surface gravity at the horizons r± and are
given by

κ+ = m2
gc1

4r2+
(r+ − r−)(2r+ + r− + δ),

κ− = m2
gc1

4r2−
(r− − r+)(2r− + r+ + δ). (20)

In the Kruskal coordinate defined as

U = −e−κ+u, V = eκ+v, (21)

the line element of the non-extremal charged black hole is
rewritten as

ds2 = −W 2(r)dUdV + r2d	2
2, (22)

where the conformal factor W 2(r) reads

W 2(r) = m2
gc1

2

r+r−(r+ + r− + δ)

(κ+r)2

(
r−

r − r−

) κ+
κ− −1

×
(

r+ + r− + δ

r + r+ + r− + δ

) (r++r−+δ)2(r+−r−)

r2+(2r−+r++δ)
−1

. (23)

Now we consider the case that the black hole mass is equal
to the minimum value Mmin, corresponding to the extremal
case. In this situation, two horizons r± coincide together and
hence the black hole possesses only one horizon at

r+ = r− ≡ re. (24)

The metric function f (r) in Eq. (17) thus becomes

f (r) = m2
gc1

2

(r − re)2(r + 2re + δ)

r2 , (25)

which corresponds to the tortoise coordinate as

r∗ = 2

m2
gc1

[
− r2

e

(r − re)(3re + δ)
+ re(5re + 2δ)

(3re + δ)2 log
|r − re|

re

+
(

2re + δ

3re + δ

)2

log

(
r + 2re + δ

2re + δ

)]
. (26)

Then, in terms of the Kruskal coordinate defined as

U = −e−m2
gc1(3re+δ)

4re
u
, V = e

m2
gc1(3re+δ)

4re
v
, (27)

we rewrite the line element of the extremal charged black
hole as

ds2 = −W 2(r)dUdV + r2d	2
2, (28)

where the conformal factor W 2(r) is given by

W 2(r) = 8

m2
gc1

r4
e (2re + δ)

r2(3re + δ)2

(
r − re
re

) re
3re+δ

×
(
r + 2re + δ

2re + δ

)1− (2re+δ)2

re(3re+δ)

e
re

r−re . (29)

3 Entanglement entropy for neutral black hole

In this section, we are interested in evaluating the entangle-
ment entropy of Hawking radiation which is emitted by the
black hole and identified as the matter sector coupled to grav-
ity. We consider the contribution to the entanglement entropy
from the configurations without and with the islands. For the
case of the island configuration, we will restrict to the calcu-
lation in the presence of one island for simplification without
loss of generality. We will indicate that the configuration of
one island is sufficient to reproduce the finiteness for the
entanglement entropy at the late times and thus it would lead
to the Page curve consistent with the unitarity principle.
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Fig. 4 The Penrose diagram of the eternal neutral black hole in mas-
sive gravity in the absence (left panel) and the presence (right panel) of
the island. The region of Hawking radiation consists of two parts R−
and R+ which lie on the left and right wedges, respectively. b− and b+

represent the boundaries (cutoff surfaces) of R− and R+, respectively. I
refers to the island, extending between the left and right wedges, whose
boundaries are denoted by a±

The Penrose diagram of the eternal neutral black hole
(which is in the thermal equilibrium with a heat bath) without
the island in massive gravity is depicted in the left panel of
Fig. 4 corresponding to the maximally extended spacetime
−∞ < (V + U )/2, (V − U )/2 < +∞. The region of the
Hawking radiation is given by the union of two regions R−
and R+ which are located in the left and right wedges of the
Penrose diagram, respectively. The boundaries of the regions
R− and R+, which are introduced to avoid the IR divergence,
are denoted byb− andb+, respectively. The (t, r) coordinates
for b+ and b− are (tb, b) and (−tb + iβ/2, b), respectively,
where β is the inverse of the Hawking temperature of the
black hole. For the region of Hawking radiation which is
sufficiently far away from the black hole, we can ignore the
backreaction of the matter sector on the spacetime geometry.
With the distance between two boundaries of b+ and b− to
be large enough compared to the scale of the size of these
boundaries, we can consider the approximation of the two-
dimensional conformal field theory (CFT) to compute the
entanglement entropy [25]. We also assume that the initial
state of the system is in the pure state and hence the entan-
glement entropy in the radiation region R− ∪ R+ is equal to
that in its complement which is one interval [b−, b+]. In the
absence of the island, the entanglement entropy is given by
[10,87]

Smat(R− ∪ R+) = c

3
log d(b−, b+)

= c

12
log
[
W 2(b−)W 2(b+)(U (b−)

−U (b+))2(V (b−) − V (b+))2
]
, (30)

where c is the central charge of the two-dimensional CFT
and d(b−, b+) is the geodesic distance between b− and b+
which is calculated for the metric of the following formds2 =
−W 2dUdV .

In the presence of an island, the corresponding Penrose
diagram is shown in the right panel of Fig. 4. The bound-
aries of the island located in the left and right wedges of the

Penrose diagram are represented by a+ and a− whose (t, r)
coordinates are (ta, a) and (−ta + iβ/2, a), respectively. In
the island construction, the generalized entropy is given as

Sgen = 2πa2

GN
+ Smat(R− ∪ R+ ∪ I ), (31)

where the first term is the Bekenstein–Hawking entropy com-
ing from the contribution of two island boundaries and the
entropy of the matter sector Smat(R− ∪ R+ ∪ I ) is calculated
by the formula for two intervals as [88]

Smat(R− ∪ R+ ∪ I )

= c

3
log

[
d(a+, a−)d(b+, b−)d(a+, b+)d(a−, b−)

d(a+, b−)d(a−, b+)

]
.

(32)

According to the prescription of the quantum extremal sur-
face, the dominant contribution for the entanglement entropy
comes from the configuration which minimizes the general-
ized entropy. Therefore, we shall compute the entanglement
entropy by extremizing the generalized entropy over all pos-
sible boundary surfaces of the island and then take the mini-
mal value.

3.1 Entanglement entropy without island

First we study the behavior of the entanglement entropy of
Hawking radiation in the case of the no island configura-
tion. From Eq. (30), one obtains an explicit expression of the
entanglement entropy for the neutral black hole in massive
gravity in the absence of the island as

Smat(R− ∪ R+) = c

6
log

[
4 f (b)

κ2 cosh2 κtb

]

= c

6
log

[
32

m2
gc1

r2
h (b − rh)(b + rh + δ)

b(2rh + δ)2 cosh2 κtb

]


 c

6
log

[
32

m2
gc1

r2
h (b + δ)

(2rh + δ)2 cosh2 κtb

]
, (33)
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where we have used rh � b in third line due to the boundaries
of the radiation region assumed to be far away from the black
hole. At the early time approximation tb � 1/κ or tb � rh ,
we have

Smat(R− ∪ R+) 
 c

6
log

[
32

m2
gc1

r2
h (b + δ)

(2rh + δ)2

]

+ c

6

[
m2

gc1(2rh + δ)

4rh
tb

]2

. (34)

Here, the first term is the entanglement entropy of the radi-
ation region at the initial state up to a constant and the sec-
ond term manifests the quadratic growth of the entanglement
entropy with time at the early times. For tb � 1/κ corre-
sponding to the late times, we find

Smat(R− ∪ R+) 
 m2
gc1(2rh + δ)c

12rh
tb. (35)

This expression implies that the entanglement entropy of
Hawking radiation increases linearly in time and becomes
infinite as tb → ∞, which corresponds to the fact that the
distance between two regions R− and R+ is very large at
the late times. The infinitely large value of the entanglement
entropy in the limit tb → ∞ means that the information
about the initial-state matter which collapses into the black
hole or the information about the particles falling into the
black hole cannot be retrieved from the Hawking radiation.
In this sense, the contribution of the no island configuration
to the entanglement entropy leads to the non-unitary time
evolution of the black hole in the evaporation process. In the
next subsection, we will show that this conflicting issue with
the unitarity of quantum mechanics can be resolved with the
island configuration which emerges at the late times of the
evaporation process.

3.2 Entanglement entropy with an island

We calculate the entanglement entropy of Hawking radiation
with including the contribution of the configuration with an
island. From Eqs. (31) and (32), we can write the generalized
entropy in the presence of one island for the metric (15) as

Sgen = 2πa2

GN
+ c

6
log
[
16W 2(a)W 2(b)e2κ(r∗(a)+r∗(b))

× cosh2(κta) cosh2(κtb)
]+ c

3

× log

[
cosh(κ(r∗(a) − r∗(b))) − cosh(κ(ta − tb))

cosh(κ(r∗(a) − r∗(b))) + cosh(κ(ta + tb))

]
,

(36)

where the first term comes from the two-sided area of the
boundaries of the island and the second and third terms are
the contributions of the matter fields on the union of the
radiation and island regions.

In the presence of the island, let us study the behavior of
the entanglement entropy at the early and late times of the
black hole evaporation:

Early times At the early times of the black hole evapora-
tion, the entanglement entropy of Hawking radiation is small
and hence the island should be lie inside the black hole. In
addition, we assumed the boundaries of the radiation region
far away from the event horizon of the black hole. These lead
to the following approximation [25,27]

rh � b, ta, tb � 1/κ � r∗(b) − r∗(a). (37)

As a result, we can properly neglect the third term in the
expression (36) and thus we obtain

Sgen = 2πa2

GN
+ c

3

[
κr∗(a) + log W (a)

]+ c

6
(κta)

2 + · · ·


 2πa2

GN
+ c

6

[
log |a − rh |

+ log(rh + a + δ) − log a
]+ c

6
(κta)

2 + · · · , (38)

where the ellipses refer to the terms which are independent
on a and ta . In order to find the position of the island bound-
aries which extremize the generalized entropy Sgen, we need
to extremize Sgen given in Eq. (38) over all possible (a, ta)
locations of island according to the island method [9,13–17],
which means that we need to solve the following extremizing
equations

∂Sgen

∂a
= 0,

∂Sgen

∂ta
= 0. (39)

Note that, on the black hole interior the radial coordinate r is
actually the timelike coordinate. Hence, at the early times we
have a/rh � 1. Using this approximation and cGN/r2

h � 1,
we obtain the location of the island boundaries as

a 

√

c

24π

[
1 +

√
cGN

6πr2
h

δ

4(rh + δ)

]
lP , (40)

where lP ≡ √
GN is the Planck length. This result indicates

that the size of the island at the early times is about the Planck
length. However, the upper cutoff length in the derivation of
the island formula should be far above the Planck length
where the Planck scale physical degrees of freedom are inte-
grated out. This can be realized from the assumption of the
replica symmetry, which is broken by the effects of quantum
gravity, to derive the island formula for the entanglement
entropy [18,19]. In this sense, the island would not emerge
at the early times. Thus, the entanglement entropy at the early
times should be determined by the geometry configuration
without island and since it grows with time, as analyzed in
the previous subsection.

Furthermore, we note that massive gravity does not make
a significant effect on the size of the island given in Eq. (40).
This is realized from the fact that the nonzero mass of graviton

123



Eur. Phys. J. C           (2022) 82:381 Page 9 of 18   381 

can be considered as the IR or long-length corrections which
hence do not affect significantly on the physics in the Planck
scale region.

Late times We turn to consider the late time behavior of
the entanglement entropy. In this situation, the approximation
is taken as [25,27]

1/κ � r∗(b) − r∗(a) � ta, tb, (41)

which leads to

cosh κta,b 
 1

2
eκta,b ,

cosh κ(ta + tb) � cosh(κ(r∗(b) − r∗(a)). (42)

With this approximation, the time-dependent component of
the generalized entropy is approximated as

St-dep 
 c

3
log

[
cosh(κ(r∗(a) − r∗(b))) − cosh(κ(ta − tb))

2

]
.

(43)

From this expression, it is straightforward to find that extrem-
izing the generalized entropy with respect to ta leads to ta =
tb. Substituting this result into the generalized entropy within
the approximation (41), we obtain the following approximate
expression

Sgen 
 2πa2

GN
+ c

6
log
[
W 2(a)W 2(b)

]

+2c

3
κr∗(b) − 2c

3
e−κ(r∗(b)−r∗(a))


 2πa2

GN
+ c

3
log

[
8r2

h (rh + δ)

m2
gc1(2rh + δ)2

(b − rh)√
ab

×
(
a + rh + δ

rh + δ

)− δ
2rh
(
b + rh + δ

rh + δ

) δ+2rh
2rh

⎤
⎦

−2c

3

∣∣∣∣a − rh
b − rh

∣∣∣∣
1/2 (a + rh + δ

b + rh + δ

) δ+rh
2rh

. (44)

This expression suggests that the entanglement entropy is no
longer dependent on time at the late times.

We consider the situation that the island is located near the
event horizon, i.e. a = rh+ε+O(ε2) with ε � 1. By solving
perturbatively the extremizing condition ∂Sgen/∂a = 0, we
find

a 
 rh

⎡
⎣1 +

(
cGN

r2
h

)2
1

144π2

rh
b − rh

(
2rh + δ

b + rh + δ

) rh+δ

rh

⎤
⎦ .

(45)

Clearly, the second term is positive and is suppressed by the
second power of cGN/r2

h , which is really small as expected.
This implies that the location of the island boundaries is
slightly outside the event horizon of the black hole. We also

observe that the nonzero mass of graviton affects directly and
indirectly on the the location of the island boundaries through
the terms relating to δ and the modification of the event hori-
zon radius rh , respectively. However, due to the fact that the
second term in Eq. (45) is small, the direct effects of massive
gravity on the location of the island boundaries are negligible
compared to its indirect effects. From the expansion of the
event horizon radius in terms of the graviton mass mg for the
small mg situation (which is consistent with the fact) as

rh = 2M
[
1 − (c2 + c1M)m2

g + O(m4
g)
]
, (46)

we realize that the nonzero mass of graviton which makes the
location of the island boundaries shifting inside or outside the
black hole depends on the sign of the term c2 + c1M . If the
black hole mass is larger than the ratio −c2/c1 or the event
horizon radius of the corresponding Schwarzschild black
hole (in Einstein gravity) is larger than the ratio −2c2/c1,
the location of the island boundaries would be closer to the
event horizon of the black hole compared to Einstein gravity.
On the contrary, the location of the island boundaries would
be pushed further.

In addition, as the location of the cutoff surface approaches
the event horizon, the second term in Eq. (45) becomes large
and hence it is no longer considered as the correction. This
means that in this situation the boundaries of the island are
not close to the event horizon. Consequently, some part of the
island would lie inside the region of Hawking radiation and
hence the concept of the island here does not make sense. On
the other hand, the calculation of the entanglement entropy
using the island formula is invalid if the radiation region is
close to the event horizon.

By substituting the location of the island boundaries given
in Eq. (45) into the approximate expression of the generalized
entropy at the late times given in Eq. (44), we determine the
entanglement entropy as

SEE = 2πr2
h

GN
+ c

3
log

⎡
⎣ 8r3/2

h (b − rh)

m2
gc1(rh + δ)

√
b

(
2rh + δ

rh + δ

)− δ+4rh
2rh

×
(
b + rh + δ

rh + δ

) δ+2rh
2rh

⎤
⎦+ O

(
cGN

r2
h

)
.

(47)

Here, the first term is twice of the Bekenstein–Hawking
entropy of the black hole, which comes from the area of
two-sided island and it is the dominant contribution to the
entanglement entropy. On the other hand, the entanglement
entropy which is observed in a single side of the Penrose
diagram is approximately the Bekenstein–Hawking entropy.
The second term is the logarithm correction for the entangle-
ment entropy, which comes from the quantum nature of the
matter fields. Other correction terms are strongly suppressed
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by the powers of cGN/r2
h and thus they are very small. In

this way, the presence of the island which becomes the dom-
inant configuration at the late times leads a finite saturation
value for the entanglement entropy which is approximated
at the leading order to be twice of the Bekenstein–Hawking
entropy. The expansion (46) implies that at the leading order
the nonzero mass of graviton reduces(raises) the bound of
the entanglement entropy of Hawking radiation compared to
the massless case if the black hole mass is larger(smaller)
than the ratio −c2/c1.

In summary, we have calculated the entanglement entropy
of Hawking radiation by extremizing the generalized entropy
over all possible boundary surfaces of the island from which
we determine the location of the island boundaries and then
we obtain a minimum value. At the early stage of the black
hole evaporation, no island is emerged and the configuration
without the island minimizes the generalized entropy. As a
result, in during this moment the entanglement entropy is
approximately a linearly increasing function in time. How-
ever, this behavior of the entanglement entropy changes dras-
tically at the late stage of the black hole evaporation as the
island appears with its boundaries located slightly outside
the event horizon. The configuration with the island leads
to a minimum value of the generalized entropy which is
twice of the Bekenstein–Hawking entropy of the black hole
at the leading order. Interestingly, transition between the lin-
ear growth and time-independent constant behaviors of the
entanglement entropy can be realized from Page’s argument
that the entanglement entropy can be approximately given
by the thermal entropy of the subsystem if it is sufficiently
small compared to the total system [7,8]. In the beginning
of the black hole evaporation where the amount of Hawk-
ing radiation emitted by the black hole and entering into the
boundaries of the radiation region is still small, the radiation
region is substantially smaller than the total system. Thus,
the entanglement entropy can be approximated by the ther-
mal entropy of the radiation which grows with time due to
the increasing of the amount of the radiation. But, as the
amount of the radiation becomes more and more at the late
stage of the black hole evaporation, the subsystem would
be replaced by the black hole and hence the entanglement
entropy stops the growth with time and reaches the bound of
the Bekenstein–Hawking entropy of the black hole.

We can check that our calculations for the location of
the island boundaries and the entanglement entropy with
the island configuration would reduce to the correspond-
ing results of the four-dimensional Schwarzschild black hole
[25] in the limit of that the graviton mass goes to zero, i.e.
mg → 0. By using the fact that mg → 0 corresponds to
δ → ∞ and the following limit

lim
δ→∞

(
1 + x

δ

)δ = ex , (48)

we find the results in the case of the four-dimensional
Schwarzschild black hole as follows

a −→ rh + (cGN )2

144π2r2
h (b − rh)

e
rh−b
rh ,

SEE −→ 2πr2
h

GN
+ c

6
log

[
16r3

h (b − rh)2

b
e
b−rh
rh

]

+O
(
cGN

r2
h

)
, (49)

where rh = 2M .

3.3 Page time and scrambling time

The results of the previous subsections allow us to sketch
the behavior of the entanglement entropy in time as shown
in Fig. 5. We observe that, at the first stage of the black hole
evaporation, the entanglement entropy grows linearly with
time due to the dominant contribution of the configuration
without the island. At the late stage of the black hole evapo-
ration, the island emerges near the event horizon and becomes
the preferred configuration. As a result, the linear growth of
the entanglement entropy reaches maximum and is replaced
by a constant.

The Page time is the moment that the entanglement
entropy reaches the maximal value corresponding to the
transition between two configurations without and with the
island. From Fig. 5, we see that the Page time can be approx-
imately calculated from the crossing of the solid blue line
(the early times without the island) and the solid red line (the
late times with the island). On the other hand, by equating
Eqs. (35) and (47), we derive the Page time as

tPage 
 24πr3
h

m2
gc1(2rh + δ)cGN

= 3SBH

πcTH
, (50)

Fig. 5 The Page curve for the neutral black hole in massive gravity.
The solid and dashed blue lines refer to the time evolution of the entan-
glement entropy at the early times and the late times without the island,
respectively. The solid red line stands for the entanglement entropy at
the late times in the presence of an island
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where TH = κ/2π is the Hawking temperature of the neutral
black hole. In order to see the effect of the graviton mass mg

on the Page time, let us expand the expression of the Page
time just obtained in terms of mg as

tPage = 96πM3

cGN[
1 − (4c2 + 5c1M)m2

g + O(m4
g)
]
, (51)

where the first term is the Page time for the Schwarzschild
black hole in the context of Einstein gravity (corresponding
to the massless graviton) and the second and higher order
terms are the contributions due to the nonzero mass of gravi-
ton. The expression (51) suggests that the nonzero mass of
graviton makes the evaporation of the neutral black hole more
quickly to reach the Page time compared to the massless case
if the black hole mass M is larger than the ratio −4c2/5c1.
Of course, this happens the contrary for M < −4c2/5c1. The
reduction (or the increasing) of the Page time in massive grav-
ity with the proper coupling parameters c1,2 can be under-
stood as follows. First, with M > −c2/c1 the Bekenstein–
Hawking entropy of the black hole or the bound of the entan-
glement entropy in massive gravity is smaller than that in
Einstein gravity. This means that the system in massive grav-
ity takes a shorter duration to reach the entropy bound if the
Hawking temperature of the black hole in two theories of
gravity is the same. Second, by expanding the Hawking tem-
perature of the black hole in massive gravity as

TH = 1

8Mπ

[
1 + (2c2 + 3c1M)m2

g + O(m4
g)
]
, (52)

where the first term is the Hawking temperature of the con-
ventional Schwarzschild black hole and the remaining terms
come from the presence of the graviton mass, we find that
the Hawking temperature of the neutral black hole in massive
gravity is larger than that in Einstein gravity in the region of
M > −2c2/3c1. The larger temperature means that the black
hole emits the Hawking radiation more rapidly and hence it
yields the appearance of the island more early. Combining
the behavior of both the Bekenstein–Hawking entropy and
the Hawking temperature in terms of the coupling parame-
ters of massive gravity leads the intermediate value −4c2/5c1

which lies between −c2/c1 and 2c2/3c1.
The presence of the island reproduces the behavior of the

entanglement entropy following the Page curve. Thus, we
can consider the scrambling time which is defined as the
minimum time for the recovery of the information which can
be retrieved from the Hawking radiation after falling into
the black hole according to the Hayden–Preskill protocol
[89]. Recall that, in the entanglement wedge construction
according to the prescription of the island, the density matrix
of the Hawking radiation is represented by the union of the
radiation region R− ∪ R+ and the island. This implies that

the information of the signal which is thrown into the island
is not contained in the black hole but it could be decoded
by the Hawking radiation. If an observer sends a signal from
the cutoff surface, it would reach the island after an earliest
duration tscr identified as the scrambling time defined as

tscr = r∗(b) − r∗(a) = 1

2κ

[
log

∣∣∣∣b − rh
a − rh

∣∣∣∣
+
(

1 + δ

rh

)
log

(
b + rh + δ

a + rh + δ

)]


 1

κ
log

r2
h

GN

 1

2πTH
log SBH. (53)

The leading order contribution for the scrambling time is pro-
portional to the inverse of the Hawking temperature and the
logarithm of the black hole entropy, which is consistent with
the result obtained in Ref. [90]. In this way, the expression
of the scrambling time at the leading order is universal. Fur-
thermore, we observe that the scrambling time is very small
compared to the Page time. In order to see the explicit influ-
ence of the nonzero mass of graviton on the scrambling time,
we expand the expression for tscr as

tscr = 4M log
4πM2

GN

− 4M

[
2(c2 + c1M) + (2c2 + 3c1M) log

4πM2

GN

]
m2

g

+O(m4
g), (54)

where the first term is the prediction of Einstein gravity. This
expression implies that the presence of the graviton mass
would reduce the scrambling time if the ratio of the massive
gravity coupling parameters c1,2 satisfies

c2

c1
> −M

2

⎛
⎝3 − 1

1 + log 4πM2

GN

⎞
⎠ . (55)

4 Entanglement entropy for charged black holes

In this section, we shall compute the entanglement entropy
of Hawking radiation with the absence and presence of the
islands, the Page time, and the scrambling time for the non-
extremal and extremal charged black holes in massive grav-
ity. The arguments and the method which are presented in
the case of the neutral black hole can still be applied for the
situation of the nonzero electric charge. There are some dif-
ferences for the extremal charged black hole, which are due
to its Penrose diagram to be a one-sided geometry, rather
than the two-sided geometry like the Penrose diagram of the
neutral and non-extremal charged black holes.
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4.1 Non-extremal case

First, we consider the non-extremal charged black hole whose
metric in the Kruskal coordinate is given by (22). The Penrose
diagram without and with the island configuration is depicted
in the left and right panels of Fig. 6, respectively.

For the case of the configuration with no island, the entan-
glement entropy is obtained as

Smat(R− ∪ R+)

= c

6
log

[
4 f (b)

κ2+
cosh2 κ+tb

]


 c

6
log

[
32

m2
gc1

r4+(b + δ)

(r+ − r−)2(2r+ + r− + δ)2 cosh2 κ+tb

]
,

(56)

where we have used the approximation rh � b. In analogy to
the neutral black hole which we study in the previous section,
the entanglement entropy for the non-extremal charged black
hole with no island grows linearly with time in the limit of
1/κ+ � tb and thus it becomes infinite at the late stage
of the evaporation. Of course, this is inconsistent with the
unitarity time evolution. Therefore, we expect the emergence
of the island configuration which minimizes the generalized
entropy by which the entanglement entropy stops the linear
increasing and reaches a saturation value.

Now we arrive at the case of the configuration with one
island. The generalized entropy with an island at the early
times reads

Set
gen = 2πa2

GN
+ c

3

[
κ+r∗(a) + log W (a)

]+ c

6
(κ+ta)2 + · · ·


 2πa2

GN
+ c

6

[
log |a − r+| + log |a − r−|

+ log(a + r+ + r− + δ) − 2 log a
]

+ c

6
(κ+ta)2 + · · · , (57)

where the ellipses refer to the terms independent on the
temporal and spatial location of the island boundaries. By
extremizing Set

gen with respect to a, we find

a 

√

c

12π

[
1 +

√
cGN

3πr2+

r2+ + r2− + r+r− + δ(r+ + r−)

8r−(r+ + r− + δ)

]
lP ,

(58)

which implies that the size of the island in the beginning of
the black hole evaporation is in order of the Planck length.
On the other hand, no island emerges at the early times and
thus the behavior of the entanglement entropy is governed
by the configuration with no island.

Next we study the late time behavior of the entanglement
entropy in the presence of the island. The generalized entropy

in this situation is found as

Slt
gen 
 2πa2

GN
+ c

6
log
[
W 2(a)W 2(b)

]

+2c

3
κ+r∗(b) − 2c

3
e−κ+(r∗(b)−r∗(a))


 2πa2

GN
+ c

6
log

[
f (a) f (b)

κ4+
e2κ+(r∗(b)−r∗(a))

]

−2c

3
e−κ+(r∗(b)−r∗(a))


 2πa2

GN

+ c

3
log

[
m2

gc1

2

(b − r+)(b − r−)(b + r+ + r− + δ)

κ2+ab

]

+ c

6

(
κ+
κ−

− 1

)
log

∣∣∣∣b − r−
a − r−

∣∣∣∣
+ c

6

[
(r+ + r− + δ)2(r+ − r−)

r2+(2r− + r+ + δ)
− 1

]

× log

(
b + r+ + r− + δ

a + r+ + r− + δ

)

−2c

3

∣∣∣∣a − r+
b − r+

∣∣∣∣
1
2
∣∣∣∣a − r−
b − r−

∣∣∣∣
κ+

2κ−

(
a + r+ + r− + δ

b + r+ + r− + δ

) (r++r−+δ)2(r+−r−)

2r2+(2r−+r++δ)

, (59)

where we have used the fact that ta = tb extremizes the
generalized entropy. In order to find the spatial location of
the island boundaries, we extremize the generalized entropy
Slt

gen with respect to a where the boundaries of the island are
located in the vicinity of the event horizon. The solution for
a = rh + ε + O(ε2) to the subleading order approximation
is derived as

a 
 r+

⎡
⎣1 +

(
cGN

12πr2+

)2
r+

(b − r+)

(
r+ − r−
b − r−

) κ+
κ−

×
(

2r+ + r− + δ

b + r+ + r− + δ

) (r++r−+δ)2(r+−r−)

r2+(2r−+r++δ)

⎤
⎦ . (60)

Here, we see that in analogy to the case of the neutral
black hole the subleading term of the location of the island
boundaries is suppressed by (cGN/r2+)2 and the higher order
terms should be strongly suppressed by the further powers of
cGN/r2+. Then, by inserting the location of the island bound-
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Fig. 6 The Penrose diagram of the eternal non-extremal charged black
hole in massive gravity with the no island configuration (left panel) and
the island configuration (right panel). The radiation region is the union

of two parts R± whose boundaries are denoted by b±. I refers to the
island with the boundaries represented by a±

aries just obtained into Slt
gen, the entanglement entropy for the

non-extremal black hole is finally determined as

SEE = 2πr2+
GN

+ c

3
log

[
m2

gc1

2

(b − r+)(b − r−)(b + r+ + r− + δ)

κ2+r+b

]

+ c

6

(
κ+
κ−

− 1

)
log

(
b − r−
r+ − r−

)

+ c

6

[
(r+ + r− + δ)2(r+ − r−)

r2+(2r− + r+ + δ)
− 1

]

× log

(
b + r+ + r− + δ

2r+ + r− + δ

)
+ O

(
cGN

r2+

)
. (61)

This result indicates that the entanglement entropy at the late
times would reach a saturation value whose leading order is
the twice of the Bekenstein–Hawking entropy of the black
hole, i.e. SEE 
 2πr2+/GN = 2SBH. Beside, it obtains
the logarithm corrections coming form the quantum mat-
ter. Other correction terms are suppressed by the powers of
cGN/r2+.

We expand the leading contribution of the entanglement
entropy SEE for the non-extremal black hole in terms of the
graviton mass as

SEE = 2πr2
0+

GN

[
1 − r0+(2c2 + c1r0+)

r0+ − r0−
m2

g + O(m4
g)

]
,

(62)

where r0± = M ±√M2 − Q2 are the the radii of the event
and Cauchy horizons of the RN black hole corresponding
to Einstein gravity or the case of massless graviton. Similar
to the neutral black hole, if the event horizon radius of the
corresponding RN black hole (in Einstein gravity) is larger
than the ratio −2c2/c1, the nonzero mass of graviton would
reduce the entanglement entropy compared to the massless
case.

The Page time for the non-extremal charged black hole is
easily derived as tPage = 3SBH/πcTH where TH = κ+/2π

from equating the linear growth of the entanglement entropy
at the early times with the asymptotic constant value 2SBH.
We expand the Page time in terms of m2

g as

tPage = 12πr4
0+

cGN (r0+ − r0−)[
1 − r0+

2

4c2(2r0+ − 3r0−) + c1r0+(5r0+ − 7r0−)

(r0+ − r0−)2 m2
g

+O(m4
g)

]
, (63)

where the first term is the Page time associated with the RN
black hole and the second and higher order terms are the
contributions arising due to the nonzero mass of graviton.
We observe that if the following relation

4c2

c1
> −r0+(5r0+ − 7r0−)

2r0+ − 3r0−
, (64)
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is satisfied, the entanglement entropy in massive gravity
would take a shorter time to reach the saturation value, and on
the contrary it would take a longer time for the emergence of
the island. As discussed in the case of the neutral black hole,
this is because massive gravity with the coupling parame-
ters satisfying (64) reduces the bound of the entanglement
entropy or/and increases the Hawking temperature causing
the black hole radiating more rapidly. However, there is an
important difference between the neutral black hole and the
non-extremal charged black hole in massive gravity. With
respect to the neutral black hole, the Page time in massive
gravity is always smaller than that in Einstein gravity for the
coupling parameters c1,2 which are both positive. But, with
respect to the non-extremal charged black hole, this only hap-
pens if r0+ (or the black hole mass) is sufficiently far from r0−
(or the electric charge of the black hole). Whereas, when r0+
is sufficiently close to r0−, the second term in (63) is positive
which means that the Page time for the non-extremal charged
black hole in massive gravity is larger than that in Einstein
gravity.

We compute the scrambling time for the non-extremal
charged black hole in massive gravity, which is obtained as

tscr 
 1

2πTH
log SBH


 2r2
0+

r0+ − r0−
log

(
πr2

0+
GN

)

− m2
gr

3
0+

(r0+ − r0−)3

[
2(r0+ − r0−)(2c2 + c1r0+)

+[4c2(r0+ − 2r0−)

+c1r0+(3r0+ − 5r0−)] log

(
πr2

0+
GN

)]
+ O(m4

g).

(65)

This expression implies that the scrambling time is very small
compared to the Page time and its behavior in the parameters
of massive gravity is basically the same as the Page time for
the non-extremal charged black hole discussed above.

In the limit of the vanishing electric charge or the Cauchy
horizon radius approaching zero, one can easily see that the
size of the island, the entanglement entropy, the Page time,
and the scrambling time reproduce the corresponding results
for the neutral black hole as obtained in the previous section.
Also, in the limit of the massless gravitonmg → 0, our calcu-
lations for these quantities would reduce the corresponding
computations for the RN black hole reported by the authors
in [27].

4.2 Extremal case

For the extremal charged black hole, the metric in the Kruskal
coordinate is given in Eq. (28) and the Penrose diagram is

shown in Fig. 7. Compared to the non-extremal case, the radi-
ation region is only given by one region R+. In the absence
of the island, the entanglement entropy is computed as

S(R) = c

3
log d(b+, b0)

= c

12
log
[
W 2(b)W 2(0)(U (b)

−U (0))2(V (b) − V (0))2
]
, (66)

where b0 = (tb, 0) is a reference point which represents the
touch of the Cauchy surface at the singularity. Unfortunately,
the conformal factor W 2(0) is ill-defined because this func-
tion is divergent at r = 0. As a result, the computation of
the entanglement entropy as well as the Page time in the
absence of the island would lead to the ill-defined result in
the extremal case. However, we hope that the UV correc-
tions at the very short distances such as the nonperturbative
renormalization group in the quantization of Einstein gravity
[91–93], string T-duality [94] or noncommutative geometry
[95] would make the conformal factor W 2(r) in the Kruskal
coordinate behaving smoothly as r approaches zero. And,
since it would be able to yield a finite result for the compu-
tation of the entanglement entropy and the Page time. This
would be further investigated in our future works.

In the presence of an island, the singularity at r = 0 as
discussed above can be avoided because in this situation the
entanglement entropy is proportional to the logarithm of the
geodesic distance between the boundary of the island and
the cutoff surface. More specifically, the generalized entropy
for the extremal case with the contribution of one island is
computed as

Sgen = πa2

GN
+ c

3
log d(a+, b+)

= πa2

GN
+ c

6
log

[
8r2

e

m2
gc1(3re + δ)2

|a − re||b − re|
ab

×(a + 2re + δ)
1
2 (b + 2re + δ)

1
2

]

+ c

6
log

[
2 cosh

(
m2

gc1(3re + δ)

4re
(r∗(b) − r∗(a))

)

−2 cosh

(
m2

gc1(3re + δ)

4re
(ta − tb)

)]
, (67)

where

m2
gc1(3re + δ)

4re
(r∗(b) − r∗(a))

= re(b − a)

2(b − re)(a − re)
+ 5re + 2δ

2(3re + δ)
log

∣∣∣∣b − re
a − re

∣∣∣∣
+ (2re + δ)2

2re(3re + δ)
log

(
b + 2re + δ

a + 2re + δ

)
. (68)

123



Eur. Phys. J. C           (2022) 82:381 Page 15 of 18   381 

b0 b

R

a b

R

I

Fig. 7 The Penrose diagram of the eternal extremal charged black hole in massive gravity without island (left panel) and with one island (right
panel). The radiation region is represented by R+ with the boundary b+. I denotes the island extending from the singularity to its boundary a+

It is straightforward to see that the extremal condition
∂Sgen/∂ta = 0 leads to ta = tb. In addition, we assume
that the location of the island boundary is slightly outside the
horizon re of the black hole, i.e. a ≈ re, as well as the cutoff
surface of the radiation region is far away from the horizon
re of the black hole. With this assumption b � re ≈ a, we
have the following approximation

2 cosh

(
m2

gc1(3re + δ)

4re
(r∗(b) − r∗(a))

)


 e
m2
gc1(3re+δ)

4re
(r∗(b)−r∗(a)) � 1. (69)

By extremizing the generalized entropy within this approx-
imation with respect to a, we find the location of the island
boundary as

a 
 re

[
1 +

√
cGN

24πr2
e

]
, (70)

where the subleading term is suppressed by square root of
cGN/r2

e , rather than the second power as in the cases of
the neutral and non-extremal charged black holes. Then, the

entanglement entropy reads

SEE = πr2
e

GN
+
√

6πr2
e

cGN
+
√

πcr2
e

6GN
+ O(c), (71)

where the terms relating to the first order of c are the log-
arithm corrections which are small compared to the sub-
leading terms. We observe that the entanglement entropy
for the extremal charged black hole becomes a finite con-
stant at the late times of the evaporation, like the neu-
tral and non-extremal charged black holes. However, there
here is an important difference that the asymptotic con-
stant value for the entanglement entropy with respect
to the extremal charged black hole is approximately the
Bekenstein–Hawking entropy (rather than the twice of the
Bekenstein–Hawking entropy), i.e. SEE 
 πr2

e /GN =
SBH . This is due to the essential difference in their causal
structure: the Penrose diagram of the neutral and non-
extremal charged black holes is the two-sided geome-
try, whereas the Penrose diagram of the extremal charged
black hole is the one-sided geometry. This difference also
implies that one cannot derive the entanglement entropy for
the extremal charged black hole by taking the continuous
extremal limit r+ → r− of the non-extremal charged black
hole.
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5 Conclusion

There are the arguments [37,38] which implied that calculat-
ing the entanglement entropy of Hawking radiation and the
Page curve for black holes using the island method would be
considered in the situation of massive graviton. This is one
of the reasons that we consider the entanglement entropy
of Hawking radiation and the Page curve using the island
method in the framework of dRGT massive gravity which is
considered as a candidate for a consistent theory of gravity
accompanied with a nonzero mass of graviton. Furthermore,
an interesting aspect of black holes in the context of dRGT
massive gravity is that the behavior of black hole geometries
is asymptotically non-flat. For various black hole geome-
tries corresponding to the asymptotically flat behavior, it
was pointed to that the island is emerged at the late time of
the black hole evaporation where the boundary of the island
is very close the black hole horizon and the island extends
almost through the whole black hole interior. In this work,
we also show the emergence of the island at the late time
of the evaporation the same as the cases of the asymptoti-
cally flat black hole geometries. This result and the previous
confirmations thus support the emergence of the island at
the late time of the evaporation as a universal feature of the
semiclassical description of the black hole evaporation: the
computations based on the semiclassical description of the
black hole evaporation can create replica wormholes or the
island where the information is stored; since the black hole
evaporation follows the Page curve consistent with the uni-
tarity evolution.

More explicitly, we calculated the entanglement entropy
of Hawking radiation emitted by the eternal black holes,
the corresponding Page curve, and the scrambling time in
the context of massive gravity whose free parameters are
the graviton mass and two coupling parameters c1,2 in four
dimensions. In our calculations, we first employ the island
rule which was recently obtained by using the quantum
extremal surface technique as well as from the gravitational
Euclidean path integral using the replica trick. According
to the prescription of the quantum extremal surface, the
entanglement entropy is derived as the minimum value of
the generalized entropy which is a sum of the Bekenstein–
Hawking entropy of the island boundaries and the von Neu-
mann entropy of the matter fields on the union of the radiation
region and the island. In order to find the minimum value of
the generalized entropy, we need to extremize the general-
ized entropy over all possible boundary surfaces of the island.
Second, we use the approximation of the two-dimensional
conformal field theory where the contribution of the matter
sector to the entanglement entropy is easily computed as the
logarithm of the disjoint intervals, when the distance between
the cutoff surfaces of the radiation region is sufficiently large
compared to the scale of the size of the cutoff surfaces.

For the neutral and non-extremal black holes, we indi-
cate that the island does not appear at the early times of
the black hole evaporation or in other words the no island
configuration is the dominant contribution to the entangle-
ment entropy at the early stage of the evaporation. Hence, the
entanglement entropy grows linearly with time. However,
as the amount of Hawking radiation becomes sufficiently
large at the late times, the island emerges slightly outside
the event horizon of the black holes and becomes the pre-
ferred configuration by which the growth of the entanglement
entropy reaches a finite saturation value which is the twice
of the Bekenstein–Hawking entropy of the black hole at the
leading order. Furthermore, we calculate the Page time and
scrambling time which are approximately given by 3SBH

πcTH
and

log SBH
2πTH

, respectively, which is universal for various black hole
geometries [25,27–32]. Whereas, for the extremal charged
black hole, the entanglement entropy at the early times with-
out the island is ill-defined because the conformal factor of
the metric in the Kruskal coordinate is divergent at r = 0 cor-
responding to that the Cauchy surface hits the curvature sin-
gularity. This implies that we need to consider new physics
in the UV region which would make the metric behaving
smoothly at the very short distances, which will be further
investigated in our future works. At the late times when the
island is formed, the entanglement entropy for the extremal
charged black hole reaches the saturation value which is the
Bekenstein–Hawking entropy. The differences between the
extremal charged black hole and the non-extremal charged
(and neutral) black hole are due to their Penrose diagram:
the Penrose diagram of the neutral and non-extremal charged
black holes is the two-sided geometry, whereas it is the one-
sided geometry for the extremal charged black hole. We also
show that the corresponding results of the Schwarzschild and
Reissner–Nordström black holes are restored in the limit of
that the graviton mass goes to zero.

In addition, we study the impact of the parameters of
massive gravity on the size of the island, the entanglement
entropy, the Page time, and the scrambling time. The direct
impact of massive gravity can be ignored compared to its
indirect impact which modifies the horizon radius of the
black hole. An analytic investigation can be performed in
the region of the small graviton mass which is consistent
with the presently experimental constraint. If the black hole
mass M for the case of the zero electric charge (or a combi-
nation of the mass and the electric charge of the black hole
for the case of the nonzero electric charge) is larger than
−c2/c1, the bound of the entanglement entropy in massive
gravity is lower than that in Einstein gravity, and this happens
the contrary for M < −c2/c1. This suggests that, with the
nonzero mass of graviton and the proper coupling parame-
ters, it takes a shorter duration in order for the entanglement
entropy reaching the saturation value.
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