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Abstract The derivation of effective quantum gravity cor-
rections to Newton’s potential is an important step in the
whole effective quantum field theory approach. We hereby
add new strong arguments in favor of omitting all the dia-
grams with internal lines of the massive sources, and we
also recalculate the corrections to the Newtonian potential
using functional methods in an arbitrary parametrization of
the quantum fluctuations of the metric. The general proof
of the gauge- and parametrization-independence within this
approach is also explicitly given. On top of that, we argue that
the universality of the result holds regardless of the details of
the ultraviolet completion of quantum gravity theory. Indeed,
it turns out that the logarithm quantum correction depends
only on the low energy spectrum of the theory that is respon-
sible for the analytic properties of loop’s amplitudes.

1 Introduction

Quantum corrections to Newton’s potential for the classical
gravitational force is a kind of theoretical “standard candle”
for the effective quantum gravity theory. The first calculation
of these corrections are half a century old [1], but the explo-
sion of interest to the particular example and the effective
quantum gravity in general, started from the seminal works
due to Donoghue [2,3]. The total amount of publications (see,
e.g., [4,5] and [6] and references therein) is very large, such
that we are probably not aware of all of them. However, in
our opinion, there remain at least two relevant issues which
were not sufficiently well discussed.

First, starting from the paper [7] there was a growing
understanding that the gauge-fixing independence of the
quantum corrections is an important and useful criterion for
the correctness and consistent definition of these corrections.
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In the mentioned paper, the simplified model of scalar elec-
trodynamics was used to prove that disregarding some of
the diagrams is inconsistent as this procedure does not pro-
vide the gauge-fixing independence of the potential. In the
subsequent papers, i.e., [4,5], all the diagrams were taken
into account and the invariance was proved (see, e.g., [8,9]).
However, it turns out that there are serious reasons to take
out some of these diagrams [11,13].

The calculations in most of the mentioned (and many
other) papers were done using Feynman diagrams where
two massive scalar fields model the massive bodies. Then,
the complete set of diagrams includes those of L- and P-
type. The first, L-type subset consists of the graphs with
internal lines of massless gravitons and massless gauge
(Faddeev—Popov) ghosts. These diagrams give only a very
small O(r—3)-type addition to the Newton potential between
the two-point masses. Phenomenologically, these graphs may
be irrelevant, but conceptually they are the most important
ones since the much stronger contributions coming from the
P-type diagrams should be disregarded because of physical
reasons [13]. The point is that our final purpose is to get the
quantum corrections to the force between two macroscopic
bodies, which are modeled by the scalar field. Taking into
account the internal lines of these scalars means that we
are regarding the massive macroscopic bodies as quantum
objects. For example, if the purpose is to explore the quan-
tum effects on the motion of an asteroid around the Sun, we
are quantizing this asteroid and the Sun. Or we are quantiz-
ing, e.g., the Earth and the Moon. Indeed, the Moon does not
like to be quantized. Thus, we may commit a serious mistake
in this way.

Two other arguments for omitting the P-type diagrams
are as follows. The macroscopic body is made from atoms,
and most of the mass of the atom nucleons is due to the quan-
tum effects. Thus, the argument concerning the expansions
in 7 is not operational in this case. Furthermore, nowadays
there are strong experimental confirmations of not quantiz-
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ing the classical source in a physically similar situation. It is
good to remember the success of the theoretical description
of Casimir force (see, e.g., [14]). Despite the existing con-
troversies (see, for example, the critical discussion in [15]),
there are no many doubts that the Casimir effect is experi-
mentally detected, and we know that its theoretical descrip-
tion does not involve the quantization of the sources (such as
conducting plates) but only the electromagnetic field. There
are no reasons to assume that things should be different for
the gravitational Casimir effect because the basic formalism
is, in general, similar [16]. Thus, the correct procedure is
to separate and use only L-type diagrams, i.e., those with
only massless internal lines. From the quantum field theory
viewpoint, this means that the object of our interest is the
functional integral

el = /dg dcdc exp {iSgrav(g) +iSgr(8)
+iSgn (g, ¢, ¢) + iSsources (& CI))}, (H

where g = gqp is the quantum metric, ¢ = ¢4 and ¢ = cP are
gauge ghosts, and ® represent the external massive sources.
The approach described above was pursued in important
work [10] and, most recently, in [11]. Following the last ref-
erence, in the calculations described below, we choose these
sources as a massive point-like mass and a light point-like test
particle, but in principle, the integral (1) can be explored for
arbitrary massive sources, e.g., for the dark matter (DM),
finite-size stars, or interstellar gas. In all these cases, the
integration over @ is not included for the reasons described
above. This means that the variables ® play the role of exter-
nal parameters, independent of the quantum variables such
as the metric components.

A general observation is in order. There are relevant
aspects of the semiclassical approach (when metric is a clas-
sical background while matter fields quantum), related to
the possible transformations which are mixing classical and
quantum variables [12]. One can try to elaborate the same
idea in the anti-semiclassical approach, when only gravity
is quantized. However, in the effective framework, in the IR
only the massless fields are relevant, leaving only the effects
of graviton and photon [2]. In this effective setting, our anti-
semiclassical approach emerges naturally and the mixing of
the massless degree of freedom with the ones of massive
(macroscopic) degrees of freedom describing the classical
sources does not look reasonable.

In practice, one can use the background field method for
the useful definition and derivation of the integral (1). Then,
the effective action in the Lh.s. is I'(g, @) and the integral
variables change accordingly. We shall discuss the explicit
formulas below.

The paper is organized in the following way. Section 2
describes the derivation of the relevant part of I'(g, ®). Sec-
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tion 3 aims to define the gravitational field in the Newtonian
approximation, in the theory with quantum effective contri-
butions. Section 4 describes the motion of test particles and
defined the final form of the corrected Newtonian potential.
Section 5 is devoted to the general proof of the gauge- and
parametrization-independence of the effective quantum cor-
rection to Newton’s potential. In Section 6 we elaborate on
the constrains that an effective field theory should satisfy in
order to be consistent in the quantum field theory framework,
and after that we explain the universality of the leading cor-
rection to Newton’s potential, which only depends on the
fundamental theory low-energy spectrum. Finally, in Sect. 7
we draw our conclusions.

The notations include the Minkowski metric 7,, =
diag (1, —1, —1, —1), while the Riemann curvature tensor
is defined as

R?ﬂ/w

= BMF/‘;V - 8VF%‘M + FZT FEV —-TI, Ffm. 2)
The definitions of the Ricci tensor and the scalar curvature
are R,, = R%.qy and R = gMVR,,,, respectively. We also

adopt the units system withc = 1 and 7 = 1.

2 Derivation of effective action

In the effective quantum gravity [3,6], it is assumed that
the low-energy effects are described by Einstein’s general
relativity with zero cosmological constant because this term
is irrelevant at the astrophysical scale where the Newtonian
limit applies. The possible contributions of higher derivative
terms either decouple (see, e.g., [17] for preliminary analysis,
coherent with the standard approach in particle physics [18,
19]) or regarded as small perturbations by definition [20].
The reader can consult [21] and [22] for a general discussion
of different approaches. However, the net result is that we
have to start from the classical action of the form

1
S = _p / d4x\/ —8 R + Ssources(g, ®), 3)

where k2 = 167G and G is the Newton constant. As the
source term, we shall consider the action of the free massive
particle Sz, with coordinates y*

Sy = —Mfds =-M /,/gw,dy“dy”. @)

To quantize the gravitational field, we apply the background
field method with the most general (at the one-loop level)
parametrization of the metric, as formulated in Ref. [23] (see
also [24]), namely

v —> & = €1 gy + K (V1duy + 12680
+ KZ(V3¢up¢5 +V4guv¢pa¢pa +Y50Puv +)’68uv¢2)]~ (5)
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In this formula, g, is the background field and o, ¢, are
quantum fields. The indices are lowered and raised with the
background metric g,,,. Also, ¢ = g,,¢"". Finally, yo.1,....6
are arbitrary coefficients which parameterize quantum vari-
ables.

Treating the conformal factor o as a new field introduces
an artificial conformal symmetry [25]. In order to remove
the corresponding degeneracy, we implement the conformal
gauge fixing

o =Ad, (6)

where A is a gauge-fixing parameter. Using (6) and expanding
the exponential, one can rewrite Eq. (5) in the form

g;/_v =guv + KAZ€¢aﬂ + K2¢Ar Bﬁijpdﬁbpo + O(K3), (7)
where
A% =918, + (12 + 20008 g™ ®)

and

, V3
B;\lfv o = Z <8m§~1gl)‘3 + Swirg“ﬁ + Sﬂ/irgva + SVﬂArg )

|
+yastveP ;. + 5 (5 +21031)

(8//“) aff + 8aﬁ [M))

(6 + 2y0rp2 + 2132 D" 8% g1 ©
with
8 = (355,3 +88). (10)

To fix the diffeomorphism invariance and simplify the cal-
culations,! we introduce the following minimal gauge fixing
action [23],

S ST

— L (y1 + 212 + 4901) V0] (11)

Performing the expansion of (5) in (3) with the minimal
gauge-fixing term, we arrive at the bilinear, in the quantum
metric, part of the action

1
(5+5p® =2 f By =g BB gy (12)
where
HX V9P — _(KILU,OUSD + miv-op + leﬁﬂlﬂ)’ (13)
with
pr,o{ﬂ AMV KAI paAozﬂ

po

! The non-minimal gauge was considered in [11] and proved to give
a gauge-independent result for the one-loop contribution to Newton’s
gravitational potential, so we avoid discussing it here.

A v,aB
ool = ALY gA0eo A% — o gt Gy,
O e L G Ve I E)
where we used the notations:
GHY — R _ lgle
2 9
1
Krvsef — (yw af 2glwgotﬁ)
1
mv-ef — — (RHavB 4 pupva
(RIS )
+i (glwleﬁ + guﬂRW + gWRMﬁ + gVﬁlet)
;(g’”Raﬁ + g®PRMVy — KHVOP R, (15)
Furthermore, in the source sector,
T (x) = M/dS(S (x — y(s)) utu” (16)

is the point-like mass energy—momentum tensor and

M
MHMeB (x) = ZfdsS (x — y(s)) uPu’uuP. (17)
It is worth noting that the boldface notation are used for the

operators depending on the parametrization and gauge fixing.
Also, in (16) and (17),

_ "

%
u
ds

(18)
is the particle four-velocity and the delta function is intro-
duced through the relation

/‘d4x\/—g(x) §(x —y(s)) = 1. (19)

The standard Schwinger-DeWitt technique for the one-
loop divergences requires to reduce the Hessian (13) to the
standard expresswn for the minimal operator, i.e., 10+

— (1/6)1R Therefore, we multiply (13) with the nega-
tive inverse of (14), namely

KlM} aff = (A" )}Lt K)»rlpg (A~ )aﬂ’ (20)

where

K)»_rlpa - Z(S)LTNOU - %gkfgpa)»

¥2 + 2y0A

1
Alaﬂ__(aﬂ __rt2nk
A V1 e V1+4V2+8V0kgwg

“ﬂ). 1)

Adopting the suppressed index notation of Ref. [26], we get

A A I 14
H=-K, , -H" =10+P-_1&g, (22)

@)}
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where 1 = 8“’3“, is the identity matrix for symmetric rank-2
tensors and

P=K' .m*LK!

1.
AT,
ot MM ¢ IR (23)

VAT

Performing the substitution (5) in (1), we have the one-
loop contribution to the effective action

o= %Tr InH — i Tr InH,y, (24)

where ﬁgh is the bilinear part of the Faddeev—Popov ghost
action. The contribution of this term to (24) is the same as in
Ref. [23] hence we do not repeat it here.

The divergent part of the first term in (24) can be evaluated
by the trace of the coincidence limit of the Schwinger-DeWitt
expansion ap coefficient [27] (we do not include here the
surface terms, as they are irrelevant for our purpose)

i A
5 Tr InH |div = "x/—g tr

1
{ 180 i (Rivap =

(47T)2(n —4) /

1A
Rp) + 5 P2 + IZR,%U}, (25)

where

Ryp = _7(5“ RP oo + 81 R% o + 82 RY s + 80 R0

(26)

and u is the renormalization group scale.

To simplify (25), we use the identity g, u*u” = 1 which
implies in the following equations for the expressions (16)
and (17):

1

guu MM P = i T, 27)
My qp MMOP = % T T, (28)
TWTH = T2, (29)

where
TETA‘:M/dS(S(x—y(s)) (30)

is the trace of the energy-momentum tensor for a massive
point-like particle. There are also equations analogous to (27)
for other index contractions since M*"*# is totally symmet-
ric.

The evaluation of (25) follows the scheme explained in
detail in [23]. Thus, skipping the algebra, we get, for the
one-loop divergences

1 _ n

r — | d"x/—
div = (4n)2<n 4)/ *
X{ClR;wotﬂ + CQRMV + C3R2

+x2c4 Ry TH + % esRT + k*c6T?}, 31)

@ Springer

where the dimensionless coefficients are given by

53 361 48 43 &
ATEH T T iz ©T 36 e
= 24«‘34 s S5 & = b & ’
vz 24 6yizt 32 4yizt
(32)

where Z = y1 + 4y» + 8ypA, and the bulky expressions for
the parametrization dependent coefficients & can be found
in Appendix A.

In the limit 1 — 1, 2.6 — 0 and yp — O for the
parameters of (5), Eq. (31) reproduces the result of Ref.
[11], evaluated in the standard parametrization in the min-
imal gauge.

Using the classical equations of motion

1 K2

R//,v - Eg/wR = TT/LV (33)

and (29), Eq. (24) boils down to

m (D) v
Laivlon-shenn = m / i

{45RMV‘1B @K T } s (34)
independently of the choice of parametrization and gauge
parameters, exactly as it should be.

To consider the Newtonian limit it is useful to rewrite
Eq. (31) in a more convenient Weyl basis, using the relations

1 1
2 2 2 g le 2
Rpup=2C> = E+3 R*. Ry, 2c 2E—|—3R (35)
Here C* = R;. s — 2R}, + 1/3 R? is the square of the

Weyl tensor and E = leaﬁ 4R;2w + R? is the integrand of
the (topological at n = 4) Gauss—Bonnet term. Discarding
the non essential for us topological term, we get for (31):

Mn
[ 4/‘d"x«/_{ﬁzC2 - —ﬂoRz
_2K ﬂRT]R;wTMV‘i'K Brr2RT +k ﬂTTTz}a (36)

with the following relations between the coefficients,

_4C1+C2 __Cl+C2+3C3
2= Sy T Gy 7
___ 4 __5 _ 6 (38)
IBRTI 2(47_[)27 IBRTZ (47_[)27 IBTT (47[)2

To reconstruct the effective action we use the rule (see,
e.g., [22] for the introduction and further references, includ-
ing the generalizations for the loops of massive fields)

5__: s %m (%) (39)
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that is valid for the massless fields contributions such as the
graviton. In this way, we finally get

_ 1 O
) — _ 4. = 2 =\ ~pvap
r = /d V=g {zﬂgc,m,g ln<M2>C
1 O

O 1 O
2 v 2
—K“Brri Ry In (—)T" + —«k*Brr2 RIn (—)T
Hv Mz 3 ,bL2

1 0
+§K4ﬁTTTln (E)T} . (40)

3 Gravitational field in the Newtonian limit with
quantum contributions

Here we are going to obtain the gravitational field in the
Newtonian limit taking into account one-loop quantum cor-
rections. The effective action is given by the classical action
S, defined in (3), and the one-loop correction (40), i.e.,

r=s+r1". (41)

To obtain the metric potentials with logarithm quantum cor-
rections, we follow Refs. [29,30] (see also [31-33]). First,
we consider small perturbations of the background metric
around the Minkowiski spacetime,

v =N +ihy, |ch,| <1 (42)

and expand the action (41) to the relevant order in the weak-
field approximation. In this way, we get
1

1
r= _E/d“x {Ehuvfz(D)Dh’w — W fo(O) 8,05k

1
—gh [2(E) +2 fo()]0A

1
+ 3R LAO) + 2/ 30,

1 9°0P 919"
F3hugl O = I |
=5 [ @ b fan @1 4 2B

0
hl(;z)(a“a“-n““[DT}, (43)
where we defined the form factors
0
ﬁ@):l+x%m%—ﬂﬂ,i:ZQRﬂ. (44)
n

Let us note that in (43), OO = »*'9,9, is the flat space
d’Alembertian. Also, the term proportional to B, is dis-
carded here because it is oc M2 and, therefore, is beyond the
weak-field approximation.

Then, taking the functional derivative with respect to /1,
we get the equations of motion

L OO =970} — 90" hl)
+§[f2(D) + 2 fo(@D] ™" (8% af‘ha,g — Oh) + 9"9"h]

2 lavayh
+§[f2(D) — fo(@] Thaﬂ

0
= —« [fRn(D)T’“ T+ 2Brrs In (ﬁ)(a“a“ — n’“’[l)T:|,

(45)

The second step is to consider the perturbation in the
isotropic Newtonian form

khoo =2¢(r), Khij =28;y(r) (46)

and choose, as a source of the gravitational potentials, a static
point-like mass located at the origin. In this case, u"* = 88 s
and Eq. (16) becomes

T =88y p, p= M. (47)

The metric potentials (46) can be obtained from the 00—
component and the trace of Eq. (45), which are given respec-
tively by

[/2(=2) = fo(=A)]Ag + [ fa(—=A) + 2 fo(—A)]Ay =

3ic2 2 A

= T[fRTl(_A) 4+ k“Brr2 In <—?>A]p, (48)
fo(=A)(Ap — 2A¢)

K2

=7 [f,m(—A) + 3% Brr2 In (—A//LZ)] p, (49

where we traded [J for — A since the metric is static.

To solve (48) and (49) we perform the loop expansion of
the potentials,

9 =09 + oM 1 om?, (50)
v =y O +y D 4 om?, (51)

where ¢ and ") are of the order O(#'). Since B; = O(h),
we get the equations at zero and first orders in 7 in the form

KM
2p® = ay® = —=sm), (52)

2
K“ B2 A
Ayl = = In( - ?)Azap“’ +y©)

«*Bo ANA2(,©® ©)
-~ 1n(-;5)A(¢ — 2y ©)
KM I 2\ as 53
+ 4 (=Brr1 + Brr2) In ( - ?> (r), (53)
29 =289 = Epoin (- ) a2 ~20)
K*M A
g Ben =3 In (= -5 ) A5, (54)

@ Springer
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In the three-dimensional Fourier space, we obtain the follow-
ing solutions for the transformed potentials:

Oy = 4O ) = —
0Ot = O = -7 5.
4M k2
(1)(k) ( B2 — *130 — Brr1 — ,BRT2> In <*2>
I
4M 2 1 K2
1ﬁ(l)(k) = T<§ﬁ2 + 5.30 — Brr1 + ,Ber) In (ﬁ) (55)
where k = |Kk|. Next, using the following inverse Fourier
transforms,

Pk el 1

o3’ KT 4mr

L
PISE e In <F) =

we arrive at the general results

73 T FEO, (56)

KK2M Pl

4 1
o) = — l6mr - <§ﬁ2 - 5,30 — Brr1 — ,BRTZ) 83’ (57)
KK2M 2 1 Pl
Y(r) =— Tomr (5/32 + 5,30 — Brri +ﬁRT2>W- (58)

We do not write the explicit expression for the potentials
in terms of the parameters y; ¢, Yo and A since they are too
cumbersome and not very illuminating. At the same time, it
is easy to see, using Eqs. (37)—(38), that the obtained poten-
tials depend on the parametrization and gauge-fixing param-
eters. On the other hand, the potentials ¢ () and ¥ (r) do not
depend on the parametrization of the background field (42).
Indeed, the dependence on the parametrization of the quan-
tum fields and the gauge-fixing should be expected, because
the effective equations of motion are gauge and parametriza-
tion dependent [28].

In the standard g, + ¢, parametrization limit, y; — 1,
¥2,...6 — 0and y9 — 0. Then, Eqgs. (57) and (58) become

GM 61 G

v :_T(”@ﬁ)’ o
GM

w(}") = —T (1 +

23 G 60)
60 7r2 )’
Formula (59) matches the result presented in [11] for the
hoo component of the background metric evaluated in the
standard parametrization with the minimal DeWitt gauge.

4 The motion of a test particle
Let us now follow the main idea of Ref. [11] that even though
the loop corrections to the gravitational field generated by a

point-like mass is parametrization and gauge-fixing depen-
dent, the physical observables should be invariant. As an

@ Springer

example, consider the acceleration of a test particle mov-
ing in the gravitational field described in the previous sec-
tion. The key observation is that the test particle also couples
with the quantum metric and, as a consequence of this, its
geodesic equation receives quantum corrections. Thus, the
two types of quantum corrections are supposed to combine
into the invariant result. Finally, in the non-relativistic limit,
we expect to meet invariant quantum corrections to Newton’s
law, ma = F.

The classical action for a test particle is given by equation
(4), but with another mass,

Sp=—m /,/g,w dxtdxV, (61)

and coordinates x* = (¢, r). We assume that m < M, such
that we can neglect contribution of the small mass m to the
potentials (57) and (58). The one-loop corrections to (61)
can be obtained from (40) by the substitution TH" —>
TH + THY [11], where

T =m / ds 8 (y — x(s)) utu". (62)

Applying this procedure yields
1:‘,511) = /‘d4)€q/ {K ﬂRﬂRuvln(D )Tﬂv

—lxzﬂmR In <E>Tm —«*BrrTIn <E>Tm } (63)
2 ,U«2 Mz

The total action for the test particle is [, = S, + I_“,(,,l).
Taking the functional derivative with respect to x,, we find

180y, fd%n L 42 dxP ! st
m 8xy B ds? B ds ds

=0, (64)
m 8xy

where Fg is the Christoffel symbol. In the non-relativistic
limit, this equation boils down to
18T d*r

© where a e (65)

m or

is the particle acceleration.

To evaluate the functional derivative in (65), all the met-
ric functions in Eq. (63) should be taken at the order OHY),
owing to the one-loop approximation and the fact 8; ~ O(h).
On top of that, in the non-relativistic limit we can take s = ¢,

= (1,0). Thus, using Eq. (47) for the source energy-
momentum tensor, we get for (63), in the weak-field approx-
imation,

_ A
P _ /d ol RO
$0=m [ i | Berin (=) Rig (rto)
1 A
—Exmnm(M)R@um)

—Kﬁan< )Mum} (66)
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The O(ho) curvatures can be evaluated through the relations
for the 00-component of the Ricci tensor and for the scalar
curvature and also using Eq. (52),

RY (x(1) = Ap® = KM ey,

2
RO (r(1)) = 2(Ap® — 2A1/f<°>) _ M ey, @)

Finally, using the Eq. (56) in the coordinate space,

A 1
In( - ?)a(r) = - 68)
we find
- K ‘mM
F;(nl) = (— ,Ber ﬂer + 4,3TT)/ g(l‘) (69)
implying that
1 31*“’ K4M

m or

1
( Brri — Brra + 4Brr)V <r_3> (70)

Plugging this equation into (65) and using Eq. (57), we get

M 4 1 ‘M
a=-V |:—K - (5132 - gﬁo —2BrT1 — 2BRT2 +4;‘3TT) gﬂr3
(71)

The quantum corrected Newtonian potential is defined
through the relation [11]

=-VV. (72)

Thus, (71) and (72) give

Vr) = _Kz_M - (fﬂ2 - 1,30 — 2Brr1 — 2Brr2 + 4:8TT>
167Tr 3 3
M (73)
8mr3
Finally, using Eqgs. (37)—(38) we get
GM 17 G
V(r) = N <1+Em>, (74)

which does not depend on parametrization or gauge param-
eters. Let us note that the cancellation of the gauge and
parametrization dependencies in this expression looks rather
impressive, taking the (somehow scaring) form of the expres-
sions in Appendix A.

The coefficient 17/20 does not agree with the value pre-
sented in Ref. [11]. This discordance is due to a missing
factor of four in formula (35) of [11], as we explain in the
Appendix B. It is remarkable that the complicated calcula-
tion in this work has only this small mistake and is otherwise
correct.

5 General proof of gauge independence

We have evaluated the coefficients g; explicitly in the most
general parametrization for the quantum field and the par-
ticular case of massive point-like masses. However, given
Eq. (36), we provided an expression for the Newtonian poten-
tial (73) independently on the explicit values of the §;. There-
fore, to prove that the potential (73) does not depend on
the gauge-fixing and parametrization choices, it is enough
to prove that the following combination,

4
,3mv = ,32 - _,BO - 2,3RT1 - 2,3er + 4/37% (75)

is a gauge and parametrization invariant quantity. For this,
we follow [23,34,35], i.e., we employ the general state-
ment about the gauge-fixing and parametrization indepen-
dence of the on-shell effective action. In particular, the dif-
ference between the divergences of two versions of the one-
loop effective action, evaluated using different gauge and
parametrizations «; and «g, is proportional to the classical
equations of motion,

-4
SED — P gy D oy M
div div\7 div (47T)2(I’l —4)
x/d”x —g e fuv,
1 K2
= R =S¢ R ST (76)

As the divergences are local and covariant quantities with
mass dimension four, the tensor function f},, has the follow-
ing general structure

fuv = bRy 4+ baRg iy + k23T + k204 T gy, (77)

where the parameters b 34 depend on the choice of the
gauge and parametrization parameters ¢;. Thus, replacing
(77) in (76) and using the definition (29) we get:

(1) n
K famrs
Saiv = (471)2(n—4) /d *
x{blRW — (301 +b2) R? + 3 (b3 — $b1) Ry TH
— /cz(%bz + %b3 + b4)RT — K4(%b3 + %b4)T2}. (78)

So, under a gauge and/or parametrization transformation,
the coefficients in (31) transform according to:

b
¢y —c1, ¢y —>c)+by, C3—>C3—<71+b2>,

b
C4—>C4+<b3—71),

1 1
¢s = c5 = 5(by+b3+2bs), 6~ co— 5(b3+ba). (79)
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It is a simple exercise to check that, besides ci, there is
the following gauge- and parametrization-independent com-
bination:

Ciny = €2 + ¢3 + ¢4 — 2¢5 + 4cg. (80)

In particular, in the notations of (36), the formula (80) implies
that (75) is truly gauge and parametrization invariant. This
also means the physical results derived on the basis of usual
effective action and for the unique Vilkovisky—DeWitt effec-
tive action [28] will be the same. The reader can consult [26]
for the first calculation in quantum gravity in this formalism
and the more recent Ref. [24] for the explicit verification of
the parameterization independence, including the conformal
mode (5).

In fact, the generalization of the calculations done in [24]
to include the massive point particles is straightforward.
Without entering in the full details, the result for the one-loop
divergences in the theory (3), using the Vilkovisky—DeWitt
definition for the effective action and the general parametriza-
tion (5), has the same form as Eq. (31), but now with the fol-
lowing gauge and parametrization independent coefficients,

53 61 25 3
Cl = — ) = ——— Cry = — C4 = ——
1 45’ 2 90’ 3 36’ 4 2’
1 5 &1
STy T3y

Using (38) and (73), it is easy to verify that (81) provides the
same Newtonian potential of Eq. (74). Thus, the cancellation
observed in (74) is a necessary feature of effective quantum
gravity, especially in the case when only metric is a quantum
field, while the macroscopic massive bodies are treated as
classical sources, according to the arguments of [11,13].

As the massive sources are regarded classical, one can
certainly expect the parametrization independence to hold
for other configurations of matter, including non-point mass
distributions, such as, e.g., dark matter.

6 Universality of the effective field theory result

The effective field theory approach cannot be taken lightly, as
we cannot write down all possible action operators without
having any guiding principle. Indeed, it is well known that
any higher derivative theory has a number of ghost-like states
depending on the number of derivatives that catastrophically
make the vacuum decay instantaneously in ghost and normal
particles. This is a trivial consequence of the energy conser-
vation since ghosts carry negative energy [41]. Therefore,
EFTs make sense and are well defined only if they turn out
to be the low-energy approximation, or large distance limit,
of more fundamental theories consistent with unitarity (per-
turbative), and (super-)renormalizability or finiteness.

@ Springer

One example of finite and unitarity theory is string the-
ory, but we here focus on ultraviolet complete gravitational
theories in the quantum field theory framework. In the latter
case, we have two classes of well-defined theories: higher
derivative theories a la Lee—Wick [42—46] or more general
higher derivative theories [47], in which unitarity can be for-
mally achieved by means of the Anselmi—Piva prescription,
which is an extension of conventional Wick rotation, opera-
tional for the higher derivative models [48—50]; or nonlocal
theories without ghost-like perturbative degrees of freedom
[51-55]. In Lee—Wick quantum gravity, the ghost particles
may only have complex mass square [44,45], while in general
higher derivative theories [47] we also have real ghosts, but
in both cases, such states do not appear as asymptotic states.
Indeed, such homogeneous solutions of the linear equations
of motion can be removed from the spectrum of the theory
by hand and, most importantly, they are not created again
in the loop amplitudes once the Anselmi-Piva prescription
is implemented. This is very similar to what happens with
the BRST ghosts that appear because of the quantum gauge
invariance. Indeed, we can safely fix the number of external
BRST ghosts to zero, because in the loop amplitudes, they
are exactly canceled by the non-physical polarization states
of the gauge bosons. Similarly, in higher derivative theories,
we can fix the number of external ghosts to zero because they
are not regenerated in the loop amplitudes at any perturbative
order whether the prescription [48-50] is implemented.

Differently, in nonlocal quantum gravity [51-55], the per-
turbative degrees of freedom are the same as the local the-
ory [60,61] and the convergence of the loop amplitudes is
achieved by introducing an exponential (but asymptotically
polynomial [51-53]) form factor that has no poles in the
whole complex plane. At the quantum level, the loop ampli-
tudes are computed in the Euclidean signature, and after-
wards, the physical amplitudes are obtained using an ana-
lytic continuation of the external energies from the Euclidean
space to Minkowski spacetime [56,57]. A unified nonlocal
theory of all fundamental interactions with the aforemen-
tioned properties of the purely gravitational theories has been
recently proposed in [62,63]. In the ultraviolet regime all
nonlocal gravitational theories (or local with more than ten
derivatives in four dimensions) are asymptotically free [58]
or finite [54,59]. Theories with a number of derivatives from
six to eight are super-renormalizable but, to prove asymptotic
freedom, quantitative analysis and explicit computations are
needed because there are divergences also at two and/or three
loops. The last theory which deserves special attention is the
four derivatives or Stelle’s theory [66].

Said this, it is very interesting to investigate the infrared
properties of any of the theories described above. In particu-
lar, in this work, we are interested in the leading correction to
the Newtonian potential. Such correction is strictly related to
the analytic properties of the one-loop amplitude regardless
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of the renormalizability or finiteness of the theory. Indeed,
the analyticity only depends on the Landau singularities of
the one-loop amplitude, namely when the denominators of
the amplitude are zero for the same value of the external
energy. This property depends only on the low-energy spec-
trum of the theory, and, hence, the contribution of the massive
states is sub-dominant. Therefore, the main corrections to the
quantum effective action at large distance come only from the
massless states.

As an example we can consider a nonlocal scalar theory
with an exponential form factor [64]. This theory is ultravi-
olet finite, but the one-loop amplitude at low energy, namely
when p?/A% < 1 (here A is the non-locality scale), shows
up exactly the same logarithmic non-analyticity of the local
theory. This result is understandable whether we identify A
with the cut-off of the local theory.

Letus expand on the case of the scalar model. The nonlocal
Lagrangian that we would like to consider reads:

1 A
Ly=-30 eH (DA% (D + m2> 050 (82)

where H (z) is an analytic function without poles in the com-
plex plane at finite distance. The propagator of the scalar field
is:

je—HK)
Gk) = pE——— (83)
The one-loop amplitude turns out to be:
2 +oo . e H(kg) o—H (kg—pE)
" 32mt /md BT Y e N

where kg and pg are respectively the internal and exter-
nal purely imaginary four-momenta. For the simplest non-
locality, H = O = —k*/A? = k& /A2, the above amplitude
(84) turns into a simple Gaussian integral. The explicit com-
putation was done for the first time in [64] and more recently
in [65]. The result after the analytic continuation from purely
imaginary to real external energy reads:

)\2 1/2 ) m2_p2x(1 —x)
M__lézﬂ/o de1|:— (T)] (85)

where Ei(z) is the exponential integral. Notice that the result
is finite without need of any regularization.

We now consider the low energy limit p2/A? < 1.Inorder
to investigate such limit, we remind the Taylor expansion of
the exponential integral Ei(z),

2

Bi@) = ye+ Inz+z+ o+ (86)
Using the above expansion in (85) we get:
A2 1 m? — pzx(l —X)
~ — dxIn | ———— ). 87
M= /0 o ( A2 ) (87)

Therefore, (85) at low energy resembles the result in the local
quantum field theory up to proper identification of the non-
locality scale with the cut-off of the local renormalizable
theory, which we give here for completeness:

A2 = Aqy_oir e?EHIHIN2 (88)

As another example, let us now consider a nonlocal theory
without perturbative degrees of freedom around the usual
trivial background ¢ = 0. The theory reads:

1 Py
Ly=—5¢ eH O/ 2 g 5 (89)

Clearly, at the zero-order in A the perturbative solution of the
free-theory equation of motion is ¢ = 0, namely

HEOMD 2 0 — ¢ =0. (90)

Therefore, there are no perturbative degrees of freedom prop-
agating around the trivial background. Equivalently, the prop-
agator in momentum space, which can be obtained from (83)
removing k2 from the denominator, has no poles in the whole
complex plane at finite energy,
i

G(k) — __2€7H(k2/A2)’ (91)

m
consistently with the classical solution in (90). Now we are
ready to compute one-loop bubble diagram for the theory
(89). The one-loop amplitude reads:

M= — 22 /+OO 7 . ie—Hkg) je—H(ke—pE)
2t J o m? m?2

Again for the case of a Gaussian non-locality, namely H =

O4m? = (=k* +m?)/ A = (k& +m?)/A?, the amplitude

(92) simplifies to:

92)

k2+m2 (kg—p )2+m2
M= 22 /+°°d4k Tl T
T3t o B2 m?
Ao (e 2
o ©3)
g

which is analytic in the whole complex plane according to
the absence of perturbative degrees of freedom in the theory
(89).

We conclude that the logarithm correction to the quantum
effective action is universally related to the low energy spec-
trum of the theory regardless of the ultraviolet completion of
the theory.

The same argument applies to a general nonlocal or higher
derivative theory, being finite or (super-)renormalizable, with
the graviton the only massless state in the spectrum. The
action for a general local higher derivative gravitational the-
ory reads:

N
SHD = /dex/—g |:K_2R + Z (00,n RO"R 4 w) p Ry O" RMY)
n=0
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+V (O(Riem?) ) } : (94)

where the last term plays the role of a potential because it
is at least cubic in the Riemann tensor and, then, it does not
contribute to the propagator around the Minkowski’s back-
ground. Moreover, the potential contains at most 2N + 4
derivatives in order to not spoil the super-renormalizability
of the theory. However, the presence of V ((9 (Riem3 )) is
crucial to making the theory finite [53,54]. The particle spec-
trum of the higher derivative action (94) contains a massless
graviton and a finite number of massive states (including
complex and real ghosts) whose masses are defined in terms
of the constants k, wo ,, and w2 ,. As said above, the theory
(94) can be finite, namely all the loop amplitudes are con-
vergent. However, at an energy scale much smaller than the
mass of all the massive states, the one-loop quantum effective
action has the same form as (40) for a proper identification
(which means up to an overall dimensionless rescaling) of
the renormalization group invariant scale p in (40) with the
mass scale that is implicitly hidden in the parameters wo
and w, ,. In other words, at low energy, the higher derivative
operators play the role of a higher derivative regularization.
Once again, this is not surprising because they are related
to the analytic properties of the one-loop quantum effective
action that only depends on the Landau singularities of the
amplitude. Moreover, in the low energy limit the contribu-
tion of the massive states is sub-leading with respect to the
massless graviton.

7 Conclusions and discussions

We have reconsidered the arguments for taking into account
only the gravitational loops in effective quantum gravity.
The physical reasons and, in particular, the analogy with the
Casimir force show that the massive sources should not be
quantized. Taking this into account, it is well-known that the
numerical effects of quantum corrections are too small to
be measured in the laboratory. However, this does not make
irrelevant the consistent derivation of the quantum correc-
tions and the discussion of their (non)universality.

The main part of the work reports on a calculation similar
to the previously done in [11], but in an arbitrary parametriza-
tion of quantum perturbation of the metric. As a result, we
have found that the effective quantum gravity correction to
Newton’s gravitational potential is completely independent
of the choice of the parametrization. Together with the men-
tioned qualitative arguments and the gauge-fixing indepen-
dence established in [11], our result ensures that the final
outcome (73) is correct. In principle, this result can be gen-
eralized for more complicated distributions of mass. In this
respect, the more general proof of invariance given in Sect. 5
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is relevant, as it provides a good expectation to obtain sound
results.

Furthermore, we discussed in Sect. 6 the universality and
independence of the leading correction to Newton’s poten-
tial in the effective field theories resulting in the low-energy
limit of ultraviolet complete theories of quantum gravity in
the quantum field theory framework. In particular, we showed
that the leading quantum correction to Newton’s potential is
strictly related to the low-energy spectrum of the fundamen-
tal theory rather than the details of the ultraviolet complete
quantum gravity theory, in accordance with the general effec-
tive quantum field theory approach. Indeed, the logarithm
quantum correction is related to the Landau singularities and
the analytic properties of the one-loop amplitude, which only
depend on the low-energy spectrum of the classical theory.
Therefore, not all the quantum effective theories produce the
same result. The latter statement has been shown explicitly
with simple examples.

Taking the parametrization and gauge invariance, the
direct relation to the beta functions, and the fact that the quan-
tum corrections are the same as in the usual and Vilkovisky—
DeWitt versions of the effective actions, the main result
for the quantum corrected potential can be compared to the
invariant version of the renormalization group improved clas-
sical action [36,37]. In the present framework, when dealing
with the Newtonian interaction between two massive par-
ticles, the interpretation of the renormalization group scale
is straightforward. This interpretation is much more subtle
and complicated in other physical situations, e.g., in Cos-
mology [38], where some specially designed procedures can
be applied [39,40], but still do not guarantee unique interpre-
tation of the scale. Thus, it would be interesting to compare
the two ways of scale identification in the cases like the one
considered above, with a well-defined procedure [11].

In conclusion, let us note that the main approximation in
effective quantum gravity is supposed to hold between the
Planck scale in the UV and the Hubble scale in the IR . In
particular, this interval includes all the physically and astro-
nomically interesting high-energy gravitational phenomena
related to early cosmology and black hole physics. Thus,
there still is a possibility to find applications to the results
based on correctly defined quantum gravity corrections to
classical gravity.
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Appendix A

The explicit expressions for the coefficients in (31) were
obtained using WOLFRAM MATHEMATICA [67] and the aux-
iliary tensor algebra package XACT [68,69]. For the sake of
completeness, we present the list of the coefficients used in
Eq. (32):
& = 1617y v) + 8Avori 73

—1280 %55 — 320nvi — vivi

—1284y01275 — 16717273

—3213v3 + 16Av0yi'ys + 4vivavs

+ayivs, (95)
£ = 3584x vyt + 1024035 v + 64275 P

— dhyoy +40961 3y vityr + 512225 v v
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— 39240007 vs — 14y ys — 11059227y v vays
— 39936A2y()2y13y2y3

— 49281 y0y 1213 — 220y 12y

— 82944222 vy v
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+ 76810y vavs + 967 vavs

+ 192y yivE — 25602 ydvitve — 640107 v6
+4yLv6 — 25611071 V2V

+ 3207 vav6 + 64¥1 V3 v

— 16y 36 — 6471 vave

— 6471 ysv6 — 1287173 (99)
The parameters 9. 1,2,....6 in these expressions represent the
ambiguity in the parametrization of quantum metric (5). Let
us note that these bulky formulas, anyway, admit a com-
pletely invariant result when used in the potential (73), pro-
viding the very compact Eq. (74).

Appendix B

Here we derive the equation DM(35). All equations like
DM(35) are numbered according to Ref. [11]. For compar-
ison reasons, the notations in this section also follows [11].
The principal difference with the main text conventions is the
opposite sign for the metric signature.

The starting expression is

ASmM =

/d4y\/ —gMyypo In(— O) MPeHY,
(100)

3272

where DM(15) gives

M2
memne = B [ty - e (AT 3057 g),

I’l’ll{2 4 e e ..
Myvpo = T dt8*(y — z(1)) (ZZpZ(rZqu +Zqugp<r)-

(101)

. d . d -
Hereafter, %, = 5% and z, = 2. Before substituting

(101) into (100), we take into account that the massive source
M is static and situated at the origin, such that x% = 7 and
xk=o. Furthermore,

g zuzy = -1 (102)

Then, the contractions in (100) give

mMi?*
—m/dy0d3y —g(y)

X /dr §*(y — z2(1))
x(22pZoiuty + Zpio&uv)
th—D)/dﬂsoo—ﬂw%w
x (2808580 85 + 8685 8"7)

ASum =

@ Springer

mMic*
= —m/dy0d3y —g(y)

x / dt 80 — 22 ()8 (y — z(1))
X (80087 220 + 220208"° Zpto +
x28002020 + 4202020%0)

th—m)/dﬂago—ﬂw%m. (103)

Taking into account (102), the formula (103) boils down
to

mMic*
64 - 3272
x/dray%—ﬁm%y—zu»
x (= goo — 22020 + 28002020 + 420202020)
x In (= 0) 83(y).

ASum = (/dymfy )

(104)

Taking the integral over y° and changing the order of inte-
gration, we get y* — . Similarly, taking 4>y results in
y — z(t). Assuming non relativistic z", i.e., 2% =t and
zr = 0, we get

mMi* /
—— | dt
64 - 3272
x (= goo — 2z0%0 — 2z0z0 + 4Z0Z0Z0Z0)
x In (—0) 8 (z(1))
mMi*

1
=357 /d‘[ 7 In- 0) 8 (z(1)),

ASpp =

(105)

that is four time more than DM(35). Correcting the missing
factor of 4, the coefficientin DM(43)is —1/6 instead of 7/12.
This gives a Newtonian potential in the form (74).

References

1. Y. Iwasaki, Quantum theory of gravitation vs. classical theory—
fourth-order potential. Prog. Theor. Phys. 46, 1587 (1971)

2. JL.F. Donoghue, Leading quantum correction to the Newtonian
potential. Phys. Rev. Lett. 72, 2996 (1994). arXiv:gr-qc/9310024

3. L.F. Donoghue, General relativity as an effective field theory:
the leading quantum corrections. Phys. Rev. D 50, 3874 (1994).
arXiv:gr-qc/9405057

4. I.B. Khriplovich, G.G. Kirilin, Quantum power correction
to the Newton law. J. Exp. Theor. Phys. 95, 981 (2002).
arXiv:gr-qc/0207118

5. N.EJ. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, Quantum
gravitational corrections to the nonrelativistic scattering potential
of two masses. Phys. Rev. D 67, 084033 (2003). Erratum: [Phys.
Rev. D 71, 069903 (2005)]. arXiv:hep-th/0211072

6. J.F. Donoghue, The effective field theory treatment of quantum
gravity. AIP Conf. Proc. 1483, 73 (2012). arXiv:1209.3511

7. J.A. Helayél-Neto, A. Penna-Firme, I.L. Shapiro, Scalar QED h-
Planck corrections to the Coulomb potential. JHEP 01, 009 (2000).
arXiv:hep-th/9910080


http://arxiv.org/abs/gr-qc/9310024
http://arxiv.org/abs/gr-qc/9405057
http://arxiv.org/abs/gr-qc/0207118
http://arxiv.org/abs/hep-th/0211072
http://arxiv.org/abs/1209.3511
http://arxiv.org/abs/hep-th/9910080

Eur. Phys. J. C

(2022) 82:160

Page 150f 16 160

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

K.A. Kazakov, P.I. Pronin, Gauge dependence of effective gravita-
tional field. Phys. Rev. D 62, 044043 (2000). arXiv:hep-th/9912129
T.S. Gribouk, K.A. Kazakov, PI. Pronin, Gauge dependence of
effective gravitational field. 2. Point-like measuring device. Phys.
Rev. D 69, 024005 (2004). arXiv:hep-th/0306233

M.J. Duff, Quantum corrections to the schwarzschild solution.
Phys. Rev. D 9, 1837 (1974)

D.AR. Dalvit, ED. Mazzitelli, Geodesics, gravitons and
the gauge fixing problem. Phys. Rev. D 56, 7779 (1997).
arXiv:hep-th/9708102

M_.J. Duff, Inconsistency of quantum field theory in curved space-
time, in Oxford Conference on Quantum Gravity, pp. 81-105. OUP
Report number: ICTP/79-80/38

L.L. Shapiro, Polemic notes on IR perturbative quantum gravity.
Int. J. Mod. Phys. A 24, 1557 (2009). arXiv:0812.3521

M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepa-
nenko, Advances in the Casimir effect (Oxford University Press,
New York, 2009)

S.K. Lamoreaux, Review on the book [13]. Phys. Today 63, 50
(2010)

J.Q. Quach, Gravitational Casimir effect. Phys. Rev. Lett. 114,
081104 (2015) [Erratum: Phys. Rev. Lett. 118, 139901 (2017)].
arXiv:1502.07429

T.G. Ribeiro, L.L. Shapiro, Scalar model of effective field theory in
curved space. JHEP 1910, 163 (2019). arXiv:1908.01937

A.V. Manohar, Effective field theories. Lect. Notes Phys. 479, 311
(1997). arXiv:hep-ph/9606222

V. llisie, Concepts in quantum field theory. A practitioner’s toolkit
(Springer, Cham, 2016)

J.Z. Simon, Higher-derivative Lagrangians, nonlocality, problems,
and solutions. Phys. Rev. D 41, 3720 (1990)

C.P. Burgess, Quantum gravity in everyday life: General relativ-
ity as an effective field theory. Living Rev. Relativ. 7, 5 (2004).
arXiv:gr-qc/0311082

L.L. Buchbinder, I.L. Shapiro, Introduction to quantum field theory
with applications to quantum gravity (Oxford University Press,
Oxford, 2021)

J.D. Gongalves, T. de Paula Netto, I.L. Shapiro, Gauge and
parametrization ambiguity in quantum gravity. Phys. Rev. D 97,
026015 (2018). arXiv:1712.03338

B.L. Giacchini, T. de Paula Netto, .L. Shapiro, Vilkovisky unique
effective action in quantum gravity. Phys. Rev. D 102, 106006
(2020). arXiv:2006.04217

G.B. Peixoto, A. Penna-Firme, I.L. Shapiro, One loop divergences
of quantum gravity using conformal parametrization. Mod. Phys.
Lett. A 15, 2335 (2000). arXiv:0103043

A.O. Barvinsky, G.A. Vilkovisky, The generalized Schwinger—
DeWitt technique in gauge theories and quantum gravity. Phys.
Rep. 119, 1 (1985)

B.S. DeWitt, Dynamical theory of groups and fields (Gordon and
Breach, New York, 1965)

G.A. Vilkovisky, The unique effective action in quantum field the-
ory. Nucl. Phys. B 234, 125 (1984)

N. Burzilla, B.L. Giacchini, T. de Paula Netto, L. Modesto, New-
tonian potential in higher-derivative quantum gravity. Phys. Rev.
D 103, 064080 (2021). arXiv:2012.06254

N. Burzilla, B.L. Giacchini, T. de Paula Netto, L. Modesto, Higher-
order regularity in local and nonlocal quantum gravity. Eur. Phys.
J. C 81, 462 (2021). arXiv:2012.11829

L. Modesto, T. de Paula Netto, I.L. Shapiro, On Newtonian singu-
larities in higher derivative gravity models. JHEP 04, 098 (2015).
arXiv:1412.0740

B.L. Giacchini, T. de Paula Netto, Weak-field limit and regular
solutions in polynomial higher-derivative gravities. Eur. Phys. J. C
79,217 (2019). arXiv:1806.05664

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

B.L. Giacchini, T. de Paula Netto, Effective delta sources and reg-
ularity in higher-derivative and ghost-free gravity. JCAP 07, 013
(2019). arXiv:1809.05907

E.S. Fradkin, A.A. Tseytlin, Renormalizable asymptotically free
quantum theory of gravity. Nucl. Phys. B 201, 469 (1982)

L.L. Shapiro, A.G. Jacksenaev, Gauge dependence in higher deriva-
tive quantum gravity and the conformal anomaly problem. Phys.
Lett. B 324, 286 (1994)

B.L. Giacchini, T. de Paula Netto, I.L. Shapiro, On the Vilkovisky—
DeWitt approach and renormalization group in effective quantum
gravity. JHEP 10, 011 (2020). arXiv:2009.0412

T. Taylor, G. Veneziano, Quantum gravity at large distances and
the cosmological constant. Nucl. Phys. B 345, 210 (1990)

D.C. Rodrigues, P.S. Letelier, I.L. Shapiro, Galaxy rotation curves
from general relativity with quantum corrections. JCAP 04, 020
(2010). arXiv:0911.4967

A. Babic, B. Guberina, R. Horvat, H. Stefancic, Renormalization-
group running cosmologies. A scale-setting procedure. Phys. Rev.
D 71, 124041 (2005). arXiv:astro-ph/0407572

S. Domazet, H. Stefancic, Renormalization group scale-setting
in astrophysical systems. Phys. Lett. B 703, 1 (2011).
arXiv:1010.3585

J.M. Cline, S. Jeon, G.D. Moore, The phantom menaced: con-
straints on low-energy effective ghosts. Phys. Rev. D 70, 043543
(2004). arXiv:hep-ph/0311312

T.D. Lee, G.C. Wick, Negative metric and the unitarity of the S
matrix. Nucl. Phys. B 9, 209 (1969)

T.D. Lee, G.C. Wick, Finite theory of quantum electrodynamics.
Phys. Rev. D 2, 1033 (1970)

L. Modesto, I.L. Shapiro, Superrenormalizable quantum grav-
ity with complex ghosts. Phys. Lett. B 755, 279 (2016).
arXiv:1512.07600

L. Modesto, Super-renormalizable or finite Lee—Wick quantum
gravity. Nucl. Phys. B 909, 584 (2016). arXiv:1602.02421

D. Anselmi, On the quantum field theory of the gravitational inter-
actions. JHEP 06, 086 (2017). arXiv:1704.07728

M. Asorey, J.L. Lopez, I.L. Shapiro, Some remarks on high deriva-
tive quantum gravity. Int. J. Mod. Phys. A 12, 5711 (1997).
arXiv:hep-th/9610006

D. Anselmi, M. Piva, A new formulation of Lee—Wick quantum
field theory. JHEP 06, 066 (2017). arXiv:1703.04584

D. Anselmi, M. Piva, Perturbative unitarity of Lee—Wick quantum
field theory. Phys. Rev. D 96, 045009 (2017). arXiv:1703.05563
D. Anselmi, Fakeons and Lee—Wick models. JHEP 02, 141 (2018).
arXiv:1801.00915

Y.V. Kuz’min, The convergent nonlocal gravitation (in Russian).
Sov. J. Nucl. Phys. 50, 1011 (1989)

Y.V. Kuz’min, Yad. Fiz. 50, 1630 (1989)

L. Modesto, Super-renormalizable Quantum Gravity. Phys. Rev. D
86, 044005 (2012). arXiv:1107.2403

L. Modesto, L. Rachwal, Super-renormalizable and finite gravita-
tional theories. Nucl. Phys. B 889, 228 (2014). arXiv:1407.8036
L. Modesto, L. Rachwal, Nonlocal quantum gravity: a review. Int.
J. Mod. Phys. D 26, 1730020 (2017)

F. Briscese, L. Modesto, Cutkosky rules and perturbative unitarity
in Euclidean nonlocal quantum field theories. Phys. Rev. D 99,
104043 (2019). arXiv:1803.08827

F. Briscese, L. Modesto, Non-unitarity of Minkowskian non-
local quantum field theories. Eur. Phys. J. C 81, 730 (2021).
arXiv:2103.00353

F. Briscese, L. Modesto, Unattainability of the trans-Planckian
regime in nonlocal quantum gravity. JHEP 09, 056 (2020).
arXiv:1912.01878

@ Springer


http://arxiv.org/abs/hep-th/9912129
http://arxiv.org/abs/hep-th/0306233
http://arxiv.org/abs/hep-th/9708102
http://arxiv.org/abs/0812.3521
http://arxiv.org/abs/1502.07429
http://arxiv.org/abs/1908.01937
http://arxiv.org/abs/hep-ph/9606222
http://arxiv.org/abs/gr-qc/0311082
http://arxiv.org/abs/1712.03338
http://arxiv.org/abs/2006.04217
http://arxiv.org/abs/0103043
http://arxiv.org/abs/2012.06254
http://arxiv.org/abs/2012.11829
http://arxiv.org/abs/1412.0740
http://arxiv.org/abs/1806.05664
http://arxiv.org/abs/1809.05907
http://arxiv.org/abs/2009.0412
http://arxiv.org/abs/0911.4967
http://arxiv.org/abs/astro-ph/0407572
http://arxiv.org/abs/1010.3585
http://arxiv.org/abs/hep-ph/0311312
http://arxiv.org/abs/1512.07600
http://arxiv.org/abs/1602.02421
http://arxiv.org/abs/1704.07728
http://arxiv.org/abs/hep-th/9610006
http://arxiv.org/abs/1703.04584
http://arxiv.org/abs/1703.05563
http://arxiv.org/abs/1801.00915
http://arxiv.org/abs/1107.2403
http://arxiv.org/abs/1407.8036
http://arxiv.org/abs/1803.08827
http://arxiv.org/abs/2103.00353
http://arxiv.org/abs/1912.01878

160 Page 16 of 16

Eur. Phys. J. C (2022) 82:160

59.

60.

61.

62.

63.
64.

L. Rachwat, L. Modesto, A. Pinzul, I.L. Shapiro, Renormalization
group in six-derivative quantum gravity. arXiv:2104.13980

F. Briscese, L. Modesto, Nonlinear stability of Minkowski space-
time in Nonlocal Gravity. JCAP 07, 009 (2019). arXiv:1811.05117
F. Briscese, G. Calcagni, L. Modesto, Nonlinear stability in nonlo-
cal gravity. Phys. Rev. D 99, 084041 (2019). arXiv:1901.03267
L. Modesto, The Higgs mechanism in nonlocal field theory. JHEP
06, 049 (2021). arXiv:2103.05536

L. Modesto, Nonlocal spacetime-matter. arXiv:2103.04936

A. Smailagic, E. Spallucci, Lorentz invariance, unitarity in
UV-finite of QFT on noncommutative spacetime. J. Phys.
A 37, 1 (2004). [Erratum: J. Phys. A 37, 7169 (2004)].
arXiv:hep-th/0406174

@ Springer

65.
66.

67.

68.

69.

J.Liu, Q. Li, F. Briscese, G. Calcagni, L. Modesto, work in progress
K.S. Stelle, Renormalization of higher derivative quantum gravity.
Phys. Rev. D 16, 953 (1977)

‘Wolfram’s Mathematica, Version 12.0 (Wolfram Research, Cham-
paign, 2019)

J.M. Martin-Garcia, xAct: efficient tensor computer algebra for the
Wolfram Language. http://xact.es

T. Nutma, xTras: a field-theory inspired xAct package for
mathematica. Comput. Phys. Commun. 185, 1719 (2014).
arXiv:1308.3493


http://arxiv.org/abs/2104.13980
http://arxiv.org/abs/1811.05117
http://arxiv.org/abs/1901.03267
http://arxiv.org/abs/2103.05536
http://arxiv.org/abs/2103.04936
http://arxiv.org/abs/hep-th/0406174
http://xact.es
http://arxiv.org/abs/1308.3493

	Universal leading quantum correction to the Newton potential
	Abstract 
	1 Introduction
	2 Derivation of effective action
	3 Gravitational field in the Newtonian limit with quantum contributions
	4 The motion of a test particle
	5 General proof of gauge independence
	6 Universality of the effective field theory result
	7 Conclusions and discussions
	Acknowledgements
	Appendix A
	Appendix B
	References




