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Invariant Set (IS) theory is a locally causal ontic theorpbysics based on the Cosmological Invari-
ant Set postulate that the univetdecan be considered a deterministic dynamical system eglvin
preciselyon a (suitably constructed) fractal dynamically invariaet inU’s state space. IS theory
violates the Bell inequalities by violating Measuremerttdpendence. Despite this, IS theory is not
fine tuned, is not conspiratorial, does not constrain erpenter free will and does not invoke retro-
causality. The reasons behind these claims are discust@d paper. These arise from properties not
found in conventional ontic models: the invariant set has reeasure in its Euclidean embedding
space, has Cantor Set structure homeomorphic to the pradgeirs p > 0) and is non-computable.
In particular, it is shown that the p-adic metric encapidate physics of the Cosmological Invariant
Set postulate, and provides the technical means to dematasio fine tuning or conspiracy. Quan-
tum theory can be viewed as the singular limit of IS theory whdenp is set equal to infinity.
Since it is based around a top-down constraint from cosnypl&gtheory suggests that gravitational
and quantum physics will be unified by a gravitational theafrihe quantum, rather than a quantum
theory of gravity. Some implications arising from such agpesctive are discussed.

1 Introduction

Invariant Set (I1S) theory [14] [15] [16] is a putative deténmtic locally causal theory of physics based on
the Cosmological Invariant Set Postulate: the univergan be considered a locally causal deterministic
dynamical system evolvingreciselyon a fractal dynamically invariant skt in U’s state space. Fractal
invariant sets are features of a generic class of chaotiardigal systems (e.g.. [20]). Like general
relativity, IS theory proposes that the laws of physics arengetric - describing the geometry of state
space in particular. Less like general relativity, the fahgeometry of IS theory links directly to aspects
of number theory, exploited below. IS theory implies a muobater synergy between the physics of
the very large and the very small than exists in contempagpaggsical theory. As such, IS theory has
significant implications for the way we can understand tlseletal phenomena of quantum physics. The
implications for the interpretation of the Bell Inequadii and hence quantum nonlocality, are the focus
of this paper. In particular, we attempt to show that IS thigerconsistent with the a realistic locally
causal explanation of quantum physics.

A key parametelN > 1 in IS theory describes the fractal dimensionlgf The larger isN, the
closer this dimension approaches an integer (i.e. therctbsegeometry is Euclidean). As discussed
in [16], for any finiteN there exists a 1-1 injection between the (symbolically a@sfjrstate space of
IS theory and elements of the complex Hilbert space of quartheory. The fact that this mapping
is not a bijection means that certain properties of quantueory, notably those associated with the
algebraically closed nature of the complex Hilbert Spaocena hold in IS theory for any finit®l. As a
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2 Invariant Set Theory

result, quantum theory emerges as the singular (and notrtbetk) limit of IS theory alN = «. Singular
limits are commonplace in physical theory [2]: the invisEidler equations are the singular limit of the
viscous Navier-Stokes equations at infinite Reynolds nupaal classical physics is the singular limit
of quantum theory when Planck’s constant is set to zero. Masprofound implications, discussed
below.

In Sectior[ 2, we discuss how IS theory violates Measurenmelggdendence. Then, in Sectidn§]3, 4,
and 6, we discuss, respectively, why such violation is mat filned, is not conspiratorial, is consistent
with experimenter free will and does not invoke retrocaitisain Sectior ¥ we discuss the links between
IS theory, cosmology, guantum measurement and the goalfginggravitational and quantum physics.
Concluding remarks are made in Secfion 8

2 Violating Measurement Independence in I nvariant Set Theory

As mentioned, IS theory can be considered a realistic pcallisal ontic theory. Such a theory can only
violate Bell's inequalities by violating (at least parlyglthe measurement independence condition [7]
(8] [6l

p(Ala,b) =p(A[c,d) 1)

for all measuring orientatiors b, ¢, d, and where the ontic variable describes some (quantum) system
subject to measurement. In general, physicists do not @enthat so-called ‘superdeterministic’ theo-
ries which violate measurement independence are physjgalisible. Amongst the various objections
raised are the implications of a very finely tuned theory [22]an implausible conspiracy between the
values of the ontic variables and the determinants of ingtnt settings [1] or of unacceptable constraints
on experimenter free will. The purpose of this paper is tasti@t none of these objections apply to IS
theory.
In IS theory, the measurement independence condition iatemin the following way:

p(Alab') # p(Ajab) )

wherea, b, b’ are three points ofi? such that

cosbay € Q2(N), cosbap ¢ Q2(N) 3)

where co®,p,, denotes the angular distance betwaeandb etc andQ»(N) denotes the set of rational
numbers describable kY bits. In particular, IS theory draws on probability distritons p where the
left hand side of[(R) is non-zero (corresponding to attebubf states(y of U lying on Iy), whilst the
right hand side is strictly zero (corresponding to attesubf certain counterfactual statedbhot lying
on ly). In addition to [(B), IS theory also requires phase angleexpressed as a multiple af to be
describable b\ bits:

¢/me Qa(N) (4)

In seeking an interpreting the violation of measuremengjrahdence in IS theory, one should not imag-
ine that measurement settings causally affect the ontie efahe system being measured, or vice versa.
Rather, the fractal geomettly, whose description is presumed to define the laws of physitisea
most primitive level, provides an overarching ‘top-dowmnstraint on possible joint distributions of
measurement settings and ontic states.
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The relevance of {2) for the (original) Bell inequalitiesas follows. Leta, b andc denote three
distinct points on the sphere (corresponding to three taimms in physical space). The cosine rule
applied to the spherical triangl& . gives

C0S0O,p = C0OSO,cCOSOyc + SiNByc SINB,c COSP (5)

where @ denotes the interior angle dfy. at the apexc. The three cosines ifl(5) all appear in Bell's
inequality
|Corry(a,b) — Corry(a,c)| < 1+ Corry(b,c)

where Corp(a,b) = cosby, etc. As mentioned, in IS theory not only do we require thaheaicthese
cosines is describable by bits, but so also is the angtg expressed as a multiple af (the reader is
referred to[[16] for a discussion of the fractal geometrigsmn behind these constraints). It is easy to
show, by rudimentary number theoretic arguments, thatcthislition is simply not compatible with the
cosine rule above. For example, witkQp < 11/2, then if co¥,c and codc are rational, so that the first
term on the right hand side dfl(5)) is rational, then the sddemm on the right hand side &f| (5) will be
irrational and so the left hand side as a whole will be irradilo Hence IS theory is not itself constrained
by the Bell inequality.

As discussed in more detail in Sectidn 3 in the context of tH&8 version of the Bell inequality, IS
theory predicts that experimenters never actually [ést @)the corresponding CHSH inequality - but
rather test a modified version of this inequality where a! itdividual correlations are describable by
N bits. Such a modified version is experimentally testab& (orresponds to stat¥g on the invariant
set) because the three individual correlations can thewuit iy three separate sub-experiments, each
on the invariant set, and each with measurement orientatianing rational cosines.

Making a crucial distinction between rationals and irmadils in this way is likely to bring a sense
of profound uneasiness to a reader groomed in Euclideane(menerally Riemannian and pseudo-
Riemannian) geometry and real (or indeed complex) analyiisn these perspectives, it would seem
that IS theory requires a level of precision that is compyetmphysical. Using the formalism of p-
adic numbers, relevant in describing fractal geometriesattempt to show in the next Section that this
interpretation is false.

3 FineTuning and the p-adic Numbers

Superficially, the violation of measurement independerxeéescribed by (2) appears to embody the
undesirable concept of fine tuning [22]. Take a numbe@,(N) for N >> 1 and perturb it with an
arbitrarily small number drawn randomly from the reals. iladmost certainly the perturbed number
¢ Q2(N). That is to say, IS theory’s crucial distinction as to whettie cosine of an angle is or is not
describable byN > 0 bits seems to be completely destroyed by adding the srhaltesunt of noise.

A more careful analysis of this objection raises profoundsgions about the meaning of words such
as ‘fine’ and ‘small’ in IS theory: as discussed in the Intraiitan, our intuition about these words is
largely based on 19th Century notions of continuity jn Ededin geometry. However, IS theory is based
on the central importance of a fractal invariant ketn the state space of the universe. To discuss how
to formulate the notion of continuity (and indeed diffeiiabtlity) in this context, note first that we can
write, ly = R x C(p), whereC(p)

C(p) = [ C(p)

keN
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is a Cantor Set. For simplicity, considé(p) as a subset of the unit intervfl, 1]. Specifically, let us
suppose that thie+ 1th iterateCy.1(p) is generated from thieth iterateCy(p) by dividing an interval of
Ck(p) into 2p— 1 subintervals and removing every second subinterval. With2, C(2) is the familiar
Cantor Ternary Set. However, IS theory requipes 2V 4- 1 (with N itself a power of 2). If there are only
finitely many Fermat primes (e.g. as suggested lin [9]), théntempting to speculate that the value of
N is set by the condition thai > 0 is the largest possible Fermat prime. Then the Hausdarfédsion

of C(p) is log(2V)/log(2N*+1 — 1) ~ N/N + 1 which tends to unity (smoothly) a&— .

Now suchC(p) contain as many points as does the unit interval in wii¢h) is embedded (an
uncountable infinity). Hence, fore C(p), there are as many perturbatiods : y — y which leave
y €C(p) as perturbationdg y:y — y’ for whichy” ¢ C(p). Let us describe the former as ‘geometrically
constrained’ perturbations, the latter as ‘geometricafigonstrained’ perturbations. As discussed below,
both play a key role in understanding why IS theory is not poasorial.

By construction, IS theory is robust to geometrically coaisied perturbations. We can describe this
robustness using a tool which is commonplace in number yhdmut less so in physics - p-adic analysis
[19]. The p-adic number systems are relevant here becaase ¢kists a well-known homeomorphism,
Fp, between the ring op-adic integers an@(p), defined by([21]

Fo (kzoakp ) = 207<2p—1>k+1 (6)

For example, withp = 2, (8) is a bijection between the dyadic integers and thed@argrnary Set. The
p-adic integex is equipped with a p-adic nori®|,. This in turn defines a metrig; — x|, between two
p-adic integers; andx,. This metric can be used to define the notion of distddpg, y») between two
points onC(p):

D(y1,Y2) = X1 —X2|p (7)

wherey; = Fy(X1), Y2 = Fp(X2). In particular, sincgx; —Xo|p, < 1 for any two p-adic integers, so also
D(y1,y2) <1 for any two points on the Cantor set. Now, Jebe ap-adic integer ang/ = Fy(X) the
corresponding point o€(p). If we perturbx, i.e. add tox somep-adic integery such thatd |, < 1,
then not onlyy’ = Fp(x+ &) € C(p), but also the smaller i§, the closery/ is toy both in the Euclidean
metricE of the Euclidean space in whi€( p) is embedded, and iD.

Now the p-adic integerZ are readily extended to the p-adic ration@ls, into which the rationals
can be embedded. The p-adic metric extends straightfolyvando Q, and the corresponding extension
of D encapsulates the essential physics of the Cosmologicaliémt Set Postulate: that a geometrically
unconstrained perturbation is a large-amplitude pertizhaTo see this, let us add xa rational number
dg, such thatdg belongs taQp, but notZ,. Theny” = Fy(x+ dg) does not lie orC(p). The distance
D(y",y) is, by definition,|dg|p. Now the p-adic norm of a p-adic rational which is not a p-adfeger is
necessarily greater than or equaptdSincep > 0, we have the result th@(y;,y,) < 1= E(y1,y2) <
1, whilstE(y1,Yy2) < 1= D(y1,y2) < 1.

In summary, IS theory is robust to p-adic noise, and pertighs which are small amplitude in the
E metric are not necessarily small amplitude in the more @alyi relevantD metric. We discuss the
important physical implications of this in the next Section

Informally, the real numbers can be considered the sindinfar of the p-adic numbers, ap = o
[13]. This is relevant in showing that the complex HilberaSp of quantum theory is the singular limit
of IS theory atp = « [16].
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4 Conspiracy and CHSH

The discussion about p-adic numbers is directly relevanihaoissue of conspiracy. It is sufficient to
discuss the example raised by Bell himself [1] to be ableckléathe concept of conspiracy in IS theory.
Imagine a CHSH experiment, whea@ndb take the discrete binary orientatiofes, a;), (b1,b>) respec-
tively. Let us suppose that these values are set by two imdiepé pseudo-random number generators,
whose outputs are sensitive to the valae$ < {0,1} of (say) the millionth bits of the input variables,
respectively. Now in order to violate Measurement Independ, the probability distributiop(A |a, 8)

of the ontic variables must also depend @rand 3. Using traditional thinking, any such dependence
seems implausible; whilst andf3 determinea andb respectively, it seems hard to imagine - Bell at least
found it hard to imagine - that they are the crucial piecesfifrmation for any other distinct purpose,
such as constraining the ontic variables. This is the bddiseoidea that an implausible ‘conspiracy’
(betweena, 3 andA) is needed to violate Measurement Independence.

However, let us try to analyse this issue using IS theoryp8se,a = 0 and consider the counterfac-
tual question Q: What would have been the outcome of the memsunt on a particle with ontic variable
Ao if insteada = 1? If the counterfactual perturbation which taleedrom 0 to 1, keeping)\g fixed, is
an example of a geometrically unconstrained perturbatioin Sectiorf B), then, with probability one,
this perturbation will take the state of the unived§gto a perturbed stat¥; off the invariant set. As
such the distance betwe&q andX), in the physically based metra is large, even if the perturbation
appears inconsequentially small with respect to the Eealidembedding space metric. In this situation
the value ofa certainly is a crucial piece of information, not only for dehininga, but for ensuring the
existence of every atom in the universe! In this sense, thigtfiata ‘only’ defines the millionth digit
of the input variable is a complete red herring; in henetric, perturbing the millionth digit keepiniy
fixed may correspond to a very large perturbation.

Conversely, if the counterfactual perturbation above is@ggtrically constrained perturbation, then
it will map the state of the univers§, to a perturbed statg; on the invariant set. In this situation, the
smallness of the distance betwedn and X/, in the Euclidean metric implies the smallness of distance
in the D metric. In this situation, the intuition that cannot be the crucial piece of information for
any other distinct purpose (than for settiagis correct. Ifly were the whole of Euclidean state space,
then all perturbations would be of the geometrically caiatrd type and Bell’s intuition would have
been correct. This is the case for traditional hidden-tdeidheories (e.g. Bohmian theory). It is not,
however, for IS theory: no matter how largepigi.e. no matter how close the dimensionGifp) is to an
integer), the measure & is strictly zero in the Euclidean space in which it is embelde

Is the perturbation corresponding to the counterfactuaktion Q above, geometrically constrained
or geometrically unconstrained? The answer depends onaysanusing IS theory. This is given in
reference([15] for the CHSH experiment. For givey if the pair of orientations are in realitg;, bj),
wherei, j € {1,2}, then the state of a counterfactual universe where thetatiens are eithefay, bj),
k=i or (a,by), k# j, ke {1,2}, lies off Iy, i.e. the corresponding perturbations are geometrically
unconstrained. Now the CHSH inequality

A=|Corry(ay,b1) — Corry(ag,b2)| +|Corry(az,by) + Corry (az,bp)| < 2 (8)

involves all four pairs of possible settings f@,b;). For givenAo, if any one pair of settings is associated

with a state ofJ only then the other two settings are not associated with a stafeasfl,. That is to

say,Ais necessarily undefined in IS theory. Hence IS theory is aositained by the CHSH inequality.
As with the original Bell inequality, IS theory asserts thdiat is actually estimated when the CHSH
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inequalities are found to be violated experimentally isitiezuality
A’ = |Corrp, (a1, b1) — Corrp, (&, b2)| + |Corrp, (a2, by ) + Corrp, (a2, b2)| < 2 9)

where Corg(a;,bj) = cosfyp; anda) = ay, b} = by to within the necessarily finite precision of the
measuring instruments, such that all of 6gs,, C0s6yp,, COS8,,p, and cob,,n, are describable b
bits. Importantly, from[(B) and {9)

A#£N: (10)

the left hand side of (10) is undefined, whilst the right-haide is not. Put another way, there exists
no experimental protocol (on the invariant set) from whitban be estimated. By contrag{, can be
estimated experimentally: one performs four separateegplsiments, one for each correlation. Since,
by construction, each sub-experiment is an element of palyeeality, it must be the case that each of
COSBa;b; , COSBy b, , COSOa,p, AN COPy,h, is describable biX bits. For such measurements can exceed
2, even though it is not the case ti#at- 2 in IS theory.

The argument above is reminiscent of the finite-precisidiifization of the Kochen-Specker theo-
rem [12]. In the present case, however, such nullificatiopaised on an underlying physical premise:
the Cosmological Invariant Set postulate.

5 FreeWill

A compatibilist definition of free will[[10] implies that wera free when there is an absence of constraints
or impediments preventing us from doing what we want to do. cQfrse, in the sense that we are
constrained by the laws of physics, we are never complete; 1 may have the desire to fly like a bird
by flapping my arms up and down, but the laws of physics willpreé my realising this desire. Hence,
as a definition of experimenter free will, let us say that eixpenters have free will when there is an
absence of constraints or impediments preventing them fomg what they choose to do, providing
these choices are consistent with the laws of physics (herevbrd ‘choice’ is presumed to describe the
result of some complicated set of neurological processggetred by input from the senses)

Let us suppose Alice and Bob choose orientatiamsmdb with relative anglef,,. After they have
made this choice, we ask them to write down their choices nmgeof the angular coordinates far
andb. There are two possibilities: either the correspondingbges Q2(N), or the corresponding
cosbap ¢ Q2(N). If the former, then IS theory is able to satisfy their cheiabrectly. However, if
cosO,p ¢ Q2(N) then, providingN is large enough, there will exist@ which is smaller than the finest
possible angular resolution of Alice and Bob’s measurirggriiments such that c6§, € Q2(N) where
|6/, — Ban| < 06. In IS theory,N is assumed to be sufficiently large that this condition issBad.
Hence, Alice and Bob’s choices can be accommodated by |8tipeoviding we recognise that the laws
of physics prevent an exact realisation of their choices easnrement orientation if they are overly
precise. The crucial question is whether, as experimenfdice and Bob need be aware of this the-
oretical restriction as a practical restriction on the ty/pé experiment they may wish to perform. In
(the complex Hilbert Space of) quantum theory, measuremstatistics vary continuously witBzp. In
IS theory these measurement statistics come as close akeséol varying continuously, providiny
is large enough - this is because the fractal dimensidg ecomes as close as one likes to an integer
value for large enougl. For large enougiN, Alice and Bob cannot distinguish between the strictly
continuous variation of measurement statistic predictedumntum theory, and the almost continuous
variation of measurement statistic predicted by IS the@tys crucially important to note, however, that
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because quantum theory is the singular limit and not the gmlguit of IS theory, we can makal as
large as we like without the state space of IS theory evercopiating the algebraically closed state
space of quantum theory: the counterfactual incompleteokS theory holds for all finitdN, no matter
how large).

In conclusion, IS theory allows experimenters unfettemregdom to choose measurement orienta-
tions as they wish. Experimenters have free will in everytical sense of the phrase!

6 Retrocausality, Non-computability and Predictability

Let us temporarily move away from the Bell inequalities andsider a delayed choice experiment in a
Mach-Zehnder interferometer. Consider a titn&hen a photon has just passed through the first beam
splitter of the interferometer, but when the experiments yet to decide whether to insert the second
beam splitter. If the experimenter puts in the second bedittespit is only at the later timé;, > tg. The
well-known delayed choice ‘paradox’ is to understand hoe photon knows aty whether to behave
like a wave or like a particle. Is it retrocausality? In ISdhe there is no need to invoke retrocausality;
the structure of the invariant set fgtis deterministic and has to be consistent with wave-like tth w
particle-like properties for the photon, consistent with aictual measurement made;atAt first sight,
this does not seem to explain the paradox at all: if a thecaistdeduce mathematically the structure of
the invariant set ap, she can predict what experiment will be conductedd.afhat is to say, the theorist
will be able to tell the experimenter whether he will put tleeend beam splitter into the interferometer
or not. Such an experimenter can be expected to be more tipgy k& prove the theorist wrong and
do the opposite! Of course the answer to this ‘predictabiparadox is (according to IS theory) that
whilst the structure of the invariant set is certainly wedfided atty, no finite computation (by theorist
or computer) can reveal this structure - the theorist willbhable to reveal any useful information to the
experimenter about what experiment will actually be penfed at the later timg. Fractal invariant sets
are formally non-computabl&l[3].

In the case of an EPR experiment, one can imagine the pairtlpa being produced # and the
experimenters deciding the measurement orientatiotys dthe invariant set ab has to be consistent
with these orientations. However, no theorist can probémbegiant set aty to somehow predict which
orientations will be chosen by the experimenters.

The notion of non-computability is not commonplace in phgsi It arises in the current context
because the invariant set is defined using the methods cdigholalysis (see [15]). One can draw on an
analogy in GR of a concept which also makes explicit use ohod of global analysis (in space-time
rather than state space). The black-hole event horizohis defined as the null boundary of light rays
which escape to future null infinity. Consider a massive ctj# orbiting a black hole well outside the
event horizon. Suppose &t t; (wheret labels a family of space-like hypersurfaces), an experisren
tosses a coin. If the coin lands heads, the experimenteelsrbpinto the black hole. If the coin lands
tails, M remains in orbit. Becaus¢" is defined by a global space-time condition, the positioo6f
atty < t; also depends on the coin tosstat For example, a null ray which appeared to be diverging
from the black hole betwedp andt; would become trapped at some titne t; whenM had fallen into
the black hole. This null ray, &, would therefore belong to the event horizon. If one imagitiat the
position of the event horizon & could be calculated from the local curvature of space-tithen the
correlation between the position g#* atty and the outcome of the coin toss could only be explained
by assuming some form of backward causality or some imgdéisonspiracy. However, the position of
2+ cannot be calculated in this way. Indeed the precise paositioZ’* cannot be calculated from any
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finite algorithm: it is technically non-computable. Of ceay there is no paradox here once one realises
that.# " is a globally defined (yet manifestly causal) concept.

7 Cosmology, M easurement and Quantum Gravity

In IS theory, the Invariant Set Postulate is a top-ddwn [Fistaint from cosmology to quantum physics.
A key question is whether this posulate is consistent withunalerstanding of the structure of cosmo-
logical space-time, since the existence of a measure-gactaf invariant set indicates a departure from
Hamiltonian dynamics (and, by the Liouville theorem, stsppace volumes need not be conserved if the
underlying dynamics is non-Hamiltonian).

Crucially, departures from Hamiltonian structure needyardcur in very localised areas of state
space, in order that the invariant set is globally fractak $fdeculate here that the required departures
from non-Hamiltonian structure are specifically assodatéh localised regions of state space associ-
ated with (classical) space-time singularities. In pattic Penrose [17] argues for a reduction of state-
space volume associated with dynamical evolution througfieae-time singularity (based on the notion
of information loss in black holes). Such contraction wotdrespond to a convergence of state-space
trajectories of the type seen generically in those nonliglgaamical systems which exhibit fractal in-
variant sets. If these ideas are correct, then whilst it malj/lve the case that quantum physics is needed
to understand the nature of space-time singularities eités more true that space-time singularities are
needed to understand the nature of quantum physics!

Overall, IS theory requires a quasi-cyclic cosmology evm\on a measure-zero invariant set. The
neighbouring space-time trajectories hn (whose statistical properties are described by IS theory)
should therefore be thought of, not as ‘other worlds’, btlhea as our unique world at earlier or later
epochs. The contraction of state space at each final spaeesingularity would be enough to reset cos-
mological entropy ahead of the big bang for the next epodk.dbnceivable that dark energy is required
to ensure that the invariant det is not a trivial fixed point or simple limit cycle (both of whiovould
be too super-deterministic to explain quantum physicsautitonspiracy).

Because IS is a geometric theory strongly linked to a dynahsigstems approach, and because GR
can be written as a dynamical systems theory (e.g. the ADkhdéation), the synthesis of GR with
IS theory can be expected to be much less problematic thatguéntum theory. Indeed the basis of
measurement in IS theory is the ‘clumping’ of state-spaagedtories orly into discrete classes. This
allows trajectories to be given a symbolic labelling, ane $tatistics of such labelling is the basis of
the injection into the complex Hilbert Space, as mentionigolvea [16]. In IS theory, this state-space
clumping can be considered a manifestation of the phenomesorefer to as ‘gravity’. This already
leads to certain predictions. For example, an emergenepnopf IS theory is that vacuum energy will
not couple directly to the gravitational field [14] ]16]. Moradically, IS theory predicts there is no such
thing as a graviton. As mentioned above, new perspectiveidnenergy are also emergent.

The very notion that quantum physics should be emergent #a@wsmological - and hence overtly
gravitational - constraint, suggests it may be wrong togetr a ‘quantum theory of gravity’; we should
instead be seeking a ‘gravitational theory of the quantum’.

8 Conclusions

Invariant Set theory is based on the premise that the Uvassa whole can be considered a dynam-
ical system evolving precisely on a fractal invariant Igetn its state space. In this paper we have not
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discussed the precise nature of this set - it must, for exaniptorporate quaternionic structure to be
consistent with the quantum physics of spin. Rather we hasesked on the consequences of an emer-
gent constraint (call i€) arising from this invariant set structure - specificallattthe cosine of relative
measurement orientations must be describable by fvibes, whereN > 0 is a parameter describing
the fractal dimension df;.

The key result exploited in this paper is that for an arbjttaiangle on the sphere, where two sides
satisfiesC, and one of the interior angles is a rational multiplerpfthen the third side cannot satisfy
C. We have appliedC to the Bell inequality and shown that it allows Measuremertependence to
be partially violated - without violating local causality pealism. This triangle property also applies
to the interpretation of other key quantum phenomena suctuels as quantum interferometry [16]
and the sequential Stern-Gerlach experiment [14]. In ttierlaase, for example, the triangle property
provides an explanation of what otherwise is ‘explainedthsy Heisenberg Uncertainty Principle - that
simultaneous incompatible measurements of spin are infppessAs a result of the discussion it is
plausibly the case that IS theory can provide a fully realeshd locally causal description of all quantum
physics.

The triangle property above arises from an elementary egimn of number theory. Number the-
oretic concepts also arise in showing why IS theory is robustoise. In particular, we have utilised
the homeomorphism between the ringmadic numbers and the Cantor $Xtp) which describes the
structure ofly in directions transverse to the state-space trajectonbsyep = 2N + 1. IS theory is
robust top-adic noise. In general, the theory of p-adic numbers is awiilfar to physicists, though in
number theory the p-adics are used as frequently as the immikar reals. Indeed, it was noted above
that quantum theory itself can be considered the singutait bf IS theory whenp = « (consistent
with the reals being considered the singular limit of thedes whenp = «). It is worth reflecting on
other singular limits in physics. For example, as mentiotiegl inviscid Euler equations are the singular
limit of the viscous Navier-Stokes equations for infiniteyRelds number. For many purposes, the Euler
equations provide a good approximation to the Navier-S@aiations for high Reynolds number flow.
However, on occasion the Euler equations prove disasyrauskalistic. They predict, for example, that
aeroplanes could never fly!

Similarly, there may be circumstances where quantum thexmyes disastrously unrealistic, such as
in the cosmological domain where quantum and gravitatiphgksics are both important. The grossly
unrealistic estimates of the cosmological constant basegliantum field theoretic estimates of vacuum
energy may be an example (in IS theory, such small fluctusitawe not gravitationally coupled [14]).
IS theory suggests that it may be misguided to seek a quareanyt of gravity. Rather, the constraint
played by the overtly gravitational cosmological invatiaat in IS theory suggests that the unification of
gravitational and quantum physics will instead be found gnavitational theory of the quantum.
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