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Chapter 1

Introduction

Since the first unequivocal detection of gravitational waves in 2015 at the Laser Interferometer
Gravitational-Wave Observatory (LIGO) in Livingston and Hanford [3], there has been a surge
of interest in the accurate calculation of motion and radiation of binary compact objects, from
which these waves originate. In popular terms, we have gained, next to our eyes, observing
the spectrum of electromagnetic radiation from the heavens, now also ears, listening to the
vibrations of spacetime itself, to learn about the universe. Interpreting what we hear as well as
possible motivates further exploration of the current best theory of gravity we have: General
Relativity (GR).

But there is a less optimistic reason too, that interest in a more thorough understanding
of the predictions of GR, our best guess for the workings of the gravitational interaction,
has seen an increase. The last decade and a half saw another large experiment, the Large
Hadron Collider (LHC), starting runs and confirming some predictions, such as the Higgs
boson discovery, but falling short of meeting other expectations (albeit less certain a priori),
such as providing evidence for supersymmetry and string theory. That makes the 2010s a
time in high energy physics where big hopes and dreams of unification of interactions - the
weak, strong and electromagnetic forces as described in the standard model (SM) on one side
and GR on the other - have gone unfulfilled and the most clear pathways to that unification
have, in a sense, grown more obscure rather than being illuminated.

New opportunities in precision testing and perhaps a slight loss of momentum in finding
better fundamental theories of nature motivate the community to understand more thoroughly
those theories already there. An exciting example of a different approach of already existing
theories is visible in the resurgence of the amplitude programme in recent decades,1 essentially
reordering calculations in quantum field theory (QFT) in a more insightful - and much quicker
- way, and in the application of such techniques to classical, gravitational systems. Sure, it
is exciting that formerly untrodden ground has been reached by some of these gravitational
amplitude calculations in terms of post-Minkowskian contributions [27], but the calculational

1Actually, the modern amplitude programme has its origin [186, 209] arguably in supersymmetric theories
and string theory, so it would be mistaken to present this as a consequence of susy not being found by LHC -
but it is a good example of a different approach to existing theory.
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precision needed for the current state of the art experiments can conceivably also be reached
by more ‘brute force’ numerical approaches [111]. Arguably, the more interesting aspect of
amplitude methods applied to gravitational problems, is that the new techniques order gravity
in a different way.

In this thesis, the main question is whether there exist relativistic systems displaying classical
dynamics and what physical realisations of those look like. This would yield possibly interesting
toy models for other, more realistic relativistic systems, since they have the promise to be
simpler than generic systems. And this simplicity would be very welcome: While the solar
system through Kepler’s ears rings as a harmonic symphony of (nearly) perfectly formed
ellipses, the Einstein equation of a two-body system in General Relativity cannot be solved
exactly even in the idealised situation where both bodies are point particles and there is no
energy loss due to radiation.

An example of this quest for more simplicity in relativistic problems was given by Caron-Huot
and Zahraee in 2019 [59], which looked at N = 8 supergravitational two-body problems.
They show that the conservation of the same symmetry as the classical Kepler problem is
related to the vanishing of a particular scattering amplitude in their relativistic theory [59].
By ordering their calculation in a gravitational theory in a particular way, they found an
interesting connection between a classical observable and a scattering amplitude, holding
more widely than just for the particular theory.

The supergravity theory mentioned above is not a viable candidate for an actual theory of
nature, but it is interesting for different reasons. One way of understanding current best-guess
theories better, is to describe not just what the way interactions work in nature is, but also
in what ways nature could have worked consistently. The work in this thesis very much taps
into this mode of thinking, asking questions to which we know the answer nature gives, but
do not know the space of possible answers a consistent theory might give.

Philosophically, this thesis draws on two concepts with the promise of simplifying and ordering
our understanding of physical theories. The first concept is that of symmetry, the second that
of the double copy. We will introduce both concepts here, without technical details, in the
context of their application in the following chapters.

1.1 Symmetries of the Kepler problem
The first original works in this thesis explore ways in which a symmetry known from the
non-relativistic Kepler problem can or cannot be present in relativistic systems. The classical
Kepler problem, in which a central body is orbited by a second, much smaller body, is well
known for its large amount of symmetry and its simplicity. The orbits of the Kepler problem
in Figure 1.1, ellipses, parabolas and hyperbolas respectively, are simple curves: conic sections.
Focusing on bounded orbits, which are the ones relevant for observations of gravitational waves,
we might consider another striking property: the ellipses close in on themselves, creating
periodic motion. This periodicity of bounded orbits is a result of the symmetry the problem
possesses, which is the maximal amount for any dynamical system in three dimensions.

The most obvious relativistic equivalents, in electromagnetism or GR, destroy part of this

2



Chapter 1. Introduction

(a) (b)

Figure 1.1: Keplerian orbits with the same angular momentum, for eccentricities e = 0.7, 1, 1.3 for
the ellipse, parabola and hyperbola respectively. On the right, part of an orbit with
(exaggerated) precession is given, as encountered in relativistic theories.

symmetry, resulting in differently shaped orbits as compared to those of Kepler shown in
Figure 1.1. The question we ask in Chapters 3, 4 and 5 is whether there could exist relativistic
theories, alternative to the ones nature seems to adhere to, that preserve the classical symmetry
in the relativistic setting. The answer is a resounding yes, and we map out the possible shape
of the Hamiltonians describing such systems.

1.2 The double copy: quantum and classical
The double copy relation between gauge and gravity describes how seemingly unrelated
theories are in fact strongly linked together. As the topic of the double copy is much less
well-known than the Kepler problem, we will delve into it a bit further.

Let us first consider why the double copy is interesting to begin with. The reasons are roughly
twofold: First, as alluded to earlier, unification of all fundamental interactions has so far not
been able to incorporate gravity. The double copy hints at a deep connection between gauge
theories, describing all known particle forces, and gravity, which might open the door to a
unified description of both. Second, and of a much more practical nature, the double copy
relation allows one to construct gravity scattering amplitudes, which are notoriously difficult
to compute, in terms of the simpler gauge theory ones. This can for example be applied
fruitfully in the calculation of higher-order interactions in gravitational two-body systems [24].

The double copy is first and foremost a relation between scattering amplitudes of gauge
theories and gravitational theories. Since its discovery, however, other versions of the same
link have been shown. These differ both in the linked theories and in the kind of objects linked

3
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through double copy-like relations. For example, instead of gauge theories containing colour
charges, one can relate theories with global symmetry containing flavour charges [75]. Also,
double copy relations can be shown between equations of motion, fields and actions as well as
scattering amplitudes [174, 72]. Additionally, several manifestations of classical double copies
have been established [176, 195, 167, 123, 66], mapping classical (colour-)charged solutions
through a simple prescription to gravity solutions.

Already in the 80s it was realised that duality relations between specific string amplitudes -
those of open and closed strings - had important implications for the low-energy limits of
those theories: gauge theory and gravity respectively [150]. At this point, the relation had a
rather mystifying character: two vastly different theories in the non-string realm seemed to
share a structure not visible in the usual descriptions in terms of actions.

A development that inspired a leap in understanding the connection between gravity and
gauge theories was the finding of colour-kinematics duality [20]. For tree-level amplitudes,
in which there are no loops in the Feynman diagrams describing them, the duality has been
proven [26], but also at loop level progress has been made in the last decade [61, 25], see [30]
for a review.

Through the lens of colour-kinematics duality, the scattering amplitude of a set of particles is
given by three basic pieces of information: the colour factor ci, which holds all information
on the charges of the external particles related to the Lie algebra symmetry of the fields; the
kinematic numerator ni, accounting for all information on the momenta of the incoming and
outgoing particles; and the denominator di, holding the denominators of the propagators for
all internal particles being exchanged. The index i here enumerates the particular diagrams
that contribute to the amplitude An with n external particles. Summing over these implicitly,
we can write each n-point tree-level amplitude schematically as

An = nici

di

. (1.1)

But what are those particular diagrams we sum over? It turns out that it is sufficient to
only consider trivalent diagrams, that is, diagrams with only 3-vertices. For four point, this
is easy to see: take the numerator nc of the contact diagram. Then dc = 1, since there are
no propagators in a contact diagram, and we can simply take n′

c = ncs and d′
c = s, with s

the squared momentum of the s-channel exchanged particle, without changing the amplitude.
Effectively, this rewrites the contact diagram as an exchange diagram. At higher point, similar
generalised gauge transformations exist to remove all non-trivalent diagrams.

Since the colour factors are made up of structures obeying Lie algebras, there must be linear
relations among the colour factors of different diagrams inherited from the Lie algebra, such
as the Jacobi identity

ci + cj + ck = 0 , (1.2)

where the different diagrams i, j and k are related to each other by interchanging particles in
a subdiagram in a particular way. For now, it is not important what the exact representations
of these factors are, only that there are Jacobi-like identities that colour factors satisfy.

Colour-kinematics duality then is obeyed if these relations are similarly satisfied by the
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kinematic numerators, i.e. for the above relation

ni + nj + nk = 0 . (1.3)

Such relations are not generically satisfied (at least, at higher-than-four-point), yet, because
of the generalised gauge transformations as the one above, at tree level it is always possible
to change the numerators into a form in which the Jacobi-like relations are satisfied.

Once we have kinematic numerators and colour factors satisfying the same equations, or
manifesting colour-kinematics duality, we can start interchanging the factors at will, without
changing the fact that the end product remains a valid scattering amplitude. One option
would be to take a Yang-Mills amplitude An,YM = nici

di
, and replace each colour factor ci with

its kinematic counterpart ni. We would end up with a double copy of the kinematic part of
the Yang-Mills amplitude:

An,GR = n2
i

di

, (1.4)

which turns out to be the graviton scattering amplitude.2 This procedure is sometimes
described as squaring gauge theory amplitudes to find gravity amplitudes, or called simply
the double copy.

However, the double copy procedure can be applied to other theories than Yang-Mills, which
describes a vector interaction, as well. For example, it can be applied to the Non-Linear Sigma
Model (NLSM), which describes scalar fields having different, polarisation-free kinematical
factors and flavour instead of colour. Moreover, the factors of all theories can be mixed and
matched to yield consistent amplitudes. This creates a whole web of double copy-related
theories, that has been extensively researched over the past decade or so [71, 30].

In chapter 6, we discuss a part of this web relating certain special scalar theories non-linearly
realising symmetries. These non-linear symmetries imply the scalars are so-called Goldstones:
scalar particles necessarily arising in the process of spontaneous symmetry breaking, i.e. the
system settling into a ground state that is non-symmetric in a theory that is symmetric under
the particular transformation.

Non-linear symmetries in theories lead to particular momentum structures in the resulting
amplitudes, making sure they go to zero with a specific power of the momentum if we send
any external momentum to zero: the so-called soft limit. The special scalar theories at hand
have a larger soft limit than one might naively expect based on the number of derivatives per
field (each of which generically contributes a momentum factor). In fact, simply specifying
the soft limit and the number of derivatives per field for a scalar theory allows one to
completely determine the form of interactions and hence the amplitudes, allowing only one
free parameter [78]. This fact makes them an interesting testing ground for double copy
investigations: they are defined by a single coupling constant, making them in a sense the
scalar field theoretic analogue of Yang-Mills and General Relativity, which also have this
property [71].

2For pure Yang-Mills, the double copy in principle also includes an anti-symmetric tensor and a scalar
field, but these can often be projected out by making suitable assumptions on the contributing colour factors.
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The mixing and matching of factors of the special scalar theories can lead to intriguing results.
As we will see in Chapter 6, when taking two copies of a flavour factor, one finds, next to
the usual NLSM amplitudes, also amplitudes stemming from gravitational interaction of the
Goldstones.

Next to scattering amplitudes (on-shell), we also discuss the off-shell manifestation of the
double copy for the special scalar theories. This makes the link between them on the level of
the fields and non-linear symmetries, through a prescription systematically replacing flavour
information with kinetic information, just like the scattering amplitude double copy. Finally,
and in a very different context, the incarnation of the double copy in terms of classical solutions
is applied in Chapter 5. Some solutions of the Einstein field equations of a specific linear form
are also solutions of the Yang-Mills field equations [176]. These include (from the gravity
perspective) the Schwarzschild and Kerr black holes, as well as some linear gravitational
waves. The classical double copy, by exchanging constants in a suitable way, links these
to charged solutions of electromagnetism (since non-linearities do not play a role, possible
self-interactions of the bosons do not matter). As we will discuss, not just the backgrounds
can be copied, dynamical systems of test particles on top of them can be, too.

1.3 Overview and notation
Another aspect of this thesis is that it aims to build a bridge between physics, in the form of
field theory, relativity and gravity, and mathematics, in particular Hamiltonian mechanics
and dynamical systems. This dual starting point leads to the chapters 2 and 3, which on one
hand mean to explore both the basics of the relevant mathematics and physics, respectively,
and on the other hand function to introduce particular material useful to our purposes in
the subsequent chapters. Chapter 2 discusses symmetries and integrability in the context
of classical mechanics, focusing specifically on the Kepler problem, while Chapter 3 treats
relativistic generalisations of the two body problem, highlighting the one-center system and
discussing the breaking or persistence of Keplerian symmetry in various cases.

The three chapters following all discuss our research contributions. In Chapter 4, we present
a class of implicitly defined Hamiltonians, which we show to have an orbital equivalence
to a Kepler Hamiltonian on each energy level. Furthermore, we show this form is realised
by a two-body system in Einstein-Maxwell-dilaton theory with a specific scalar coupling
constant, which both in the 1-center limit and in the 1PN limit possesses Keplerian symmetry.
Subsequently, in Chapter 5 we show this theory is not alone, but it can be related through
the classical double copy to a single - and zeroth copy system similarly preserving the
symmetry in the 1-center system. We present a general class of Hamiltonians that we claim
contains all relativistic Hamiltonians with Keplerian symmetries. The symmetry can be
naturally interpreted from a 5-dimensional point of view, since there it becomes a property
of the background spacetime, and classical and relativistic Hamiltonians are just a time-
reparametrisation away from each other. Finally, Chapter 6 discusses another realisation of
the double copy, both on- and off-shell, connecting scalar theories with non-linearly realised
symmetries through flavour-kinematics duality.

Notational conventions. In what follows, unless differently specified, we will use the
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Chapter 1. Introduction

following notational conventions.

We will use (q, p) to denote canonical coordinates in T ?R3 ∼= R3 × R3. The radial momentum
is denoted pr, i.e. pr = (p·q)

r
where r = r(q) = |q|. We will use upper indices to denote vector

components, therefore, V i denotes the ith component of a vector V . Indices for relativistic,
4-dimensional objects are denoted by Greek letters, for 5-dimensional objects by capitalised
Roman letters. Throughout, we will assume Einstein notation and omit explicit sums. For
instance, 4-vectors are denoted by xµ, the Lorentzian metric is denoted gµν and, therefore,
the inner product of tangent vectors with respect to g is given by gµν ẋ

µẏν . For the metric we
assume the signature (− + ++).

For convenience, throughout the thesis we use units such that the speed of light, c, and the
gravitational constant, G, are equal to 1.
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Chapter 2

Symmetries, Hamiltonian mechanics
and the Kepler problem

As we are interested in the symmetries underlying motion of celestial (and possibly other)
bodies, it makes sense to describe the systems we study from the point of view most naturally
catering to symmetric needs. This point of view is provided by the Hamiltonian formalism.
In the Hamiltonian formalism, as we will see shortly, one of the central results on symmetries
in physical systems, Noether’s theorem, becomes almost tautological, as noted by [13]. Let us
briefly consider how to see that.

Noether’s theorem, in loose terms, states that for every continuous symmetry transformation,
generated by e.g. Q, leaving the Hamiltonian H invariant, there exists a conserved quantity,
and vice versa. An infinitesimal version of such a transformation of the Hamiltonian, with
some small nonzero parameter ε is given by

δH = ε{H,Q} , (2.1)

which must vanish for the transformation to be a symmetry. The time derivative of the
quantity Q meanwhile is given by

Q̇ = {Q,H} . (2.2)

The definition of the curly (Poisson) brackets here is quite irrelevant to the point, only the
fact that they are anti-symmetric, such that {H,Q} = 0 immediately implies {Q,H} = 0.

Moreover, symmetries and conserved quantities apparently hidden from the point of view of
Lagrangian or Newtonian mechanics, become interpretable as properties of the phase spaces
on which Hamiltonians are defined. The harmonic oscillator and the Kepler problem are the
quintessential examples of this, though there are many more [54].

In this chapter, we will discuss some basics of the Hamiltonian formalism, symmetries and
their consequences. We will not prove many of the treated statements, as this is done by other
authors, better equipped to such goals. Here, we only provide an overview and explanation,
for the main purpose of this thesis is to see how mathematical tools can be applied to physical,
relativistic systems.
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2.1 Hamiltonian formalism
In this section, we draw mostly from the succinct introduction into Hamiltonian systems
in the first part of the review on hidden symmetries by Cariglia [54] and the discussion
of Hamiltonian mechanics in [206], taking what we need and neglecting what is deemed
unnecessary for our purposes.

In Hamiltonian mechanics, one studies a 2n-dimensional manifold P with a symplectic 2-form
ω = ωµνdxµ ∧ dxν , with Greek indices for now µ, ν = 1, . . . , 2n and a smooth function
H : P → R that is called the Hamiltonian. The coordinates xµ here are local coordinates on
the manifold P .

Definition 1. A symplectic 2-form is an anti-symmetric bilinear map on the tangent
spaces to P, satisfying the properties that it is closed, dω = 0, and non-degenerate, meaning
det(ωµν) 6= 0.

We will study systems where P = T ∗M, i.e. the phase space is the cotangent bundle of a
configuration manifold M which has dimension n. The coordinates xµ = (qi, pj), i, j = 1, . . . n
are generalised coordinates and momenta respectively (written without indices whenever no
doubt can arise as to their meaning), and q ∈ M parametrises the configuration space. The
2-form can be written ω = dpi ∧ dqi. This is not a restriction, since locally there always exist
coordinates, called Darboux coordinates, for which the above holds.

The Hamiltonian function induces dynamics on the phase space P according to

ẋµ = ωµν∂νH , (2.3)

where the dot denotes derivation with respect to the evolution parameter λ and ωµν the
inverse of the 2-form matrix, which exists because of non-degeneracy. In terms of local phase
space coordinates this becomes the familiar equations of Hamilton:

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi
. (2.4)

In fact, we can define such a flow for any function f on phase space, creating a vector field
associated to it having components

dxµ

dσ = ωµν∂νf =: Xµ
f , (2.5)

with σ being the particular evolution parameter of f . The complete vector field then is
given by contracting the components above with basis ∂

∂xµ , meaning it works as a differential
operator on some other function g:

Xf (g) = ωµν∂µg∂νf , (2.6)

which is anti-symmetric in the exchange of g and f , meaning Xf (g) = −Xg(f).

Clearly, the matrix ωµν plays an important role in comparing flows of different functions to
each other. Let us therefore see what it amounts to in case we use Darboux coordinates, for

10
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which ω = ωµνdxµ ∧ dxν = dpi ∧ dqi. Calculation of the inverse gives

ωµν =
(

0n In

−In 0n

)
, (2.7)

where 0n and In denote the null and identity square matrices of dimension n. Applying
this to the vector field of f acting on g, we find a frequently reappearing pattern of partial
derivatives, which we can summarise in a bracket:

Xf (g) = − ∂f

∂qi

∂g

∂pi

+ ∂f

∂pi

∂g

∂qi
=: {g, f} . (2.8)

In the last equality we define the Poisson bracket, which gives a Lie algebra structure to the
smooth functions on phase space, as the brackets are anti-symmetric and satisfy Jacobi’s
identity. It is simple to show there is an anti-homomorphism of the Poisson algebra of
functions on phase space to the Lie algebra of vector fields associated to these functions: For
smooth functions f, g, h,

[Xf , Xg] (h) = (XfXg −XgXf ) (h)
= {{h, g}, f} − {{h, f}, g}
= −{{g, f}, h}
= −X{f,g}(h) ,

(2.9)

where Jacobi and anti-symmetry were used going to the third line and anti-symmetry going
to the fourth.1 This result allows us to talk almost without distinction about the Lie algebra
of vector fields on a phase space and the Poisson algebra of smooth functions on the same
phase space.

The equations of motion for the dynamical systems we will encounter are given by Hamilton’s
equations (2.4). These must of course coincide with the actual motion in a physical system
we might want to describe. Let us therefore briefly examine whether that is indeed the case,
on the way establishing the familiar link between Lagrangian and Hamiltonian. For future
reference, let us define the former as follows.

Definition 2 ([201]). Given a configuration space M the Lagrangian is a smooth function
L ≡ L(q, q̇, λ) : TM × R → R.

The Lagrangian, in this quite standard formulation, only depends on the position and its first
derivative, such that the equations of motion are second order, like Newton’s second law.2
For mechanical systems, we often have a natural Lagrangian L(q, q̇, λ) = K(q̇) − V (q), with
K the kinetic and V the potential energy. Recall that the motion in classical (non-quantum)
physical systems is given by those solutions q(λ) extremising the action.

1Note that there is a typo in [54] concerning this.
2In the context of classical mechanics, in principle nothing stops us from building higher-order equations

of motion, but in quantum physics this is distinctly undesirable, as higher-than-second-order equations of
motion lead to Ostrogradsky’s instability and the explosive production of particles, which is not in line with
what we observe in the universe [222].
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Definition 3. The action S of a path q(λ) is a functional

S[q] :=
∫ λ2

λ1
L(q(λ), q̇(λ), λ) dλ , (2.10)

between fixed points q(λ1) and q(λ2).

This leads to the Euler-Lagrange equations

d
dλ

(
∂L(q, q̇)
∂q̇i

)
= ∂L(q, q̇)

∂qi
. (2.11)

Note that we will only consider Lagrangians not explicitly depending on time since this is
sufficient for our purposes.

The relation between Lagrangian and Hamiltonian is given by the Legendre transform
LT : (q, q̇) → (q, p), mapping the tangent bundle TM to the cotangent bundle T ∗M. It is
effectively casting the information stored in the Lagrangian into the Hamiltonian

H(q, p) = p q̇(q, p) − L(q, q̇(q, p)) , pi = ∂L(q, q̇)
∂q̇i

. (2.12)

The Legendre transform hinges on the existence of the inversion of p(q, q̇) = ∂L(q,q̇)
∂q̇i to find

q̇(q, p). This means the Jacobian determinant of the transformation must be nonzero:

D(LT ) =
 ∂qi

∂qj
∂qi

∂q̇j

∂pi

∂qj
∂pi

∂q̇j

 =
(

δi
j 0n

∂2L(q,q̇)
∂q̇i∂qj

∂2L(q,q̇)
∂q̇i∂q̇j

)
6= 0 , (2.13)

which reduces to the requirement that the matrix ∂2L(q,q̇)
∂q̇i∂q̇j is non-degenerate, that is

det
(
∂2L(q, q̇)
∂q̇i∂q̇j

)
6= 0 . (2.14)

A Lagrangian satisfying this is called a non-degenerate Lagrangian. In particular, for a natural
Lagrangian Ln(q, q̇) = 1

2gij q̇
iq̇j − V (q) this implies the metric g must be non-degenerate.

Assuming the Lagrangian associated to a Hamiltonian is non-degenerate, we can use the form
of the Hamiltonian (2.12) to rewrite the action as

S =
∫ λ2

λ1
(p q̇(q, p) −H(q, p)) dλ , (2.15)

which then, when extremised, should yield the equations of motion. Importantly, the variation
of the action should be done independently in both q and p, as these are in principle
independent coordinates of phase space, though we have attached a physically meaningful
connection to pairs (qi, pi) in our coordinate description. This is contrary to the situation in
the Lagrangian formalism, where only q is varied as q̇ variation follows from it [206]. This
equal footing for coordinates and momenta in the Hamiltonian formalism is one of the reasons
it is so convenient for describing symmetries, as we will see.

12
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The variation of the action yields

δS =
∫ λ2

λ1

(
δp q̇ + p δq̇ − ∂H

∂q
δq − ∂H

∂p
δp

)
dλ

=
∫ λ2

λ1

([
q̇ − ∂H

∂p

]
δp+

[
−ṗ− ∂H

∂q

]
δq

)
dλ+ p δq|λ2

λ1 ,

(2.16)

where we use the assumption that q(λ1) and q(λ2) are fixed to drop the last term. For
extremising paths, the relations in the square brackets must vanish, as δp and δq are nonzero.
This implies the variation of the same action leading to the Euler-Lagrange equations for a
physical system lead us to Hamilton’s equations, showing they are equivalent.

2.2 Symmetries
Noether’s theorem is one of the most important results in mathematical physics, tying an
inextricable knot between global continuous symmetries on one hand and conserved quantities
on the other. In the context of Hamiltonian mechanics, where we study the phase space
of physical systems, the consequence of a symmetry is to effectively lower the dimension of
phase space, implying calculation of trajectories becomes easier. Informally, if there is enough
symmetry in a system to constrain the motion to a surface of half the dimension of the full
phase space, we call the system integrable. In such cases the phase space acquires a very
rigid structure, which can be seen as ‘stacks’ of these lower-dimensional surfaces. Examples
of systems in which this situation occurs are well known: the isotropic harmonic oscillator,
the rotation of a rigid body or planetary motion around one or two fixed centers. Some
systems have symmetries that are not immediately apparent from their Hamiltonians or the
configuration space. These are sometimes called ‘hidden symmetries’.

In this section, we will explore all concepts above in more depth and greater detail. First,
we discuss symmetries of Hamiltonian systems, then we will see how integrable systems are
defined and that the Liouville-Arnold theorem shows there exist coordinates in which the
motion is linear. Lastly, we discuss hidden symmetry and how to see which symmetry is
hidden and which is not.

2.2.1 Noether’s theorem
Symmetries are those transformations of the manifold that leave the equations of motion
and hence the stationary paths invariant, implying they change the Lagrangian at most with
a total derivative, resulting in a constant of integration in the action. Though there exist
non-continuous, i.e. discrete symmetries, such as parity - or time reversal symmetry, we
will only concern ourselves with continuous symmetries. In the Hamiltonian formalism, a
continuous symmetry transformation is the flow of a vector field Xf related to a smooth
function f : P → R on the phase space that leaves the Hamiltonian H invariant. In other
words,

Xf (H) = {H, f} = 0 . (2.17)
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At the same time, we know the evolution of any phase space function (2.3) as generated by
the Hamiltonian H will give us

df
dλ

∣∣∣∣∣
flow H

= {f,H} , (2.18)

with λ the time parameter conjugate to the Hamiltonian. Assuming the infinitesimal symmetry
Xf , the constancy in time of f is immediate and vice versa. This means that we have just
shown the following theorem, known as Noether’s theorem:

Theorem 1 (Infinitesimal Noether [206]). Let (P , ω,H) be a Hamiltonian system and Xf a
vector field related to a smooth function f : P → R. Then f is constant along the flow of H
such that

df
dλ

∣∣∣∣∣
flow H

= 0 , (2.19)

if and only if (2.17) holds.

To go beyond this infinitesimal statement to a global one, the exponential map {Φt
f =

exp{tXf}| t ∈ R} is used, establishing a one-parameter group of diffeomorphisms of the phase
space which is a symmetry [88].

Conserved quantities are also called first integrals or constants of motion, though some authors
differentiate the definitions based on the in- or exclusion of time dependency. We will always
make it explicit if constants are time-dependent. As said, first integrals, and hence symmetries,
effectively reduce the number of degrees of freedom of the phase space. This results from
simply fixing one dimension of it, equating a function to a constant f = c. The 2n-dimensional
whole of phase space P then is constrained to the (2n− 1)-dimensional level set f−1(c). This
makes them an extremely useful tool in simplifying a dynamical system. Note however, that
the level set can no longer be considered a phase space of a Hamiltonian system, as it is
odd-dimensional. This will be addressed in Section 2.2.3 on symplectic reduction.

2.2.2 Integrable systems
What is striking about the above treatment of symmetries is, well, its symmetry. If one forgets
for a moment that the flow parameter of the Hamiltonian is the physical evolution parameter,
the statement that function f is a symmetry of the Hamiltonian H could just as well have
been read as the statement that the Hamiltonian is a symmetry of the function f . From the
point of view of mathematics then, it makes more sense to talk about the two functions f
and H being in involution with each other, meaning that

{f,H} = −{H, f} = 0 , (2.20)

that is, they Poisson commute.

In a system with multiple symmetries, say m of them, one calls the collection of the conserved
functions F = (f1, . . . , fm) : P → Rm the momentum map. This is said to have critical
values if the conserved quantities are not functionally independent, while all other cases are
considered regular values. Independence here means dfi are linearly independent.

A particular case of systems with symmetry is the class of integrable systems.
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Definition 4 ([88]). A Hamiltonian system (P , ω,H) is an integrable system if it has
n = 1

2 dim P first integrals F = (f1 = H, . . . , fn), which are independent and satisfy

{fi, fj} = 0 , (2.21)

for all i, j.

Locally, i.e. in a small enough neighbourhood of a point on the manifold, all Hamiltonian
systems have this property [18]. Globally, however, integrability is far from trivial and its
consequences are crucial.

The word integrability suggests that one can integrate the system, or solve its equations
of motion. This is indeed the case, since one can systematically write down the integral
expressions for the variables solving the equations, though in general there is no guarantee
these integrals are computable themselves. However, it has been shown there is an additional
structure to phase spaces of these systems, a much stronger statement than ‘solvability’ of a
system alone.

Before getting to this structure, let us consider the notion of a Lagrangian submanifold.

Definition 5 ([201]). A submanifold L ⊂ P of the phase space with dim L = 1
2 dim P is

a Lagrangian submanifold if and only if the symplectic form vanishes on the tangent
subbundle TL.3

A Lagrangian submanifold has the crucial property that all trajectories intersecting it are
constrained to it [201].

A useful example of such a submanifold is the one defined by n independent constant functions
fi = ci in involution on it. The vector fields of these functions are n in number and independent,
and as such a basis of the tangent space. Moreover, they all commute among themselves,
implying ω = 0 on this submanifold as

0 = {fj, fi} = Xfi
(fj) = ωµν∂µfj∂νfi . (2.22)

The phase spaces of integrable systems are then built up out of Lagrangian submanifolds
displaying the above properties, as they have commuting, independent conserved functions
almost everywhere in phase space.

This brings us to the structure of integrable systems. We will only quote the case for compact
systems, though a similar statement can be made about non-compact systems.4

Theorem 2 (Arnol’d-Liouville [88]). Let (P , ω,H) be an integrable system of dimension
2n, with momentum map F = (f1 = H, . . . , fn). Let c ∈ Rn be a regular value of F . The
corresponding level F−1(c) is a Lagrangian submanifold of P. Moreover, if the flows of the
vector fields (Xf1 , . . . , Xfn) are complete and F−1(c) is compact and connected, then

3 Slightly more formally, the pullback by the inclusion map of the symplectic structure ω vanishes. The
inclusion map is the map that sends an element in the first space to the same element in the second space, in
our case ι : L ↪−→ P. A pullback pulls a function on the target space back to the domain of the function one
pulls back by. In our case, the pullback by the inclusion map of the symplectic structure is ι∗ω : TL → R and
acts as the restriction of the form defined on the whole phase space to the submanifold.

4The role of tori will be played by cylinders in that case.
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• F−1(c) is diffeomorphic to Tn and

• there exist local Darboux coordinates (φ1, . . . , φn, ψ1, . . . , ψn) such that ψi are integrals
of motion called action coordinates and φi evolve linearly under the flow of the vector
fields (Xf1 , . . . , Xfn) and are called angle coordinates.

This means that the phase space is foliated by invariant tori, labelled by regular values of the
momentum map c ∈ Rn. On these tori, there are coordinates such that Hamilton’s equations
are solved by

φi(λ) = φi(0) + Ωi(c)λ , ψi(λ) = ψi(0) , (2.23)

where Ωi are constant frequencies. Taking an integrable system with a 4-dimensional phase
space, a regular value of the momentum map would look like figure 2.1, with the two angles
φ1 and φ2 denoted by the red and blue arrows. Generically, the path through phase space
will then fill the torus, unless the frequencies Ω1 and Ω2 are rational, in which case the path
will be periodic.

It is possible for a system of 2n dimensions to have more than n independent integrals of
motion. Maximally n can be in involution, but every additional independent integral will
further reduce the number of degrees of freedom in phase space and thus constrain the motion
to a lower dimension. Considering this in terms of action-angle coordinates, this situation
amounts to a combination of angle coordinates being conserved. Such a system is called
superintegrable. The maximal number of independent integrals of motion is 2n− 1, which
constrains the motion in phase space to one dimension. Since the considered manifolds
are compact, this implies strictly periodic motion.5 Examples of maximally superintegrable
systems are the isotropic harmonic oscillator in multiple dimensions, the Kepler problem (2D,
3D) and trivially every energy-conserving one-dimensional system.

Example 1 (The Kepler problem part 1). The Kepler problem, for which the Hamiltonian
HKep : T ∗R3 → R is given by

HKep = p2

2µ − k

r
, (2.24)

with µ, k ∈ R2, r := |q|, clearly conserves energy HKep = E, as the Hamiltonian is independent
from the time parameter itself. Hamilton’s equations of motion then read

q̇ = ∂HKep

∂p
= p

µ
,

ṗ = −∂HKep

∂q
= −k q

r3 .

(2.25)

Angular momentum is also conserved, as the Hamiltonian depends only on rotation-invariant
scalars u1 = q2 and u2 = p2. Explicitly, we have by Hamilton’s equations

L̇ = q̇ × p+ q × ṗ = 2∂HKep

∂u2
p× p− 2q × q

∂HKep

∂u1
= 0 , (2.26)

5As opposed to conditionally periodic motion, which is the situation where multiple angle variables are
independent, but the ratios of their frequencies Ωi are rational.
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Figure 2.1: An integrable system of 4 dimensions, having two angle coordinates, of which the
direction here is given by the two differently coloured arrows [107].

with the dot denoting derivation with respect to time λ. Of course, the components Li of the
angular momentum vector are not in involution, since

{Li, Lj} = εijkLk , (2.27)

with εijk the Levi-Civita tensor, but the set (H,L2 = L · L,Lz) is, as can be readily checked
by computing the Poisson brackets among them. This means the Kepler problem, and in fact
any central potential problem, is integrable and even superintegrable, since the three angular
momentum components and energy all contribute independent first integrals.

For a usual central potential problem, the energy and angular momentum form the full set
of independent integrals of motion. The Kepler problem however is special, as it conserves
another vector, the Laplace-Runge-Lenz (LRL) vector

A = p× L− µk
q

r
. (2.28)

As shown in Figure 2.2, the vector points along the ellipse for bounded orbits.

The LRL vector is constant because of the particular form of the potential, so using Hamilton’s
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equations (2.25) we have

Ȧ = d
dλ

[
p× L− µk

q

r

]
,

= ṗ× L+ µk

r3 (q̇ · q)q − µk

r
q̇ ,

= − k

r3 q × L+ k

r3 (p · q)q − k

r
p ,

= k

r3 (q × L− q × L) ,

= 0 ,

(2.29)

where it was used that a × (b × c) = (a · c)b − (a · b)c for any three-vectors a, b, c.6 Of the
three components of this vector, only one is an additional independent integral, as

L · A = 0 ,
A2 = µ2k2 + 2µHL2 ,

(2.30)

where the last equality can be derived by using L2 = q2p2 − (q · p)2. This makes the total of
independent first integrals for Kepler five, meaning it is maximally superintegrable and all
bounded orbits are periodic. Note that the size of the LRL vector is related to the eccentricity
e of the orbit, through e2 = A2/(µ2k2).

Concretely, the integrability of the Kepler problem implies we can find the motion. The
Lagrangian of the Kepler problem is given by

L = µ

2 q̇
2 + k

r
, (2.31)

which is a natural Lagrangian, such that the energy is only a sign flip away. It can be written
in terms of the radial coordinate r and angular momentum L (taking one angle θ = π

2 for
simplicity) as

E = µ

2 ṙ
2 + L2

2µr2 − k

r
, (2.32)

reducing the number of variables in the equation to 1 so the system can be integrated. Now, it
is useful to change variables to the so-called Binet variable, u = 1

r
, meaning ṙ = −du

dφ
L
µ
. The

above then becomes(
du
dφ

)2

+ u2 − c1u = c0 , with c1 = 2kµ
L2 , c0 = 2Eµ

L2 , (2.33)

or slightly more suggestive (
du
dφ

)2

+
(
u− c1

2

)2
= c0 + c2

1
4 . (2.34)

6A generalisation to n dimensions of the LRL vector can be found for example in [134].
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Figure 2.2: The Laplace-Runge-Lenz vector A, at 4 points along the elliptical orbit [105], denoting
the mass with m instead of µ here.

One can check that this is solved by

u = 1
l
(1 + e cosφ) , 1

l
= c1

2 , e
2 = 1 + 4c0

c2
1
. (2.35)

These of course give the famed conic sections for r = 1/u: ellipses for e < 1, parabolas for
e = 1 and hyperbolas for e > 1. For the compact part of phase space, i.e. when e < 1, we
indeed have strictly periodic motion because of the maximal superintegrability.

The flows of vector fields commuting with the Hamiltonian flow, the symmetries, together form
a group, which lives on the manifold P and acts smoothly. In other words, the flows form a Lie
group, of which the tangent space at the origin is the Lie algebra. Barring non-connectedness
of the group, these are in one-to-one correspondence with each other. The Lie algebra is
formed by the vector fields, whose generating functions form a Poisson algebra, a Lie algebra
where the bracket is the Poisson bracket and hence satisfies the Leibniz rule. There is an
anti-homomorphism between this Poisson algebra and the Lie algebra of the vector fields, as
discussed earlier (2.9).

Example 2 (The Kepler problem part 2). To see what the total symmetry algebra of the
Kepler problem amounts to, one needs to calculate the Poisson brackets among all symmetry
generators. These read

{Li, Lj} = εijkLk , {Li, Aj} = εijkAk , {Ai, Aj} = −2µHεijkLk , (2.36)

such that the sign (or vanishing) of the Hamiltonian H determines the nature of the algebra.
On the negative energy set of the phase space Σ− = {(q, p)|H < 0}, the LRL vector can be
rescaled to Ā = − 1√

−2µH
A to yield the Poisson brackets

{Li, Lj} = εijkLk , {Li, Āj} = εijkĀk , {Āi, Āj} = εijkLk , (2.37)
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which define a Lie algebra isomorphic to so(4). If instead the energy is positive, the algebra
becomes so(3,1), while in case the energy vanishes we get se(3); the algebra of isometries
(rotations and translations) in three dimensions (also sometimes denoted iso(3)).

2.2.3 Symplectic reduction
Clearly, symmetries of Hamiltonian systems harbour a lot of power, reducing the dimensionality
of the solution space and structuring solutions in simple ways. On top of this, a symmetry
enables us to relate Hamiltonian systems to lower dimensional Hamiltonian systems. This
is different from the reduced dimensionality implied directly by conservation of a function
as discussed in Section 2.2.1, as conservation of a function f = c implies the motion takes
place on f−1(c), an odd-dimensional level set: definitely not a phase space. In symplectic
reduction [88], one can use a symmetry group of dimension k to reduce the degrees of freedom
of the 2n-dimensional phase space of a Hamiltonian system (P , ω,H) by 2k to yield another
Hamiltonian system (Pred, ωred, Hred), where dim Pred = 2(n− k). How these phase spaces are
related exactly, will be discussed in this section.

As a precursor borrowed from [88], let us consider a simple situation to illustrate how one
symmetry can lead to the riddance of 2 degrees of freedom. Say the 2n-dimensional phase
space of our system (P , ω,H) can be described in canonical coordinates (q, p), of which one
momentum pn = c is conserved. The Hamilton equation for this momentum immediately
gives

ṗn = −∂H

∂qn
= 0 , (2.38)

implying the Hamiltonian is independent of qn. Setting the momentum to its constant value,
we have

H(q1, . . . , qn−1; p1, . . . , pn−1, c) = Hred(q1, . . . , qn−1; p1, . . . , pn−1) , (2.39)

where Hred is defined on the same phase space, but taking only the first n − 1 canonical
coordinate pairs into account. The more general statement for k-dimensional symmetries then
does not surprise us anymore, considering that locally one can always define coordinates such
that the conserved functions are momenta and their conjugate coordinates are cyclic. Globally,
however, it is not always possible to change phase space coordinates in this convenient way,
and we need the Marsden-Weinstein theorem.

The Marsden-Weinstein theorem states that we can reduce phase spaces with a certain
symmetry group to lower-dimensional phase spaces, effectively dividing out the symmetry.

This is done by considering a regular enough level set F−1(c) ⊂ P of the phase space and
identifying all points related to each other by symmetry transformations in the group G,
creating a reduced phase space Pred = F−1(c)/G.

Theorem 3 (Marsden-Weinstein [172, 88]). Let G be a k-dimensional Lie group leaving
the symplectic structure on the manifold (P , ω) invariant and F : P → Rk its momentum
map. Let G act freely7 on the set F−1(c) for some value c ∈ Rk. Then Pred = F−1(c)/G

7Acting freely means every group element sends every point of the manifold to another point, except the
identity element.
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is a 2(n − k)-dimensional manifold. Moreover, if ι : F−1(c) ↪−→ P is the inclusion map
(see footnote 3) and π : F−1(c) → Pred the projection to the reduced manifold Pred, then
ι∗ω = π∗ωred defines a unique symplectic form ωred on Pred.

This means that the reduced phase space indeed has a symplectic structure. Since the fixing
of the level set eliminates k degrees of freedom for a k-dimensional symmetry group and the
quotient by the symmetry group does so too, the new dimension is indeed 2(n− k).

If two symmetry actions G and K commute, that is, all functions g ∈ G are in involution
with k ∈ K, the resulting reduced phase space Pred from the reduction with respect to G
will itself possess the symmetry K and can thus be reduced further. This is the content of
the second theorem of the Marsden-Weinstein paper [172]. For integrable systems, having n
integrals mutually in involution, the process of reduction can continue until the manifold is
two-dimensional and has only the Hamiltonian left as first integral.

Example 3. The Kepler problem part 0 An example of the power of reduction is the
very construction of the Kepler problem itself. Consider the two body problem, consisting of
masses m1 and m2 interacting through a gravitational potential V (q1, q2) = − k

|q1−q2| . Initially,
denoting the collision set ∆, this system lives on a manifold P = T ∗ (R6\∆), which is
12-dimensional, and the Hamiltonian is given by

H2b(q1, q2; p1, p2) = p2
1

2m1
+ p2

2
2m2

− k

|q1 − q2|
, (2.40)

where qi and pi are the 3D position and momentum of the ith body. The total momentum
P = p1 + p2 of this configuration is conserved, since

{P,H} =
{
p1 + p2,−

k

|q1 − q2|

}
= + k

|q1 − q2|3
{p1, q1} − k

|q1 − q2|3
{p2, q2} = 0 , (2.41)

which holds by the assumption that the coordinates are canonical. Applying the vector field
associated to the total momentum with parameters b ∈ R3 yields

〈b,XP 〉 = −〈b, {P, ·}〉 = b · ∂·
∂q1

+ b · ∂·
∂q2

, (2.42)

where 〈B,C〉 denotes the inner product. This flow of the momentum acts as a translation, or a
(R,+) action for all three dimensions. Taking P = 0 ∈ R3 as regular value of the momentum
map and reducing over the three commutative actions yields a 6-dimensional space according
to Marsden-Weinstein, given by Pred = P−1(0)/(R3). Since we want the new coordinates
(q, p) to be canonical and the value of the total momentum suggests p1 = −p2 ≡ p, we see
that in terms of the old brackets both {p, q} = {p1, q} and {p, q} = {−p2, q} must be true.
This implies that we can take q = q1 − q2 as the new coordinates. Writing down the reduced
Hamiltonian in these new phase space coordinates, we have the famous Kepler system as in
equation (2.24).

2.2.4 Hidden Symmetry and Killing tensors
Symmetries often can be seen immediately from the Hamiltonian, for example by observing
independence of certain coordinates, implying translational symmetry, or dependence only on
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the norm of a set of coordinates, meaning rotation in these coordinates leaves the Hamiltonian
invariant. However, not all symmetries are spotted this easily. To make the notion of a hidden
symmetry precise, we will introduce Killing vectors and tensors.

Recall that the phase space is the cotangent bundle P = T ∗M of a configuration manifold M.
Now, let the configuration manifold M have a metric g and inverse metric g−1. A symmetry
of the metric g is the flow of a vector field K on M such that

∇(iKj) = 0 , (2.43)

with ∇ the Levi-Civita connection for the metric and the brackets denoting symmetrisation
over indices:

V(iWj) = 1
2(ViWj + ViWj) . (2.44)

The equations (2.43) are called the Killing equations and K a Killing vector.8 Killing vectors
generate symmetries of a metric, or isometries. These can be lifted to P to yield symmetries of
the phase space, of which we know they imply the existence of conserved quantities. Explicitly,
if a metric space possesses a Killing vector with components Ki(q) = gijKj(q), motion through
the phase space conserves a quantity QK such that

QK = Kipi , (2.45)

with pi the momenta conjugate to the coordinates qi. A conserved quantity for a Hamiltonian
H of course satisfies

{K,H} = 0 . (2.46)
Indeed, expanding the above and organising it in terms of contractions with momenta through
inverse metric gij, this becomes equivalent to the Killing equations.

In analogy to the Killing equations, the definition of a rank N Killing tensor Ki1...iN
is given

by [160]
∇(i1Ki2...iN+1) = 0 . (2.47)

One can show that a tensor satisfying the above guarantees the existence of a conserved
quantity [215]

QKN
= Ki1...iNpi1 · · · piN

(2.48)
along geodesics.

Notice that the arrow of implication goes both ways: a conserved quantity QKN
that can be

written as a tensor Ki1...iN contracted with N momenta also implies the existence of a Killing
tensor. This type of conserved quantity, quadratic (or even higher order [118, 116, 212, 211])
in momenta, is tied to hidden symmetries. These are symmetries of the phase space that
cannot be constructed as the lift of a symmetry of configuration space [54].

Killing vectors have a direct geometric interpretation as generators of isometry of the metric,
but Killing tensors do not have such a clear interpretation directly related to structure of

8The equations can be seen to derive from the Lie derivative of the metric with respect to the vector field
K, but here we choose the Killing equations as definition of Killing vectors, to draw the parallel with Killing
tensors.
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the metric [215]. Rather, they encode a symmetry of geodesic motion on the metric; they
generate a symmetry of phase space transforming coordinates into momenta and vice versa.
This can be seen as follows. If the projection from phase space to the configuration manifold
is π : P = T ∗M → M, the pushforward of the vector field XQK

(·) = {·, QK} is given by
π∗XQK

= K. In other words, the conserved phase space quantity generates a symmetry of
the metric when restricted to configuration space. Instead considering the Killing tensor KN ,
the similarly constructed vector field on M vanishes [56]

π∗XQKN
= 0 , (2.49)

showing there is no intelligible action of the flow related to this phase space symmetry on the
configuration manifold. As such, it is hidden.

There is another type of symmetry that deserves mention: conformal symmetry. Conformal
Killing vectors are vectors Ĉi such that

∇iĈj = gijλ , (2.50)

with λ some constant, and have the property of generating conserved quantities when the
path is a null geodesic, that is, when H = 1

2g
ijpipj = 0. This implies that we can write the

commutator for conformally conserved quantities Ĉ generated by conformal Killing vectors
Ĉi as

{Ĉ,H} = f(q, p)H , f > 0 . (2.51)
When f vanishes, Ĉ becomes an ordinary conserved quantity as it generates a symmetry that
leaves the Hamiltonian invariant.

Similarly, one can construct conformal Killing tensors. We have a tensor Ĉi1...in such that

∇(i1Ĉi2...in+1) = g(i1i2λi3...in+1) (2.52)

guarantees the conservation for null geodesics of

Ĉ = Ĉi1...inpi1 · · · pin , (2.53)

as the contraction of the former with momenta coincides with the Poisson bracket for
conformally conserved quantities.

Example 4 (The hidden symmetry in Kepler). The LRL vector in the Kepler problem is
conserved due to a hidden symmetry. Movement in the Kepler potential is of course not
geodesic, though we can apply a lift to make it so, as we will see in Chapter 5, but the conserved
quantities that are the components of the vector (2.29) clearly are quadratic in momenta.
Moreover, applying the symmetry transformations related to the vector to the coordinates of
phase space mixes coordinates q and momenta p. If Xej is the vector field of component j of
the LRL vector, the transformation generated by it reads [178]

Xej (qi) = 1
µ

(
2qjpi − qipj − (q · p)δij

)
, Xej (pi) = 1

µ

(
−p2δj

i + pjpi

)
+ k

(
δj

i

r
− qjqi

r3

)
,

(2.54)
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where the indices are raised and lowered by δij or δij. This mixes the coordinates and momenta,
exactly what we would expect from a hidden symmetry.

That this indeed leaves the Lagrangian invariant, can be seen by using pi = µvi, and applying
the above transformations with parameters aj, giving

L′
K − LK = aj

[1
2µXej (v2) − kXej (1

r
)
]

= aj

[
k

(
vj

r
− (q · v)qj

r3 + k

r3

(
qj(q · v) − q2vj

))]
= 0 . (2.55)

2.3 Canonical transformations
An advantage of symplectic geometry and a requirement of our description of physical systems
is that they are independent of the choice of coordinates one uses. This means in particular that
whenever we have a Hamiltonian system (P , ω,H), there is a set of equivalent Hamiltonian
systems where each can be written (P , ω,H ′) with only the form of the Hamiltonian different.
These systems are related through canonical transformations: those transformations of the
generalised coordinates (q, p) such that the symplectic form ω and therefore Hamilton’s
equations are left invariant. In this section we introduce canonical transformations, their
infinitesimal versions, and show how finite, continuous canonical transformations can be
constructed.

If Φ : P → P is a canonical transformation, we have

Φ∗ω = ω . (2.56)

If we denote the new coordinates (Q,P ), we have for the Hamiltonians

H ′(Q(q, p), P (q, p)) = H(q, p) . (2.57)

Because we consider the momenta as coordinates of the phase space in their own right,
these transformations contain more than just coordinate transformations of the configuration
manifold, allowing independent redefinitions of momenta and even mixing between coordinates
and momenta. The only demand on these transformations, that the symplectic 2-form is
invariant, by (2.8) can also be formulated as the demand that the transformation is between
sets of canonical coordinates:

{Qi(q, p), Pj(q, p)} = δi
j , {Qi(q, p), Qj(q, p)} = {Pi(q, p), Pj(q, p)} = 0 , (2.58)

where the brackets are interpreted in the old coordinates (though, clearly, if the new coordinates
satisfy the above, it works in brackets interpreted in new coordinates as well!).

In some cases, we will want to consider infinitesimally small changes of coordinates. The
motivation for this will readily become apparent. These transformations are quite simple,
with small ε they read [206]

Qi = qi + εAi(q, p) , Pi = pi + εBi(q, p) , (2.59)
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such that the first of the above Poisson brackets gives to first order in ε

∂Ai

∂qj
+ ∂Bj

∂pi

= 0 , (2.60)

showing the functions Ai are not independent of Bj . In fact, making the Ansatz Ai = ∂G
∂pi

and
Bj = − ∂G

∂qj gives us just one function G(q, p) to find. This function is called the generator of
the infinitesimal canonical transformation.

Suppose now that we take ε as a flow parameter, such that we can continuously change (q, p)
into (q(ε), p(ε)) = Φε

G(q, p) as a function of it, as ε ranges from zero to some (for now still
small) value. Moreover, we interpret these coordinates as the same coordinates at a different
point along a flow in phase space of which ε is the parameter:

qi(ε) = qi(0) + ε
∂G

∂pi

, pi(ε) = pi(0) − ε
∂G

∂qj
. (2.61)

This perspective is often called active, because we let the position in phase space change
as a function of the parameter [206]. The canonical transformation (2.59) in terms of the
generating function G(q, p) then gives

dqi

dε = ∂G

∂pi

,
dpi

dε = −∂G

∂qi
, (2.62)

which are nothing but Hamilton’s equations for a Hamiltonian G, having evolution parameter
ε.

In considering what a certain coordinate transformation does to a function on a particular
point in phase space, we instead want to adopt a passive view, changing the labelling of the
point [214]. This means the relevant coordinates for the evaluation of the function after flow
by Φε

G have originated from a point ‘earlier’ on the orbit. Specifically, we need the coordinates
Φ−ε

G (q, p), as Φε
GΦ−ε

G = Id. For the change of a general function F (q, p; ε) on phase space,
transforming under a coordinate transformation Φε

G we then get

dF (q(−ε), p(−ε))
dε = ∂F

∂qi

dqi(−ε)
dε + ∂F

∂pi

dpi(−ε)
dε

= −∂F

∂qi

∂G

∂pi

+ ∂F

∂pi

∂G

∂qi

= {G,F} = −{F,G} ,

(2.63)

which is only a minus sign different from the usual flow of a function F (q, p) along a vector
field XG:

dF (q, p)
dε = XG(F ) = {F,G} , (2.64)

showing how the function changes as the point on which it is evaluated flows from one to the
other, as parametrised by ε. As all generators of continuous symmetries can be considered
Hamiltonians with their own particular evolution parameter as discussed in Section 2.2.2, this
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then gives us another interpretation of symmetries: they are active canonical transformations
that leave the Hamiltonian invariant, taking (P , ω,H) to (P , ω,H).

We can also define higher-order-in-ε transformations, essentially building an expansion of
the non-infinitesimal or finite transformation. This is done through construction of a Taylor
expansion around ε = 0 [214]. To do this, it is useful to define the adjoint operator

adG(·) := {G, ·} . (2.65)

We define n > 0 repeated iterations of the adjoint operator by

[adG]n := [adG]n−1 ◦ adG, [adG]0 := IdC∞(P) . (2.66)

Under the canonical transformation given by the flow of Hamiltonian G, a function F (q, p; ε)
is then Taylor expanded around ε = 0 as

F (q, p; ε) =
∞∑

n=0

εn

n! [adG]nF (q, p; 0) . (2.67)

In case we want to make an approximation to a certain order in ε, we simply truncate the
sum at that term. This technique is applied in Section 4.2.2 to transform Kepler-like systems,
to a certain order of approximation, to the classical Kepler problem.

2.4 Bertrand’s theorem
As we have seen in Section 2.2.2, the Kepler problem is unusually symmetric. Now we know
from the last section how different-yet-equivalent Hamiltonians can be related, it is natural to
ask how unique, up to canonical transformations, the Kepler problem is. Bertrand’s theorem
answers part of this question.

Loosely speaking, Bertrand’s theorem shows there are only two central potential systems
that have the property that all bounded orbits close: the Kepler problem and the isotropic
harmonic oscillator. These two systems are known for their large symmetry groups, making
them maximally superintegrable, forcing their bounded orbits to close in on themselves.
Bertrand’s theorem in a sense then implies the reverse statement: there are no systems with
exclusively closed bounded orbits that do not have the largest number of independent integrals
of motion possible.

Theorem 4 (Bertrand [200]). The only central potentials that result in closed orbits for all
bound trajectories are the isotropic harmonic oscillator potential VHO(r) = kr2 and the Kepler
potential VKep = −k

r
.

The reasoning in the proof is quite straightforward and can be found in for example [125].
As all attractive central potentials admit circular orbits, we can consider paths only slightly
different from circular and demand that, still, the orbits close. At lowest order in the
perturbation away from circularity, the equation of motion implies the potential is a power
law V (r) = krβ2−2, with β ∈ Q, and at higher order the only remaining possibilities are
β2 = 1, Kepler, or β2 = 4, the harmonic oscillator, of which we know that the orbits close to
all orders.
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2.5 Kepler as free motion on a 3-sphere
The conservation of the LRL vector appears to be almost ‘coincidental’, certainly it is hidden
in the sense of Section 2.2.4. For many years this puzzled mathematicians, until in 1935
Fock noticed that the Schrödinger equation for the hydrogen atom could be mapped with
preservation of symmetry properties to an equation manifestly invariant under so(4) [109].
The hydrogen atom being the quantum mechanical equivalent of the Kepler problem, it was
to be expected a similar mapping should exist in the classical case. Indeed, as shown for
example by Moser in 1970 [177], the orbits of the Kepler problem can be mapped to geodesic
motion on a 3-sphere, without changing symmetry properties. This implies that, while the
so(4) can be regarded as hidden in the original phase space, there is another, perhaps more
natural phase space in which we can observe bounded Kepler orbits, where the symmetry is
evident immediately from the geometry of the configuration space. We will now briefly treat
the construction as given by [133], highlighting important steps.

Working in the opposite direction of Guillemin and Sternberg in Section 7 of [133], we start
with the Kepler Hamiltonian (in three dimensions)

H = p2

2 − 1
r
, (2.68)

and note that on the energy surface H = −1
2 there is a function

J = r(H + 1
2) , (2.69)

with a vector field
dJ = r dH . (2.70)

This regularises the Kepler problem, since the singularity in H at r = 0 is exactly cancelled
making the function J defined everywhere in phase space. Note that we need this particular
energy since the term in dJ proportional to dq vanishes on this surface, though the reason for
the addition of 1

2 in J will only become clear in a moment. The factor of r multiplying the
vector field has the effect, aside from the cancellation of the singularity, of reparemetrising
time t to a new time s by

ds = dt
r
, (2.71)

with the new time ticking more slowly far away and faster closer to the center.

In terms of phase space variables our new Hamiltonian is given by

J = r

2(1 + p2) − 1 . (2.72)

Let us now take the combination
K = 1

2(J + 1)2 , (2.73)

and see that the vector fields associated to these functions are the same: Since on the surface
we are considering J = 0,

dK = (J + 1) dJ = dJ . (2.74)
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Figure 2.3: The stereographic projection of points P and Q on a sphere to the plane [1].

In terms of phase space variables we have

K = 1
8(p2 + 1)2r2 . (2.75)

This already looks a lot like free motion, with a momentum squaring as

ζ2 =
(1

2(1 + p2)
)2
r2. (2.76)

In fact, it is exactly the momentum on a 3-sphere under the cotangent lift of an inverse
stereographic projection, provided we interchange the momentum and position.

Let us unpack the specific transformation needed. This mapping takes us from T ∗R3, the
phase space of the regularised Kepler problem to T ∗S3

N , which is the phase space of a particle
moving on a 3-sphere (without north pole), embedded in R4.

Firstly, recall that a stereographic projection takes each point P on a sphere to a point s(P )
on the plane through the equator, by drawing a line from the north pole through P and
extending this to the plane, see Figure 2.3. Analysing the triangles made by this line and the
vertical axis, one can show the coordinates wi, with i = 1, 2, 3 of point s(P ) are related to the
coordinates (y0, yi) of the point P on the 3-sphere by

wi = yi

1 − y0 . (2.77)

Moreover, the inverse reads

y0 = w2 − 1
w2 + 1 , yi = 2wi

w2 + 1 , (2.78)

where w2 = wiwi and indices are raised and lowered by δij.

Secondly, let us consider what the phase space we are mapping to looks like. It can be
parametrised by canonical coordinates (y, η) ∈ T ∗S3

N , which are those pairs taken from
R4 × R4 that satisfy

y2 = 1, y · η = 0, (2.79)
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reducing the number of dimensions of the phase space from 8 to 6 as should be the case to
match the phase space dimensions of the Kepler problem.

For the cotangent lift of the inverse stereographic projection, meaning the transporting of the
phase space on the plane to that on the 3-sphere, we need to use the fact that the tautological
one-form must be conserved, that is

ηµdyµ = ξidwi , (2.80)

where the sums are implicitly over µ = 0, 1, 2, 3 and i = 1, 2, 3. This equation, upon
substitution of the (inverse) stereographic projection (2.77) and (2.78) gives an expression for
ξ in terms of the canonical coordinates of the 3-sphere phase space (y, η), which after use of
the relations (2.79) reads

ξi = (1 − y0)ηi + η0yi , (2.81)

and the inverse can be calculated by taking the inner product ξiw
i and using some of the

above relations to be

η0 = ξiw
i , ηi = 1

2(1 + w2)ξi − ξjw
jwi . (2.82)

Having constructed the full cotangent lift, we can indeed conclude that the square of our new
momentum η reads

η2 = 1
4ξ

2(1 + w2)2 , (2.83)

meaning the interchange of the role of momentum and coordinates, a perfectly canonical
transformation, indeed gives us the Hamiltonian K in (2.75).

The stereographic projection maps circles to circles, and so does the inverse. In our case, this
means the circles in momentum space of the Kepler problem, as noted by [178], are mapped
to circles on the 3-sphere. Moreover, as the motion is that of a free Hamiltonian on the
3-sphere, it will be geodesic motion, i.e. motion along the great circles. From this point of
view, the so(4) symmetry is natural: the orbits, great circles on the sphere, are rotated into
other orbits. In the language of hidden symmetries and Killing tensors one can say that the
above construction linearises the quadratic-in-momenta constants of motion, which are the
components of the LRL vector, manifesting the so(4) symmetry as an isometry.

2.6 Multi-center systems
A natural generalisation of the Kepler problem we have just discussed, is the multi-center
system, in which there are more than one stationary objects orbited by another. Though
it shares the number of phase space dimensions with the Kepler problem, it does not have
the same integrability properties. This is obvious of course, as one of the symmetries of the
Kepler problem is spherical symmetry, which is immediately broken by the inclusion of any
other object.

A particular case is the two-center system, which is still integrable in classical mechanics.
Any higher number of centers stops being integrable in general [42, 155, 156]. Physically, the
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two-center system is for example approximated by two stars orbited by a much smaller planet,
where the stars are approximately stationary on the typical timescales of the movement of
the planet. Considering the two-center problem in a rotating reference frame, one can use it
to find the motion in the restricted three body problem, where two objects are much larger
than a third.

In the following, we will consider the two-center problem and establish its integrability.

2.6.1 Separation of the two-center problem
The two-center problem is integrable, as it has exactly the same number of independent
integrals of motion as dimensions of configuration space, 3, which are in involution. To have
the opportunity to introduce some new concepts, instead of simply giving the independent
integrals and verifying their existence, we will establish integrability in a slightly different
way. Integrability can also be established through separation of the Hamilton-Jacobi equation,
which is a sufficient, yet not necessary condition.

2.6.1.1 The Hamilton-Jacobi equation and its separation

The Hamilton-Jacobi equation provides an alternative perspective on classical dynamics, just
like Lagrangian, Newtonian or Hamiltonian mechanics. In our discussion of it, we will draw
heavily from [206].

Where in Lagrangian mechanics we look at the action and vary the path through configuration
space, with fixed initial and final points qin, qfin, to derive the Hamilton-Jacobi equation we
vary instead only the endpoint and assume the true path qtrue(λ) is taken to begin with. We
define this action evaluated on the true path

W (qin, qfin,Λ) = S[qtrue(λ)] , (2.84)

such that W is a function of the initial point, which we can set to zero immediately, the final
point qfin and the time Λ it takes to get from the former to the latter. Using this function W ,
we can formulate n+ 1 first order partial differential equations, which together are equivalent
to the n second order Lagrangian equations and the 2n first order Hamilton equations.

Recall that varying the action by varying the path gives

δS =
∫ Λ

0
dλ ∂L(q, q̇, λ)

∂q
δq + ∂L(q, q̇, λ)

∂q̇
δq̇

=
∫ Λ

0
dλ

(
∂L

∂q
− d

dλ
∂L

∂q̇

)
δq +

[
∂L

∂q̇
δq

]Λ

0
, (2.85)

where we integrated by parts to get the second line. In case of the Lagrangian formulation,
the boundary term vanishes: δq|0 = δq|Λ = 0, giving the bracketed Euler-Lagrange equation
in the integral. However, now we assume the EL equation is satisfied, but vary the final point,
so we find

∂W (qfin,Λ)
∂qfin

= ∂L

∂q̇
= pfin , (2.86)

30



Chapter 2. Symmetries, Hamiltonian mechanics and the Kepler problem

giving the first n partial differential equations. For the only other dependence, on Λ, it is not
immediately clear how to derive a useful PDE. Let us therefore take the total derivative with
respect to Λ, reading

dW (qfin,Λ)
dΛ = ∂W

∂Λ + ∂W

∂qfin
q̇fin = ∂W

∂Λ + pfinq̇fin . (2.87)

But the total derivative of an action is also just the Lagrangian, or in the case of our action
evaluated on the true path

dW
dΛ = L(qtrue(Λ), q̇true(Λ),Λ) = L(qfin, q̇fin,Λ) , (2.88)

so we can express the partial derivative as

∂W

∂Λ = L(qfin, q̇fin,Λ) − pfinq̇fin

= −H(qfin, p
fin,Λ) , (2.89)

which is our n + 1th PDE. As we can freely choose any final position and total time, we
can relabel qfin → q and Λ → λ. The Hamilton-Jacobi equation (HJE) then is the result of
substituting the first n equations into the last, yielding

∂W

∂λ
= −H(q, ∂W

∂q
, λ) , (2.90)

which in general is a non-linear first order equation. This need not be easy to solve, but if we
can find a solution W (q, λ), this tells us the evolution of the system through substitution.

A benefit of this approach, is that if (2.90) contains a separable coordinate, say q1, there
exists a constant function ψ(q1, ∂W

∂q1 ). Therefore, we can use separability to find constants of
motion and study integrability.

Definition 6 ([201]). One calls q1 a separable coordinate if the function W solving the
Hamilton-Jacobi equation can be written as

W (q, λ) = W1(q1) + W̄ (q2, . . . , qn;λ) , (2.91)

and the Hamiltonian is of the form

H(q1, q2, . . . , qn; p1, p2, . . . , pn;λ) = H(ψ(q1, p1); q2, . . . , qn; p2, . . . , pn;λ) , (2.92)

for some function ψ(q1, p1).

The constancy of ψ(q1, ∂W1
∂q1 ) is clear: since we can independently vary q1 and the equation (2.90)

must still hold, the only option is that the function is constant, i.e. it is a constant of motion.

As the functions ψi of all separable coordinates qi are in involution and independent, this implies
that full separability, splitting the function W in n additive parts, guarantees integrability
in the sense of Definition 4. This then gives a way to show integrability: find a generalised
coordinate system in which the Hamilton-Jacobi equation separates completely.
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Example 5 (Separating the two-center problem). The Hamiltonian of the classical two-center
problem is given by

H = p2

2m − k1

|q − d1|
− k2

|q − d2|
, (2.93)

with d1 = (d, 0, 0) and d2 = (−d, 0, 0) the locations of the fixed masses, and ki = Mim the
product of the masses at one of the centers with the test mass and the coupling constant G
which we set to one.

Jacobi showed this Hamiltonian has a separable Hamilton-Jacobi equation in a special set of
coordinates called prolate spheroidal coordinates, given by

q1 = d cosh ξ cos η , q2 = d sinh ξ sin η cosφ , q3 = d sinh ξ sin η sinφ , (2.94)

in which the Hamiltonian reads

H = 1
2m

(
P 2

φ

d2 sinh2 ξ sin2 η
+ 1
d2(sinh2 ξ + sin2 η)

[
P 2

ξ + P 2
η

])

−(k1 + k2) cosh ξ + (k2 − k1) cos η
d(cosh2 ξ − cos2 η)

. (2.95)

Substituting the Ansatz S0 = −Et+ Lφ+ Sξ(ξ) + Sη(η) gives a Hamilton-Jacobi equation

(∂ξSξ)2 + (∂ηSη)2 + L2
(

1
sinh2 ξ

+ 1
sin2 η

)
− 2md [(k1 + k2) cosh ξ + (k2 − k1) cos η]

= 2md2E(sinh2 ξ + sin2 η) . (2.96)

This equation is separable into a part only dependent on ξ and a part only dependent on η,
such that

(∂ξSξ)2 = − L2

sinh2 ξ
+ 2md

[
m(M1 +M2) cosh ξ + Ed sinh2 ξ

]
+ C (2.97)

(∂ηSη)2 = − L2

sin2 η
+ 2md

[
m(M2 −M1) cos η + Ed sin2 η

]
− C . (2.98)

This concludes the separation and thereby proof of integrability of the two-center problem.
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Chapter 3

Relativistic two-body problems

In the weeks in November 1915 during which Einstein finished his general theory of relativity
(GR), he tested it against a number called the anomalous precession of Mercury [208, 219].
Reproducing this number would go down in history as the first great success of his theory. In
its calculation, Einstein used a couple of interesting concepts. First, he expanded his theory
in what we would now call a post-Newtonian expansion, because exact calculation was utterly
impossible. Then he took the limit in which the sun is infinitely heavier than Mercury. And
finally, he calculated the rate of precession of the quasi-elliptical orbit of Mercury due to GR.

If one slightly distorts the elliptical motion in a Kepler problem, as Einstein’s set-up did, the
orbit becomes a quasi-ellipse, no longer exactly closing, but precessing ever so slightly every
time the orbiter circles its host. The perihelion is the point of closest approach to the host
body, and its shift the difference in the angle of two subsequent perihelion points, i.e. the
amount the perihelion precesses in one circling of the host.1

This was historically the first test that General Relativity has stood: Einstein calculated the
predicted precession of Mercury due to GR and compared it to the anomalous precession,
known then for some 50 years [157]. The anomalous precession of Mercury is that part of the
precession of its orbit not explained by the Newtonian pull of other planets. Other such tests
were for example the bending of light and gravitational redshift.

The importance of these tests becomes clear when we consider that GR was not the only theory
in contest at the time. Gunnar Nordström developed a rivalling theory in 1913, similarly
aiming to extend Newtonian gravity in such a way as to make it compatible with special
relativity. And he succeeded! The problem with his theory? It did not produce the anomalous
precession of Mercury [220].2

In this chapter, we will discuss the relativistic two-body problem, developing tools on the
way not unlike those Einstein used to get to know the predictions of his theory of gravity.

1Perihelion literally means ‘near Sun’. Periapsis is the more general notion referring to the point in an
ellipse or elliptical orbit, but we will stick to the word perihelion.

2Additionally, the first theory he developed did not satisfy the equivalence principle of inertial and
gravitational mass, urging him to develop his second theory, that did so, according to him – though this is
not entirely clear [220, 94]. It still did not give the observed anomalous precession however.

33



Keplerian Black Holes and Gravitating Goldstones

Figure 3.1: Schematic drawing of the perihelion precession of Mercury around the Sun [106].

Moreover, these tools will be tailored to look for relativistic problems displaying the same
symmetries as the classical problem. The classical two-body problem, with 1

r2 force is simple
in two ways that the relativistic version generically is not. Firstly, the reduction of the
translations that we saw in the previous chapter renders it equivalent to a one-center problem,
allowing us to focus on just one body in a simple potential. Relativistic physics has to
contend with a finite speed of information, making it impossible to explicitly write down the
Hamiltonian without additional assumptions in the first place, as we will see in this chapter.
Secondly, the result of the reduction of the classical system, the Kepler problem, is maximally
superintegrable, whereas the relativistic one-center problem is ‘just’ superintegrable. Both
these aspects that are more complicated in relativistic physics as compared to Newtonian
physics will be addressed, though our focus will be primarily on the latter.

Before focusing on relativistic one-center problems, we will briefly consider the relativistic
two-body problem in full generality. The one-center system, seen as the limit of the full
problem in which one mass is much larger than the other, is just one way of approximating
it. Another way is an expansion in the coupling constant, such as the post-Minkowskian
(PM) expansion for gravity in terms of Newton’s constant G.3 The most famous method of
approximating the full problem, called the post-Newtonian (PN) expansion in the gravitational
case, is taking a truncated expansion in inverse powers of the speed of light of the Lagrangian
or Hamiltonian, or directly of an observable such as the scattering angle.

Both these approximation schemes have as added benefit that the first orders are free from
dissipative effects, that is, the energy in the system remains conserved up to a certain order
(2.5PN [39] and 3PM [48]). This is not the case for the first correction in the small mass
ratio expansion, for which the dissipative term dominates the first correction to the test mass
limit, its ‘zeroth order’ [192]. Historically, this seems to have lead to the situation where the
conservative system is considered separately to higher order than the lowest dissipative one in
the previous two, see e.g. [28, 111], but not in the small mass ratio expansion. Therefore, and
because dissipation immediately destroys time-translation symmetry, we will only consider
the post-Minkowskian and post-Newtonian approximations.

3In the context of GR, the test-mass limit and the first post-Minkowskian expansion of the two-body
system in fact coincide [89].
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Returning to our main purpose, recall that the maximal superintegrability of the Kepler
problem implies that for Newton’s description of revolving planets or Coulomb’s description
of the interaction of charged particles, the trajectories close and are truly periodic for negative
energies. We will be looking for relativistic theories with additional dynamical symmetry, not
necessarily describing naturally occurring systems. As the existence of hidden symmetry in
the classical Kepler problem caused the closing of all bounded orbits, we will be looking for
theories in which this special situation occurs as well. In essence, we will use the perihelion
shift as a diagnostic tool for additional symmetry in relativistic Kepler-like problems.

As we have seen above in the discussion of GR and Nordström’s theory, depending on what
relativistic theory we consider, we find different corrections to physically observable quantities,
such as the perihelion shift. In general however, given a one-center problem, we know there are
at least 4 conserved quantities, as the Hamiltonian is conserved along with the 3 components
of angular momentum. This makes the relativistic one-center system still superintegrable,
though maximal superintegrability generically is lost.

Physical examples of relativistic one-center systems are those with charges or with masses.
The former, which is the relativistic Coulomb problem, contains a fixed particle at the origin,
with a certain charge and a smaller charge in its orbit. Alternatively, we can consider the
relativistic gravitational problem, with one particle fixed at the origin (call it a black hole) in
whose field another particle moves. This is just a particle in a Schwarzschild metric. Again, by
the setup of the problem we are guaranteed conservation of angular momentum and therefore
superintegrability. However, there is a difference between this problem and the previous, as
expressing the perihelion precession in terms of appropriate constants yields a result in GR
that is 6 times that in electrodynamics.

The above examples are two in a set of three theories that arguably are the most natural ones
to consider, as they correspond respectively to spin-1 and spin-2, minimally coupled theories.
The latter concept meaning they couple only to the lowest moment, that is, only to the charge
or mass but not the dipole moments. The remaining minimally coupled theory is dilaton
gravity, which is a spin-0 field coupled through a conformal factor in the metric. Interacting
higher spin theories, so with spin-3 or higher force carriers, are known to be impossible due to
gauge invariance [218]. We will consider one-center systems in all 3 theories and combinations
of these, and compare their perihelion shifts in search for theories where the shift vanishes, as
these might possess additional symmetry.

Let us, before commencing our theoretical discussion of the relativistic two-body problem,
consider for a moment the possible value such efforts have in the context of current and future
experimental endeavours.4 From 2015 onward, the observatories LIGO, VIRGO and KAGRA
have detected many instances of gravitational waves originating from binaries of neutron stars
or black holes [82, 3]. These observations can be fit into a slightly different category than
the previously mentioned ‘classical’ tests, like gravitational redshift and perihelion precession,
as gravitational waves are an example of strong field effects. In this way, they test GR in
a completely different energy regime. With more observing runs [2] and the space based
telescope LISA upcoming, the dawn of the gravitational wave era provides strong motivation

4This paragraph is adapted from an introduction paragraph of [180].
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for precision study of binary dynamics, particularly of the earlier stage of the merger [8, 7].
This earlier stage is typically approached with analytical tools [141].

Moreover, and in light of our focus on one-center systems, so-called extreme mass-ratio
inspirals (EMRIs) are expected to provide a significant part of the observations for the
space-based gravitational wave observatory LISA [31]. Also, numerical relativity analyses
are computationally limited to comparable-mass inspirals, as the high computational burden
excludes systems with more than hundreds of cycles (i.e. revolutions of the host) [216]. All
this goes to say that an analytical approach to one-center-like relativistic systems is motivated
by more than just theoretical interest.

In the following, we will briefly treat the relativistic two-body problem and what makes it
complicated and discuss two important approximation schemes for such systems in Section 3.1.
Subsequently, some relativistic incarnations of the Kepler problem are discussed in Section 3.2.
To facilitate comparison of the perihelion shifts of the different theories, we will calculate
them all in a similar way. Lastly, in Section 3.3 we will make a synthesis of sorts by presenting
Einstein-Maxwell-dilaton theory, which combines the fields of the preceding systems and turns
out to have remarkable properties in a particular tuning of coupling constants.

3.1 The general relativistic two body problem
The reduction of two bodies to one reduced mass in a central potential is straightforward in
the classical case, but not in the relativistic case. This is a consequence of the relativity of
time. A quick way to see this, is to consider the kinetic energy in the center of mass frame,
which classically can be written as in Example 3 as the usual p2

2µ
in terms of the reduced

mass µ = m1m2
m1+m2

and relative momentum p = p1 = −p2. In the relativistic case, we cannot
parametrise both kinetic energies conveniently, so keeping it reparametrisable, we must write

Krel = m1c
2

√√√√1 + p2
1

m2
1c

2 +m2c
2

√√√√1 + p2
2

m2
2c

2 (3.1)

= (m1 +m2)c2 + p2

2µ − 1
8
m3

1 +m3
2

(m1 +m2)3
p4

c2 + ... , (3.2)

where we expand the square roots in small p2

c2 . Now we cannot rewrite this as the kinetic
energy of just one body, but really need both kinetic terms separately. This might not seem
like a big problem yet, but in introducing an interaction potential to the bodies, it quickly
becomes intractable. Because of the finite speed of light, the potential terms for one body in
principle depend on many past positions of the other body, generating an infinite amount of
additional terms that one would need to calculate to find the explicit action or Hamiltonian
for the reduced system.

Consider the two body problem in general relativity for example, in the limit where we take
both bodies to be point particles and we disregard spin, such that the total action reads (see
e.g. [91])

S =
∫

d4x
√
gR −

∑
a

ma

∫
dτa

√
−gµν(xλ

a)ẋµ
a ẋν

a , (3.3)
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with g the metric, R the curvature scalar, a = 1, 2 and τa is the world line parameter of body
a. Note that we leave out some constants for legibility. While we may use reduction over
translations in order to express the integrands in center-of-mass coordinates xµ, we cannot
easily rid ourselves of the two world line integrals without changing the physics. Moreover, if
one were to try to establish a Hamiltonian for this system, in order to apply the machinery of
the last chapter, the particle Lagrangians are required to be part of the same integrand. This
entails writing for example a factor dτ1

dτ2
in the first of the two particle terms, parametrising it

with τ2. This function we do not know a priori, making it impossible to explicitly write down
the Hamiltonian.

All systems with multiple world lines suffer from this, unless all but one of the world line
integrals can be solved without resorting to the solution of the variational problem itself.
That exceptional situation in our two-body example occurs for example when one body is
infinitely heavier than the other: m2 � m1, implying the metric it feels is independent
of the coordinates of the other body. The velocity of the heavy body will necessarily be
constant (or zero in the center-of-mass frame) and the integral becomes the mass term only
m2

∫
dτ2

√
−gµν(xλ

2)ẋµ
2 ẋ

ν
2 = m2, because one can choose to parametrise the integral by the

proper time of m2. Another example would be the free case, in which neither particle is
feeling the other, because both have negligible mass.

This multi-world-line problem is not limited to gravitational theories: it is simply the
consequence of the fields being determined by the movement of particles and the velocity of
information being finite [135]. A similar action to the above for electromagnetism was for
example constructed in 1929 by [114].

The inability to write the relativistic two body problem as a central potential problem points
to the more general fact that there is no closed form solution for the fields describing two
moving comparable masses. What we do know, is that the phase space of a two-body problem
can be reduced to one spanned only by the relative momentum and position (barring situations
where translations are not a symmetry of the theory to begin with), making it 6-dimensional,
and 3 angular momentum components are conserved along with energy in a conservative
problem. This leads to a tragic situation in some sense: The conservative relativistic two-body
problem with spherical symmetry would be superintegrable, if only we could write down its
Hamiltonian.

The only known way to approach the problem is through approximations like the post-
Newtonian and post-Minkowskian approximations for gravitational theories. These ideas
essentially repackage separate, truncated expansions of the two integrals above in varying
ways.

As a unifying picture to the problem we want to approach, scattering amplitudes and effective
field theory (EFT) will be useful. Just as the classical, that is, non-quantum, components of
scattering amplitudes can be determined from a classical Hamiltonian, one can also determine
the classical Hamiltonian from scattering amplitudes [124, 74]. EFT adds the organising
principle of scale separation to the field theoretic techniques, making a strong foundation for
calculation and conceptual understanding.5 This picture will be used, to the extent that we

5While the use of field theoretic techniques in GR is ongoing since the 1960s [32], the application of EFT
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Figure 3.2: Time from left to right, scalars given by solid lines. The blob represents the scattering
amplitude.

need it, to discuss the post-Minkowskian and post-Newtonian approximations, both of which
have a clear interpretation in terms of amplitudes, as well as the fixing of redundant degrees
of freedom in general two-body Hamiltonians.

3.1.1 Scattering amplitudes and EFT for classical binaries
Before starting our discussion of specific approximations and how Hamiltonians are derived
in these, let us consider how scattering amplitudes and effective field theory can be used to
constrain the possible shapes such Hamiltonians can take. Instead of reviewing all techniques
in detail, we will only present some insights gained from these tools. For this Section, much
use is made of [24], aimed primarily at the post-Minkowskian approximation. A review of
these techniques in the context of the post-Newtonian approximation is e.g. [158].

From the point of view of quantum field theory, every interaction can be described by scattering
of elementary particles, which are excitations of the fields. In the case of gravity, this field is
the metric and the massless excitation is called the graviton. For two-body problems, there
would additionally be 2 enormously heavy excitations of some scalar matter field. Through
2 → 2 scattering amplitudes, involving one or multiple gravitons in intermediate states, these
then interact with each other, see Figure 3.2.

Because of the enormity of the 2 bodies compared to quantum scales, the ‘quantum’ part
of the quantum field theory describing these excitations would be wholly redundant.6 This
is where effective field theory comes in, as there is a clear hierarchy between the size of the
momentum |p| of the bodies and the size of the momentum transfer |p− p′| carried by internal
gravitons, i.e.

|p| � |p− p′| . (3.4)
Since individual scattering processes making up the total interaction of the binary are so
small, we can average over their effects to retrieve a very reasonable approximation. From
this averaged behaviour of the scattering of the 2 bodies, we can then learn which classical
potential is resulting from the smaller interactions.

At first glance, it may seem strange to look at scattering amplitudes, with bodies in free
states before and after the event, while being mostly interested in bound systems7 (after all,

in the context of the two-body system, proposed in [124], is relatively new [112].
6In particular, particle production effects for the 2 classical bodies are not to be expected.
7The term ‘bound’ is borrowed from atomic physics, in which electrons are bound to a nucleus. In our
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Figure 3.3: The scattering amplitude of the EFT is an expansion in terms of bubbles [24].

those are the systems we observe in LIGO, VIRGO and the like!). However, the underlying
physics of both processes is the same, meaning studying scattering, we can find the potential
that holds for bound systems as well.

Procedurally, one would first calculate the 2 → 2 scattering amplitudes in the EFT, built as a
generic classical theory with a potential Ansatz V (k, k′), giving a vertex rule [74]

k k′

−k −k′ = −iV (k, k′) , (3.5)

where we use momentum labels k, k′ to emphasise this rule holds for all momenta, not just
the external ones. The scattering amplitudes for the EFT can be expanded purely in terms of
bubbles, as in Figure 3.3, since in the EFT particle number is conserved [24]. Then, the free
coefficients in the Ansatz can be fixed by calculating the amplitudes in the full theory and
matching this to the EFT amplitudes [124, 24].

Now what does all this mean for the shape of the Hamiltonian, and more specifically, the
potential? In principle, the most general Hamiltonian one could reasonably expect for the
relativistic two-body problem, as mentioned above, will in reduced form only be dependent
on relative momenta p and positions q. Moreover, because of spherical symmetry inherited
from the Poincaré group, in the center-of-mass frame a general two-body Hamiltonian can be
written solely in terms of the SO(3) invariants p2,

√
q2 = r and (p · q). This would suggest a

general form of the Hamiltonian [194]8

H = µ
∑

(l,m,n)
αl,m,n

(p2)l(p2
r)n

rm
, (3.6)

writing the radial momentum pr = q·p
r

.

However, calculating a Hamiltonian with the method outlined above based on the scattering
amplitudes in a theory, we see this can be constrained further. Firstly, it is clear that a
reasoning similar to that leading up to (3.6) must hold for scattering amplitudes: given 2 → 2
scattering as in Figure 3.2, the only dependence can be on invariant scalars p2, p′2 and p · p′,

context it means systems with bounded orbits or objects kept together through some force.
8Non-integer powers of these scalars in the Hamiltonian are not possible in the context of conservative,

non-spinning systems. This follows from the vertex rules and velocity corrections as we will see soon.
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of the incoming momentum p and outgoing momentum p′ (recall that we are in center-of-mass
frame, hence p1 = −p2 = p). Moreover, by energy conservation, we know that the energy of
one body, say m1, is given by E2

1 = m2
1 + p2 before and the same after, implying p2 = p′2,

reducing the number of independent scalars to 2.

We can then take a basis in which 1
2(p2 + p′2) = p2 and |p− p′| are the independent scalars

building the amplitudes, since 1
2(p− p′)2 = p2 − p · p′. The latter independent scalar, |p− p′|,

is called the momentum transfer. Functions f(|p− p′|) Fourier transform to functions F (r) of
the distance r between the objects, conjugate to the momentum transfer. This means there is a
choice of field basis for scattering amplitudes, or equivalently, a choice of canonical coordinates,
that allows us to build them solely from p2 and 1

r
.9 This implies that the coefficients in the

potential, too, can be written in terms of p2 and r. As we already know how we can write the
kinetic part of the Hamiltonian as function of p2, we have generally [194]

H = µ
∑

(l,m)
αl,m

(p2)l

rm
. (3.7)

This choice for canonical coordinates is called isotropic gauge.10 This gauge choice still does
not completely fix all unphysical degrees of freedom [93] in the Hamiltonian. One way to
fix the residual degrees of freedom, is to require that the Hamiltonian, in the limit that the
objects are infinitely far away from each other, reduces to a free Hamiltonian [74]. This can
be written as

HAG(r, p) =
√
m2

1 + p2 +
√
m2

2 + p2 + µV (r, p) , V (r, p) =
∞∑

l=0,m=1
αl,m

(p2)l

rm
, (3.8)

where V (r, p) is the two-body potential and αl,m are functions of the mass ratio ν. This is
called amplitude gauge by [93], as will not surprise the reader, as this contains exactly the
(Fourier transformed) potential Ansatz V (r, p) one would take in order to map scattering
amplitudes to a classical potential [74]. In so choosing the form of the Hamiltonian, we fix
the αl,0 to be those as given by the expansion of the kinetic terms.

Another option, as argued by [93], is to write the Hamiltonian in a combined expansion in
the Kepler Hamiltonian HKep = p2

2 − 1
r

and 1
r
, and then fixing all terms in that expansion

proportional to 1
r

to zero, yielding

HLRL(r,HKep) =
∞∑

l=0,m=0
m6=1

ᾱl,m

H l
Kep

rm
. (3.9)

This is called LRL gauge, because it immediately shows conservation of the Newtonian LRL
vector when all terms with powers of 1

r
are absent, as HKep commutes with the LRL vector.

And vice versa, in this gauge, all systems with additional symmetry are simply functions of
the Kepler Hamiltonian [93].

9To add some more intuition, the external particles have just one independent momentum scalar: p2.
However, the exchanged particles are not on shell. This gives another independent momentum scalar, |p − p′|,
being the magnitude of the exchange momentum, see e.g. [112].

10The word gauge is often used for a coordinate choice, as in the context of GR general coordinate
transformations are recognised as a kind of gauge transformations: symmetries that arise solely because of
our wish to write down something in terms of coordinates.
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3.1.2 Post-Newtonian approximation
The post-Newtonian approximation is an expansion in terms of the inverse of the speed of
light. The expansion terms can be corrections to the classical kinetic energy of the form p2

m2c2 .
A relativistic free particle, for example, has Hamiltonian

Hfp = mc2

√
1 + p2

m2c2 = mc2
(

1 + p2

2m2c2 − p4

8m4c4 + O
( p6

m6c6

))
. (3.10)

The leading term in this expansion gives the rest-mass energymc2. But also other dimensionless
parameters can be expanded in the inverse of the speed of light and are treated as similar
in size, such as

(
GMω

c3

)2/3
and GM

Rc2 , where Newton’s constant G, a mass M , frequency ω and
scale R are introduced. Here the equivalence ω2/3 ∼ 1/R comes from Kepler’s third law, while
the equivalence p2

m2c2 = v2

c2 ∼ GM
Rc2 is also known as the virial theorem at the Newtonian level.

In physical terms (and in the context of conservative dynamics11), the expansion assumes the
field to be weak and the speeds of the compact bodies to be much smaller than the speed of
light.

In this approximation, observables like scattering angles or the perihelion precession can be
calculated, or functions like the Hamiltonian or Lagrangian. The route that is historically
taken (for example by Lorentz & Droste in 1917, translated version [161]) is to expand
Einstein’s field equations, solve them for a certain source term (two compact objects in the
binary case) and analyse what compact-body Lagrangian or Hamiltonian would give rise to
the equations of motion. The conservative two-body Lagrangian is known today to fourth
post-Newtonian order, and has been calculated using EFT methods [111, 113].

To mathematically make sense of this approximation, we will give a formal definition of
post-Newtonian expansion of functions on phase space, which will be useful in Chapter 4,
taken from [180]. Denoting ε = 1

c2 and ignoring other constants, we have the following.

Definition 7. A Hamiltonian function B(ε; q, p) depending on a small parameter ε > 0 is in
post-Newtonian expansion to Nth order if it is of the form

B(ε; q, p) =
N∑

j=0
εjBj(q, p) + O(εN+1) , (3.11)

for some regular enough Hamiltonian functions Bj.

This gives us an order counting system for terms occurring in a relativistic Hamiltonian. Such
a Hamiltonian is given by

Hrel =
∞∑

j=0
εjΛj(α), Λj(α) =

∑
(l,m,n)∈N3

l+m+n=j

αl,m,n
(p2)l(p2

r)n

rm
, (3.12)

written in general gauge here. Clearly, the PN orders of Λj(α) will be exactly j.
11For non-conservative systems, there is another expansion: the near-zone expansion, which again amounts

to keeping track of powers of 1
c2 [39].
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p p′

−p −p′

Figure 3.4: The tree-level diagram, with thick lines representing the compact objects and the
wiggly line the exchanged graviton.

p p′

−p −p′

(a)

p p′

−p −p′

(b)

Figure 3.5: The triangle and box diagrams which contain the classical contributions at one-loop.

From an effective field theory perspective, the expansion in 1/c2 corresponds to an expansion
in progressively more complicated Feynman diagrams of the full theory, as reviewed e.g
in [112], where EFT is applied to the Binary problem in the post-Newtonian approximation.
Since each scalar-scalar-graviton vertex contributes a factor G/c2, and a cubic graviton vertex
does so as well, the more loops in a diagram, the higher the order of the contribution. The
simplest diagram of two classical scalars interacting through gravitons, is the one in Figure 3.4,
a tree-level diagram. This is therefore the diagram that produces the 1

r
term in the Kepler

Hamiltonian.

However, since the vertices as well as the propagators are velocity-dependent, lower order
diagrams keep contributing when calculating the higher order effective action or Hamiltonian.
For example, while the Newtonian order is given by Figure 3.4, the 1PN order is given by
Figure 3.5, as well as the first order velocity corrections to Figure 3.4. The diagrams in
Figure 3.5 are given in a particular decomposition of the full amplitude, such that the one-loop
with graviton 3-vertex can be ignored [24].

Written in the center of mass frame and normalising the relative momentum and radial
coordinate conveniently, the Hamiltonian up to and including 1PN becomes [178, 180]

H(0+1)PN = 1
2p

2 − α

r
+ 1
c2

{
1
8(3ν − 1)p4 − (3 + 2ν)α

2r + (ν + 1)α2

2r2

}
, (3.13)

where ν = m1m2
(m1+m2)2 denotes the so-called symmetric mass ratio and we have set µ = m1m2

(m1+m2) =
1. Here we see the two expansions, related through the virial theorem, taking place: one for
the weak field which we have for large distances and small 1/r (shorthand for GM

Rc2 ) and one
for the small speed, corresponding to small p2 (or v2

c2 ). The term in the middle is a mix of
these two, stemming from the velocity corrections to the tree-level diagram 3.4.
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For non-conservative systems, which the Binary Problem in General Relativity is due to
the emission of gravitational waves, also terms proportional to odd powers of 1

c
contribute.

The first order at which corrections to the equations of motion due to radiation become
important is 1/c5 or 2.5PN [39]. Current state-of-the-art calculations of the waveform of
compact binaries has been carried out to 4.5PN [40].

3.1.3 Post-Minkowskian approximation

The post-Minkowskian approximation is an expansion in the gravitational constant G.12

Clearly, such an expansion is also used in the previous case. However, in the post-Minkowskian
approach there is no small speed approximation, so all results are valid to all orders in velocity.
In the language of EFT and Feynman diagrams, the post-Minkowskian expansion is a loop
expansion: each attached graviton leg carries a factor

√
G, and the gravitons are all considered

internal, hence they need to be attached on both ends. The contributing diagrams are those
with the correct number of loops, so Figure 3.4 at 1PM order (containing Newton and velocity
corrections to all order in v2/c2) and Figure 3.5 at 2PM.

The first post-Minkowskian Hamiltonian is given by

H(0+1)PM = K1 +K2 + G

r

1
K1K2

(
m2

1m
2
2 − 2

(
K1K2 + p2

)2
)
, Ki =

√
m2

i + p2 , (3.14)

where we use a gauge in which the flat-space limit is the special-relativistic center-of-mass
Hamiltonian. As we take a limit where the momentum goes to zero, we retrieve the rest
mass term and the Kepler potential for a reduced mass µ = m1m2

m1+m2
orbiting a central mass

(m1 +m2).

An example of the use of the post-Minkowskian expansion is [29], where the third order
conservative Hamiltonian is found using the methods described hand-wavingly here. The
included type of terms in post-Newtonian and post-Minkowskian Hamiltonians for the binary
problem follow a structure as in Figure 3.6.

From the above discussion, it may seem like the Nth post-Newtonian expansion is always
contained within the (N + 1)th post-Minkowskian expansion, but this is not always true. An
enlightening example is found in [89]. Here the scattering angle in the two body problem
is written as an expansion of dimensionless rescalings of the angular momentum and non-
relativistic energies, j ≡ cJ

GµM
and Ê ≡ E

µc2 respectively in their notation, with J the angular
momentum. While every post-Minkowskian order ∼ Gn contains an infinite sum of orders of
1
c2 , a post-Newtonian order ∼ ( 1

c2 )n similarly contains an infinite sum of orders of G. This is

12While the post-Newtonian expansion can be directly used in the context of other theories than GR, the
post-Minkowskian is specific to GR. However, replacing G with the relevant coupling constant of another
theory, one can obtain a similar expansion.
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Figure 3.6: A schematic picture of the types of terms present in post-Newtonian and post-
Minkowskian expansions, showing progress on the binary problem potential (recently
extended to 4PM [27]). Taken from [24].

because we can write the scattering function in a combined expansion

χ(j, Ê) = 1
j

(
χ1,−1Ê

−(1/2) + χ1,0 + χ1,1Ê
1/2 + . . .

)
+ 1
j2

(
χ2,−2Ê

−1 + χ2,−1Ê
−(1/2) + χ2,0 + . . .

)
+ 1
j3

(
χ3,−3Ê

−(3/2) + χ3,−2Ê
−1 + χ3,−1Ê

−(1/2) + . . .
)
, (3.15)

with χn,k functions of the mass ratio. Here the first terms in each bracket contribute at
Newtonian order, while the second terms each contribute at 1

2PN etc. Similarly, the first line
gives the 1PM contributions, the second gives the 2PM terms. Because of the negative powers
in Ê, the number of terms contributing at NPN order indeed contain terms not present
in the (N + 1)PM order, e.g. the term ∼ Ê−1

j(N+2) . These do not necessarily vanish, see for
example [34].

3.2 Relativistic one-center problems
Now we will direct our attention to relativistic incarnations of the Kepler problem, essentially
the extreme mass-ratio limit of the two-body problem. To facilitate comparison with relativistic
systems, one can glance back at Example 1, where we employed the Binet equation to find
the shape of orbits in the classical Kepler case. We will now do the same for physically
distinct relativistic corrections, showing how the classical ellipses are distorted in each case as
parametrised by the strength of the interaction. This interaction strength is determined by
considering the strength of the force experienced by a particle starting off stationary.

3.2.1 Maxwell
Since we want the particle Lagrangian of relativistic particles to be independent of the
parametrisation, we generally write a square root for the kinetic term. However, sometimes it
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is useful for calculations to do without such a term. To still describe the physical Lagrangian,
independent of parametrisation, we therefore need to manually put in this redundancy, by
introducing an auxiliary variable h. For a relativistic particle in an electromagnetic field in
flat space, the Lagrangian is then given by e.g. [205, 129]

L = 1
2hẋ

αẋβηαβ − hm2

2 − qAµẋ
µ, (3.16)

where the dot represents derivation with respect to the parameter λ, q its charge and ηαβ

the Minkowski metric. Indeed, the action built from this Lagrangian is invariant under a
reparametrisation, combined with a transformation of the auxiliary variable

λ → λ̃(λ) , h → h

(
dλ̃
dλ

)−1

, (3.17)

with λ̃(λ) a monotonic function of λ. Actions with this form for the Lagrangian are sometimes
called a ‘Polyakov-type’ actions, and h is also called ‘Einbein’. The familiar square-root form
can be retrieved by solving the Euler-Lagrange equation for h and substituting it back in.
However, when it is useful to, we will choose instead to parametrise affinely such that h = 1

m

and we get
L = m

2 ẋ
αẋβηαβ − m

2 − qAµẋ
µ . (3.18)

Note that the Euler-Lagrange equation of h implies that

h2 = − 1
m2 ẋ

αẋβηαβ , (3.19)

such that the choice h = 1
m

demands the constraint

−ηαβ
dxα

dλ
dxβ

dλ = 1 , (3.20)

which is the statement that the parameter λ is affine, in the case of a massive particle.

Assuming the static Coulomb potential qA = (mα/r, 0, 0, 0), we can calculate the force this
particle will experience at rest to be

r̈ = α

r2 r̂ , (3.21)

which is attractive for α negative, meaning the charges have opposite signs. Here we have
made the choice to have a positive sign for ṫ, as we will always do unless explicitly mentioned.

The conjugate momenta to φ and t read

L = mr2φ̇ , E = −m
(
ṫ+ α

r

)
, (3.22)

which implies we can write the velocity norm as

−
(
E

m
+ α

r

)2
+ ṙ2 + L2

m2r2 = −1 . (3.23)
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Then changing to the Binet variable we find(
du
dφ

)2

+ c2u
2 − c1u = c0 , with c1 = 2Eαm

L2 , c0 = E2 −m2

L2 , c2 =
(

1 − α2m2

L2

)
. (3.24)

Comparing this to the Binet equation for the Kepler problem, we see the coefficient of u2 is
no longer unity. This requires an additional constant in our equation, so that we get(

du
dφ

)2

+
(

√
c2u− c1

2√
c2

)
= c0 +

(
c1

2√
c2

)2

. (3.25)

This is solved by
u = A(1 + e cos √

c2φ) , (3.26)
which comes back to the same value when √

c2φ = 2π, meaning the perihelion shift is

∆φ = 2π
√
c2

− 2π ≈ π
α2m2

L2 , (3.27)

with the approximation to first order, agreeing with [205].

3.2.2 Einstein
Another way to generalise the classical central potential problem is by considering the static,
spherically symmetric solution of Einstein’s field equations. This is fundamentally different
from the electromagnetic case, because the force involved in the interaction is a different force,
of a different spin. This can be seen from the number of indices, determining the way a field
transforms under the Lorentz group, which make sure that after quantisation of the fields Aµ

and gµν their operators give spin-1 and spin-2 excitations respectively, while a scalar, such as
the dilaton we will see next, has spin-0.

The relevant solution is the Schwarzschild metric

g = −
(

1 − rs

r

)
dt2 +

(
1 − rs

r

)−1
dr2 + r2dΩ2 , (3.28)

with the Schwarzschild radius rs = 2GM
c2 . Taking a massive particle in such a background

gives the Lagrangian

L = m

2 gµν ẋ
µẋν − m

2 , (3.29)

where once again we have parametrised by proper time, meaning gµν ẋ
µẋν = −1. The static

force is then
r̈ = −rs/2

r2 r̂ . (3.30)

The angular momentum and energy are conserved here too, so that after a bit of rewriting we
find the Binet equation, with a new coefficient(

du
dφ

)2

+ u2 − c3u
3 − c1u = c0 , with c1 = rsm

2

L2 , c0 = E2 −m2

L2 , c3 = rs . (3.31)
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As a comparison with the Kepler system shows (or an analysis tracking the occurrence of 1/c2

factors), the term with c3 is a relativistic correction. Therefore, we can solve the equation
perturbatively as demonstrated for instance in [207]. They find

∆φ = 3π
2 c1c3 = 6π (rs/2)2m2

L2 , (3.32)

which is, under proper exchange of constants given by the attractive force, 6 times that of the
electromagnetic case we have seen before.

3.2.3 Dilaton
A third force is the so-called dilaton. A scalar field that scales, or dilates, the kinetic term of
a particle as a function of its position. It was an early contender for the relativistic theory of
gravity [183, 102], but got rejected based on its predictions not matching reality, chief among
which was the perihelion shift [94, 220].

For the one-center case of purely dilatonic gravity, we consider the relativistic Lagrangian for
a free particle on a metric that is flat, except for a rescaling dependent on the dilaton field
ϕ.13 The particle Lagrangian reads

L = m

2 e
2aϕηµν ẋ

µẋν − m

2 , (3.33)

where ηµν is the flat metric with (− + + +) on the diagonal and a is the coupling constant.

To see what the ϕ field is when we place a single, large point particle at the origin, we need to
first note there is some ambiguity when talking about a dilaton field. The only way to couple
matter to a scalar field is multiplying the kinetic term, because there are simply no indices
available to combine with velocities as we have in the electromagnetic case and in the usual
GR case. This means that the dilaton field functions as a conformal factor for the metric, and
can equivalently be seen from a perspective incorporating it into the metric g̃µν = e2aϕηµν .
This is called the Jordan frame, and it changes the field action involved to one containing
both gravity terms (due to the now non-flat metric) and dilaton terms, making it a kind of
scalar-tensor theory.

In the frame we will consider, called Einstein frame, the field Lagrangian is given by

Lfield = −2(∂ϕ)2 , (3.34)

meaning we only have a dilaton field. Similar to before, this leads to a vacuum equation
where we pick out the solution corresponding to a single charge at the origin, reading

ϕ = −aM

r
, (3.35)

with M the mass. Using this solution and the particle Lagrangian (3.33), we can derive the
static force

r̈ = −a2M

r2 r̂ , (3.36)

13It can be seen as the Goldstone boson of spontaneously broken conformal symmetry [132].
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to first order in the PN expansion. Regardless of the sign of the dilaton coupling, this force is
attractive.

Writing in spherical coordinates we spot the conserved angular momentum and energy

L = me2aϕr2φ̇ , E = −me2aϕṫ . (3.37)

Proper time parametrisation then gives

−
(
E

m

)2
e−2aϕ + ṙ2e2aϕ + L2

m2r2 e
−2aϕ = −1 , (3.38)

yielding a binet equation, expanding the dilaton field term to first PN order:(
du
dφ

)2

+ c2u
2 − c1u = c0 , with c1 = 2a2Mm2

L2 , c0 = E2 −m2

L2 , c2 =
(

1 + 2a4M2m2

L2

)
.

(3.39)
The perihelion shift for a dilatonic force will therefore be

∆φ = −2πa
4M2m2

L2 . (3.40)

By making an appropriate exchange of constants (indicated by the static forces), we can
compare this to the one of the electromagnetic force. As it turns out, the dilaton has a
perihelion shift opposite to the one of the electromagnetic force and twice as large.

It is interesting to note however, that this result is not independent of the way we define
the coupling of the scalar field to begin with, as discussed for example in [94]. Taking the
field Lagrangian (3.34) as given, implying the vacuum solution is always as in (3.35), one can
couple the scalar to matter in various ways parametrised by function F (ϕ) in

L = m

2 (1 + F (ϕ)) ηµν ẋ
µẋν − m

2 . (3.41)

Choosing a = 1 in the exponentially coupled case above (known as Nordströms first theory),
this function reads

F (ϕ) = ϕ+ b

2ϕ
2 + . . . , (3.42)

with b = 1, whereas for Nordströms final theory it is simply F (ϕ) = ϕ, leading to ∆φ =
−πM2m2

L2 : a measurably distinct prediction (in a hypothetical universe where such a scalar is
present). In general we have to first order [94]

∆φ = −1 + b

6 ∆φGR , (3.43)

with ∆φGR the perihelion shift as in GR. In particular, this implies we can cancel the first
order perihelion shift, by taking b = −1. The higher order terms in F (ϕ) similarly contribute
to higher order perihelion shifts, however, such that one would need to specify the full function
to find the all-order shift. As we will see in Chapter 5, it is indeed possible to find the full
function of the field ϕ needed to close the ellipses to all orders.
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Additionally, and interestingly in the light of the discussion surrounding Nordström’s scalar
theory in the years preceding GR, we can also exactly mimic the GR prediction, by taking
b = −7. Still, other predictions, such as the deviation of light due to the presence of mass,
remain different even with this choice, such that it would still be possible to distinguish a
scalar theory from GR experimentally.

Let us conclude the discussion of scalar gravitational theories by explicating that the name
dilaton is usually reserved for the exponentially coupled theory. While the dilaton is the
Goldstone boson of conformal transformations [203], and both scalar theories mentioned here
satisfy the weak equivalence principle stating that inertial and gravitational masses are the
same for non-gravitationally bound bodies, only Nordström’s final theory is argued to satisfy
the strong equivalence principle, including self-gravitating bodies [94].

3.2.4 Maxwell-dilaton
As the perihelion shifts of the dilaton and Maxwell forces are opposite in direction of precession,
it is natural to suppose there might be a balancing theory, combining both fields in such a way
as to make the shift vanish. Let us therefore consider a naive combination of both theories,
where the vector and scalar fields do not couple to each other. Constructing a one-center
problem in such a theory amounts to placing a charge at the origin, coupling it conformally
to a scalar field.

The calculation of the perihelion shift in the orbit of another charge, also conformally coupled
to the scalar, is then to first order just a combination of the separate effects. This shows that,
at least to first order in the post-Newtonian expansion, the perihelion shift can vanish for the
correct size of the coupling constant a such that m2

L2 (α2 − 2a4M2) = 0. However, this is only
to first order. When we expand the calculation to 2PN, we no longer have the freedom to
adjust the relative strength of the forces involved, and the perihelion precesses once more.
The Binet equation, derived similarly to before, reads

(
du
dφ

)2

− c3u
3 + c2u

2 − c1u = c0 , with c1 = 2a2Mm2 + 2Eαm
L2 , c0 = E2 −m2

L2 (3.44)

c2 =
(

1 + (2a4M2 − α2)m2

L2

)
, c3 = 4

3
a6M3m2

L2 .

Balancing the forces to make the first order perihelion shift vanish removes all c2 contributions
at higher order as well, but the contribution from c3 (and higher orders) adds a term

∆φ = 4πM
4m4

L4

(
a8 + Eαa6

Mm

)
, (3.45)

which does not vanish for the balancing value a2 =
√

α2

2M2 . This shows that, at least in
coupling the Maxwell and dilaton field in this naive way, there is no additional symmetry to
orders past 1PN.
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3.2.5 Einstein-dilaton
To address the probe limit (or test-mass limit) in a theory that combines a metric field with
a dilaton, we cannot simply use known static background fields. This is because the known
static, spherically symmetric solution, the Janis-Newman-Winicour (JNW) solution [143, 223,
213], is only defined for a subset of all dilaton couplings we would like to consider.14 Moreover,
it is not a black hole, but a naked singularity: the outer-most singularity in the coordinates of
JNW is in fact a curvature singularity, implying it cannot be removed by a suitable coordinate
redefinition in the way that the singularity on the boundary of the Schwarzschild black hole
can. This is in line with the no-hair theorem, stating that black holes are completely described
by their mass, angular momentum and possibly charge.

Since a sufficient solution for our purposes does not exist, our analysis will proceed perturba-
tively. Results obtained in this way in the present and many other scalar-tensor theories can
be found in [92], and more recently the perihelion shift was presented too in [93], calculated
through scattering amplitude methods.

To first post-Newtonian order, the tensor and scalar fields do not influence the form of their
respective solutions. This means we can simply take the solutions as we saw them above.
There is a caveat however, since the coordinate systems in which we gave the solutions are not
the same as soon as we introduce a mass in the center. The Schwarzschild metric (3.28) was
given in Schwarzschild coordinates, in which the coefficient of the spherical term in the metric
is r2, while the dilaton field was given in terms of an isotropic radius. To distinguish these
from now on, we call the isotropic radius ρ. The Schwarzschild metric in isotropic coordinates
has the form

g = −

(
1 − M

2ρ

)2

(
1 + M

2ρ

)2dt
2 +

(
1 + M

2ρ

)4 (
dρ2 + ρ2dΩ2

)
, (3.46)

whereas the dilaton solution is still given by

ϕ = −aM

ρ
. (3.47)

A particle starting out static will then experience a force

ρ̈ = −(1 + a2)M
r2 ρ̂ , (3.48)

to first order, simply the addition of the effect of both forces.

The proper time parametrisation gives, restricting to the plane θ = π/2,

−e2aϕ


(
1 − M

2ρ

)2

(
1 + M

2ρ

)2 ṫ
2 +

(
1 + M

2ρ

)4 (
ρ̇2 + ρ2φ̇2

) = −1 , (3.49)

14Furthermore, it lies on the wrong branch of solutions as viewed from the zero charge limit of the theory
in the next subsection 3.3, see also Chapter 4.
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from which the conserved quantities are calculated to be

L = e2aϕ

(
1 + M

2ρ

)4

ρ2φ̇ , E = −e2aϕ

(
1 − M

2ρ

)2

(
1 + M

2ρ

)2 ṫ , (3.50)

such that the Binet equation becomes(
du
dφ

)2

+ c2u
2 + c1u = c0 , with c0 = E2 −m2

L2 , c1 = 2(1 + a2)m2

L2 ,

c2 = 1 − 2(3 − a2)(1 + a2)M2m2

L2 , (3.51)

yielding a perihelion shift of

∆φ = 2πM
2m2

L2 (3 − a2)(1 + a2) . (3.52)

As noted by [93], this first order perihelion shift vanishes for a specific tuning of the coupling
a =

√
3, one not accessible in the JNW solution (a must be smaller than 1 in this case).

The same perihelion can be found as the zero charge limit of the one for extremal Einstein-
Maxwell-dilaton, see Section 4.3.1. However, beyond first order, once more no tuning of
the parameters allows for exclusively closing orbits, as calculated by [93]. Moreover, the
probe particle as well as the central mass are not properly ‘matched’ objects, in the sense
of [145] that the internal structure of a point-like object is not trivial in scalar-tensor theory.
Even for point-like objects, one typically needs an additional parameter β to describe the
coupling to the dilaton field [92]. This requirement crucially vanishes for the extremal objects
in Einstein-Maxwell-dilaton theory, owing to the fact that these objects do not experience
self-gravitational effects.

3.2.6 Einstein-Maxwell
Whereas the above combinations of fields, due to the negative perihelion shift typically
generated by the dilaton field, could be expected to yield zero precession in some specific
instances, this is not a realistic expectation for the Einstein-Maxwell case. Both fields lead to
positive perihelion shift, and indeed, combining them only exacerbates the non-closing of the
orbits. For completeness, however, we briefly discuss the orbits in a one-center system in this
theory here.

The relevant solution to the Einstein-Maxwell equations goes by the name of Reissner-
Nordström, and it is a charged, non-rotating, stationary, spherically symmetric black hole.
The perihelion shift, for charge-to-mass ratios Q and q for the center and the probe respectively,
is given to first order by

∆φ = π
M2m2

L2

(
6(1 −Qq) +Q2q2 −Q2

)
, (3.53)

which agrees with [15] under the assumption that q � Q. The only way to make this zero
without resorting to q > 1 or Q > 1, is to take both charges extremal, that is q = Q = 1.
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Figure 3.7: A conditionally periodic orbit: closing, yet without additional continuous symmetry.

Extremal charge is the maximal charge a black hole can have without becoming a naked
singularity [147]. When both charges are extremal, the static force will vanish completely and
bounded orbits are not possible.

3.2.7 Bertrand spacetimes
Another way to approach the question of which relativistic systems conserve classical sym-
metries, is to demand existence of the symmetries in the first place and backward-engineer
the solutions capable of satisfying that demand. It is in this vein that Perlick constructed
all Bertrand spacetimes, and pinpointed those with additional symmetry [189]. We will now
give a brief overview of this work, highlight the case that is of interest to us, and mention a
limitation.

Perlick constructs all Bertrand spacetimes, which is essentially the demand that all bounded
time-like geodesics have vanishing perihelion shift.

Definition 8 ([189]). A Lorentzian manifold (M, g) is a Bertrand spacetime if and only if

1. it is static and spherically symmetric

2. there is a circular trajectory through each point

3. any initial condition for the geodesic equation which is sufficiently close to that of a
circular trajectory gives a periodic trajectory.

As it turns out, this definition is enough to guarantee all Bertrand spacetimes have all bounded
orbits closing, not just the (nearly) circular ones. This justifies the name referring to the
classical Theorem 4.

However, there is a caveat: not all of the Bertrand spacetimes have strictly periodic orbits,
which is required for additional symmetry. Strict periodicity is the situation where the body
comes back to the same point after just one circling of the host, as opposed to a conditionally
periodic orbit, where the perihelion shift is given by 2π/β with β 6= 1 and β 6= 2, such that the
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orbit forms a rosette closing after a number of revolutions around the center, as in Figure 3.7.
The subset of spacetimes that does result in additional symmetry (in the form of Killing
tensors, see 2.2.4), gives rise to Kepler- and harmonic oscillator-like ellipses.

Furthermore, we would like to specialise to those spaces which are asymptotically Minkowskian,
meaning the geodesics far away from the origin, with r → ∞, behave as in special relativity,
since this is what we expect from a one-center-like system. Asymptotically Minkowskian
Bertrand spacetimes are either of the form

g = − dt2

G∓ r2(1 + k2r2 ±
√

1 + 2k2r2)−1
+ 2(1 + k2r2 ±

√
1 + 2k2r2)dr2

1 + 2k2r2 + r2dΩ2 , (3.54)

where G and k are real constants with Gk2 > 1 for the upper and Gk2 > −1 for the lower
signs, or

g = − dt2
1 + kr−1 + dr2 + r2dΩ2 , (3.55)

with k > 0 a real constant [189].15 These particular gravitational fields then are isolated
sources giving rise to bound systems with additional symmetry, the type of relativistic system
we set out to find. However, they do not solve Einstein’s equation in a vacuum, like the
Schwarzschild solution, and moreover, they violate the so-called weak energy condition,
meaning there are observers that will measure a negative energy density, which makes the
sources quite exotic if not unphysical objects.

3.3 Extremal Einstein-Maxwell-dilaton systems
In the previous section, we have seen an array of different ways of relativising the classical
one-center problem, and analysed whether these could give rise to exclusively closing bounded
orbits. While it is possible to create situations in which the perihelion shift vanishes, it appears
not so easy to do so to all orders (e.g. Maxwell-dilaton or Einstein-dilaton) or with objects
obeying relations we expect from physical objects (Einstein-dilaton, Bertrand spacetimes).

In this section, we present a theory - Einstein-Maxwell-dilaton with dilaton coupling a =
√

3 -
that does clear both bars raised above: the extremal-anti-extremal one-center system, obeying
the expected field equations, has exclusively closing bounded orbits to all orders. Einstein-
Maxwell-dilaton (EMD) theory is a generalisation of general relativity that is of interest due
to its general nature of forces, comprising spin-0,1,2 background fields, as well as its ability
to circumvent the ‘no-hair theorem’. This states that a black hole cannot be described by
properties other than its mass, charge, and angular momentum. EMD escapes this prohibition
by introducing a non-trivial scalar field and charge.16

We will first discuss EMD in some generality, giving black hole solutions and the extremal
backgrounds of interest. Then we proceed to ask the question what probe (or test) particles

15Note that the paper contains a mistake here: it excludes the lower signs in the first expression, while this
is not necessary to achieve an asymptotically Minkowskian spacetime.

16This scalar field gives the black hole what is called secondary hair, as the scalar charge is completely
determined in terms of mass and charge within a given theory, i.e. for a given value of the scalar coupling
constant [80].

53



Keplerian Black Holes and Gravitating Goldstones

in such a theory would look like, and study integrability of the two-center system. As
realised by [83], for a particular choice of coupling constants the two-center systems in EMD
have surprising integrability properties, highly reminiscent of their classical equivalents. We
will study this system for two kinds of test particles, massless and massive, and show how
their Hamilton-Jacobi equations are separable - a sufficient condition for integrability, see
Section 2.6.1. Implicitly, since one can adjust the two-center problem to make one of the
centers irrelevant, we have then also shown the one-center problem in this EMD theory has the
same integrability properties as the classical one. Subsequently, we take a look at the higher
dimensional origin of EMD theory with our particular parameter tuning, hinting toward a
deeper explanation which will be considered in later chapters.

Sections 3.3.1, 3.3.2 and 3.3.3 are adapted from [180], of which the remainder will be discussed
in Chapter 4. The connection between the separation of the two-center system and the
classical two-center system is made here for the first time.

3.3.1 Black holes with dilaton hair
The fields present in EMD theory are the metric gµν , the four-potential Aµ and the dilaton
field ϕ, exponentially coupled (through coupling constant a) to the electromagnetic field
strength. Mathematically, these are respectively a pseudo-metric tensor, a covector and a
function on the space-time manifold R4. A solution of the corresponding Einstein-Maxwell’s
equation is then given by the critical tensors of the action (see also e.g. [139, 84])

S[gµν , Aµ, ϕ] = 1
16π

∫
d4x

√
−g

(
R − 2(∂ϕ)2 − e−2aϕF 2

)
, (3.56)

where g = det(gµν) is the determinant of the pseudometric-tensor matrix, R is the Ricci scalar
and F = dA is Maxwell’s field. Note the coupling between the dilaton and Maxwell fields,
which makes this slightly different from the simple addition of the bulk Lagrangians we have
seen so far. Different values of a correspond to different reductions of N = 8 supergravity [83],
among which a =

√
3 will be the special value we will be interested in. In addition to

diffeomorphism invariance and gauge symmetry, this action has a global symmetry that shifts
the dilaton while rescaling the gauge vector.

Starting with the special case a = 0, the static and spherically symmetric solutions of this
theory are given by the well-known Schwarzschild and Reissner-Nordström black holes, with
possibly non-vanishing electric charge. In the electrically neutral case, the introduction of the
dilaton does not introduce additional solutions; scalar-gravity is known to satisfy the no-hair
theorem and hence cannot carry scalar charge [79]. In contrast, when introducing the dilaton
(i.e. a 6= 0) in the charged case, the solution becomes more interesting and reads [119, 115]

ds2 = −λ2dt2 + λ−2dr2 + r2κ2dΩ2 , Ftr = e2aϕ0Q

r2κ2 , e2aϕ = e2aϕ0

(
1 − r−

r

) 2a2
1+a2

,

(3.57)
where

κ2 =
(

1 − r−

r

) 2a2
1+a2

, λ2 =
(

1 − r+

r

)(
1 − r−

r

) 1−a2
1+a2

. (3.58)

54



Chapter 3. Relativistic two-body problems

Note that one can set ϕ0 = 0 by the shift symmetry of the dilaton, which we will subsequently
do. This most general solution is parametrised by the locations of the inner and outer horizons
r±. These are related to the mass and charge of the object by

r+ = M +
√
M2 +Q2(a2 − 1) , r− =

(
a2 + 1
a2 − 1

)(
−M +

√
M2 +Q2(a2 − 1)

)
, (3.59)

Importantly, the ‘horizons’ labelled by the minus sign are singular for all a > 0 (i.e., the scalar
curvature diverges at this point), whereas the ones labelled by the plus signs are not.

As mentioned above, this solution carries scalar charge, given by a simple integration over a
spherical shell surrounding it [115]:

D = lim
ρ→∞

1
4π

∮
∇µϕ d2σµ = a

a2 − 1

(
−M +

√
M2 +Q2(a2 − 1)

)
. (3.60)

In order to have non-vanishing dilaton charge, one therefore needs both electric charge Q 6= 0
as well as non-vanishing scalar coupling a 6= 0. For a given theory and hence value of a,
the mass and charge determine the dilaton charge, which is therefore not an independent
parameter.

For completeness, we would like to mention that for the same set of charges (M,Q,D), a
second solution exists, given by the above fields but with parameters

r̃+ = M −
√
M2 +Q2(a2 − 1) , r̃− =

(
a2 + 1
a2 − 1

)(
−M −

√
M2 +Q2(a2 − 1)

)
, (3.61)

where we have added a tilde to avoid confusion with the solutions that form our main
interest. In the neutral case, these solutions are the Janis-Newman-Winicour solution for
Einstein minimally coupled to a scalar field [166], as also referred to in the Einstein-dilaton
discussion in Section 3.2.5. Note that they are in general different from Schwarzschild (when
choosing a 6= 0); however, in this case the solution develops a naked singularity (that is, a
non-removable singularity not cloaked by an event horizon). This is in agreement with the
statement that scalar-gravity does not have any black hole solutions other than Schwarzschild.
The introduction of the electric charge does not qualitatively change this singular property.
For these reasons we will not consider this solution any further.

3.3.2 The extremal case
We now turn to the extremal case of the hairy black hole solutions (3.59). To this end, it is
convenient to rewrite the relation (3.60) between the three charges as the quadratic relation

(D − aM)2 = a2(M2 +D2 −Q2) . (3.62)

The importance of the expression on the right-hand side lies in the extremality of the black
hole. Imagine two such black holes; when this combination vanishes, attractive spin-0,2 forces
between two such black holes (proportional to M2 +D2) would exactly cancel the repulsive
spin-1 force (proportional to Q2).

55



Keplerian Black Holes and Gravitating Goldstones

The dimensionless parameter

χ2 ≡ M2 +D2 −Q2

M2 , (3.63)

is therefore a measure of extremality, and interpolates between 0 and 1. When χ = 1, this
corresponds to a neutral black hole (i.e. the Schwarzschild solution). In contrast, the case
χ = 0 corresponds to an extremal black hole: in this case, the two sides of (3.62) vanish
separately, and the black hole has extremal charges

Dextr = aM , Qextr = ±
√

1 + a2M , (3.64)

that are both linearly proportional to the mass. For all values a 6= 0, the solutions will be
singular in the extremal limit [184]. Moreover, the thermodynamics of such extremal objects
are fundamentally different for a ≷ 1 – in fact, it has been argued [139] that they resemble
elementary particles more than black holes for a > 1. As this will be of no consequence for
the dynamics, which is our concern here, we will still refer to these objects as black holes.

Due to the cancellation of forces between extremal black holes, one can also construct multi-
center solutions. For the Einstein-Maxwell case, these are the Majumdar-Papapetrou solutions
[170, 185], while the solutions with a non-minimally coupled dilaton field added in have been
discussed in [84]. The fields in this case are given by

g = −U−2/(1+a2)dt2 + U2/(1+a2)dq · dq ,

A = 1√
1 + a2U

dt , (3.65)

e−ϕ = Ua/(1+a2) ,

with
U(q) = 1 + (1 + a2)

∑
n

Mn

|q − qn|
, (3.66)

where the sum is over the extremal black holes with mass Mn and positions qn of which there
may be arbitrarily many. The no-force condition implies that all centers carry electric and
dilaton charges (3.64) that are proportional to their masses. For a single charge, this solution
corresponds to the extremal case of the general Einstein-Maxwell-dilaton metric. This can be
seen by noting the two horizons of the EMD merge into r± = M(1 + a2) and switching to the
isotropic radius ρ = r(1 − r±

r
).

3.3.3 Skeletonisation
Having discussed the relevant background solutions in EMD theory, we want to consider
dynamical systems built by taking an extremal background and placing a test particle on
it. To make our dynamical systems pertain to dilaton-charged black holes, simply taking a
point particle with a mass and electric charge while keeping the universal dilaton coupling a
nonzero does not suffice. For self-gravitating objects, even in the zero size limit, there will be
a dependence on the background scalar field of the way the object couples to it. One can see
this by considering the black hole presented in Section 3.3.1: both the dilaton charge and
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electric charge depend on the background scalar field, while the electric charge is conserved
by a U(1) symmetry.

In general, one can describe a particle in EMD by its conserved charge Qp and a mass function
m(ϕ), absorbing the dependence on the dilaton field. It will show up in the Lagrangian
describing the dynamics of the point particle, reading

Lpp = m(ϕ)
√

−gµν ẋµẋν −QpAµẋ
µ. (3.67)

We can compare the field generated by a particle in this parametrisation to the field we know
belongs to a certain object, in order to find the mass function belonging to the zero size
limit of the particular object. Taking a black hole as example, this leads to the matching
condition [145, 152]

dm(ϕ)
dϕ = a

a2 − 1
(
−m(ϕ) +

√
m(ϕ)2 +Q2

pe
2aϕ(a2 − 1)

)
. (3.68)

For every value of the dilaton coupling a, the solution to this equation will depend on the
charge and an integration constant, determined by the mass m and charge.

Note that the above ODE is fully analogous to the expression for the dilaton charge (3.60),
with the identifications

(M,D,Q) ' (m(ϕ), dm(ϕ)
dϕ

,Qpe
aϕ) . (3.69)

Indeed, one should think of the latter as the background-dependent charges, which go to their
asymptotic values for ϕ → 0. The mass function therefore determines more than only the
masses. Its first derivative corresponds to the dilaton charge. Moreover, its second derivative
is closely related to the extremality combination:

d2

dϕ2 logm(ϕ) =
a2Q2

pe
2aϕ

m2(ϕ)
(a− d

dϕ
)m(ϕ)

am(ϕ) + (a2 − 1)dm(ϕ)
dϕ

, (3.70)

which is evaluated on the background to be

β := d2

dϕ2 logm(ϕ)|ϕ=0 = a2Q2

m2
χ

χ+ aD
m

, (3.71)

clearly vanishing for extremal black holes.

In the extremal case, therefore, the coupling of the particle to the dilaton field is simply
through an exponential m(ϕ) = meaϕ. Looking at the Lagrangian (3.67), this shows the
extremal particle couples like a particle without self-gravitation to the metric and dilaton
field. In retrospect this is not surprising, since, if the extremal particle does not experience a
net force from other extremal particles stationary with respect to it, why would it experience
any force generated by itself? Equivalently, the extremal particle can be seen to couple to a
metric given by

g̃µν = e2aϕgµν . (3.72)
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If we make the transformation to the tilde metric, we switch from the Einstein frame to the
Jordan frame, in which the bulk action takes the form [108, 152]

SJordan = 1
16π

∫
d4x

√
−g̃ e−2aϕ

(
R̃ +

(
6a2 − 2

)
(∂ϕ)2 − F 2

)
. (3.73)

In this frame, the extremal particle does not couple to the dilaton field at all, making its mass
constant.

Remark 1. In general, for non-extremal cases, (3.68) has no simple closed-form expression.
An exception is the case a = 1, for which it is solved by m(ϕ)2 = µ2 + 1

2Q
2
pe

2ϕ, where the
integration constant µ is given by µ2 = m2 − Q2

p

2 , showing it is a measure of deviation from
extremality, since for a = 1 the particle is extremal when Q2

p = 2m2 (setting the background
field to zero).

3.3.4 Separation of the two-center system
Now we know how to consistently introduce test particles in the relevant background, let us
consider the integrability of the two-center system. The two extremal black holes have mass
Mi, charge Qi and dilaton charge Σi = aMi related by Q2 = M2 + Σ2 = M2(1 + a2). Placing
an extremal test particle, with Q2

p = m2 + σ2 and σ = am, in this background, we have the
Lagrangian as in equation (3.67), with m(ϕ) = meaϕ, leading to the equation of motion as
in [83]:

d2xα

dλ2 + Γα
βγẋ

βẋγ =
√

1 + a2e−aϕFα
β ẋ

β − a(ẋαẋβ∇β + ∇α)ϕ . (3.74)

Here we see the different forces playing out clearly, first the connection term next to the
acceleration, and on the other side the electromagnetic force and dilaton force. The light-like
case will have zero charge and dilaton charge, and will therefore only have the left-hand side.

Instead of solving the above equation of motion, however, we will show integrability through
the separation of the Hamilton-Jacobi equations. As discussed in Section 2.6.1.1, separation
of the HJE is sufficient to show integrability. Moreover, it gives a map between the classical
mass and energy and those in the relativistic EMD theory.

3.3.4.1 Light-like case

Let us first consider the separation of the Hamilton-Jacobi equation for the case of null
particles on our two-center background. The separated Hamilton-Jacobi equation found for
the light-like case in the EMD theory with a =

√
3 and centers at z = ±1 was given by [83]:

(∂ξSξ)2 = − L2

sinh2 ξ
+ E ′2

[
4(M1 +M2) cosh ξ + sinh2 ξ

]
+D (3.75)

(∂ηSη)2 = − L2

sin2 η
+ E ′2

[
4(M2 −M1) cos η + sin2 η

]
−D. (3.76)
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Comparing this to Section 2.6.1.1, we see the light-like motion in EMD is equivalent to the
classical motion for a mass and energy

m2 = 2E ′2 , E = |E ′|
2
√

2
= m

4 . (3.77)

In other words, the constant E ′ sets the mass as well as the energy of the two-center system,
which is in a scattering state, since the classical energy E is necessarily positive. The quantity
E ′ is the canonically conjugate momentum to the time coordinate. This means that, since the
Hamiltonian is time independent, by reparametrising we can make it equal to any constant
we like except zero.

Another way to see null geodesics on this EMD background are just scattering states in a
classical two-center system, is by considering the Hamiltonian

H0 = gµνpµpν = −U1/2E ′2 + U−1/2p2 = 0 , (3.78)

summed over i = 1, 2, 3. A rescaled version

p2 − UE ′2 = 0 , (3.79)

then after the choice E ′ = 1 comes down to

p2 − 4
(

M1

|x − x1|
+ M2

|x − x2|

)
= 1, (3.80)

where we indeed recognise the classical two-center problem. In the classical realm, there is
of course no attraction between light and mass, so here the light-like case corresponds to a
particle with a mass m =

√
2 and energy E = 1

2
√

2 . Turning on the mass of the extremal
probe in the EMD system then takes us to energies below this, as we will see soon in (3.84).

3.3.4.2 Anti-extremal test particle

Having reviewed the slightly simpler case of null-geodesics in the EMD two-center system,
we will now focus our attention on the motion of an anti-extremal, massive test particle in
the same background. This case, too, is integrable, which we once more will be able to show
through separation of the Hamilton-Jacobi equation. This will also show the two-center and
therefore the one-center system in EMD are, in some sense, equivalent to their non-relativistic
counterparts. The exact way in which this equivalence holds, will be discussed in Chapter 4.

As we will discuss in Section 3.3.5 in more detail, extremal test particles have been shown (by
Gibbons and Wells [122]) to follow null geodesics in a five-dimensional metric, for which the
Hamilton-Jacobi equation can be reduced to a four-dimensional one(

∂S

∂xα
−m′

√
1 + a2Aα

)2

= −m′2U−2a2/(1+a2) , (3.81)

where we introduced the mass m′ of the particle and the index runs over time and three space
dimensions. The case of a =

√
3 is integrable again, since the Hamilton-Jacobi equation is
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separable. This separation is the same as in the case of null-geodesics in the four dimensional
metric (3.75), except for the two bold terms proportional to m′:

(∂ξSξ)2 = − L2

sinh2 ξ
+ 4E ′2(M1 +M2) cosh ξ +

(
E ′2+2m′E′

)
sinh2 ξ +D (3.82)

(∂ηSη)2 = − L2

sin2 η
+ 4E ′2(M2 −M1) cos η +

(
E ′2+2m′E′

)
sin2 η −D. (3.83)

The relation to the non-relativistic energy in section 2.6.1.1 is then shifted accordingly to

E = |E ′| − 2m′

2
√

2
, (3.84)

where we have assumed the relativistic energy E ′ to be negative. The mass of the corresponding
classical particle remains as in (3.77). In particular, for the values

|E ′| < m′

2 (3.85)

the system corresponds to a classical two-center problem with negative energy E, thus having
bounded orbits. All other energies E ′ give scattering orbits.

The one-center problem, our prime focus in this work, is contained in the system considered
above. By simply sending one of the central masses M1,M2 to zero, as the dilaton and electric
charge are proportional to the mass, we remove any effect from this center and obtain the
one-center problem. As the same can be done in the non-relativistic case, this shows the EMD
one-center is equivalent to its non-relativistic counterpart in the same sense as the two-center
system. We can immediately conclude the bounded orbits of the EMD-one-center system are
all elliptical.

3.3.5 Einstein-Maxwell-dilaton theory from Kaluza-Klein reduction
Having seen the special dynamics in some EMD systems, we will now consider the 5-dimensional
origin of such systems. This will, in Chapter 5, help us understand why the dynamics is the
way it is.

In this section, we will review Kaluza-Klein reduction of 5D pure gravity to 4D Einstein-
Maxwell-dilaton theory. Subsequently, we will treat the reduction of geodesic motion on a
Ricci-flat 5D space to 4 dimensions in this context, yielding the special systems discussed in
the previous sections.

3.3.5.1 Reducing Einstein-Hilbert to Einstein-frame EMD

A 5-dimensional theory of pure gravity has as action the Einstein-Hilbert term, with appro-
priate gravitational constant Ĝ, Ricci scalar R̂ and determinant of the metric ĝ:

S5D = 1
16πĜ

∫ √
−ĝR̂ d5x . (3.86)

60



Chapter 3. Relativistic two-body problems

One of the 5 dimensions, denoted z, is taken compact and small, such that all modes in
a Fourier expansion of the metric components will attain a very high mass, except for the
massless zero mode. Now, we will assume that the metric is completely independent of the
coordinate z, allowing a natural separation between metric components ĝµν , ĝµz and ĝzz,
where we have Greek indices µ = 0, 1, 2, 3 and z is its own index. This already suggests the
splitting of the 15 degrees of freedom of the symmetric metric tensor ĝAB into 10 tensor, 4
vector and 1 scalar component as viewed from 4 dimensions. A convenient parametrisation of
the Ansatz for the metric is17

dŝ2 = e2ϕ/
√

3ds2 + e−4ϕ/
√

3 (dz + 2Aµdxµ)2 , (3.87)

in terms of 4-dimensional fields ϕ,A, g (scalar, vector, tensor respectively) and writing ds2

for the 4-metric.

Working out the action in terms of these 4D fields (commonly done in Vielbein formalism [191])
and integrating over the compact dimension, one ends up with the action

S4D = 1
16πG

∫ √
−g

[
R − 2(∂ϕ)2 − e−2

√
3ϕF 2

]
d4x , (3.88)

where G is the usual gravitational constant, R the 4D curvature scalar and F 2 = FµνF
µν the

square of the field strength Fµν = ∂µAν − ∂νAµ. Viewed from four dimensions, the additional
compact spacial dimension thus gives rise to an Einstein-Maxwell-dilaton theory with dilaton
coupling a =

√
3, and the diffeomorphism invariance, gauge symmetry and scale symmetry

are all inherited from Ansatz-preserving coordinate transformations in 5 dimensions [191,
196].

Considering a massless particle in such a space as (3.87), we can write down the Polyakov-type
Lagrangian [128]

Lp = − 1
2hĝABẋ

AẋB , (3.89)

with the auxiliary variable h. After expressing this in 4D fields and Legendre transforming to
get rid of ż in favour of the conserved momentum in the compact dimension

Pz = −1
h
e−4ϕ/

√
3(ż + 2Aµẋ

µ) , (3.90)

the above Lagrangian becomes

Lp = 1
2

[1
h
e2ϕ/

√
3gµν ẋ

µẋν − he−4ϕ/
√

3P 2
z − 4PzAµẋ

µ
]
. (3.91)

Such a function, where one or more velocities in a Lagrangian are traded for a (conserved)
momentum, is often called a Routhian. Finally, solving for h and plugging it back in (taking
the positive branch to get the correct kinetic term), we have

Lp = −
[
e

√
3ϕ|Pz|

√
−gµν ẋµẋν + 2PzAµẋ

µ
]
, (3.92)

which is the action in EMD theory of an extremal particle with charge q = 2Pz, mass m = |Pz|
and dilaton charge σ =

√
3|Pz|.

17In principle the coefficients in the powers of the exponent are arbitrary, but we choose specific values to
end up in Einstein-frame and match a conventional choice of coefficients in the final 4-dimensional action.

61



Keplerian Black Holes and Gravitating Goldstones

3.3.5.2 Geodesics on a 5D gravitational wave

Having established the link between 5-dimensional gravity and geodesics and 4-dimensional
Einstein-Maxwell-dilaton, we will now look at an example of a Ricci-flat space with geodesic
motion. The dynamics of the 5D geodesic is in 4D exactly that of an anti-extremal test
particle on an extremal black hole background, as discussed for the two-center and one-center
case in Section 3.3.4.2. In Chapter 5, we will discuss why this explains the classical-seeming
dynamics of the EMD systems.

The particular, Ricci-flat, 5D metric we will discuss is given by

dŝ2
5 = U

(
dz + dt

U

)2

+ U−1/2
(
−U−1/2dt2 + U1/2dx · dx

)
= Udz2 + 2dzdt+ dx · dx ,

(3.93)

corresponding with 4-dimensional fields

eϕ = U−
√

3/4, A = dt/(2U), ds2
4 = −U−1/2dt2 + U1/2dx · dx , (3.94)

with U a positive harmonic function of x. Note that if U were to vanish, both t and z would
be null-coordinates in the 5-dimensional metric, since the norms of dz and dt would vanish.
Since U is nonzero, z no longer is a null direction (it is space-like because of the positive sign
of U) and only t is a null-coordinate. However, in the 4-dimensional metric, coordinate t is
timelike. Furthermore, viewed from 4 dimensions, the sign of the potential A only becomes
meaningful when we fix the parametrisation ṫ and introduce a charged particle (which the
null geodesic in 5D provides).

This metric has at least two isometries because the harmonic function U is only dependent
on the three spacial coordinates of spacetime. Its interpretation is that of a so-called pp-wave,
which is short for plane-fronted wave with parallel rays. This type of spacetimes is defined by
the presence of a covariantly constant null-vector, which in our coordinates is ∂

∂t
[144] and is

larger than the class given above, since U might additionally depend on z. Moreover, note
that the Ricci tensor satisfies

R̂AB = 0 , (3.95)

making the spacetime Ricci-flat.

As shown in [122], null-geodesics of this metric have equations of motion coinciding with
the equations of motion of an extremal particle in an extremal (singular) background in
Einstein-Maxwell-dilaton theory. That is, a particle with mass m, charge |q| = 2m and dilaton
charge σ =

√
3m, such that the static repulsive electric force of two of such particles would

cancel the attractive force of gravity and dilaton. The background is an extremal black hole,
though it becomes singular at the specific dilaton coupling considered.

For simplicity, we take the standard 5D geodesic action

Lp = 1
2gABẋ

AẋB , (3.96)
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with h = −1. This also means the time-parametrisation is now fixed by

ṫ = − 1
2ż (Uż2 + ẋ2) , (3.97)

implying that the sign of ṫ also fixes the sign of ż. The conserved momentum conjugate to
the coordinate z is given by Pz = Uż + ṫ. Additionally we use the translation symmetry of
t, finding Pt = ż is conserved and its sign tethered to the choice for ṫ. This can be used to
eliminate ż and ṫ, leading to the equations of motion

ẍi = 1
2
∂U

∂xi
P 2

t , ẗ = −Pt (∂U · ẋ) , (3.98)

in 4 dimensions. This means there is a special value for the momentum where the force
vanishes, that is Pt = 0. This is the case where Pz = ṫ, so that the extremal charge q = 2Pz

has the same sign as ṫ. In other words, if we fix parametrisation by having ṫ positive, and
agree upon taking the current sign of (3.93) to correspond to positive charge for the black
hole, the sign for which this interesting situation occurs is positive too. Moreover, the null
requirement immediately implies vanishing spacial momentum Px. In 5 dimensions, this
motion corresponds with a constant velocity in the null t-direction, while in 4D it is a stationary
particle remaining at rest due to cancelling electromagnetic and dilaton/gravitational forces.

To learn the shape of the orbits in other cases, we use again the null requirement. We will be
interested in the one-center system from now on, meaning U = 1 + 4

|x| , though the reduction
works for any number of centers. As the t coordinate plays the role of time in 4 dimensions,
the conjugate Pt will have the interpretation of energy. We have

gABPAPB = 2PtPz − UP 2
t + P 2

x = 0 , (3.99)

and we can reparametrise to find an implicit expression for the energy. Let us first assume
positive Pz, yielding

−Pt + P 2
t

2Pz

= P 2
x

2Pz

− 2P 2
t

Pz|x|
, (3.100)

where we used U = 1 + 4
|x| . The (x, Px) canonical coordinates are constrained to a surface on

which the dynamics is that of a Kepler problem. Recall that our choice of parametrisation
results in Pt being negative, which immediately shows the ‘Keplerian energy’ −Pt + P 2

t

2Pz
can

only be positive, implying only unbounded orbits are possible for positive Pz. For negative Pz

we consider
Pt + P 2

t

2|Pz|
= P 2

x

2|Pz|
− 2P 2

t

|Pz||x|
, (3.101)

which is negative for |Pt| < 2|Pz| and positive for |Pt| > 2|Pz|. This shows the negatively
charged particle in four dimensions can access both bounded and unbounded orbits.

On first view, the Keplerian orbits of this relativistic system are astonishing. However, the
5-dimensional origin already gives a hint towards an explanation. One might suspect the
Lorentzian 5D space itself to hold the explanation: Whereas an so(4) symmetry in 3d qualifies
as ‘enhanced’, in a 5-dimensional Lorentzian space it might very well be an isometry. After
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all, 5D Minkowski has an so(4) subalgebra. We will see that this explanation in fact does not
hold. However, as will be discussed in Chapter 5, the 5D space provides the most natural
path to connect the system to the ordinary Kepler problem.

To recapitulate, we have seen there exists a specific combination of fields, with specific charges
and couplings, for which the one-center problem has Kepler-like ellipses as bounded orbits.
Moreover, the one-and two-center problems are related to their classical counterparts as can be
learned from the separation of the Hamilton-Jacobi equation. Lastly, the specific combination
of charges and couplings turns out to have its origin in a higher-dimensional theory. The
exact nature of the connection to classical physics, and how this fits into a broader framework
of relativistic systems displaying non-relativistic orbits, is the topic of the next chapters.
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Chapter 4

Extremal Black Holes as Relativistic
Systems with Kepler Dynamics

4.1 Introduction
As pointed out in Chapter 3, future experiments sensitive to a long inspiral phase require precise
knowledge of the dynamics of binary compact objects. Though there is a good understanding
of the PN expansion and other approximations in the context of these systems, both of the
conservative and radiation part to high order, this stimulates the further development of
analytical tools to limit the demand on computational resources.

This chapter, adapted slightly from [180], is therefore dedicated to the identification of
specific relativistic systems for which the PN expansion results in a system of a much more
manageable form. Often, systems with this kind of simplifications possess more symmetries
and conservation laws, reducing the number of effective degrees of freedom. This is famously
the case in the classical analogue of the relativistic binary systems; we will investigate to what
extent the same holds for certain relativistic systems.

Recall from Section 2.2.3 that on the non-relativistic i.e. classical level, the two-body problem
divides up nicely into the motion of a free particle (the total mass located at the center of
mass) and the motion of a particle with reduced mass µ = m1m2

m1+m2
in the stationary potential

generated by the total mass M = m1 +m2. The solutions to this problem then are the same
ellipses as in the classical Kepler problem in celestial mechanics. The latter possesses, next
to the expected spherical symmetry SO(3) yielding the conservation of angular momentum,
an additional symmetry which gives the conservation of the Laplace-Runge-Lenz (LRL)
vector (2.28). Since this symmetry is not immediately obvious on the level of the Lagrangian
it is often referred to as a hidden symmetry.

The three components of the angular momentum vector, the three components of the LRL
vector and the total energy form seven conserved scalar quantities. As the length of the LRL
vector is determined by angular momentum and energy, and the angular momentum vector is
perpendicular to the LRL vector, only five of the scalar conserved quantities are independent.
The joint levelsets of these five constants of motion in the six-dimensional phase space are
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hence one-dimensional. As a consequence, bounded orbits must be periodic and take the
form of the famous elliptical orbits found in Kepler’s model of the Solar System (while in
General Relativity of course, the symmetry is broken and the perihelion – the point of closest
approach – precesses).

For central force systems, there is a strong link between closing orbits and enhanced symmetry,
in the form of Bertrand’s theorem, discussed in Section 2.4. This states that the only two
central forces whose bounded orbits are all closed curves are the Kepler potential and the
isotropic harmonic oscillator [125], which are in fact related (see [10, 140] for a complex
transformation relating the two in 2D, and [173] for a reduction of the 4D harmonic oscillator
to the 3D Kepler system) and known for their large symmetry groups, SO(4) and SU(3) in 3
dimensions, respectively.

Since we know symmetries make problems more tractable and the non-relativistic problem
possesses additional symmetry, it is natural to attempt to restore the non-relativistic symmetry
in relativistic systems. While the closing of bounded orbits is not a sufficient condition for
conservation of a LRL vector in a two-body problem, it is a necessary condition that is
satisfied very rarely by relativistic theories. The closure of orbits can therefore be a useful tool
for diagnosis of theories when looking for additional spacetime symmetries, as demonstrated
by e.g. [60].

There has been previous work done on identifying relativistic systems that have exclusively
closed bounded orbits. For example, Perlick has identified all spacetimes in General Relativity
with that property, a sort of relativistic Bertrand theorem [189]. He considered all spherically
symmetric spacetimes that have bounded timelike geodesics with a perihelion shift equal to
π
β
, with β rational. The cases β = 1 and β = 2, corresponding to relativistic versions of the

Kepler problem and harmonic oscillator, are the only ones admitting an additional symmetry.
However, Perlick’s theorem is only taking into account gravity, without allowing other forces to
be present. Additionally, there is the hydrogen-like system in N = 4 super Yang-Mills theory,
which has an additional conserved vector, coinciding with the classical LRL vector in the
non-relativistic limit [57, 6]. Interesting follow-up results were derived in N = 8 supergravity,
where the two-body problem was shown to have a LRL vector to at least order 1PN and a
vanishing perihelion shift to third order in the post-Minkowskian (PM) expansion [60, 188].1
However, at 3PM there appears to be a hint that the quantum energy-level degeneracy linked
to the LRL vector and present at 1PN might be lost. This suggests an interesting break in
the bond between closed bounded orbits and hidden symmetry, which is present classically.
Additionally, it was shown in [60] that the test-mass limit in N = 8 supergravity has a zero
perihelion shift to all orders in velocity.

Although relativistic corrections of the Kepler problem generically break the symmetry
associated with the LRL vector, it follows from the above that specific systems manage to
preserve it. These systems then, one might wonder, are perhaps not truly relativistic in some
sense, as their dynamics is still constrained by the same symmetries, giving rise to strictly
periodic orbits in phase space (at least for bounded orbits).

1The post-Newtonian expansion is in terms of 1
c2 , resulting in an expansion in weak gravitational field and

low velocity, while the post-Minkowskian is an expansion in gravitational constant G, i.e. a weak gravitational
field expansion only [90].
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We will study a class of such systems and demonstrate that they are orbitally equivalent to
the Kepler system on a levelset of the Hamiltonian in phase space. Their full Hamiltonians
are implicitly defined by

f(H(q, p)) = p2

2 − g(H(q, p))
r(q) , (4.1)

for smooth functions f, g : R → R. As we will see, such systems give rise to a phase space
which can be thought of as being foliated by energy surfaces of Kepler problems where for each
value of H the motion is proportional to that of a Kepler problem with a different coefficient
for the gravitational potential; in other words, with a different gravitational constant. The
global structure of the phase space is therefore tied to the specific properties of the function
g(H).

We will show that examples of the above class of Hamiltonians (4.1) naturally arise in Einstein-
Maxwell-dilaton (EMD) theory, when one considers two extremal black holes with opposite
charge for a specific value of the dilaton coupling (cf. equation (4.74)). For this case, we
derive a functional relation of the form (4.1) to first order in the post-Newtonian expansion
of the two-body system and all orders in the test-mass limit.

The case of extremal black holes is somewhat special and unlikely to be realised in nature
(with all observed black holes approximately neutral), and the dilaton coupling of a =

√
3

(see Section 4.3) is much larger than current experimental bounds [33]. However, as a physical
aside, it is an interesting question how one would observationally distinguish the above
Hamiltonians from the Kepler one, e.g. in the solar system. When studying planets orbiting a
(much heavier) Sun described by H(q, p) as opposed to the ordinary Kepler problem, the first
two laws of Kepler still hold: the bounded orbits are ellipses and the trajectories conserve
angular momentum. However, the period of an orbit becomes

T = 2π

√√√√ s3

GMg(E) , (4.2)

with s the semi-major axis of the ellipse, where for the sake of clarity we included the mass of
the sun M and the gravitational constant G. This differs from the usual Newtonian period
TN = 2π

√
s3/(GM). Therefore the third law2 is violated: different orbits will have different

energies, causing the ratio T 2/s3 to no longer be the same for all orbiting objects.

To what extent, then, are these Hamiltonians equivalent to the Kepler problem? We will
prove they describe the same dynamics at least on the energy shell, so for a fixed H = E,
in the sense that their flows are proportional. Moreover, there can exist a transformation
mapping H to the Kepler Hamiltonian where we do not need to restrict to the energy surface
(at least locally, in a small neighbourhood of the energy surface). This transformation is
shown to exist as an energy redefinition and canonical transformation at least up to and
including 5PN. It is worth noting that our local constructions in Theorems 5 and 6 and
Theorem 9 show the existence of Kepler dynamics and the conserved LRL vector, but do

2For all bodies orbiting the Sun, the square of the period is proportional to the third power of the
semi-major axis of the orbit, with the same proportionality constant [151].
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not necessarily imply global SO(4) symmetry. Proving the transformations generated by
the conserved quantities form a group of canonical transformations isomorphic to SO(4) is
not trivial [12]. Our construction only shows the local existence of the so(4) Lie algebra,
generated by the angular momentum and the appropriately rescaled LRL vector. Whether
the approximate transformations to Kepler can be extended to all orders, whether they exists
globally and whether the symmetry group is indeed SO(4), remain topics of future research.

Another question is whether relativistic systems canonically conjugate to Kepler up to time
reparametrisation are the only ones with a conserved LRL-type vector and the corresponding
symmetry. We show this is the case at least to 5PN order.

This chapter is organised as follows. In Section 4.2, we discuss the set of Kepler-like Hamil-
tonians and their relation to the Kepler problem. Here we show the on-shell equivalence
to Kepler in Subsection 4.2.1, a construction that yields an explicit, approximate, off-shell
transformation to the Kepler problem in Subsection 4.2.2 and the approximate equivalence of
all LRL-preserving Hamiltonians of a certain kind to Kepler in Subsection 4.2.3. We show
in Section 4.3 that a particular tuning of the parameters in this theory allows one to write
the 1PN two body and all-order test-mass limit as a Kepler-type Hamiltonian, providing an
interesting example of relativistic systems with classical dynamics.

4.2 Relativistic Systems with Kepler Dynamics
In this section we will discuss Hamiltonians of type (4.1) central to this chapter. Although
they appear naturally from relativistic problems, see Section 4.3, they end up being equivalent
(in the ways mentioned in the introduction) to the classical Kepler system. We will prove
the equivalence on the energy surface (on-shell) of the Kepler-like Hamiltonians to Kepler
problems and, later, how these can be explicitly related (up to fifth post-Newtonian order) to
the Kepler problem through canonical transformations and a non-linear energy redefinition
(off-shell). Lastly, we show that all Hamiltonians preserving a LRL-like vector are related to
Kepler in this way, also up to 5PN.

4.2.1 On-shell equivalence to Kepler dynamics
Let us consider the following family of Hamiltonians H = Hf,g : T ∗Rd

0 ' (Rd −{0})×Rd → R,
implicitly defined by the functional relation

f(H(q, p)) = p2

2 − g(H(q, p))
r(q) , (4.3)

with f, g : R → R smooth functions, that can be written as powers series in the form

f(x) = x+ f1x
2 + f2x

3 + . . . , g(x) = 1 + g1x+ g2x
2 + . . . , (4.4)

where fi, gi are real numbers. In other words, we assume that their Taylor-Maclaurin
expansions have their first coefficients fixed by f−1 = 0, g0 = 1 and f0 = 1 (with labels related
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to PN orders as will become more clear below). The reason the constant term in f(H(q, p))
with coefficient f−1 is absent, is that we want to disregard rest-mass terms and (4.3) to yield
the Kepler system at lowest order in the PN expansion.

As discussed in the introduction, this is directly motivated by the Hamiltonian of a binary
Einstein-Maxwell-dilaton system in the test-mass limit. In Section 4.3, we will see this system
has a Hamiltonian that is implicitly defined (at all PN orders) by the above relation with

f(x) = x+ 1
2x

2, g(x) = 1 + x+ 1
4x

2 . (4.5)

Note that we set the test mass to unity in the identifications, to exactly match the description
of the above Hamiltonian family.

Since we already know explicit Hamiltonian functions solving (4.3), we will not pursue the
question of sufficient conditions for existence.3 For the time being, we assume that a solution
H(q, p) exists for the given functions f, g and describe some of its properties in relation with
the Kepler Hamiltonian. Therefore, let H : T ∗Rd

0 → R be a smooth Hamiltonian function
satisfying the relation (4.3). For convenience, we define the new Hamiltonian function

K(q, p) := f(H(q, p)) = p2

2 − g(H(q, p))
r(q) . (4.6)

Since K is by definition a function of H, it is also an integral of motion of H, that is, K is
constant on the flow of H. If E ∈ R is a regular value of H, this implies that on the energy
levels H−1(E)

K|H−1(E)(q, p) = p2

2 − g(E)
r(q) , (4.7)

which is a Kepler-type Hamiltonian with gravitational constant g(E). In fact, the flow
generated by K on all its regular energy surfaces turns out to be proportional to the flow of a
Kepler Hamiltonian.

Theorem 5. Consider M = T ∗Rd
0 ' (Rd − {0}) × Rd with standard symplectic form ω =∑

k dpk ∧ dqk. Assume that there are functions f, g ∈ C2(R) such that the Hamiltonian
H : M → R is defined by (4.3) and

K(q, p) := f(H(q, p)) .

Then, for any regular energy value H = E the vector fields XK |H−1(E) and XH |H−1(E) of K
and H are proportional. Moreover, if

E := {E ∈ R | f ′(E) 6= 0 and E is regular value of H} (4.8)

and
J : M × E → R , J(q, p, E) := JE(q, p) := p2

2 − g(E)
r(q) ,

then for all E ∈ E , the Hamiltonian vector fields XJE
|H−1(E) and XK |H−1(E) are proportional.

3This is a rather interesting technical problem on its own, and we refer the interested reader to [85, 19] for
the current state of the art.
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Proof. For the Hamiltonian vector fields XK and XH of K and H, respectively, we have

XK = −∂K

∂q

∂

∂p
+ ∂K

∂p

∂

∂q
= f ′(H)

(
−∂H

∂q

∂

∂p
+ ∂H

∂p

∂

∂q

)
= f ′(H)XH . (4.9)

The vector fields are hence proportional.

For the second part, let E ∈ E . The Hamiltonian vector field of JE at a point (q, p) is

XJE
(q, p) = −∂J(q, p, E)

∂q

∂

∂p
+ ∂J(q, p, E)

∂p

∂

∂q
.

Using K(H(q, p)) = J(q, p,H(q, p)) we have

XK = −
(
∂J

∂q
+ ∂J

∂H

∂H

∂q

)
∂

∂p
+
(
∂J

∂p
+ ∂J

∂H

∂H

∂p

)
∂

∂q

=
(

−∂J

∂q

∂

∂p
+ ∂J

∂p

∂

∂q

)
+ ∂J

∂H

(
−∂H

∂q

∂

∂p
+ ∂H

∂p

∂

∂q

)
.

Therefore

XK |H−1(E) = XJE
|H−1(E) +

∂J
∂E

|H−1(E)

f ′(E) XK |H−1(E) ,

where we used (4.9) for the second term. Solving for XJE
we get that on H−1(E)

(
1 −

∂J
∂E

f ′(H)

)
XK = XJE

. (4.10)

This means that the evolution of Hamiltonians satisfying (4.3) is equivalent to the evolution
of a classical Kepler problem - more precisely, for each energy, the trajectories are equivalent
to that of a Kepler problem with a specific energy-dependent value of the coupling with the
potential up to possibly a time-rescaling. In particular, all bounded orbits are ellipses in
the configuration space. This relation is somewhat reminiscent of the Maupertuis-Jacobi
transformation, in which the trajectories of a natural Hamiltonian are described via a time
reparametrisation as geodesics of a metric [210, 68].

The fact that the above Hamiltonians are equivalent to the Kepler problem and, in particular,
the fact that all trajectories are closed, hints at the existence of an associated conserved
Laplace-Runge-Lenz (LRL) vector on the energy levels. An obvious candidate would be the
vector

Ai(q, p) = (p× L)i(q, p) − g(H(q, p)) qi

r(q) , (4.11)

since it is simply the classical LRL vector, with an additional coefficient corresponding to the
coefficient of the potential energy in (4.6).
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Theorem 6. Let E be defined by (4.8) and E ∈ E . On the set{
(q, p) ∈ H−1(E)

∣∣∣ f ′(E) − ∂J(q, p, E)
∂E

6= 0
}
,

the Hamiltonian H(q, p) defined in (4.3) is in involution with all components of the Laplace-
Runge-Lenz vector Ai(q, p) defined in (4.11), and hence these are integrals of motion of the
dynamics generated by H.

Proof. Fix E ∈ E . On H−1(E) the flow of JE(q, p) is proportional to that of H(q, p), with
proportionality

λ :=
1 −

∂J(q,p,E)
∂E

f ′(E)

 , (4.12)

which we assume to be regular and nonvanishing. we know for the Lie derivatives of the
functions Ai(q, p) with respect to XH

{Ai, H} = LXH
(Ai) = Lλ−1XJE

(Ai) = λ−1LXJE
(Ai) = λ−1{Ai, JE} , (4.13)

where all functions are evaluated on H−1(E).

With (4.13), we reduced ourselves to check whether JE(q, p) commutes with the components
of the LRL vector on H−1(E). Namely,

{Ai, JE(q, p)} = ∂Ai

∂q

∂JE

∂p
− ∂Ai

∂p

∂JE

∂q

=
[
∂

∂q
(p× L)i −

(
∂

∂q

qi

r

)
g(H)

]
∂JE

∂p
−
[
∂

∂p
(p× L)i −

(
∂

∂p

qi

r

)
g(H)

]
∂JE

∂q

+
(

−qi

r

)[
∂g(H)
∂q

∂JE

∂p
− ∂g(H)

∂p

∂JE

∂q

]
.

(4.14)
Observe now that on H−1(E), Ai = Ai

E := (p× L)i − g(E) qi

r
. So the first two terms combine

into the Poisson bracket{
Ai

E(q, p), JE(q, p)
}

=
{

(p× L)i − g(E)q
i

r
,
p2

2 − g(E)1
r

}
(4.15)

which vanishes as the Poisson bracket between a standard Kepler Hamiltonian and its LRL
vector.

The square bracket that form the last term in (4.14) amounts to {g(H), JE} evaluated on
H−1(E). This also vanishes due to g(H) = g(f−1(K)) and application of Theorem 5.

Theorem 7. On regular levelsets of H such that f(H) < 0, the rescaled LRL vector defined
by Āi := − Ai√

−2f(H)
, where A is defined in (4.11), satisfies the following commutation relations

{Li, Lj} = εijkL
k, {Āi, Āj} = εijkL

k, {Li, Āj} = εijkĀ
k , (4.16)

which define a Lie algebra isomorphic to so(4).4

4Compare this to the simpler form of equation (2.36) for the original Kepler problem.
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Remark 2. To study the global symmetry, one would need to regularise the problem to
complete the temporal flow and then consider the global transformations generated by the
integrals above [159], which is out of the scope of this chapter.

Proof. Let E be a regular value for H and such that f(E) < 0, in the rest of this proof we
assume all the computations restricted to the levelset H−1(E). For the first relation, the
calculation is the same as in the usual Kepler case. Writing out the second, we have

{Āi, Āj} = 1
−2f(H){Ai

E, A
j
E} + 1

−2f(H)

(
f ′

−2f(H)A
i − qi

r
g′
)

{H,Aj
E}

+ 1
−2f(H)

(
f ′

−2f(H)A
j − qj

r
g′
)

{Ai
E, H}

+ 1
−2f(H)

(
f ′

−2f(H)A
i − qi

r
g′
)(

f ′

−2f(H)A
j − qj

r
g′
)

{H,H} ,

(4.17)

where f ′ := f ′(H) and g′ := g′(H). The second and third term here vanish due to propor-
tionality of H to JE, which commutes with Ai

E, while the last term vanishes trivially. Since
we are on a fixed levelset, we can consider g(E) constant in the first term, and therefore the
bracket yields, as for the usual Kepler problem,

{Ai
E, A

j
E} = −2

(
p2

2 − g(E)
r

)
εijkL

k = −2f(E) εijkL
k , (4.18)

completing the calculation of the bracket of rescaled LRL vectors. The remaining bracket
again reduces to the computation for the classical Kepler system in complete analogy to the
above computation.

The commutation relations (4.16) then define a Lie algebra isomorphic to so(4) as shown e.g.
in [87, Chapter 3.2, Proof (3.6)].

While in this section we proved that for each fixed value of the energy the family of Hamiltonians
satisfying (4.3) has a flow which is proportional to the Kepler flow and admits a LRL vector,
we do not know the regularity of the dependence of these objects on the energy itself nor
how to relate (4.3) and a Kepler Hamiltonian beyond the energy surface. In the following
section, we will consider this problem, looking for an energy-independent way to relate Kepler
problems and the implicitly defined Hamiltonians (4.3).

What we can immediately observe is that, while the shape of orbits is the same in both (4.3)
and in a Kepler problem, the energy levelsets H−1

Kep(E) and H−1(E) foliate the phase space
in a different way. The Hamiltonian K(q, p), and therefore also the implicitly defined
Hamiltonians (4.3), induce a bundle of non-equivalent Kepler orbits, the global structure of
which is determined by g(H).

4.2.2 Off-shell equivalence to Kepler dynamics
While the on-shell equivalence discussed in the previous subsection explains why the Hamil-
tonians implicitly defined by (4.3) have an additional constant of motion and hence closed
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orbits, it does not address the violation of Kepler’s third law: the fact that Keplerian energy
surfaces can be stacked differently in the Kepler bundle. We now turn to this issue, and
address the question whether one can also map families of orbits with different energies onto
a fixed Kepler system. Since we would like to avoid issues of singularities and/or topology, we
will restrict ourselves to a local construction. In other words, we now aim to generalise the
on-shell (on a fixed energy surface) orbital equivalence to an approximate off-shell equivalence
(for a neighbourhood of orbits of possibly different energies).

The violation of Kepler’s third law demonstrates a physical difference between the Kepler
problem and the implicitly defined Hamiltonians on the phase space, so it should not come as
a surprise that looking for such a relation will involve a transformation of the phase space
itself. The mapping we are looking for therefore involves both a time reparametrisation
(related to the mapping from H to K ≡ f(H)) as well as a canonical transformation, whose
composition will (locally) transform the Kepler Hamiltonian to the implicitly defined ones
and establish an orbital equivalence in this sense.

We will provide evidence for the existence of such a canonical transformation by explicitly
constructing it up to fifth PN order (see Section 3.1.2). Note that the PN expansion differs from
the expansion around an energy surface; even when extending the canonical transformation
to all PN orders (or having a closed expression for it), this would still only involve a local
equivalence as singularities or topological issues might prevent one to extend the mapping
to the whole phase space. Addressing the extension to all PN orders and the question of
convergence of the series constructed below (even just in an asymptotic sense) is not a trivial
endeavour, as is the question of global existence of the phase space transformation. Therefore,
we will leave the all-order analysis for the whole phase space for future research.

The goal is to find a solution H to the functional equation (4.3) to any desired PN order
from the perturbation of the Kepler system. To find a perturbative solution for H, it is useful
to take H itself dimensionless,5 but explicitly include the PN expansion parameter ε, see
Section 3.1.2:

f(H) = ε
p2

2 − g(H) ε
r
, (4.19)

which is solved to lowest order by

H = εHKep = ε

(
p2

2 − 1
r

)
, (4.20)

that is, the Kepler Hamiltonian with an extra factor ε. More specifically we will show the
following.

Theorem 8. For given C∞ functions f and g, the relation (4.19) can be solved to at least
PN order 5 by

H = Φ?τ(εHKep) , (4.21)
where τ : R → R, E 7→ τ(E) is C∞ with τ ′(0) = 1 defining a near-identity time re-
parametrisation and Φ is a near-identity canonical transformation.

5We divide out the rest-mass energy mc2 and set m = 1 as previously.
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Remark 3. As we work with dimensionless Hamiltonian H, the lowest order term in H
is order ε. Therefore, PN order 5 here corresponds to order ε6. When going back to a
dimensionfull Hamiltonian, this additional factor of ε vanishes. This understanding of PN
orders coincides with the ‘relative kPN order’ of [204].

The proof will be given by an explicit construction based on Lie transform perturbation theory
combined with a rescaling of the energy function.

Let us introduce the real vector spaces

Wj = span
{

(p2)l(p · q)n

rm

∣∣∣ (l,m, n) ∈ N3, l +m− 1
2n = j + 1

}
. (4.22)

For instance, the Kepler Hamiltonian HKep is in W0. We will mainly consider Wj with
non-negative integer j resulting from even n in (4.22) such that Fj ∈ Wj has PN order j (see
the definition (7)). But as we will see below, also half-integer j resulting from odd n in (4.22)
can be important. Note that for Fi ∈ Wi and Fj ∈ Wj,

{Fi, Fj} ∈ Wi+j+ 3
2
, (4.23)

implying that
W =

⊕
k∈N

Wk/2

is closed under the Poisson bracket. In particular,

{p · q, Fj} ∈ Wj .

Let us write the energy rescaling τ in (4.21) in a power series as

τ(E) =
∞∑

n=0
δnE

n+1 , (4.24)

with δ0 = 1. For counting the PN orders of τ applied to some Hamiltonian function H it is
important to note that for Fi ∈ Wi and Fj ∈ Wj,

Fi Fj ∈ Wi+j+1 ,

which implies that W is also closed under multiplication.

We will consider a succession of near-identity canonical transformations each of which is
obtained from the flow of the Hamiltonian vector field generated by a suitable function G, using
repeated adjoint operators as introduced in Section 2.3. Under the canonical transformation
given by the time-one map of the flow generated by the Hamiltonian G a function F transforms
according to

F 7→ Φ?F =
∞∑

m=0

1
m! [adG]mF. (4.25)

From (4.23) we get that for Fi ∈ Wi and Fj ∈ Wj,

adFi
(Fj) ∈ Wi+j+ 3

2
. (4.26)

74



Chapter 4. Extremal Black Holes as Relativistic Systems with Kepler Dynamics

The idea now is to solve the functional relation (4.3) order by order with HKep through a
succession of canonical transformations generated by functions Gi and an energy rescaling of
the form (4.24). To this end let us first inspect the functional relation in terms of the power
series for f and g in (4.4) which gives

H + f1H
2 + f2H

3 + · · · = ε
p2

2 −
(
1 + g1H + g2H

2 + . . .
) ε
r
. (4.27)

In order to find solutions for integer PN orders we will need terms adGi
(HKep) in the canonical

transformations to yield integer order and hence the Gi to have half-integer order (see (4.26)).
It turns out that this can be achieved by the ansatz

Gi− 1
2
(q, p) = (p · q)Λi(a)(q, p) , (4.28)

where Λi(a) again denotes a general function of order εi with coefficients al,m,n as defined in
(3.12).

Each such Gi− 1
2

generates a canonical transformation Φi and will be determined such that

H := Φ?
n · · · Φ?

2Φ?
1τ(εHKep) , (4.29)

with suitable δi in (4.24) defining the energy rescaling τ solves the functional relation (4.27)
to order n.

Lemma 1. For positive integers k and i1 ≤ i2 ≤ . . . ≤ im, let I = (im, . . . , i2, i1)

adI
GI

:= adG
im− 1

2
. . . adG

i2− 1
2

adG
i1− 1

2
(4.30)

with Gik− 1
2

∈ Wik− 1
2
, k = 1, . . . ,m, and |I| = ∑m

k=1 ik. Let H be defined as in (4.29). Then
the PN expansion of H to order N is given by

N∑
j=0

εj+1Hj , (4.31)

where

Hj :=
j∑

n=0

j−n∑
k=0

∑′

I∈Nk
+

|I|=j−n

δn

k! adI
G

(
Hn+1

Kep

)
(4.32)

is in Wj. Here the prime in the third sum denotes that the summation is restricted to tuples
of ordered integers I = (ik, . . . , i2, i1) ∈ Nk

+ with i1 ≤ i2 ≤ . . . ≤ ik.

Proof. The result follows immediately from ordering the terms in (4.29) taking into account
(4.25) and (4.26).

We now come to the proof of Theorem 8.
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Proof. The proof is done by explicit computation.

From Lemma 1 we get
H = εHKep

+ ε2
(
{G1− 1

2
, HKep} + δ1H

2
Kep

)
+ ε3

(
δ2H

3
Kep + {G2− 1

2
, HKep} + {G1− 1

2
, δ1H

2
Kep} + 1

2{G1− 1
2
, {G1− 1

2
, HKep}}

)
+O(ε4) .

(4.33)

A fast way to proceed is to rewrite the functional relation (4.27) as

H = ε
p2

2 −
(
1 + g1H + g2H

2 + . . .
) ε
r

− f1H
2 − f2H

3 − . . . . (4.34)

Equating the right hand sides of (4.33) and (4.34) at order ε gives

H0 =
(
p2

2 − 1
r

)
.

Plugging this H0 into the right hand side of (4.34), reading off the terms of order ε2 and
equating with the order ε2 in (4.33) gives

−f1H
2
Kep − g1HKep

1
r

= δ1H
2
Kep + {G1− 1

2
, HKep} . (4.35)

This is solved by choosing the coefficient of the energy redefinition as
δ1 = 2g1 − f1 (4.36)

and the generating function
G1− 1

2
= −g1(p · q)HKep . (4.37)

Filling in the εH0 + ε2H1 into the right hand side of (4.34), reading off the terms of order ε3

and equating with the order ε3 in (4.33) gives

(2f 2
1 − f2)H3

Kep + (3f1g1 − g2)
H2

Kep

r
+ g2

1
HKep

r2

= δ2H
3
Kep + {G2− 1

2
, HKep} + {G1− 1

2
, δ1H

2
Kep} + 1

2{G1− 1
2
, {G1− 1

2
, HKep}} .

(4.38)

This can be solved by choosing the next coefficient in the energy rescaling as

δ2 = 5g2
1 − 6g1f1 + 2g2 + 2f 2

1 − f2 (4.39)

and the generating function

G2− 1
2

= (p · q)
1

2
(
−g2

1 + 2g1f1 − 2g2
)
H2

Kep +
g2

1
2 HKep

r

 . (4.40)

We have carried out the computation to order 5PN (ε6) with the help of Mathematica and
present the computations and results in ancillary files [181].

We note that, assuming the particular form (4.11) of the LRL vector, one can show this is
conserved off-shell as well, to at least order 5PN.
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4.2.3 Hidden symmetries require Kepler dynamics
In the previous sections we have described a class of relativistic Hamiltonians that turns out
to be equivalent to a classical Kepler problem, either being proportional to it on its energy
levels or using an approximate canonical transformation and time reparametrisation. In both
cases, we also constructed the modified LRL vector.

In this section, we aim to investigate a more general question: what is the largest class of
relativistic two-body Hamiltonians (within a certain set of plausible Hamiltonians) that share
the symmetries of the Kepler problem? And secondly, is this class related to the Kepler
system through canonical transformation and time reparametrisation? This would in effect
generalise an aspect of Bertrand’s Theorem, discussed in Section 2.4, as all Hamiltonians
obeying the symmetries would be equivalent to the Kepler problem - just like in the classical
context the only system obeying the symmetries (which requires a vanishing perihelion shift)
is Kepler.

Theorem 9. Let a spherically symmetric class of relativistic two-body Hamiltonians be given
by

H = 1
ε

(
εH0 + ε2H1 + ε3H2 + . . .

)
, (4.41)

where
H0 = p2

2 − 1
r

and, for j ≥ 1, Hj = Λj(c) , (4.42)

with Λj(c) a function of order j as defined in (3.12). At least up to and including 5PN, these
Hamiltonians are canonically conjugate to Kepler up to time reparametrisation if and only if
they conserve an extra vector, which to leading order is given by

Ai
0(q, p) = (p× L)i − qi

r
, (4.43)

and may contain (and in general will contain) corrections at higher orders.

This additional conserved vector can be seen as a relativistic version of the Laplace-Runge-Lenz
vector.

Remark 4. There are two notions we can use to constrain the number of coefficients cl,m,n

in the Hamiltonian (4.42) (see also (3.12)). Firstly, if a particle is far away from any
gravitational body, one expects the attraction to become negligible and the Hamiltonian to
approach the special relativistic Hamiltonian, being an expansion only in p2. Therefore, all
momentum-only terms must be solely dependent on the regular momentum and independent of
the radial momentum pr. This removes all terms with coefficients cl,0,n where n 6= 0. Secondly,
the first order Hamiltonian is known to possess an ambiguity, allowing one to shift the radius
such that the term ∼ p2

r/r vanishes [136, 36]. This kind of ambiguity can be expected also at
higher orders, but finding these is not a trivial task and not necessary for our analysis.

Remark 5. Here we assume the two-body problems can be reduced by translation, which is
necessary for the sought-for symmetry to exist. Indeed, we consider these reduced two-body
problems, but will continue calling them two-body problems to remind the reader that the
physical origin of the Hamiltonians is more general than just one-center systems. Not all

77



Keplerian Black Holes and Gravitating Goldstones

two-body problems can be reduced by translations, even in classical mechanics, where for
example the two-body problem on the sphere does not allow for such reduction, though still
being spherically symmetric.

Proof. While the second part of Theorem 9 of course is a tautology - all systems conjugate to
Kepler problems conserve the symmetries of Kepler problems -, the first part is not at all
obvious. We have checked the statement up to fifth post-Newtonian order, and will show here
the first two.

To prove the (approximate) equivalence, we want to show that the Hamiltonian of a can-
didate symmetric system can be related through a time reparametrisation and a canonical
transformation to the Kepler system. Since the Hamiltonians are divided up in separate
orders, we can demand this transformation exists on each order individually. We find the
symmetric Hamiltonian and its associated LRL vector by taking an Ansatz for the vector
and its corrections and requiring they commute up to an order. That gives a set of relations
among both the coefficients cl,m,n of the Hamiltonian (4.42) and αl,m,n, βl,m,n of the LRL
Ansatz, of which the εj-order term is given by

Ai
j = Λj−1(α)(p · q)pi + Λj(β)qi , (4.44)

where we assume (3.12). The Hamiltonian given in terms of the remaining free variables can
then be matched to the time-reparametrised, canonically transformed Kepler Hamiltonian,
constructed in the same way as in the previous subsection.

At first non-leading order for example, the terms proportional to ε take the form

{H,Ai} = {H0, εA
i
1} + {εH1, A

i
0} = 0 , (4.45)

which results in relations among the 3 coefficients cl,m,n of the Hamiltonian (see Remark 4)
and the 9 coefficients of the Ansatz for the LRL vector at first order. The existence of a LRL
vector up to this order requires it to take the following form

β1,1,0 = 3α1,0,0 + β1,0,0c1,1,0 + 4β1,0,0c2,0,0 , β2,0,0 = −α1,0,0 ,

β0,2,0 = −2 (α1,0,0 + β1,0,0c1,1,0 + 4β1,0,0c2,0,0) , α0,1,0 = −2α1,0,0 ,
(4.46)

with all other coefficients vanishing because of the choices in Remark 4. As β1,0,0 is the
parameter determining the overall size of the vector, the only free parameter that is left over
is α1,0,0. The term in the LRL corresponding to this parameter turns out to be proportional
to Ai

0H0. These are trivially commuting quantities with H0, so we can set the coefficient to 0,
yielding an expression completely fixed in terms of two of the coefficients of the Hamiltonian.
The corrected vector is then a conserved quantity only provided we constrain the Hamiltonian
with

c0,2,0 = −2 (c1,1,0 + 2c2,0,0) . (4.47)
Using the general generating function (4.28) we can then obtain the transformations needed
to produce the above Hamiltonian from the Kepler Hamiltonian. These transformations are
defined by

δ1 = −4 (c1,1,0 + 3c2,0,0) , a1,0,0 = c1,1,0 + 4c2,0,0 ,

a0,1,0 = −2 (c1,1,0 + 4c2,0,0) , a0,0,1 = 0 .
(4.48)
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Following the same procedure at second order, the equation that needs to be satisfied is
{H,Ai} = {H0, ε

2Ai
2} + {εH1, εA

i
1} + {ε2H2, A

i
0} = 0 . (4.49)

Now there are 7 coefficients for the Hamiltonian and 16 for the LRL. This leads to 15
constraints on the coefficients of the LRL vector, given in the ancillary files [181]. Once more,
the remaining degree of freedom is proportional to a vector trivially commuting with H0, that
is Ai

0H
2
0 , and we can set the corresponding coefficient to 0. The transformation then yields a

conserved quantity provided we impose the two constraints:
c0,2,1 = −2c2

1,1,0 − 16c2,0,0c1,1,0 − 32c2
2,0,0 − 3c0,3,0 − c1,1,1 − 5c1,2,0 − 8c2,1,0 − 12c3,0,0 ,

c0,1,2 = 2c2
1,1,0 + 16c2,0,0c1,1,0 + 32c2

2,0,0 + c0,3,0 − c1,1,1 + c1,2,0 − 4c3,0,0 ,
(4.50)

and thus five free parameters at this order remain in the Hamiltonian. To relate this to
Kepler, we need the transformations given by

δ2 = −4
(
−c2

1,1,0 − 8c2,0,0c1,1,0 − 16c2
2,0,0 + 2c0,3,0 + 2c1,2,0 + 2c2,1,0 + 2c3,0,0

)
,

a2,0,0 = 1
2
(
3c2

1,1,0 + 16c2,0,0c1,1,0 + 16c2
2,0,0 + 2c0,3,0 + 2c1,2,0 + 2c2,1,0 + 4c3,0,0

)
,

a1,1,0 = −7c2
1,1,0 − 40c2,0,0c1,1,0 − 48c2

2,0,0 − 5c0,3,0 − 5c1,2,0 − 4c2,1,0 − 4c3,0,0 ,

a0,2,0 = 8c2
1,1,0 + 48c2,0,0c1,1,0 + 64c2

2,0,0 + 7c0,3,0 + 8c1,2,0 + 8c2,1,0 + 8c3,0,0 ,

a0,1,1 = 1
3
(
−2c2

1,1,0 − 16c2,0,0c1,1,0 − 32c2
2,0,0 − c0,3,0 + c1,1,1 − c1,2,0 + 4c3,0,0

)
.

(4.51)

Similar calculations confirm up to and including fifth PN order that general Hamiltonians of
the type described above conserving a LRL vector are related to Kepler via a canonical transfor-
mation and time reparametrisation. The ancillary files [181] include a Mathematica notebook
with the higher order computations and the resulting Hamiltonians and transformations.

In other words, this theorem indicates that there are no free lunches: only systems that are
canonically conjugate to Kepler up to time reparametrisation have the same extension of the
spatial rotation algebra so(3) with hidden symmetries to so(4).

4.3 The Two-Body System of Extremal Black Holes
We now turn to the dynamics of black holes in Einstein-Maxwell-dilaton gravity as an example,
as discussed in Section 3.3. We will consider a pair of non-spinning black holes in EMD theory,
carrying both electric and dilatonic charge besides their mass.

In the first part of this section, we restrict ourselves to the first order in the post-Newtonian
expansion, i.e. at 1PN, and comparable masses. As we will see, for a specific case of the
dilaton coupling a and extremal charges, this system coincides with a Kepler-like system. In
the second part, we show how the same equivalence to Kepler dynamics arises in a different
region in parameter space: instead of 1PN for arbitrary mass ratio, we now focus on the
test-mass limit with a vanishing mass ratio, or m1 � m2. This corresponds to the motion of
a charged particle in a given background as outlined in Section 3.3, and can be studied at all
orders in the post-Newtonian expansion. Prompted by the two-body discussion, we will focus
specifically on extremal black holes with opposite charges.
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4.3.1 Kepler dynamics at 1PN
For the two-body system with arbitrary masses m1,2, electric charges Q1,2 and dilaton charges
D1,2 (subject to the relation (3.60)), the 0PN Hamiltonian in center-of-mass coordinates reads

H0P N = p2

2µ − G12Mµ

r
, (4.52)

where the effective Newton’s constant is given by the interplay between attractive and repulsive
forces,

G12 = 1
m1m2

(m1m2 +D1D2 −Q1Q2) . (4.53)

Moreover, we introduce the total mass, reduced mass and symmetric mass ratio given by

M = m1 +m2 , µ = m1m2

M
, ν = µ

M
, (4.54)

in the usual way.

The 1PN Hamiltonian can be found in e.g. [152] and can be written in terms of three terms6

H1PN = h1
p4

4µ3 + h2
γ

µ2
p2

r
+ h3

γ2

µr2 , (4.55)

writing γ = G12Mµ and with dimensionless coefficients given by

h1 = −1
2(1 − 3ν) , h2 = −1

2

(3 −D1D2

G12

)
− ν ,

h3 = ν

2 + 1
2G2

12

[
(1 +D1D2)2 − 2Q1Q2 +

{
m1

M
(D2

1β2 +Q2
1(1 + aD2) − 2Q1Q2aD1) + (1 ↔ 2)

}]
.

(4.56)
All quantities here are asymptotic values, as measured far away from any dilaton charge.
Moreover, note that we introduce a slight abuse in notation in the above and hereafter to
switch to charges and dilaton charges per unit mass, as in Q̃1,2 = Q1,2/m1,2 but dropped the
tilde to avoid cumbersome expressions.

A comparison to the 1PN Kepler-type Hamiltonians discussed in Section 4.2 demonstrates
that these have two free parameters at every order (including 1PN), while the two-body
system here has three terms. For general values, this system will therefore not be related to
Kepler via a symplectic transformation. More precisely, the linear combination7

∆ =h1 + 2h2 + h3 ,

= − 1
2G2

12

(
6(1 −Q1Q2) +Q2

1Q
2
2 + 2D1D2(2 −D1D2)

+
{
m1

M

(
−D2

1β2 −Q2
1(1 + aD2) + 2Q1Q2aD1

)
+ (1 ↔ 2)

})
, (4.57)

quantifies the deviation away from Kepler-like dynamics:
6Note that this in general will also have an additional p2

r/r term, proportional to the radial momentum
only. By means of a constant shift of the radial coordinate, one can set the coefficient of this term to zero, see
e.g. [36]. We will do so in order to facilitate the comparison to Section 4.2.

7This corresponds to the combination A + 2B + C + D in the conventions of [178, 60].
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• When ∆ vanishes, the Hamiltonian can be written in the form (4.3) (up to 1PN order),
identifying

f1 = −h1, g1 = −2(h1 + h2) . (4.58)
In order to see this explicitly, one needs to set µ = 1 and scale the quantity GM with
G Newton’s constant to 1

8 .8 Hence there exists a canonical transformation to Kepler
and the system has a LRL vector. The form of both the canonical transformation and
the conserved charge follow from the discussion in Section 4.2.

• In contrast, when ∆ is non-vanishing, the relativistic corrections of this system are not
of the Kepler-like form and the corresponding dynamical system differs from Kepler.

The same quantity also determines whether or not bound states have closed orbits: in general
they will not, with a perihelion precession given by9

δφ1PN,EMD = −2πγ2

L2 ∆ , (4.59)

as also stressed by [60]. As a consistency check, let us point out that the GR limit, where all
parameters except m1,m2 and L vanish, reduces to

δφ1PN,GR = 6πM
2µ2

L2 , (4.60)

as already found by Einstein. Also, the perihelion in Einstein-Maxwell theory, so with dilaton
vanishing, becomes

δφ1PN,EM = π
M2µ2

L2

(
6(1 −Q1Q2) +Q2

1Q
2
2 − (m1Q

2
1 +m2Q

2
2)

M

)
, (4.61)

which in the limit that one mass is much larger than the other agrees with [15].

At this point it might seem that the introduction of the dilaton complicates the expression for
the deviation from Kepler enormously. However, there is a massive simplification in the case
where the charges are extremal, whose special nature was also highlighted in Section 3.3.2. In
the present case of a two-body system, we will have to take both charges extremal and of
opposite sign, see (3.64) – when taking the same extremal sign the static forces cancel out
and the effective Newton’s constant G12 vanishes. Instead, when taking opposite signs, all
forces are attractive and hence add up in the 0PN Hamiltonian. Furthermore, in the 1PN
Hamiltonian, the parameters β1,2 vanish entirely, leading to the simple result

δφ1PN,EMD|ext. = π
4(1 + a2)M2µ2

L2 (3 − a2) . (4.62)

We therefore find that at a2 = 3, this relativistic system of extremal black holes becomes
equivalent to Kepler.10 It has a LRL vector and therefore SO(4) hidden symmetry. Moreover,
the orbit closes as the perihelion precession vanishes.

8This is because the effective Newton’s constant G12 is eight times larger than the usual gravitational
constant. This corresponds to the findings of [60], who also found this in their supergravity system.

9This result has been derived before in [149], though with a different mass function in the sense of
Section 3.3.3, such that the results only coincide for extremal black holes.

10This value coincides with the Kaluza-Klein reduction of gravity in 5 dimensions [84].
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This result is closely related to the findings for extremal black holes in maximal supergravity
[60]. The role of the SU(8) charge vector misalignment in maximal supergravity, needed in
order to create a nonzero force between the extremal objects other than velocity dependent
forces, is played in our case by the opposite nature of the charges.11 In contrast to the rigid
nature of maximal supergravity, enforced by the N = 8 supersymmetry, we have the freedom
to tune the dilaton coupling, finding that the two-body systems of extremal and anti-extremal
black holes always are a special case with a particularly simple expression for ∆, but that
this only corresponds to Kepler-dynamics for a particular dilaton coupling.

4.3.2 Kepler dynamics in the test-mass limit
Above, we have shown that the dynamics of the first relativistic correction of a system with
comparably-sized masses in EMD theory behaves just like the classical Kepler problem. Now,
we wish to extend our analysis to higher orders and will consider another tractable limit: that
of the test-mass limit (m1 � m2). Again, we can show the equivalence of this system with
opposite and extremal charges in EMD with a =

√
3 to a Kepler-like system. However, in

this system we can include all relativistic corrections.

We will focus immediately on the case with extremal charges. The general (scalar) charged
black hole metric simplifies significantly in the extremal limit, and it will be convenient to
use the Majumdar-Papapetrou solution in the isotropic coordinate system (3.65) [84]

ds2 = −U−2/(1+a2)dt2 + U2/(1+a2)(dr2 + r2dθ2) , (4.63)

with a single center:
U(r, θ) = 1 + (1 + a2)m2

r
. (4.64)

In the extremal case, the scalar field and vector are given by12

eaφ = U−a2/(1+a2) , Q1A0 = U−1 , (4.65)

where we have chosen static gauge for the latter.

The Lagrangian for a point particle with charge Q1 reads

Lpp = m1e
aφ
√

−ẋµẋµ +m1Q1Aµẋ
µ . (4.66)

The above is an extended Lagrangian, where the time coordinate can be seen as another
dimension in the space; the Lagrangian is defined on the tangent space TM̄ of a d + 1
dimensional manifold M̄ = R × M , the extended configuration manifold. All coordinates
and velocities (denoted as a dot) are parametrised by a time-like variable s. Writing the
Lagrangian in terms of the harmonic function we have

Lpp = m1U
−1


√√√√1 − U4/(1+a2)

∣∣∣∣∣dqdt
∣∣∣∣∣
2

+ 1

 ṫ . (4.67)

11One could further extend our considerations and include magnetic charges as well. We expect the dyonic
charges to span a U(1) charge vector playing a completely analogous role to the SU(8) charge vector of [60].

12In terms of the Schwarzschild radial coordinate, this choice of gauge corresponds to A0 = − 1√
1+a2 + m2Q2

r .
After the change r → r + r±, we find the above.
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Note that solutions to the Euler-Lagrange equations following from this action will not be
unique, as different choices of time parametrisation will correspond to the same physical
solution. This fact allows one to reduce the Hamiltonian of the system to an autonomous
Hamiltonian on T ∗M instead, which is different from the one related by Legendre transform
to the Lagrangian above [171], being defined on T ∗M̄ . This, in turns, leads directly to the
relation to the classical Kepler problem. Since the theory was written down parametrisation
invariant, we can choose any monotonic function as time parameter [207]. We will take the
simple time parametrisation ṫ = −1. The Legendre transform then results in

H(q, dq
dt ) = ∂Lpp

∂ dq
dt

· dq
dt − Lpp = m1U

−1

 1√
1 − U4/(1+a2)

∣∣∣dq
dt

∣∣∣2 + 1

 , (4.68)

where t = x0 is the time of the particle seen from the rest frame of the central mass and
q = (x1, x2, x3) the position. Solving for the momenta conjugate to the positions,

pi = m1
∂Lpp

∂ dqi

dt

=
U (3−a2)/(1+a2) dqi

dt√
1 − U4/(1+a2)

∣∣∣dq
dt

∣∣∣2 , (4.69)

then leads to the Hamiltonian in phase space

H(q, p) = m1U
−1


√√√√1 + U2(a2−1)/(1+a2) |p|2

m2
1

+ 1

 . (4.70)

Note that the rest-mass energy is equal to 2m1c
2; this differs from the usual m1c

2 due to the
specific gauge choice that we have made for the gauge vector.

There is a number of interesting subcases to consider. First of all, the case a = 1 leads to a
Hamiltonian that is conformal to the special relativistic case,

H(q, p) = m1U
−1(q)

(√
1 + p2

m2
1

+ 1
)
. (4.71)

Instead, our main interest will be the case a2 = 3 again. In this case we have

H(q, p) = m1U
−1(q)

(√
1 + U(q) p

2

m2
1

+ 1
)
. (4.72)

Remarkably, this Hamiltonian satisfies the interesting relation

1
2

(
H2(q, p)
m1

− 2H(q, p)
)

= p2

2m1
− 2m2H

2(q, p)
m1r(q)

, (4.73)

where r(q) = |q|. Shifting the Hamiltonian by the rest-mass energy and rescaling the distance
by a factor 8, one obtains (in terms of the new Hamiltonian)

H(q, p) + 1
2
H2(q, p)
m1

= p2

2m1
−m2

m1 +H(q, p) + 1
4m1

H2(q, p)
r(q) . (4.74)
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This specific form of the Hamiltonian shows that, following the arguments of Section 4.2, the
extremal EMD 1-center system with a =

√
3 is equivalent to the classical Kepler problem. It

therefore also has a hidden LRL symmetry as well as closed orbits.

The same special behaviour can also be seen from the perspective of the equations of motion.
Adopting the parametrisation ẋµẋ

µ = −1, there are two conserved quantities from the
Lagrangian (4.66)

L = m1U
(2−a2)/(1+a2)r2θ̇ , E = m1U

(−2−a2)/(1+a2)ṫ+m1Q1A0 , (4.75)

as angular momentum and energy. Using again ẋ2 = −1 we can state

−U2
(
E

m1
− U−1

)2
+ U2/(1+a2)ṙ2 + L2

m2
1r

2U
(2a2−2)/(1+a2) = −1 . (4.76)

It is useful to now take the Binet variable u ≡ 1
r
, with u′ as its derivative with respect to θ so

that
ṙ = −u′ L

m1
U (a2−2)/(1+a2) , (4.77)

and we find for the equation of motion

(u′)2 + u2 − U4/(1+a2) 1
L2 (E2 − 2Em1U

−1) = 0 . (4.78)

The last term here in principle provides an infinite expansion in increasing orders of u (and its
accompanying powers of 1

c2 ). However, if we now choose a2 = 3, the powers of the harmonic
function simplify and (restoring the gravitational constant) we have

(u′)2 +
(
u− 2Gm2E

2

L2

)2

= (E2 − 2m1E)
L2 + 4G2m2

2E
4

L4 . (4.79)

Compare this to the classical equation of motion (see e.g. [207])

(u′)2 +
(
u− Gm2m

2
1

L2

)2

= 2ENm1

L2 + G2m2
2m

4
1

L4 , (4.80)

where EN is the Newtonian energy. We see the only difference resides in the modification of
the gravitational constant by a function g(E) = 2 E2

m2
1
. Accordingly, the Hamiltonian giving

the Kepler-like structure in (4.73) here coincides exactly with the role of the Newtonian
energy. The orbits will therefore be the same up to the above modification of the gravitational
constant.

4.4 Conclusion
This chapter studies relativistic systems of gravitating bodies, with dynamics equivalent to
the classical Kepler problem. In particular, we have shown a class of seemingly relativistic
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Hamiltonians to have proportional flow to the Keper Hamiltonian on a levelset and we
provided the accompanying Laplace-Runge-Lenz vector. Moreover, to fifth order in the PN
expansion, we were able to construct the symplectic transformations and energy redefinitions
needed to transform the Kepler Hamiltonian into such Kepler-type Hamiltonians explicitly,
beyond the levelset equivalence. Additionally, a conjecture was put forth that all relativistic
systems of a certain kind, i.e. Kepler at zeroth order and PN corrections of the form

cn,m,l
(p2)n(p2

r)l

rm
, (4.81)

that conserve a (relativistic version of a) Laplace-Runge-Lenz vector are canonically conjugate
up to time reparametrisation to the Kepler system. This conjecture was also shown to hold
at least to fifth PN order.

Remarkably, this type of Hamiltonians is not merely a mathematical possibility, but it is
actually realised in a comparatively simple and interesting physical theory. The Einstein-
Maxwell-dilaton theory, when considering two extremal black holes with opposite signs of
the charges and dilaton coupling tuned to the Kaluza-Klein reduction value (a =

√
3), has

Hamiltonians of exactly this form in both the test-mass limit and the 1PN expansion of the
two-body system.

We therefore have established an interesting link between relativistic Hamiltonians, the
ordinary Kepler problem and an explicit realisation. Several directions for further exploration
present themselves. Firstly, exploring the conditions for local and global existence of the
implicit, Kepler-type Hamiltonians and studying the geometry of the corresponding phase
space would make for an intriguing investigation.

Secondly, as the equivalence to Kepler for the discussed Hamiltonians is only shown on
a levelset, the full phase space will in general look different from the Kepler phase space.
Roughly put, the constant energy surfaces are ‘stacked’ in a different way in the Kepler-
type systems as compared to the original Kepler system. This raises the question whether
one can always find a symplectic transformation from one to the other, as we have shown
explicitly to a limited order. While we expect the normal-form-like construction of canonical
transformations to extend to higher orders, perhaps even arbitrarily high orders, there is no
guarantee this procedure will converge. However, it would be very appealing, if possible, to
construct the asymptotic series of the transformations. Extending our local relations (on or
in a neighbourhood of an energy surface) to Kepler to global relations, would also address the
question whether the so(4) algebra is indicative of a SO(4) symmetry group.

Thirdly, in the non-relativistic Kepler problem, the geometrical origin of the SO(4) symmetry
of 3-dimensional Kepler is known to stem from a mapping to the motion of a free particle on
a three-sphere, as derived by Fock [110] in 1935. In the context of the EMD system, we have
a natural way of perturbing the Kepler problem, by allowing for example the dilaton coupling
to deviate from a =

√
3. This allows one to investigate which elements of this geometric

construction would survive such a perturbation in the mapping to the three-sphere. Can the
motion still be described by free motion on some hypersurface?

Also related to the larger-than-expected symmetry group of the EMD 1-center system is the
Kaluza-Klein reduction of 5-dimensional Einstein-Hilbert gravity, yielding EMD with the
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special dilaton coupling. Can we understand the origin of the hidden symmetry from the
higher-dimensional origin of its theory? After all, while an SO(4) symmetry in 3 dimensions
might surprise the reader unfamiliar with the Kepler problem, this is simply the group of
spatial rotations in 5D Minkowski spacetime. It would be interesting to investigate this
correspondence and possible relation further.

Closely connected to the latter point is the more involved theory of N = 8 supergravity,
which can be obtained as the dimensional reduction of supergravity from 11 to 4 dimensions;
many of our EMD findings were already highlighted in this setting from the perspective of
vanishing periastrion precession [60]. Moreover, extremal black holes in the N = 8 theory
have vanishing periastron precession to third post-Minkowskian order [188], at least leaving
open the possibility of conserving a LRL vector to higher order and relating to Kepler. It is
not clear that this also applies to the higher order two-body Hamiltonians of the extremal
EMD with a =

√
3; we leave this interesting question open for future study.
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Chapter 5

Bertrand’s Theorem and the Double
Copy of Relativistic Field Theories

5.1 Introduction
Having seen the example of a relativistic system with Keplerian symmetry in the previous
chapter, it is only natural to ask if there exist more such systems, and whether we can write
down all of them in a simple way. That will be our aim this chapter.

As discussed previously in Section 2.4, the classical Kepler problem is one of only two central
potential problems whose bounded orbits are all closed, the other being the isotropic harmonic
oscillator. This is known as Bertrands theorem and goes back to 1873 [200, 125]. It is
a consequence of the large, ‘hidden’ so(4) symmetry of the system, leading to maximally
superintegrable dynamics, see Section 2.2.2.

General Relativity breaks this enhanced so(4) symmetry down to so(3) (or even further in case
of spinning objects), as do most other relativistic theories. However, there exist relativistic
dynamical systems with the same symmetry group as Kepler to all orders. The simplest of
these are test-particle limits1 and include the ‘branonium’ systems identified in string theory
[49, 50]. More recently, the same hidden symmetry was found in N = 4 super-Yang-Mills [58,
6] and N = 8 supergravity [59]. Additionally, in the latter theory, the two-body system
is known to possess the symmetry to first order in the post-Newtonian expansion, while
it preserves the related non-precession of orbits to third order in the post-Minkowskian
expansion [187]. Finally, also the Kaluza-Klein monopole scattering of [120, 121] should be
noted.2

As we have shown in Section 4.2.3 by explicit construction, Bertrand’s theorem can be
extended beyond classical central potentials: at least up to and including 5th PN order, there

1This is to be expected: while it is far from trivial to write down the Hamiltonian for a multi-worldline
system explicitly, the test-particle case can be viewed as a one-body problem, as the large mass is taken to be
non-moving.

2Another relativistic so(4)-conserving two-body system is the time-asymmetric scalar-vector theory studied
by [101].
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exists a unique class of relativistic two-body Hamiltonians with the appropriate classical limit
that displays additional symmetry. Moreover, all elements of this class can be related to
functions of the Kepler Hamiltonian through canonical transformations [180]. An all-order
argument was subsequently put forward by Davis and Melville in [93] and will be outlined
below.

In the present chapter, adapted from [179], we further investigate this class of relativistic
Hamiltonians possessing Keplerian symmetry to all orders, in the form where they have the
correct special-relativistic and non-relativistic limits. Our focus will be on three examples of
the class, for which we propose a realisation in terms of fundamental forces. We find that
all these can be lifted to 5D systems, and subsequently linked to classical theories via the
Eisenhart lift. This provides a geometric interpretation of the link3 with Keplerian dynamics.

The 5D formulation also allows for a connection between the three examples via the double
copy. Known primarily as a relation of scattering amplitudes in gravity appearing as the
‘square’ of gauge theory amplitudes [23], we will instead employ the so-called classical double
copy, similarly linking background solutions of these theories [176]. More specifically, we will
use it to connect dynamical systems in the sense of [129]. Interestingly, the three examples of
relativistic dynamics with Keplerian dynamics are exactly linked in this way. This provides a
precise sense in which hidden symmetries and maximal superintegrability4 carry over under
the classical double copy.

5.2 Relativistic Bertrand’s Theorem
It is natural to wonder what lies beyond the celebrated Bertrand’s theorem of classical
mechanics, once moving into the realm of relativistic physics. For reasons that will be
outlined in what follows, we will consider an (implicit) definition for our class of relativistic
Hamiltonians, much like (4.3) in the last chapter:

H2 = m2c4 + p2c2 −
(1
r

)
F
(
mc2 +H

)
, (5.1)

where F (x) is a continuous and smooth function that encodes the nature of the attractive
force. Note that this class of Hamiltonians reduces, in the absence of the attractive force
(F → 0), to the special relativistic free particle. When perturbatively including the attractive
force,

F (x) = f0 + f1x+ 1
2f2x

2 + . . . , (5.2)

we see the coefficients must have dimensions [fi] = M (2−i)L(3−i)T (i−2). Specialising to f2 =
8GM/c2 as the only nonzero component for instance, with M some reference mass, the

3We generalise this link between classical and relativistic dynamics to multi-center systems in Section 5.6,
along with a rigorous mathematical proof of the relation.

4Another, less symmetric example is provided by the integrability of the Kerr space-time that also carries
over [16].
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resulting Hamiltonian reads in a post-Newtonian expansion

H = mc2 + p2

2m − 8GMm

r

− 1
8
p4

m3c2 + 32G2M2m

r2c2 + O( 1
c4 ) . (5.3)

In the non-relativistic limit, the system therefore reduces to Kepler (up to a constant rest-mass
energy).

The relativistic corrections of this class of Hamiltonians retain the special property that all
bounded trajectories are closed orbits. At a heuristic level, this can be seen in the following
way. As energy is conserved, the argument of the force term in (5.1) will take a specific,
constant value for a given trajectory. For this trajectory, the force is therefore given by some
constant F , and the Hamiltonian reads

H = mc2
√

1 + 2HKep/mc2 , (5.4)

for a Kepler Hamiltonian

HKep = p2

2m − 1
r

F

2mc2 . (5.5)

It is therefore natural to expect that this class of systems has closed orbits. This is confirmed
by the presence of a relativistic generalisation of the Laplace-Runge-Lenz vector, that takes
the form

~A = ~p× ~L− 1
2c2F

(
mc2 +H

)
r̂ , (5.6)

in terms of angular momentum ~L = ~r × ~p and the unit position vector r̂. This vector is
responsible for the maximal superintegrability and hence closed orbits in the non-relativistic
case.

The dynamics of the above theories can be seen as a non-standard way of stacking Kepler
energy levels: the effective gravitational coefficient is set by F and hence is orbit-dependent.
In a hypothetical solar system governed by such an attractive force, planets would fail to
satisfy the universal Kepler’s third law relation between period and radius. As discussed
in more detail in Section 5.6, a particular time reparametrisation of (5.1) connects it to a
new Kepler Hamiltonian, for which Kepler’s third law does hold for all orbits with the same
universal proportionality constant.

One issue with the above heuristic argument is that it only applies to separate energy levels
and not the complete phase space. It would therefore be desirable to have an alternative
perspective, that applies to the union of all orbits. Indeed this appears to be possible: we have
demonstrated (with an explicit construction) that this class of Hamiltonians is the unique
extension of the Kepler system that combines the special relativistic and the non-relativistic
limits (when F → 0 and c → ∞, respectively) that has the so(4) hidden symmetry and closed
orbits, up to and including 5PN order. It is therefore the natural generalisation of Bertrand’s
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theorem to the relativistic domain (at least for the Kepler system). Moreover, this system is
canonically equivalent to Kepler in a neighbourhood around an energy level, at least up to
5PN order [180].

A closely related claim has been put forward by Davis and Melville in [93], who employ a
reorganisation of PN corrections into powers of 1/r multiplied by functions of the Kepler
Hamiltonian. They argue that the function multiplying the 1/r part of this expansion can be
made vanishing (their ‘LRL gauge’) by means of canonical transformations. Subsequently,
they demonstrate that all higher-order powers of 1/r similarly have to vanish for the system
to have closed orbits and hidden symmetries. This then implies that the class of Hamiltonians
(5.1) is canonically conjugate to Kepler to all PN orders.

Having introduced the class of Hamiltonians as the relativistic generalisation of the Kepler
system that has hidden symmetries, in the next sections we turn to their physical interpretation;
in other words, which forces generate this kind of dynamics? We will show that there are
three cases - where we take F to be constant, linear or quadratic in its argument - where a
natural interpretation in terms of 4D relativistic field theories presents itself. Moreover, all
three cases allow for an uplift to a 5D system. Different reductions of this 5D perspective
allow one to prove the equivalence up to time-reparametrisation between the classical and
relativistic systems to all orders in the PN expansion.

5.3 General Relativity
We will first discuss the quadratic case, F (x) = 1

2f2x
2, and its interpretation in terms of

general relativity. As the constant f2 must have the dimension of length, it is natural to
suppose this is given in terms of a mass scale set by some reference mass M, such that
f2 = 2rM , with rM = 4GM

c2 (while the factor of 4 will be clear in a moment). The Hamiltonian
reads

H2 = m2c4 + p2c2 −
(
rM

r

)
(mc2 +H)2 . (5.7)

We have shown previously5 that this system arises when an extremal particle (with equal
mass and charge) is orbiting a specific background of the 4D Einstein-Maxwell-dilaton system,
with bulk Lagrangian density

L =
√

−g
16π

(
c3

G
R − 2c3

G
(∂φ)2 − e−2aφ

c
F 2
)
, (5.8)

where we take the units such that the gauge potential Aµ has [A2] = MLT−2. For closed
orbits, the dilaton coupling of this system has to take precisely the Kaluza-Klein value
a =

√
3 that allows for the bulk Lagrangian to be uplifted to 5D. This suggests that also the

particle Hamiltonian (5.7) has a 5D interpretation. Indeed this is the case; upon making the
identifications

P0 = H

c
, P5 = mc , (space-like) , (5.9)

5Compare Equation (4.73) with H → H + m.
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the Hamiltonian (5.7) corresponds to geodesic motion along a null geodesic,

gABPAPB = 0 . (5.10)

The metric is the uplift of the Einstein-Maxwell-dilaton background

ds2 = ηABdx
AdxB +

(
rM

r

)
(dx0 − dx5)2 , (5.11)

and is a Bargmann space. Because of the harmonicity of the potential rM

r
, this space is

Ricci-flat, i.e. it solves the vacuum Einstein equations [100]. This spacetime is an example
of a pp-wave (plane-fronted wave with parallel rays) due to the presence of the covariantly
constant null-vector ∂0 + ∂5.

Interestingly, the same 5D perspective can also be related to the non-relativistic Kepler
case; this is referred to as the Eisenhart-Duval lift [55, 53]. Starting in 5D and making the
alternative identifications

P0 − P5√
2

= H̄Kep

c
,

P0 + P5√
2

= mc , (null ) , (5.12)

the vanishing norm of the 5D momentum leads to a particular non-relativistic Kepler system

H̄Kep = p2

2m − rMmc
2

r
. (5.13)

Though in different guises, the above two reduced systems therefore are one and the same, up
to time reparametrisation (or conformal transformations, in the case of null-geodesics [224]).
Yet the reductions correspond to what appear to be distinct physical systems, dependent on
the different assignments (5.9) or (5.12) for mass and energy, as discussed in generality in
Section 5.6.

The 5D formulation allows for a geometric perspective on the so(4) hidden symmetry of the
Kepler system, as these can be seen to be generated by an interplay of Killing vectors and
tensors [100, 53], discussed in Section 2.2.4. The Bargmann space (5.11) has three Killing
vectors associated with angular momentum. In addition, it has three Killing tensors that
generate the Laplace-Runge-Lenz vector reading

~A = (~p× (~r × ~p)) − 1
2(P0 + P5)2 rMc

2

r
~r , (5.14)

which is quadratic in momenta.

Let us conclude this section with two remarks on the 5D symmetry algebra. Firstly, when
we take the limit M → 0 toward flat space, the second term in the above vector vanishes,
implying the quadratic Killing tensors become reducible, as they are now built completely
out of the Killing vectors related to the conserved angular momentum ~L = ~r × ~p and the
momentum ~p. The latter in this case is conserved as well, since the space regains translational
symmetry in the three spatial directions of ~r.

Secondly, note that none of the conserved quantities related through Noether’s theorem to the
so(4) symmetry of the Kepler problem is generated by a genuinely conformal Killing tensor
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or vector. All conserved functions commute with the 5D geodesic Hamiltonian regardless
of its value. As such, it is clear that the relation between Kaluza-Klein dynamics and the
Kepler system still holds for massive geodesics, though the effect on the dynamics is of
negligible consequence, as it results in the addition of a fixed constant to the Hamiltonians
after reduction.

5.4 Electromagnetism
We now turn to the second element of the class of Hamiltonians (5.1) for which we propose an
interpretation as coming from a relativistic field theory, being the case with a linear function
F (x) = f1x. In this case the Hamiltonian reads

H2 = m2c4 + p2c2 −
(1
r

)
f1(mc2 +H) . (5.15)

Upon making the space-like replacements (5.9), this becomes

ηABPAPB −
(1
r

)
f1

c
(P5 + P0) = 0 . (5.16)

In contrast to the quadratic case, the above cannot be written in terms of a Lorentzian metric
solving the Einstein equations.6 Instead, the natural interpretation of the lifted form is in
terms of an electromagnetic force, linear in momenta.

This can be understood in terms of the classical double copy, which maps the specific class of
so-called Kerr-Schild backgrounds of General Relativity to solutions of Maxwell’s equations
in electromagnetism. Among more obvious solutions such as the Kerr and Schwarzschild
black holes, also time-dependent pp-waves have been shown to have a classical double copy
structure [176]. The spacetime we are interested in is a subset of this, being a time-independent
pp-wave.

The class of Kerr-Schild solutions takes the form

gAB = ḡAB + rsφ lAlB , (5.17)

and consist of a background metric ḡ (which should separately satisfy Einstein’s equations)
plus a deformation in terms of a harmonic scalar function, 2φ(r) = 0, and a vector lA that
is null with respect to ḡ and therefore also total metric g. The Schwarzschild radius reads
rs = 2GM/c2. The Kerr-Schild double copy then says that the vector AA = φ lA is a solution
of the Maxwell equations and φ(r) is a solution of the scalar field equation.

The Bargmann space introduced above is exactly of Kerr-Schild form, with a flat background
metric and SO(3) rotationally symmetric function, φ = 2/r. This gravitational solution
therefore generates, via the double copy procedure, the following solution of Maxwell’s
equations, now including all constants:

AA = g

4π q̃φ(r)lA , (5.18)

6It can be written as a momentum norm on a Finsler space, a generalisation of pseudo-Riemannian
space [17].
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where we introduced g as electromagnetic coupling and q̃ as a charge. This single copy is
itself an electromagnetic pp-wave and lA is its wave vector.

Given the interesting dynamics of geodesics in the Bargmann space-time, can we expect
similar behaviour in the Maxwell configuration? In other words, does the hidden symmetry
and maximal superintegrability survive the double copy? Interestingly, this turns out indeed
to be the case: the Hamiltonian with linear force function (5.15) has an interpretation as a
charged particle in the single copy background (5.18). Specifically, after setting f1 = g2

4π
qq̃

and uplifting to 5D via (5.9), the Hamiltonian of the linear case can be written as

ηABP̃AP̃B = 0 , with P̃A = PA − gq

c
AA , (5.19)

in terms of the modified momentum P̃ of charged particles in the vacuum EM back-
ground (5.18). This places the linear case on a par with the quadratic one, with interpretations
in terms of electromagnetic and gravitational force fields, respectively.

With the 5D interpretation in hand, one can consider its dimensional reductions. The null
reduction straightforwardly leads to the usual non-relativistic Hamiltonian, which in this
case is interpreted as the Coulomb system. In contrast, the space-like reduction leads to a
relativistic field theory with coupled degrees of freedom. In order to see this, separate the
5-dimensional vector field in parts AA = (Aµ, A5 = χ). The field Lagrangian then reads

L = −1
4FABF

AB = −1
4FµνF

µν − 1
2(∂µχ)(∂µχ) , (5.20)

implying a theory with a scalar χ and vector Aµ. The particle Lagrangian can be found by
taking

Lp = − 1
2hηABẋ

AẋB + gq

c
AAẋ

A , (5.21)

which can be Legendre transformed to write it in terms of P5 instead of ẋ5. One then has

Lp = 1
2hηµν ẋ

µẋν − h

2

(
gq

c
χ− P5

)2
− gq

c
Aµẋ

µ . (5.22)

Solving the equation for the auxiliary variable h, picking the branch giving the correct kinetic
term, we find the Lagrangian

Lp|h = −
√

−
(
gq

c
χ− P5

)2
ηµν ẋµẋν − gq

c
Aµẋ

µ . (5.23)

The solutions of the fields are, as in (5.18), given by

χ = g

4π q̃
2
r
, A0 = − g

4π q̃
2
r
. (5.24)

This is exactly the theory found by [6], describing a non-minimally coupled scalar-vector
theory, having a LRL symmetry. It has its origin in N = 4 supersymmetric Yang-Mills, which
similarly enjoys an additional symmetry in the the limit that one of the particles is much
larger than the other [58, 199].
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Due to the 5D interpretation of this theory, we now have a natural link between the non-
relativistic Coulomb system and this specific relativistic Maxwell-axion field theory. The
relation between both symplectic reductions implies that the energy-level equivalence be-
tween the two theories necessarily extends to all orders in the PN expansion, with the time
reparametrisation as discussed in Section 5.6.

5.5 Nordström gravity
The last Hamiltonian in the class (5.1) that we propose a field theoretic interpretation for, is
the one with function F (x) = f0 constant:

H2 = m2c4 + p2c2 −
(1
r

)
f0 . (5.25)

The Hamiltonian of this system is a simple function of the Kepler Hamiltonian, and as such
naturally has a hidden symmetry and closed orbits. Given the sequence of double and single
copy in the previous two sections, however, it is natural to investigate its interpretation as
a zeroth copy relativistic field theory. This will feature an attractive scalar field, as first
proposed by Nordström in 1912 [183].

The scalar ‘zeroth copy’ is an Abelian version of the bi-adjoint scalar. The constant f0 in the
potential term now has the dimension of energy squared times length, so we set f0 = rMm

2
sc

4,
with rM as before and ms some mass. Lifting the Hamiltonian to 5D yields

ηABP
APB = m2

sc
2 rM

r
, (5.26)

and hence a position-dependent mass. Legendre transforming this to the Lagrangian of a
geodesic yields

Lp = ηABẋ
AẋB

2h +m2
sc

2h

2
rM

r
, (5.27)

where we have included the auxiliary Einbein h. It can be solved for to generate

Lp|h = msc
√
φ(r)ηABẋAẋB , (5.28)

with the scalar field φ(r) = rM

r
minimally coupled and now dimensionless, and solving the

field equation in a vacuum.

This completes the trilogy of double copy related relativistic field theories, at least from the
5D perspective: the Hamiltonians with constant, linear and quadratic functions correspond
to the natural sequence of spin-0, 1, 2 exchange field theories.

Again, it will be interesting to investigate the dimensional reductions. As before, the null
reduction directly generates a non-relativistic system akin to the Kepler and Coulomb ones.
The space-like reduction, instead, generates a coupling to a new scalar field profile. After
dimensional reduction of (5.27) and subsequent elimination of the Einbein h, we find

Lp|h = −msc
√
φ̄(r)(−ηµν ẋµẋν) , (5.29)
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with the scalar now given by

φ̄(r) = 1 − rM

r
. (5.30)

This particular profile for the scalar field then produces exactly closing time-like curves, and
it is the Lagrangian giving rise to H in equation (5.25) with proper time parametrisation.

In general, scalar fields generate a perihelion precession that is given to first post-Newtonian
order by

∆θ = −1 + a2

6 ∆θGR , (5.31)

with ∆θGR the perihelion shift in GR and a2 is a parameter that characterises the coupling of
the scalar field (at quadratic level) to the probe particle [94]. How does this and similar results
relate to our system displaying no precession? Whereas a2 = 0 in Nordström’s final theory
(see [203]), a2 = 1 in the only-scalar limit of [93] and Nordström’s first theory (see [183, 193])
and indeed, working out the square-root expansion we have a2 = −1 for the scalar (5.30).

At this point it is also interesting to compare to the classification of Bertrand spacetimes,
as pioneered by Perlick [190]. These spacetimes are defined by having the special property
of having closed orbits; however, Bertrand spacetimes are not required to solve the source-
free Einstein’s equations and generically need to be supplemented with non-trivial energy-
momentum tensors. In contrast, in all three cases that we have discussed, the backgrounds
satisfy the source-free bulk equations of motion of the three relativistic field theories. The
latter case of the zeroth copy includes the coupling to the harmonic scalar field in [183].
From the particle’s perspective, this is equivalent to coupling to a conformally flat metric
with overall factor (5.30); this therefore has to be a Bertrand space-time. We have checked
that the general class of solutions of [190] indeed includes this as the unique conformally flat
possibility.7

5.6 Relativistic dynamics as reparametrised classical
trajectories

In this more mathematically oriented section we provide further details on the time reparametri-
sation that relates the (non-)relativistic Hamiltonians, and make this connection rigorous in
terms of the Marsden-Weinstein reduction of the higher-dimensional phase space.

To this end, we will start from a slight generalisation of the above, with Hamiltonians H2(q, p)
(introduced in [180]) solving an equation of the form

−f(H2(q, p)) = p2

2Cu

+ g(H2(q, p))
Cu

Φ(q) , (5.32)

with f and g suitable smooth functions R → R and Cu a nonzero constant. We will show
that these are similarly related to classical Hamiltonians using Marsden-Weinstein reduction,

7Specifically, the mapping is from the lower signs in equation (13) of [190] with D → −2/r2
M , K → 4/r4

M

and G → 0 and rescaling the time t → t rM /
√

2.
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employing a symmetry of a Hamiltonian system to reduce its dimension by an even number.
This procedure guarantees that the reduced space remains symplectic, since the symplectic
form is given by the restriction of the initial symplectic form to the new space [172].

Assumptions 1. 1. Let Φ : Rd\∆ → R be a smooth function, ∆ a discrete set of isolated
points and ∂Φ(q)

∂q
6= 0 for all q ∈ Rd\∆.

2. Let H1 : M → R be a Hamiltonian on M = T ∗(Rd\∆) with coordinates q ∈ Rd and
p ∈ Rd, defined by

H1(q, p) = p2

2f(Cv) + g(Cv)
f(Cv)Φ(q) , (5.33)

for two smooth functions f, g : R → R.

3. Let Cu, Cv ∈ R be nonzero constants such that f(Cv) 6= 0, g(Cv) 6= 0 and

g′(Cv)Φ(q) + f ′(Cv)Cu 6= 0 , for all q ∈ Rd\∆ . (5.34)

Proposition 1. Given Assumptions 1(1–3), if the Hamiltonian H2(q, p) implicitly defined
by (5.32) exists for H2(q, p) = Cv, the trajectories on an energy level H1 = −Cu of the first
Hamiltonian and H2 = Cv of the second are in one-to-one correspondence, up to the time
reparametrisation

dt1
dt2

= f(Cv)
g′(Cv)Φ(q) + f ′(Cv)Cu

. (5.35)

Proof. Consider a manifold M̄ = T ∗(R2×(Rd\∆)), with canonical coordinates (u, v, q;Pu, Pv, p)
and Hamiltonian H : M̄ → R given by

H(u, v, q;Pu, Pv, p) = g(Pv)Φ(q) + f(Pv)Pu + p2

2 . (5.36)

The proposition is an application of Marsden-Weinstein reduction restricted to the level set
H−1(0). Since u and v are cyclic coordinates by construction and the corresponding actions
(by translation) are both free and proper, we can apply the Marsden-Weinstein theorem [172]
to symplectically reduce over either of them. We can construct the two possible reductions
using the momentum maps µ? := (H, P?) : M̄ → R2, where ? denotes either u or v, giving
two, in principle different base spaces B? = µ−1

? (0, C?)/R? and corresponding projections
π? : µ−1

? (0, C?) → B?. Here (0, C?) are assumed to be regular values of µ?, for now. Note
that the base spaces are odd-dimensional, as the value of H is fixed, so that the established
relation is between energy levels of H1 and H2.

Consider the regularity requirements dH 6= 0 and dPu, dPv 6= 0. The latter are trivially
satisfied, while the former gives

dH(u, v, q;Pu, Pv, p) = ∂Φ
∂q
g(Pv)dq + f(Pv)dPu

+ (g′(Pv)Φ(q) + f ′(Pv)Pu)dPv + p dp . (5.37)

By the Assumptions 1(1–3) this is never vanishing on the domain of consideration, nor are
dH and dPu, dPv linearly dependent. This shows that the values (0, C?) are indeed regular.
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Let us now reduce the system over the cyclic coordinates (u, v) to obtain new Hamiltonian
functions that are exclusively dependent on the classical variables (q, p). When we reduce by
v we have

g(Cv)Φ + f(Cv)Pu + p2

2 = 0 , (5.38)

so that reparametrisation λ → f(Cv)λ results in

−Pu = p2

2f(Cv) + g(Cv)
f(Cv)Φ(q) . (5.39)

This means that we effectively have a Hamiltonian −Pu = H1(q, p), which moreover has a
time parameter given by t1 = u = f(Cv)λ associated to it, as is apparent from Hamilton’s
equation du

dλ
= ∂H

∂Pu
.

If, instead, we reduce phase space M̄ over u, we end up with

−f(Pv) = p2

2Cu

+ g(Pv)
Cu

Φ(q) . (5.40)

By assumption, this is solved by H2(q, p) = Cv. Hamilton’s equation

dv
dλ = g′(Pv)Φ + f ′(Pv)Cu , (5.41)

then implies the associated time t2 is given by dt2 = dv = (g′(Pv)Φ + f ′(Pv)Cu)dλ. For
energy levels H1 = −Cu of the first Hamiltonian and H2 = Cv of the second, this means the
reparametrisation from the first Hamiltonian to the second is given by

dt1
dt2

= f(Cv)
g′(Cv)Φ(q) + f ′(Cv)Cu

, (5.42)

which concludes the proof of the relation between the two.

For concreteness we now apply this procedure to the relativistic class of Hamiltonians

H2 = m2 + p2 −
(1
r

)
F (m+H) , (5.43)

dropping factors of c2 for legibility. As discussed in the previous sections, under the replace-
ments (5.9) these lift up to the level set H−1(0) of

H = P 2
5 − P 2

0 + p2 −
(1
r

)
F (P5 + P0) . (5.44)

Hamilton’s equation tells us that the relation between the time-parameter λ of this new
Hamiltonian is related to the old time parameter t by

dt
dλ = −2P0 −

(1
r

)
F ′ (P5 + P0) , (5.45)

where t is conjugate to P0 (and hence H).

97



Keplerian Black Holes and Gravitating Goldstones

The canonical transformation to null coordinates

(x+, x−) = 1√
2 (x5 + t, x5 − t) , (5.46)

(P+, P−) = 1√
2(P5 + P0, P5 − P0) , (5.47)

results in
−2P−P+ = p2 −

(1
r

)
F
(√

2P+
)

(5.48)

on level set H−1(0). Assuming P+ 6= 0, a time reparametrisation to λ̃ = 2P+λ reduces it
further to

−P− = p2

2P+
−
(1
r

) 1
2P+

F
(√

2P+
)
, (5.49)

so the alternative symplectic reduction over x+ setting P+ = m+ results in −P− =: H−
defining a Kepler Hamiltonian reading

H− = p2

2m+
−
(1
r

) 1
2m+

F
(√

2m+
)
. (5.50)

The relation between both time parametrisation therefore reads

dx−

dλ = ∂H
∂P−

= 2P+ , (5.51)

where x− is conjugate to H−.

Crucially, the Marsden-Weinstein result guarantees that both reductions preserve the sym-
plectic structure. From the above, it directly follows that the time reparametrisation that
links trajectories on energy levels H− = 1√

2(H0 −m) of the Kepler Hamiltonian to those on
energy levels H = H0 of the original is given by

dx−

dt =
√

2(H0 +m)
−2H0 −

(
1
r

)
F ′ (m+H0)

. (5.52)

This transformation maps relativistic systems that violate Kepler’s third law to Kepler ones
that satisfy it.

Note that only when F (x) is homogeneously quadratic, does each energy level map to the
same Kepler background, such that the potential coefficient in the Hamiltonian becomes linear
in the mass of the probe. For all other functions, the effective Newton’s constant becomes
probe-mass dependent and hence would violate the equivalence between gravitational and
inertial mass.

5.7 Discussion and conclusion
In this chapter, we have studied the possible interactions giving rise to Keplerian symmetry in
field theories. We have presented an extension of the classical Kepler system to a relativistic
system with the same so(4) algebra and the correct special relativistic limit, and have checked
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its uniqueness up to 5PN. This relativistic class of Hamiltonians contains terms naturally
interpretable through a lift to 5 dimensions as spin-0,-1 and -2 interaction. We discussed how
these project to relativistic theories in 4 dimensions, and their relation to the classical Kepler
problem. Moreover, the interactions can be viewed as zeroth, single and double copy in a
classical double copy structure.

The 4D systems with so(4) symmetry corresponding to spin-1 and -2 in 5D are known in
literature to stem from N = 4 super Yang-Mills and N = 8 supergravity [6, 59], which can
be truncated to the non-minimally coupled scalar-vector and Einstein-Maxwell-dilaton with
a =

√
3 respectively. However, the spin-0 system in terms of a dilaton field theory, whose

resulting effective metric coincides with a type of Bertrand spacetime [190], appears to have
escaped attention so far.

The trajectories in all systems from a 5D perspective can be seen as reparametrisations of
trajectories of a classical Kepler problem. In a similar vein, all one-body dynamics in the
particular relativistic systems discussed can be linked to classical dynamics. Though we have
focused on the particular case of relativistic 1-center problems with classical symmetry, all the
above constructions hold with any harmonic background potential φ: the Einstein, Maxwell
and scalar field equations are still solved after the 5D lift. The reduced systems are then
through time reparametrisation related to their classical counterparts.

For example, a multi-center background in Einstein-Maxwell-dilaton theory with a =
√

3
and extremal objects can be constructed, which is orbited by an anti-extremal test particle.
This is the space-like reduction of a Bargmann spacetime of which the null-reduction is the
classical Newtonian multi-center system. The relevant harmonic function for n centers (all
extremally charged) is given by −φ(~r) = rM1

|~r−~r1| + · · · + rMn

|~r−~rn| [117], and the Hamiltonian for
an anti-extremal test particle of mass m satisfies

H2 = m2c4 + p2c2 + φ(~r)
(
mc2 +H

)2
. (5.53)

This connection immediately implies these solutions possess the same integrability properties
as their equivalents in non-relativistic mechanics, that is, the two-center case is integrable,
while the systems with a higher number of centers all display chaotic scattering [42, 155, 156],
as discussed for more values of the dilaton coupling in [154].

Some further questions present themselves. Firstly, all mentioned so(4) preserving systems are
test-particle limits. It would be interesting to consider the two-body problem beyond the first
order in mass ratio or relativistic expansions in these theories, as done for example by [187],
who still found no precession of the orbits at third post-Minkowskian order for extremal black
holes in N = 8 supergravity (but did not confirm or exclude persistence of so(4) symmetry).
Modern scattering amplitude methods8 seem to be well-suited to this task, especially in the
light of the double copy, which might allow one to directly export results from N = 4 super
Yang-Mills to N = 8 supergravity.

Secondly, is it possible to extend the idea of relating relativistic systems to geodesics in
higher dimensional spaces to multi-body systems? This would need to account for the multi-

8For instance, it would be interesting to investigate whether the effective one-body approach in Kerr-Schild
formulation [67] allows to capture comparable mass ratio effects in the 5D Kerr-Schild potential.
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worldline nature of such systems, possibly by including more time-like dimensions in the higher
dimensional system. It would be intriguing to see if this alternative perspective could lead to
new or simplifying insights into relativistic dynamics, and whether interesting connections
can be made to classical systems.
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Chapter 6

Flavour-kinematics duality for
Goldstone modes

This chapter studies the double copy in a very different incarnation from that in the previous
chapter, instead focusing on scalar effective field theories (EFTs). It follows our paper [182].

6.1 Introduction
General relativity (GR) and Yang-Mills (YM) theory are amongst the central pillars of 20th
century physics and describe the gravitational interaction and gauge forces, respectively. Due
to different gauge symmetries, spins and quantum (non-)renormalisation properties, these
were for a long time thought to have little similarities. However, following the work of Kawai,
Lewellen, and Tye (KLT) on open-closed string duality, where closed-string amplitudes can
be written as a sum over products of open-string amplitudes [150], it has become natural to
ask whether (non-)gravitational amplitudes in field theory are similarly related.

A concrete realisation of this duality was proposed by Bern, Carrasco and Johannsson (BCJ),
showing that YM and GR tree-level amplitudes can be factorised in a specific way [20]. The
resulting colour and kinematic factors (often referred to as BCJ numerators) can be chosen
to satisfy group-theoretical constraints corresponding to Jacobi identities. This algebraic
correspondence between kinematics and colour, and hence between gauge theory and gravity,
is widely referred to as colour-kinematics (CK) duality (see e.g. [103, 71, 30] for reviews on
amplitudes and CK duality).

Once colour-kinematic duality is satisfied by the BCJ numerators, the gravitational tree-level
amplitudes can be written as the “square” of their gauge theory counterpart. Following this
approach, the YM and GR amplitudes can be written as

AYM
n =

∑
i∈ cubic

CiTi

Di

, AGR
n =

∑
i∈ cubic

TiTi

Di

, (6.1)

where Ci, Ti and Di respectively denote colour factors, kinematic numerators and propagator
structures. The sums run over a set of inequivalent diagrams i that are purely trivalent,
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i.e. cubic (and hence differ from the usual Feynman diagrams for these theories). Given a
YM amplitude, its gravitational counterpart is constructed by simply interchanging the YM
colour factors Ci by another kinematic numerator Ti. This procedure is famously referred to
as the double copy1 and it has been proven to hold at tree-level [47, 38, 86, 169, 37, 99, 64].
Furthermore, CK duality was also conjectured to extend to loop level [23] and it has been
verified in various non-trivial cases [22, 21, 61, 25]. However, a general loop-level proof is still
missing.

Double copy relations are by no means restricted to GR and YM; a natural third theory,
completing the triplet in (6.1), consists of two colour factors and corresponds to cubic
interactions of bi-adjoint scalars (BAS), in the adjoint of both colour factors. Moreover,
similar relations have been found for a large web of different theories, including other spin-one
theories as well as scalar effective field theories [63, 76]. The latter include the so-called
Non-Linear Sigma Model (NLSM) (whose BCJ factorisation was shown in [69]) as well as
the special Galileon (SG), and can be built by including a BCJ factor that only depends on
momentum and hence describes scalar-kinematic numerators (see [98] for explicit expressions).
Similar to the triplet BAS-YM-GR for colour and (tensor-)kinematics, this relates the BAS,
NLSM and SG [71].

The NLSM and SG are so-called exceptional scalar field theories, with very special properties
in terms of non-linearly realised symmetries and Goldstone mode interpretations. In fact,
they can be constructed by specifying the amount of derivatives per field while enforcing
an enhanced soft degree beyond the Adler zero [78, 77].2 The latter leads to nontrivial
cancellations among Feynman diagrams of different topology, thereby completely constraining
the interactions of the theories and their symmetry transformations. Due to this structure,
their on-shell structure follows from a soft bootstrap approach: all amplitudes3 can be seen
to follow from a single seed interaction, see e.g. [104, 165]. Relatedly, the SG satisfies the
equivalence principle and can be phrased in terms of diffeomorphisms [43, 197]. These scalar
EFT properties clearly echo the corresponding features of gravity and gauge theories [217, 95].

However, these aspects also raise an interesting question, as there is a third theory with such
properties, being Dirac-Born-Infeld (DBI) theory with multiple scalars [130]. Inspired by
the original colour-kinematics duality relating BAS, YM and GR, is there a similar relation4

between NLSM, DBI and SG? We will show that this is indeed the case, and that it corresponds
to the introduction of a fourth BCJ numerator, that we refer to as flavour factors. In the
resulting web of dualities, the NLSM then appears twice: either with one colour or with two
flavour factors. Are these theories identical? And if not, how do they differ given the strong
symmetry constraints on the theory describing pion scattering? The answer to these questions
involves graviton exchange in an interesting manner, and is the topic of Section 6.3.

In the same section, we will also demonstrate intriguing relations between the different BCJ

1Partial progress on the mechanism underlying the double copy was provided by the identification of the
kinematic algebra of the self-dual sector of YM theory [174, 70, 175].

2Recently, non-integer soft degrees have been identified in [46].
3See [35] for a recent extension of soft limits and recursion to the off-shell wavefunction of these theories.
4These three scalar EFTs also allow for a CHY representation of their amplitudes [51].
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numerators. Note that this goes beyond the double copy relations of colour-kinematics (or
flavour-kinematics) duality: instead of replacing factors to go from one theory to another,
these factors themselves also turn out to be related. In particular, we will show how the
scalar-kinematic factor follows from the flavour factor (but not vice versa). Although not
the focus of this chapter, we also propose a non-invertible mapping from tensor-kinematic
numerators to the flavour factors.5

Moving from on-shell amplitudes to off-shell aspects, manifestations of the double copy have
been found for certain classes of exact classical solutions of GR and YM, being referred to
as the Kerr-Schild double copy. Initially established as a map from a stationary charge to
the Schwarzschild metric [176], this classical double copy was soon afterwards extended to
more general stationary and even time-dependent solutions [167, 123, 195, 168, 66, 4, 14].
This construction hinges on the space-time metric admitting so-called Kerr-Schild coordinates
(see e.g. [202]), leading to the special property that the non-linearities of the Einstein field
equations, and consequently the non-linearities of the YM equations, are completely absent.
This means that the Kerr-Schild double copy essentially is a mapping between linear solutions
of GR and YM.

The existence of these relations raises the question whether there exists an off-shell double copy
formulation that takes into account (non-linear) off-shell information. Such a correspondence
would be highly non-trivial, since off-shell information, in contrast to amplitudes, depends
on the redundancies of the field-theoretic description (such as field basis and symmetry
considerations). This redundancy already played an important role for the Kerr-Schild double
copies, where the diffeomorphism symmetry was essential to construct the coordinate system
in which one recognises the Schwarzschild metric as a double copy of static gauge charge [176].

We will highlight exactly such an off-shell correspondence between the aforementioned triplet
of effective scalar theories of NLSM, DBI and SG in Section 6.2. By picking a field basis for
which the non-linear symmetries each contain the same type of terms, here chosen to be of
the form δφ = O(φ0) + O(φ2), the field equations also take a very similar form, with each
theory involving a distinct number of space-time derivatives and flavour structures.

Given these similarities, we show that one can transform kinematic into flavour information
(and vice-versa) by expanding the the scalar fields and the parameters of the non-linear
symmetries in terms of auxiliary flavour coordinates according to φ → φaθ

a, where θa is the
auxiliary coordinate, and where the scalar field on the RHS only depends on the space-time
coordinate. Under the assumption that the auxiliary flavour-coordinates are Grassmanian,
the transformations of this type constitute invertible mappings between field equations and
symmetries of the three Goldstone theories. The existence of these off-shell double copy
relations imply that these theories really are different manifestations of the same underlying
structure, expressed in different flavour and kinematic spaces.

The picture that emerges from the above considerations is a web of dualities discussed in
5Putting these together maps tensor-kinematics directly onto scalar-kinematics. This is closely related to

the recent results of [72], that however uses a trace basis instead of the half-ladder basis that will be central
in this chapter.
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the concluding Section 6.4: the different theories comprising the tensor-kinematic, colour,
flavour and scalar-kinematic factors can be graphically represented as the tetrahedron in
Figure 6.4.6 The triplet of scalar theories that are investigated in this chapter, related by
flavour-kinematics duality, can be found at the right side of the bottom level, thereby lying
on the self-interaction face - the face GR-SG-NLSMg defined as those theories that retain
non-trivial interactions even when restricted to a single species. We furthermore outline the
relations to the other theories including colour.

6.2 Non-linear symmetries and off-shell duality
Our focus in this chapter will be on the three scalar field theories that both allow for a double
copy formulation and are determined by a non-linear (NL) symmetry. We will use the form
of the latter to single out a field basis for the Goldstone modes in which the double copy is
manifest, already at off-shell level (instead of for on-shell amplitudes). We will subsequently
explain how this allows for double copy relations between these theories, corresponding to
off-shell flavour-kinematics duality.

6.2.1 A triplet of Goldstone theories
We will first focus on the formulation of the three theories, and adapt our field basis for all
theories such that the NL symmetries have a similar structure, consisting of two types of
terms: δφ = O(φ0) + O(φ2). The first term is a generalised shift term, that is independent of
the scalar fields and only depends on the parameters and possibly space-time coordinates.
In contrast, the second term is quadratic in the scalar fields, and furthermore depends on
the parameters and possibly a space-time derivative. The first term is responsible for the
Goldstone interpretation of the scalar fields and induces soft limits such as the (generalised)
Adler zero [78, 77]; the second term reflects the non-Abelian nature of these spontaneously
broken symmetries [41, 198].7 Note that all theories are manifestly parity even in this
formulation.

The first theory of this form is the Non-Linear Sigma Model, corresponding to the breaking
of internal symmetries [81, 52]. The corresponding Goldstone modes parametrise a symmetric
coset G/H. We will focus on the case

SO(M +N)
SO(M) × SO(N) , (6.2)

or with isometry group SO(M,N) instead, for the opposite sign choice between the two types
of terms in the NL symmetry. The scalars are then fundamental representations of both
SO(M) and SO(N), and will be denoted by8 φaā - or in matrix notation as φ. Note that both
flavour parts a and ā are independent and not necessarily of the same dimension (M 6= N).

6The author thanks Thomas Flöss for this version of the diagram, based on the one in [182].
7A similar structure can be identified in fermion EFTs with non-linear supersymmetry [146].
8This may remind the reader of the formulation of GR inspired by double field theory, see e.g. [138, 73].
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This coset structure can be realised by the NL symmetry transformation (in matrix notation)

δφ = c+ φcTφ , (6.3)

in terms of a constant matrix c. Including indices, this would correspond to δφab̄ = cab̄ +
φac̄cdc̄φdb̄. Note that we have suppressed a dimensionful scale in the second term on the RHS
that sets the cut-off scale for the EFT, sometimes referred to as the pion decay constant F .

Note that the above coset differs from the chiral NLSM that is often discussed in the literature,
based on the symmetry breaking pattern (G × G)/Gdiag with e.g. the pion case having
Gdiag = SU(N). Our reasons for focusing on the special orthogonal one instead will become
clear as we outline the relations to the other Goldstone scalar field theories. Moreover, the
cosets are not unrelated: upon identifying the two types of indices, a = ā (which requires
M = N), one can specialise to either the symmetric or anti-symmetric case with φ = ±φT .
The former corresponds to the coset SL(N)/SO(N) while the second leads to the chiral one
(SO(N) × SO(N))/SO(N)diag. As SU(N/2) can be embedded in SO(N) this contains the
usual pion case. Moreover, the general SO(M +N) case can be specialised to the SO(M + 1)
case, which is relevant for e.g. the composite Higgs model with SO(5)/SO(4). See [165] for a
discussion of the SO(M + 1) case from the soft bootstrap perspective.

Returning to the SO(M +N) coset, the lowest order invariant for these Goldstone modes is
the two-derivative NLSM Lagrangian, which in terms of the group element g reads

L = F 2

4
[
∂g∂g−1

]
, (6.4)

where [...] denotes a trace over flavour indices and F is the pion decay constant, which we
take to be one for legibility. One representation of an SO(M +N) group element is given by

g =
(

A B
−BT C

)
, (6.5)

where the matrices are written in terms of the M ×N Goldstone modes φ as

A = 1 − φφT

1 + φφT
, B = 2

1 + φφT
φ , C = 1 − φTφ

1 + φTφ
, (6.6)

which have the correct dimensions and properties to make up the SO(M + N) matrix we
need. This Lagrangian can be rewritten into

L = −1
2

[
1

1 + φφT
∂φ

1
1 + φTφ

∂φT

]
, (6.7)

which is the form we will adhere to in the following. Given the two-derivative nature of this
theory, the corresponding field equations are naturally second order. After a number of simple
manipulations that amount to solving for the Laplacian of the scalar field in terms of other
quantities, these take the form

2φ = 2
∞∑

n=1
(−1)n−1[(∂φ)φT (φφT )n−1(∂φ)] , (6.8)
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in SO(M) × SO(N) matrix notation.

The second theory will involve Dirac-Born-Infeld (DBI) scalars that arise from space-time
symmetry breaking.9 We will employ the multi-field generalisation [130] that corresponds to
the symmetry breaking pattern

ISO(D +N)
SO(D) × SO(N) , (6.9)

where D refers to the space-time dimension (and we are cavalier about its signature; one
of the D dimensions is actually time-like). Again, a different sign choice will change the
isometry group to ISO(D,N) instead. The spontaneous breaking of translations in the
internal dimensions results in a number of scalar fields φa that transform in the fundamental
representation of the internal symmetry SO(N). The NL symmetry takes the form

δφa = ca + ca
µx

µ + cb
µφ

b∂µφa , (6.10)

and consists of a constant and linear shift (corresponding to translations and boosts) as well
as a quadratic part (from the non-Abelian nature of boosts).

The invariant Lagrangian can be written in terms of the induced metric gµν = ηµν + ∂µφa∂νφ
a.

At lowest order in derivatives, this is given by the measure [130],

L = 1 − √
g = −1

2∂µφ · ∂µφ+ 1
4 (∂µφ · ∂νφ) (∂µφ · ∂νφ) − 1

8 (∂µφ · ∂µφ)2 + . . . , (6.11)

where dots indicate flavour contractions. The field equations can be brought to the form

2φa =
∞∑

n=1
(−1)n−1[(∂∂φa)(∂φ · ∂φ)n] , (6.12)

in matrix notation for the space-time indices (and similar for the trace [...]).

Finally, the special Galileon theory [78, 137] involves only a single Goldstone mode, with NL
symmetry

δφ = c+ cµx
µ + cµν(xµxν + ∂µφ∂νφ) . (6.13)

where again the first two parts are Abelian shift symmetries, and only the tensor transformation
(with traceless parameter and a field-dependent, quadratic part) corresponds to the non-
Abelian part. The latter corresponds to the coset

ISU(D)
SO(D) , (6.14)

(where ISU(D) denotes the semi-direct product RD o SU(D)) while the former are central
extensions thereof. The opposite sign choice in the NL symmetry modifies the special unitary

9Interestingly, in this case the Goldstone theorem [126, 127] that associates a massless mode to every
broken generator no longer applies, see e.g. [142, 162, 153].
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group to the special linear group (i.e. corresponds to a different real section of the complex
group), and can be seen as Goldstone mode for affine coordinate transformations [197].

The invariant Lagrangian is given by a sum (with specific coefficients) of all Galileon terms
with an even number of fields. The Lagrangian in D dimensions reads [137]

LSG = −1
2

⌊
D+1

2

⌋∑
n=1

(−1)n−1

(2n− 1)!(∂φ)2LT D
2n−2 . (6.15)

The total derivative terms are given by

LTD
n =

∑
p

(−1)pηµ1p(ν1)ηµ2p(ν2) · · · ηµnp(νn) (Φµ1ν1Φµ2ν2 · · · Φµnνn) , (6.16)

where the sum is taken over all permutations of the indices ν, with the sign of the permutation
given by (−1)p. The three leading terms explicitly read

LTD
0 = 1 , LTD

2 = [Φ]2 −
[
Φ2
]
, LTD

4 = [Φ]4 − 6
[
Φ2
]

[Φ]2 + 8
[
Φ3
]

[Φ] + 3
[
Φ2
]2

− 6
[
Φ4
]
,

(6.17)

where [Φ · · · Φ] denotes the trace over a product of matrices Φ ≡ ∂∂φ (all referring to space-
time indices). In contrast to the previous two theories, the number of interaction terms in the
Lagrangian is finite. As a consequence, the field equations can be written in a form with a
finite number of interactions, which is strikingly different from the NLSM and the DBI theory.
However, the SG field equations can also be brought to a similar form with an infinite sum of
interactions,

2φ =
∞∑

n=1

(−1)n−1

2n+ 1 [Φ2n+1] , (6.18)

after isolating the Laplacian on the field on the left hand side.

The above theories all contain a single scale that sets the magnitude of the interaction; we
have not explicitly included this scale in the above, but it can be reinstated using dimensional
analysis. Taking this scale to be an imaginary parameter effectively takes one from the above
compact expressions to their non-compact versions. There are interesting constraints from UV
considerations on which of these two constitute EFTs with viable UV completions; for single
scalars, only the ISO(1, D) version of DBI satisfies such positivity bounds, and similarly the
ISL(D) = RD o SL(D) version of the special Galileon, see e.g. [5, 194].

Finally, we would like to point out that there is a specific freedom in the construction of the
NLSM that is absent for the other two theories. This can be seen at the off-shell level from
two perspectives. The first one would be to notice that the NLSM is the only symmetry that
is internal and has constant (i.e. space-time independent) parameters. Due to this, one can
implement this symmetry on arbitrary backgrounds, and moreover it allows for dynamical
gravity. In other words, the construction of the NLSM carries over without modification after
coupling it to gravity (see the appendix for details on this Lagrangian). Interestingly, this
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introduces a second coupling constant; in addition to the pion decay constant, we now also
have Newton’s constant (or the Planck mass) as a free parameter.

A closely related perspective on this freedom is offered by the coset constructions. As the
SG and the DBI theories have space-time symmetries, the corresponding cosets (of broken
and unbroken symmetries) therefore necessarily include the Lorentz symmetry. In contrast,
the NLSM can be seen as a product of two cosets, the one corresponding to the pion sector
and the other forming the background; for flat geometries, the latter is simply Poincare over
Lorentz as global symmetries:

ISO(D)
SO(D) × SO(M +N)

SO(M) × SO(N) , (6.19)

with the coordinates xµ and the scalar fields φab̄ corresponding to the broken generators. Upon
gauging the algebra of space-time symmetries, one obtains dynamical gravity and non-linear
(and non-Abelian) diffeomorphisms. The product of both cosets thus leads to the possibility
to introduce a parameter for each coset.

6.2.2 Flavour-kinematics duality at the off-shell level
The similar natures of the non-linear transformations and the field equations suggest a relation
between these theories at the off-shell level. Indeed one can go from theory to theory by
replacing flavour with kinematic information, or vice-versa.

We will start with the non-linear tensor transformation of the SG theory, and note that it
can be written in the following compact form

δφ = p+ 1
2∂

µφ∂µνp∂
νφ , (6.20)

where one should interpret the parameter p as a quadratic polynomial in the space-time
coordinates xµ. In order to introduce flavour, one can augment these coordinates with a set
of auxiliary coordinates θa; these can be taken as an auxiliary construct, introduced to unify
the three different theories. The parameter is now taken to be linear in the novel coordinate,
p = paθ

a, where in turn the pa are at most linear in space-time coordinates. The above
transformation then takes the form (summing over both types of coordinates in (6.20))

δφ = p+ ∂µφ∂µap∂
aφ = p+ ∂µφ∂µpaφ

a , (6.21)

where in the final expression we have similarly expanded the scalar field as φ = φaθ
a, i.e. as

linear in the flavour coordinates. Note that the resulting components φa only have space-time
dependence. In this way, the resulting transformation law is identical to that of DBI (6.10)
after expanding the above expression along the flavour coordinates.10

Going one step further, one can also replace the remaining dependence on space-time coordi-
nates with another flavour coordinate, θ̄ā. These are taken as independent from the flavour

10In a similar approach, colour information was systematically replaced by kinematic information in [72],
only at the level of currents instead of fields as outlined here.
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coordinates θa (and in particular should not be read as (anti-)holomorphic coordinates). The
parameter can then be taken bilinear in both flavour coordinates, p = pab̄θ

aθ̄b̄, with constant
coefficients pab̄. Similarly, we will take the fields to be bilinear in these, φ = φab̄θ

aθ̄b̄. This
results in the transformation law

δφ = p+ ∂aφ∂ab̄p∂
b̄φ = p+ θ̄āφaāpab̄φ

bb̄θb . (6.22)

Again, after expanding along the flavour coordinates, this expression is identical to the NLSM
transformation law (6.3). This demonstrates the close relations between the different NL
symmetries: the transformation laws are identical upon the appropriate identification of
flavour dependencies.

This discussion has a parallel for the field equations - with an interesting twist moreover.
We will consider the effect of the flavour Ansatze outlined above. Taking φ to be purely
space-time dependent corresponds to the SG field equation (6.18). When instead taking it
linear in a flavour coordinate, the LHS retains this linearity and hence is proportional to θa.
On the other hand, the non-linearities corresponding to interactions can yield higher-order
expressions.

For simplicity, let’s first discuss the cubic term on the RHS of (6.18). Summing over both
space-time and flavour coordinates, this expression yields two types of terms: with either
three pairs of space-time contractions, or two space-time and one flavour contraction (terms
with more than one pair of flavour contractions vanish as they will involve multiple flavour
derivatives on a single field, incompatible with the flavour Ansatz). Starting with the latter,
it takes the form

[Π(∂φ · ∂φ)] = θa∂µνφa∂
µφb∂

νφb , (6.23)

where in the compact first expression, the trace and matrix multiplication are for space-time
indices µ, and the dot is for flavour indices a. Note that the 1/3 coefficient of this cubic SG
Galileon in (6.18) is cancelled by the three-fold choice to distribute the flavour indices over
the trace. Stripping off the overall auxiliary flavour coordinate, the LHS and cubic interaction
then exactly combine into the corresponding terms for the multi-DBI field equation (6.12).
The same also works for higher-order terms.

So far the discussion is completely analogous to that of the NL symmetries. However, in
contrast to that case, the field equations also generate higher-order terms. For the cubic
term, it takes the form [Π3] and hence is cubic in flavour coordinates. There will be similar
contributions from the quintic and higher-order terms in the field equations that also generate
a θ3 term. We therefore conclude that the SG field equation is, under the flavour Ansatz,
translated into a set of conditions on the multi-DBI scalar fields. One of these is exactly the
DBI field equation, with contributions such as (6.23). Others are higher-order, such as the
cubic one - which is cubic in flavour coordinates, and cubic plus higher-order in fields.

Given the exact mapping between the transformation laws and the distinct dependencies
on the flavour coordinates, these different equations must be separately invariant. Indeed
the lowest-order one is identical to the DBI field equation, and the higher-order ones must
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be analogous in that they are invariant conditions. In order to get rid of these, one can
take different stances. One would be to explicitly truncate the field equation at order θ,
thus retaining the lowest-order contribution. Another would be to take the auxiliary flavour
dimensions to be Grassmannian; when contracted with the trace, the anti-symmetry then
kills this term.

Analogous considerations apply to the transition from DBI to the NL σ−model. Instead, we
now take φ to be bilinear in the flavour coordinate φa = φab̄θ̄b̄.

For simplicity, let’s consider cubic RHS of the DBI field equation (6.12). The trace over two
space-time matrices generates two types of terms: with either zero or one flavour contraction
(note that the term involving two flavour contractions again vanishes due to linearity in the
flavour coordinate). Like before, the former is proportional to θ̄3 and therefore vanishes under
the assumption that the flavour dimensions are Grassmannian. The latter takes the form

2θ̄d̄∂µφ
ab̄φcb̄∂µφcd̄ , (6.24)

where the factor two follows from the two-fold possibility to distribute the flavour indices
within the trace. Stripping off the auxiliary flavour coordinate, the LHS and cubic interaction
exactly coincide with the cubic part of the NL σ−model field equation (6.8). Again, this also
works for the higher-order interaction terms, where the two-fold choice remains because the
flavour contraction needs to be on one of the partial derivatives on the two-derivative factor
and on all contractions not involving it.

The above identifications lead to mappings of the three different theories with identical
coupling constants (which we have not explicitly included for the moment). By allowing
for numerical coefficients in the mapping, e.g. φ = (MSG/MDBI)φaθ

a, one can also introduce
arbitrary ratios. This will always map compact onto compact cosets, however. Finally, the
flavour-kinematics duality as outlined here, i.e. at the off-shell level, does not imply any
restrictions or identifications between the two coupling constants of the NLSM; we will see in
what follows that this will be different for the on-shell story.

6.3 Scattering amplitudes and on-shell duality
We now turn to the scattering amplitudes of the triplet of theories that we focus on. We will
first discuss the BCJ formulation in terms of different kinematic numerators, and subsequently
outline the relations between these numerators.

6.3.1 The BCJ formulation
In the BCJ formulation, amplitudes are generated by a sum over trivalent diagrams. As the
first non-trivial example, the four-point amplitude can be written as

A4 =
∑

exchange

NijklÑijkl

sij

, (6.25)
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Figure 6.1: The trivalent diagrams relevant at lower-point scattering; all have half-ladder topology
at three-, four- and five-points, while at six-points there are half-ladder and snow-flake
topologies.

where the sum is over the three inequivalent exchange diagrams (see Figure 6.1), corresponding
to the permutations (ijkl) = (1234, 2314, 3124) (i.e. the s, t and u exchange channels), and the
propagator structure in the denominator is sij = (pi + pj)2. The reduction from in principle
4! permutations down to three is due to three Z2 symmetries: anti-symmetry in the first pair
and in the last pair of indices, as well as order inversion. Note that these are all inequivalent
trivalent diagrams when taking order invariance and anti-symmetry into account: using these,
particle 4 can always be placed at the final entry and there are three inequivalent options
(particle 1, 2, 3) for the penultimate entry.

More generally, this leads to (2n− 5)!! diagrams for general n-point amplitudes, leading to 15
and 105 contributions to five- and six-point amplitudes. The former consists of all halfladder
permutations subject to the above Z2 symmetries (with 5!/23 = 15 inequivalent possibilities).
In the latter case, however, there are two inequivalent topologies, half-ladder and snow-flake
diagrams, as is shown in Figure 6.1.

There are 6!/23 = 90 independent half-ladder permutations, with kinematic factors Nijklmn.
Next to these, there are 6!/(23 · 3!) snow-flake permutations; there is a 3! reduction due to
equivalence of the three legs, and 23 due to the anti-symmetry in every leg. The kinematic
factor for such diagrams is related via Jacobi identities and given by Nijklmn −Nijlkmn. The
six-point amplitude then takes the form

A6 =
∑

half−ladder

NijklmnÑijklmn

sijsijksmn

+
∑

snow−flake

(Nijklmn −Nijlkmn)(Ñijklmn − Ñijlkmn)
sijsklsmn

, (6.26)

in terms of the two numerators N and Ñ . Note the two different propagator structures in the
denominators (where sijk = (pi + pj + pk)2).

We now turn to the algebraic conditions on the numerators. In the BCJ formulation, the
four-point amplitude factorises into kinematic numerators. These are required to satisfy the
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following symmetry conditions:

Nijkl = −Njikl , Nijkl = Nlkji , Nijkl +Njkil +Nkijl = 0 . (6.27)

In addition to anti-symmetry in the first pair of indices and the order invariance, the third
condition is often seen as a kinematic version of the Jacobi identity on structure constants.

There is a natural generalisation of this story to higher n-point factors. These are subject to
the following Jacobi-like identities,

−Nijkl... = Njikl... = Nk[ij]l... = Nl[[ij]k]... = ... (6.28)

involving multiple commutators for the first n − 1 indices. In total there will be n − 2
conditions of this form, generalising the two for the 4-point function mentioned above. In
addition, one can impose the order reverse condition

Nijklm... = (−)nN...mlkji . (6.29)

These conditions translate into constraints on the possible representations that the factors
can take. The corresponding Young tableaux are illustrated in Figure 6.2 and are given by
the following:

• For three-point factors, one can only have the anti-symmetric tensor. Its dimension (as
element of the symmetric group) is 1.

• At four-point, the unique representation is the window tensor with dimension 2.

• At five-foint, we find the equal-arms hook tensor with dimension 6.

• At six-point, we find three irreps with different Young tableaux. Their dimensions are
5, 9 and 10, respectively, adding up to 24.

Interestingly, these (ir)reducible representations have dimensions equal to (n− 2)! for every
n-point factor.

The subsequent question is how to find specific representations that solve these conditions.
For colour, these can be represented in terms of the structure constants of the group (where
A is the adjoint representation), and read

N1234... = fAB
PfP C

QfQD
R.... , (6.30)

involving commutators of the first n − 1 indices. So for instance, at three and four-point,
these are11

N123 = fABC , N1234 = fAB
PfP CD . (6.31)

Note that we assume the existence of a metric in the adjoint representation to lower the last
index. These numerators naturally satisfy the Jacobi identities outlined above, and give rise
to unique BCJ representations for colour.

11In order not to clutter expressions, we are suppressing the adjoint indices on the LHS here; one should
read this as e.g. (N123)ABC = fABC , with the understanding that A refers to the adjoint rep of the first
particle etc.
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(a) (b) (c) (d) (e) (f)

Figure 6.2: Young tableaux for the BCJ numerators at a) three-, b) four-, c) five-, and d,e,f)
six-point.

6.3.2 Flavour and kinematics numerators
While the original BCJ paper addresses the factorisation of the scattering amplitudes of
Yang-Mills and gravity in terms of colour numerators and kinematic numerators that involve
momenta and polarisations, there have been many generalisations since. One of these is the
identification of a numerator factor that solely depends on the Mandelstam variables, without
polarisation. As a consequence, this describes the scattering of scalar particles, without
additional structure (such as colour, flavour or spin). We first outline this possibility before
considering generalisations that include flavour.

For scalar theories, the kinematic numerators can only depend on Mandelstam variables. The
absence of colour structure implies that no anti-symmetric three-point numerators exist in
the kinematic case, since all momentum contractions vanish under momentum conservation
for massless particles. In this sense there is no kinematic analogue of structure constants.

At four-point, one has to impose the Jacobi identities12 (6.27). We will be interested in factors
that are quadratic in the Mandelstam variables,13 in order to have the correct number of
derivatives to connect to the special Galileon. The most general solution then reads

Nijkl = λ4sij(sjk − sik) , (6.32)

for the s-channel contribution. The resulting amplitude is

A4 = −9λ4
2s12s23s13 (6.33)

This four-point amplitude indeed coincides with the special Galileon interaction of (6.18).
Note that, despite the propagators in the BCJ formulation of the amplitude (6.25), there
are no poles over any Mandelstam variables in the result. This coincides of course with
the statement that the theory under consideration has no three-point interactions that the
four-point amplitude could factorise into.

12An alternative to solving Jacobi identities was investigated in [44], by introducing the notion of numerator
seeds. Following the rewriting of structure constants as a specific linear combination of traces of generators,
their idea is to identify the (simpler) kinematic seeds that are the analogue of traces of generators. Subsequently,
the full numerators are constructed by multiplying the seeds with a matrix J encoding the Jacobi-like identities.

13There is also a linear solution, with Nijkl ∼ (sjk −sik), that will however have a more natural interpretation
when including flavour later on. It can also be used as a building block to generate quadratic and higher
solutions along the lines of [65]. Monomials of higher order than quadratic could correspond to e.g. higher-
derivative corrections to the theories that we consider; however, we will restrict ourselves to the first non-trivial
possibilities.
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The next case to consider are the 5-point factors. In this case, there are four constraints on
the factors: in addition to the anti-symmetry and the order reversion ones, there are two
Jacobi-like constraints involving commutators. We have checked that these constraints have
no solutions below cubic order in Mandelstam. At cubic order, there is a single parameter.
However, it turns out that the full amplitude vanishes in this case; the parameter should
therefore correspond to a generalised gauge transformation. One can see this in the following
way.

Suppose the numerator would be (or would contain terms) of the following form:

Nijklm ∼ sijGijklm − slmGmlkji . (6.34)

When tensored with an arbitrary other numerator Ñ , the amplitude receives a contribution
∑ ÑijklmGijklm

slm

− ÑijklmGmlkji

sij

. (6.35)

Provided the gauge parameters Gijklm are fully anti-symmetric in the first three parameters
(ijk), these 30 terms nicely combine into 10 triplets, where each triplet shares a common
denominator. For instance, there will be terms proportional to

(Ñijklm + Ñjkilm + Ñkijlm)Gijklm

sij

, (6.36)

and similar for the other denominators. Of course, these terms nicely combine into a Jacobi
identity and therefore cancel. Note that this is independent of the specific form of the second
numerator Ñ ; it only requires that these satisfy the Jacobi identities. It turns out that the
most general 5-point factor is exactly of this form, with gauge parameter given by

Gijklm = (silsjm − (l ↔ m)) + (cyclic) , (6.37)

where the two cyclic terms refer to cyclicity in (ijk). Therefore, the most general kinematic
5-point numerator is a gauge transformation.

At the six-point level, we will be interested in quartic factors in Mandelstam variables in
order to connect to e.g. the special Galileon.14 Solving the Jacobi identities (6.28) and (6.29)
leaves one with 23 free parameters. Additionally, we have to impose factorisation into even
amplitudes: the resulting amplitude may not have any poles over single Mandelstam variables,
as this would correspond to splitting into a three- and a five-point vertex. This constraint
further reduces the free parameters to only six.15 When calculating the amplitudes, one finds
that these only depend on a single linear combination of these coefficients. We therefore find
five gauge parameters and one physical one.

Motivated by the overall sij dependencies of the 4- and 5-point kinematic factors, we consider
a similar Ansatz at 6-point:

Nijklmn = sijPijklmn + order reversed . (6.38)
14There are also quadratic and cubic solutions, that however are again naturally interpreted in the context

of flavour.
15Operationally, we have first required the correct factorisation for amplitudes with one colour factor, and

subsequently checked that kinematic × kinematic amplitudes also factorise correctly.
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It turns out this Ansatz contains one gauge parameter and the physical one. The latter
corresponds to the explicit expression

Pijklmn = − smn

(
sjk

(
− 4sin + 4

(
sjl + skl + skm

)
+ 5slm

)
+

+ sik

(
− 4sin + 4

(
sjl + skl

)
+ sjk + 9slm

)
+ 5sijsik + 4s2

ij + s2
ik

)
+

+ 4
(
sij + sik + sjk

)((
sik + sjk

)(
− sin + sjk + sjl + skl

)
+ sjkskm

)
− 4slm

(
sik

(
sjl + skl

)
+ sjksjl

)
+ s2

mn

(
4sij + 5sik

)
, (6.39)

up to a generalised gauge transformation. The resulting amplitude agrees with the special
Galileon 6-point interaction.

We expect that this structure of kinematic factors continues at higher points as well, with the
relevant non-trivial solution to the Jacobis coming in at order n− 2 in Mandelstam variables.
At odd points, these should be pure gauge (as the NLSM has only even amplitudes), while
the even-point factors will be unique up to gauge transformations.16

An important aspect of the discussion above is that there are no solutions to the Jacobi
identities below a specific order in momenta. However, this assumes a structureless scalar
field; new possibilities open up when augmenting the scalar field with additional structure.
One example of this is to consider scalars in the biadjoint representation; this leads to the
colour factors, starting with the structure constants fABC as the three-point factor (where A
is the adjoint). Instead, we will focus on the fundamental representation, e.g. of the special
orthogonal group. Note that this directly eliminates all odd-point factors, as we will only be
using the invariant metric δab. The remaining even-point expressions will be referred to as
flavour factors.

For the flavour factors at four-point, we find the first non-trivial solution17 at linear order in
Mandelstam variables:

F1234 = f1(δabδcd(s23 − s13) − (δacδbd − δbcδad)s12) + f2(δabδcd + δacδdb + δadδbc)(s13 − s23) .
(6.40)

Our notation here is that the first particle has momentum p1 and flavour index a etc. Note
that the interplay between kinematic and flavour allows one to solve the Jacobis in different
ways; the above expression is anti-symmetric overall in the exchange of 1 and 2, that arises
from anti-symmetry in flavour and symmetry in kinematic or vice versa. One consequence is
that, in contrast to the colour and kinematic case, we find a free parameter already at the
four-point level. When restricting to a single flavour, both parameters collapse onto the same
factor, that was already mentioned in footnote 13, which should therefore really be seen as a
special case of the expression above including flavour.

16Explicit expressions at six- and higher-point can be found in [98]; however they are constructed in a basis
where the order reversion symmetry is not imposed.

17The same factors were constructed in [164, 163] with a different interpretation, namely as higher-derivative
corrections to a specific NLSM. We will comment on this possibility in the concluding section.
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By constructing amplitudes, one finds that both parameters f1 and f2 are actually physical
instead of pure gauge. For instance, one can build amplitudes from kinematic and flavour
factors,

A4 =
∑

exchange

NijklFijkl

sij

. (6.41)

The resulting amplitude splits up into a number of sectors that have different flavour structures,
akin to the partial amplitudes of colour structures. For instance, along the δabδcd part, one
finds

Aab,cd
4 = −6f1λ4(s23s13) − 6f2λ4(s23s13 − s2

12) . (6.42)

Comparing to the explicit Lagrangian of Section 6.2 and its Feynman rules, one concludes that
the f1 part of this expression corresponds to the multi-DBI theory, with the specific relation
between the two quartic terms Tr[(∂φa∂φn)2] and Tr[(∂φa∂φn)]2. The second parameter
follows from only the second of these quartic types. We therefore conclude that for generic
parameter values this theory has no clear Goldstone interpretation associated with spontaneous
symmetry breaking; this is only true for f2 = 0, resulting in the BCJ formulation of multi-DBI.

As a second possibility, it is interesting to consider the product of two flavour numerators. In
order to understand these amplitudes, it will be advantageous to introduce trace notation for
the flavour structures generated by the δ-functions, for instance

[AB] ≡ δabδāb̄ , [ABCD] ≡ δabδcdδb̄c̄δād̄ , (6.43)

where δab and δāb̄ generate the flavour structures of the two distinct numerators. In this
notation, the amplitude contains two types of contributions:

• Firstly we have single-trace contributions, an example of which is given by

∼ f 2
2

(s2
12 − s23s13)2

s12s23s13
([ABCD] + [ADCB]) + (cyclic) , (6.44)

where (cyclic) denotes cyclic permutation of three external legs, keeping one fixed.
Note that the flavour structure of these terms, with a single trace, would perfectly
correspond to the (expected) contributions from four-point operators in the NLSM;
however, the kinematic structure includes (single) poles which would be incompatible
with this. Therefore, we will henceforth set f2 = 0. Note that this in retrospect justifies
the interpretation of the four-point amplitude with one flavour and one kinematic factor
as multi-DBI.

The only remaining single-trace contribution is given by

Acontact
4 = − 4f 2

1 s13([ABCD] + [ADCB]) + (cyclic) . (6.45)

These are indeed the amplitudes that would follow as contact diagrams from the
Lagrangian (6.7).
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Figure 6.3: The two types of Feynman diagrams that contribute to the NLSMg four-point amplitude:
contact interactions (left) and graviton exchange (right). Note that the straight lines
are NLSM scalars and the curly line represents a (intermediate) graviton.

• In addition to the single-trace terms, we have double-trace contributions of the form

Aexchange
4 = −4f 2

1
s23s13

s12
[AB][CD] + (cyclic). (6.46)

Due to the pole structure, these cannot be contact terms; instead they correspond to
graviton exchange between the four scalars (see Figure 6.3); as the gravitons do not
carry any flavour, this requires the flavours of the four particles to coincide pairwise.18

Together, these single- and double-trace amplitudes arise from the scalar-sector of the
SO(M,N) non-compact NLSM minimally coupled to Einstein gravity, with the Lagrangian
given by

LGR+NLSM =
√

−g
(

1
2M

2
PlR − 1

2[ 1
1 − φφT/F 2 ∇µφ

1
1 − φTφ/F 2 ∇µφ

T ]
)
, (6.47)

where MPl is the (reduced) Planck mass and F is the pion decay constant. Further details on
the amplitudes of this theory are reviewed in the appendix. Given the relative strengths of
the exchange and contact diagrams following from the BCJ prescription, we find that this
corresponds to the non-compact NLSM coupled to gravity with the two coupling constants
identified, MPl = F , In contrast to the off-shell mapping outlined previously, the BCJ
amplitudes therefore lead to a specific identification of the two parameters.

At 6-point, there are 15 possible inequivalent flavour structures of the form δ··δ··δ··. On the
kinematic side, these would be multiplied by a quadratic expression in one of the 9 Mandelstam
variables, leading to 45 different terms (and hence in total 675). Imposing the 6-point Jacobi
identities constrain 642 of these parameters, leaving 33 parameters unfixed. These are split up
amongst the 3 different irreps in the following way: the 5 contains 9 parameters, the 9 contains
15 parameters and the 10 contains 9 parameters. These then have to be further reduced to
satisfy the factorisation constraints. Remarkably, this again leads to six parameters, similar
to what was found for the kinematic factors. Moreover, all six parameters have components
in all three irreps of Figure 6.2.

Turning to the amplitudes, we find that these also depend on a single linear combination of
these six parameters. We therefore again conclude that five correspond to a generalised gauge

18It would be interesting to investigate whether the poles introduced by f2 have a similar interpretation
as e.g. gluon exchange; however, as we need to set f2 to zero to get DBI and NLSM we will not pursue this
option here.
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transformation, and there is a single physical parameter. The flavour factor F123456 in general
is given by a rather complicated expression. However, for a specific parameter (that is not
equal to pure gauge) it follows from the flavour structure that multiplies the s2

a,b kinematics,
which is given by

28δafδbeδcd − 28δaeδbfδcd + 11δabδcdδef + 13δafδbdδce − 13δadδbfδce+ ,

− 34δaeδbdδcf − 5δadδbeδcf + 25δafδbcδde − 26δacδbfδde + 8δabδcfδde+ ,

− 7δaeδbcδdf + 26δacδbeδdf + 13δabδceδdf − 9δadδbcδef + 7δacδbdδef . (6.48)

The other terms, that include the dependence on the other eight Mandelstam invariants, then
follow from imposing both the Jacobis and the factorisation.

6.3.3 Flavour-kinematics duality at the on-shell level
To complete the discussion of on-shell flavour-kinematics duality, finally we turn to the
relations between the different factors. Analogous to the mapping of field equations and
non-linear symmetries, one can also relate the different factors by a specific operation.

To illustrate this, we consider the four-point flavour factor

F1234 = δabδcd(s23 − s13) − (δacδbd − δbcδad)s12 . (6.49)

Now replace the flavour information (i.e. the SO(N) delta-functions) with kinematic variables
according to

δab 7−→ 1 + λ s12 , (6.50)
where λ is an arbitrary constant, and similar for all other flavour structures. We obtain an
expression quadratic in λ, from which we isolate19 the part that is proportional to λ. Upon
using four-point scattering identities (including e.g. s12 + s13 + s23 = 0 and similar), the
coefficient of this term turns out to be exactly the scalar-kinematic numerator (6.32),

N1234 = s12(s23 − s13) , (6.51)

after setting λ = 1. Note that the replacement (6.50) and subsequent restriction to terms
linear in λ implies that one goes from an amplitude that is quartic in derivatives to one that
is sextic. This is the on-shell counterpart to the off-shell mapping discussed in Section 6.2.2,
which also introduces jumps by two derivatives at the four-point level.

The same mapping (6.50) has been verified at six-point scattering, where it relates the full
six-point flavour amplitude (partly given by (6.48)) to the kinematic factor (6.38) and (6.39)
after retaining the coefficient proportional to λ2. Similarly, the five gauge parameters on the
flavour and the scalar kinematic sides also map onto each other. We conjecture the same
relation to extend to higher order as well.

While not the focus of this chapter, it is interesting to note that there is a similar mapping
from the tensor kinematic factor (relevant for GR and YM) onto the flavour factor. At

19Note that this mapping is not invertible, since we lose information by throwing away terms of highest
order in λ.
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four-point, the tensor factor is given by (see e.g. [30])

T1234 = −
{[

(ε1 · ε2) pµ
1+2 (ε1 · p2) εµ

2 − (1 ↔ 2)
][

(ε3 · ε4) p3µ + 2 (ε3 · p4) ε4µ − (3 ↔ 4)
]

+ 2s1,2
[

(ε1 · ε3) (ε2 · ε4) − (ε1 · ε4) (ε2 · ε3)
]}
.

(6.52)
To transform tensor-kinematic information into flavour-kinematics, we map20

εi· pj 7−→ 0 , εi· εj 7−→ δij , (6.53)

which results exactly in the flavour factors (6.40), with f1 = 1 and f2 = 0. Alternatively, one
could take the starting point to be the polarisation-stripped version of (6.52), which is given
by

T1234 =
[(

−1
2η

αβηγλp1 · p3 − ηγλp2
αp3

β − ηαβp1
λp4

γ − 2ηβλp2
αp4

γ
)

−(1 ↔ 2) − (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4) +
(
ηαληβγ − ηαγηβλ

)
p1 · p2

]
,

(6.54)

where we (analogous to flavour indices) associate the space-time index α with particle 1, β with
particle 2, and so forth. For the polarisation-stripped numerator, the transformations (6.53)
become

ηαβ 7→ δab , (6.55)

while all terms involving two non-contracted momenta vanish. Note that the indices on the
LHS of (6.55) are space-time indices, while the indices on the RHS represent flavour.

This relation between amplitudes spanned by tensor kinematics and flavour factors has a well-
known counterpart at the Lagrangian level. The dimensional reduction of general relativity
over N dimensions leads to an SL(N)/SO(N) coset, while when instead starting from the
common sector (gµν , Bµν , φ) in the higher dimensions this leads to an SO(N,N) coset (see
e.g. [148]). In view of this, it should not be surprising that the BCJ factors of both theories,
being the slightly generalised SO(M,N) with M 6= N and the common extension of GR with
dilaton and two-form, are therefore also related.

In a similar vein, the mapping from tensor-kinematics to flavour and finally scalar-kinematics
as outlined here is closely related to the operations dimensional reduction (or compactify)
and generalised dimensional reduction (or “compactify”) of [51]. In the CHY representation,
the amplitudes are characterised by integrands that carry all information about the theory;
each integrand consists of two building blocks containing polarisations and momenta. The
(generalised) dimensional reduction procedure allows the polarisations of one of these building
blocks to explore an internal space, thereby mapping e.g. the gravity integrand to its Born-
Infeld counterpart. Since gravity and Born-Infeld amplitudes can be constructed out of two
tensor-kinematic numerators and a combination of a tensor-kinematic and a scalar-kinematic
BCJ numerator respectively, the numerator mapping proposed here mimics this CHY operation
at the level of the numerators.

20All odd-point tensor factors map onto vanishing flavour factors due to the odd numbers of polarisations
and momenta.
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Non-linear symmetry Equation of motion

NLSM δφ = c+ φcTφ �φ =
∞∑

n=1
(−1)n−12 (∂µφ)φT

·
(
φφT

)n−1
(∂µφ)

DBI δφa = ca + ca
µx

µ + cb
µφ

b∂µφa �φa =
∞∑

n=1
(−1)n−1

· [(∂∂φa) (∂φ · ∂φ)n]

SG δφ = c+ cµx
µ + cµν (xµxν + ∂µφ∂νφ) �φ =

∞∑
n=1

(−1)n−1

2n+ 1
[
Φ2n+1

]
Irrep Factor at 4-point

Colour adjoint A fAB
EfCDE

Flavour fundamental a δabδcd(s23 − s13) − (δacδbd − δbcδad)s12

Kinematics singlet s12(s23 − s13)

Table 6.2: The triplet of exceptional scalar EFTs with their non-linear symmetries and field equa-
tions, and the triplet of BCJ numerators into which they can be factorised. The off-shell
mapping, as outlined in Section 6.2.2, relates different theories while the on-shell map-
ping (6.50) relates different factors.

6.4 Conclusion and outlook

This chapter deals with the interrelations between flavour and kinematic aspects of Goldstone
theories. We have highlighted novel relations between three cases that display spontaneous
symmetry breaking, ranging from internal (the pions of the SO(M,N) NLSM) to space-time
symmetry (the SO(N) multi-DBI scalars and the special Galileon). These theories therefore
appear as different guises of the same underlying structure, which can be expressed in terms
of flavour and/or kinematics. This flavour-kinematics duality results in the three Goldstone
theories under study.

At the off-shell level, the field choice ambiguity can be fixed by requiring a common form of
the NL symmetry transformation, with a constant and a quadratic part. In this basis, the
field equations are seen to take closely related forms. These are summarised in the upper
part of Table 6.2. As outlined in Section 6.2.2, the different fields, NL symmetries and field
equations are mapped onto each other via an expansion in flavour coordinates θa, with e.g. the
SG and DBI fields related as φ = φaθ

a.

At the on-shell level, the amplitude of these theories can be built along the lines of BCJ
factorisation from a range of building blocks. In addition to the well-known colour and
kinematics factors, we have outlined how to construct flavour factors. These are subject to the
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same conditions, including group-theoretical (corresponding to the Jacobi-like identities) and
physical (ensuring the correct amplitude factorisation) constraints. With the introduction of
flavour, these factors employ the simplest SO(N) representations, being scalar, fundamental
and adjoint, see the lower part of Table 6.2. As before, the reduction of flavour increases
kinematics, as seen from the order in Mandelstam variables, and vice versa. Remarkably, the
flavour and kinematics factor are found to be related by the simple substitution (6.50); these
therefore really correspond to the same structures expressed in different spaces.

Which picture emerges from these different considerations? Employing the different combina-
tions of factors, one can build a range of double copy theories. In addition to the three scalar
factors describing colour, flavour and scalar kinematics, we will also include the possibility that
was identified in the original BCJ proposal, including polarisation and thus tensor kinematics.
Given these four factors, we find that the most direct graphical representation would be that
of a tetrahedron, as illustrated in Figure 6.4. The different nodes of this figure correspond
to theories whose amplitudes are the products of the same type of factors, while one finds
theories with mixed factors along the edges.

Let us start with discussing the scalar theories at the bottom level of the diagram. At the
front of the figure is the special Galileon theory, with two copies of scalar kinematics. When
successively replacing scalar kinematics with flavour, one moves via the multi-DBI theory
towards the SO(M,N) NLSM minimally coupled to gravity (and with the identification
F = MPl). When instead opting for colour instead of flavour, one encounters the NLSM
without gravity, and finally the bi-adjoint scalar theory. The remaining scalar possibility has
both a flavour and a colour factor, and corresponds to the scalar sector of the dimensional
reduction of Yang-Mills (YMS).21

Moving up into the vertical direction, the original colour-kinematics duality corresponds to
the edge linking the purely colour-based BAS theory and the tensor kinematics-based GR.
Note that this is fully orthogonal to flavour-kinematics duality that we focus on and that
interpolates between the SG and the gravity-coupled NLSM. At the spin-1 intermediate level,
one also encounters the Born-Infeld vector theory, as well as an SO(N) multiplet of Maxwell
vectors that only interact via gravity.

Remarkably, the SO(M,N) NLSM appears twice in the above construction, with and without
gravity-mediated interactions: the former consists of purely flavour, while the latter is the
product of colour with scalar kinematics. This freedom was also encountered in the off-shell
formulation of the theory, and corresponds to the introduction of an additional parameter
arising from the direct product structure of the coset. Instead, from the BCJ factorisation,
one either finds MPl infinite or equal to the pion decay constant. Perhaps one can consider
combinations of these to interpolate to intermediate values of the Planck mass.

A number of interesting questions appear naturally as a result of our findings. One of these
concerns the self-interaction face on the right side of the tetrahedron. These theories retain
non-trivial interactions when restricted to a single species (and hence no flavour or colour).

21Similar relations between the amplitudes of these sets of theories have been outlined from a different
perspective in [51, 76]; our focus is on the BCJ formulation of these theories instead.
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Figure 6.4: The tetrahedron spanned by the four different BCJ numerators that theories can factorise
into. Taking all possible products results in the indicated web of dualities (including
colour-(tensor-)kinematic and flavour-(scalar-)kinematic) between the different spin-2,
-1, and -0 effective field theories. The right face of the tetrahedron corresponds to EFTs
that retain interactions when restricted to a single species.

As a consequence, these theories therefore will have non-linear responses to a source term, in
contrast to e.g. Yang-Mills theory. It would therefore be interesting to investigate the classical
solutions of these theories and their possible mappings. Note that this would necessarily differ
from the classical double copy as outlined in e.g. [176], as these map the linear Coulomb
solution onto the Schwarzschild solution (effectively linearised when written in Kerr-Schild
coordinates). Instead, the classical solutions on the self-interaction face would be non-linear,
with a simple example provided by the Born-Infeld solution as a non-linear completion of the
Coulomb solution [45].

Secondly, the flavour factors as identified in Section 6.3 have already appeared in a different
guise, namely as higher-derivative corrections to an SO(M + 1)/SO(M) coset. The addition
of colour and flavour factors results in the interesting structure of extended DBI theory [164,
163]. Note that this combination is possible due to the special structure of the coset in the
case of N = 1, with colour and flavour both in the fundamental SO(M) representation. It
could be similarly interesting to further specialise to the case M = 1, where flavour and scalar
kinematics live in the same, trivial representation. The four-point factor for this theory are
given by a linear combination of the expressions of Footnote 13 and (6.32). Perhaps this
might give rise to a theory that includes DBI and SG as higher-derivative corrections to a
free scalar field coupled to gravity.

Finally, it would be interesting to investigate whether the double copy that has been identified
for on-shell amplitudes also extends to off-shell aspects such as correlators and wavefunctionals.
This issue was addressed recently [35], where it was found that the most straightforward
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implementation of the double copy structure does not work (however, see also the analysis
of [9] employing cosmological scattering equations). Given the off-shell mapping outlined in
Section 6.2, it would be interesting to see whether this could be adapted for the gravity-coupled
SO(M,N) NLSM, and whether this would allow for a mapping onto multi-DBI and SG.
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Chapter 7

Concluding remarks

The main objective of this thesis has been to research to what extent classical dynamical
symmetries can persist in relativistic theories. Specifically, attention was paid to celestial-like
problems, which are generically known to be much more difficult to solve in relativistic
settings.

As the symmetries and consequent integrability of non-relativistic systems are best understood
through Hamiltonian mechanics, it makes sense to look for formulations of relativistic theories
in terms of Hamiltonians as well. However, because of the lack of a universal time parameter
in relativity, it is not trivial to even write down the Hamiltonian for multi-body problems,
making classical Hamiltonian mechanics ill-equipped to deal with such systems directly.1 In
asking the question whether there exist relativistic systems preserving classical symmetries, we
are therefore naturally led to one-body systems, in which a single moving body is influenced
by its static background. While it is possible to describe any two-body system (in a theory
with Poincaré symmetry) from the center of mass frame as a spherically symmetric one-body
system with a potential, it is far from trivial to write down this potential.

As demonstrated in Chapters 4 and 5, relativistic systems with classical symmetries exist.
However, systems exhibiting these symmetries are not separate from the classical ones they
share symmetries with, but are in fact, on an energy level-set, the same up to reparametrisation
of time. For the two-body system, we have written down the Hamiltonians (reduced to one-
body) for all systems displaying both special relativistic limits far away from the center and
Keplerian ellipses, conserved quantities and integrability, at least up to 5PN. According to the
argument put forth by [93], assuming LRL gauge, any relativistic Hamiltonian with Kepler
as the non-relativistic limit and displaying additional symmetry is just a function of Kepler
Hamiltonians.

Furthermore, we gave physical, one-center interpretations for some special cases, and shown
the relations among them. In principle, relativistic two-body systems with comparable masses,
reduced over translations, can also be of the form agreeing with our general, symmetric

1The post-Newtonian and post-Minkowskian approximations are ways to systematically account for the
non-instantaneous nature of relativistic interactions, and by rephrasing them in terms of instantaneous
interactions allow to construct classical potentials.

125



Keplerian Black Holes and Gravitating Goldstones

Hamiltonian (5.1), but so far, only approximations to first PN - or second PM order have
been shown to fit the bill [59, 180].

Another aspect of this thesis is the double copy between gauge theory and gravity. The double
copy has an extremely wide range of applicability. From relating the scattering amplitudes of
scalar theories with soft limits to dynamical systems describing higher-dimensional uplifts of
charges or black holes: it is able to relate different physical systems that a priori have no obvious
connection. In some cases, this reduces the difficulty of characterising the physics to doing this
in the easiest available context, such as in the Yang-Mills amplitude calculations underlying
the higher order Hamiltonian calculations for the gravitational two-body problem [24].

In this thesis, we have seen the double copy in two quite different incarnations. First, we
discussed how it establishes relations between backgrounds as well as one-body systems in
different relativistic theories. Second, it was shown how the flavour-kinematics duality in the
amplitudes of a triplet of scalar theories can be used to manifest relations between them, both
on-shell in terms of amplitudes and off-shell in terms of equations of motion.

While providing some answers, our exploration has also raised new questions and suggests
some possible directions for further research, listed here.

1. It appears that the only relativistic systems displaying the so(4) symmetry of the Kepler
problem are those that are related to the Kepler problem through time reparametrisation.
This was established to 5th post-Newtonian order in Chapter 4, and it seems possible
to extend this to all orders. For this, one would need to make rigorous the claim that
all two-body Hamiltonians can be written in LRL gauge.

2. As we have seen multiple theories in which the one-center system has Keplerian symme-
tries, it would be interesting to consider whether there exist two-body systems displaying
these symmetries beyond vanishing mass ratio, with comparable masses or charges, as
also discussed at the end of Chapter 5.

3. The 3 instances of the general class of relativistic Kepler systems discussed in Chapter 5
have spin-0,-1, and -2 interpretations in 5 dimensions. Can we similarly take higher-
degree monomials to find higher-spin interpretations? Since the spin-0 and -1 theories
are linear (i.e. non-self-interacting) to begin with, while for spin-2 the set-up linearises
Einsteins equations, it might be expected that a realisation in terms of a free spin-3
theory is possible.

4. Another example of hidden symmetry is the one related to the third constant of motion in
the classical two-center problem, next to the symmetries yielding conservation of energy
and one angular momentum component. Since these constants are independent and in
involution, the system is integrable. As discovered by [221], the two-center system in
fact is the only classical axisymmetric system with conserved energy possessing another
constant of motion. In a sense, this is Bertrands theorem for the two-center system. In
General relativity, a similar system exists, with an analogous constant. It is the system
of a geodesic on a Kerr spacetime, and the constant the Carter constant. The generic
two-center system in GR, given by Bach and Weyl [11], does not posses a third constant
and is not integrable. The question presents itself whether the dynamical system of a
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geodesic on a Kerr background is canonically conjugate to (a function of) the classical
two-center problem, in much the same way as our relativistic one-center systems appear
to be conjugate to the classical Kepler problem. We know that at least all two-center
systems in the relativistic theories we have discussed are related to the classical system
through time reparametrisation on the energy-level. And can one, similarly to what we
have aimed to, attempt to show that all relativistic systems with the classical two-center
symmetry can be related through canonical transformations to the classical two-center
problem?

5. The interpolation from classical to relativistic systems is generally done through taking
the speed of light c from infinity closer to one, its value in natural units. In a similar
sense, one can go from flat space to curved space by adjusting Newton’s constant G
from zero to unity, or from classical physics to quantum physics by ‘turning on’ Planck’s
constant h. This three-way approach of a theory of quantum gravity is sometimes
summarised in the Bronstein cube [131]. The hope is that each of these approaches can
teach us something about the corner theory, uniting relativity, gravity, and quantum
physics. In the – less ambitious and far-reaching – context of relativistic binary systems,
one can imagine in a similar vein that we might learn from approaching realistic binary
systems by departing from a so(4)-preserving relativistic system, such as the one-center
system of two extremal Einstein-Maxwell-dilaton black holes with a =

√
3. In this type

of perturbation theory, many interesting questions can be asked, in the light of the
classically understood dynamics. Does the free flow on the 3-sphere persist, but now
on a deformed sphere? Is the flow still on a sphere but no longer free? Or is there
another way we can order our understanding of such a system, by assessing the first
‘post-symmetric order’? This seems especially interesting in the context of extreme
mass-ratio inspirals, as in this context one can conceivably take a one-center system as
starting point.

6. The harmonic oscillator (HO) is in many ways the sibling of the Kepler system. It,
too, possesses the largest number of independent conserved quantities possible for its
dimension, as stipulated by Bertrand’s theorem. Moreover, as shown e.g. in [140], by
a complex coordinate transformation the planar problems can even be seen to be the
same. This suggests there is a natural extension along the lines of Chapter 5 of the HO
to relativity

H2 = m2 + p2 + x2 G(m+H) , (7.1)

with G(y) a polynomial. Could there be physical realisations of these Hamiltonians? And
does the planar complex coordinate transformation between Kepler and HO also persist
in relativity? And, finally, can one argue that these are all relativistic systems with the
symmetries of the HO and can these be related through canonical transformations to
functions of it?

We will leave the above questions to future research.
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Appendix

NLSM with GR
Here we derive the four-point amplitudes of the compact SO(M +N)/(SO(M) × SO(N))
NLSM coupled to gravity. First, we will use the perturbation theory method as outlined
in e.g. [166, 174], after which we apply the Lehmann, Symanzik and Zimmermann (LSZ)
formula to extract amplitudes.

Recall from section 6.3 that the Lagrangian of the SO(M +N) NLSM minimally coupled to
gravity, now including coupling constants, reads

LGR+NLSM =
√

−g

 2
κ2R − 1

2[ 1
1 + φφT

F 2

∇µφ
1

1 + φT φ
F 2

∇µφ
T ]
 , (2)

where κ2 = 4/M2
Pl in terms of the (reduced) Planck mass, and F is the NLSM cut-off scale.

Following e.g. [166], we work with the so-called gothic graviton hµν , such that
√

−ggµν = ηµν − κhµν . (3)

Furthermore, we adopt the De Donder gauge, with ∂µh
µν = 0. These choices lead to the

particularly useful properties that the Einstein tensor is given by Gµν = −κ
2�hµν , and the

curved space-time d’Alembertian, denoted by �c ≡ gµν∇µ∇ν , reduces to �c = gµν∂µ∂ν [96].
The field equation for the graviton and scalar field respectively read

Gµν =κ
2

4 (gρµgσν − 1
2gµνgρσ)[ 1

1 + φφT

F 2

∂ρφ
1

1 + φT φ
F 2

∂σφT ] ,

�cφ =2
∞∑

n=1
(−1)n−1∂µφ

φT

F 2

(
φφT

F 2

)n−1

∂µφ .

(4)

By expanding hµν and φ in their coupling constants,

hµν = h(0)µν + κh(1)µν + κ2h(2)µν + . . . , φ = φ(0) + φ(1)

F 2 + φ(2)

F 4 + . . . , (5)

and substituting these expansions into the field equations (4), we obtain a differential equation
for each perturbative correction h(k)µν and φ(k). The relevant equations for four-scalar
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scattering are given by

�h(0)µν = −κ

2

(
∂µφ(0)∂νφ(0)T − 1

2η
µν∂ρφ(0)∂ρφ

(0)T
)
,

�φ(1) = κ∂µ∂νφ
(0)h(0)µν + 2

F 2∂
µφ(0)φ(0)T∂µφ

(0) .

(6)

Fourier transforming the above to momentum space leads to

h(0)µν(−p1) = − 1
p2

1

∫
d̄4p2d̄

4p3
κ

2

{
(pµ

2p
ν
3) − 1

2η
µν(p2· p3)

}
[CD][φ(0)cc̄(p2)φ(0)dd̄(p3)] , (7)

φ(1)aā(−p1) = − 1
p2

1

∫
d̄4p2d̄

4p3d̄
4p4

{
κ2

4

(
s23s24

2s12
− 1

2(p2)2
)

[AB][CD]φ(0)bb̄(p2)[φ(0)cc̄(p3)φ(0)dd̄(p4)]

− s13

2F 2 ([ABCD] + [ADCB])φ(0)bb̄(p2)[φ(0)cc̄(p3)φ(0)dd̄(p4)]
}
,

(8)
where we have explicitly included the flavour indices and suppressed the momentum-conserving
delta functions δ̄(4)(p1 + . . .+ pn). Additionally, the common short-hand notation

d̄4p ≡ d4p

(2π)4 , δ̄(4)(p) ≡ (2π)4δ(4)(p) , (9)

was employed for legibility.

Next, we note that the term proportional to (p2)2 in (8) vanishes on-shell and use the LSZ
formula (see e.g. [174] for similar calculations) in order to extract the four-scalar partial
amplitude from φ(1).2 The result in terms of MPl reads

A4 = lim
p2

1→0
p2

1
δ3φ(1)(−p1)

δφ(0)(p2)δφ(0)(p3)δφ(0)(p4)

= − 1
2M2

Pl

s14s13

s12
[AB][CD] + s13

2F 2 ([ABCD] + [ADCB]) + (cyclic) ,
(10)

where the first term corresponds to graviton exchange diagrams and the second to contact
interactions (see figure 6.3). The structures of these amplitudes coincide with the graviton
exchange amplitude in equation (11) of [97] and the NLSM amplitude in equation (1.4) of [62].
Note that we have opposite signs in the above amplitude, in contrast to what we found in
section 3; the latter therefore corresponds to a non-compact scalar manifold with non-linear
SO(M,N) symmetry.

2The LSZ formula extracts n-point amplitudes from n-point connected correlation functions (here cor-
responding to the perturbative corrections), by functionally differentiating n − 1 times with respect to the
leading order correction, while amputating the off-shell leg.
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