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Préliminaires

Une science se définit par son objet. Celui de la cosmologie est I'univers, le cosmos pour
en référer a ’éthymologie grecque du mot. L’extension du concept de cosmos n’est pas
demeurée figée depuis I'avénement de la longue chaine de penseurs dont les réflexions ont
été nourries de 'insatiable curiosité a comprendre I'infini qui nous entoure.

De maniere simple, ’évolution de la cosmologie depuis les philosophes présocratiques,
Thales (VII® siecle av. J.-C.), Anaximandre (VI siecle av. J.-C.), Anaximene (VI¢
siecle av. J.-C.) et consorts, peut se comprendre comme un mouvement double ayant des
composantes

e verticale de démythologisation du cosmos et plus largement de la nature s’accompa-
gnant d'une dramatique réduction de la densité ontologique de I'univers a sa seule
réalité physique et

e horizontale d’hyper-scientifisation et de mécanisation irrésistiblement conduites par
la mathématisation de cette réalité physique et des succes consécutifs en termes de
prédictions.

Pour illustrer correctement ce mouvement double, il conviendrait de dresser un historique
de l'idée de nature lors des deux derniers millénaires. Un tel travail dépasse le cadre de
cette introduction, et a de plus déja été mené par le philosophe Pierre Hadot!. II est
néanmoins intéressant d’en relever quelques caractéristiques permettant d’en appréhender
le contenu essentiel.

Dans les grands systemes cosmologiques antiques, tels celui décrit par Platon (428-347
av. J.-C.) dans le Timée, par Aristote (384-322 av. J.-C.) dans Du Ciel ou par Plotin (205-
270 ap. J.-C.) dans les Ennéades, le réél définit une hiérarchie de mondes dont le monde
sensible, objet exclusif de la cosmologie moderne, représente le niveau le plus grossier, celui
dans lequels les objets naissent et meurent, croissent et décroissent, sont générés et cor-
rompus. Le monde sensible est le monde du devenir. A ce titre, la connaissance du monde
sensible possede une valeur toute relative, car elle ne porte pas sur des lois ou principes
immuables, mais bien sur des corps appelés a disparaitre. C’est en ce sens que pour Platon,
la science du monde physique n’est pas une connaissance a proprement parler, mais une
opinion incertaine. Néanmoins, I'intérét de la connaissance de la réalité physique tient au
fait qu’elle manifeste des réalités supérieures dans la hiérarchie des mondes, dont elle est en
quelque sorte le signe qui invite a la connaissance de principes plus fondamentaux, lesquels
sont a leur tour eux-mémes signes de principes supérieurs. Il s’agit donc, dans ces systemes
antiques, d’une conception du cosmos en pyramide, dont la base est constituée par le monde
sensible, les étages intermédiaires par des principes immuables dépendants du systeme en
question (les Idées platoniciennes, les différentes Ames plotiniennes...) et le sommet par
un principe premier qui produit et met en mouvement I’ensemble du réel. Ce premier
principe est nommé Démiurge dans le systeme de Platon, Moteur Immobile chez Aristote,
I’Un chez Plotin, ou encore, plus tard, Dieu dans la vision cosmologique du christianisme
et des autres monothéismes. Il convient toutefois de se garder d’identifier ces différentes
dénominations, chacune ayant des spécificités propres au corpus philosophique dont elle est

'P. Hadot, Le Voile d’Isis, 2004, Gallimard



issue. Nous avons déja mentionné que du point de vue épistémologique, la connaissance
du monde physique n’a pas de valeur en soi. Ceci demande a étre complété en ajoutant
que le type de connaissance présente un degré de certitude d’autant plus élevé et ferme
que son objet affiche un caractére principiel ou fondamental. Ainsi, le degré supréme de la
connaissance est la connaissance du principe premier ou divin, et n’est accessible que par
la raison (Aristote, Thomas d’Acquin) ou par 'extase mystique (Platon, Plotin, Augustin).

L’impulsion cruciale au mouvement double brievement décrit ci-dessus se situe au tour-
nant de la Renaissance (XVI¢-XVII¢ siecles). Outre un contexte socio-culturel favor-
able (apparition des universités, démocratisation du savoir), cette impulsion est due a

une poignée de philosophes et scientifiques dont les idées novatrices ne tarderont pas a
s'imposer. Galilée (1564-1642) compte bien évidemment parmi ces penseurs:

"La philosophie est écrite dans ce livre immense qui se tient ouvert sous
nos yeux - I'univers - et qui ne peut se comprendre si I’on n’a préalablement
appris a en comprendre la langue et & connaltre les caracteres employés pour

I’écrire. Ce livre est écrit dans la langue mathématique; ses caracteres sont
des triangles, des cercles et d’autres figures géométriques, sans l'intermédiaire
desquels il est impossible d’en comprendre humainement un seul mot.” 2

Clairement, cette citation illustre la réduction verticale du cosmos antique et de sa hiérar-
chie des mondes a sa dimension la plus superficielle, celle que 'homme appréhende par ses
sens, la dimension physique. De plus, les phénomenes y prenant place sont décrits par le
langage mathématique, lequel, par sa capacité de cerner et de reproduire I'ordre du monde,
a des lors champs libre pour s’imposer comme outil exclusif de toute description définitve
de la réalité. La méthode empirique tend aussi a se propager comme moyen d’investigation
de la nature ou du cosmos, notamment sous la propagation de I'idéologie d’un autre artisan
majeur de la révolution qui s’opere, le philosophe anglais Francis Bacon (1561-1626)

"Les secrets de la nature se révelent plutot sous la torture des expériences
que lorsqu'ils suivent leur cours naturel.” 3

Dans de tels textes apparait ce qui sera, pour le meilleur et pour le pire, le paradigme
de la science moderne, soit I’étre humain qui se pose hors ou au-dessus d’une nature qu’il
s’agit de soumettre & une procédure aux allures judiciaires afin d’en extirper les secrets.
Pierre Hadot qualifie cette attitude de prométhéenne, par opposition a l'attitude orphique
dominante a I’Antiquité selon laquelle I’humain est partie indisociable de la nature ou
cosmos. L’autorité chrétienne conforte encore cette position dominatrice nouvellement
acquise:

"Croissez et multipliez-vous et remplissez la terre et dominez-la.
Commandez aux poissons de la mer, aux oiseaux du ciel et a toutes les bétes
qui se meuvent sur la terre.” 4

S’appuyant sur ce passage de la Genese, Bacon proclame

"Laissons le genre humain recouvrer ses droits sur la nature, droits dont I’a
doué la munificence divine.”

2@Qalilée, Il saggiatore, 1623

3F. Bacon, Novum Organum, I, trad. M. Malherbe et J.M.Pousseur, Paris 1986
4Genese 1, 28

5F. Bacon, op. cit.



Ceci achéve d’esquisser le mouvement double dont la science de la nature a fait ’objet. Le
cosmos réduit a sa réalité physique, celle-ci fait I'objet d’une étude intensive décrite par le
langage mathématique et menée de maniere exclusive selon la méthode empirique. Durant
les derniers siecles du second millénaire, le mouvement de désacralisation du cosmos va
encore se radicaliser. Témoin en est la célebre réponse faite par Laplace (1749-1827) a
Napoléon qui I'interroge sur la place de Dieu dans son systeme:

"Sire, je n’ai pas eu besoin de cette hypothese.” 6

A partir du XV III¢ siecle, et davantange au X1X°¢ siecle, le champ de recherche de la
cosmologie exclut totalement la considération des causes, des fins et des principes, pour s’en
tenir a la seule description des phénomenes. La cosmologie contemporaine n’a en ce sens
aucunement infirmé I'existence de Dieu ou d’un principe premier, elle est simplement de-
venue totalement indifférente a la question. Cette désacralisation du cosmos s’accompagne
d’une hyper-sophistication de la description quantitative de la réalité physique. Un désaveu
de la magie et de la poésie au profit de la pensée mécaniste et cartésienne qui fera dire a
l'illustre Schiller (1759-1805):

"Inconsciente des joies qu’elle donne,

Sans jamais s’extasier de sa propre splendeur,
Sans jamais prendre conscience de I'esprit qui la mene,
Sans jamais étre heureuse par ma félicité,
Insensible méme a la gloire de son créateur,
Comme le battement mort d’un pendule,
Comme une esclave, elle obéit a la loi de pesanteur,
La Nature, dépouillée de sa divinité.” 7

Schiller regrette amerement la mécanisation de la Nature, le soleil n’est plus qu'un globe de
feu, la Nature une horloge. Le poete pleure la perte de la description poétique et esthétique
au profit de I'unique description mathématique.

Par ces quelques remarques préliminaires sur I’homme, le cosmos, la science et son
évolution, je n’ai pas voulu prétendre apporter quelque réponse. Ma seule intention fut
d’utiliser cette modeste contribution scientifique qu’est ma these pour rappeler la question
essentielle, et qui, me semble-t-il apres mon court passage dans le monde de la recherche,
a été largement évacuée des préoccupations de nombreux scientifiques, la question du rap-
port de ’homme a la nature. A Theure ou lattitude prométhéenne, pour reprendre le
vocabulaire de P. Hadot, en est parvenue, en l'espace de quelques décennies, a modifier
irrémédiablement le climat de notre planete vieille de 4.5 milliards d’années, il me semble
urgent que la communauté scientifique se réapproprie cette question du rapport de 'homme
a la nature, des statuts de la science et de son objet, la nature.

Scité par A. Koyré, Du monde clos & lunivers infini, Paris, 1973, p. 336
"F. von Schiller, Les Dieuz de la Gréce, strophe XIV.






Introduction

La cosmologie est I’étude de I'univers envisagé dans sa globalité. De par les seules portée et
complexité de I'objet que la cosmologie se propose d’étudier, il est nécessaire d’y appliquer
des descriptions théoriques portant sur I'immensément petit tout comme sur I'immensément
grand. Pour illustrer ce propos, I’énigme de la matiere noire peut étre prise en exemple. Il
existe en effet diverses évidences plaidant pour une densité totale de matiere sans pression
dans 'univers constituée a pres de quatre-vingts pour cent de matiere non baryonique, la
matiére noire. Cette derniere influence le comportement de systémes physiques a de tres
importantes échelles. Le spectre de puissance des anisotropies du fonds diffus cosmologique
(CMB pour 'anglais cosmic microwave background) est tout-a-fait sensible a la quantité
de matiere noire sur des échelles physiques caractéristiques de I'univers observable, soient
des ordres de grandeur de 10?® cm. De méme, la concentration de matiére noire modifie
la dynamique des galaxies en affectant leurs vitesses orbitales dans les clusters de galaxies
correspondant & des échelles de 10?° c¢m, ou encore la dynamique des étoiles contenues
dans une galaxie particuliere & des distances de 10?2 cm. Néanmoins, la matiere noire est
un terme générique sous lequel se cache tres probablement une particule encore inconnue,
si ce n’est qu’elle doit étre stable et sans charge. Ainsi, cette énigme cosmologique non
encore résolue qu’est la matiere noire requiert des outils conceptuels empruntés aussi bien
a des théories physiques de 'immensément grand, comme la Relativité Générale, que de
I'immensément petit, comme la physique des particules. Un autre exemple illustrant la
richesse scientifique de la cosmologie est la formation des grandes structures dans 'univers,
distributions et halos de galaxies. Nous avons décrit ci-dessus les ordres de grandeur de
ces structures, qui ont pour origine des fluctuations générées pendant une phase infla-
tionaire de I’histoire de notre univers. Cette phase d’expansion extrémement rapide a eu
lieu une petite fraction de seconde apres le Big-Bang, en comparaison des treize milliards
d’années d’age de 'univers. Originellement, la taille caractéristique de ces fluctuations est
proche de I’échelle de Planck, soit 10733 cm, et en accord avec les équations d’Einstein,
ces fluctuations ont par la suite été amplifiées par la gravité pour finalement donner lieu
aux structures observées aujourd’hui. A nouveau, la cosmologie est le lieu de rencontre de
I'immensément grand et de 'immensément petit.

Ces dernieres décennies ont vu l'avénement d’une nouvelle ere en cosmologie, celle
des observations de précision qui permettent de tester et de contraindre avec une efficacité
grandissante les différents modeles censés décrire notre univers. Parmi eux figure le modele
standard de la cosmologie, ainsi nommé en raison de sa plus grande fidélité & reproduire les
observations. Malgré ses succes, le modele standard ne remporte pas I’adhésion unanime de
la communauté scientifique, loin s’en faut, et ceci surtout a cause d’une de ses composantes,
la constante cosmologique, dont la densité d’énergie équivaut a plus de soixante-dix pour
cent du budget total de 'univers, alors que sa nature et son origine physiques demeurent
inconnues ou font l'objet de controverses difficilement résolvables. Des modeles alterna-
tifs sont intensément étudiés et impliquent par exemple des modifications de la Relativité
Générale a grandes échelles ou encore ’abandon de certains principes essentiels du modele
standard, telles I’homogénéité ou l'isotropie de I'univers.

Ma these de doctorat s’inscrit dans un contexte de recherches théoriques dans le do-
maine de la cosmologie. Dans une telle approche, I'outil théorique de base sont les équations
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d’Einstein qu’il est possible de comprendre sous la forme de I'identité suivante :
Géométrie de l'espace — temps = énergie — impulsion de 1'espace — temps.

Ces équations expriment la relation intime qui existe entre le contenu en énergie et les
aspects géométriques d’un espace quelconque, notre univers en particulier. Elles permet-
tent, sous certaines hypotheses supplémentaires, d’expliquer par exemple en quoi differe
la dynamique d’un univers rempli de radiation de celle d’un univers rempli de matiere
sans pression, ou encore et dans une certaine mesure, d’établir des scénarios possibles pour
I’évolution future de 'univers. Elles constituent de plus le fondement théorique du modele
standard de la cosmologie, et conjointes a la théorie des perturbations, elles expliquent,
entre autres, les observations du CMB. Pour la bonne intelligibilité du titre et du contenu
de ma these, il est utile de s’attarder un peu plus longtemps sur le modele standard de la
cosmologie. Ce dernier suit directement de I'imposition de deux symétries aux équations
d’Einstein. Nous supposons en effet que notre universe est homogene et isotrope. Il en suit
alors un modele cosmologique dont la géométrie est entierement décrite par une fonction
dépendant du temps uniquement, le facteur d’échelle, et dont la forme explicite est en
rapport direct avec le contenu de I'univers. Ce facteur d’échelle permet de comprendre les
observations de Hubble en 1929 montrant indubitablement que les galaxies s’éloignent de
I’observateur a une vitesse proportionnelle a la distance. L’espace-temps est en expansion,
laquelle est mathématiquement décrite par le facteur d’échelle. Toutefois, en 1998, de nou-
velles observations ont prouvé que non seulement l'univers était en expansion, mais que
cette derniere est accélérée. Ceci est pour le moins troublant, car si notre univers est rempli
de matiere et de radiation, sous 'effet de 'attraction gravitationnelle, 'expansion devrait
ralentir. Ainsi, une des premieres tentatives visant & construire un modele cosmologique
expliquant cette expansion accélérée a consisté dans ’ajout d’un terme nouveau dans la
partie décrivant le contenu de l'espace des équations d’Einstein. Ce terme comporte une
pression négative capable de jouer le role de source pour 'accélération, et dans sa version
la plus simple il s’agit d’une constante cosmologique. Nous avons a ce stade tous les ingré-
dients du modele standard de la cosmologie, a savoir de la matiere sans pression (noire et
baryonique) et une constante cosmologique pour le contenu et une géométrie caractérisée
par les propriétés d’isotropie et d’homogénéité. Ce modele, bien qu’il soit loin de faire
I'unanimité des scientifiques, a néanmoins I'avantage de reproduire de nombreuses obser-
vations indiscutables. Parmi celles-1a, il convient de s’attarder quelque peu sur le CMB.
Cette radiation quasi isotrope est une relique d’'un état extrémement chaud et dense de
I'univers primordial, alors que les photons interagissaient encore fortement avec la matiere.
Elle est de plus une confirmation de la théorie du Big-Bang, qui veut que notre univers se
soit développé & partir d’une singularité initiale d'un état tres chaud (1032 K) et dense vers
ce que nous observons aujourd’hui a environ 2.7 K. Le CMB présente néanmoins de petites
anisotropies de température, qu’il est possible d’étudier et de calculer au moyen de la théorie
des perturbations linéaires. Le spectre des puissances des anisotropies alors obtenu dépend
principalement des conditions initiales et des parametres cosmologiques. Les conditions
initiales décrivent I’état des inhomogénéités a la fin de I'inflation, une période d’expansion
tres rapide et de dilution de ces inhomogénéités. Les parametres cosmologiques indiquent
le contenu en matiere ainsi que la courbure de I'univers, qui en déterminent I'’expansion.
Parmi les nombreux modeles cosmologiques prétendant expliquer ’accélération actuelle de
I’expansion de I'univers, le modele standard est celui dont les prévisions reproduisent au
mieux le spectre des anisotropies du CMB.
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Toutefois, comme 'indique le titre de la présente theése, je me suis davantage intéréssé a
des aspects théoriques de la cosmologie qui peuvent étre qualifiés de non standards. Dans
le bref résumé ci-dessous de mes divers projets, je m’efforce pour chacun de justifier en
quoi il revét des traits qui vont au-dela du modele standard de la cosmologie.

Le cadre de mon premier projet est celui des théories a dimensions spatiales addition-
nelles. Ce cadre justifie déja la place de ce projet dans ma these et son titre, le modele
standard de la cosmologie ne comportant que trois dimensions spatiales. De telles théories
postulent, en plus des trois dimensions spatiales et de la dimension temporelle usuelles,
I'existence de dimensions spatiales supplémentaires. Un tel postulat est motivé par des
raisons de consistance de la théorie des cordes qui est une théorie de la gravité quantique.
Nous nous sommes intéressés a un modele qui, en plus du temps, admet quatre dimensions
spatiales. Notre espace-temps quadrimensionnel est alors un sous-espace de ce volume a
cinq dimensions. En langage technique, ce sous-espace est appelé une brane, et le nom-
bre de branes présentes dans le volume englobant n’est en principe pas restreint a une
seule. De plus, toutes les particules du modele standard des particules sont confinées sur
notre brane, alors que seuls les gravitons sont capables de se propager dans ’ensemble du
volume englobant. Ce dispositif constitue le modele cosmologique de mon premier pro-
jet. Le probleme particulier que nous nous sommes proposés d’étudier est la production
des gravitons lorsque notre brane, i.e. notre espace-temps quadridimensionnel, s’approche
et s’éloigne d’une autre brane statique. Ceci est en parfaite analogie avec un effet déja
théorisé et observé de la théorie des champs quantiques, l'effet Casimir dynamique, qui
explique la création de photons a partir des fluctuations quantiques du vide entre deux
miroirs conducteurs et parfaitement réfléchissants en mouvement. Dans notre cas, le role
des photons est joué par les gravitons, et nous en avons investigué la production en fonction
de la vitesse a laquelle notre brane se meut en direction de la seconde brane statique ainsi
qu’en fonction de la masse des gravitons. Conceptuellement, mon premier projet est d’'un
grand intérét, quoique ne laissant que peu d’espace a ’aspect empirique de la cosmolo-
gie. Néanmoins, cela ne signifie pas que de maniére générale, I’hypothese des dimensions
spatiales additionnelles échappe a toute testabilité. En 1998 par exemple, Arkani-Ahmed,
Dvali et Dimopoulos [5] ont placé des contraintes sur le nombre possible de dimensions
additionnelles. Ainsi, une seule dimension supplémentaire est exclue, car cela produirait
de trop fortes déviations de la gravité sur des échelles du systeme solaire.

Mon second projet présente quant a lui nettement plus d’affinités avec I'aspect obser-
vationnel de la cosmologie, I'idée directrice étant de fournir une analyse des données du
CMB. En effet, comme il en a été fait mention ci-dessus, de nombreuses interrogations sub-
sistent au sujet de la phase la plus récente de I'histoire de 'univers, dont la dynamique est
principalement caractérisée par une expansion accélérée. Comme l'interprétation des don-
nées et la dérivation de contraintes sur les parametres cosmologiques principaux (densité
de matiere noire ou baryonique, index spectral ...) passent par I’approbation d’un modele
cosmologique, et qu’aucun consensus n’existe sur un modele définitivement valable, il était
pertinent d’établir des contraintes ne dépendant pas de la physique méconnue de la dy-
namique tardive de 'univers. Le modele standard de la cosmologie intervenant essentielle-
ment comme une possible explication de cette dynamique tardive, notre volonté de I’exclure
de 'analyse explique pourquoi ce projet n’appartient pas au cadre du modele standard de
la cosmologie. L’intérét de la démarche réside dans le fait qu’en principe, toute théorie
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cosmologique prétendant expliquer ’accéleration actuellement observée de I'expansion de
I'univers doit également étre a méme de placer des contraintes sur les parametres cos-
mologiques fondamentaux. De telles contraintes devront alors impérativement satisfaire
celles que nous avons établies dans notre analyse. Sans entrer dans des détails techniques
dépassant le cadre de cette introduction, notre méthode a consisté en un premier lieu dans
une mise a ’écart des données correspondant a des processus physiques s’étant déroulés
dans 'univers tardif, ce qui a permis de prendre comme modele de référence un modele ne
contenant que de la matiére sans pression (noire et baryonique), lequel constitue une bonne
approximation pour des époques ou la physique inconnue de I’énergie sombre n’influence
pas la dynamique de maniere significative. Afin de prendre en compte la différente évo-
lution entre notre modele de référence et les données a partir du moment ou les photons
du CMB ont cessé d’interagir avec la matiere, nous avons encore introduit et contraint un
parametre supplémentaire. Ce dernier exprime la distance observée a la surface de derniere
diffusion définie comme la surface de 'espace-temps sur laquelle les photons ont interragi
pour la derniere fois avec la matiere, avant que I'univers ne leur devienne transparent et
qu’ils ne se propagent librement jusqu’a aujourd’hui.

Dans mon projet suivant, nous nous sommes intéressés a de possibles signatures dans
le CMB, signatures produites par ’existence d’un champ magnétique homogene. Par ho-
mogene est compris un champ dont la longueur de cohérence est de 'ordre de la taille de
I'univers observable, et qui peut donc étre considéré comme constant sur de telles échelles de
distance. Un tel champ a la particularité d’agir comme source d’une expansion anisotrope
de I'univers affectant le spectre de puissance des anisotropies du CMB, dont ’étude per-
mettrait alors de placer des contraintes sur l'intensité du champ magnétique. Le cadre
général adopté étant celui d’une expansion anisotrope, le modele présente des différences
géométriques fondamentales avec le modele standard. Cependant, et c’est la le résultat im-
portant de notre étude, si des particules relativistes se propageant librement sont également
présentes, elles générent une pression anisotrope contrecarrant celle du champs magnétique,
et par conséquent, d’anisotrope, I’expansion de 'univers devient rapidement isotrope. Les
neutrinos sont de particulierement bons candidats pour jouer le role d’isotropisants, car
ils existent en densité suffisante, et nous savons que durant une grande partie de I’histoire
thermique de I'univers pertinente pour notre analyse, les neutrinos ont eu une dynamique
relativiste. Mais, des expériences ont aussi mis en évidence le fait que les neutrinos ont des
masses, sur lesquelles des contraintes provenant de divers domaines de la physique ont été
placées. Tout ceci permet de différencier trois phases. La premiere durant laquelle le taux
d’interaction des neutrinos avec le fluide cosmique domine largement le taux d’expansion
de 'univers. Les neutrinos ne peuvent alors se propager librement, et le champ magné-
tique peut agir sur I’expansion alors anisotrope de I'univers. Puis, & mesure que I'univers se
refroidit, le taux d’interaction des neutrinos baisse, jusqu’a ce que ces derniers cessent pro-
gressivement d’interagir avec le fluide cosmique. L’univers devient alors transparent pour
les neutrinos, et leurs pressions anisotropes annulent I’expansion anisotrope de 1'univers.
Finalement, au moment ou la température de 'univers devient inférieure & la masse des
neutrinos, ces derniers deviennent non-relativistes, leurs pressions respectives deviennent
nulles et ne sont des lors plus en mesure de contrebalancer ’expansion anisotrope causée
par le champ magnétique, laquelle reprend alors. Nous avons, au moyen d’approximations
analytiques et de simulations numériques, étudié de maniere quantitative ’expansion de
I'univers et la possible signature dans le CMB de ce scénario pour des champs de différentes
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intensités satisfaisant des contraintes physiques indépendantes et pour des neutrinos de
masses différentes, avec comme résultat principal la suppression par plusieurs ordres de
grandeur d’un possible signal dans le CMB pour un univers contenant des neutrinos dont
les masses se situent dans les valeurs permises par les expériences par rapport au signal
attendu dans un univers sans neutrinos.

Dans le cadre de mon quatrieme et dernier projet, nous avons choisi d’explorer une al-
ternative au modele standard de la cosmologie. L’idée directrice du projet consiste a évaluer
la possibilité de reproduire certaines observables en se passant de la constante cosmologique
ou d’autres composantes physiques dynamiques censées agir comme source de I’expansion
accélérée que nous observons. Toutefois, il est indubitable qu'un modele reprenant toutes
les hypotheses du modele standard, mais sans constante cosmologique, échoue a expliquer
les observables qui nous intéressent, lesquelles ne sont autres que différentes sortes de dis-
tances. Il est donc nécessaire de relacher certaines hypotheses. Notre choix s’est porté sur
un modele simple d’univers rempli exclusivement de matiere sans pression, mais distribuée
de maniere inhomogene. Ces inhomogénéités prennent la forme de successions paralleles de
surdensités et de sous-densités de matiere. Les photons que nous observons voyagent donc
a travers ces structures semblables a des murs. Nous avons alors procédé de deux manieres.
D’abord, nous avons imposé a notre modele des inhomogénéités dont la taille correspond
a celle d’inhomogénéités observées dans notre univers, et en avons calculé des observables
d’intérét. Le résultat ne differe pas significativement du résultat obtenu pour un univers
dans lequel la matiere sans pression est répartie de maniere homogene, et donc, n’est pas
en mesure de reproduire les données. Puis, nous avons imposé au modele de reproduire
les distances voulues, et nous sommes intéressés a la taille des inhomogénéités engendrées
par cette contrainte. Nos simulations ont alors montré que pour générer les distances ob-
servées, des sous-densités de la taille de 'univers observable étaient nécessaires. Or, les
observations indiquent que de telles sous-densités n’existent pas. Nos résultats pour ce
modele simple ne montrent aucun départ significatif du cas homogene, et par la, offrent un
désaveu aux modeles prétendant expliquer la présente accélération par des inhomogénéités
dans la répartition de la matiere. Toutefois, il convient de préciser que notre étude n’a pas
un degré de généralité suffisant pour exclure totalement et définitivement cette hypothese.

Je terminerai cette introduction a mon travail de doctorat par ma liste de publica-
tions (page suivante). Il s’ensuit une introduction plus détaillée et théorique ainsi que les
publications auxquelles j’ai eu le bonheur de contribuer, le tout rédigé en anglais.
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Chapter 1

Introduction

First of all, in this introduction, I give a short overview of the history of cosmology. This
overview is based on [130]. Then, in a second section, I explain some fundamental and basic
knowledge of modern and contemporary cosmology, which is helpful to understand the
following chapters. Moreover, in this section, I stress on the standard model of cosmology.
The title of my thesis being ”"Aspects of non standard cosmology”, it is therefore necessary
to give an overview of standard cosmology in order to understand in which sense the works
presented hereafter belong to non standard cosmology. In a third and last section, I briefly
review and comment on all the projects, which are elaborated in details in the following
chapters.

1.1 Some history

1.1.1 The pioneers of modern cosmology

It is commonly admitted to start with the history of cosmology from the ancient Greece.
Though peoples like the Babylonians or the early Chinese already made many astronomical
observations, their explanations were still full of mythological elements, and it is therefore
justified to attribute the first attempts to give a rational picture of the universe to the old
Greeks.

It is interesting to note that at the same time as Aristotle’s geocentric cosmology, whose
influence lasted more than a millenium, the Pythagorean Philolaus of Croton (ca. 480-385
B.C.) and Aristarchos (ca. 310-230 B.C.) proposed some heliocentric models. However,
their influences remained small. Indeed, one widespread criticism to Aristarchos’ system
was the fact that if the earth were to move around the sun, the observer would then have
to see the stars on different angles in winter or in summer. Since this is not the case, the
stars have to be extremly far away, and Aristarchos’ universe needs to be very large.
More precisely, Aristotle (384-322 BC) was certainly the first philosopher-scientist to pro-
vide an overall idea of the cosmos as a set of physical objects. In his worldview, the Earth
was at the center of the universe and surrounded by three-dimensional rotating spheres.
All the stars and planets, as well as the Moon and the Sun, were carried by these spheres.
Moreover, the whole system was divided in two regions, one below the Moon, to which
the Earth belongs, and a second one above the Moon. The first region was characterized
by birth and death, generation and corruption, and composed of the four usual elements,
earth, fire, air and water. The most important feature of the second region is its perfection
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and the incorruptibility of its components composed of a fifth element, the aether.
Ptolemy (90-168) was a greck astronomer and mathematician who spent most of his life
in Egypt. Ptolemy’s cosmological system (Fig.1.1) relies on Aristotle’s, even though he
improved it with more accurate geometrical descriptions and added some new elements.
For instance, Ptolemy in his book on astronomy, the Almageste, decribed in great detail
the mechanisms of the rotating spheres.

With the fall of the roman empire, most of the old greeks’ astronomical treatises have

Figure 1.1: Ptolemy’s system

been transmitted to the Islamic civilzation, while Europe was going through dark ages. At
the end of the Middle Ages, translated from Arabic into medieval Latin, Europe, mainly by
means of the Church and its monks, rediscovered this scientific inheritance with the con-
tributions added by the Islamic civilization (use of the zero and trignometric techniques).

1.1.2 The way towards scientific cosmology

The way towards scientific modern cosmology went through some of the most decisive
revolutions of the history of ideas. After more than fifteen centuries of a geocentric sys-
tem, Nicholas Copernicus (1473-1543), a Polish monk, proposed to switch the places of
the Earth and the Sun. The Sun was meant to be in the center of the universe, and the
Earth in revolution around it. Moreover, for observational reasons, he claimed that the
Earth was also rotating around its own axis. Copernicus system had the advantage to pro-
vide automatic and natural explanations to astronomical phenomena whose explanations
looked quite ad hoc in geocentric theories. But a heliocentric worldview was unimaginable
to many at that time, above all for the Church. Indeed, for the Church, the idea of the
Earth not being the center of the universe, and therefore a planet by no means special,
was properly intolerable.

Galileo Galilei (1564-1642) made decisive contributions to astronomy. He built a telescope,
which allowed him to observe the sky as no one had before. Among his several surprising
observations, he discovered for instance Jupiter’s four satellites and the fact that the Moon
was not a perfect and smooth sphere. At this time still under strong influence of Aristotle’s
cosmology, such a statement was in conflict with well-established beliefs and dogma.
Another discovery shaded Aristotelian systems: Tycho Brahe (1546-1601) observed comets
moving through the sky, but following trajectories forbidden by the theory of rotating
spheres. However, Brahe was reluctant to Copernician heliocentric ideas. He built another
complicated geocentric system where some planets rotate around the Sun, while the Sun
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rotates around the Earth.

Kepler (1571-1630) overtook most of the moral and religious difficulties of the heliocentric
worldview. He adopetd a symbolic identification of the Sun with God, God being, in his
view, at the center of the spiritual reality as the Sun is at the center of the physical one.
In his book Astronomia nova, Kepler expounded his three famous laws on the motion of
planets.

Newton (1643-1727) (Fig.1.2) applied the same physical laws used to described the motion
on Earth to the astronomical objects, the laws of mechanics. He also discovered a math-
ematical description of gravity, which is still used nowadays for a wide range of physical
phenomena and which, for some given scales, is an excellent approximation of the more
fundamental description of gravity, Einstein’s General Relativity. For completeness, one

Figure 1.2: Portrait of Newton at the age of 46.

should also quote scientists like Euler (1707-1783) or Laplace (1749-1827). The former
developed mathematical tools useful to describe a wide range of physical processes and the
latter put forward some remarkable hypotheses on the formation of our solar system and
made some decisive contributions to theoretical physics. For instance, he predicted the
existence of very massive objets or black holes, whose gravity is so strong that not even
light can escape. He also brought decisive contributions to celestial mechanics.

In the late 18th century, an english astronomer, William Herschel (1738-1822) discovered
Uranus and made some very interesting observations on the structure of the Milky Way
and the distribution of stars in the sky. Thanks to his huge telescope (Fig.1.3), Herschel
was able to probe deeper regions of our universe than no one had seen before. He first
described our galaxy as a branching compound of many millions of stars.

The nineteenth century saw the appearance of new observational techniques, such as spec-
troscopy or photography. These techniques provided interesting possibilities to learn more
on the dynamics and the composition of astrophysical systems.

The first decades of the twentieth century have been marked by the growing influence
of the two most important theories in physics: Relativity and Quantum Physics. In the
twenties, Einstein’s General Relativity was widely admitted as providing a theoretical
foundation for modern cosmology. At this time, the belief in a static universe was still
incontested. But a consequence of Einstein’s gravitational field equation for a cosmological
model containing only matter is that it has to collapse upon itself, and was therefore
unstable. Einstein then stabilized the model by adding a constant term to the equations,
which is not forbidden by the theory. But the evidence for our universe not being static
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Figure 1.3: Herschel’s telescope, focal distance of 12 meters

came from observations. In 1929, based on observations of nebulae, Hubble presented
a roughly linear relation (Fig.1.4) between distances and velocities of nebulae. These
undeniable observations eventually ruled out the idea that a static universe might match
the reality, as admitted by Einstein himself in 1930 at a meeting of the Royal Society
in London. In 1922, a Russian mathematician Alexander Friedmann and later in 1927,
a Belgian astrophysicist Georges Lemalitre, independently, found solutions to Einstein’s
equations that describe a dynamical universe. Moreover, Lemaitre was the first to derive
the linear velocity-distance relationship v « d that states the proportionality of the relative
velocity v of an object to Earth and its distance d to Earth. Combining available data sets,
Lemaitre found some values for the constant of proportionality. But at the time of their
publications, the belief in a static universe was so powerful that nobody really thought of
these dynamical solutions as a true description of our universe. The usual story about the
discovery of the expansion of the universe tells us that Hubble was the first to combine
theory and data to conclude that the universe was in expansion described by Hubble’s law
v = Hod, where now the constant of proportionality is Hubble’s constant. But indeed, it
was Lemaitre. The discovery of the expansion of the universe, along with a theoretical
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Figure 1.4: The original graph found in Hubble’s paper (1929)

model which describes it, is certainly one of the greatest scientific discoveries. Each of the
galaxies observed by Hubble was moving away from other galaxies, as a consequence of
the expansion of space itself. Of course, in principle, some galaxies may also be moving
towards each other. But the trend is clear and indicated the expansion of space.
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In the early thirties, most of the ingredients are present to give rise to the Big-Bang model
in cosmology, which I will comment on in the next section.

1.2 The Big-Bang model and the standard model of cosmol-
ogy

Einstein equations relate the geometry of the universe to its matter and energy content
Gy = 87GT,, — Mg (1.1)

Here, G is Newton’s constant, GG, represents Einstein’s tensor, 7},,, denotes the energy mo-
mentum tensor, g, is the metric tensor that defines lengths and angles in the universe and
A is the cosmological constant. Einstein’s tensor defines the geometry of the universe and
the energy momentum tensor describes its matter and energy content. For a homogeneous
and isotropic universe, the metric reads

ds® = g datdz” = —dt* + a*(t)yidatda?, 1.2
1% J

where a(t) is the scale factor and 7;; is the metric of a 3-space of constant curvature K.
Together with Einstein equations Eq.(1.1), this metric leads to the Friedmann equations

-\ 2
a K 8rG A
(a) e T 3073 (13)
a 4rG A
- = = P)+ — 1.4
; 5 (p+3P) + 3 (L4)

where p is the energy density of the universe and P its pressure. The dot stands for a
derivative with respect to the cosmic time. The scale factor describes the dynamics of
the expansion, and for a homogeneous universe, it only depends on time, as well as the
energy density and the pressure. The Friedmann equations Eq.(1.3-1.4) directly follow
from imposing symmetries on the metric Eq.(1.2). Eq.(1.3-1.4) describe the geometry of a
homogeneous and isotropic universe. All the information about the geometrical evolution
is encoded in the scale factor a. The right hand side of Eq.(1.3-1.4) describes the evolution
of the content of the universe, which is caracterized by its pressure P and its energy density
p. Since there are three unknowns, a(t), p(t) and P(t) for two equations, a third relation
is necessary. For instances, in case the energy density is dominated by one component,
it is provided by an equation of state w = P/p which relates the energy density to the
pressure of the universe. As long as this component is in a given state, w is constant.
But in general it is not, for instance for particles that are initially relativistic and then
become non-relativistic (neutrinos), w # constant, or for a scalar field ¢ whose equation
of state is not constant, but involves time-derivatives of the field ¢ and its potential V(o).
In addition, if one assumes the strong energy condition w > —1/3 that implies gravitation
is attractive, one obtains the Big-Bang model, since when going back into the past, it
describes a universe whose temperature and energy density always increase while it con-
tracts until a singularity called the Big-Bang. After the decisive discovery of the Cosmic
Microwave Background in 1965 by Wilson and Penzias, the Big-Bang model became the
prevailing cosmological paradigm. Indeed, the CMB is a relic of a much hotter and denser
state of the universe.
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Nevertheless, if the geometry of our universe were to be definitely described by Eq.
(1.2), we would never have observed the CMB anisotropies or the large scale structure
we do now. These observations can be explained in the framework of the theory of lin-
ear perturbations of the Friedmann-Lemaitre universe. The idea is that both the CMB
anisotropies and the large scale structures originate from tiny quantum fluctuations gener-
ated during inflation. Inflation is a period of accelerated expansion of the universe which
started 10735 seconds after the Big-Bang. During inflation, these quantum fluctuations
are streched to cosmic size and give rise to the largest structures observed today (Fig.1.5
(a)). Inflation also generates the right initial fluctuations that correspond to those observed
today in the CMB anisotropies (Fig.1.5 (b)).

(a) Large scale structures (b) CMB anisotropies

Figure 1.5: On the left panel, a plot of sky coordinates vs. distance for galaxies in the Sloan
Digital Sky Survey, and on the right panel, the WMAP7 map of the CMB temperature
anisotropies.

However in 1998, the Big-Bang model with radiation and matter only ran into tension
with cosmological observations. At this time, two groups of astronomers [105] concluded
from supernovae observations that the universe is currently undergoing a phase of acceler-
ated expansion. This surprising discovery brought them the Nobel Prize in Physics 2011.
In the context of an isotropic and homogeneous universe filled with ordinary pressure-
less matter and radiation, the accelerated expansion of the universe has no explanations.
Indeed, an accelerating universe requires ¢ > 0. But from Eq.(1.4), it follows that this
requirement is equivalent to P < —§. Clearly, for ordinary non-relativistic matter or ra-
diation, this is not the case. For the former, we have P, = 0 and for the later, P, = &,
meaning that the pressure is either null or positive. Therefore, one can modify the right
hand side of Friedmann equations by adding a new component with a negative pressure,
called Dark Energy. This is usually achieved by means of a constant term, the cosmologi-
cal constant A, with equation of state Py = —pa. It is interesting to note that though it
succeeds in describing the accelerated expansion of our universe, we have no fundamental

understanding of the cosmological constant.

Another big puzzle in our universe is dark matter. Already in 1933, Zwicky noticed
that the amount of visible matter inside the Coma Cluster was too small to explain the
velocities of galaxies [129]. Since then, Zwicky’s results of missing matter have been con-
firmed by several observations, including the observations of the motion of stars within
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galaxies. Assuming the amount of visible matter and Newtonian gravity still to be valid at
these scales shows that the velocity of stars in the outer part of the galaxy is much larger
than expected. In order to make theory and observations compatible, one has to postulate
more matter than the visible, called for this reason dark matter.

74% Dark Energy

4% Atoms

Figure 1.6: Energy budget of the standard model of cosmology

At this stage, all the necessary ingredients of the standard model of cosmology have been
introduced. It can be summarized as an isotropic and homogeneous universe whose most
important contributions to the current overall energy budget are those of the cosmological
constant (74%), cold dark matter (22%) and baryonic matter (4%). The cosmological con-
stant drives the present accelerated expansion. Since this model best fits the observations,
it is called the standard model of cosmology or the ACDM model in reference to its two
main components.

1.3 Overview

In this section, I introduce the subsequent chapters containing the research work of my
thesis: given the wide range of topics studied, it is convenient to provide a short overwiev
of each of them as well as of the main theoretical concepts. I explain the cosmological
background of the problem, the methodology used to tackle the problem and summarize
the main results. Finally, I stress on the aspects of the problem that belong to non standard
cosmology.

1.3.1 Graviton production in braneworlds
1.3.1.1 Background

String theory is only consistent in spacetime with extra spatial dimensions. In such a
spacetime called the bulk, lower dimensional objects called branes may be moving and
interacting. In these models, our universe is a 3 (space) +1 (time) dimensional brane
moving into the bulk. Braneworlds scenarios are particularly well motivated, since they
can provide a solution to a problem of particle physics, the hierarchy problem of the huge
difference between the Planck scale and the electroweak scale. In the simplest scenarios,
only the gravitons can propagate in the entire bulk and the standard model particles
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are confined to our brane. Among all the available models, we consider a 5-dimensional
bulk with two branes in it. The bulk has the geometry of an anti-de Sitter space, AdSs5, a
maximally symmetric, vacuum solution of Einstein’s equations with a negative cosmological
constant. This geometry is decribed by the following metric

L? .y
ds* = gapdzdz® = = [—dt? + 8;jda’da? + dy?] (1.5)

where i,j = 1,2,3, L is the AdS5 curvature radius and y denotes the extra spatial dimen-
sion. The first brane is at rest and the second, our universe moves along the y-direction
towards and backwards the first static brane. The motion of our brane in the bulk induces
its contraction and expansion, depending on the direction of motion. Indeed, the metric
(1.5) induces a Friedmann-Robertson-Walker geometry on our brane

ds* = a?(n) [—d772 + (5ijda:idxj] , (1.6)

where 7 is the conformal time on the brane. The scale factor a(n) is given by the brane

position y(t) in the bulk
L
a(n) = — 1.7
0= (1.7

When our brane moves towards the static brane located at ys (0 < yp(t) < ys), the scale
factor decreases and our universe is in a contraction phase. When our brane moves in
the opposite direction, the scale factor increases and our universe undergoes an expansion
phase. For this reason, this model of braneworlds may also be called bouncing braneworlds.
The fact that our universe moves in the bulk represents a spacetime with moving boundaries
that can lead to particle creation, in this case graviton, via the dynamical Casimir effect,
mechanism explained in the next paragraph.

1.3.1.2 Methodology

The Casimir effect is a well-know effect of quantum field theory. The most typical example
involves two uncharged metallic plates in a vacuum. In such a set-up, the vacuum quan-
tum fluctuations produce an attractive force called the Casimir force. Depending on the
geometry of the set-up, the Casimir force can also be repulsive. If now the geometry of
the system varies in time, for instance if one plate is allowed to move, particle creation
(photon) occurs. In the formalism of the second quantization, a state denotes one partic-
ular configuration of the field. The second important actors are the operators acting on
the states. We adopt the Heisenberg picture in which the operators are time-dependent,
but the state vectors are time-independent. The lowest energy state is called the vacuum
state and is usually written |0). Moreover, in this formalism, a creation operator a' acts
on given state [n) by creating a particle

alln) =vn+1n+1)  aflo) =1) (1.8)

where n is the number of particle, and the annihilation operator & acts by annihilating a
particle
aln) = v/nln — 1) al0y = 0. (1.9)
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The operator N = a'a counts the number of particle of a given state
Nin) = n|n). (1.10)

If we denote by a subscript in and out the configuration of the field in the vacua before
and after the motion of the plate, we have

Nin|0)in =0 (1.11)
but
Nout|0>in ?é 0, (112)

which means that with respect to the initial vacuum state, particles have been created.
The existence of an attractive force between the plates has been theorized by Casimir in
the forties. The dynamical Casimir effect leading to particle creation has been theoretically
predicted in the seventies [49, 87] and has only been recently observed experimentally [123].
In our work, we apply the dynamical Casimir effect formalism to the braneworld scenario.
Instead of having an electromagnetic field, two plates and photon creation, we consider
gravitons propagating in the bulk, two branes and graviton production.

1.3.1.3 Results

In previous papers [38, 109], it has been shown that the energy density py of the massless
zero mode gravitons scales like radiation pg < a~* and the energy density of the massive
Kaluza-Klein modes px k scales like stiff matter pxx o< a=% on the brane. The scaling of
the Kaluza-Klein modes is a bit surprising, since one would naively expect prr o a3, i.e.
the same behaviour as pressure-less matter. This first analysis of the problem was limited
to a brane moving in the bulk at small velocity v, S 0.1 (speed of light ¢ = 1). We
developed a new approach valid for arbitrary brane velocities. We proved the consistency
between our method and the approximated one at low velocities and we derived numeri-
cal solutions for the final number of gravitons depending on their mass and on the brane
velocity.

In the first chapter, we report results of a first approach where the velocity v, of
the moving brane is small compared to the speed of light. This assumption leads to
Neumann boundary conditions, where a term linear in the velocity v, has been neglected
with respect to the original junction conditions. In the second chapter, we present a fully
consistent treatment of the junction conditions, valid for arbitrary velocity of the brane.
Brane cosmology differs from standard cosmology by the number of spatial dimensions.
Interactions of our 3 + 1 dimensional brane with the bulk or other branes can influence
the physical processes in our universe. It can then create new effects that do not exist in
standard cosmology, and describes thus some aspects of non standard cosmology.

1.3.2 Model-independent constraints from the CMB
1.3.2.1 Background

In the very hot early universe, no hydrogen could be formed without being immediately
dissociated by high energy photons. But as the universe expands, it cools down until a
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given temperature Tj.. when this reaction stops. This moment is called the photon decou-
pling, and after decoupling, thermal photons freely stream through the universe without
any further scattering. The generic name for this radiation is the Cosmic Microwave Back-
ground (CMB). The CMB has an almost perfect black-body spectrum at 7" = 2.725 K with
tiny fluctuations of the order 107° K. The study of its angular temperature fluctuations
gives us a direct picture of the distribution of radiation and energy when the universe was
a hundred thousand times younger than today. Since the CMB anisotropies are a function
on the sphere, they can be expanded in spherical harmonics

%(n) _ T =T > amYim(n). (1.13)

where T'(n) is the temperature measured in the direction n and T is the mean temperature
in the sky. The CMB power spectrum Cj is the average of the coefficients a;,,

Cl = (afmalm>. (1.14)

The two main physical effects on the CMB are the physics at decoupling and the evolution
of the universe after decoupling. The former is well understood by means of atomic physics,
general relativity and perturbation theory, but the latter, specially the late time evolution
of the universe, is very controversial, since it deviates from the predictions of a linearly
perturbed Friedmann-Lemaitre universe with radiation and matter only. This difference is
still poorly understood, and a wide range of models are studied to solve this so-called "Dark
Energy” problem. In this work, we are not interested in any particular model describing
the evolution of the universe at late times. But since we do not know which of the models
is correct, we decided to perform an analysis of the CMB which is as independent of the
details of late-time cosmology as possible. This has the advantage of making clear the
constraints that all models of late-time cosmology have to satisfy in order to agree with
CMB observations.

1.3.2.2 Methodology

The standard model of cosmology, the ACDM model, has six parameters that can be
contrained using different cosmological observations:

e w;, is the physical density of baryonic matter

we is the physical density of dark matter

ng is the spectral index of the primordial spectrum of fluctuations

A, is the amplitude of the primordial spectrum of fluctuations

Qp is the cosmological constant density parameter

T is the optical depth

Qx and 7 are related to the late-time evolution of the universe, and have therefore to be
excluded from our analysis. The observed amplitude of CMB perturbations is determined
by As and late-time physics like reionization and accelerated expansion. Without a model
for the late-time universe, it is not posible to disentangle theses effects. Therefore, we treat
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A, as a nuisance parameter. Finally, for our purposes, it is useful to introduce the scale
parameter S, defined as the ratio of the angular diameter distance to the last scattering
surface to the value of this distance in the simplest cosmological model.

Da(z)
D4 gas(z+)

S (1.15)

where D4 pqg is the angular diameter distance in the Einstein-de Sitter (EdS) universe (the
matter-dominated spatially flat Friedmann-Lemaitre model) and z, is the redshift to the
last scattering surface. The shift parameter S contains the information about the distance
to the last scattering surface. Finally, since we want to perform a model independent data
analysis of the CMB, we have to exclude the multipoles that have been affected by the
late time evolution of the universe. This concerns the last wavelengths that entered the
sound horizon or equivalently the lowest multipoles. Excluding the multipoles | < 40,
we have numerically shown that the effect of reionization on the remaining multipoles is
less than 2%, and the effect of the cosmological constant or any other model for Dark
Energy is mainly contained in the fourty lowest multipoles, since it modifies the CMB
anisotropies power spectrum via the late integrated Sachs-Wolfe (LISW) effect. The LISW
effect happened recently in the history of the universe, as Dark Energy started to drive
its expansion. During the matter-dominated era, strong large-scale potential wells remain
constant, such that there is no integrated effect over the time it takes a photon to travel
through them. The energy gained by the photon when falling into the well is exactly lost
when escaping it. Once Dark Energy starts to dominate, the potential wells decay with
time, and thus, lead some observable signatures on the CMB anisotropies.

1.3.2.3 Results

We have derived model-independent limits on the physical density of baryonic matter wy,
the physical density of cold dark matter w. and the spectral index ng, and the scale param-
eter S or equivalently the angular diameter distance to the last scattering surface D4 (zy).
The interest of our results is their validity for most models of late-time cosmology, whether
they include dark energy, modified gravity, a local void or backreaction.

The standard model of cosmology with the cosmological constant playing the role of
Dark Energy is one among many propositions to explain the late time accelerated expansion
of our universe. Since our analysis of the CMB does not depend on the late-time cosmology,
it puts constraints on some aspects of non standard cosmology.

1.3.3 A large scale coherent magnetic field and free streaming particles
1.3.3.1 Background

In addition to a perfect fluid, we suppose that our universe is permeated by a large scale
coherent magnetic field. By large scale coherence, we mean that the field is coherent over
a Hubble scale, and it can therefore be treated as a homogeneous magnetic field. This
magnetic field has a direction and acts thus as a source of anisotropic expansion of our
universe, which would then in turn leave imprints on the Cosmic Microwave Background.
The anisotropic geometry induced by the magnetic field leads to a plane-symmetric Bianchi
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I model with metric
ds* = —dt* +a? (t)(da® + dy®) + af (1) d27, (1.16)

where the scale factor a (t) governs the expansion in the z— and y— directions and the
scale factor a(t) in the z-direction, for a magnetic field B = Be, in the z-direction.
Indeed, the contribution to the stress-energy tensor from the magnetic field is intrinsically
anisotropic

PB,J_ = _PB,H = PB, (117)

with Pp | | the pressure of the magnetic field in the directions perpendicular respec-
tively parallel to its direction, and pp is its energy density. In principle, the study of
CMB anisotropies puts constraints on the intensity of the magnetic field. However, when
free streaming relativistic particles are present, their anisotropic pressure counteracts the
anisotropic expansion sourced by the magnetic field and therefore, they tend to cancel
possible signatures in the CMB. We found that they effectively reduce them by several
orders of magnitude. In our universe, we know that neutrinos behave like relativistic free
streaming particles and may therefore play the role of isotropizers in our scenario.

1.3.3.2 Methodology

The observations show that the expansion of the universe is nearly isotropic. Motivated
by these observations, we assume that the scale factors difference always remains small

aL— 9 _

- d<1.  a=d’a)?, (1.18)

We can then expand all the relevant physical quantities up to the first order in . Three
different periods of the thermal history of our universe can then be distinguished. First,
at very high temperature during the radiation dominated era, the neutrinos are still very
tightly coupled to the baryons. Their caracteristic free streaming length is very small, and
their pressure remains isotropic. In this case, nothing prevents the anisotropic stress of
the homogeneous magnetic field to source the anisotropic expansion of the universe. But
then, as the universe expands, it also cools down and reaches the temperature of neutrinos
decoupling, T, . ~ 1.4MeV , when they stop interacting with baryons and begin to free-
stream. During this second phase, the neutrinos are sill relativistic, and they develop an
anisotropic stress that counteracts the anisotropic stress of the magnetic field. In our case,
for the neutrinos and the magnetic field, the anisotropic stress is actually the pressure
difference and we have

P, —P, =—(Pg1— Pgy) (1.19)

where the subscripts v and B respectively stand for neutrinos and magnetic field. Eq.(1.19)
shows that as long as the temperature 7' of the universe is smaller than the neutrino
decoupling temperature and larger than the neutrino mass m, <" < T}, ., both anisotropic
stresses cancel and ¢ is then constant, since the expansion is isotropic. The start of the
third phase depends on the neutrino mass m,,. Once the temperature of the universe drops
below the neutrino mass scale, they become non-relativistic, their pressure vanishes very
fast and the anisotropic expansion driven by the magnetic field restarts. To understand
our results, one has also to take into acount that photon decoupling occurs much later than
neutrino decoupling.
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1.3.3.3 Results

The temperature of photon decoupling is Tge .~ 0.3eV. Current bounds [95, 2] on the sum
of the mass eigenstate indicate that ), m, < 0.36eV. Qualitatively, two cases correpond-
ing to two different results can be distinguished. In the first case, the neutrinos become
non-relativistic before photon decoupling. Then the isotropization effect of relativistic free
streaming particles will not be present, and the CMB will be affected by the anisotropic
expansion sourced by the magnetic field. In the second case, the neutrinos become non-
relativistic after photon decoupling. Here, the imprints on the CMB of the anisotropic
expansion will be significantly reduced because the neutrinos maintain expansion isotropic

until they become non-relativistic.

Since the standard model of cosmology assumes isotropic expansion, the study of a
model whose geometry is described by the metric (1.16) covers aspects of non standard
cosmology.

1.3.4 Back reaction from walls
1.3.4.1 Background

The present universe seems to be in an accelerating phase and dark energy is the name we
give to our poor understanding of this phenomenon. Most of the cosmological evidences for
this accelerated expansion rely on measurements of distance-redshift relation in a Fried-
mann universe. The distance-redshift relation is defined in the following way. We call L
the luminosity corresponding to the energy emitted per second of a source at redshift z,
and let F' be its flux, corresponding to the energy received by the observer per second per
square centimeter. Then, the luminosity distance to the source is

Dp(z) = (4%)1/2. (1.20)

The flux F' describes how the energy is distributed over a sphere, whose radius encodes
the particular geometry of the spacetime. The luminosity distance is thus measured and
compared with the predictions of different models. As previously explained, the ACDM
model assumes that our universe is homogeneous and isotropic, and faces the problem of
the cosmological constant. Ome alternative to this model is Backreaction, which states
that inhomogeneities can indeed affect the average expansion rate of the universe and lead
to the present acceleration. Backreaction models do not need to introduce some exotic
component to the stress energy tensor, but they give up homogeneity. Several models of
universes containing only pressure-less matter can be studied. For this project, we choose
to investigate universes which are symmetric under translations and rotations in a plane
called the y-plane. This geometry is described by the metric

ds® = —dt® + a*(t, x)dz® + b*(t, ) (dy} + dy3) . (1.21)

where we denote the proper time coordinate by t and the spatial coordinates by x =
(z,y1,y2). The universe is then filled with walls of pressure-less matter separated by under
dense regions. Of interest to us is how light propagates through these walls, and whether
the corresponding luminosity distance can reproduce the observations.
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1.3.4.2 Methodology

The existence in our universe of huge inhomogeneities is a well-known fact. Their typical
size is around 80Mpc. On the one hand, it is possible to impose on our model such
inhomogeneities of matter, and to predict what would be the observed luminosity distance.
We have tried this approach for several matter density profiles. On the other hand, it is
also possible to require that our model mimics Dark Energy, i.e. reproduces the observed
luminositiy distance, and to see the size of the inhomogeneities necessary to satisfy this
condition.

For both approaches, we use the existing analytical solutions to the Einstein equations
for this geometry with pressure-less matter. In order to know how light rays propagate
through spacetime, we then solve numerically the geodesic equations and finally calculate
the luminosity distance as a function of the redshift of the source.

1.3.4.3 Results

Based on the two different approaches described in the precedent paragraph, we have
obtained the following results. First, requiring the size of the underdensities to be of
the order of the observed voids and taking into account two different density profiles,
we have clearly found that we cannot mimic acceleration by a series of dense walls of
reasonable overdensities and spacings in agreement with observations. If an effect were to
be observed, it would rely on a significant change in the photon energy on its path. But
because the photon goes through many walls on its path, the energy gained when falling
into a gravitational well is lost when escaping from it. The effect on the luminosity distance
is therefore minute, and since this effect is quite general, we think that our conclusions can
be extended to other density profiles. After having shown that realistic wall models cannot
reproduce the observed luminosity distance, we have determined the density profile which
can mimic it. We have found that an underdensity of the size of the order of the Hubble
distance is necessary to mimic ACDM with our walls. Such underdensities do not seem
to exist in our universe. Thus, our study tends to disfavour Backreaction as a sound
alternative to standard cosmology.
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Graviton production in brane worlds by the dynamical
Casimir effect

Ruth Durrer, Marcus Ruser, Marc Vonlanthen and Peter Wittwer

If our Universe is a 3 + 1 brane in a warped 4 + 1 dimensional bulk so that its ex-
pansion can be understood as the motion of the brane in the bulk, the time dependence
of the boundary conditions for arbitrary bulk fields can lead to particle creation via the
dynamical Casimir effect. In this talk I report results for the simplest such scenario, when
the only particle in the bulk is the graviton and the bulk is the 5 dimensional anti-de Sitter
spacetime.

PACS numbers 98.80.Cq, 04.50.-h, 04.30.-w

2.1 Introduction

The idea that our Universe be a 3+ 1 dimensional membrane in a higher dimensional "bulk’
spacetime has opened new exciting prospects for cosmology, for reviews see [83, 35]. In the
simplest braneworlds motivated by string theory, the standard model particles are confined
to the brane and only the graviton can propagate in the bulk. Of particular interest is
the Randall-Sundrum (RS) model [97, 98], where the bulk is 5-dimensional anti-de Sitter
space, AdSs. If the so called RS fine tuning condition is satisfied, it can be shown that
gravity on the brane ’looks 4-dimensional” at low energies.

Within this model, cosmological evolution can be interpreted as the motion of the
physical brane, i.e. our Universe, through the 5d bulk. Such a time-dependent boundary
does in general lead to particle production via the dynamical Casimir effect [13].

Of course one can always choose coordinates with respect to which the brane is at rest,
e.g. Gaussian normal coordinates. But then usually (except in the case of de Sitter expan-
sion on the brane [53]), the perturbation equation describing the evolution of gravitons is
not separable and can be treated only with numerical simulations [64, 71, 113]. Further-
more, in a time-dependent bulk a mode decomposition is in general ambiguous and one
cannot split the field in a zero mode and Kaluza-Klein (KK) modes in a unique way.

Based on the picture of a moving brane in AdSs, we have studied graviton production
in an ekpyrotic type scenario [63] where our Universe first approaches a second static
brane. After a ’collision’ the physical brane reverses direction and moves away from the
static brane, see Fig. 2.1. For an observer on the brane, the first phase corresponds to a
contracting Universe and the collision represents the 'Big Bang’ after which the Universe
starts expanding.

Here I report on the results which we have obtained in our previous papers [38, 109, 110].
We have found that the energy density of KK gravitons in AdS; scales like stiff matter,
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Figure 2.1: Two branes in an AdS5 spacetime. The physical brane is to the left. While it is
approaching the static brane its scale factor is decreasing, the Universe is contracting, and
when it moves away from the static brane the Universe is expanding. The AdS curvature
radius L (dashed line) and value of the scale factor of the brane metric as function of the
extra dimension y (light (blue) line) are also indicated.

prK o a~%, here a denotes the scale factor defined in Eq. (2.2). Therefore, KK gravitons
in AdSs cannot represent the dark matter in the Universe. This finding is in contrast with
the results of Ref. [86] and we comment on this below. We have also found that in the
early Universe the back reaction from KK gravitons on the bulk geometry is likely to be
important.

Finally, we have derived a limit for the maximal brane velocity, the bounce velocity,
vp £ 0.2 in order not to over-produce zero-mode (i.e. 4d) gravitons, the energy density of
which is constrained by the nucleosynthesis bound. We have calculated the spectra of both,
the zero-mode and the KK gravitons. In Refs. [38, 109] we have, however, neglected a term
linear in the brane velocity v in the boundary conditions. In our latest work, Ref. [110]
we derived a method which includes this term and allows to treat the problem without
any low velocity approximation. We have shown that the low velocity results previously
obtained are not modified.

The remainder of this paper is organized as follows. In the next section we present the
basic equations for the evolution of tensor perturbations (gravitons) and we explain why it
is not straight forward to include the velocity term of the boundary condition. In Section 3
we quantize the system. In Section 4 we discuss our results and in Section 5 we conclude.
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2.2 A moving brane in AdS;

2.2.1 The background

In Poincaré coordinates (z4) = (t,x,y) with x = (2',2%,23) and A = 0,...,4, the AdS;
(bulk) metric is given by

12 .
ds® = gABda;Ada;B = F [—dt2 + d;dx"da? + dy2] , (2.1)

where 7,5 = 1,2,3 and L is the AdS; curvature radius which is related to the bulk cosmo-
logical constant by the 5d Einstein equation, —A = 6/L?. The physical brane representing
our (spatially flat) Universe is located at some time dependent position y = y;(t) in the
bulk, and the metric induced on the brane is the Friedman-Robertson-Walker metric,

ds* = a*(n) [~dn? + 0;;da’da’] (2.2)
with scale factor a(n) which is given by the brane position,

L
a(n) = O (2.3)

The conformal time 7 of an observer on the brane, is related to the bulk time ¢ via

dn=+/1—v2dt =~"1dt . (2.4)

Here we have introduced the brane velocity

t V1+ L?H?

H is the usual Hubble parameter,

v

1 Oa
2

A P e |
H a@n_a H L™ v . (2.6)

The brane dynamics, as a result of the second junction condition, is determined by the
modified Friedmann equation [83]

H? = % (1 n %) (2.7)

where 7 is the brane tension, p the energy density on the brane, and we assume the RS
fine tuning condition [97]

2 2
KET? 3 _ kT
TR and Ky = 8m(GYy % (2.8)
We define the string and Planck scales by
1 3 1 2
ks = —= =L}, k4= —5 = Lp . (2.9)
M3 M3,
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Note that the RS fine-tuning condition is equivalent to

L, L?
ks = kg L or 7= L—P;l. (2.10)

2.2.2 Tensor perturbations

We now consider 3d tensor perturbations h;;(t,x,y) of the spatial three-dimensional ge-
ometry on this background. The perturbed bulk metric reads

1.2 L
ds® = 2 [—dt® + (6ij + 2hij)da’da? + dy?] . (2.11)
Tensor modes satisfy the traceless and transverse conditions, hi = a,-h;i = 0. These con-
ditions imply that h;; has only two independent degrees of freedom, the two polarization

states @ = x,+. We decompose h;; into spatial Fourier modes,

d?’k ik-x _e
hij(t, x,y) :/W e et (k)ha(t,y: k) | (2.12)

o=+,x

where e (k) are unitary constant transverse-traceless polarization tensors which form a
basis of the two polarization states e = x,+. Since we assume parity symmetry, we shall
neglect in the following the distinction between the two graviton polarizations and consider
only one of them. We then have to multiply the final results for e.g. particle number or
energy density by a factor of two to account for both polarizations.

The perturbed Einstein equations and the second junction condition lead to the follow-
ing boundary value problem

O+ k-0, + Say h(t,y;k) =0 in the bulk, k*= [k|?, (2.13)

and
v (vO; + 0y) h’yb(t) =0 on the brane . (2.14)

We introduce also a second, static brane at position ys, which requires the additional
boundary condition
9yh|,, =0 on the static brane . (2.15)

Eq. (2.13) is the Klein-Gordon equation for a minimally coupled massless mode in
AdSs, i.e. the operator acting on h is just the Klein-Gordon operator

= \/L__gaA [V=99*P05] . (2.16)

Equation (2.14) is the time-dependent boundary condition (BC) coming from the fact
that the moving brane acts like a "moving mirror” for the gravitational perturbations. Only
in the rest-frame of the brane do we have pure Neumann BC. In a generic frame we have
the Lorentz transformed BC which contains a velocity term v0;.

We assume that the brane is filled with a perfect fluid such that there are no anisotropic
stress perturbations in the brane energy momentum tensor, i.e. there is no coupling of
gravitational waves to matter. If this were the case, the r.h.s. of Eq. (2.14) would not be



A moving brane in AdSs 43

zero but a term coupling h;; to the matter on the brane, see Eq. (2.25) of [109].
For the tensor perturbations the gravitational action up to second order in the pertur-
bations reads

L? vs
Sp=4-— dt/ d3/<:/ & [\athyQ —18,h|* — K2|h?| . (2.17)
2K5 yp(t) y?

One factor of two in the action is due to Zy symmetry while a second factor comes from
the two polarizations.

2.2.3 Dynamical Casimir effect approach

The wave equation (2.13) itself has no time dependence and simply describes the propaga-
tion of free modes. It is the time dependence of the BC (2.14) that sources the non-trivial
time-evolution of the perturbations. As it is well known, such a system of a wave equa-
tion and time-dependent BC lead, within a quantum mechanical formulation, to particle
production from vacuum fluctuations. In the context of the photon field perturbed by a
moving mirror this goes under the name “dynamical Casimir effect” [13].

In [109] we have extended a formalism which has been successfully employed for the
numerical investigation of photon production in dynamical cavities [106, 107, 108] to the
RS braneworld scenario. We have studied graviton production by a moving brane, which
we call dynamical Casimir effect for gravitons, for a bouncing braneworld scenario.

However, in order to solve the problem, we have neglected the velocity term in Eq. (2.14).
The ansatz

h = Z ag(t)e el (t,y) + hee. , w2 = k% + mqa(t)?

then leads to a Sturm—Liouville problem for the instantaneous eigenfunctions ¢ (¢, y) which
satisfy

(—aj + 3@) bo = M2 0q . (2.18)
The solutions of (2.18) are
polty = Ll (2.19)
Y2 —yp(t)
(bn(ta y) = Nn(t)y2c2 (mn(t)7 yb(t)v y) with
Cy(m,z,y) = Yi(mzx)J,(my)—Ji(mx)Y,(my). (2.20)

The function ¢ is the zero mode which corresponds to the ordinary (3 + 1)d graviton on
the brane while the ¢,, are the KK modes. The masses m,, are determined by the boundary
condition at the static brane, see, e.g. [21] for more details. Since ¢, satisfies Neumann
boundary conditions, we know that the solutions (¢, )s form a complete orthonormal set
of functions on the interval [y,(t), ys] normalized by the scalar product

Ys

d
(60, 65) = 2 / o as = 8o

yp (1)

Therefore, any general solution which satisfies Neumann BC can be expanded in these
instantaneous eigenfunctions. If we add the term v0; to the boundary condition this feature
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is lost, and we can no longer expect to find a complete set of instantaneous eigenfunctions.

However, since the entire effect disappears when the velocity tends to zero, neglecting
a term which is first order in the velocity seems not to be consistent. This problem led
us to search for another approach which is discussed in Ref. [110] where we transform to
a coordinate system where the velocity term disappears identically. There also show that
for low velocities v < 0.3, say the corrections obtained with this consistent treatment are
below a few percent. We therefore ignore it in the following.

2.3 Quantization

2.3.1 Equation of motion

The gravitational wave amplitude h(t, y; k) subject to Neumann boundary conditions can

hit1) =\ 55 3 dalt)alt) (221)
a=0

The coefficients g, k(t) are canonical variables describing the time evolution of the pertur-
bations and the factor y/rk5/L? has been introduced in order to render the g, ks canonically
normalized. For h(t,y,x) to be real, we have to impose the following reality condition on

be expanded as

the canonical variables,
dok = do,—k - (2.22)

One could now insert the expansion (2.21) into the wave equation (2.13), multiply it
by ¢s(t,y) and integrate out the y—dependence by using the orthonormality to derive
the equations of motion for the variables g, k. However, as we explain in Refs. [109,
110], a Neumann boundary condition at a moving brane is not compatible with a free
wave equation. The only consistent way to implement Neumann boundary conditions is
therefore to consider the action (2.17) of the perturbations as the starting point to derive
the equations of motion for g, k. Inserting (2.21) into (2.17) leads to the action

1 .
5 = 5 /dt/d?’k{ Ea: UQth,k‘2 - wg,k‘Qa,kP] +
Z [Maﬁ (qw,kQB,—k + qa,—kQB,k) + Naﬁq%kq&—k] } . (223)
af

We have introduced the time-dependent frequency of a graviton mode

Wl =k +mZ, (2.24)

and the time-dependent coupling matrices

Mog = (0tPa,Ps) , (2.25)

Naﬁ = (at¢a7 at¢5) = ZMQ“/MB’Y = (MMT)QB, (226)
v

which are given explicitely in Ref. [109] (see also [21]). The equations of motion for the
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canonical variables are the Euler-Lagrange equations from the action (2.23),

ok + wi,k‘]ox,k + Z [Mpo — Magl dpx + Z [ af — ag} sk =0 . (2.27)
B

The motion of the brane through the bulk, i.e. the expansion of the universe, is encoded
in the time-dependent coupling matrices M,g and N,g. These mode couplings are caused
by the time-dependent boundary condition dyhe(t,y)ly, = 0 which forces the eigenfunctions
¢a(t,y) to be explicitly time-dependent. In addition, the frequency of the KK modes wq
is also time-dependent since the distance between the two branes changes when the brane
is in motion. Both time dependencies can lead to the amplification of tensor perturbations
and, within a quantum treatment which is developed below, to graviton production from
vacuum.

Because of translational invariance with respect to the directions parallel to the brane,
modes with different k do not couple in (2.27). The three-momentum k enters the equation
of motion for the perturbation only via the frequency wq . Equation (2.27) is similar to
the equation describing the time evolution of electromagnetic field modes within a three-
dimensional dynamical cavity [107] and may effectively be described by a massive scalar
field on a time-dependent interval [108]. For the electromagnetic field, the dynamics of
the cavity, or more precisely the motion of one of its walls, leads to photon creation from
vacuum fluctuations. This phenomenon is usually referred to as dynamical Casimir effect.
Inspired by this, we call the production of gravitons by the moving brane the dynamical
Casimir effect for gravitons.

2.3.2 Quantization

Asymptotically, i.e. for ¢ — +oo, the physical brane approaches the Cauchy horizon
(yp — 0), moving very slowly. Then, the coupling matrices vanish and the KK masses
become constant,

t_l;moo M,s(t) =0, tliglooma(t) = const. Vo, . (2.28)
In this limit, the system (2.27) reduces to an infinite set of uncoupled harmonic oscillators.
This allows to introduce an unambiguous and meaningful particle concept, i.e. the notion
of (massive) gravitons.
Canonical quantization of the gravity wave amplitude is performed by replacing the
canonical variables g, 1 by the corresponding operators g, k

h(t, y; k \/;Z Gox(t)0a(t,y) - (2.29)

Adopting the Heisenberg picture to describe the quantum time evolution, it follows that
Ja x satisfies the same equation (2.27) as the canonical variable gq k.

Under the assumptions outlined above, the operator ¢,k can be written for very early
times, t < ti,, as

1 s in
Goe(t < tin) = ——— [amke it g gt th] , (2.30)
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where we have introduced the reference frequency
wglk = Wy k(t < tin) . (2.31)
This expansion ensures that Eq. (2.22) is satisfied. The set of annihilation and creation

operators {a" ok ASL} corresponding to the notion of gravitons for t < ¢, is subject to the
usual commutation relations

[aglkp ,Tk,} = 0P (k — K, (2.32)
[aglk,”,,k,} - [agl{{,“nﬁk,} —0. (2.33)

For very late times, t > toy, i.e. after the motion of the brane has ceased, the operator
Ja,x can be expanded in a similar manner,

1 _ ou N s ou
Gou k(b > tout) = —== [dZ‘fﬁe ek 4 ailfiewa”gt} (2.34)
2wa7k
with final state frequency
woulg = Wa k(t > 750111:) . (235)

The annihilation and creation operators {aguli, Agultj} correspond to a meaningful definition

of final state gravitons (they are associated with positive and negative frequency solutions
for t > tout) and satisfy the same commutation relations as the initial state operators'.

Initial |0,in) = |0, < ti) and final |0, out) = |0,¢ > toy) vacuum states are uniquely
defined via 2
w1el0,in) =0, a2'%|0,0out) =0, Vo, k. (2.36)

The operators counting the number of particles defined with respect to the initial and final
vacuum state, respectively, are

7in __ ~in{ ~in out AoutT ~out
ok — Qy kaock ) Nak - ak aak (237)

The number of gravitons created during the motion of the brane for each momentum k
and quantum number « is given by the expectation value of the number operator Ng“kt of
final-state gravitons with respect to the initial vacuum state |0, in):

o = (0,in| NS0, in). (2.38)

If the brane undergoes a non-trivial dynamics between ti, < t < tout we have aollt \O in) #0
in general, i.e. graviton production from vacuum fluctuations takes place.

LOf course the brane never really stops moving, but before a certain time ti, and after a certain time
tout the motion is so slow that no particle production takes place. We have chosen these times sufficiently
early (rsp. late) so that the numerical results are independent of their choice.

2Note that the notations |0, < tin) and |0,¢ > tout) do not mean that the states are time-dependent;
states do not evolve in the Heisenberg picture.
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2.4 Results

2.4.1 Energy density

For a usual four-dimensional tensor perturbation h,, on a background metric g,, an asso-
ciated effective energy momentum tensor can be defined unambiguously by

1 a
T = (g ) (2.39)

where the bracket stands for averaging over several periods of the wave and “||” denotes
the covariant derivative with respect to the unperturbed background metric. The energy
density of gravity waves is the 00-component of the effective energy momentum tensor.
We shall use the same effective energy momentum tensor to calculate the energy density
corresponding to the four-dimensional spin-2 graviton component of the five-dimensional
tensor perturbation on the brane, i.e. for the perturbation h;;(t,x,yp). For this it is
important to remember that in our low energy approach, and in particular at very late
times for which we want to calculate the energy density, the conformal time 7 on the brane
is identical to the conformal bulk time ¢. The energy density of four-dimensional spin-2
gravitons on the brane produced during the brane motion is then given by

p= <<0,in]izij(t,x,yb);lij(t,x,yb)lo,in>>. (2.40)

K4 a2
Here the outer bracket denotes averaging over several oscillations, which we embrace from
the very beginning. The factor 1/a? comes from the fact that an over-dot indicates the
derivative with respect to conformal time ¢ ~ . The detailed calculation given in Ref. [109]
leads to

3
p= =Y [ oeniNas¥ia) (241)

where again Na,k(t) is the instantaneous particle number and ), is related to value of the
wave function on the brane by

L alt, (1)) .

Va(a) = I

The factor two reflects the two polarizations. At late times, t > tou, after particle creation
has ceased, the energy density is

>k
p= a2 [ G N R, (242)

This expression looks at first sight very similar to a “naive” definition of energy density

as integration over momentum space and summation over all quantum numbers « of the

energy wg“ﬁ out of created gravitons. However, the important difference is the appearance

of the functlon yg( ) which exhibits a different dependence on the scale factor for the zero
mode compared to the KK-modes.

Let us decompose the energy density into zero mode and KK contributions

P =pPo+ PKK- (2.43)
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Evaluating )y(a) one then obtains for the energy density of the massless zero mode

2 d3k
== [ —= kNS . 2.44
£o at / (271')3 0,k ( )
This is the expected behavior; the energy density of standard four-dimensional gravitons
scales like radiation.

In contrast, the energy density of the KK-modes at late times is found to be

272 & d3k
PKK = / WOUt out m%Yf(mnys)v (2'45)

6 o 79.\3 k k

which decays like 1/a®. As the universe expands, the energy density of massive gravitons
on the brane is therefore rapidly diluted. The total energy density of gravitational waves in
our universe at late times is dominated by the standard four-dimensional graviton (massless
zero mode). In the large mass limit, m,ys > 1, n > 1, the KK-energy density can be
approximated by

L2 3k
PKK = 245y, Z / W ﬁ}ﬂt wﬁ‘,‘;ﬁ My . (2.46)
s n

Due to the factor m, coming from the function )2, i.e. from the normalization of the
functions ¢, (t,y), in order for the summation over the KK-tower to converge, the number
of produced gravitons Ng‘iﬁ has to decrease faster than 1/m3 for large masses and not just
faster than 1/m?2 as one might naively expect.

2.4.2 Escaping of massive gravitons and localization of gravity

As we have shown, the energy density of the KK modes scales, at late times when particle
production has ceased, with the expansion of the universe like

pKK o 1/a° (2.47)

i.e. it decays by a factor 1/a® faster than the corresponding expression for the zero mode
graviton and behaves effectively like stiff matter. Mathematically, this difference arises from
the distinct behavior of the functions Yy(a) and V,(a), n > 1, and is a direct consequence
of the warping of the fifth dimension which affects the normalization of the mode functions
¢q. But what is the underlying physics? As we shall discuss now, this scaling behavior for
the KK particles has indeed a straight forward very appealing physical interpretation.

First, the mass m,, is a comoving mass. The (instantaneous) ’comoving’ frequency or
energy of a KK graviton is wy, , = y/k? +m2, with comoving wave number k. The physical
mass of a KK mode measured by an observer on the brane with cosmic time dr = adt is
therefore m,, /a, i.e. the KK masses are redshifted with the expansion of the universe. This
comes from the fact that m,, is the wave number corresponding to the y-direction with
respect to the bulk time ¢ which corresponds to conformal time 1 on the brane and not to
physical time. It implies that the energy of KK particles on a moving AdS brane redshifts
like that of massless particles. From this alone one would expect the energy density of
KK-modes on the brane to decay like 1/a* (see also Appendix D of [54]).
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Now, let us define the normalized “wave function” for a graviton

alts Y
Wo(ty) = ¢y§,/f), 2 [" w1, (2.48)
Yv

From the expansion of the gravity wave amplitude Eq. (2.21) and the normalization condi-
tion it is clear that W2 (t,7) gives the probability to find a graviton of mass m,, for a given
(fixed) time t at position y in the Zs-symmetric AdS-bulk.

Figure 2.2: Evolution of W3(t,y) = ¢3(t,y)/y> corresponding to the probability to find
the first KK graviton at time ¢ at the position y in the AdS-bulk. The static brane is at
ys = 10L and the maximal brane velocity is given by v, = 0.1. On the right hand panel a
zoom into the bulk-region close to the moving brane is shown.

In Fig. 2.2 we plot the evolution of W2(¢, ) under the influence of the brane motion with
vp = 0.1. For this motion, the physical brane starting at y;, — 0 for £ — —oo moves towards
the static brane, corresponding to a contracting universe. After a bounce, it moves back
to the Cauchy horizon, i.e. the universe expands. The second brane is placed at ys = 10L
and y ranges from y;(t) to ys. As it is evident from this Figure, \IJ% is effectively localized
close to the static brane, i.e. the weight of the KK-mode wave function lies in the region
of less warping, far from the physical brane. Thus the probability to find a KK-mode is
larger in the region with less warping. Since the effect of the brane motion on \I’% is hardly
visible in Fig. 2.2, we also show the behavior of ¥? close to the physical brane (right hand
panel).

This shows that \I/% peaks also at the physical brane but with an amplitude roughly
ten times smaller than the amplitude at the static brane. While the brane, coming from
t — —oo, approaches the point of closest encounter, \I/% slightly increases and peaks at the
bounce t = 0 where, as we shall see, the production of KK particles takes place. Afterwards,
for t — oo, when the brane is moving back towards the Cauchy horizon, the amplitude \I/%
decreases again and so does the probability to find a KK particle at the position of the
physical brane, i.e. in our universe. The parameter settings used in Fig. 2.2 are typical
parameters which we use in the numerical simulations. However, the effect is illustrated
much better if the second brane is closer to the moving brane. In Figure 2.3 (left panel)
we show W? for the same parameters as in Figure 2.2 but now with ys = L. In this case,
the probability to find a KK particle on the physical brane is of the same order as in the
region close to the second brane during times close to the bounce. However, as the universe
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expands, \I/% rapidly decreases at the position of the physical brane.

The behavior of the KK-mode wave function suggests the following interpretation: If
KK gravitons are created on the brane, or equivalently in our universe, they escape from
the brane into the bulk as the brane moves back to the Cauchy horizon, i.e. when the
universe undergoes expansion. This is the reason why the power spectrum and the energy
density imprinted by the KK-modes on the brane decrease faster with the expansion of the
universe than for the massless zero mode.

The zero mode, on the other hand, is localized at the position of the moving brane.
The profile of ¢y does not depend on the extra dimension, but the zero-mode wave function
Uy does. Its square is

Ui(t,y) =

R —yiy R

vivp 1 _)y_z?:(L
a

2
1
—) St w (2.49)
such that on the brane (y = y3) it behaves as

W2(t,yp) =~ —. (2.50)

&l e

Equation (2.49) shows that, at any time, the zero mode is localized at the position of the
moving brane. For a better illustration we show Eq. (2.49) in Fig. 2.3, right panel for the
same parameters as in the left panel. This is the “dynamical analog” of the localization
mechanism for four-dimensional gravity discussed in [97, 98].

|
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Figure 2.3: Left panel: evolution of W3(t,y) for ys = L and v, = 0.1. Right panel:
localization of four-dimensional gravity on a moving brane. Evolution of \I’g(t,y). Note
the opposite behavior of zero mode and massive mode.

This result is in contradiction with the findings of Ref. [86] where the authors conclude
that for an observer on the brane KK gravitons behave like dust with a negative energy
density. To arrive at this result, they use Gaussian normal coordinates,

ds* = —N2(t,2)dt* + Q*(t, 2)a*(t)d;;dx dx? + dz* with (2.51)
Q = cosh(z/L) —~ tsinh(|z|/L) N = cosh(z/L) — <’y_1 - 72LH> sinh(|z|/L)
yt)™' = V(HL)?2+1 see Eq. (2.5). (2.52)
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They then argue that at low velocity, v ~ 1, one may neglect the difference between N
and () so that one obtains the metric

ds? ~ dz? + e 2A/E (—dt* + a2(t)5ijd:nid:nj) .

In this metric, the mode equation for the KK modes separates and their time evolution
can be determined by simply solving the time part of the equation, see [86]. There is,
however, a flaw in this argument: the above approximation is only valid sufficiently close
to the brane (which is positioned at z = 0 in these coordinates), but far from the brane,
when, e.g., (y~! — 1)sinh(|z|/L) > exp(—2|z|/L) the above metric is no longer a good
approximation and the difference between N and () does become important. As we have
seen, the wave function of the KK gravitons actually is large far away from the brane and
the time dependence enters in an important way in the normalization of the mode function
which changes its scaling with time.

2.4.3 Spectra

In Fig. 2.4 we show the results of a numerical simulation for three-momentum &k = 0.01/L,
static brane position y; = 10L and maximal brane velocity v, = 0.1. Depicted is the
graviton number for one polarization N, (t) for the zero mode and the first ten KK-
modes as well as the evolution of the scale factor a(t) and the position of the physical
brane y(t).
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Figure 2.4: Evolution of the graviton number N, x(¢) for the zero mode (one polarization)
and the first ten KK-modes for three-momentum k& = 0.01/L and v, = 0.1, ys = 10L.

In Fig. 2.5 we show some KK spectra which we have obtained by integrating the equa-
tion of motion numerically. More details about the numerics and results for different values
of the parameters can be found in Ref. [109]. In this paper we also derive an analytical
approximation for the spectrum which is good for KK masses m,, < 1. The numerical
calculations are in very good agreement with the analytical estimates, where applicable.

Integrating the zero-mode energy density over frequency with a cutoff given by the
strong scale, kmax = 1/Ls leads to the following simple result for the gravitational wave
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out

final state graviton number N,

7 Cl Ll C]
0.01 0.1 1 10
Kaluza-Klein mass m,

Figure 2.5: Final state KK graviton spectra for £ = 0.001, ys = 100, different maximal
brane velocities v, at to = 400 for one polarization. The numerical results are compared
with the analytical prediction (dashed line).

density parameter [109]
vy
Qpo ~ EQrad so that v, $0.2. (2.53)

Qrad is the density parameter of the relativistic degrees of freedom at nucleosynthesis, the
photon and three species of neutrini. The limit v, < 0.2 follows from the nucleosynthesis
constraint which tells us that during nucleosynthesis 2,4 should not deviate by more than
10% from its standard value [36]. The graviton spectrum is blue with tensor spectral index
np = 2. Its amplitude on Hubble scales is therefore severely suppressed and it leaves no
detectable imprint on the cosmic microwave background [36].

Also the energy density of the KK modes grows like k2 for suffiently large k,

dpk (k)

2 >
dogh XK RR

and its maximum comes from the cutoff scale kyax = 1/Ls. We find

Suf L? L\ (LY
P~ —b 2 <pKK> ~ 100 v} <—> <—> . (2.54)
a“yYs Ls Prad / max Ys Ls

It is easy to see that low energy requires y, < L at all times. Therefore, to initiate a bounce,
where y;, should be close to ys, we expect ys S L. For typical values of the string scale,
Ly < L and ys ~ L, the above ratio is not small and back reaction of the KK gravitons
on the geometry has to be taken into account. The ratio indicated is the one directly after
the big bang. As time goes on the KK mode energy density dilutes faster than radiation
and rapidly becomes subdominant.
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2.5 Conclusions

In braneworld cosmology where expansion is mimicked by a brane moving through a warped
higher dimensional spacetime, the brane motion leads to particle creation via the dynamical
Casimir effect for all bulk modes. Here we have studied the generation of gravitons.

The KK gravitons scale like stiff matter, pxk o 1/a% and can therefore not represent
dark matter. In an ’ekpyrotic type’ scenario with an AdS5 bulk, the nucleosynthesis bound
on gravitational waves requires v, < 0.2. Furthermore, back reaction of KK gravitons on
the evolution of spacetime is most probably not negligible at early times.

In the RSIT model where only one brane is present, graviton generation is negligible [21].
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PHYSICAL REVIEW D 79, 083529 (2009)

Graviton production in anti-de Sitter braneworld cosmology:
A fully consistent treatment of the boundary condition

Marcus Ruser, Ruth Durrer, Marc Vonlanthen and Peter Wittwer

In recent work by two of us, [Durrer & Ruser, PRL 99, 071601 (2007); Ruser & Dur-
rer PRD 76, 104014 (2007)], graviton production due to a moving spacetime boundary
(braneworld) in a five dimensional bulk has been considered. In the same way as the pres-
ence of a conducting plate modifies the electromagnetic vacuum, the presence of a brane
modifies the graviton vacuum. As the brane moves, the time dependence of the resulting
boundary condition leads to particle creation via the so called 'dynamical Casimir effect’.
In our previous work a term in the boundary condition which is linear in the brane ve-
locity has been neglected. In this work we develop a new approach which overcomes this
approximation. We show that the previous results are not modified if the brane velocity is
low.

DOTI: 10.1103/PhysRevD.79.083529 PACS numbers 98.80.Cq, 04.50.4+h

3.1 Introduction

The idea that our Universe is a 34 1 dimensional membrane in a higher dimensional "bulk’
spacetime has opened new exciting prospects for cosmology, for reviews see [83, 35]. In the
simplest braneworlds motivated by string theory, the standard model particles are confined
to the brane and only the graviton can propagate in the bulk. Of particular interest is
the Randall-Sundrum (RS) model [97, 98], where the bulk is 5-dimensional anti-de Sitter
space. If the so called RS fine tuning condition is satisfied, it can be shown that gravity
on the brane ’looks 4-dimensional’” at low energies.

Within this model, cosmological evolution can be interpreted as the motion of the
physical brane, i.e. our Universe, through the 5d bulk, acting as a moving boundary for bulk
fields, in particular for 5d gravitational perturbations. Such a time-dependent boundary
does in general lead to particle production via the dynamical Casimir effect [13, 29].

Of course one can always choose coordinates with respect to which the brane is at
rest, e.g. Gaussian normal coordinates. This leads to a time dependent bulk resulting
in the same effect, particle production from vacuum due to a time varying background
metric. But then, usually (except in the case of de Sitter expansion on the brane [53]),
the perturbation equation describing the evolution of gravitons is not separable and can
only be treated with numerical simulations [64, 71, 113]. Furthermore, in a time dependent
bulk, a mode decomposition is in general ambiguous and one cannot split the field in a
zero mode and Kaluza-Klein (KK) modes in a unique way. One of the advantages of the
dynamical Casimir effect approach presented in [38, 109] is that it allows for a clear physical
interpretation and in addition exhibits an analogy with quantum electrodynamics.
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Based on the picture of a moving brane in AdSs, we have studied graviton production
in an ekpyrotic type scenario [63] where our Universe first approaches a second static
brane. After a ’collision’ the physical brane reverses direction and moves away from the
static brane, see Fig. 3.1. For an observer on the brane, the first phase corresponds to
a contracting Universe, the collision represents the 'Big Bang’ after which the Universe
starts expanding (see Fig. 1). We do not model the details of this collision, but assume
that the brane distance is still finite at the collision. This corresponds to a cutoff of all the
physics which happens at scales smaller than the minimal brane distance when contraction
reverses into expansion. In our results we assume this to be of the order of the string scale.
We cut off the spectra at the string scale. This is a conservative assumption which signifies
that we neglect all the particle creation at energies higher than this scale.

FLRW-brane _
(38-brane, 7 > 0) fixed brane

/

L2
a

—»
fifth dimension ¥y

Yo (t)

expansion contraction

Ys

Figure 3.1: Two branes in an AdSs spacetime. The physical brane, a Friedmann universe
with energy density p is on the left. While it is approaching the static brane its scale factor
is decreasing, the Universe is contracting, and when it moves away from the static brane
the Universe is expanding. L is the AdS curvature radius which is related to the brane
tension 7 via Eq. (3.8). The value of the scale factor of the brane metric as a function of
the extra dimension y is also indicated.

We have obtained the following important results in our previous papers [38, 109]: first
of all, the energy density of KK gravitons in AdSs scales like stiff matter, oc a=%, where a
denotes the scale factor introduced in Eq. (3.2). Therefore, KK gravitons in AdSs cannot
represent the dark matter in the Universe !. We have also seen that in the early Universe the
back reaction from KK gravitons on the bulk geometry is likely to be important. Finally,
we have derived a limit for the maximal brane velocity, the bounce velocity, vmax < 0.2 in
order not to over-produce zero-mode (i.e. 4d) gravitons, the energy density of which is
constrained by the nucleosynthesis bound. We have also calculated the spectra of both,
the zero-mode and the KK gravitons.

In this previous work we have, however, neglected a term linear in the brane velocity
v in the boundary conditions (junction conditions) for the tensor perturbations. Here we
derive a method which includes this term and allows to treat the problem without any low

'See [39] for a discussion on a contradicting result in the literature.



A moving brane in AdSs 59

velocity approximation. We show that the low velocity results previously obtained are not
modified. Especially, the nucleosynthesis bound on the maximal brane velocity, vmax S 0.2,
remains valid. In a subsequent study we shall investigate graviton production from branes
which achieve high velocities in detail [41].

The paper is organized as follows. In the next section we repeat the basic equations for
the evolution of tensor perturbations (gravitons) and we explain why it is not straight for-
ward to include the velocity term of the boundary condition. In Section 3.3 we present the
new approach and obtain the modified perturbation equations via a coordinate transforma-
tion which is such that the velocity term in the boundary condition disappears. We then
quantize the system in the new coordinates. In Section 5.3.3 we show numerical results
for graviton production at relatively low velocities. In Section 6.4 we conclude. Technical
details are deferred to appendices.

3.2 A moving brane in AdS;

3.2.1 The background

In Poincaré coordinates (z4) = (t,x,y) with x = (2',2%,23) and A = 0,...,4, the AdSs
(bulk) metric is given by
L? .
ds® = gUAdeUAda;"B = F [—dt2 + d;jdx"da? + dy2] , (3.1)

where i,j = 1,2,3 and L is the AdS; curvature radius which is related to the bulk cosmo-
logical constant by the 5d Einstein equation, —A = 6/L?. The physical brane representing
our (spatially flat) Universe is located at some time dependent position y = y(t) in the
bulk, and the metric induced on the brane is the Friedman-Robertson-Walker metric

ds* = a*(n) [~dn? + 0;;da’da’] | (3.2)
with scale factor a(n) which is given by the brane position,

L
a(n) = w@) (3.3)

The conformal time 7 of an observer on the brane, is related to the bulk time ¢ via

dn=+/1—v2dt =~ 1dt . (3.4)

Here we have introduced the brane velocity

dyp ____LH and 5 — —— (3.5)
dt Vit PH? e ' '

H is the usual Hubble parameter,

v
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Its dynamics, as a result of the second junction condition, is determined by the modified

Friedmann equation [83]

H? = % (1 + 2%) , (3.7)

where 7 is the brane tension, p the energy density on the brane, and we assume the RS
fine tuning condition [97]

5T° 3
k5T 3
o =TI (3.8)
Furthermore (see [97]),
2
g = 87Gy = 5T (3.9)
We define the string and Planck scales by
1 3 1 2
K5 —a = LS N R4y = —5 = LPI . (310)
M Mg,
Note that the RS fine-tuning condition is equivalent to
L, L?
ks = kg L or 7 = LI; (3.11)

Identifying k5 with the string scale is based on the assumption that this phenomenological
model comes from string theory with one large extra-dimension L, the y direction, while
all the other extra-dimensions remain of the order of the string scale, L;. In this case the
4d observed Planck scale is related to the string scale by Eq. (3.11).

3.2.2 The setup

We consider a radiation dominated brane which moves frome the Cauchy horizon, y = 0,
at t = —oo to a position y,(0) < ys at t = 0, where it bounces and changes its direction.
In a radiation dominated universe p o< a=* o y;,(t)*. Defining

r(t) = L%’lngp , (3.12)
we have HL = \/7(1 + r/4). Inserting this in Eq. (3.5) yields
n(t) = oft) = £ YTOAL O] (3.13)

1+r(t)/2

Here the upper sign is chosen for negative times, when y is growing and the universe is
contracting while the lower sign corresponds to positive times (expanding universe). At
the bounce the maximal velocity, v(0) is reached corresponding to the maximal radiation
density given by

r(0) =5 ( e iﬁgz 5o 1) (3.14)
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At t # 0 the radiation density is

(t) = r(0) (%)

Note that since the differential equation (3.13) is first order, only one initial condition, e.g
v(0) can be chosen. y,(0) is then determined by the implicit equation

(Implicit because it contains y(0) also in the integrand.) Because of this complication it is
simpler to choose the initial conditions at some early time, ¢, < 0 so that r(¢;,) < 1. For
t < tin we can then approximate Eq. (3.13) to

o s YY)
U(t) = V/r(t) = T(tm)yg(tin)

with solution

yp(t) =

1 (tin)t2
—% < tin . (3.15)

The initial condition (¢, r(tin)) determines the bounce velocity v(0). In this first paper,
where we mainly want to present the method how to transform mixed boundary conditions
into Neumann boundary conditions, we simplify the background evolution by assuming
HL < 1 or, equivalently, r(t) < 1 at all times. This is of course not a good approximation
if the bounce velocity is high and we shall treat the brane motion correctly in Ref. [40].
With this (3.13) reduces to

gu(t) = V/r(t) o g3 (1) (3.16)
at all times. The expression
L2
R
with parameter ¢, solves Eq. (3.16) for all £ # 0. Furthermore, it has the correct asymptotics
and the bounce velocity is given by

yb(t) (3.17)

L* (0 _
U(O) = E = L2 ="y .

The kink at ¢ = 0 can be regularized by replacing [t| by /t? + t2, where t. is a small
regularization parameter. For |t| < t. this does not affect the dynamics but for |t| < t. the
velocity is reduced and it actually passes through zero at ¢ = 0. For graviton frequencies
with wt. < 1 the particle production obtained is independent of this regularization.
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3.2.3 Tensor perturbations

Allowing for tensor perturbations h;;(t,x,y) of the spatial three-dimensional geometry at
fixed y, the perturbed bulk metric reads

L2 . .
ds? = ? [—dt2 + (6’lj + 2hij)de’ZdeJ + dyz] . (318)

Tensor modes satisfy the traceless and transverse conditions, hi = a,-h;i = 0. These con-
ditions imply that h;; has only two independent degrees of freedom, the two polarization
states @ = x,+. We decompose h;; into spatial Fourier modes,

3
his(t @, ) = / Y e (k) (3.19)
(27T) o—+ X
where e (k) are unitary constant transverse-traceless polarization tensors which form a
basis of the two polarization states e = x,4. Since the problem at hand obeys parity
symmetry, we shall neglect in the following the distinction between the two graviton po-
larizations and consider only one of them. We then have to multiply the final results for
e.g. particle number or energy density by a factor of two to account for both polarizations.
Here we only consider 4d gravitational waves. The 5d metric has in principle five
different spin-2 polarizations. Two of them are the ones discussed here. In addition there
are the two helicities of the so-called gravi-vector and a gravi-scalar (see, e.g. [20]). The
gravi-vector and the gravi-scalar obey exactly the same propagation equation as the 4d
gravitational waves in the bulk, only their boundary conditions are different. In principle
they would add to the results obtained here. In this sense our results are conservative,
but since the different polarization states do not interact at the linear level they can be
calculated independently. These polarizations are expected to contribute on the same level
as the two considered here.
The perturbed Einstein equations and the second junction condition lead to the bound-
ary value problem

F+K -0+ Say h(t,y:k) =0 in the bulk (3.20)

and
v (vO; + 0y) h|yb(t) =0 (3.21)

describing the time-evolution of the tensor perturbations as the brane moves through the
bulk. We introduce also a second, static brane at position y,, which requires the additional
boundary condition

8yh]ys =0. (3.22)

Eq. (3.20) is the Klein-Gordon equation for a minimally coupled massless mode in AdSs,
i.e. the operator acting on h is just the Klein-Gordon operator

b
V=9

Equation (3.21) is a time-dependent boundary condition (BC) coming from the fact
that the moving brane acts like a "moving mirror” for the gravitational perturbations.

O= 9a [vV—99*P05] . (3.23)
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Only in the rest-frame of the brane do we have pure Neumann BCs. In a generic frame we
have the Lorentz transformed BC which contains a velocity term vd;.

We assume that the brane is filled with a perfect fluid such that there are no anisotropic
stress perturbations in the brane energy momentum tensor, i.e. there is no coupling of
gravitational waves to matter. If this were the case, the r.h.s. of Eq. (3.21) would not be
zero but a term coupling h;; to the matter on the brane, see Eq. (2.25) of [109], would be
present.

The analogy to a moving mirror is actually not just a pictorial one. Transverse-magnetic
modes of the electromagnetic field in an ideal, i.e. perfectly conducting, dynamical cavity
are subject to the very same boundary condition, see, e.g., [28]. In this context, the
boundary condition (3.21) is sometimes referred to as "generalized Neumann” boundary
condition, a terminology which we also adopt here. If the cavity is non-perfect, then also
in the case of the electromagnetic field, the right hand side of the boundary condition
contains a term describing the interaction of the photon field with cavity material, similar
to the anisotropic stress perturbations for the gravitational case considered here. This
suggests that a brane with no anisotropic stresses could be termed "ideal brane”.

For the tensor perturbations the gravitational action up to second order in the pertur-
bations reads

3 Ys
S, = s dt/d3k d—§[|ath|2 —0,h|* — K*|h?| . (3.24)
2K5 w(t) Y

One factor of two in the action is due to Zy symmetry while a second factor comes from
the two polarizations. As we have shown in [109], the BC’s (3.21,3.22) are indeed the only
ones for which §S;, = 0 leads to the free wave equation (3.20). (In principle also Dirichlet
BC’s, i.e. h vanishing identically on the brane, lead to a wave equation in the bulk. But
besides leaving no room for a non-trivial dynamics of the gravitational waves on the brane,
these are not obtained from the Einstein equations in the bulk.)

3.2.4 Dynamical Casimir effect approach

The wave equation (3.20) itself is not time dependent and simply describes the propagation
of free modes. It is the time dependence of the BC (3.21) that sources the non-trivial time-
evolution of the perturbations. As it is well known, such a system of a wave equation
and a time-dependent BC leads, within a quantum mechanical formulation, to particle
production from vacuum fluctuations. In the context of the photon field perturbed by a
moving mirror this goes under the name “dynamical Casimir effect” [13, 29].

In [38, 109] we have extended a formalism which has been successfully employed for the
numerical investigation of photon production in dynamical cavities [106, 107, 108] to the
RS braneworld scenario. We have studied graviton production by a moving brane, which
we call dynamical Casimir effect for gravitons, for a bouncing braneworld scenario.

However, in order to solve the problem, we have neglected the velocity term in the
BC (3.21). The ansatz

h=>aa(t)e ™ ou(t,y) +he., wiy =k +mi(t)
a=0

then leads to a Sturm-Liouville problem for the instantaneous eigenfunctions ¢4 (¢, y) con-
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sisting of the differential equation
3
[—55 + ;ay} Palt,y) = mp(t)dalt,y) (3.25)

and Neumann BC’s at both branes. The solutions of (3.25) respecting Neumann BC’s at
both branes are

Ysyb(t)

do(t) = — LY (3.26)
y2 — yp(t)
%(t,y) = Nn(t)y2c2(mn(t)7yb(t)7y)
with
Cy(m,z,y) = Yi(mzx)J,(my)—Ji(mx)Y,(my). (3.27)

They form a complete orthonormal system with respect to the inner product

Ys d
(Garts) =2 [ Ron(t.)0s(t.0) = bus (3.28)
() Y
and the completeness relation implies
2> dalt,y)alt.5) =6y — §)y° . (3.29)

The factor two accounts for the Zs symmetry of the bulk.

In [109] we call ¢9 and ¢, the zero-mode and Kaluza-Klein (KK)- mode solution,
respectively. Here ¢ is the massless mode, mg = 0, which reduces to the usual 3 + 1 -
dimensional graviton on the brane. The KK masses m,, # 0 are determined by the BC at
the static brane, see, e.g. [109, 21] for more details.

Due to the completeness and ortho-normality of the functions {¢,} at any instant in
time, any general solution of (3.25) subject to Neumann BC’s can be expanded in these
instantaneous eigenfunctions. If we add the term v0; to the boundary condition this feature
is lost and we can no longer expect to find a complete set of instantaneous eigenfunctions.

However, since the entire effect disappears when the velocity tends to zero, neglecting
a term which is first order in the velocity seems not to be a consistent approach. This
problem prompted us to search for another description allowing us to treat the boundary
condition (3.21) in full.

3.3 Graviton production in a time-dependent bulk with a
moving brane

In this section we introduce a new time coordinate which is chosen such that the velocity
term in the boundary condition disappears but the mode equation for the instantaneous
eigenfunctions still remains the Bessel equation (3.25) with its solution given by Egs. (3.26)
and (3.27). We then extend the formalism of [109] to this case and shall see that for small
velocities our previous results are not modified.
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3.3.1 A new time coordinate
We introduce new variables (#4) = (7,x, 2) given by
T(ty)=t+sty), z=vy. (3.30)

The idea is to find a function s(¢,y) such that 7 — ¢ for all y, when v — 0 and that
the junction condition (3.21) reduces to a normal Neumann BC in the new variables. We
can then use the mode functions (3.26) and (3.27) to formulate the problem quantum
mechanically. One might first be tempted to make a y-dependent Lorentz transformation
to the rest frame of the moving brane, but actually this does not lead to Neumann BC’s in
our case as the transformation induces new terms in the metric. We therefore first leave the
function s(t,y) completely general and formulate the conditions which have to be satisfied
in order for the new BC’s to be purely Neumann.

In (7,x, z)-coordinates, the brane trajectory is given by the implicit equation

(1) = yp [t(7, 2(7))] - (3.31)

Once we have specified the function s(t,y), the new brane trajectory z,(7) can be found.
This is done numerically since neither s(¢,y) nor the inverse t(, z) of (3.30) exist in closed
form. As in [109] we restrict ourselves to brane motions where asymptotically, i.e. for
t — +oo, the physical brane approaches the Cauchy horizon (y, — 0), moving very slowly
(v—0).
The new metric given by
ds® = gap(t, 2)ditz? (3.32)

is time dependent and contains non-vanishing cross terms gg.. The explicit expression
is given in (3.57). We now show that the function s(¢,y) can be chosen such that the
time-derivative term in the boundary condition disappears.

In the coordinates defined in Eq. (3.30), the junction condition (3.21) becomes

or 0
[v(t)a—; + a—;] O:h(1,2) + 0:h(r,2) =

() {1+ Os(t,y)} + Oys(t,y)| Orh(r,2) + O:h(T,2) = 0 at z=z(r). (3.33)

In order to obtain Neumann boundary conditions, we require that the term in square
brackets vanish at z,(7). This leads to the condition

ays(t, y)

1+ is(ty) - .

y=yp(t)

for the function s(t,y). Furthermore, we want to maintain the Neumann BC at the static
brane ys = z5. This yields the additional condition for the function s(t,y)

8y3(tay)|y=ys =0. (3.35)

Hence, if we can find a function s(¢,y) which satisfies Eqgs. (3.34) and (3.35), the junction
conditions in the new coordinates reduce to Neumann BC’s

O.h(1,z) =0at z=z and z = z(7) . (3.36)
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To find a suitable function s(¢,y) we choose the separation ansatz

s(t,y) = f(t)o(y) (3.37)
leading to ( )
9o (w)

= 0 ) ) (3:3%)

For the transformation (3.30) to be regular, we have to require 14+0;s(t, y) = 1+%(t)a(y) #
0 Y(t,y). If we choose o such that 9,0 (yy(t)) is bounded from below, 0 < A < 9y (ys(t)),
this ansatz ensures the required asymptotics, f(t) — 0 for v(¢) — 0. In addition we need

Oy (Y)ly=y. =0 . (3.39)
The function f(t) is determined by the differential equation

PO 1 o) L
i o olw®) ! D ) (3.40)

A simple choice for o(y) is

1 2

oly) =14+ — <1 - ﬁ) , oo =const., o9 >1, (3.41)
00 Ys

so that 1 < o(y) < 2. With this, condition (3.35) is automatically satisfied. In addition,

we want the brane collision, i.e. the bounce to happen at the fixed time 7 = 0. For this

we chose the initial condition
f(t=0)=0. (3.42)

Since f(t) — 0 for v(t) — 0, the transformation (3.30) satisfies
T—t for t—+oo and 7(t=0,y)=0. (3.43)

For the first of these equations we use that v(t) — 0 for ¢ — oo and the form of the
differential equation (3.40).

With (3.38), f(0) = 0 implies that the velocity vanishes at the brane, v(0_) = v, =
v(04+) = 0. Hence the velocity does not jump from a large value v, to —v, at the bounce
but it evolves very rapidly but smoothly from a high positive value vpax = v(—€) to a
large negative value —vmax = v(€), € > 0 and small (see Fig. 3.2), like the regularized
brane motion proposed in Section 3.2.2. Confirming that the results are independent of
the choice of o is of course a crucial test.
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The coordinate transformation maps the problem of a moving brane in a static bulk
(3.1) onto the problem of a brane moving according to (3.31) in a time-dependent bulk. At
first glance a further complication of the problem. Its benefits, however, will become clear
in the next sections. The transformation of the metric is given explicitely in Appendix 3.6.1.

10— —
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Figure 3.2: The velocity in the new coordinates, %. Note that this is a coordinate

velocity, not a physical quantity. It is easy to check that gap dng(T) dz}) (T) < 0 at all times,

hence the physical velocity remains timelike also if % becomes larger than 1. The maximal
velocity for this case is vpax = 0.3.

3.3.2 Wave equation

A

Transforming the Klein-Gordon operator (3.23) to the new coordinates £, we obtain the

wave equation
3
g1(7,2)02 + ga(7,2)0; — 259(7, 2)0.0; + ;az — 2+ k| h(r,2)=0. (3.44)

The definitions of the functions ¢1(7,2), g2(7,2) and s3(7,2) in terms of the coordinate
transformation s(¢,y) are given in Appendix 3.6.1. These functions manifest that the bulk
itself is now time-dependent and that the metric is no longer diagonal. In Poincaré coordi-
nates the non-triviality of the time-evolution of the perturbations is purely a consequence of
the time-dependent junction condition, no time-dependent functions enter the wave equa-
tion (3.20). Our coordinate transformation which transforms the generalized Neumann BC
into a pure Neumann BC, induces explicite time-dependence in the wave equation itself.
What is important, however, is that in (3.44), in the instantaneous rest frame where we
neglect time derivatives, we get the operator (3.25) of the original Bessel equation with
normalized solutions (3.26) and (3.27). We just have to replace the variables (¢, y) by (7, 2).
Writing the action (3.24) in terms of the new coordinates yields

PEEO 3.45
/ T2%5/ /zb(T 23 1+81 (3.45)

[91|8Th|2 — 255Re[(9,h)(D-1%)] — [0 + K h|?

Using the expressions for s1, s9, g1 and g2 given in Appendix 3.6.1, it is readily shown that
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the variation of (3.45), demanding Neumann boundary conditions at the brane positions,
leads to the wave equation (3.44).

In the next subsections we take the action (3.45) as the starting point to set up the
dynamical Casimir effect formulation of graviton production along the same lines as in [38,
109]. For the physical interpretation of gravitons we are using the fact that asymptotically,
when the velocity of the brane goes to zero, the action (3.45) and the wave equation (3.44)
reduce to (3.24) and (3.20), respectively. However, in the new coordinates, the junction
conditions are always simple Neumann boundary conditions.

3.3.3 Mode decomposition and Hamiltonian

As a basis for a mode decomposition we chose the eigenfunctions {¢ (7, z)} obtained by
replacing (¢,y) — (7, 2) in (3.26) and (3.27). As in [109] we call ¢¢ and ¢; the zero-mode
and KK mode solution, respectively. For a brane at rest, and hence 7 = ¢, the solutions ¢g
and ¢; do indeed represent the physical zero mode and the KK modes, see, e.g. [97]. When
the brane is moving, however, these solutions are 'instantaneous modes’, provided that the
boundary condition is Neumann. This approach is widely employed in the context of the
dynamical Casimir effect, see [106, 107, 108] and references therein. Here, working in the
(7, z)-coordinates, the modes (3.26) and (3.27), are proper eigenfunctions respecting the
full junction condition which we have reduced to a Neumann BC. At early and late times,
i.e. asymptotically |t| — oo, where the brane velocity tends to zero, these eigenfunctions
agree with the physical eigenfunctions corresponding to the zero mode and the KK modes.
Since the eigenfunctions {¢, (7, 2)} form a complete and orthonormal set. and satisfy the
correct junction conditions at both branes, we may decompose the graviton field in ¢, ’s
and the pre-factors ¢, k(7) become canonical variables which can then be quantized [109],

h(T7 2, k) = \/% Z Qa,k(7)¢a(77 Z) . (346)
a=0

Our coordinate transformation and the expansion (3.46) satisfy two major requirements.
First, the expansion (3.46) is consistent with the full junction condition (generalized Neu-
mann BC). This overcomes the problem of our approach in [38, 109]. Secondly, even if at
arbitrary times the g, k’s cannot a priori be identified with physical modes, asymptotically,
i.e. when the brane moves very slowly, they do represent the independent physical gravi-
ton modes. This allows us to introduce a proper notion of particles and vacuum states for
asymptotic times. Initial and final vacuum states are then linked by the time-evolution of
the gok’s exactly as in [109].

We divide the wave equation (3.44) by g; in order to isolate the second time derivative
and insert the expansion (3.46). Note that ¢y — 1 for |t| — oo and for a sufficiently
large choice of op, g1 > 0 at all times. As we shall see below, this is also needed for
the Hamiltonian to be positive at all times. Inserting the expansion (3.46) into (3.44),
multiplying it by ¢z and integrating over 2 sz;(T) dz/z% leads to a system of differential
equations for the g,k which has the same form as the one of Refs. [38, 109],

ok (T) + Y [A8a(7) 48 (T) + Bga(T)qsx(7)] = 0 . (3.47)
B

The explicite expressions for the time-dependent coupling matrices Ag, and Bg, are given
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by integrals over the bulk which are rather cumbersome. The details can be found in
Appendix 3.6.2. Inserting the expansion (3.46) into the action (3.45) we obtain the La-
grangian L(7) in terms of the variables g, k(7). We can then define the canonical momenta
Pak = OL/0qq k from which, by means of a Legendre transformation, we derive the Hamil-
tonian

1 _ 1
H(T) = 5 /d3]{;z [pa’k Eaﬁl PB,—k + qa.k |:§ (wik(T) + wék(T)) 5@6 + Vag 4B,—k
af
— (Mga — SBa) [98.xPax + pa,k‘]ﬁ,k]} (3.48)

The matrices E(;Bl, Vag, Mgo and Sg, are given explicitely in Appendix 3.6.2. It is impor-
tant to note that E;ﬁl is positive definite as long as g1 > 0 and 1 + s; > 0, which we have
to require for our approach to be consistent. In the old treatment, £,z was the identity
matrix and the couplings Sg, and V, 3 were missing. They are due to the time-dependence
of the bulk spacetime in the new coordinates and therefore originate from the term v, of
the boundary condition in Poincaré coordinates. The coupling matrix Mg, which is also
present in our previous treatment comes from the time dependent Neumann BC. Finally,
the time dependence of the bulk volume z; — 2,(7), induces the time dependence in the
frequency wq i (squeezing effect, see [109]).

All the coupling matrices tend to zero when v — 0. But we have not been able to show
that the new couplings, E;ﬁl — 0a8, Vap and Sp, are parametrically smaller than Mg,
e.g. that they are of order v2. Therefore, the result that the particle production obtained
in our previous treatment [38, 109] is not modified if the velocity is sufficiently low is not
evident and has to be checked numerically.

3.3.4 Quantum Generation of Gravitons

The quantization procedure goes along the same lines as in [109]. The canonical variables
Gak(T), Pax(7) and the Hamiltonian H(7) are promoted to operators §q k(r), Pak(T) and
H(7), subject to the usual commutation relations. In the Heisenberg picture where the
time evolution of an operator O is determined by

O(r) = il (r),O(r)] + (%@) :
expl.

the operators ¢, k(7) and p, k(7) satisfy the same Hamiltonian equations of motion as their
classical counterparts, i.e.

oOH . OH
= 5 Pak = —
8]906,1( “ 8(]a,k

q.oc,k (349)
Remember that we assume that asymptotically, |t| — oo, the brane is at rest, i.e. the
brane velocity vanishes and both coordinate systems agree, 7 = t. We extend this notion
of asymptotic behavior by introducing two times, ti, and oy, and we shall assume that the
brane is at rest for ¢t < t;, and t > toyut, respectively. This corresponds to a scenario where
the motion of the brane is switched on and off at finite times. Such a brane dynamics may
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seem rather artificial from a physical point of view, but what is important for us is that
before t;, and after to,t no significant particle creation takes place. Numerically, we test
this by varying ti, and ¢, and choosing them large enough so that the particle number is
independent of the value chosen.

In the (7, z)-coordinates, the brane is then at rest for times 7 =t < 73, = t;, and 7 =
t > Tout = tout, respectively. When the brane velocity is zero, the matrix FE,g(7) defined
in Appendix 3.6.2 becomes the identity, E,z(T) —|r|—00 Oap, and all other matrices which
represent the coupling terms vanish identically in this limit. Consequently, for asymptotic
times the Hamiltonian reduces to the familiar form of a collection of independent harmonic

oscillators,
~ 1 R ) 2 .
Hln/out _ §/d3k‘2 |:|po¢,k|2 + <wlofl’£0ut) |(Za,k|2:| (3‘50)
o

with
Pak = Go,—k - (3.51)
We have introduced the notation

wi@il,k = wa,k(T < Tin) > wgl,llg = wa,k(T > 7—out) . (352)

Following [109], we decompose {4 k in creation and annihilation operators,

A 1 ~in Aln *
Gok(7) = > —— |ale () + a0 (7)) (3.53)

which are defined via d;ﬁklo, in) =0 V a,k. The initial vacuum state |0,in) is the ground
state of the Hamiltonian (3.50) for times 7 < 73,. This initial state is linked to the final
vacuum state defined by dg‘i]O, out) = 0; V «,k, by means of a Bogoliubov transformation
(see [109])

~out __ ~in * ~inf

agy = Z [Aoc@k(Tout)%,k + Bk (Tout )y, i (3.54)

a

which determines the number of produced gravitons (for each polarization)

Ng?]ft = Z ’Bﬁa,k(Tout)’2 . (355)
B

As we have discussed in detail in [109], the graviton number after the time 7oy, (3.55),
represents a physically meaningful quantity .

3.4 Numerical Results

In order to solve the equations of motion (3.47) numerically, we transform the system to a
first order system and introduce a mass cutoff, nyay, i.e. we neglect all modes with masses
higher than m,,_, , in other words ¢, = 0 for @ > npyax, along the lines explained in detail
in Ref. [109]. Modes close to this cutoff are of course seriously affected by it as is seen
in Figs. 3.3, 3.4 and 3.5. We have tested the stability of the results for modes n < npax
by varying the cutoff. The stability of the zero mode is illustrated in the lower panel of
Figs. 3.3 and 3.4. Typically modes with n < 0.7nm,ax can be trusted. An indication for this
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is also the Bogoliubov test shown in Fig. 3.6 and discussed in Ref. [109].

The first order system is given explicitly in Appendix 3.6.2.3 and differs from the original
one in [109] only by additional mode couplings. We have compared our new results with
those of Ref. [38, 109] and find excellent agreement at low velocity, vmax < 0.1. This is
illustrated in Figs. 3.3 and 3.4. At bounce velocities vy 2 0.5 we do find differences as
expected, but these results cannot be taken literally since for these velocities the low energy
evolution of the scale factor adopted in this work is no longer sufficient. We will present
the full high velocity results in a forthcoming paper [40].
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Figure 3.3: The final graviton spectrum for three-momentum k£ = 0.01, brane separation
ys = 100 and bounce velocity vmax = 0.1. The top panel shows the final KK mode spectrum
and the lower panel depicts the time evolution of the zero mode. What we plot here is a
kind of instantaneous particle number (see Appendix C of [109]). The numerical result for
the KK spectrum is compared with the old one (shown in Fig. 13 of [109]). Like there,
lengths are in units of L and momenta/masses in the units of L~!. For low velocities
Umax < 0.1 the new spectra (generalized Neumann BC) are identical with the old ones
(Neumann BC) within the numerical error which are estimated by the Bogoliubov test
(see Appendix). Ng j(7) is shown for two cut-off parameters nmax to underline stability of
the solution.

The agreement between the old results for pure Neumann boundary conditions and the
new ones with the generalized Neumann boundary conditions is similar for other values of
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about 10% between the previous, inconsistent approach and the new generalized Neumann
BC for both, the KK modes as well as the zero mode. Again, the 4d graviton number is

shown for two cut-off parameters n,,.x to indicate numerical stability. .

ys and k.

In Fig. 3.5 we show the KK spectra for vym.e = 0.1 and vpmax = 0.3 for the wave
number £ = 0.1 and position of the static brane, y; = 10. In this case, the analytic
approximation derived in Ref. [109] which is valid for m,, < 1 can only be trusted for the
first two modes. The slight difference between the old and the new spectra towards the
end, i.e. for m, > 10, is due to changes how we numerically evolve the solutions through
the bounce (see Appendix 3.6.3). This affects the sensitivity of the solutions to the cut-off.
What we observe here as a slight bending of the spectrum for generalized Neumann BC’s
is also found in our previous approach if we increase the number of modes; compare to the
Nmax = 100 results shown in Fig. 15 of [109] and the discussion related to Fig. 25 of [109].
The drop in the final part of the spectrum is just an artefact of the finite cut-off (see [109]
for a detailed discussion).
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Figure 3.5: Final graviton spectra for three-momentum k = 0.1 and brane separation
ys = 10 for the bounce velocities vypax = 0.1 and 0.3. Again, the new (generalized Neumann
BC) numerical results are compared with the ones of the previous inconsistent approach
(Neumann BC), see Fig. 15 of [109], and the agreement is excellent in the regime m,, < 13,
where the numerics can be trusted.

3.5 Conclusions

In this paper we have derived a method to calculate graviton production in bouncing
AdS5 braneworlds by the dynamical Casimir effect taking into account the full generalized
Neumann boundary condition. We have achieved this by transforming to a new time
coordinate, in which the generalized Neumann BC become ordinary Neumann BC. We
have shown numerically that for low bounce velocities, vpax S 0.1, the number of generated
particles agrees with the one from the simpler treatment which neglects the velocity term
in the boundary condition. Since this term is of first order in the velocity, we believe that
our result is not obvious. Furthermore, the method developed in this work can be used to
calculate particle creation for branes moving at arbitrarily high velocities. In this case, one
will have to take into account the modification of the Friedmann equation at high energy,
HLZ 1. This is the goal of a forthcoming paper [40].

In this work we have not derived new physical results, but we have developed a new,
fully consistent method to calculate graviton production due to the motion of a braneworld.
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Our method overcomes a shortcoming of our previous treatment [38, 109], and we have
verified that at low brane velocity, vmax < 0.3 the previous results are not affected.

Acknowledgment

This work is supported by the Swiss National Science Foundation. The numerical simula-
tions have been carried out on the Myrinet cluster of Geneva University. RD thanks the
Galileo Galilei Institute of theoretical physics, where this work was finalized, for hospitality.

3.6 Appendix

3.6.1 The coordinate transformation

The Jacobian T of the transformation

(tay) = (T:t+3(t7y)7zzy)

reads
1+dis 0 0 0 Oys
(. x, 2) 0 1 00 O
T = = 0 01 0 O , (3.56)
8(tax7 y) 0 001 O
0 00 0 1
and its inverse is
1 —0ys
1+0:s O O 0 1+6yt8
- a(t, x, 0 1 00
UL 0 010 0
o(r,x, 2) 0 001 0
0 0 0O 1

Under this coordinate transformation the AdSs metric in Poincaré coordinates given in (3.1)
transforms to

gapditdi® = (T7YHTgT™'),, ditdz"?
L? 1 o
= 3 [—(1 P (= dr? + 285(7, 2)drdz + g1 (7, 2)d22) + byyda'da?] .

We introduce the functions

(Ors (t(T, z),z)
= (9:8)|1—const (t(7'7 z), Z)
(61528) (t(T, z), z)
)‘tzconst (t(7,2), 2)

|
—
Q
no
»
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and
gi(r,2) = (1+s1(1,2))° = sa(r, 2)? (3.61)
g2(1,2) = s11(7,2) — s92(7,2) + 232(7', z), (3.62)

of which g; and g9 will be used in Appendix 3.6.2.
The determinant is

10
g= det(gAB) = - <§> m . (363)

3.6.2 Details on evolution equations
3.6.2.1 Wave equation

The coupling matrices which determine the mode evolution equation (3.47) are given in
terms of the following bulk integrals:

i = 2 42
28 g )] 0str.2) (3.64)
Brotr) = 2 [ G dutr o)+ o)
2 g + :1(’*; ¢a<7,z>] 95(7.2) (3.65)

with
Wa i (T) = /m2(T) + k2 . (3.66)

The over-dot denotes the derivative w.r.t. the time 7 and a prime stands for the derivative
w.r.t. the coordinate z. Compared to our former work [109], the present problem is more
complicated due to the additional couplings which are caused by the time-dependence
of the bulk spacetime. Also the Lagrangian and Hamiltonian equations for ¢, are more
complicated. Furthermore, the functions sq, s9, g1 and g9 are only known numerically. This
induces additional numerical difficulties. Note also that it is important that g; does not
pass through zero for these integrals to be well defined, hence g;(7,2) > 0 V7, z. This is,
however, easily achieved with our ansatz (3.37, 3.41) for s(¢,y) if we choose o sufficiently
large.
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3.6.2.2 Lagrangian and Hamiltonian formulation

Inserting the expansion (3.46) into the action (3.45) leads (for each of the polarizations)
to the Lagrangian

L(r) = %/dgkz [Eaﬁqa,k(iﬁ,—k
ap

+(Mag — Kap)(da,xis,—x + Ga,—xds k)
+(N0cﬁ - Paﬁ - Qaﬁ - wi@k)Qoe,kQﬁ,—k]

containing several time-dependent coupling terms. In detail, these read

B = dz  gi(1,2)
EaB(T) = 2/Zb(T)Z—3m¢a(Taz)¢ﬁ(Taz)

B = dz gi(r,2)
Mas(r) = 2 [ S b )65,

B = dz gqi(r,2) .
NaB(T) = 2/2b(T)Z—3m¢a(Taz)¢ﬁ(Taz)

B > dz so(ryz)
Kap(r) = Z/zb(r);m(ﬁa(ﬂZ)qbﬁ(T’Z)

B * dz so(T,z) - ,
Pap(t) = Q/mez—gm[%(ﬂz)%(ﬂz)

+0,(7,2)dp (T, 2)]

= h %—SI(T,Z) T,2)d5 (T, 2
Qas(r) = /me 2 (1 +181(T,Z))2 [9alm 2)e5(7,2)

+0 (7, 2) B (T, 2)]

wi@k(T) = 2 B (mi(T) + m%(f)) + k2| x

/ZS @(ﬁa(T,Z)(ﬁﬁ(T,Z)
a2 1tsi(rz)

Since we require gi(7,2) > 0 and 1 + si(7,2) > 0, the matrix E,g is positive definite.
This is important for the above Lagrangian to lead to consistent second order equations of
motion for the variables ¢,k (no ghosts).

The equation of motion for the canonical variables obtained from the Euler—Lagrange
equations become

Z |:Ea~/(ja,k + Eom/q.oe,k + (M - K) qa .k

@ el
+ |:(M - IC)CW - (M - IC)'ya] qa,k
- (Na'y - ,Pom/ - Qa'y - Wory,k) Q(x,k] =0. (367)

Note that all the matrices introduced above apart from E,g tend to zero when v — 0, i.e.
for |7] — oo. In this limit E,s tends to do so that Eq. (3.67) becomes the free, uncoupled
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mode evolution equation in this limit as is expected. Introducing the canonically conjugate

variables oL
Pak = 5o = > [Eapdsx + (Mga — Kga)as ] (3.68)
ok 3
leads by means of a Legendre transformation to the Hamiltonian (3.48) with coupling
matrices

Vas(r) = 2/ dz_1 [(8—%—81> (T, 2)5(T, 2)

b(T) Z_3 1451 a1
—k251(7,2)6a (7, 2)5(r, 2)| (3.69)
Zs (.

Mas(r) = 2 Sdalr2)0s(r) (3.70)
Zs (] .

Sas(r) = 2 /Zb(ﬂz—jz—j%(nz)%(nz). (3.71)

Thereby onﬁl is the inverse of E,g, i.e.

_ # dz 1+ s1(7,2)
E 1:2/ — D (T, 2)Pg(T, 2) . 3.72
af o (7) 23 91(7', Z) ( ) B( ) ( )
The Hamilton equations
OH OH
ok = =—— , Dak = — 3.73
Tak 8pa,k Pak a%x,k ( )

then provide the equations of motion for the variables g, x and p, k-

Using certain relations of the coupling matrices following from the completeness (3.29)
and ortho-normality (3.28) of the functions ¢, and the properties of the functions s, s2, $11
and s92 one can show that the three systems of equations (3.47), (3.67) and the Hamilton
equations (3.73) are consistent with each other, i.e. one system follows from the other one.
This seems to be at first sight a rather trivial statement but we have to remind the reader
that this is not the case in our previous work [38, 109] as we have discussed in detail in
Section II. D of Ref. [109]. The new coupling matrices V5, Sas and E,g — 0,4 are missing
in our previous work. Even though they do become very small when the brane velocity
becomes small, it is not evident that these new terms must be smaller than e.g. Mg,
which also tends to zero with v. In other words, it is not straight forward to show that
these contributions are, e.g., of order v2.

3.6.2.3 Bogoliubov coefficients

Performing the quantization as in Ref. [109] we again transform to a first order system of
equation. In the new coordinates the system of equations (3.34), (3.35) of [109] is replaced
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by
&) = Y { - iy + en)] ()
B
+ [iagy(r) = cty(m] 05 ()} (3.74)
i) = Y| [iads () = s 0 ()
B
~ [iags() + (M) €570} (3.75)
where
) = GlmEdnE (i
03 1(T))dag + V(7)) (3.76)
+ 1
cup(T) = EMBQ(T)—SBOC(T)
£ (Map(r) — Sap(r)] (3.77)

(Note that in Ref. [109] a factor of two is missing in the expression for M};I in Eq. (B8), a
simple misprint.)

3.6.3 Numerics

To compute the graviton spectra we have adapted the code described in Ref. [109] to the
new problem. Apart from calculating the new coupling matrices we also have to solve the
differential equation (3.40) numerically to calculate the coordinate transformation and its
inverse in order to determine z;(7) via the implicit equation (3.31) as well as the functions
s1(7, 2), s2(T, 2), g1(7,2) and ga(7, z) which enter the integrals for the coupling matrices.
For numerical purposes we have smoothed the function y(¢). Due to this implicit nature
of the coordinate transformation, the calculation of these coupling matrices is numerically
significantly more involved than in our previous approach.

As in [109], splines are used to interpolate the various matrix elements between time
steps. The time steps used to produce the splines are not uniformly distributed but carefully
selected to take into account the steepness of the time dependence of the couplings. Close
to the bounce we use very short time steps to produce the splines (~ 107%) while far away
we can increase the step up to 0.2 (in units of L). Furthermore, due to the complex time
dependence of some of the couplings very close to the bounce, exact integration of the
matrix elements when propagating the solutions through the bounce is necessary in order
to obtain satisfactory accuracy for large KK masses as in Fig. 3.5. In this way the bounce
is taken into account as accurate as possible. This affects the speed of convergence of the
solutions w.r.t. nmax, leading to the behavior described below Fig. 3.5.

As an indicator for the accuracy of our calculations we use the Bogoliubov test as
described in Appendix D of [109] (Eq. (D6)). This is presented in Fig. 3.6 for the vyax = 0.3
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result given in Fig. 3.5. The quantity denoted by 'Bogoliubov test’ and shown as solid line
in Fig. 3.6 should ideally vanish. Given the complex nature of the numerical problem, the
accuracy of the results is satisfactory for m,, < 10/L.
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Figure 3.6: Comparison of the final KK spectrum N,‘;?Ot'l and the corresponding quantity
dpn,0.1(Tous) given in Eq. (D6) of [109]. The quantity d, 0.1(7out) is supposed to vanish
identically, see [109]. The comparison is a measure for the accuracy of the vy = 0.3
result depicted in Fig. 3.5. In the region of the spectrum which is free from numerical
artefacts, i.e. no dependence on cut-off nmax, dpno.1(7out) is at least about two orders of
magnitude smaller than the physically relevant quantity Ng}{l indicating a satisfactory
accuracy.
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Model-independent cosmological constraints from the CMB

Marc Vonlanthen, Syksy Résédnen, Ruth Durrer

We analyse CMB data in a manner which is as independent as possible of the model of
late-time cosmology. We encode the effects of late-time cosmology into a single parameter
which determines the distance to the last scattering surface. We exclude low multipoles
¢ < 40 from the analysis. We consider the WMAP5 and ACBAR data. We obtain the
cosmological parameters 100wy, = 2.13 + 0.05, w. = 0.124 £ 0.007, ngs = 0.93 4+ 0.02 and
04 = 0.593° £ 0.001° (68% C.L.). The last number is the angular scale subtended by the
sound horizon at decoupling. There is a systematic shift in the parameters as more low £
data are omitted, towards smaller values of w}, and ns and larger values of w.. The scale
04 remains stable and very well determined.

4.1 Introduction

The cosmic microwave background (CMB) is one of the most important cosmological
probes. The pattern of acoustic oscillations of the baryon-photon plasma is imprinted
on the CMB at the time of decoupling, and then rescaled (and on large scales modified) as
the CMB photons propagate from the last scattering surface to the observer. The CMB is
thus sensitive to cosmological parameters in two ways, via the physics at decoupling and
via the evolution of the universe after that.

While the physics at decoupling —essentially atomic physics and general relativity of a
linearly perturbed Friedmann-Lemaitre (FL) universe— is well understood, the evolution at
late times deviates from the predictions of linearly perturbed FL models with radiation and
matter. The difference may be due to an exotic matter component with negative pressure
such as vacuum energy, deviation of gravity from general relativity [37, 82, 72, 18], or a
breakdown of the homogeneous and isotropic approximation [99, 14, 47, 100, 127, 22]. It
is not known which of these possibilities is correct, and there are large differences between
the various models. It is therefore worthwhile to analyse the CMB in a manner which is
as independent of the details of late-time cosmology as possible. On the one hand, this
clarifies the minimal constraints that all models of late-time cosmology, whatever their
details, have to satisfy in order to agree with CMB observations. On the other hand, our
analysis provides limits on the physical parameters at decoupling that are independent of
the details of what happens at later times. This is particularly important for cosmological
parameters such as the density of baryons, density of dark matter and the spectral index,
which are used to constrain particle physics models of baryogenesis, supersymmetry and
inflation, which are independent of late-time cosmology.

Such a separation of constraints is possible because the physics after decoupling affects
the CMB in a rather limited manner (except at low multipoles), by simply changing the
angular scale and modifying the overall amplitude of the CMB pattern. We encode the
change in the angular scale in a single parameter related to the angular diameter distance
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to the last scattering surface and treat the amplitude as a nuisance parameter. We aim to
be transparent about how the different cosmological parameters enter the calculation and
the assumptions that go into the analysis.

In section 2 we discuss how the physics at early and late times affects the CMB and
explain our assumptions. In section 3 we present the results of the analysis of the WMAP 5-
year data [66, 32, 58] and the ACBAR data [104] and give the constraints on cosmological
parameters. In section 4 we summarise our results. Some details are collected in two
appendices.

4.2 Parameter dependence of the CMB

4.2.1 Our assumptions

The pattern of CMB anisotropies can be summarised in terms of a few parameters. It was
noted in [44] that models with the same primordial perturbation spectra and same values
of wy, we and the shift parameter R have an identical CMB spectrum today, apart from low
multipoles (¢ < 30). The discussion in [44] was in the context of a family of Friedmann-
Lemaitre (FL) models, but the statement is true more generally. The shift parameter is
defined as

R = w'?(1+4 2,)Hoh ' Da(z,)

Qn\? = H
= <@> sinh <Q}(/2/0 dZ/H(E’)) , (4.1)

where z, is the redshift of decoupling, D4(z) is the angular diameter distance between
today and redshift z, Hy = 100hkm/s/Mpc is the Hubble parameter today, and the second
equation holds for all FL. models. The density parameter wy, is the normalized dimensionless
physical density of baryonic matter, wy, = 87Gxpp/3/(100 km/s/Mpc)?, w, is the normal-
ized dimensionless physical density of cold dark matter defined the same way, wy, = wp,+we
is the total physical matter density, and Q. = wmh ™2 and Qx are, respectively, the matter
and the spatial curvature density parameter today. With present observations which in-
clude polarization data, one has to add a parameter to take into account collisions between
the CMB photons and baryonic matter after the cosmic medium becomes reionized. This
is usually expressed with the redshift of reionization z; or the optical depth 7.

The CMB data have been analysed in terms of the shift parameter R in various FL
models [70, 66, 46, 122, 27, 89, 67], and a similar approach has been followed for local void
models [127, 25]. The model-dependence of parameters such as R has been discussed, but
limits on them have always been derived within some specific models, and it has not been
clear which assumptions are important and what is the model-independent information.

In this work, we analyse the CMB in a manner which is as model-independent as
possible, and we are explicit about the assumptions involved. In particular, we do not
restrict our study to models which are close to FL at late times, so our constraints are
also applicable to models where the effect of non-linear structures on the expansion rate
is important, or where we are located in a large spherically symmetric density fluctuation
such as a local void. (Note that the near-isotropy of the CMB does not imply that the
universe is close to FL, even coupled with the Copernican principle [101].)

We assume that the physics up to and including decoupling is completely standard, i.e.
linearly perturbed FL evolution according to normal four-dimensional general relativity
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with Standard Model particle physics and dark matter (which we assume to be cold during
decoupling). As for physics after decoupling, we make the minimal assumptions that it
changes the small angle CMB spectrum only by 1) modifying the angular diameter distance
to the last scattering surface and 2) changing the overall amplitude. Here, small angles
refers to scales which are well inside the horizon at late times when the unknown physics
can be important, say conservatively at z < 60. We discard low multipoles in our analysis,
because typically the unknown physics of dark energy, modified gravity or large deviations
from FL geometry affects the large angles in a model-dependent way, for example via the
late Integrated Sachs-Wolfe (ISW) effect. In typical perturbed FL models, the late ISW
effect is only significant at low multipoles (see appendix 4.5.1), and the Rees-Sciama effect,
gravitational lensing and the Sunyaev-Zel’dovich effect do not have a significant impact at
the present observational accuracy [80, 36, 115], though their presence is already suggested
by the ACBAR data [104]. We assume that such effects remain small in other models,
and that any multipole-dependent effect of new physics on the CMB spectrum is below the
observational precision, except at low multipoles.

In perturbed FL models, reionization has a significant effect on all angular scales, but at
high multipoles it amounts to a simple rescaling of the amplitude, and is thus degenerate
with the amplitude of primordial perturbations (see appendix 4.5.2), so we can neglect
modeling of reionization.

We assume that the primordial perturbations are adiabatic, and have a power-law
spectrum. We only consider scalar perturbations, and assume that vector and tensor
contributions are small. (This division refers to the early universe; in the late universe
it is not necessarily meaningful, because we do not assume that the late universe is close
to FL.) Within our approach it would not be easy to include tensor perturbations in the
temperature anisotropy spectrum, because they contribute mainly via the ISW effect and
are relevant up to £ ~ 100. However, the contribution of tensors starts to decay already
around ¢ ~ 50 and is probably relatively small, so their presence would not be expected
to change our results significantly. (It would be easy to take into account the tensor
contribution to the polarization spectrum, though, because it is mainly generated at the
last scattering surface.) We also neglect the effect of neutrino masses.

The idea behind these assumptions is that we can treat the CMB with a standard
Boltzmann code, and simply exclude low multipoles from the analysis. We have modified
the publicly available CAMB code and the corresponding Monte Carlo Markov Chain pro-
gram [81] to search for best-fit values of our parameters. As long as the rise to the first
peak is fully included in the analysis, discarding low multipoles should not involve a signif-
icant loss of information, because there are more high multipoles and the cosmic variance
is larger on large scales. However, our results in this respect are somewhat surprising, as
we discuss in section 4.3. Also, it has been argued that there are anomalies in the angular
distribution on large scales [56] (and a dipolar modulation at higher multipoles [57]), which
could indicate that some physics affecting the low multipoles is not understood, so they
may be unreliable for cosmological analysis; see also [48, §].

Our assumptions do not hold for models with non-standard physics at or before de-
coupling, such as new radiation degrees of freedom, early dark energy [16] or dark matter
which undergoes significant annihilation at early times [50]. In models where we are located
in a large spherically symmetric region, it is possible to obtain a large CMB dipole [61],
and there could be a large effect at higher multipoles as well. This can only be checked
with perturbation theory adapted to such models, which is now being developed [23].
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4.2.2 The physics of the CMB parameters

Let us outline the relation between the features in the CMB spectrum and the cosmolog-
ical parameters, given our assumptions above. (See [36, 88| for detailed discussion.) We
consider five parameters, namely the overall amplitude, the baryon density wy, the cold
dark matter density w., the spectral index ng and the distance to the last scattering surface
Da(zy).

The observed amplitude of CMB perturbations is determined by a combination of the
primordial power spectrum and late-time physics, such as damping due to accelerating
expansion and scattering of CMB photons from matter due to reionization. Without
specifying a model for the late-time universe, it is not possible to disentangle these effects.
Because the overall normalization does not have a model-independent interpretation, we
treat it as a nuisance parameter, i.e., we marginalize over it and do not quote limits for it.

The spectral index ng is related to the early universe physics, such as inflation, which
produces the primordial perturbations. Extending the analysis to more complicated pri-
mordial spectra would be straightforward, though of course we would not be sensitive to
large-scale features.

The relative height and depth of the CMB peaks and troughs is set by the physics of
the baryon-photon oscillations, which depends on wy, and w.. This pattern also depends
on the radiation density w, = 87Gxp,/3/(100 km/s/Mpc)?, which is however accurately
determined by the CMB temperature. Note that the CMB is only sensitive to the densities
at the time of decoupling, not to their values today. As is customary, we use the symbols wy,,
we and w, to refer to the densities at decoupling scaled to today with the factor (1 + z,)3
for baryons and dark matter and (1 + z,)* for radiation, where x indicates the time of
decoupling. At decoupling, the distribution of matter is still very smooth, so the densities
at that time can be understood as local or average values; the scaled numbers represent
today’s average values. In a statistically homogeneous and isotropic space, the mean energy
density of baryons and cold dark matter evolves like (1 4 2)3 due to conservation of mass,
and the mean energy density of photons evolves like (1+ 2)? due to conservation of photon
number and the fact that the change of energy of the CMB photons by scattering can
be neglected [102]. FL models are of course a particular case of this. If dark matter has
significant pressure, or decays significantly [31], or if there is some extra source of baryons,
dark matter or photons, our wy,w. and w, would not correspond to the physical densities
today. (Dark matter decay to radiation would also contribute to the late ISW effect [65].)
This is already true for neutrinos, which we treat as massless, but which in fact do not
contribute to the present-day radiation density, since their mass today is larger than the
temperature. This will also be the case if the factor (1 + 2)3 is not simply proportional to
the volume, which can happen if statistical homogeneity and isotropy is broken, such as in
local void models where shear can contribute significantly to the redshift.

Our final parameter is the angular diameter distance to the last scattering surface.
The angular diameter distance out to redshift z is defined as D4(z) = L/, where L is the
proper size of an object at redshift z and 6 is its observed angular size. The physical scale
of the baryon-photon oscillations is set by the sound horizon at decoupling r¢(z.) which
depends on wy, and w. [59, 36]. With standard physics up to decoupling, the sound speed
of the photon-baryon plasma is

) 1 1 1

“ T 31+ 3p/dpy) 3 ) BEET S

(4.2)
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where we have introduced r = 3wy, /4w.. For the sound horizon we obtain®

(1+ z)rs(ze) = /0* ‘s((;))dt/

h /°° dx
Hov3 J1i-, 3:\/(3: + 7)(xw, + W)

2% | Vit zo+r+ %4—7"
0og
Hy/ r
0V 3 VI (1+,/2)

Note that h/Hy = 1/(100km/s/Mpc) ~ 2998 Mpc is a fixed scale which does not depend on
the cosmological model. The photon energy density w, ~ 2.48 107? is known as well as the
CMB temperature and we do not treat it as a free parameter. Assuming massless neutrinos,
the same is true for the radiation density [36], w, = w, (1 +31 (%)4/3) ~ 4.17 x 107°.
Furthermore, for standard radiation content, z, ~ 1090 and it depends weakly on wy, and
we (for an analytical approximation, see [59]). For standard values of the parameters, the
log in (4.3) is of order unity. The sound horizon at decoupling therefore depends only on wy,
and wc. The angle under which it is observed today is given by 04 = 75(z.)/Da(zs). With
wp and w, fixed, the pattern of CMB anisotropies is determined at decoupling (apart from
low multipoles), and its angular scale changes as the distance to the last scattering surface
grows and the multipole positions of the CMB peaks and troughs scale with D 4(z,). Given
our assumptions, the CMB (apart from low multipoles) has no sensitivity to any physical
parameters other than wy,we, ns, D4 and the overall amplitude, and these five parameters
are a priori independent. A given model can of course couple them to each other, as well
as to parameters which do not directly affect the CMB.

(4.3)

In particular, in linearly perturbed FL models the spatial curvature affects the CMB
only via the angular diameter distance (apart from the late ISW effect). It is sometimes
said that the spatial curvature can be determined from CMB observations by using the
sound horizon as a standard ruler (assuming that the universe can be described by a FL
model). However, as (4.1) shows, the effect of spatial curvature on Dy (z.) is completely
degenerate with the expansion history H(z). For example, FL models with matter and
significant spatial curvature are consistent with the WMAP observations [117]. In that
case, a prior on Hj is enough to exclude large spatial curvature, but only because of
the specific form of the expansion history. The only way to really measure the spatial
curvature, as opposed to doing parameter estimation in the context of specific models, is
to use independent observations of the distance and expansion rate [24], such as from the
ages of passively evolving galaxies [62] and baryon acoustic oscillations [51]. Note also
that the CMB (apart from low multipoles) is sensitive to the expansion history between
decoupling and today only via the angular diameter distance; in particular, the CMB
contains no model-independent information about Hj.

In addition to R, another parameter defined as
T Da(z)

KAEEZTFTS(Z*)

(4.4)

Here r, is the physical sound horizon at the time of decoupling. In the literature, rs often denotes the
comoving sound horizon.
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has also been introduced to parametrise the distance to the last scattering surface [60].
The parameter £ 4 is related to the position of the first peak in multipole space (for details,
see [36, 88, 60, 30]). The quantity ¢4 has been called an independent shift parameter in
addition to R [122]. However, this is somewhat misleading, because R and {4 contain the
same information as regards the shift in the angular scale of the CMB anisotropy pattern
due to the late-time evolution, the only difference is their dependence on wy and w.. Of
course, one can consider any combination of the four parameters wy, we, ns and R. For our
purposes, it is useful to introduce the scale parameter S, which is defined as the ratio of
the angular diameter distance to the prediction of the simplest cosmological model,
Da(z.)  Ho(1+2z)Da(z) 1

o= Darpas(z) 20— (1+ 2172 3 Ho(1+2)Da(z) , (4.5)

where Dy pqs is the angular diameter distance in the Einstein-de Sitter (EdS) universe
(the matter-dominated spatially flat FL model), (1 + 2)Da gas = 2H; *[1 — (1 + 2)~V/2];
the last approximation in (4.5) is accurate to 3%. Using (4.1), the scale parameter S is
related to R by S = hR/(2wil®)[L — (1 + 2,)"Y2]~! ~ hR/(2wi{?). Unlike R and 4, the
scale parameter S depends on the Hubble parameter, to which the CMB has no direct
sensitivity. (This arises because FL models predict the distance in units of Hy.) Therefore,
the value of S depends on how we fix the Hubble parameter.

We can simply keep Hy free and quote limits for A~1S, and one can then substitute the
Hubble parameter given by e.g. local observations of Hy. The mean value is h~15 = 2.4
(see table 4.4), so for h = 0.6-0.7, the distance to the last scattering surface is a factor
of 1.4-1.7 longer than in an EdS model with the observed Hubble parameter. This is in
accordance with the usual intuition that physics in the late-time universe acts to increase
the distance compared to EdS, for example via accelerated expansion. We could instead
keep the age of the universe fixed, i.e. ask how large the distance is compared to the value
in an EdS model at the same time after the big bang. In an EdS model Hy = 2/(3tp), so
we have S = 2/(3to100km/s/Mpc) x R/(2wil2)[1 — (1 + 2,)"Y/2]71, which for t) = 13.4
Gyr [74] gives S & 1.2 for our mean values wy, = 0.145 and R = 1.77.

Finally, we can ask how long the distance is compared to an EdS model which has
the correct matter density. The Hubble parameter is then simply h = wrln/ 2, so S =
R/2[1 — (14 2,)"Y?]7! ~ R/2 ~ 0.9. This means that in an EdS model with the correct
matter density, the predicted distance to the last scattering surface is longer than observed.
(In other words, the real matter density decays faster as function of the distance to the last
scattering surface than in the EdS reference model.) Unless otherwise noted, we follow this
last convention, and compare with an EdS model which has the correct matter density, at
the expense of the age of the universe and the Hubble parameter. We give constraints for
Oa,04,R, S, h~'S, and D4(z,) in section 4.3. For fixed wy, we and ng, these quantities
contain the same information, only their correlation properties with the parameters wy, wc
and ng are different (see table 4.5).

4.2.3 The distance to the last scattering surface

Let us now study how the CMB spectrum depends on the angular diameter distance to the
last scattering surface D 4(z.). We consider two positions on the sky denoted by n; and
ny which have the temperature fluctuations AT (n;) and AT (ng) and which are separated
by proper distance L on the last scattering surface. For two different angular diameter
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distances D4 and D’y to the last scattering surface, the length L is seen under the angles
0 =L/Dy and 0 = L/D’,, see figure 4.1.

Figure 4.1: The angle under which two fixed points on the sky are seen changes with the
angular diameter distance D 4.

The two-point functions C and C’ which correlate n; and ns for an observer at distance
D4 or D'y, respectively, can be decomposed in terms of the two angles as

C(0) = (AT(ny)AT(ny)) = %Z@“ 1)Cy Py(cos 0)
14

_ % S (20 + 1)CyPycos ) = C'(0), (4.6)
l

where Py is the Legendre polynomial of degree ¢, and Cy and C) are the power spectra
corresponding to the angular diameter distances D4 and D’; respectively. The equality
C(0) = C'(0") means that we consider only correlations on the last scattering surface (or
very close to it) and neglect line-of-sight effects like, e.g. the late ISW effect which can be
different for the two photon paths. Using the orthogonality of the Legendre polynomials,
f_ll Py(p) Po(p)dp = 26, 7/(2¢ + 1), we obtain the relation

20 +1 L
Ce= Z 5 C;;/O sin 0d0 Py{cos(0D a/D'y)| Py(cos ) . (4.7)

This cumbersome exact expression is only needed for low values of ¢. At high ¢ we can
work in the flat sky approximation (see [36], section 5.4), where

1
Yom — o exp(il -x) and Py(cos @) — Jo(|x|¢) .
T
Here x is a vector on the flat sky, £ is the variable of its 2-dimensional Fourier transform,

with ¢ = |£|, and Jy is the Bessel function of order 0. Denoting r = |x|, the correlation
function is

() = C(r) = % /0 S AL (r0)Cy (4.8)

The correlation functions corresponding to the two angular diameter distances are related
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by C(r) = C'(r'), where ' = rDy /D'y,

L Caeneoe, = - / A0 LJo(r'0)C)
2T 0

27'(' 0
B 1 14 2 oo )
= o <_DA> /0 ALLIo(r0Cly, (4.9)

Dy

where on the second line we have simply performed the change of variables ¢ — ¢D4/D’,.
Using the property [ rdrJo(rl)Jo(rt') = £716(¢ — '), we obtain

D'\ 2
_ A /
C, = <—DA> CDE:E. (4.10)

The relation (4.10) is valid independent of spatial curvature, since we do not in-
voke three-dimensional Fourier transforms. We are simply using the fact that the CMB
anisotropies are functions on a sphere. This result agrees with [128] where it is derived in
a different way and contrasts with [25], where there is an extra power of D’y /D4. Let us
denote the spectrum of a reference EAS Universe by C’fds and the measured CMB spec-
trum by Cy. Recalling the definition (4.5) of the scale parameter S, we can assign Cy to
an EdS universe with the same values of wy,, w. and ng and the angular diameter distance
Dy = SD 4 gqs if we scale the angular power spectrum by

Cp = S72Ci, . (4.11)

The basic assumption here is that the CMB fluctuations at decoupling are the same for
both models and the only difference is the distance to the last scattering surface. If this is
true, the relation (4.11) is exact in the flat sky limit. Without the flat sky approximation
it has to be replaced by (4.7) with D4/D’, = S. Note that despite of the factor S72 in
(4.11), the shift parameter S is not strongly correlated with the amplitude, it just shifts
the spectrum in angular space. This is visible on the 2D-plots shown in Fig. 4.7. We have
tested the flat sky approximation numerically and have found that for ¢ > 20 the difference
between (4.11) and the exact expression (4.7) is smaller than 1% for 1.1 > S > 0.7, which
includes the region which is of interest to us (the mean value we obtain is S = 0.91 £ 0.01,
see table 4.4).

To illustrate the dependence of the CMB spectra on the scale parameter S, we show in
appendix 4.5.1 the TT, TE and EE spectra for FL. models with non-zero spatial curvature
or cosmological constant, compared with the EdS result scaled with S. As shown in figures
4.9 to 4.11, the spectra for the scaled model and the model with spatial curvature lie
on top of each other for ¢ 2 20, except for the case of large negative spatial curvature
with S ~ 1.5, where there is some difference in the TT spectra until £ ~ 100. For the
cosmological constant case, shown in figure 4.12, the approximation is excellent for all of
the spectra for ¢ 2 20.
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Linin 2 20 40 60
100w, | 2217002 | 2197002 | 2187007 | 2150008
We 0.113%999% | 0.1155990% | 0.11875907 | 0.12075 00
s 0.957351 | 0957500 | 0.94700%2 | 0.937052
Qn 0.72799% | 0714394 | 0707301 | 0.68795
frnin 80 100 120 140
100wy, | 2097010 | 2057005 | 2117015 | 2,070
We 0.12770:015 | 0.132F0013 | 0.12670018 | 013179013
ng 0.917993 | 0.89%99% | 091439 | 0.9070%
Qp | 0627000 | 0.58T000 | 0637015 | 058701

Figure 4.2: The change in the mean parameters when more low ¢ data are omitted, in the
ACDM model with 7 = 0. We have used the WMAP5 and ACBAR data.

4.3 Results

4.3.1 Cosmological parameters and the multipole cut

We use the WMAPS5 data and the ACBAR data in our analysis. However, disregarding
ACBAR does not change the results much. We have performed a Markov Chain Monte
Carlo analysis with chain length N = 2 x 10°. The results change by significantly less
than 1o when going from N = 1.5 x 10° to 2 x 10°, which indicates that the chains have
converged well [81]. As a convergence test, we have checked that when the samples are split
in two or three parts, the change of the relevant cosmological parameters is a few percent
of one standard deviation. We have also checked that the Raftery and Lewis convergence
diagnostic is satisfied [96].

In table 4.2 we show the effect of excluding a successively larger multipole range up to
lmin in the analysis of the ACDM model; 2 is the vacuum energy density today, as usual.
We have set 7 = 0 for consistency with the treatment of the scaled model. From £, = 2
t0 Lmin = 40 the errors on wy, and w, increase by 28%, while the error on n, increases by
57%. The central values move only by 1%, 4% and 1%, respectively, and the results are
consistent within 1o.

Nevertheless, there is a systematic trend that wy and ng decrease and w, increases as
limin grows. Even at f;, = 100, where the shifts are maximized, they are less than 20 in
terms of the new error bars. In terms of the error bars of the model with £,;, = 2, the shift
is of course larger: for n, it more than 50, and for {24 more than 40. The feature that the
error bars on ng increase more than those of wy, and w. may be related to the fact that as
Limin grows, the pivot scale & = 0.05 Mpc~! moves closer to the edge of the data [77].

Part of this shift is due to the fact that reionization is neglected. We know from the
absence of the Gunn-Peterson trough in quasar spectra that the Universe is reionized at
redshifts z < 6, see [7]. The light decrease towards smaller scales which is usually attributed
to reionization is now achieved with a somewhat redder spectrum. In order not to decrease
the height of the acoustic peaks, this leads to a higher value of w.. A redder spectrum
also enhances the amplitude difference between the well measured first and second peaks.
This can be compensated by a reduction of wy,, since a larger wy, means a larger difference
between the odd contraction and even expansion peaks [36].
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However, we have found that reionization is not the dominant effect, the systematic
shift is also present if reionization is included in the analysis. We have checked this by
including 7 as a model parameter. The results of table 4.2 remain valid for also in this case.
The problem is that for f,,;, > 40 the value of 7 is degenerate with a renormalization of
the amplitude (see discussion in Appendix 4.5.2) and the best fit value for 7 fluctuates sig-
nificantly from chain to chain. We therefore prefer to show the results for 7 = 0. Note that
the change is larger than the increase in the error bars. The shape of the one-dimensional
probability distribution for the parameters is not for the most part significantly distorted,
and the two-dimensional distributions do not show strong changes in the correlation prop-
erties as fnin increases. Therefore, the error bars do accurately represent the statistical
error even at high /;,. In other words, the shift in the parameters is systematic, and is
not reflected in the statistical error estimate.
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- 1min=100 ' .
F Imin=80 E
L Imin=60 i

F lmin=2 / t, E

I
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10 100 1000

Figure 4.3: The increase in the large-scale power with increasing £.,;, in the best-fit ACDM
models with 7 = 0. The lowest line corresponds to a cut at £,,;, = 2 the subsequent lines
have fnin = 40, 60, 80 and 100, respectively. At fy;n = 120 the large scale power no longer
increases but it decreases somewhat. The WMAP and ACBAR data are superimposed.
The vertical axis is £(¢ + 1)CTT /(27) in (uK)2.

We conclude that the high ¢ data prefer different parameter values than the data which
include the low multipoles. In figure 4.3 we show the T'T power spectra for the best-fit
ACDM models with different £,;,. There is a trend of increasing large-scale power with
higher £;,. In all cases, the overall amplitude is fixed well by the high ¢ data, and the
effect is due to the change in wy,w. and ng;. We have checked that the ISW effect is not
the cause: there is a similar shift for both the ACDM model and the scaled EAS model.
Also, increasing f,i,, corresponds to decreasing 25 and hence a smaller contribution of the
ISW effect to the low multipoles.
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Parameter Scaled ACDM ACDM
Cinin = 40 Cinin = 40 Conin = 2
mean mean mean
100wy, 2.13 +0.05 2.21 +0.07 2.24 + 0.05
we 0.124 +0.007 | 0.113 +0.007 | 0.111 = 0.005
ng 0.93 £ 0.02 0.96 = 0.02 0.97 £ 0.01
S 0.91 £ 0.01 - -
Q - 0.72 4 0.04 0.74 £ 0.03
T - 0.0970:04 0.09 = 0.02
Win 0.145 4+ 0.007 | 0.136 + 0.007 | 0.133 = 0.005
h~LlS 2.40 £0.03 - -
R 1.77 + 0.02 1.73 + 0.02 1.72 + 0.02
0 0.593° £+ 0.001° | 0.594° 5007 | 0.593° £ 0.002°
(4 303.7 4+ 0.7 303.3 4 0.8 303.2 + 0.7
Da(z)/Mpe | 12.740.2 12.9 +0.2 13.0 +0.1
ro(z)/Mpe | 0.132+0.002 | 0.13440.002 | 0.134 + 0.001
107320 3.5+0.2 3.3+0.2 3.240.1
% 1094 + 1 1092 + 1 1091 4+ 1

Figure 4.4: The mean values for the scaled model and the ACDM model. We have used
the WMAP5 and ACBAR data for ¢ > £, = 40.

4.3.2 Model-independent parameter estimates

We fix our multipole cut at £,,;, = 40, which roughly corresponds to neglecting modes which
entered the horizon after z = 60. The dependence on the redshift is weak, ¢, o< (1+ z)l/ 2
for z > 1. Choosing z = 30 instead would give f,i, ~ 30. The cut at £y, = 40 is
also motivated by the fact that for ¢ > 40 reionization is well approximated by a simple
rescaling of the amplitude, as well as by the multipole dependence of the late ISW effect,
see appendices 4.5.1 and 4.5.2.

In table 4.4 we give the mean values for our primary parameters wy,, wc, ns and S, as well
as some derived parameters. In addition to the systematic effect discussed above, this table
is our main result. As already mentioned, the overall amplitude is treated as a nuisance
parameter. For comparison, we give the corresponding results for the ACDM model, with
non-zero 7. We use fpin = 40 in both cases. The ACDM values are in good agreement
with the WMAP5 results [32] and have comparable error bars. For the scaled model, the
errors in w. and ng are slightly larger than those of the ACDM model with £y, = 2. We
attribute this to the fact that we start at ¢, = 40. Furthermore, our spectral index is
somewhat redder, ny = 0.93 compared to ns = 0.96. This shift is also clearly seen in the
one-dimensional likelihood functions for the scaled model and the ACDM model, shown in
figure 4.6. However, these parameter changes are within one standard deviation and are
therefore not statistically significant. It is impressive how accurately present CMB data
determine £4. The relative error is less than 0.3% for both the scaled model and ACDM.
The error in the other parameters related to the angular diameter distance, S,h~1S, R and
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W We N S W hTLS la Da(ze) 71s(24) Z4
W 1.00 —0.31 0.84 —-0.49 —-0.23 —-0.06 —0.56 0.02 0.14 —0.88
We —0.31 1.00 —-0.51 0.96 1.00 —-0.91 0.05 —-0.94 —-0.98 0.72
N 0.84 —0.51 1.00 —-0.65 —0.45 0.19 —0.51 0.26 0.38 —0.86
S —0.49 0.96 —0.65 1.00 0.94 —-0.78 0.30 —-0.82 -0.91 0.83
Wm —0.23 1.00 —-0.45 0.94 1.00 —-0.94 -0.004 —-0.96 —1.00 0.66
hLS —0.06 —0.91 0.19 —-0.78 —0.94 1.00 0.32 1.00 0.96 —0.40
I —0.56 0.05 —0.51 0.30 —0.004 0.32 1.00 0.27 0.06 0.43
D 4(z4) 0.02 —-0.94 0.26 —0.82 —0.96 1.00 0.27 1.00 0.98 —0.47
rs(24) 0.14 —-0.98 0.38 —0.91 —1.00 0.96 0.06 0.98 1.00 —0.58
Zx —0.88 0.72 —0.86 0.83 0.66 —0.40 043  —0.47 —0.58 1.00

Figure 4.5: The normalized covariance matrix for the scaled model. We have used the

WMAP5 and ACBAR data for £ > £,;, = 40. At this level of precision, the correlation
coefficients of R are the same as those of S, and those of 84 are minus those of £4.

Dy, as well as rg, is about 1%. The errors for wy,w. and ny are less than 3%, 6% and 2%,
respectively.

In table 4.5 we give the covariance matrix between the different variables, and in fig-
ure 4.7 we show selected two-dimensional likelihoods. We see that R and S are strongly
positively correlated with w. and wy,. In contrast, D4 is strongly anti-correlated with w,
and wp,. This can be understood by writing Dy = SD 4 gqs and noting that D ggg o<

h1= wr?ll/ 2 The variable ¢ 4 is nearly uncorrelated with wy,, but it is quite correlated with
wy, and correspondingly also with n,. Since most of the statistical weight of the WMAP
data come from the first and second peaks, ns and wy, are strongly correlated even if the
full WMAP data (with fn,i, = 2) are taken into account [66]. This correlation becomes
stronger as some of the low £ data are omitted.

The standard deviations for the scaled EAS model are somewhat smaller than those of
the ACDM model for the same £,;,. However, this does not mean that the fit is better,
only that the well-fitting region is somewhat smaller. Error bars for a model can be small
simply because different parts of the data prefer different regions of parameter space, so
that the fit is good only in some small overlap region. In the present case, the scaled model
and the ACDM model are comparably good fits to the data for f,,;; > 20. In table 4.8
we show —2log £, where L is the likelihood of the best-fit, as a function of £;,. There
are only differences of ~ 1 in —2log £, which is the same order as the differences between
different chains of the same model.
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Figure 4.6: One-dimensional likelihoods for the scaled model (black, solid) and the ACDM

model (red, dashed). We have used the WMAP5 and ACBAR data for ¢ > £,;, = 40.
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Figure 4.7: Two-dimensional likelihoods for the scaled model. We have used the WMAP5
and ACBAR data for ¢ > £,,;, = 40.

4.3.3 Discussion

The CMB contains information about the distance to the last scattering surface, the baryon

density, the matter density and the primordial power spectrum (here taken to be a power
law), which can be extracted independently of the model used to describe the late universe.
In particular, the angular diameter distance to the last scattering surface is a factor of
S = 0.91 + 0.01 smaller than in an EdS Universe with the same mean matter density,
wm = 0.145 £+ 0.006. With baryon density wp, = 0.0213 + 0.001 and spectral index ng =
0.93 4+ 0.03, an EdS model scaled by this factor is a good fit to the present CMB data,
apart from the low multipoles. Of course such a model is in complete disagreement with
local measurements of the Hubble parameter and supernova observations. If we want to
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limin | nr. of points | —2logl —2logL —2logL
N (lrnin) scaled | standard, 7 =0 | standard, 7 # 0
2 2591 2717.12 2715.78 2695.29
20 1385 1508.20 1507.41 1507.72
40 1345 1382.52 1381.24 1381.24
60 1305 1234.44 1233.23 1233.46
80 1265 1073.03 1072.01 1072.16

Figure 4.8: The log of the likelihood £ as function of /. In the second column we give
the number of Cy estimates (including the polarization data) except for the case (i = 2
where a pixel-likelihood is added. For i > 20, N (lpin) = 994 + 427 — 2(lyin — 1), which
is the number of multipoles for the TT (WMAP5 and ACBAR data) and TE (WMAP5
data) spectra minus twice the number of cut multipoles. The only significant difference
between models appears in the first row with £,,;, = 2, where the ACDM model with 7 # 0
is clearly favoured.

agree with the local value Hy = (60-70) km/s/Mpc, the observed distance is instead longer
than in an EdS model by the factor h~1S ~ 1.4-1.7. From the CMB we cannot determine
at which point between last scattering and today the distance evolution diverges from the
EdS case; from supernova observations, we know that this happens between a redshift of
order unity and today. Any viable cosmological model has to explain this change in the
distance scale, whether the reason is dark energy, modified gravity or large deviations from
the FL geometry.

Constraints on R, ¢4 and other parameters have been presented earlier in [66, 46,
122, 27, 89, 67], where the data have been analysed in the context of different models
for dark energy, also taking into account effects like neutrino masses which we do not
consider. Our mean value for R is larger (and wy, and ns are smaller) than in those studies,
because of the systematic shift due to cutting away the low multipoles. The increase in
the error bars is smaller than the change in the mean values, as they do not take into
account the systematic shift. The shift indicates that different parts of the data prefer
different parameter values, which frustrates the effort to give precise model-independent
error bars, because the only way to reduce model-dependence is to exclude the part of the
data which is most likely subject to unknown physical effects. We think that cutting the
multipoles below f,;, = 40 strikes a good balance between reducing model-dependence
and not discarding data needlessly.

The cosmological parameter most robustly determined by the CMB in a model-independent
manner is the ratio £4 = 7D 4(2+)/7s(2«), which does not undergo a systematic shift with
increasing {pin, unlike wp,we,ng, R or Dg(z«). It is interesting that as low multipoles
are cut, the spectral index becomes smaller, making the evidence for violation of scale-
invariance in the initial conditions stronger. For /i, > 80, values ng < 0.9 are within 1o
of the mean. As for the baryon density, the shift towards smaller values is well within the
constraint 1.9 < 100wy, < 2.4 (95% C.L.) from Big Bang Nucleosynthesis [2]. Our value
for w. is more than 20 away from the ACDM value with no multipole cut, while the error
bars increase only by 26%. This model-dependence suggests caution about the value and
the error bars of w. which enter into codes such as DarkSUSY [52].

In order to be independent of late-time cosmology, we cannot take into account low
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£ results for the CMB anisotropies. In the final parameters quoted in table 4.4 we have
used the data for ¢ > f;n = 40. At first sight one might hope that our analysis could
be significantly improved once the Planck data with precise Cy’s up to £ =~ 2500 will
be available. However, for ¢ 2> 1000 CMB lensing can no longer be neglected for data
with a precision better than about 4% for the anisotropies and 10% for the polarisation
[80, 36]. But lensing and other second order effects depend on the details of the late-time
cosmology. Hence our model-independent analysis has to be restricted to the interval of
roughly 40 < ¢ < 800. Higher ¢ data can only be used if the error bars are sufficiently
large. For ACBAR this is still marginally possible, but with Planck systematic errors due
to late-time effects will have to be added to the high ¢ data. Increased precision in the
multipole range 40 < ¢ < 800 also has to be balanced against contamination by model-
dependent secondary effects. We therefore do not expect a substantial improvement of our
results from future data.

4.4 Conclusion

We have analysed the CMB data in a way which is independent of the details of late-
time cosmology, i.e. the cosmology at redshifts z < 60. The results we have obtained are
therefore valid for most models of late-time cosmology, whether they include dark energy,
modified gravity, a local void or backreaction.

We have presented model-independent limits on wy, we, Ny and the angular diameter
distance to the last scattering surface D 4(zy), or its ratio with the sound horizon at last
scattering, 04 = 7s(2+)/Da(z«). The present CMB data give an extraordinarily precise
measurement of 64, which every realistic model of the late universe must agree with. We
can summarize the final result by

100w, = 2.13£0.05, we = 0.124 £ 0.007
ng = 093+£0.02, 64 = 0.593° £0.001° . (4.12)

Note that the values of w. and wy, actually determine the matter and baryon density at
last scattering via the relation p,(zx) = (1 + z,)3(Ho/h)?*w,. The values of the densities
today may be different e.g. if dark matter decays at late times [31].

In summary, every model which satisfies equations (4.12) will automatically be in agree-
ment with the present CMB data for £ > 40. Only lower £ CMB data, large scale structure,
lensing and other observations can distinguish between models which have the above values
for wy,we, ns and G4.

We have also found that there is a systematic shift in the cosmological parameters as
more low ¢ data are cut. As more data from low multipoles is removed, wy, and ng decrease,
while w. becomes larger. These changes keep the power spectrum at small scales fixed,
but tend to increase the amplitude on large scales. These changes are not reflected in the
statistical error bars: the small angle data prefer different parameter values than the full
set of CMB data. This trend is visible to at least £, = 100. Whether this behaviour has
any connection with the various directional features at low multipoles [56, 57, 48, 8], is not
clear.
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4.5 Appendix

4.5.1 The scale parameter approximation

In this appendix we illustrate the accuracy of the scale parameter approximation for the
high multipoles. We consider spectra for FL. models with non-zero spatial curvature or cos-
mological constant, compared with the Einstein-de Sitter result scaled with the parameter
S as discussed in section 4.2.3. We keep the matter densities fixed to the WMAP5 best-fit
values wy, = 0.023 and w. = 0.11 [32]. Neglecting the contribution of radiation, the scale
parameter in these models is

SN‘/WW/Z* dz
2 Jo Vo4 2P +wk(1+2)? + B2 — wp —wk

, (4.13)

where wrx = Qxh? and h? — w,, — wr = Qh? = wy.

In figure 4.9 we show the TT spectrum for models with positive or negative spatial
curvature and the scaled model. The spectra lie on top of each other for ¢ = 20, except
for large negative spatial curvature. In figure 4.10 and figure 4.11 we show the TE and
EE spectra. The scaled curves are practically indistinguishable from the exact ones at all
multipoles, even for large negative spatial curvature. In figure 4.12, we show the spectra for
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Figure 4.9: The TT spectra for models with Q2 = 0, Q5 # 0. The solid curve corresponds
to the Einstein-de Sitter universe, the dotted curve corresponds to a model with Qg as
specified in the panels, and the dashed curve shows the Einstein-de Sitter universe power
spectrum scaled with S. The vertical axis is /(¢ + 1)CFT /(27) in (uK)2.



S=151

S=1.18

200 T ||||||| T T ||||||| T T ||||||| 200 T |||||| T T ||||||| T T ||||||
100 QK =0.6 '.‘— 100 QK =03
i i

0 0
-100 — -100
- I I I _ l l I
200 11 ||||;I-0 1 11 IIIII]i(X) 1 11 III:II-E)00 200 11 |||||10 111 |||||]|-00 111 III::-IOOO

S=0.81 S=0.89

200 T ||||||| T T ||||||| T T ||||||| 200 T |||||| T T ||||||| T T ||||||
100 — QK =-0.6 100 |~ QK =-0.3

0 0
-100 — -100 —
_200 1 ||||||| 1 1 ||||||| 1 1 |||'|||| _200 11 |||||| 1 1 ||||||| 1 11 |||l|||

10 | 100 1000 10 | 100 1000

Figure 4.10: As in figure 4.9, but for the TE spectra. The dotted curves are invisible since
they are completely overlaid by the dashed ones (scaled model).

4.5.2 Reionization

In this appendix we study the effect of reionization on the angular power spectrum of the
CMB. If the baryons are reionized at redshift z,;, the effect on scales which are of the order
of the horizon size at the time is complicated, and leads to additional polarization and a
scale-dependent reduction of the amplitude of anisotropies. However, on scales which are
well inside the horizon, the rescattering of photons simply reduces the amplitude of CMB
temperature and polarization anisotropies by roughly the same amount on all scales. This
effect can therefore be absorbed in a renormalization of the spectrum. In figure 4.13 we
show the TT spectrum with and without reionization for the best-fit ACDM model, as
well as the relative difference of the spectrum with and without reionization. For ¢ > 40,
renormalizing the spectrum with a constant reproduces the effect of reionization within
about 1.5%. We have done the same with the temperature—polarization cross-correlation
and the polarization spectra. Also there renormalization is a very good approximation
(better than 0.5% on average) for £ > 40, see figures 4.14 and 4.15. To obtain the spectra
with 7 = 0.1, we have multiplied the spectra with 7 = 0 by the factor 0.82.
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Figure 4.11: As in figure 4.9, but for the EE spectra. The dotted curves are invisible since
they are completely overlaid by the dashed ones (scaled model).
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Figure 4.12: As in figure 4.9, but for Qp # 0,Qx = 0. We consider two different values for
Q4, corresponding to the two columns. The rows from top to bottom are the TT, EE and
TE spectra.
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Figure 4.13: The TT power spectrum with (dashed, red) and without (solid, black) reion-
ization for optical depth 7 = 0.1 for £ > 2 (left upper panel) and ¢ > 40 (right upper panel).
For the upper panels, the vertical axis is £(¢ + 1)CTT/(27) in (uK)2. In the lower panel
we show the relative difference between the spectrum with and without reionization, when
the latter is simply rescaled by a constant. For low ’s, the differences are substantial, up
to 25%, but for the values £ > 40 we consider, the difference is less than 2%.
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Figure 4.14: The TE correlation spectrum with (dashed, red) and without (solid, black)
reionization for optical depth 7 = 0.1 for £ > 2 (left upper panel) and ¢ > 40 (right upper
panel). The vertical axis is £(¢ + 1)CTT/(27) in (uK)?. In the lower panel we show the
difference between the spectrum with and without reionization, when the latter is simply

rescaled by a constant. For the values £ > 40 we consider, the difference is below

0.1(uK)2.
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Figure 4.15: As in figure 4.14, but for the EE power spectrum. For ¢ > 40, the difference
is below 0.002(uK)?.
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interactions with free streaming particles and limits from
the CMB
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We study a homogeneous and nearly-isotropic Universe permeated by a homogeneous
magnetic field. Together with an isotropic fluid, the homogeneous magnetic field, which
is the primary source of anisotropy, leads to a plane-symmetric Bianchi I model of the
Universe. However, when free-streaming relativistic particles are present, they generate
an anisotropic pressure which counteracts the one from the magnetic field such that the
Universe becomes isotropized. We show that due to this effect, the CMB temperature
anisotropy from a homogeneous magnetic field is significantly suppressed if the the neutrino
masses are smaller than 0.3 eV.

5.1 Introduction

On very large scales, the observed Universe is well approximated by a homogeneous and
isotropic Friedmann solution of Einstein’s equations. This is best verified by the isotropy of
the Cosmic Microwave Background (CMB). The small fluctuations observed in the CMB
temperature are fully accounted for by the standard model of structure formation from
small initial fluctuations which are generated during an inflationary phase. Nevertheless,
these small fluctuations are often used to limit other processes or components which may
be present in the early Universe, like e.g. a primordial magnetic field.

The generation of the magnetic fields observed in galaxies and clusters [75] is still
unclear. It has been shown that phase transitions in the early Universe, even if they do
generate magnetic fields, have not enough power on large scale to explain the observed large
scale coherent fields [19]. These findings suggest that primordial magnetic fields must be
correlated over very large scales.

In this paper, we discuss limits on fields which are coherent over a Hubble scale and
which we can therefore treat as a homogeneous magnetic field permeating the entire Uni-
verse. We want to derive limits on a homogeneous field from CMB anisotropies. This
question has been addressed in the past [4] and limits on the order of B <2 x 1072 Gauss
have been derived from the CMB anisotropies [6]. A similar limit can also be obtained
from Faraday rotation [111, 69].

We show that the limits from the CMB temperature anisotropy actually are invalid if
free streaming neutrinos with masses m, < Tge. are present, where T.. denotes the photon
temperature at decoupling. This is the case if the neutrino masses are not degenerate, i.e.
the largest measured mass splitting is of the order of the largest mass, hence m, < 0.04eV.
The same effect can be obtained from any other massless free streaming particle species,
like e.g. gravitons, if they contribute sufficiently to the background energy density. This is
due to the following mechanism which we derive in detal in this paper: In an anisotropic
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Bianchi-I model, free streaming relativistic particles develop an anisotropic stress. If the
geometric anisotropy is due to a magnetic field, which scales exactly like the anisotropic
stress of the massless particles, this anisotropic stress cancels the one from the magnetic
field and the Universe is isotropized. Hence the quadrupole anisotropy of the CMB due to
the magnetic field is erased. This ‘compensation’ of the magnetic field anisotropic stress
by free-streaming neutrinos has also been seen in the study of the effects of stochastic
magnetic fields on the CMB [90, 116, 12, 76] for the large scale modes. In our simple
analysis the mechanism behind it finally becomes clear.

The limits from Faraday rotation are not affected by our arguments.

In the next section we derive the CMB anisotropies in a Bianchi I Universe. In Sec-
tion 5.3 we show that relativistic free streaming neutrinos in a Bianchi I model develop
anisotropic stresses and that these back-react to remove the anisotropy of the Universe if
the latter is due to a massless mode. In Section 5.4 we discuss isotropization due to other
massless free streaming particles, with special attention to a gravitational wave background.
In Section 5.5 we conclude.

5.2 Effects on the CMB from a constant magnetic field in
an ideal fluid Universe

We consider a homogeneous magnetic field in z—direction, B = Be, in a Universe filled
otherwise with an isotropic fluid consisting, e.g. of matter and radiation. The metric of
such a Universe is of Bianchi type I,

ds* = —di® +a} (1)(da® + dy?) + a3 () d22, (5.1)

where t is cosmic time. The Einstein equations in cosmic time read

PR . 2
a
gL <a_l> = 87Gp , (5.2)
a” a| a |
a | ar, ay = —87GP, (5.3)
a” a) a” a) ’
. . 2
2%t 4 <ai> — &GP . (5.4)
ayi al

The dot denotes the derivative with respect to t. We have introduced the total energy
density p = pp + pm + py + pu + pa, Where pp = B?/87 is the energy density in the
magnetic field, and pp, py, pv, pa are as usual the energy densities of matter (assumed to
be baryons and cold dark matter), photons, neutrinos, and dark energy (assumed to be a
cosmological constant), respectively.

All the above constituents of the Universe, except matter (which is assumed to be
pressureless) also contribute to the pressure components Py, P,. The contribution from
the magnetic field is intrinsically anisotropic and given by

Pp 1 =—Pp|=pB, (5.5)

as can be read off from the corresponding stress-energy tensor. Note that the magnetic
field B decays as al2, so that pp scales as a14.



Effects on the CMB from a constant magnetic field in an ideal fluid Universe 111

For later reference we define an ‘average’ scale factor

a= ai/gaﬁ/g, (5.6)

which is chosen such that it correctly describes the volume expansion.

Let us also introduce the expansion rates H; = a, /a; and H | = q / a||. The anisotropic
stress of the homogeneous magnetic field sources anisotropic expansion, which can be ex-
pressed as the difference of the expansion rates, AH = H; — H. We combine eqs. (5.4)
and (5.3) to obtain an evolution equation for AH,

AH“‘(2HJ_+H||)AH:87TG(PJ_—P”) . (5.7)
This pressure difference is actually simply the anisotropic stress. More precisely,
0/ = T/ -Ps/, P=T/3= (2P +PF)/3,

2
' = I,’=P, —P=-(P.—P)), H33:P||—P:—§(PL—P”). (5.8)

W =

At very high temperatures, both photons and neutrinos are tightly coupled to baryons.
Their pressure is isotropic and thus their contribution to the right-hand-side of (5.7) van-
ishes. The collision term in Boltzmann’s equation tends to isotropize their momentum-
space distribution. Under these conditions the only source of anisotropic stress is the
magnetic field. The above equation can then easily be solved to leading order in AH, as
will be carried out in section 5.3.

However, as soon as the neutrinos decouple and start to free-stream, their momentum-
space distribution will be affected by the anisotropic expansion caused by the magnetic field
and thus they will develop anisotropic stress. As we will show, the neutrino anisotropic
stress counteracts the one from the magnetic field. This behavior will be maintained until
the neutrinos become non-relativistic, then their pressure decays. For the temperature
anisotropy in the CMB it is relevant whether this happens before or after photon decou-
pling. This depends, of course, on the neutrino masses.

We introduce the energy density parameters

_ 81Gpy(t) _ palt)
0= 5me) = )

corresponding respectively to the magnetic field, matter and radiation etc., such that e.g.
Qp = B?/87pe, U = pm/pe and Qy, = py/pc. Here we define the ‘average’ Hubble

parameter by
1l /a \? _aia
H? == [(a—L> +2ﬂ] . (5.9)
3 a) CLJ_CL”

Qr=Qp+Qy+Q, +Q,, +Qp =1 at all times. (5.10)

With this, eq. (5.2), implies

As an alternative, one could have defined the ‘average’ Hubble parameter as

Ha51|:2a—J_+%:| .
3 a) a”
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It can easily be verified that the difference between these definitions is of the order of the
small quantity AH = H, — H. More precisely,

(5.11)

We shall mainly use the definition which yields the constraint (5.10).

The scaling of the energy densities corresponding to every species follows from the stress
energy conservation of every single fluid

4
_ 0 (%)\* _ 0 (%0)3 _ o [aL(to)

To obtain the above behavior for radiation, it is important to impose that the fluid is ideal,
i.e. that pressure is isotropic. This is the case if there are sufficiently many collisions, but
does not hold for free streaming particles as we shall see in the next section.

At a fixed initial time one may set a; = q as initial condition. Motivated by observa-
tions, we assume that the scale factor difference always remains small,

aL— 9 _

0 1. (5.13)
a

To first order in AH < H, as long as the magnetic field is the only anisotropic component,
eq. (5.7) becomes (see also [55])

AH +3HAH = 8rG (PL — P) = 6H?Qp. (5.14)

In the following we consider both Qp and AH as small quantities and want to calculate
effects to first order in them. To first order, pp o< a™* o p~. We can therefore introduce
the ratio

pobs_ S5 (5.15)
o Sy
which (to first order) is constant.

In fig. 5.1 we plot the scale factor difference 9 — 0 and AH/H as functions of the
temperature in a first stage where neutrinos, photons and baryons are all tightly coupled
and the magnetic field is the only source of anisotropy.

5.2.1 Lightlike geodesics in Bianchi I

Let us now determine the CMB anisotropies in a Bianchi I Universe. We are not interested
in the usual anisotropies from primordial perturbations, which we disregard in our treat-
ment, but we concentrate on the effect of the global anisotropy, which to leading order will
result in a temperature quadrupole.

We choose the tetrad basis eg = 0y, ¢; = allai for i = 1,2 and ez = ar@g. The dual
basis of 1-forms is given by 0 = dt, §" = a, dz’, for i = 1,2 and 63 = aHdaz?’. The first
structure equation,

do® 4+ w A 0P =0,
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yields
. a a
wo = 60, i=1,2, and w®y=—Lg°. (5.16)
a| a”
The other non-vanishing connection 1-forms are determined by anti-symmetry, wep, = —Wpq.-

After photon decoupling, the photon 4-momentum p = p“e, satisfies the geodesic equation

7 L e byt =0 5.17
ﬁerc(eb)pp— : (5.17)
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Figure 5.1: Temperature evolution of the scale factor difference dp —0 and AH/H in units
of r = Qp /€ when no free-streaming particle compensates the anisotropy produced by the
magnetic field anisotropic stress. Here &g denotes the scale factor difference ¢ today. The
evolution of the ‘average’ scale factor a is the one of a ACDM Universe. As it is shown in
section 3, AH/H is constant during the radiation dominated era and 4 is growing. During
the matter dominated era AH/H is decaying, AH/H x 1/a o T, and § asymptotes to a
constant.

Considering the constraint relation for massless particles p,p® = 0 and setting o1y =
P =p= \/zg’:l(pi)2, where Tp is a constant with the dimension of energy (or tempera-

ture) that multiplies all the components p®, the above equation is solved by

0 =1 (a o ”—3) | (519

) ) Y
a|; aj a”

where n is a unit vector in the direction of the particle momentum and « is determined by
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the condition p,p® = 0.

n' =sinfsing, n?=sinfcosé and n’=cosh.
The temperature of photons in such an anisotropic Universe for a comoving observer,
u = 0, is then given by

sin?f  cos26 T,

T(t, 9) = nabuapb = po = T()a = T() = ; [1 + (5(3082 0 + 0(62)] . (519)

a? aﬁ
We set ) T )
T=— T(t,0)sinOdodep = 0 [1 + =0+ (9(52)]
47 a 3

to be the temperature averaged over directions. Note that for 6 = 0 and a9 = 1, Tj is
simply the CMB temperature at time tg. For the temperature fluctuations to first order
in 0 we obtain

AT _T(t0)-T 1 2, 2y _ 52 [47T 2
= = 5030’0 - 1)+ O(8%) =05/ T Ya(m) + O() . (520)

Hence, to lowest order in § a homogeneous magnetic field generates a quadrupole which is

given by
2
1 1 167
Cy == ml? = Zlagl? = —=62 ~0.22 x §2 . 5.21
2= ¢ Z |aam| 5|<120| 995 X (5.21)

m=—2

Of course, in principle one can set (¢;) = 0 at any given moment ¢; which then leads
to %(tl) = 0. However, for the CMB we know that photons start free-streaming only
at tqec when they decouple from electrons. Before that, scattering isotropizes the photon
distribution and no quadrupole can develop'. In other words, we have to make sure that
the anisotropy-induced quadrupole is fixed to zero at decoupling and only appears as a
result of differential expansion between last scattering and today. This can be taken into
account by simply choosing the initial condition d(tgec) = 0. Without this initial condition
we have to replace 0(t) by §(t) — §(tgec) in eq. (5.21) 2. The general result for the CMB
quadrupole today is therefore

167

Cr= oo |

8(to) — 8(tace))” - (5.22)

5.2.2 The Liouville equation

At this stage it is straightforward to check that the exact expression found above for the
temperature, eq. (5.19), satisfies the Liouville equation for photons (see, e.g. [34])

- 0
pealf) — (Pl =0, (5.23)

!This is not strictly true and neglects the slight anisotropy of non-relativistic Thomson scattering.

2More generally, one can say that ¢ itself is not a quantity with a physical meaning as long as no reference
value is specified. In physical terms, only the difference of § between two instants of time can be a relevant
quantity.
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when we make the following Ansatz for the distribution function of massless bosonic par-
ticles in our Bianchi I Universe

pL=VE2+ @2 p=p’, p=/pt ) =0", (5.24)

N, 1
AT = G a1

T =T(t,0). (5.25)

Indeed, using eqs. (5.16), we find the following differential equation for the temperature T°

0/, 0T _a 0fy ~ 410f

=0. 5.26
oT ot a; pr PL aj ap”p ( )

With (5.25) this can be written as

T . 2 a 2
—+@%?$ +J<ﬂ>=m. (5.27)
T a3 \'p aj \ p

The time behavior of the different components of the photon momentum are given by

eq. (5.18) and one immediately sees that expression (5.19) for the temperature solves the
above differential equation.

Moreover, defining the time dependent unit vectors p* = p’/p and the shear tensor

1 1
Tap = Vap — gﬁihab ,  Wwhere ¥y, = 3 (Vaup + Viua) and hap = Ngp + Ualp

one can rewrite the above Liouville equation as
(p) = —poip'p’ , (5.28)

where p denotes the redshift-corrected photon energy defined as p = ap. This last expres-
sion agrees with the corresponding equation given in [94].

Using the expression for the distribution function of massless fermions, we can also com-
pute the pressure of neutrinos once they start free-streaming. Indeed, given the fact that
neutrinos can be considered massless before they become non-relativistic, their geodesic
equation has the same solution as the one for photons found above, therefore we immedi-
ately obtain the time behavior of their temperature in an anisotropic Bianchi I background.
Taking also into account the fact that neutrinos are fermions, their distribution function
reads

Ny

T
(2m)3 eP/T 417 a

f(t,T) = with T(t,0) = = [1 + dcos® 0 + O(6%)] . (5.29)
Note that the parameter T appearing in the neutrino distribution function in not a temper-
ature in the thermodynamical sense as the neutrinos are not in thermal equilibrium. It is
simply a parameter in the distribution function and its time evolution has been determined

by requiring the neutrinos to move along geodesics i.e. to free-stream.

This distribution function remains valid also in the case where neutrinos are massive,
i.e. T,, < m,. The only difference is that the relation p° = p changes to p® = \/p? + (m,a)?
which of course affects the momentum integrals for the neutrino energy density and pres-
sure.
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The energy T, /ag is the present neutrino ‘temperature’ in the absence of a homogeneous
magnetic field (§ = 0). The energy density p, and the pressure P, ; in direction ¢ with
respect to our orthonormal basis are

b = N, / dp £,(t, T (5.30)
3 p2
Pl/,i — Nu/d pflj(t7T)p_6' (531)

Calculating the integral (5.31) for relativistic neutrinos to first order in § in the direc-
tions perpendicular and parallel to the magnetic field direction, one finds for the neutrino
anisotropic stress in the ultra-relativistic limit

8

b, —P,) ~ P

)

(6 —04) (5.32)

where 9, is the value of § at neutrino decoupling and can be fixed to zero for convenience.

The temperature dependence of the neutrino pressure is shown in fig. 5.2. To leading
order, this also gives the temperature dependence of the neutrino anisotropic stress. From
the plot it is clear how the pressure scales as a~% as long as the neutrinos are ultra-
relativistic. Once they have become effectively non-relativistic, their pressure decays more
rapidly, as a~°. The break in the power law is not precisely at 7' = m,,, but at a somewhat
lower temperature. Because the neutrinos still have the highly relativistic Fermi-Dirac
distribution from the time of their thermal freeze-out, it takes some additional redshift
until they behave effectively non-relativisic. This will have some effect on the estimates
for the residual CMB quadrupole, as we shall see in sec. 5.3, in particular the discussion
of fig. 5.5.

5.3 Neutrino free-streaming and isotropization

5.3.1 Massless free-streaming neutrinos

We now calculate the effect of free-streaming neutrinos perturbatively, i.e. to first order
in §, AH/H and Qp. We linearize eq. (5.7), taking into account the contribution of a
free-streaming relativistic component to the right-hand side. We have shown that this
contribution, to leading order in d, is given by eq. (5.32). Furthermore, up to O(4?)
corrections, ¢ is just the integral of AH,

t

/ /_nal(t)_naJ_(t*)N _
uAH@Mt_laMw 1(Wm)_5 5, (5.33)

so that to first order we can identify AH ~ 4.
Inserting this back into eq. (5.7) we find, to linear order in 4,

o+ 3H + §H2QV (6 —6.) =6H?*Qp . (5.34)

Note that, because we are working at linear order, it is not important with respect to which
scale factor H,€, and Qp are defined in (5.34). We will now give analytic solutions to this
equation for different regimes in the evolution of the Universe.
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Figure 5.2: Temperature evolution of the neutrino pressure P, | normalized to the neutrino
energy density p,. The temperature is given in units of the neutrino mass. Note that the
break in the power law is not at 7' = m, but at somewhat lower temperature. This is due
to the highly relativistic Fermi-Dirac distribution of the neutrinos, see also the discussion
of fig. 5 in sec. 3.3.

Let us begin at very high temperature where the neutrinos are still strongly coupled to
baryons. In this case they do not contribute to eq. (5.34) since their pressure is isotropic
(P, . — P, ~ 0) given the high rate of collisions. Furthermore, since we are in the
radiation dominated era (a oc t'/2), we have H = 1/2t, and Qp is constant. The
solution to eq. (5.34) in this case is

: 30 C
5(t) = AH(t) = TB + 57 -

(5.35)
The dimensionless quantity AH/H hence asymptotes to a constant, since the homogeneous

piece decays like a™!:
AH
— — 6Qp . (5.36)

AH soon becomes insensitive to the initial conditions and only depends on 5. This also
shows that in the absence of an anisotropic source (2 = 0), the expanding Universe
isotropizes. Integrating this equation and remembering that {p = constant to first order
in a radiation dominated Universe, we obtain

§(t) — 8(t') = 3Qp In(t/t). (5.37)

As the Universe reaches a temperature of roughly 1.4 MeV, the neutrinos decouple and
begin to free-stream, giving rise to the corresponding term in eq. (5.34). In the radiation
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dominated era, €2, remains constant as long as neutrinos are ultra-relativistic>. This is
certainly true for temperatures well above a few eV. In this regime, the general solution of
eq. (5.34) is given by

5(t) — 0, = %% Lol/4 <C«+tiw/2ﬂl,/5—1/16 i C_t—iw/2ﬂl,/5—1/16) . (5.38)

For Q, > 5/32, the homogeneous part is oscillating with a damping envelope 11 x
a~1/2. This means that AH = § will decay within a few Hubble times, which is a mat-
ter of seconds at the temperatures we are talking about. After that, § — §, will remain
constant at the value of (15/4) Qp/Q, until the neutrinos become non-relativistic. Then
their pressure drops dramatically and so does their anisotropic stress. Until this time,
the Universe expands isotropically, because the anisotropic stress of the magnetic field is
precisely cancelled by the one of the neutrinos. Remember that a constant § can always be
absorbed in a re-scaling of the coordinates and has no physical effect. Fig. 5.3 shows the
temperature evolution of § — d, in the radiation dominated era from neutrino decoupling
until 7' = 100eV.
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Figure 5.3: Temperature evolution of § — §, from neutrino decoupling to T' = 100eV. After
decoupling, d —J, begins to oscillate with a decreasing amplitude around the constant % %—f,
as predicted by the analytic solution (5.38). This qualitative behavior is independent of

the initial conditions.

3 Actually, Q. changes slightly when electron-positron annihilation takes place, a process which heats up
the photons but not the neutrinos. This happens at a temperature close to the electron mass. After that,
Q. /)y remains constant until the neutrinos become non-relativistic.
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This mechanism rests on two important facts. Firstly, as long as neutrinos are ultra-
relativistic, they redshift in the same way as the magnetic field, meaning that Qp/Q, is
constant. Once the anisotropic stress of the neutrinos has adjusted to the magnetic field,
their sum remains zero independent of the expansion of the Universe which is now in a
Friedmann phase. Secondly, the efficiency of the effect hinges on the absolute value of €,,.
In the radiation dominated era (after positron annihilation), we have Q, ~ 0.4 so that
Q, > 5/32, and hence the system behaves as an underdamped oscillator with a damping
envelope « t~1/4. Had the density parameter of the free-streaming particles been less
than 5/32, the behavior would be that of an overdamped oscillator. As it is evident from
eq. (5.38), for 2, < 5/32 there would be a mode which decays extremely slowly, roughly as
t~*¥%/5  This is why a strongly subdominant free-streaming component cannot damp the
anisotropy efficiently. As we shall discuss in section 5.4, a primordial gravitational wave
background could play the role of such a free-streaming component if Qg = 5/32.

5.3.2 Massive neutrinos

The neutrinos become non-relativistic roughly at the time when their temperature drops
below their mass scale. Current bounds on the neutrino mass [3] are such that the highest-
mass eigenstate is somewhere between ~ 1 eV and ~ 0.04 eV. Since the neutrino mass
splitting is much below 1 eV, an eigenstate close to the upper bound would mean that the
neutrinos are almost degenerate and hence become non-relativistic all at the same time. If
this happens before photon decoupling, i.e., if m, > 0.3 eV, the isotropization effect will
not be present and the CMB will be affected by the anisotropic expansion sourced by the
magnetic field. However, if the neutrinos remain ultra-relativistic until long after photon
decoupling, the CMB quadrupole due to anisotropic expansion will be reduced because the
neutrinos maintain expansion isotropic until they become non-relativistic.

In order to quantify this statement, we repeat the above calculations for the matter
dominated era. For our purposes, this is a reasonable approximation for the time between
photon decoupling and today. At decoupling, radiation is already subdominant, and on
the other hand vacuum energy only begins to dominate at redshift z ~ 0.5. We therefore
expect that both give small corrections only.

For completeness, we also give the solution of eq. (5.34) in a matter dominated Universe
for the case where we ignore any contributions from free-streaming particles (neutrinos
and, after decoupling, also photons). During matter domination we have H = 2/3t and
Qp o a~! oc t72/3. The solution to (5.14) hence reads

: 802 C
5(1) & - (5.39)

8(t) = AH(t) = —

The homogeneous mode again decays more rapidly than the particular solution, so that
the dimensionless quantity AH/H is again asymptotically proportional to Qp. Instead of
egs. (5.36), (5.37), we have

t

AFH 1205, 0(t) — 8(teg) = | AHdt~12[Qp(teg) — Qs(t)] . (5.40)

teq

Let us now take into account a free-streaming component. We want to estimate the
effect on the photon distribution function caused by anisotropic expansion in two cases.
Case A: the neutrinos become non-relativistic before photon decoupling. Case B: the neu-
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trinos become non-relativistic after photon decoupling. As an approximation, we assume
that this happens instantaneously to all neutrino species, such that the contribution of
neutrinos to eq. (5.34) disappears abruptly. We know that the neutrinos are in fact spread
out in momentum space and also have a certain spread in the mass spectrum, so in reality
this will be a gentle transition. However, we only want to estimate the order of magnitude
of the effect and are not interested in these details at this point. More precice numerical
results will be presented in sec. 5.3.3. Let us consider case A first.

5.3.2.1 Case A: neutrinos become non-relativistic before photon decoupling

We know that AH is very nearly zero when the neutrinos become non-relativistic. After
that, AH/H will start to grow again to approach the value 6{2p during radiation domina-
tion and 1202 g during matter domination. As boundary condition at photon decoupling, we
will hence assume AH/H = xQp with 2 < 12. This number can in principle be computed
given the neutrino masses and the evolution of the scale factor across matter-radiation
equality. We shall solve the full equations in subsection 5.3.3; here we just want to un-
derstand the results which we obtain there by numerical integration. The free-streaming
component we are interested in now are the photons after decoupling. We therefore iden-
tify 0x = (tdec), where tge. denotes the instant of photon decoupling. Furthermore, in
eq. (5.34) we replace €, by ), our new free-streaming species. With €, o t=2/3 in the
matter dominated era, the (not so obvious) analytic solution to eq. (5.34) is

3(0) = Bltace) = 7 G2+ C [F(0) o F(8) =sin F()) + D1 (B)sin 6) +cos f0)] . (540
where we have introduced f(t) = 4,/29(t)/5. The time derivative of eq. (5.41) yields
A
7}[ = ?Qv [C'sin f(t) — Dcos f(t)] . (5.42)

Note that the slowly decaying mode has the same asymptotic behavior as (5.40) — in the
matter dominated era, the free-streaming radiation can never catch up to the magnetic field,
since both fade away too quickly. In other words, this means that free-streaming photons
are never able to counteract the magnetic field anisotropy in order to isotropize again
the Universe, even if they represent the main contribution to the background radiation
energy density, and the reason for this is that they decouple only after the end of radiation
dominantion.

In order to estimate the value of ¢ today (t9), we can simply take the limit of small
Q,(to) < 1 of (5.41). Correction terms are suppressed at least by /Q(tg) ~ 1072, We

find
15Qp

d(to) — 0(tdec) ~ — 1 Q

+D. (5.43)

The constant D is fixed by the boundary conditions at decoupling, given by AH/H = xQp
and 0 = §(tqec). These boundary conditions translate to

= g (tdec) sin f(tdec) E;p — B _ 3:1;‘ cos
b= Q“{(tdec) |: (tdec) <16 4 ) 16 f(tdec):|
_ Qp (tdec) 2x
a Q“{(tdec) |:_Z + <4 + 3 ) QV(tdeC) + O (Q?y(tdec))] . (5.44)
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In order to obtain the essential behavior we have expanded the boundary term as a Taylor
series in Qo (fgec) < 1. Our final result is

5(t0) - 5(tdec) =~ (4 + 2;) QB(tdec) 5 12QB(tdec) ) (5'45)

up to corrections suppressed by powers of €0 (tgec)-
In this case, the CMB quadrupole is not affected by the presence of free-streaming
neutrinos and we obtain the same result as when neglecting their presence,

N 167
225

8(t0) — 8(tace))? = T O (t4ee) = 0.152. (5.46)

% 75

5.3.2.2 Case B: neutrinos become non-relativistic after photon decoupling

In this case, the presence of the neutrino anisotropic stress will delay the onset of anisotropic
expansion until a time ¢,, when the neutrinos become effectively non-relativistic. As before,
we will ignore that this is a gradual process and simply assume that one can define some
kind of “effective” t,, at which the neutrino anisotropic stress drops to zero. The full
numerical result is given in section 5.3.3. The effect of anisotropic expansion on the photon
distribution function is estimated as follows. We assume there is no anisotropic expansion
between photon decoupling and ¢,,. At later times, neutrino anisotropic stress can be
ignored. The relevant solution (5.41) is hence obtained with boundary condition §(t,,) =
0. Working through the steps above once again or simply taking the result (5.45) with
tdec — tm and x — 0, one finds

5(t0) — 5(tdec) = 5(t0) — 5(tm) ~ 4QB(tm) . (5.47)

Since Qp decays as a~', the effect of anisotropic expansion in case B is suppressed by
roughly a factor of a(tgec)/(3a(tn)) with respect to case A. For light neutrinos with a
highest-mass eigenstate close to the current lower bound, this factor can be as small as
~ 0.03, loosening the constraint on a constant magnetic field from the CMB temperature
anisotropy correspondingly. Constraints coming from Faraday rotation are not affected.

Clearly, the heaviest neutrino becomes massive at redshift z,, = m, /T, 2 0.04eV /T, ~
200. One might wonder whether isotropization can be supported even if only one neutrino
remains massless, since its contribution to the energy density is 2,1 ~ 0.23€2,. The problem
is however that, as soon as one neutrino species becomes massive, the equilibrium between
the magnetic field and the neutrino anisotropic stresses is destroyed and, as we have seen
under case A, where one still has free streaming photons, it cannot be fully re-established
in a matter dominated Universe.

5.3.3 Numerical solutions

In order to go beyond the estimates derived so far, we have solved egs. (5.2-5.4) numerically
with cosmological parameters corresponding to the current best-fit ACDM model [78]. We
use cosmological parameters Q) = 0.73, ,, = 0.27 today, where §2,, includes a contribu-
tion of massive neutrinos* which we approximate by Q,h?> = N,m, /94eV with N, ~ 3.

4CMB observations actually constrain the matter density at decoupling, such that neutrinos with m, <
0.3eV, which are still relativistic at that time, do not contribute to the measurement of €2,,,. However, since
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The contribution to the right-hand side of eq. (5.7) from free-streaming neutrinos is ob-
tained by integrating eq. (5.31) with the full distribution function for massive fermions.
More precisely, we compute the full distribution function to first order in ¢ and perform
the integration numerically, including the neutrino mass as a parameter. We begin to in-
tegrate deep inside the radiation dominated era, when the neutrinos are still relativistic
but already free-streaming. The asymptotic behavior of solution (5.37) can be used as
initial condition at neutrino decoupling. The constraint equation (5.2) provides the re-
maining initial condition. We then integrate until the desired time. We define today tg by
a(to) =1

In fig. 5.4, we present the results of the numerical integration from neutrino decoupling
until today. We plot both 6 — 4§, and AH/H in units of the parameter = Qp/Q, so that
the plots are valid for arbitrary magnetic field strengths, as long as r < 1. After neutrino
decoupling, ¢ oscillates and reaches its constant value as in eqs. (5.38), (5.41), while AH = )
oscillates and decays. We choose as initial condition § = §, = 0 at neutrino decoupling.
Once the temperature of the Universe reaches the neutrinos mass scale, neutrino pressure
decreases and they become non-relativistic. At this point, they can no longer compensate
the anisotropic pressure of the magnetic field, and both § and AH begin to grow. However,
it is clear from fig. 5.4 (upper plot) how, once neutrinos become non relativistic after
photon decoupling (case B), the growth of § is suppressed with respect to case A, where
this happens before photon decoupling. Moreover, the solid black line in the lower plot
represents the temperature evolution of AH/H in the case where only the magnetic field
sources the anisotropy: this makes clear how the absence of any free-streaming particle
able to counteract the magnetic anisotropic stress leaves the anisotropy of the Universe
free to grow with respect to its value today.

Our quantitative final result is shown in fig. 5.5, where we plot the value of the
quadrupole generated by a constant magnetic field, rescaled by 72, as function of the
neutrino mass. We weight the final Cy with respect to the quadrupole obtained without
considering the isotropization induced by free-streaming particles, in order to underline
the relative importance of this effect. These results clearly show that the CMB quadrupole
is significantly reduced by neutrino free-streaming only if their mass is smaller than the
temperature at photon decoupling, m, < Tge. =~ 0.26 V. In fact, for neutrino masses in
the range 0.3eV < m, < 3eV, the quadrupole C is reduced by less than a factor 100 from
the result without a free-streaming component, whereas for 0 < m, < 0.3 eV, it decreases
by several orders of magnitude. Note, however, that the effect is not negligible even in
the former case with relatively large neutrino masses. Fig. 5.5 also shows our analytical
estimation for the final amplitude of the CMB quadrupole produced by this effect as given
by eq. (5.47). Of course the value of eq. (5.47) depends on the time at which neutrinos
become effectively non-relativistic, t,,. Once we choose t,, to be given by the time at which
T = m,, we overestimate the final quadrupole amplitude still by one order of magnitude
(dashed blue line). This is a consequence of the fact that the neutrino distribution function
is highly relativistic and therefore it takes a further redshift for them to start behaving
effectively as massive pressureless particles. This has been considered in the more elaborate
estimate given by the dashed red line where we fix the time t,, to be given by the time
at which d3P,/d(InT)3 = 0, i.e. the time at which the pressure reaches the break in the
power law. This is in excellent agreement with the numerical results.

their density parameter today is then also very small, their contribution to the matter density remains
practically irrelevant.
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Figure 5.4: Temperature evolution of AH/H and 6 — d, for different neutrino masses. We
chose the initial conditions to be given by §, = 0 at neutrino decoupling. The black solid
line in the lower plot represents the temperature evolution of AH/H in the case where
only the magnetic field sources the anisotropy and no free-streaming particle is present to
compensate this effect. The dotted vertical line indicates the instant of photon decoupling.



A gravitational wave background and other massless free-streaming components in an
124 anisotropic Universe

10°

L | L | T _LFT

T T T TTTTT
\

10

LR
R |

10

LR
R |

Cy/CF

.
o,
I

R |

T T T TTTIT

g
LR

R |

Figure 5.5: Effect of free-streaming neutrinos with different masses on the quadrupole gen-
erated by a homogeneous magnetic field, weighted on the quadrupole obtained without
considering the effect of any free-streaming particles. The solid black line represents the
result of the numerical integration, the dashed blue and red lines correspond to our an-
alytical prediction given by eq. (5.47) for two different choices of t,,, the time at which
neutrinos are effectively non-relativistic (see the text for clarification).

5.4 A gravitational wave background and other massless
free-streaming components in an anisotropic Universe

From our previous discussion it is evident that any massless free-streaming particle species
X can isotropize the Bianchi I model with a constant magnetic field, if present with suf-
ficient contribution 2x already in the radiation dominated era. This has to be accounted
for if we want to estimate the CMB quadrupole induced by a homogeneous magnetic field.

So far we have discussed the standard model neutrinos as an example of such a particle.
However, also other massless particles can play this role, for instance gravitons, but also
particle species outside of the spectrum of the standard model. Interestingly, the current
bounds on the number of relativistic degrees of freedom during nucleosynthesis, often
parameterized by the effective number of additional neutrino species AN, , allow for the
possibility that such a species could be sufficiently abundant. The present bound on NV,
from nucleosynthesis is [3]

N, = 32412,

N, [ 4\*?
G = 2+ ~ ) =336+ (N, —3) x 0.454
4 11
= 3.36+(0.2+1.2) x 0454 at 95% confidence. (5.48)

Here we have taken into account that the photon and neutrino temperatures are related by
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T, = (4/11)Y 3T, [36]. The effective g, from v and three species of neutrino corresponds
to g«(7y,3v) = 3.36. This is equivalent to a limit on an additional relativistic contribution
at nucleosynthesis of Qx < 0.2. From the solution (5.38) we know that a free-streaming
relativistic species with a density parameter Qx 2 5/32 ~ 0.156 during the radiation
dominated era will isotropize expansion within a few Hubble times. Since this species will
presumably decouple before the neutrinos (otherwise it should have been discovered in
laboratory experiments), expansion can be isotropic already at neutrino decoupling, and
thus neither the cosmic neutrino background nor the CMB will be affected by anisotropic
expansion. In this case therefore, unless we are able to detect the background of the species
X, we will never find a trace of the anisotropic stress produced by a homogeneous magnetic
field. An interesting example are gravitons, which we now want to discuss.

Inflationary models generically predict a background of cosmological gravitational waves
which are produced from quantum fluctuations during the inflationary phase. The ampli-
tude of this background, usually expressed by the so-called tensor-to-scalar ratio, rp, has
not yet been measured, but for a certain class of inflationary models, forthcoming experi-
ments such as Planck might be able to detect these gravitational waves. This is in contrast
to the cosmic neutrino background, for which there is no hope of direct detection with
current or foreseeable technology. However, this background typically contributes only a
very small energy density,

QGW, inf/Q»Y ~ 10_107‘T s nr ,f, 0.

Only non-standard inflationary models which allow for ng > 0 can contribute a significant
background, see [17].

Gravitational waves can also be produced during phase transitions in the early Uni-
verse [43], after the end of inflation. Such gravitational wave backgrounds can easily
contribute the required energy density. Let us therefore concentrate on this possibility.

If the highest energy scales of our Universe remain some orders of magnitude below the
Planck scale, gravitational waves are never in thermal equilibrium and can be considered
as free-streaming radiation throughout the entire history. Therefore, if the gravitational
wave background was statistically isotropic at some very early time, then any amount
of anisotropic expansion taking place between this initial time and today will affect the
gravitons in a similar fashion as any other free-streaming component, and therefore our
present gravitational wave background would be anisotropic. Loosely speaking, the in-
tensity of gravitational waves would be larger in those directions which have experienced
less expansion in total since the initial time when the gravitational wave background was
isotropic.

As we have specified above, with the current limits on AN,, the density parameter of
gravitons Qgw during nucleosynthesis can be as large as ~ 0.2. At higher temperatures
(that is, at earlier times), the number of relativistic degrees of freedom increases (more
particle species are effectively massless), such that Qqw at earlier time can even be larger®.
It is therefore conceivable that gravitons acquire sufficient anisotropic stress to compensate
the magnetic field and hence take over the role which neutrinos have played in section 5.3.

®During a transition from g relativistic degrees of freedom to g2 < g1, the temperature changes from

T1 to Ts. Since entropy is conserved during the transition we have g1T13 = gng’. Hence p2 = ng24 =
4

1/3 1/3
g2 {(g—;) Tl} = (g—;) p1 > p1. In other words, the energy density of all species which are still in

thermal equilibrium increases if one reduces the number of degrees of freedom at constant entropy.
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As already pointed out, in this case, neither neutrinos nor photons will ever experience any
significant anisotropic expansion, since the Universe remains in a Friedmann phase after
the gravitons have adjusted to the magnetic field. Of course, gravitons remain relativistic
for all times and the mass effect which we discussed for the neutrinos does not occur.

In order to rule out this scenario, it would be very interesting not only to measure the
background of cosmological gravitational waves but also to determine whether or not it
shows a quadrupole anisotropy compatible with such a compensating anisotropic stress.
Or in other words: just as the smallness of the CMB quadrupole is a direct indication
for isotropic expansion between decoupling of photons and today, the smallness of the
quadrupole of a gravitational wave background would inform us about the isotropy of
expansion between today and a much earlier epoch where this background was generated.

5.5 Conclusions

In this paper we have studied a magnetic field coherent over very large scales so that it
can be considered homogeneous. We have shown that in the radiation dominated era the
well known Bianchi I solution for this geometry is isotropized if a free streaming relativistic
component is present and contributes sufficiently to the energy density, Qx 2 5/32. This
is in tune with the numerical finding [90, 116, 76] that the neutrino anisotropic stresses
‘compensate’ large scale magnetic field stresses. A perturbative explanation of this effect is
attempted in [12]. Here we explain the effect for the simple case of a homogeneous magnetic
field: free streaming of relativistic particles leads to larger redshift, hence smaller pressure
in the directions orthogonal to the field lines where the magnetic field pressure is positive
and to smaller redshift, hence larger pressure in the direction parallel to the magnetic field,
where the magnetic field pressure is negative. To first order in the difference of the scale
factors this effect leads to a build up of anisotropic stress in the free streaming component
until it exactly cancels the magnetic field anisotropic stress. This is possible since both
these anisotropic stresses scale like a ™.

In standard cosmology this free-streaming component is given by neutrinos. However,
as soon as neutrinos become massive, their pressure, P, o« a~°, decays much faster than
their energy density, p, o< a~3, and the effect of compensation is lost. If this happens
significantly after decoupling, there is still a partial cancellation, but if it happens be-
fore decoupling, the neutrinos no longer compensate the magnetic field anisotropic stress.
Furthermore, a component which starts to free-stream only in the matter era (like e.g.
the photons) does not significantly reduce the anisotropic stress. Actually, inserting the
dominant part of the constant D from eq. (5.44) in (5.42) one finds

A7H =12Qp, (5.49)
like without a free-streaming component.

This cancellation of anisotropic stresses does not affect Faraday rotation. A constant
magnetic field with amplitude By 2 10~?Gauss can therefore be discovered either by the
Faraday rotation it induces in the CMB [111], or, if a sufficiently intense gravitational wave
background exists, by the quadrupole (anisotropic stress) it generates in it.

Finally, Planck and certainly future large scale structure surveys like Euclid will most
probably determine the absolute neutrino mass scale. Once this is known, we can infer
exactly by how much the CMB quadrupole from a constant magnetic field is reduced by
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their presence.
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Back Reaction from Walls

Enea Didio, Marc Vonlanthen, Ruth Durrer

We study the distance-redshift relation in a universe filled with ’walls’ of pressure-less
dust separated by under dense regions. We show that as long as the density contrast of the
walls is small, or the diameter of the under dense regions is much smaller than the Hubble
scale, the distance-redshift relation remains close to what is obtained in a Friedmann
universe. However, when arbitrary density contrasts are allowed, every prescribed distance—
redshift relation can be reproduced with such models.

6.1 Introduction

Since more than a decade, cosmology research is facing the dark energy problem: the
present Universe seems to be in an accelerating phase. This conclusion was first drawn from
measurements of the distance-redshift relation from type Ia Supernovae (SNIa) [105, 1] and
is confirmed by many other datasets, from the cosmic microwave background [33] to baryon
acoustic oscillations and other aspects of large scale structure. Until very recently the
measurements inferring the existence of dark energy rely mainly on the distance-redshift
relation which is valid in a Friedmann Universe [42]. New independent measurements of,
e.g. the expansion rate H(z) are now being performed see e.g. [9]. Hence this situation
is changing, so that we shall soon know both, d4(z) and H(z) with good accuracy. The
general opinion is that fluctuations on large scales are small so that they can be treated
with linear perturbation theory and linear perturbations average out in the mean over many
directions and large scales, and therefore fluctuations are not relevant for the determination
of quantities like d4(z) and H(z). This expectation has been confirmed by perturbative
calculations. Within linear perturbation theory, the fluctuations of the distance-redshift
relation for redshift z > 0.2 is on the level of a few percent [11].

However, perturbations on smaller scales can become very large, density fluctuations
e.g. in galaxies are §p/p ~ pgal/pm ~ 108. Since the relation between metric perturbations,
or more precisely the Christoffel symbols, and density fluctuations is non-linear, it is not
evident that large amplitude, non-linear, small scale density fluctuations cannot add up to
affect the distance-redshift relation on large scales.

To study the real problem one would need to analyse light rays passing through a
realistic Universe with high density fluctuations. So far, this has been done only within
Newtonian N-body simulations, see e.g. [121]. However, it is well known that Newtonian
gravity misses the terms which are relevant for the back reaction problem [103], hence a
full, non-linear relativistic treatment is needed. Since this is very difficult, so far mainly
toy models which mimic reality to a certain extent have been studied.

The present work inscribes in this framework. Instead of considering spherically sym-
metric solutions of general relativity (GR), the so called Lemaitre [79]-Tolman [120]-Bondi
(LTB) models, for recent reviews see [10], we study a Universe containing high density
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walls. We shall consider infinitely extended parallel walls. The considered model is a sub-
case of the Szekeres solution [119]. Light propagation in general Szekeres model has been
studied recently [73, 85]. This is of course a gross over-simplification, but we know that
galaxies tend to be aligned in filaments and photons coming to us from a far away super-
nova, might experience a geometry similar to the one of such a symmetric wall universe.
The weakest point of our toy model is that all the walls are parallel while we expect a
typical photon to traverse filaments which are aligned in different directions. We shall take
this into account to some extent by studying photons coming in from different directions
with respect to the walls.

Such walls have been studied in the past [26], but only perturbatively. Since we know
that the effects are small within linear perturbation theory, we cannot trust higher order
perturbation theory if it predicts large deviations from the Friedmann distance-redshift
relation. For this reasons we analyse exact, fully relativistic wall-universes in this work.

In the next section we present the wall metric and the Einstein equations. We also
study the conditions on the parameters which have to be satisfied so that no singularity
apart from the Big Bang is present in the backward light cone of the observer. In section 6.3
we present the results for the distance-redshift relation for 'realistic’ walls and for a wall
universe which mimics the observed relation. In section 6.4 we conclude.

6.2 Wall Universes

In this section we study universes containing only pressure-less matter (dust) and which are
symmetric under translations and rotations in a plane which we call the y-plane. They have
the same number of symmetries as LTB models and can be solved analytically, see [126].
The metric is of the form

ds® = —dt? + a*(t, z)dx® + b (t, ) (dy? + dy3). (6.1)

Note that the only difference to the LTB geometry is that our symmetrical 2d manifolds
are planes, dy? + dy3 = dr? +r2d¢* while those of LTB are spheres, dQ? = d6* + sin? 0dg?.
We denote the spatial coordinates by x = (z,y1,y2) in order to reserve the letter z for
the redshift. In the following a prime denotes a derivative w.r.t. x while a dot denotes
derivative w.r.t. t. The Einstein equations for this geometry and for pure dust matter
yield [119, 126, 93]

) (b—/>z8tE = 0, (6.2)

a
: b\ ? M (z)
2
= = 9 .
b <a> o (6.3)
M' = 47xGpb*Y = 4rGpb*aE(z). (6.4)

In Eq. (6.2) we have introduced the time-independent function
E(x)=1V/a (6.5)

and Eq. (6.3) defines M (x) which is also time-independent. In LTB models M/G can be
interpreted as mass density (Note that in the LTB case a term b/(2G) has to be added
to M which is a consequence of the curvature of the 2-sphere. For more details see [93].),
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and (M’'/G)r?dr is the mass in a shell of thickness dr. However as the mass in an infinite
plane is not well defined, this interpretation is not meaningful in the planar case. In our
case it is therefore not unreasonable that M may become negative even though a, b and p
are supposed to be positive at all times.

From the matter conservation equation we also obtain 9;(pb*a) = 0, which, on the other
hand, is a consequence of Eq. (6.4).

6.2.1 The solutions

Eq. (6.3) can we rewritten as

i = sz(x) + B(@)?, (6.6)
with parametric solutions [119, 126]

for E#0 : b = %(coshn —-1)= 2E—]\24 sinh?(n/2), (6.7)

t = %(sinhn —n)+tp(z), for M >0; (6.8)

b= —%(coshn +1) = _2}5—]‘24 (sib2(n/2) + 1), (69)

t = —%(sinhn—l—n)—l—tfg(:n), for M < 0; (6.10)

b = |E|(t—tp(x)) for M =0; (6.11)

3 2/3
for E=0 : b = <§\/W(t — tB(x))> , for M >0, (6.12)
b = by= const. , for M =0. (6.13)

Note that for F =0 Eq. (6.6) implies that M > 0. This equation also implies

at all times, in all cases.

The function tp(z) is arbitrary; it is called the 'bang time’. For M > 0, at t = tp, i.e
n = 0, we have b = 0 which represents the Big Bang singularity. Positions with M < 0
have no Big Bang singularity but a ’bounce’ at ¢ = tg. We shall simplify below to the
case tp = 0, i.e., uniform bang time. Note that we have chosen expanding solutions. From
these we can obtain the collapsing solutions simply by changing the sign of ¢. Since in the
FEinstein equations only b? appears they are invariant under ¢t — —t¢.

Of course the {t =const.} hypersurfaces are not parallel to the {n =const.} hypersur-
faces, but their position depends on z. For fixed position z, Eqgs. (6.7,6.8) and (6.12).
correspond to Friedmann solutions with curvature K = —E? < 0 and M = 47Gpb?/3.
Note that unlike in the Friedmann case, wall solutions with M < 0 need not be unphysical.

The parametric representation with 7 is chosen in order to express the solutions in
terms of elementary functions, but it is of course not necessary. For example, for M > 0,

setting
;o\ 2/3
7(t,z) = —E? <6W> and
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S(r) = (—37)_1 sinh? <% [sinh —id]_1<6 (_7)3/2>>

we obtain v

b(t,z) = —ﬁGTS(T).
Note that in the definition of S, [sinh —id]_1 denotes the inverse of the function in brackets,
and id is the identity function, id(x) = x. One can check that S solves the differential
equation [125]

4 1
g(S+rS’)2+3¢—§ — 0. (6.14)
with initial condition S(0) = (%) 13, Note that this is the only regular solution, i.e solution

with S’(0) # oo. This expression will be useful in Section 6.3.3.
The function a(x,n) can be obtained from Eq. (6.5). For example for M > 0 we find

ob
_ g1 (090
o=k <8$>t

for E#0 : a= % (%)lsinh (g>2_ coth (g) [tjg + <%>/(sinhn—n)} (6.15)

(t—t)*? | 1M n 9(t —tp)**F

for E=0 : a = 7[M z RYE (6.16)

M1/361/3

(The suffix t in 9b/0x indicates that we have to interpret b as functions of (¢, x), not (x,n),
in this derivative.) Even if F = 0, Eq. (6.4) implies that 0 < M'/E < oo, so that the
r.hs. of Eq. (6.16) is well defined. Below, we shall choose the z-coordinate such that
M'/E =constant.

Note that M (z) and E(x) can pass through zero so that in general different solutions
from above have to be glued together at the boundary of their validity. We have checked
that this gluing process can be performed in a smooth way and does not induce singularities
in the scale factor b. However, for M — 0 the scale factor a — co. Nevertheless, we believe
this to be a coordinate singularity, since, as we have checked, both, the Kretschmann scalar,
K= RQBWRQBW and the scalar curvature remain finite for M — 0. In our examples below
we shall have M > 0 throughout and therefore we do not encounter this problem. However,
when computing a from Eq. (6.5), one has to be careful to use the result (6.15) and take
the limit £ — 0 for fixed ¢, hence also n — 0. One cannot use (6.12) and (6.5), since
for E = 0 we have M' = 0 so that Eq. (6.5) is identically satisfied and cannot be used to
obtain a(t, z).

6.2.2 Singularities

Singularities can occur when a, b or p become either infinite or zero. To have no singularities
(apart from the Big Bang) which occurs at ¢t = tp, hence b = 0, in the past light cone of
every possible observer we might be interested in, we must demand that all singularities
lie in the future. In more precise models, when one specifies the observer location, one can
relax this condition to the one that no singularity lies within the background lightcone of
the specific observer.

In general, the question of singularities depends on the choice of the functions M (x)
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and F(z). From our solutions it is clear that b behaves monotonically as a function of time
for fixed z. This is to be expected since no clustering goes on in the directions y; and ys
described by this scale factor. Since we are interested in an expanding b, a singularity is
present when the the scale factor a of the z-direction tends to zero. From Eq. (6.15) we
infer that for tp = 0, a = 0 implies

2 (M/E?)  cosh(n/2)

E (MJE®Y ~ smb3(5)2) (sinhn —n) > 4/3.

It is easy to verify that the right hand side is an even positive function with minimum 4/3
at 7 = 0. Hence there is a singularity at some finite value of 7 if the Lh.s. ever becomes
> 4/3 or, equivalently, if

E' M/E*  cosh(n/2)
E (M/E3) — 2sinh3(n/2)

(sinhn—n) —1>—-1/3

for some value of x.

We now consider a simple ansatz motivated by the perturbative analysis presented in
Ref. [26]. We choose

2
M(z) = —5 (1 +¢eh(x)) (6.17)
and w9
AnGpb*a = 5 = gtgz = const. (6.18)
so that
h/
E=ex. (6.19)

In full generality M'/E = f(x) could be an arbitrary positive function of z. But we
can always make a coordinate transformation to Z(x) determined by

1
di  6mGpblat}’

so that with respect to the new coordinate M’/E =constant. Hence we just fix the co-
ordinate = (up to a constant shift) by this choice. In addition, we have chosen uniform
bang time, tp(z) = 0. This is a true restriction. With this we have reduced the three
free functions of = to one, h(z) which defines the density profile. Furthermore, we have
introduced the parameter € such that for ¢ = 0 we reproduce the matter dominated Fried-
mann solution. We may also require |h(z)| < 1 so that e indicates the amplitude of the
perturbations. We do this in one of the examples below.

The above requirement for a singularity at some time ¢ # 0 now reduces to MM" <
M'/3. (Strictly our derivation applies only for M’ # 0. For M’ o« E = 0, one sees
directly from Eq. (6.16) that M” « E’ < 0 is the necessary and sufficient condition for
a = 0 at some time ¢ > tp.) We have found that most interesting mass profiles satisfy
this condition for some values of z and therefore have singularities at some time in some
places. This is not surprising but actually expected from gravitational collapse. However,
when over densities become very high and we approach the collapse, pressure forces and
heating become important and our simple pressure-less dust model for matter no longer
holds. In order to be able to stay within the present framework, we therefore demand
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that such singularities be in the future and not in the past for the density profiles under
consideration.

Let us consider as a first example
h(z) = cos(kz) .
Then the condition for the existence of a singularity (at ¢t # 0) becomes
— (ecos(kz) + €* cos*(kx)) < (€*/3)sin®(kz).

which is always satisfied for some values of x, irrespective of k and €. A similar behavior is
expected whenever h is not a convex function, but a function representing several under-
and over-densities cannot be convex.

However, this is not so important for our considerations. As we have said, the require-
ment of singularities to be absent is mainly a technical one and it is actually sufficient not
to have a singularity in the past.

Using the above expression for a (for M > 0) and the ansatz (6.17,6.19) for M and E,
we find that a = 0 is equivalent to

(1+eh)h” 1 1 1 cosh(n/2)

eh> —3(1+eh)h” ~ 31— 3(1%/;)}#' - isinh?’(n/Z)

(sinhn—n)—1>—-1/3. (6.20)

Interestingly, in extremal positions of h, with A/ = 0, the Lh.s. of the above expression
is exactly —1/3. This comes from the fact that for this case n = 0 V ¢ and we have to
replace the condition that there is no singularity before some given time tg by a(t) > 0 for
t < top using expression (6.16) for a(t). If A’ = 0 when A’ = 0 (as in our example) one can
show that in the positions where i has a maximum, hence ' = 0 and h” <0, 1+ eh > 0,
singularities occur first. Furthermore, when 1 + ¢k > 0 and h” < 0, the denominator of
the Lh.s. of Eq. (6.20) is larger than 1 and hence the L.h.s. becomes > —1/3. Therefore,
there exists a finite value ns(z) where Eq. (6.20) is satisfies and a(x,ns(x)) = 0. If, on the
contrary, 1 +e€h > 0 and h” > 0 the Lh.s. of Eq. (6.20) is smaller than —1/3. For positions
in the vicinity of an extremum this implies that if the extremum is a minimum of A, the
position x does not encounter a singularity in the future while positions close to maxima
do.

Let us study in more detail the request that the second singularity (not the big bang
one) lies in the future, ¢ > to. Using the expression (6.8) for ¢, we can rewrite the condition
a(z,ns) =0 as

(14 e€h)n” _ 9 cosh(ns/2) t3t(x,ms)e3h"3 B
e’ —3(1L+eh)h” — 4sinh3(n/2) (1 +e€h)

The condition t(x,ns) > to, for A’ < 0 which we shall consider hence ns < 0 for t(x,ns) > 0,

then becomes
(1+¢h) (14 eh)n” 4 cosh(ns/2)

ShI3 eh’® —3(1+ eh)h” | 93~ sinh®(1/2)

This equation for ns(z) can only be solved numerically. However, often we realize that the
Lh.s. is smallest at small |1/ i.e. for small values of |E(z)|. Hence singularities will develop
first in positions with small |h|. This requires also small |n;| so that we may develop the
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scale factor a and t in 7n;. The above inequality then leads to power law relations and
inserting the above expression for E = (3/2)M't? yields the constraint

(3t(2))7/331/322/3 s M2
n = 60" M — =) >0,

€2 (sin (kz))*
(1+ icos((kaz)))wg) > 0. (6.21)

1-— %(tok)w?’ (66 cos(kz) (1 + ecos(kz))™? +

The first inequality is general while for the second inequality we have chosen h = cos(kx).
In Fig. 6.1 we plot the constraint for this case together with the condition to use the
limiting solution for £ = 0, (6.16), (which is not necessary for our analysis) in the e-A
plane, where A denotes the wavelength of the perturbation A = 27 /k.

105,

10°;
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1000¢
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1076 107°° 104 0.001 0.01 0.1 1
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Figure 6.1: The region above the red line has singularities in the future only. While the
blue line describes the condition to use the limiting solution for £ = 0, (6.16). This can be
used when tE3 /M < 1, where with "<” we mean at least two orders of magnitude smaller.
The two black lines describe the physical parameters e = 9.5 x 1076 and A = 80 Mpc.
The green line is the Hubble scale H 1 With physical parameters we mean an amplitude
as determined by WMAP [68] observations and a wavelength agrees with the size of the
largest observed voids [45] which is about 40-90 Mpc. More precisely we find e requiring
that at early time there is only a single density fluctuation in each Hubble distance. This
leads, at first order, to § = 87%¢/15, and the matter density fluctuation at early times,
§ 25 x 1075 can be inferred from WMAP observations. For more details see [26].
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6.3 The distance redshift relation in a wall universe

6.3.1 Generalities
6.3.1.1 Redshift

We now consider a photon emitted from a source at some position and time (ts, Xs) arriving
in our telescope at position and time (¢g,xp). We denote the matter 4-velocity field, hence
the 4-velocity of source and observer by u(¢,x) and the photon 4-velocity by n. The redshift
of the source, z is then given by

9(n, wls

1+2= .
g(nvu)’0

(6.22)

We consider a co-moving source and observer, hence u = 9; and normalize the affine
parameter of the photon, s, such that n°(sg) = 1. The redshift then reduces to

142 =n"; (6.23)

for our geometry with gopg = —1 and ggp; = 0. From the geodesic equation for the photon
we infer that its momenta in y;- and yo-direction are simply redshifted so that

d d
Jy = bt = L — const.  and Jo = b*n? = 2222 — const. (6.24)
ds ds
hence
)2 %) 1 2 2
(n")? = <;> - =5 (JT +J7). (6.25)
From the geodesic equation for n” we can now derive the evolution of the redshift:
dz  dn® oooTR+JR (b
i G -l E (6.26)

Here we have used a = b'/E to eliminate the scale factor a. Note also that the prime and
the dot in the above equation denote partial derivatives while d/ds is a total derivative
along the path of the photon.

6.3.1.2 Distance

The evolution of the distance to the source is given by the Sachs focussing equation [112],

d’D

D is the angular diameter distance to the source, ¢ is the complex scalar shear of the light
bundle which we define below and

1 _
R = 5 Run'n” = 4nGTuntn” = 4rG(1 + 2)%(p+ P). (6.28)

Here P = n'n/ P is the pressure in the direction of the photon. The important point is that
this quantity is non-negative for any energy momentum tensor which satisfies the dominant
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energy condition p > P in all directions, hence also for a cosmological constant where we
have R = 0. In terms of the affine parameter of the photon, the growth of the angular
diameter distance to the source is not accelerated. If the dominant energy condition is
satisfied D(s) is always a concave function. Furthermore, clustering which leads to the
production of non-vanishing shear is only increasing the deceleration of D as function of
the affine parameter s. But of course we do not measure this function but D(z) which can
behave very differently.

The complex shear of the light ray bundle is defined as follows [118]: We consider two
spatial orthonormal vectors e; and e, which are normal to both, v and n at the observer
and are parallel transported along n, such that V,e, = 0 for a = 1,2. The vectors eq, e5 are
a basis of the so called 'screen’. Note that we do not require that u be parallel transported
along n, hence eq, eo are in general not normal to u elsewhere than at the observer, where
we have given their initial conditions. The complex shear is defined by

1
o= 59(57 Ven), € =e1 +iey (6.29)

In order to compute the shear we must know n not only along the photon geodesic itself
but we must determine its derivatives in directions normal to n. We shall directly use the
transport equations [118]. For a vorticity free ray bundle (which is the case here) with

expansion rate ¢ = %n‘tl these are

0+0*+o0i+05 = —R, (6.30)
01 +2001 = —Re (]:) , (6.31)
b9 + 200y = Im(F), (6.32)

where 01 = Re(0), 09 = Im (0), and F = $Ra,p,62én#n”. To determine the shear o
we need to know the initial conditions for the differential equations (6.30) to (6.32). It
is possible to determine the behavior of the shear and the expansion of the light near
the vertex [114]. Choosing the affine parameter of the photon to vanish at the observer
position, sg = 0, these are

o(s) = —§ﬁ0+o(82), (6.33)

o(s) — % <1 - %Ros2> +O(s%). (6.34)
Fo and Rg are the values of F and R at the observer position. The light bundle expansion
0 diverges at the observer position, but we can consider an initial condition not exactly
at the observer. This choice can affect the numerical precision. After determining R, €
and F for a given geometry and photon direction, we can solve the system (6.30) to (6.32)
together with the Sachs focusing equation (6.27) numerically.

6.3.2 ’Realistic’ walls

We want to investigate whether the system of equations derived above for z(s) and D(s)
can lead to a distance-redshift relation close to the one observed. For wall universes we
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consider,
2 2(1+2)°

R = dnGp(1
e ThI

(6.35)

For a chosen density contrast h(x) we can determine b(t, z) and a(t, x) and solve the photon
geodesic Eq. (6.26) for a given angle 6, of the observed photon w.r.t. the y-plane,

_ VIS
COS 9() = m . (636)

We again set the initial value or the affine parameter to 0, hence xg = z(0) etc.
We have investigated two choices for M (x). The first is simply M (x) = % (14 ecos(kz))
0

which we have already discussed before. The results for this case are shown in Fig. 6.2.

AN — =

Figure 6.2: We show the relative luminosity distance redshift relation % =

%jéjm, for different models with luminosity distance D(z). The blue dotted curve

is for a Milne Universe, the red dashed curve is for ACDM universe with 2, = 0.7 and
Q= 0.3. The remaining two lines are our wall universe. The black solid line is in an
under density while the purple dot-dashed line is in an over density. In the top panel, we
consider light propagating in the z-direction only. The bottom panel is the same but for
light propagating in the y-direction. The parameters for the wall model are the physical
ones, € = 9.5 x 1076 and A\ = 80 Mpec.

The result is quite striking: The deviation from the Einstein-de Sitter distance-redshift
relation is very small. On the level of a few percent in the most extreme case. Much smaller
than the deviation for an open (Milne) Universe or even for ACDM. Hence voids and walls
with the chosen parameters cannot simulate the observed distance redshift relation. We
have also studied different values of the parameters (e, k), but all cases which are such that
there is no singularity before ¢y lead to small deviation from Einstein-de Sitter. Only for
wavelengths of approximately Hubble scale, k ~ Hy, where we can choose € ~ 1072 do the
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deviations become relatively large. But the density profile chosen here does not at all lead
to a relation that resembles the observations.

As a second profile we consider thin, highly concentrated over-dense walls with an
exponential profile:

—\xr — T 2
h(x) = \/)\_ Ei:exp <%> -1, (6.37)

where A = z;41 — z;. In the limit ¢ < A the mean of h (x) vanishes and min,h (z) = —1.
Again, we choose € such that there is no singularity before tg.
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Figure 6.3: We show the relative difference between the distances in 'realistic’ wall models
and in EdS universe for photons propagating in z-direction. The top panel is obtained
with € = 1079, A = 40 Mpc and o = 1 Mpc, while the bottom one with e = 5 x 1078,
A =15 Mpc and ¢ = 1 Mpc. In both cases the observer is at the center of the void. We
have checked that the order of magnitude does not change for a observer in a over density.
In the second case, we see that we obtain an effect of the same order of magnitude as the
swiss cheese universe discussed in [84].

We have obtained the following result in these two examples (and other profiles which
we do not present here explicitly): The modification of D(z) never goes beyond the case
of the open universe. We do not obtain acceleration by a series of dense walls. Even
though we present here only two simple profiles, we think the conclusion is valid beyond
these cases: if a photon passes through many compensated under- and over-densities in
the integrated distance D(z) the effect is minute as long as the time the photon spends
inside a wall is much smaller than the time scale at which the gravitational potential of the
wall evolves. A perturbative (first order) calculation gives a flavour of this effect. Indeed,
at first order in the perturbed direction, the difference between D(z) in our models and
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Dpggs(z) of a matter dominated universe can be written as

o Q¢

Dy (z) = DF®S = (1+2) (n—no) (5 (h(no) +h () = (1+ =) / () dn
w0tz [Can [T of 57 [T nonn 63

Te

where the subscripts e and o respectively mean that the conformal time is evaluated at the
source (emission) or at the observer and expresses the perturbation of the energy density
in under and over densities (see Appendix C for a derivation of the linearized result). From
this expression, valid in the linear regime only, and for a periodic perturbation, it becomes
clear that the deviation of Dy (z) with respect to Dfds depends on the amplitude € of the
perturbation and on the values of the conformal time at the source and at the observer. In
the case of periodic perturbations, the contributions from photon path are mostly cancelled
in the integral terms. Of course in the full non-linear calculation there is no simple relation
between the matter over density i and the gravitational potential. In this case in principle
the full non-linear Einstein equation have to be solved and Egs. (6.26) and (6.27) govern
Dr(2).

Surprisingly, however, our non-linear simulations show that this result holds also to
some extent in the non-linear regime. Note that, even though our value of € is small, the
over densities in the walls are large at late times, such that they develop singularities soon
after today and we are deeply in the non-linear regime. While we do not have a proof that
our conclusion holds in all cases, we have tested this also with other periodic wall profiles.

In Fig. 6.4 we show the deviations of the expansion rates with respect to the Hubble
expansion in EdS universe. We note that the deviations in the unperturbed directions
are small. However, in the perturbed direction these deviations can be large locally inside
a wall, and they would be measurable by direct, local measurements of H(z). However,
they compensate when averaged over a wall thickness and do not show up in integrated
quantities like D(z).
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Figure 6.4: We show the relative differences between the expansion rates in the thin, highly
concentrated over-dense wall model and the Hubble expansion in EAS universe. The top
panels are obtained with e = 1072, A\ = 40 Mpc and ¢ = 1 Mpc, while the bottom ones
with e =5 x 107, A = 15 Mpc and ¢ = 1 Mpc. In both cases the observer is at the center
of the void. The left panels show the expansion rates in the perturbed direction, while the
right ones in the y-direction. The results for the cosine profile not shown here are similar
to the two top panels.

6.3.3 Mimicking dark energy

Yoo et al. [125] have shown that in an LTB model every given distance-redshift relation
can be mimicked by a suitable choice of the density profile. The same is true for a wall
universe. For a given function D(z) we can find a density profile which leads to exactly
this distance-redshift relation for a photon coming in z-direction. First of all, for such
a photon the shear vanishes for symmetry reasons and R is given by (6.35). To find the
density profile, which is equivalent to finding M (x) or M(z) = M(z(z)) we have to solve
the following coupled system of six ordinary differential equations (in principle none of the
other equations couples to (6.41) since both, Fj; and Fjz do not depend on x explicitly),
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which is very similar to the system solved in Ref. [125]:

dM

K = FM (t7Z7M7/87C)7 (639)
d
d_f - FB (t7Z7M7/87C)7 (640)
dz FM(t7Z7M7/87C)
- = 41
Is 3 (6.41)
dt
— =1 6.42
ds T ( )
dz ¢
E = @, (643)

dz
d
© e (14 2)% pD, (6.44)
ds
where we have defined
dz dD M , 2

In Appendix 6.5.1 we give the derivation of this system and the detailed expressions for
Fyr and Fg. There, we also explain the method used to specify the initial conditions at
the observer. All the constraints are fixed by requiring the system to have no critical
points. Note also that z(s) need not to be monotonic. If dz/ds = 0 at a value of s where
¢ =dD/ds # 0, the derivative dD/dz is not well defined. This is, however, not the case of a
ACDM Universe which we want to mimic here. We are then left with one initial condition,
which we choose by requiring

: (6.46)

S0

a b
Hy= - -
07 4 b

S0

i.e. the value of the Hubble rate at the observer today does not depend on direction. In
Fig. 6.5 we show M (x) as well as its derivative with respect to the x coordinate, /3 (z),
for the solution mimicking the ACDM expression for D(z), for Qg = 0, 2, = 0.3 and
Qpp(z) = 0.7 =constant.

D(z) = I j—zXK </0Z ;(—ZZ//)> where (6.47)

r .
Xr(r) = \/—Esm(r\/f), and

H(:) = Ho(Qu(1 42+ Q1+ 22+ Q1+ 2+ Qe())

In Fig. 6.6, we show how the luminosity distance deviates when the observer looks at
photons coming in with different angles 6y. For 6y = 90 degrees, we have photons traveling
in z-direction, in this case the luminosity distance is fitted to the one of ACDM by solving
the system of Egs. (6.39-6.44) with the functions M (z) and S(x) shown in Fig. 6.5. It is
interesting to remark that a given angle of 6y € [0;90] degrees at the observer corresponds



The distance redshift relation in a wall universe 145

1.5 T T T T

M(x)

05— —

|
3000 4000

BX)

06 1 I 1 I 1 I

-0 1000 2000 3000 4000
x [Mpc]

Figure 6.5: We show the function M (x), top panel, and its derivative 3(z), bottom panel.

In principle, there is a entire family of functions M (z) parametrized by the initial value

M(0) = My that we are free to choose (appendix A). Here, we present the solutions

b
b

corresponding to Hy = 3‘80 .
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Figure 6.6: We show the relative differences between luminosity distances for photons trav-
eling in the z-direction (perpendicular to the walls) and photons observed with an angle 6y
(see Eq.(6.36)). From the top to the bottom, we respectively have 6y = 75, 60, 45, 30, 15, 5
degrees.
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to an angle at the emission 6, > 6y. This is a consequence of the spacetime geometry
induced by the walls: due to the clustering in direction x, corresponding to 8 = 90°, its
expansion slows down in time.
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Figure 6.7: We show the ratio of our density profile to the Einstein-de Sitter one as a
function of the cosmological redshift.

In Fig. 6.7, we present the density profile corrected by the isotropic expansion rate,
(1 + 2)73p(2)/po, po = p(z = 0), obtained for our model to mimic ACDM luminosity
distance. Finally, in Fig. 6.8, we plot the expansion rates in the longitudinal and transverse
directions, H, = a/a and Hy, = b/ b. It is interesting to estimate roughly the features of the
under density needed to fit ACDM luminosity distance. For example, if one considers the
highest redshift for which we have data from supernovae, at around z ~ 1.7. This roughly
corresponds to a size ~ H L (Of course we have another data point from the CMB.
The angular size of the acoustic oscillations provides an excellent measure of the angular
diameter distance to the last scattering surface, z ~ 1090. But this is not very relevant in
our context as the Universe is to a good approximation matter dominated from z = 2 to
z = 1090.) An under density of the size of the order of the Hubble distance is necessary
to mimic ACDM with our walls. Moreover, we can also determine the ratio of the energy
density normalized at the observer to the energy density in an Einstein-de Sitter model at
z ~ 1.7 which is about 4. At high redshift, z 2 10 the anisotropy is very small and the
Universe is close to a Friedmann Universe with about 5 times the matter density obtained
from local estimates.

6.3.4 Redshift drift

In the previous section we have fixed M (x) to reproduce the distance redshift relation of
ACDM universe. Of course, having one free function to play with, namely M (x), we expect
to be able to fit one function, in our case D(z). If we now proceed to another, independent
observable, we shall most probably not fit it. We have done this by looking at the redshift
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Figure 6.8: We show the relative expansion rates in the transverse and longitudinal
directions as functions of the cosmological redshift. We use the following notation :
AH,, = Hy,, — Hp, where Hp is the expansion rate in an Einstein-de Sitter universe,
and H,; are the expansion rates in the longitudinal and transverse directions, normalized
to the their values at the observer.

drift, defined as the rate of change of the redshift of a co-moving source per unit of observer
time. In a Friedmann Universe the redshift drift is simply

dz _ - z(ts + Atg) — z(ts)
dty ~ Ato—0 Aty

= Hy(1+2) — H(2), (6.48)

where H(z) = H(ts) and Hy denote the Hubble parameter at the source position at time ¢
and at the observer at the moment ¢y. We have computed the corresponding function (for
light rays in z-direction) from our solution M (x). The general expression for the redshift
drift of a wall Universe in z—direction is (see Appendix 6.5.2),

dz =y N2,
z 2M _
= —(1+2) / <47TG,0 - b—3> g (1+2) 2dz (6.49)
0

Since we do not require My = 0 as in LTB model, we can in principle have a positive
redshift drift at low redshift; but we do not obtain this for our best fit profile M (x) with
tp(z) = 0. The result is compared with ACDM in Fig. 6.9.

Clearly the redshift drift for the two cosmologies are very different. We do have a second
function to play with, the bang time t5(x), so that we could probably fix this observable.
This has been done for LTB models in [15]. However, as it is show there, models which
have both, the same redshift distance relation and the same redshift drift as ACDM can
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Figure 6.9: We show the redshift drift for the wall Universe (black solid line) which mimics
the distance redshift relation of ACDM and compare it with the redshift drift of the latter
(red dashed line).

be ruled out with a third observable, the kinematic Sunyaev-Zel’dovich effect which comes
from the recession velocity of clusters.

6.4 Conclusions

We have studied the effect of matter perturbations on the luminosity distance in a model
with planar symmetry described by the metric (6.1). Considering 'realistic’ walls we find
that the effect from density inhomogeneities is very small, it nearly averages out. It leads
to fluctuations of the luminosity distance around the 'background’ distance, but not to a
significant global shift. Our results (Fig. 6.3) show that these fluctuations are due to matter
inhomogeneities at the source and the observer positions, without any relevant contribution
from the integrated effects of light propagation, like in the linear approach (6.38). Hence we
can not mimic acceleration with many dense walls which grow by gravitational instability.
Since we consider pressure-less matter only, the amplitude of density fluctuations is limited
by the presence of singularities. This is a limitation of the model.

After having shown that 'realistic’ wall models can not reproduce the observed distance-
redshift relation, we have determined the density profile which can mimic it. We have fixed
the free function of our model, M(z), to mimic the luminosity (or angular) distance of the
ACDM universe. We have shown that the observation of the redshift drift can distinguish
between this model and ACDM. Abandoning the assumption of an uniform bang time we
could arrange the second degree of freedom, tp(z), to fit the redshift drift too. We have
found that the redshift drift in our model can be positive at low redshift, contrarily to the
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LTB model [124].

With our solution M (z) we can fit ACDM distance for photons coming in z-direction
for positive x only. This preferred direction corresponds to the radial incoming direction
for LTB model. The deviation from ACDM for photons coming from different angles is
typically a few percent (see Fig. 6.6).
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6.5 Appendices

6.5.1 Derivation of the system of differential equations and initial con-
ditions

6.5.1.1 The system

Here we derive in more detail the system (6.39) to (6.44) and give the initial conditions
used for the solution.

Since we choose the photon affine parameter such that n°|y = 1 we have

dt

1+ 2(s) = no(s) =7

Furthermore, the null condition for a light ray in z—direction implies

2 N\ 2 2 / 2 2
t 2
d _ v dx _ 2b dx . (6.50)
ds E ds 3t M’ ds
The geodesic equation gives

dz  d* a v

—_— = —— = —— 1 zZ 2 = —— 1 z 2 . 651

ds  ds? a( +2) v (1+2) (6:51)
Hence, when the expansion in z-direction changes into contraction, a = 0, also dz/ds passes
through zero. However, this does not happen in our case which mimics ACDM. Noting

that geodesics in x-direction have no shear, the Sachs focusing equation yields

= —4nGp(1+ 2)* D, (6.52)

dzdD  (dz\*d?D
ds? dz ds ) dz?

where we have used R = 47G (1 + 2)2 p. We can now rewrite these equations in terms of
the system (6.39) to (6.44). To find the functions Fi; and Fj we first derive the following
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useful relations

2
T = —
3t
d,
T = <2d_f —g£>
aM 3\
ds
8 7 16 M
b/ — - 5_2 S/ 2 dS S/
9t3ﬁ( T ) 3t4 52 dM
aB 2
i/ 16 71 / 2.an 32M T / 1

(6.53)

(6.54)

(6.55)

(6.56)

Here S’ always indicates the derivative of S with respect to its argument 7 while as for all
other functions of (¢,x) the prime denotes the partial derivative w.r.t. = and the dot the

one w.r.t. t. The null condition for the light ray can be written as

dM dg

—A —B

ds 1+ ds 1=

with
16 T
A = —————— (S —-279),
! 2718 33 (1 + 2) ( )
2

g o 3 M

9t 54 (1 + 2)

The geodesic equation takes the form

dM dg
—A —Bs =0,
s 2+d 2
where
C 8 T , 5 16 71 ,
Ay = ——— (5 =275") — (1 ——— (5 =375 —
g 16 2M , 9y 32 M7, y
By, = ——— —5 - 2) ——— (25" +715"),
2 c[li_i)gt4 52 ( ) 91%,82 t ( )
Wlth(— e %%. From this we infer
Bo
M +—
FM(t7Z7 757C) A1B2_A2B17
Ao
Fg(t,z, M = _—
B()Z7 757C) :FAlBQ—AQBl

27'25”) ,

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

Since 7 is a function of M, 8 and t, we now have expressed everything in terms of our
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variables (¢, z, M, 3,() and the given function D(z). Explicitly, Fs and Fp are given by

6N 23 ‘ff’321+2 (1+2) (29 +78")
(%)

FM = SS/ 4 TSS” _ TS/Q ) (664)
11 e\ ar ¥ T+ (142) (S - 78— 2r°8”)
P TR M ( t > SS' + £S5 — 7572 (6.65)

6.5.1.2 Initial conditions

Let us now turn to the initial conditions at sp = 0. Without loss of generality we can set
x(0) = 0. Clearly also z(0) = 0. From definition (6.45) we have

dD
0) = — . 6.66
o= (6.66)
Since this is an initial condition for the Sachs focusing equation, we have consistently with
our affine parameter normalization [114, 91],

¢(0) = —1. (6.67)

From (6.43) we note that our system of coupled differential equations has a critical point
Zer defined by
dD
dz

Z=Zcr

= 0. (6.68)

For our ACDM parameters z.. ~ 1.6. To obtain a regular solution we must therefore
impose ( (zer) = 0. We remark that Egs. (6.67) and (6.51) imply

a
- =H 6.69
a 0 ( )

where we have used

dD

—|  =Hy"
dz z=0 0

Hence the rate expansion in z-direction coincides with the measured Hubble expansion.
In order to solve the system of five differential equations (Eq. (6.41) is an independent
equation, since the solution z (s) can also be inferred from Eq. (6.42) via the null condition),
five initial conditions are needed. However, we only have two of them

200)=0  ¢(0)=—1. (6.70)

We have two other constraints which we must satisfy at the critical point where (6.68)
holds. Denoting the affine parameter at the critical point by s.., we have

2 (Ser) = Zer ¢ (ser) = 0. (6.71)
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These lead to two other initial conditions which can be determined using the shooting
method. One remaining constraint is needed and we fix it by requiring

= H. (6.72)

0

This last condition fixes M (0) and makes sure that the Hubble rate measured today is the
same in any direction. We then numerically integrate the system from the critical point
to the observer by varying the three remaining conditions at the critical point until the
initial conditions (6.70) and (6.72) are satisfied. This matching is obtained by using the
three dimensional Newton-Raphson method. Once the desired precision has been reached,
the two remaining initial conditions $(0) and #(0) can simply be read from the numerical
data.

6.5.2 Derivation of the system of differential equations for the redshift
drift

The redshift drift for a LTB model has been derived in [124]. This approach can also be
applied to our model. The null condition for the light ray (in x-direction) and the geodesic
equation lead to

dz dt 1%
ad—— — - .
de FE (1+2), dx E (6.73)

We consider two infinitesimally close geodesics at fixed comoving position x, parametrized
by
{ze,tc.} and {z.+0z,t.+ dz}.

Since the geodesic {z.,t.} satisfies (6.73), it follows

ds v 1%
d—; = —(1+Z)(5t+_(52,
dét 1%
— = ——t.
dx FE
Then, inserting (6.73) we obtain
ddz % 0z
e T 6.74
dz b 1 + 2z’ (6.74)
dot ot
PP (6.75)
Integrating (6.75) we find
dto

ot =

142"
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This solution together with (6.74) leads to

d (N 1 (B e
dz \6ty) 14+2z\iy oty )’
This equation is solved by (6.49). Deriving the Einstein equation (6.3) twice (once w.r.t.
x and once w.r.t. t), we obtain
2MY M’
A
With (6.2) and (6.4) this results in the second line of (6.49).

v (6.76)

6.5.3 The linearized approach

We determine the luminosity distance within linear perturbation theory for small deviations
from a Friedmann—Lemaitre background. Let us define

a(t,z) = a(t)(1+ef(t,x)), (6.77)
b(t,z) = a(t)(1+eg(t,x)), (6.78)
p(t,z) = p(t)(1+ed(t,z)), (6.79)

where the unperturbed quantities a (t), p (t) satisfy the Einstein equation for a flat matter
dominated Friedmann universe (EdS). The perturbed quantities are determined by the
Einstein equations at first order in e,

J = o, (6.81)
3 (29 +t§) = 0, (6.82)
té/sg”—tl/g <2f—|—29—|—t (f_|_g)) = 0. (6.83)

Neglecting the decaying mode and imposing that at the beginning the scale factors in all
three directions agree, we obtain [26],

5

_ 84

g 3 (6.84)
3 5

;o= magtﬁg/?’t?/% ?O (6.85)

where dp (z) = 0 (t,z) + f (t,x) + 29 (¢, z) is independent of time. This is a consequence
of energy conservation and can also be derived by combining (6.80) to (6.83).
We are interested in finding the relation between dp and M, E in the perturbative

. . . . tp(x
regime. Following [126] we expand the solution (6.7, 6.8) around n = 0 in terms of % <1

and % < 1. Comparing the expanded solution with the linear one we find

2 b
M =5 (1+cdo), E= “o. (6.86)
0

With the ansatz (6.17, 6.19) we can identify do (x) with h (z) in the perturbative regime.
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The angular distance is determined by Sachs focusing equation (6.27). We note that
the shear term does not contribute to first order. Since light propagation is not affected by
a conformal transformation, it is convenient to work with the conformally related geometry

ds* = —dn* + (1 + 2¢f) da® + (1 + 2¢g) (dyi + dy3) - (6.87)

From this, we compute the Christoffel symbols (here we denote the derivative w.r.t. the
conformal time 7 by a dot)

0 ~ ¢ 0 — 0 ~Y ha
I Zef, Iy =T'33 = €g,
1 ¢ 1 / 1 _ 711 /
[yp = ef, 2F11 %Eﬁ 1“2%—1“3%’5—69,
— ~ _ ~
5o =15y = €9, 5 =15 =eq.

and the Ricci tensor

R = —¢(f+27).

Ry = —2eg,
Ry = ¢ (f - 29”) )
Ryy=Rs3 = €(j—4g")

At 0-order we are free to parametrize the affine parameter s such that 2 = 1 and ' = 6!
(we are interested in the distance in z-direction). With this we obtain the coefficient R

R=—€e(j+g" +2§).

Consistently with the parametrization of the affine parameter s such that n® (sg) = 1, the
initial conditions are D (s,) = 0 and D’ (s,) = —1. After an integration by parts we find
the solution to Sachs focusing equation (6.27),

D(s)=(so—5)(1+eg(s,) +eg(s))+ 2/ ds'eg (s') . (6.88)
With the above initial conditions for the Sachs focusing equation, we consider a thin light

bundle with the vertex at the observer position. Hence the solution (6.88) is the angular
diameter distance, see [114]. To determine the luminosity distance we have to compute

also the redshift, using the geodesic equation for n,
ntu” Se :
1+z:g’W7‘e:n0| :1—/ ds ef, (6.89)
vt UV’o ¢ So

where |. denotes the emission point, the source, and we denote the affine parameter at
the source by s.. With the same geodesic equation we derive the relation between the
conformal time 7 and the affine parameter s, n® = dn/ds,

No — Ne = S0 — Se + / } ds/ ds'ef(s). (6.90)
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In terms of conformal time the luminosity distance then becomes

Te . Te Ne n .
Dr, (ne) = (10 — 1e) <1 + €90 + €ge — 2/ dn ef> +2/ dn 69—/ dn/ dn'ef. (6.91)

o Mo Mo

o

All of this is valid in the conformal geometry, where the expansion of the Universe is divided
out. Taking into account the expansion of the universe, changes the relation between the
affine parameter and conformal time. The luminosity distance scales as [11]

2 6’2 (770) DL
(7e)

Since conformal time is not an observable quantity, we rewrite the distance in term of the
observed redshift. We define the observed redshift as z. = Z. + dz. and we compute the
correction term. The same calculation as presented in Ref. [11] leads to

= (1 + 25) Dy,

Ql
—~
=
)
~—

QI

<%DL> 52@ = ((770 - 776) + He_l) 62@’ (692)

where

§ze = — (14 2) /ne dn ef. (6.93)

o

Subtracting (6.92) we obtain the distance-redshift relation

Dp(z) = (1+2) 00— 1) (1 Fegoteo— [ " e f) (6.94)
Ut

o
/

Ne Me n . 1+Ze e .
+ (1+ze)<2/ dneg—/ dn/ dnef)—l— / dn ef.
To o o He To
Te n ;o Mo . Mo n ;o
—/ dn/ dnEfz(ne—no)/ dn6f+/ dn/ dijef,
Mo Mo e Ne Ne

we can rewrite the above expression in the form as

With

Dr(ze) = (14 2)(no—1me) (14 €90+ €ge) (6.95)

Mo Mo n . 1+26 Mo .
+ (14 2) <—2/ dneg+/ dn/ dnef)— ey / dn ef .
e e Me € Ne

Using the solutions (6.84, 6.85) we express the distance in terms of do (7). Conformal time
is defined as

dn=—— = 7(t)=3t"36/% setting 7(0) = 0.
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This leads to

g(n,z(n))

f(n,z(n))

S, (n))

0 ()

and consequently to the following distance-redshift relation

€ o ¢
D) = (1+2) (10— ) (1+ 5 (o (aln) + 0 (1) — (1+2) [ Fdo a(m)dn

Mo n
+ (1+ze)/ dn/ dn’1—€556 (z(n)) 0 —

Te 3
, 14z [T €

TS dn 1—550 (z(n)n. (6.96)

MNe



Chapter 7

Conclusions

In this thesis, we focused on different aspects of non standard cosmology through four
different projects. We addressed some theoretical but also some observational issues of
alternative cosmological models. This is certainly of interest, since the standard model of
cosmology faces many problems mainly related to the cosmological constant A

e the origin of this "dark” component

e the lack of understanding of the smallness of the energy density pp associated to the
cosmological constant A or Fine Tunning Problem

e why has the cosmological constant energy density just started to dominate the uni-
verse at the present cosmological time or the Coincidence Problem.

These problems are strong hints that the standard model of cosmology will need to be
improved or even overtaken in the future, and any attempt in this direction will therefore
have to integrate some aspects of non standard cosmology.

In our first project, we studied graviton production in anti-de Sitter braneworlds cos-
mology. In this model, the expansion of the universe is mimicked by a brane moving
through a higher dimensional spacetime and the brane motion leads to particle creation
via the dynamical Casimir effect. The Kaluza-Klein gravitons, which are candidates for
Dark Matter, scale like pgr o a9, and can therefore not represent Dark Matter in our
setup. Furthermore, we derived a method to calculate graviton production taking into
account the full generalized Neumann boundary conditions, method therefore valid for a
brane moving at arbitrarily high velocities. However, for arbitrarily high velocities one
has also to take into account the modification of the Friedmann equations at high energy.
Implemented this effect of backreaction on the very general method developped in this
project would be the next step of this study.

In our second project, we derived model-independent cosmological constraints from the
CMB, i.e. we have analysed the CMB data in a way which is independent of the details
of the late-time cosmology. We have presented model-independent limits on the physical
densities of baryonic matter w, and dark matter w., the spectral index ng and the angu-
lar diameter distance to the last scattering surface D4(z.). Every model which satisfies
our limits on these cosmological parameters will automatically be in agreement with the
present CMB data, except the forty lowest multipoles which have been excluded from the
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analysis. A prospect for future projects would be to divide the CMB sky into patches and
do a model-independent analysis for each patch. This will give the directional variation of
the angular diameter distance and other cosmological parameters.

In our third project, we studied the effects on the CMB of a homogeneous magnetic
field in the presence of free streaming particles. The presence of the magnetic field sources
an anisotropic expansion of the universe, geometrically described by a plane-symmetric
Bianchi I model. Neutrinos are particularly well suited candidates to play the role of the
free streaming component. As long as the neutrinos are relativistic, their anisotropic stress
cancel the magnetic field’s one, and despite of the presence of the magnetic field, the ex-
pansion is isotropic. Once the temperature of the universe drops below the neutrinos mass
scale, their pressures decay very fast and the effect of compensation is lost. If the neutrino
masses are smaller that 0.3 eV, i.e. if they are still relativistic at photon decoupling, we
found that possible signature of the anisotropic expansion due to the magnetic field on the
CMB anisotropies is significantly supressed. Planck and other surveys like Fuclid will most
probably determine the neutrino mass scale. Once this is known, we will be able to choose
between the different scenarios investigated in this project and quantify more precisely the
reduction of the CMB quadrupole.

In our last project, we studied the distance-redshift relation in a universe filled with
walls of pressure-less dust separated by under dense regions. We showed that for under
dense regions whose diameter corresponds to observed voids, the distance remains close
to what is obtained in a homogeneous and isotropic universe with pressure-less matter.
We also imposed the observed distance on walls model, and found that this would require
voids of size comparable to the observable universe, which are not observed. These two
results disfavour our model of inhomogeneities as an alternative to dark energy: we cannot
mimic acceleration with many dense walls. Our conclusions agree with previous studies
where the Lemaitre-Tolman-Bondi (LTB) dust universe whose distance redshift relation is
equivalent to that in the standard model of cosmology is constructed. The LTB model is
the spherically symmetric dust solution of Einstein’s field equations. In summary, simple
inhomogeneous cosmological models with plane or spherical symmetry provide strong hints
that the observed accelerated expansion of the universe is a real effect sourced by some
exotic and unknown component rather than a "feigned” effect of fluctuations and inhomo-
geneities on the average expansion rate.

The different projects achieved during this thesis point out the interest, the necessity
and the opportunities of exploring cosmology beyond the standard ACDM model. During
my thesis, I had mainly been involved on projects related to the dark energy problem, but
the fundamental understanding of dark matter is also one additionnal issue of the standard
model of cosmology. This fundamental understanding will certainly require to go beyond
the standard model of particles, and in this domain, a lot is expected from experimental
physics, above all the current experiments at the LHC. In a near future, Planck and Euclid
satellites will provide more accurate cosmological data which will allow to exclude some
dark energy and dark matter models, and thus, lead to a better understanding of the whole
dark sector of our universe. Physics being an empirical science, it essentialy proceeds by a
a combination of theoretical and observational studies, and this approach will for sure be
the key of many exciting problems highlighted in this thesis.
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