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Département de physique théorique Prof. Ruth DURRER

Aspects

of

non standard cosmology

THÈSE
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GENÈVE

Atelier de reproduction de la Section de physique

2012





3

Remerciements

En premier lieu, je tiens à sincèrement remercier ma directrice de thèse Ruth Durrer. Tout
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Préliminaires

Une science se définit par son objet. Celui de la cosmologie est l’univers, le cosmos pour

en référer à l’éthymologie grecque du mot. L’extension du concept de cosmos n’est pas

demeurée figée depuis l’avénement de la longue châıne de penseurs dont les réflexions ont

été nourries de l’insatiable curiosité à comprendre l’infini qui nous entoure.

De manière simple, l’évolution de la cosmologie depuis les philosophes présocratiques,

Thalès (V IIe siècle av. J.-C.), Anaximandre (V Ie siècle av. J.-C.), Anaximène (V Ie

siècle av. J.-C.) et consorts, peut se comprendre comme un mouvement double ayant des

composantes

• verticale de démythologisation du cosmos et plus largement de la nature s’accompa-

gnant d’une dramatique réduction de la densité ontologique de l’univers à sa seule

réalité physique et

• horizontale d’hyper-scientifisation et de mécanisation irrésistiblement conduites par

la mathématisation de cette réalité physique et des succès consécutifs en termes de

prédictions.

Pour illustrer correctement ce mouvement double, il conviendrait de dresser un historique

de l’idée de nature lors des deux derniers millénaires. Un tel travail dépasse le cadre de

cette introduction, et a de plus déjà été mené par le philosophe Pierre Hadot1. Il est

néanmoins intéressant d’en relever quelques caractéristiques permettant d’en appréhender

le contenu essentiel.

Dans les grands systèmes cosmologiques antiques, tels celui décrit par Platon (428-347

av. J.-C.) dans le Timée, par Aristote (384-322 av. J.-C.) dans Du Ciel ou par Plotin (205-

270 ap. J.-C.) dans les Ennéades, le réél définit une hiérarchie de mondes dont le monde

sensible, objet exclusif de la cosmologie moderne, représente le niveau le plus grossier, celui

dans lequels les objets naissent et meurent, croissent et décroissent, sont générés et cor-

rompus. Le monde sensible est le monde du devenir. A ce titre, la connaissance du monde

sensible possède une valeur toute relative, car elle ne porte pas sur des lois ou principes

immuables, mais bien sur des corps appelés à disparâıtre. C’est en ce sens que pour Platon,

la science du monde physique n’est pas une connaissance à proprement parler, mais une

opinion incertaine. Néanmoins, l’intérêt de la connaissance de la réalité physique tient au

fait qu’elle manifeste des réalités supérieures dans la hiérarchie des mondes, dont elle est en

quelque sorte le signe qui invite à la connaissance de principes plus fondamentaux, lesquels

sont à leur tour eux-mêmes signes de principes supérieurs. Il s’agit donc, dans ces systèmes

antiques, d’une conception du cosmos en pyramide, dont la base est constituée par le monde

sensible, les étages intermédiaires par des principes immuables dépendants du système en

question (les Idées platoniciennes, les différentes Âmes plotiniennes...) et le sommet par

un principe premier qui produit et met en mouvement l’ensemble du réel. Ce premier

principe est nommé Démiurge dans le système de Platon, Moteur Immobile chez Aristote,

l’Un chez Plotin, ou encore, plus tard, Dieu dans la vision cosmologique du christianisme

et des autres monothéismes. Il convient toutefois de se garder d’identifier ces différentes

dénominations, chacune ayant des spécificités propres au corpus philosophique dont elle est

1P. Hadot, Le Voile d’Isis, 2004, Gallimard
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issue. Nous avons déjà mentionné que du point de vue épistémologique, la connaissance

du monde physique n’a pas de valeur en soi. Ceci demande à être complété en ajoutant

que le type de connaissance présente un degré de certitude d’autant plus élevé et ferme

que son objet affiche un caractère principiel ou fondamental. Ainsi, le degré suprême de la

connaissance est la connaissance du principe premier ou divin, et n’est accessible que par

la raison (Aristote, Thomas d’Acquin) ou par l’extase mystique (Platon, Plotin, Augustin).

L’impulsion cruciale au mouvement double brièvement décrit ci-dessus se situe au tour-

nant de la Renaissance (XV Ie-XV IIe siècles). Outre un contexte socio-culturel favor-

able (apparition des universités, démocratisation du savoir), cette impulsion est due à

une poignée de philosophes et scientifiques dont les idées novatrices ne tarderont pas à

s’imposer. Galilée (1564-1642) compte bien évidemment parmi ces penseurs:

”La philosophie est écrite dans ce livre immense qui se tient ouvert sous

nos yeux - l’univers - et qui ne peut se comprendre si l’on n’a préalablement

appris à en comprendre la langue et à connâıtre les caractères employés pour

l’écrire. Ce livre est écrit dans la langue mathématique; ses caractères sont

des triangles, des cercles et d’autres figures géométriques, sans l’intermédiaire

desquels il est impossible d’en comprendre humainement un seul mot.” 2

Clairement, cette citation illustre la réduction verticale du cosmos antique et de sa hiérar-

chie des mondes à sa dimension la plus superficielle, celle que l’homme appréhende par ses

sens, la dimension physique. De plus, les phénomènes y prenant place sont décrits par le

langage mathématique, lequel, par sa capacité de cerner et de reproduire l’ordre du monde,

a dès lors champs libre pour s’imposer comme outil exclusif de toute description définitve

de la réalité. La méthode empirique tend aussi à se propager comme moyen d’investigation

de la nature ou du cosmos, notamment sous la propagation de l’idéologie d’un autre artisan

majeur de la révolution qui s’opère, le philosophe anglais Francis Bacon (1561-1626)

”Les secrets de la nature se révèlent plutôt sous la torture des expériences

que lorsqu’ils suivent leur cours naturel.” 3

Dans de tels textes apparâıt ce qui sera, pour le meilleur et pour le pire, le paradigme

de la science moderne, soit l’être humain qui se pose hors ou au-dessus d’une nature qu’il

s’agit de soumettre à une procédure aux allures judiciaires afin d’en extirper les secrets.

Pierre Hadot qualifie cette attitude de prométhéenne, par opposition à l’attitude orphique

dominante à l’Antiquité selon laquelle l’humain est partie indisociable de la nature ou

cosmos. L’autorité chrétienne conforte encore cette position dominatrice nouvellement

acquise:

”Croissez et multipliez-vous et remplissez la terre et dominez-la.

Commandez aux poissons de la mer, aux oiseaux du ciel et à toutes les bêtes

qui se meuvent sur la terre.” 4

S’appuyant sur ce passage de la Genèse, Bacon proclame

”Laissons le genre humain recouvrer ses droits sur la nature, droits dont l’a

doué la munificence divine.” 5

2Galilée, Il saggiatore, 1623
3F. Bacon, Novum Organum, I, trad. M. Malherbe et J.M.Pousseur, Paris 1986
4Genèse 1, 28
5F. Bacon, op. cit.
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Ceci achève d’esquisser le mouvement double dont la science de la nature a fait l’objet. Le

cosmos réduit à sa réalité physique, celle-ci fait l’objet d’une étude intensive décrite par le

langage mathématique et menée de manière exclusive selon la méthode empirique. Durant

les derniers siècles du second millénaire, le mouvement de désacralisation du cosmos va

encore se radicaliser. Témoin en est la célèbre réponse faite par Laplace (1749-1827) à

Napoléon qui l’interroge sur la place de Dieu dans son système:

”Sire, je n’ai pas eu besoin de cette hypothèse.” 6

À partir du XV IIIe siècle, et davantange au XIXe siècle, le champ de recherche de la

cosmologie exclut totalement la considération des causes, des fins et des principes, pour s’en

tenir à la seule description des phénomènes. La cosmologie contemporaine n’a en ce sens

aucunement infirmé l’existence de Dieu ou d’un principe premier, elle est simplement de-

venue totalement indifférente à la question. Cette désacralisation du cosmos s’accompagne

d’une hyper-sophistication de la description quantitative de la réalité physique. Un désaveu

de la magie et de la poésie au profit de la pensée mécaniste et cartésienne qui fera dire à

l’illustre Schiller (1759-1805):

”Inconsciente des joies qu’elle donne,

Sans jamais s’extasier de sa propre splendeur,

Sans jamais prendre conscience de l’esprit qui la mène,

Sans jamais être heureuse par ma félicité,

Insensible même à la gloire de son créateur,

Comme le battement mort d’un pendule,

Comme une esclave, elle obéit à la loi de pesanteur,

La Nature, dépouillée de sa divinité.” 7

Schiller regrette amèrement la mécanisation de la Nature, le soleil n’est plus qu’un globe de

feu, la Nature une horloge. Le poète pleure la perte de la description poétique et esthétique

au profit de l’unique description mathématique.

Par ces quelques remarques préliminaires sur l’homme, le cosmos, la science et son

évolution, je n’ai pas voulu prétendre apporter quelque réponse. Ma seule intention fut

d’utiliser cette modeste contribution scientifique qu’est ma thèse pour rappeler la question

essentielle, et qui, me semble-t-il après mon court passage dans le monde de la recherche,

a été largement évacuée des préoccupations de nombreux scientifiques, la question du rap-

port de l’homme à la nature. À l’heure où l’attitude prométhéenne, pour reprendre le

vocabulaire de P. Hadot, en est parvenue, en l’espace de quelques décennies, à modifier

irrémédiablement le climat de notre planète vieille de 4.5 milliards d’années, il me semble

urgent que la communauté scientifique se réapproprie cette question du rapport de l’homme

à la nature, des statuts de la science et de son objet, la nature.

6cité par A. Koyré, Du monde clos à l’univers infini, Paris, 1973, p. 336
7F. von Schiller, Les Dieux de la Grèce, strophe XIV .
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Introduction

La cosmologie est l’étude de l’univers envisagé dans sa globalité. De par les seules portée et

complexité de l’objet que la cosmologie se propose d’étudier, il est nécessaire d’y appliquer

des descriptions théoriques portant sur l’immensément petit tout comme sur l’immensément

grand. Pour illustrer ce propos, l’énigme de la matière noire peut être prise en exemple. Il

existe en effet diverses évidences plaidant pour une densité totale de matière sans pression

dans l’univers constituée à près de quatre-vingts pour cent de matière non baryonique, la

matière noire. Cette dernière influence le comportement de systèmes physiques à de très

importantes échelles. Le spectre de puissance des anisotropies du fonds diffus cosmologique

(CMB pour l’anglais cosmic microwave background) est tout-à-fait sensible à la quantité

de matière noire sur des échelles physiques caractéristiques de l’univers observable, soient

des ordres de grandeur de 1028 cm. De même, la concentration de matière noire modifie

la dynamique des galaxies en affectant leurs vitesses orbitales dans les clusters de galaxies

correspondant à des échelles de 1025 cm, ou encore la dynamique des étoiles contenues

dans une galaxie particulière à des distances de 1022 cm. Néanmoins, la matière noire est

un terme générique sous lequel se cache très probablement une particule encore inconnue,

si ce n’est qu’elle doit être stable et sans charge. Ainsi, cette énigme cosmologique non

encore résolue qu’est la matière noire requiert des outils conceptuels empruntés aussi bien

à des théories physiques de l’immensément grand, comme la Relativité Générale, que de

l’immensément petit, comme la physique des particules. Un autre exemple illustrant la

richesse scientifique de la cosmologie est la formation des grandes structures dans l’univers,

distributions et halos de galaxies. Nous avons décrit ci-dessus les ordres de grandeur de

ces structures, qui ont pour origine des fluctuations générées pendant une phase infla-

tionaire de l’histoire de notre univers. Cette phase d’expansion extrêmement rapide a eu

lieu une petite fraction de seconde après le Big-Bang, en comparaison des treize milliards

d’années d’âge de l’univers. Originellement, la taille caractéristique de ces fluctuations est

proche de l’échelle de Planck, soit 10−33 cm, et en accord avec les équations d’Einstein,

ces fluctuations ont par la suite été amplifiées par la gravité pour finalement donner lieu

aux structures observées aujourd’hui. À nouveau, la cosmologie est le lieu de rencontre de

l’immensément grand et de l’immensément petit.

Ces dernières décennies ont vu l’avénement d’une nouvelle ère en cosmologie, celle

des observations de précision qui permettent de tester et de contraindre avec une efficacité

grandissante les différents modèles censés décrire notre univers. Parmi eux figure le modèle

standard de la cosmologie, ainsi nommé en raison de sa plus grande fidélité à reproduire les

observations. Malgré ses succès, le modèle standard ne remporte pas l’adhésion unanime de

la communauté scientifique, loin s’en faut, et ceci surtout à cause d’une de ses composantes,

la constante cosmologique, dont la densité d’énergie équivaut à plus de soixante-dix pour

cent du budget total de l’univers, alors que sa nature et son origine physiques demeurent

inconnues ou font l’objet de controverses difficilement résolvables. Des modèles alterna-

tifs sont intensément étudiés et impliquent par exemple des modifications de la Relativité

Générale à grandes échelles ou encore l’abandon de certains principes essentiels du modèle

standard, telles l’homogénéité ou l’isotropie de l’univers.

Ma thèse de doctorat s’inscrit dans un contexte de recherches théoriques dans le do-

maine de la cosmologie. Dans une telle approche, l’outil théorique de base sont les équations
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d’Einstein qu’il est possible de comprendre sous la forme de l’identité suivante :

Géométrie de l′espace− temps = énergie− impulsion de l′espace− temps.

Ces équations expriment la relation intime qui existe entre le contenu en énergie et les

aspects géométriques d’un espace quelconque, notre univers en particulier. Elles permet-

tent, sous certaines hypothèses supplémentaires, d’expliquer par exemple en quoi diffère

la dynamique d’un univers rempli de radiation de celle d’un univers rempli de matière

sans pression, ou encore et dans une certaine mesure, d’établir des scénarios possibles pour

l’évolution future de l’univers. Elles constituent de plus le fondement théorique du modèle

standard de la cosmologie, et conjointes à la théorie des perturbations, elles expliquent,

entre autres, les observations du CMB. Pour la bonne intelligibilité du titre et du contenu

de ma thèse, il est utile de s’attarder un peu plus longtemps sur le modèle standard de la

cosmologie. Ce dernier suit directement de l’imposition de deux symétries aux équations

d’Einstein. Nous supposons en effet que notre universe est homogène et isotrope. Il en suit

alors un modèle cosmologique dont la géométrie est entièrement décrite par une fonction

dépendant du temps uniquement, le facteur d’échelle, et dont la forme explicite est en

rapport direct avec le contenu de l’univers. Ce facteur d’échelle permet de comprendre les

observations de Hubble en 1929 montrant indubitablement que les galaxies s’éloignent de

l’observateur à une vitesse proportionnelle à la distance. L’espace-temps est en expansion,

laquelle est mathématiquement décrite par le facteur d’échelle. Toutefois, en 1998, de nou-

velles observations ont prouvé que non seulement l’univers était en expansion, mais que

cette dernière est accélérée. Ceci est pour le moins troublant, car si notre univers est rempli

de matière et de radiation, sous l’effet de l’attraction gravitationnelle, l’expansion devrait

ralentir. Ainsi, une des premières tentatives visant à construire un modèle cosmologique

expliquant cette expansion accélérée a consisté dans l’ajout d’un terme nouveau dans la

partie décrivant le contenu de l’espace des équations d’Einstein. Ce terme comporte une

pression négative capable de jouer le rôle de source pour l’accélération, et dans sa version

la plus simple il s’agit d’une constante cosmologique. Nous avons à ce stade tous les ingré-

dients du modèle standard de la cosmologie, à savoir de la matière sans pression (noire et

baryonique) et une constante cosmologique pour le contenu et une géométrie caractérisée

par les propriétés d’isotropie et d’homogénéité. Ce modèle, bien qu’il soit loin de faire

l’unanimité des scientifiques, a néanmoins l’avantage de reproduire de nombreuses obser-

vations indiscutables. Parmi celles-là, il convient de s’attarder quelque peu sur le CMB.

Cette radiation quasi isotrope est une relique d’un état extrêmement chaud et dense de

l’univers primordial, alors que les photons interagissaient encore fortement avec la matière.

Elle est de plus une confirmation de la théorie du Big-Bang, qui veut que notre univers se

soit développé à partir d’une singularité initiale d’un état très chaud (1032 K) et dense vers

ce que nous observons aujourd’hui à environ 2.7 K. Le CMB présente néanmoins de petites

anisotropies de température, qu’il est possible d’étudier et de calculer au moyen de la théorie

des perturbations linéaires. Le spectre des puissances des anisotropies alors obtenu dépend

principalement des conditions initiales et des paramètres cosmologiques. Les conditions

initiales décrivent l’état des inhomogénéités à la fin de l’inflation, une période d’expansion

très rapide et de dilution de ces inhomogénéités. Les paramètres cosmologiques indiquent

le contenu en matière ainsi que la courbure de l’univers, qui en déterminent l’expansion.

Parmi les nombreux modèles cosmologiques prétendant expliquer l’accélération actuelle de

l’expansion de l’univers, le modèle standard est celui dont les prévisions reproduisent au

mieux le spectre des anisotropies du CMB.
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Toutefois, comme l’indique le titre de la présente thèse, je me suis davantage intéréssé à

des aspects théoriques de la cosmologie qui peuvent être qualifiés de non standards. Dans

le bref résumé ci-dessous de mes divers projets, je m’efforce pour chacun de justifier en

quoi il revêt des traits qui vont au-delà du modèle standard de la cosmologie.

Le cadre de mon premier projet est celui des théories à dimensions spatiales addition-

nelles. Ce cadre justifie déjà la place de ce projet dans ma thèse et son titre, le modèle

standard de la cosmologie ne comportant que trois dimensions spatiales. De telles théories

postulent, en plus des trois dimensions spatiales et de la dimension temporelle usuelles,

l’existence de dimensions spatiales supplémentaires. Un tel postulat est motivé par des

raisons de consistance de la théorie des cordes qui est une théorie de la gravité quantique.

Nous nous sommes intéressés à un modèle qui, en plus du temps, admet quatre dimensions

spatiales. Notre espace-temps quadrimensionnel est alors un sous-espace de ce volume à

cinq dimensions. En langage technique, ce sous-espace est appelé une brane, et le nom-

bre de branes présentes dans le volume englobant n’est en principe pas restreint à une

seule. De plus, toutes les particules du modèle standard des particules sont confinées sur

notre brane, alors que seuls les gravitons sont capables de se propager dans l’ensemble du

volume englobant. Ce dispositif constitue le modèle cosmologique de mon premier pro-

jet. Le problème particulier que nous nous sommes proposés d’étudier est la production

des gravitons lorsque notre brane, i.e. notre espace-temps quadridimensionnel, s’approche

et s’éloigne d’une autre brane statique. Ceci est en parfaite analogie avec un effet déjà

théorisé et observé de la théorie des champs quantiques, l’effet Casimir dynamique, qui

explique la création de photons à partir des fluctuations quantiques du vide entre deux

miroirs conducteurs et parfaitement réfléchissants en mouvement. Dans notre cas, le rôle

des photons est joué par les gravitons, et nous en avons investigué la production en fonction

de la vitesse à laquelle notre brane se meut en direction de la seconde brane statique ainsi

qu’en fonction de la masse des gravitons. Conceptuellement, mon premier projet est d’un

grand intérêt, quoique ne laissant que peu d’espace à l’aspect empirique de la cosmolo-

gie. Néanmoins, cela ne signifie pas que de manière générale, l’hypothèse des dimensions

spatiales additionnelles échappe à toute testabilité. En 1998 par exemple, Arkani-Ahmed,

Dvali et Dimopoulos [5] ont placé des contraintes sur le nombre possible de dimensions

additionnelles. Ainsi, une seule dimension supplémentaire est exclue, car cela produirait

de trop fortes déviations de la gravité sur des échelles du système solaire.

Mon second projet présente quant à lui nettement plus d’affinités avec l’aspect obser-

vationnel de la cosmologie, l’idée directrice étant de fournir une analyse des données du

CMB. En effet, comme il en a été fait mention ci-dessus, de nombreuses interrogations sub-

sistent au sujet de la phase la plus récente de l’histoire de l’univers, dont la dynamique est

principalement caractérisée par une expansion accélérée. Comme l’interprétation des don-

nées et la dérivation de contraintes sur les paramètres cosmologiques principaux (densité

de matière noire ou baryonique, index spectral ...) passent par l’approbation d’un modèle

cosmologique, et qu’aucun consensus n’existe sur un modèle définitivement valable, il était

pertinent d’établir des contraintes ne dépendant pas de la physique méconnue de la dy-

namique tardive de l’univers. Le modèle standard de la cosmologie intervenant essentielle-

ment comme une possible explication de cette dynamique tardive, notre volonté de l’exclure

de l’analyse explique pourquoi ce projet n’appartient pas au cadre du modèle standard de

la cosmologie. L’intérêt de la démarche réside dans le fait qu’en principe, toute théorie
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cosmologique prétendant expliquer l’accéleration actuellement observée de l’expansion de

l’univers doit également être à même de placer des contraintes sur les paramètres cos-

mologiques fondamentaux. De telles contraintes devront alors impérativement satisfaire

celles que nous avons établies dans notre analyse. Sans entrer dans des détails techniques

dépassant le cadre de cette introduction, notre méthode a consisté en un premier lieu dans

une mise à l’écart des données correspondant à des processus physiques s’étant déroulés

dans l’univers tardif, ce qui a permis de prendre comme modèle de référence un modèle ne

contenant que de la matière sans pression (noire et baryonique), lequel constitue une bonne

approximation pour des époques ou la physique inconnue de l’énergie sombre n’influence

pas la dynamique de manière significative. Afin de prendre en compte la différente évo-

lution entre notre modèle de référence et les données à partir du moment où les photons

du CMB ont cessé d’interagir avec la matière, nous avons encore introduit et contraint un

paramètre supplémentaire. Ce dernier exprime la distance observée à la surface de dernière

diffusion définie comme la surface de l’espace-temps sur laquelle les photons ont interragi

pour la dernière fois avec la matière, avant que l’univers ne leur devienne transparent et

qu’ils ne se propagent librement jusqu’à aujourd’hui.

Dans mon projet suivant, nous nous sommes intéressés à de possibles signatures dans

le CMB, signatures produites par l’existence d’un champ magnétique homogène. Par ho-

mogène est compris un champ dont la longueur de cohérence est de l’ordre de la taille de

l’univers observable, et qui peut donc être considéré comme constant sur de telles échelles de

distance. Un tel champ a la particularité d’agir comme source d’une expansion anisotrope

de l’univers affectant le spectre de puissance des anisotropies du CMB, dont l’étude per-

mettrait alors de placer des contraintes sur l’intensité du champ magnétique. Le cadre

général adopté étant celui d’une expansion anisotrope, le modèle présente des différences

géométriques fondamentales avec le modèle standard. Cependant, et c’est là le résultat im-

portant de notre étude, si des particules relativistes se propageant librement sont également

présentes, elles générent une pression anisotrope contrecarrant celle du champs magnétique,

et par conséquent, d’anisotrope, l’expansion de l’univers devient rapidement isotrope. Les

neutrinos sont de particulièrement bons candidats pour jouer le rôle d’isotropisants, car

ils existent en densité suffisante, et nous savons que durant une grande partie de l’histoire

thermique de l’univers pertinente pour notre analyse, les neutrinos ont eu une dynamique

relativiste. Mais, des expériences ont aussi mis en évidence le fait que les neutrinos ont des

masses, sur lesquelles des contraintes provenant de divers domaines de la physique ont été

placées. Tout ceci permet de différencier trois phases. La première durant laquelle le taux

d’interaction des neutrinos avec le fluide cosmique domine largement le taux d’expansion

de l’univers. Les neutrinos ne peuvent alors se propager librement, et le champ magné-

tique peut agir sur l’expansion alors anisotrope de l’univers. Puis, à mesure que l’univers se

refroidit, le taux d’interaction des neutrinos baisse, jusqu’à ce que ces derniers cessent pro-

gressivement d’interagir avec le fluide cosmique. L’univers devient alors transparent pour

les neutrinos, et leurs pressions anisotropes annulent l’expansion anisotrope de l’univers.

Finalement, au moment où la température de l’univers devient inférieure à la masse des

neutrinos, ces derniers deviennent non-relativistes, leurs pressions respectives deviennent

nulles et ne sont dès lors plus en mesure de contrebalancer l’expansion anisotrope causée

par le champ magnétique, laquelle reprend alors. Nous avons, au moyen d’approximations

analytiques et de simulations numériques, étudié de manière quantitative l’expansion de

l’univers et la possible signature dans le CMB de ce scénario pour des champs de différentes
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intensités satisfaisant des contraintes physiques indépendantes et pour des neutrinos de

masses différentes, avec comme résultat principal la suppression par plusieurs ordres de

grandeur d’un possible signal dans le CMB pour un univers contenant des neutrinos dont

les masses se situent dans les valeurs permises par les expériences par rapport au signal

attendu dans un univers sans neutrinos.

Dans le cadre de mon quatrième et dernier projet, nous avons choisi d’explorer une al-

ternative au modèle standard de la cosmologie. L’idée directrice du projet consiste à évaluer

la possibilité de reproduire certaines observables en se passant de la constante cosmologique

ou d’autres composantes physiques dynamiques censées agir comme source de l’expansion

accélérée que nous observons. Toutefois, il est indubitable qu’un modèle reprenant toutes

les hypothèses du modèle standard, mais sans constante cosmologique, échoue à expliquer

les observables qui nous intéressent, lesquelles ne sont autres que différentes sortes de dis-

tances. Il est donc nécessaire de relâcher certaines hypothèses. Notre choix s’est porté sur

un modèle simple d’univers rempli exclusivement de matière sans pression, mais distribuée

de manière inhomogène. Ces inhomogénéités prennent la forme de successions parallèles de

surdensités et de sous-densités de matière. Les photons que nous observons voyagent donc

à travers ces structures semblables à des murs. Nous avons alors procédé de deux manières.

D’abord, nous avons imposé à notre modèle des inhomogénéités dont la taille correspond

à celle d’inhomogénéités observées dans notre univers, et en avons calculé des observables

d’intérêt. Le résultat ne diffère pas significativement du résultat obtenu pour un univers

dans lequel la matière sans pression est répartie de manière homogène, et donc, n’est pas

en mesure de reproduire les données. Puis, nous avons imposé au modèle de reproduire

les distances voulues, et nous sommes intéressés à la taille des inhomogénéités engendrées

par cette contrainte. Nos simulations ont alors montré que pour générer les distances ob-

servées, des sous-densités de la taille de l’univers observable étaient nécessaires. Or, les

observations indiquent que de telles sous-densités n’existent pas. Nos résultats pour ce

modèle simple ne montrent aucun départ significatif du cas homogène, et par là, offrent un

désaveu aux modèles prétendant expliquer la présente accélération par des inhomogénéités

dans la répartition de la matière. Toutefois, il convient de préciser que notre étude n’a pas

un degré de généralité suffisant pour exclure totalement et définitivement cette hypothèse.

Je terminerai cette introduction à mon travail de doctorat par ma liste de publica-

tions (page suivante). Il s’ensuit une introduction plus détaillée et théorique ainsi que les

publications auxquelles j’ai eu le bonheur de contribuer, le tout rédigé en anglais.
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Chapter 1

Introduction

First of all, in this introduction, I give a short overview of the history of cosmology. This

overview is based on [130]. Then, in a second section, I explain some fundamental and basic

knowledge of modern and contemporary cosmology, which is helpful to understand the

following chapters. Moreover, in this section, I stress on the standard model of cosmology.

The title of my thesis being ”Aspects of non standard cosmology”, it is therefore necessary

to give an overview of standard cosmology in order to understand in which sense the works

presented hereafter belong to non standard cosmology. In a third and last section, I briefly

review and comment on all the projects, which are elaborated in details in the following

chapters.

1.1 Some history

1.1.1 The pioneers of modern cosmology

It is commonly admitted to start with the history of cosmology from the ancient Greece.

Though peoples like the Babylonians or the early Chinese already made many astronomical

observations, their explanations were still full of mythological elements, and it is therefore

justified to attribute the first attempts to give a rational picture of the universe to the old

Greeks.

It is interesting to note that at the same time as Aristotle’s geocentric cosmology, whose

influence lasted more than a millenium, the Pythagorean Philolaus of Croton (ca. 480-385

B.C.) and Aristarchos (ca. 310-230 B.C.) proposed some heliocentric models. However,

their influences remained small. Indeed, one widespread criticism to Aristarchos’ system

was the fact that if the earth were to move around the sun, the observer would then have

to see the stars on different angles in winter or in summer. Since this is not the case, the

stars have to be extremly far away, and Aristarchos’ universe needs to be very large.

More precisely, Aristotle (384-322 BC) was certainly the first philosopher-scientist to pro-

vide an overall idea of the cosmos as a set of physical objects. In his worldview, the Earth

was at the center of the universe and surrounded by three-dimensional rotating spheres.

All the stars and planets, as well as the Moon and the Sun, were carried by these spheres.

Moreover, the whole system was divided in two regions, one below the Moon, to which

the Earth belongs, and a second one above the Moon. The first region was characterized

by birth and death, generation and corruption, and composed of the four usual elements,

earth, fire, air and water. The most important feature of the second region is its perfection
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and the incorruptibility of its components composed of a fifth element, the aether.

Ptolemy (90-168) was a greek astronomer and mathematician who spent most of his life

in Egypt. Ptolemy’s cosmological system (Fig.1.1) relies on Aristotle’s, even though he

improved it with more accurate geometrical descriptions and added some new elements.

For instance, Ptolemy in his book on astronomy, the Almageste, decribed in great detail

the mechanisms of the rotating spheres.

With the fall of the roman empire, most of the old greeks’ astronomical treatises have

Figure 1.1: Ptolemy’s system

been transmitted to the Islamic civilzation, while Europe was going through dark ages. At

the end of the Middle Ages, translated from Arabic into medieval Latin, Europe, mainly by

means of the Church and its monks, rediscovered this scientific inheritance with the con-

tributions added by the Islamic civilization (use of the zero and trignometric techniques).

1.1.2 The way towards scientific cosmology

The way towards scientific modern cosmology went through some of the most decisive

revolutions of the history of ideas. After more than fifteen centuries of a geocentric sys-

tem, Nicholas Copernicus (1473-1543), a Polish monk, proposed to switch the places of

the Earth and the Sun. The Sun was meant to be in the center of the universe, and the

Earth in revolution around it. Moreover, for observational reasons, he claimed that the

Earth was also rotating around its own axis. Copernicus system had the advantage to pro-

vide automatic and natural explanations to astronomical phenomena whose explanations

looked quite ad hoc in geocentric theories. But a heliocentric worldview was unimaginable

to many at that time, above all for the Church. Indeed, for the Church, the idea of the

Earth not being the center of the universe, and therefore a planet by no means special,

was properly intolerable.

Galileo Galilei (1564-1642) made decisive contributions to astronomy. He built a telescope,

which allowed him to observe the sky as no one had before. Among his several surprising

observations, he discovered for instance Jupiter’s four satellites and the fact that the Moon

was not a perfect and smooth sphere. At this time still under strong influence of Aristotle’s

cosmology, such a statement was in conflict with well-established beliefs and dogma.

Another discovery shaded Aristotelian systems: Tycho Brahe (1546-1601) observed comets

moving through the sky, but following trajectories forbidden by the theory of rotating

spheres. However, Brahe was reluctant to Copernician heliocentric ideas. He built another

complicated geocentric system where some planets rotate around the Sun, while the Sun
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rotates around the Earth.

Kepler (1571-1630) overtook most of the moral and religious difficulties of the heliocentric

worldview. He adopetd a symbolic identification of the Sun with God, God being, in his

view, at the center of the spiritual reality as the Sun is at the center of the physical one.

In his book Astronomia nova, Kepler expounded his three famous laws on the motion of

planets.

Newton (1643-1727) (Fig.1.2) applied the same physical laws used to described the motion

on Earth to the astronomical objects, the laws of mechanics. He also discovered a math-

ematical description of gravity, which is still used nowadays for a wide range of physical

phenomena and which, for some given scales, is an excellent approximation of the more

fundamental description of gravity, Einstein’s General Relativity. For completeness, one

Figure 1.2: Portrait of Newton at the age of 46.

should also quote scientists like Euler (1707-1783) or Laplace (1749-1827). The former

developed mathematical tools useful to describe a wide range of physical processes and the

latter put forward some remarkable hypotheses on the formation of our solar system and

made some decisive contributions to theoretical physics. For instance, he predicted the

existence of very massive objets or black holes, whose gravity is so strong that not even

light can escape. He also brought decisive contributions to celestial mechanics.

In the late 18th century, an english astronomer, William Herschel (1738-1822) discovered

Uranus and made some very interesting observations on the structure of the Milky Way

and the distribution of stars in the sky. Thanks to his huge telescope (Fig.1.3), Herschel

was able to probe deeper regions of our universe than no one had seen before. He first

described our galaxy as a branching compound of many millions of stars.

The nineteenth century saw the appearance of new observational techniques, such as spec-

troscopy or photography. These techniques provided interesting possibilities to learn more

on the dynamics and the composition of astrophysical systems.

The first decades of the twentieth century have been marked by the growing influence

of the two most important theories in physics: Relativity and Quantum Physics. In the

twenties, Einstein’s General Relativity was widely admitted as providing a theoretical

foundation for modern cosmology. At this time, the belief in a static universe was still

incontested. But a consequence of Einstein’s gravitational field equation for a cosmological

model containing only matter is that it has to collapse upon itself, and was therefore

unstable. Einstein then stabilized the model by adding a constant term to the equations,

which is not forbidden by the theory. But the evidence for our universe not being static
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Figure 1.3: Herschel’s telescope, focal distance of 12 meters

came from observations. In 1929, based on observations of nebulae, Hubble presented

a roughly linear relation (Fig.1.4) between distances and velocities of nebulae. These

undeniable observations eventually ruled out the idea that a static universe might match

the reality, as admitted by Einstein himself in 1930 at a meeting of the Royal Society

in London. In 1922, a Russian mathematician Alexander Friedmann and later in 1927,

a Belgian astrophysicist Georges Lemâıtre, independently, found solutions to Einstein’s

equations that describe a dynamical universe. Moreover, Lemâıtre was the first to derive

the linear velocity-distance relationship v ∝ d that states the proportionality of the relative

velocity v of an object to Earth and its distance d to Earth. Combining available data sets,

Lemâıtre found some values for the constant of proportionality. But at the time of their

publications, the belief in a static universe was so powerful that nobody really thought of

these dynamical solutions as a true description of our universe. The usual story about the

discovery of the expansion of the universe tells us that Hubble was the first to combine

theory and data to conclude that the universe was in expansion described by Hubble’s law

v = H0d, where now the constant of proportionality is Hubble’s constant. But indeed, it

was Lemâıtre. The discovery of the expansion of the universe, along with a theoretical

Figure 1.4: The original graph found in Hubble’s paper (1929)

model which describes it, is certainly one of the greatest scientific discoveries. Each of the

galaxies observed by Hubble was moving away from other galaxies, as a consequence of

the expansion of space itself. Of course, in principle, some galaxies may also be moving

towards each other. But the trend is clear and indicated the expansion of space.
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In the early thirties, most of the ingredients are present to give rise to the Big-Bang model

in cosmology, which I will comment on in the next section.

1.2 The Big-Bang model and the standard model of cosmol-

ogy

Einstein equations relate the geometry of the universe to its matter and energy content

Gµν = 8πGTµν − Λgµν (1.1)

Here, G is Newton’s constant, Gµν represents Einstein’s tensor, Tµν denotes the energy mo-

mentum tensor, gµν is the metric tensor that defines lengths and angles in the universe and

Λ is the cosmological constant. Einstein’s tensor defines the geometry of the universe and

the energy momentum tensor describes its matter and energy content. For a homogeneous

and isotropic universe, the metric reads

ds2 = gµνdx
µdxν = −dt2 + a2(t)γijdx

idxj , (1.2)

where a(t) is the scale factor and γij is the metric of a 3-space of constant curvature K.

Together with Einstein equations Eq.(1.1), this metric leads to the Friedmann equations

(

ȧ

a

)2

+
K

a2
=

8πG

3
ρ+

Λ

3
(1.3)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(1.4)

where ρ is the energy density of the universe and P its pressure. The dot stands for a

derivative with respect to the cosmic time. The scale factor describes the dynamics of

the expansion, and for a homogeneous universe, it only depends on time, as well as the

energy density and the pressure. The Friedmann equations Eq.(1.3-1.4) directly follow

from imposing symmetries on the metric Eq.(1.2). Eq.(1.3-1.4) describe the geometry of a

homogeneous and isotropic universe. All the information about the geometrical evolution

is encoded in the scale factor a. The right hand side of Eq.(1.3-1.4) describes the evolution

of the content of the universe, which is caracterized by its pressure P and its energy density

ρ. Since there are three unknowns, a(t), ρ(t) and P (t) for two equations, a third relation

is necessary. For instances, in case the energy density is dominated by one component,

it is provided by an equation of state w = P/ρ which relates the energy density to the

pressure of the universe. As long as this component is in a given state, w is constant.

But in general it is not, for instance for particles that are initially relativistic and then

become non-relativistic (neutrinos), w 6= constant, or for a scalar field φ whose equation

of state is not constant, but involves time-derivatives of the field φ̇ and its potential V (φ).

In addition, if one assumes the strong energy condition w ≥ −1/3 that implies gravitation

is attractive, one obtains the Big-Bang model, since when going back into the past, it

describes a universe whose temperature and energy density always increase while it con-

tracts until a singularity called the Big-Bang. After the decisive discovery of the Cosmic

Microwave Background in 1965 by Wilson and Penzias, the Big-Bang model became the

prevailing cosmological paradigm. Indeed, the CMB is a relic of a much hotter and denser

state of the universe.
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Nevertheless, if the geometry of our universe were to be definitely described by Eq.

(1.2), we would never have observed the CMB anisotropies or the large scale structure

we do now. These observations can be explained in the framework of the theory of lin-

ear perturbations of the Friedmann-Lemâıtre universe. The idea is that both the CMB

anisotropies and the large scale structures originate from tiny quantum fluctuations gener-

ated during inflation. Inflation is a period of accelerated expansion of the universe which

started 10−36 seconds after the Big-Bang. During inflation, these quantum fluctuations

are streched to cosmic size and give rise to the largest structures observed today (Fig.1.5

(a)). Inflation also generates the right initial fluctuations that correspond to those observed

today in the CMB anisotropies (Fig.1.5 (b)).

(a) Large scale structures (b) CMB anisotropies

Figure 1.5: On the left panel, a plot of sky coordinates vs. distance for galaxies in the Sloan
Digital Sky Survey, and on the right panel, the WMAP7 map of the CMB temperature
anisotropies.

However in 1998, the Big-Bang model with radiation and matter only ran into tension

with cosmological observations. At this time, two groups of astronomers [105] concluded

from supernovae observations that the universe is currently undergoing a phase of acceler-

ated expansion. This surprising discovery brought them the Nobel Prize in Physics 2011.

In the context of an isotropic and homogeneous universe filled with ordinary pressure-

less matter and radiation, the accelerated expansion of the universe has no explanations.

Indeed, an accelerating universe requires ä > 0. But from Eq.(1.4), it follows that this

requirement is equivalent to P < −ρ
3 . Clearly, for ordinary non-relativistic matter or ra-

diation, this is not the case. For the former, we have Pm = 0 and for the later, Pr = ρr
3 ,

meaning that the pressure is either null or positive. Therefore, one can modify the right

hand side of Friedmann equations by adding a new component with a negative pressure,

called Dark Energy. This is usually achieved by means of a constant term, the cosmologi-

cal constant Λ, with equation of state PΛ = −ρΛ. It is interesting to note that though it

succeeds in describing the accelerated expansion of our universe, we have no fundamental

understanding of the cosmological constant.

Another big puzzle in our universe is dark matter. Already in 1933, Zwicky noticed

that the amount of visible matter inside the Coma Cluster was too small to explain the

velocities of galaxies [129]. Since then, Zwicky’s results of missing matter have been con-

firmed by several observations, including the observations of the motion of stars within
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galaxies. Assuming the amount of visible matter and Newtonian gravity still to be valid at

these scales shows that the velocity of stars in the outer part of the galaxy is much larger

than expected. In order to make theory and observations compatible, one has to postulate

more matter than the visible, called for this reason dark matter.

Figure 1.6: Energy budget of the standard model of cosmology

At this stage, all the necessary ingredients of the standard model of cosmology have been

introduced. It can be summarized as an isotropic and homogeneous universe whose most

important contributions to the current overall energy budget are those of the cosmological

constant (74%), cold dark matter (22%) and baryonic matter (4%). The cosmological con-

stant drives the present accelerated expansion. Since this model best fits the observations,

it is called the standard model of cosmology or the ΛCDM model in reference to its two

main components.

1.3 Overview

In this section, I introduce the subsequent chapters containing the research work of my

thesis: given the wide range of topics studied, it is convenient to provide a short overwiev

of each of them as well as of the main theoretical concepts. I explain the cosmological

background of the problem, the methodology used to tackle the problem and summarize

the main results. Finally, I stress on the aspects of the problem that belong to non standard

cosmology.

1.3.1 Graviton production in braneworlds

1.3.1.1 Background

String theory is only consistent in spacetime with extra spatial dimensions. In such a

spacetime called the bulk, lower dimensional objects called branes may be moving and

interacting. In these models, our universe is a 3 (space) +1 (time) dimensional brane

moving into the bulk. Braneworlds scenarios are particularly well motivated, since they

can provide a solution to a problem of particle physics, the hierarchy problem of the huge

difference between the Planck scale and the electroweak scale. In the simplest scenarios,

only the gravitons can propagate in the entire bulk and the standard model particles
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are confined to our brane. Among all the available models, we consider a 5-dimensional

bulk with two branes in it. The bulk has the geometry of an anti-de Sitter space, AdS5, a

maximally symmetric, vacuum solution of Einstein’s equations with a negative cosmological

constant. This geometry is decribed by the following metric

ds2 = gABdx
AdxB =

L2

y2
[

−dt2 + δijdx
idxj + dy2

]

, (1.5)

where i, j = 1, 2, 3, L is the AdS5 curvature radius and y denotes the extra spatial dimen-

sion. The first brane is at rest and the second, our universe moves along the y-direction

towards and backwards the first static brane. The motion of our brane in the bulk induces

its contraction and expansion, depending on the direction of motion. Indeed, the metric

(1.5) induces a Friedmann-Robertson-Walker geometry on our brane

ds2 = a2(η)
[

−dη2 + δijdx
idxj

]

, (1.6)

where η is the conformal time on the brane. The scale factor a(η) is given by the brane

position yb(t) in the bulk

a(η) =
L

yb(t)
(1.7)

When our brane moves towards the static brane located at ys (0 ≤ yb(t) ≤ ys), the scale

factor decreases and our universe is in a contraction phase. When our brane moves in

the opposite direction, the scale factor increases and our universe undergoes an expansion

phase. For this reason, this model of braneworlds may also be called bouncing braneworlds.

The fact that our universe moves in the bulk represents a spacetime with moving boundaries

that can lead to particle creation, in this case graviton, via the dynamical Casimir effect,

mechanism explained in the next paragraph.

1.3.1.2 Methodology

The Casimir effect is a well-know effect of quantum field theory. The most typical example

involves two uncharged metallic plates in a vacuum. In such a set-up, the vacuum quan-

tum fluctuations produce an attractive force called the Casimir force. Depending on the

geometry of the set-up, the Casimir force can also be repulsive. If now the geometry of

the system varies in time, for instance if one plate is allowed to move, particle creation

(photon) occurs. In the formalism of the second quantization, a state denotes one partic-

ular configuration of the field. The second important actors are the operators acting on

the states. We adopt the Heisenberg picture in which the operators are time-dependent,

but the state vectors are time-independent. The lowest energy state is called the vacuum

state and is usually written |0〉. Moreover, in this formalism, a creation operator â† acts

on given state |n〉 by creating a particle

â†|n〉 =
√
n+ 1|n+ 1〉 â†|0〉 = |1〉 (1.8)

where n is the number of particle, and the annihilation operator â acts by annihilating a

particle

â|n〉 = √
n|n− 1〉 â|0〉 = 0. (1.9)
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The operator N̂ = â†â counts the number of particle of a given state

N̂ |n〉 = n|n〉. (1.10)

If we denote by a subscript in and out the configuration of the field in the vacua before

and after the motion of the plate, we have

N̂in|0〉in = 0 (1.11)

but

N̂out|0〉in 6= 0, (1.12)

which means that with respect to the initial vacuum state, particles have been created.

The existence of an attractive force between the plates has been theorized by Casimir in

the forties. The dynamical Casimir effect leading to particle creation has been theoretically

predicted in the seventies [49, 87] and has only been recently observed experimentally [123].

In our work, we apply the dynamical Casimir effect formalism to the braneworld scenario.

Instead of having an electromagnetic field, two plates and photon creation, we consider

gravitons propagating in the bulk, two branes and graviton production.

1.3.1.3 Results

In previous papers [38, 109], it has been shown that the energy density ρ0 of the massless

zero mode gravitons scales like radiation ρ0 ∝ a−4 and the energy density of the massive

Kaluza-Klein modes ρKK scales like stiff matter ρKK ∝ a−6 on the brane. The scaling of

the Kaluza-Klein modes is a bit surprising, since one would naively expect ρKK ∝ a−3, i.e.

the same behaviour as pressure-less matter. This first analysis of the problem was limited

to a brane moving in the bulk at small velocity vmax . 0.1 (speed of light c = 1). We

developed a new approach valid for arbitrary brane velocities. We proved the consistency

between our method and the approximated one at low velocities and we derived numeri-

cal solutions for the final number of gravitons depending on their mass and on the brane

velocity.

In the first chapter, we report results of a first approach where the velocity vb of

the moving brane is small compared to the speed of light. This assumption leads to

Neumann boundary conditions, where a term linear in the velocity vb has been neglected

with respect to the original junction conditions. In the second chapter, we present a fully

consistent treatment of the junction conditions, valid for arbitrary velocity of the brane.

Brane cosmology differs from standard cosmology by the number of spatial dimensions.

Interactions of our 3 + 1 dimensional brane with the bulk or other branes can influence

the physical processes in our universe. It can then create new effects that do not exist in

standard cosmology, and describes thus some aspects of non standard cosmology.

1.3.2 Model-independent constraints from the CMB

1.3.2.1 Background

In the very hot early universe, no hydrogen could be formed without being immediately

dissociated by high energy photons. But as the universe expands, it cools down until a
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given temperature Tdec when this reaction stops. This moment is called the photon decou-

pling, and after decoupling, thermal photons freely stream through the universe without

any further scattering. The generic name for this radiation is the Cosmic Microwave Back-

ground (CMB). The CMB has an almost perfect black-body spectrum at T = 2.725K with

tiny fluctuations of the order 10−5 K. The study of its angular temperature fluctuations

gives us a direct picture of the distribution of radiation and energy when the universe was

a hundred thousand times younger than today. Since the CMB anisotropies are a function

on the sphere, they can be expanded in spherical harmonics

∆T

T0
(n) =

T (n)− T0

T0
=

∞
∑

l=0

m=l
∑

m=−l

almYlm(n). (1.13)

where T (n) is the temperature measured in the direction n and T0 is the mean temperature

in the sky. The CMB power spectrum Cl is the average of the coefficients alm

Cl = 〈a∗lmalm〉. (1.14)

The two main physical effects on the CMB are the physics at decoupling and the evolution

of the universe after decoupling. The former is well understood by means of atomic physics,

general relativity and perturbation theory, but the latter, specially the late time evolution

of the universe, is very controversial, since it deviates from the predictions of a linearly

perturbed Friedmann-Lemâıtre universe with radiation and matter only. This difference is

still poorly understood, and a wide range of models are studied to solve this so-called ”Dark

Energy” problem. In this work, we are not interested in any particular model describing

the evolution of the universe at late times. But since we do not know which of the models

is correct, we decided to perform an analysis of the CMB which is as independent of the

details of late-time cosmology as possible. This has the advantage of making clear the

constraints that all models of late-time cosmology have to satisfy in order to agree with

CMB observations.

1.3.2.2 Methodology

The standard model of cosmology, the ΛCDM model, has six parameters that can be

contrained using different cosmological observations:

• ωb is the physical density of baryonic matter

• ωc is the physical density of dark matter

• ns is the spectral index of the primordial spectrum of fluctuations

• As is the amplitude of the primordial spectrum of fluctuations

• ΩΛ is the cosmological constant density parameter

• τ is the optical depth

ΩΛ and τ are related to the late-time evolution of the universe, and have therefore to be

excluded from our analysis. The observed amplitude of CMB perturbations is determined

by As and late-time physics like reionization and accelerated expansion. Without a model

for the late-time universe, it is not posible to disentangle theses effects. Therefore, we treat
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As as a nuisance parameter. Finally, for our purposes, it is useful to introduce the scale

parameter S, defined as the ratio of the angular diameter distance to the last scattering

surface to the value of this distance in the simplest cosmological model.

S ≡ DA(z∗)

DA,EdS(z∗)
(1.15)

whereDA,EdS is the angular diameter distance in the Einstein-de Sitter (EdS) universe (the

matter-dominated spatially flat Friedmann-Lemâıtre model) and z∗ is the redshift to the

last scattering surface. The shift parameter S contains the information about the distance

to the last scattering surface. Finally, since we want to perform a model independent data

analysis of the CMB, we have to exclude the multipoles that have been affected by the

late time evolution of the universe. This concerns the last wavelengths that entered the

sound horizon or equivalently the lowest multipoles. Excluding the multipoles l ≤ 40,

we have numerically shown that the effect of reionization on the remaining multipoles is

less than 2%, and the effect of the cosmological constant or any other model for Dark

Energy is mainly contained in the fourty lowest multipoles, since it modifies the CMB

anisotropies power spectrum via the late integrated Sachs-Wolfe (LISW) effect. The LISW

effect happened recently in the history of the universe, as Dark Energy started to drive

its expansion. During the matter-dominated era, strong large-scale potential wells remain

constant, such that there is no integrated effect over the time it takes a photon to travel

through them. The energy gained by the photon when falling into the well is exactly lost

when escaping it. Once Dark Energy starts to dominate, the potential wells decay with

time, and thus, lead some observable signatures on the CMB anisotropies.

1.3.2.3 Results

We have derived model-independent limits on the physical density of baryonic matter ωb,

the physical density of cold dark matter ωc and the spectral index ns, and the scale param-

eter S or equivalently the angular diameter distance to the last scattering surface DA(z∗).

The interest of our results is their validity for most models of late-time cosmology, whether

they include dark energy, modified gravity, a local void or backreaction.

The standard model of cosmology with the cosmological constant playing the role of

Dark Energy is one among many propositions to explain the late time accelerated expansion

of our universe. Since our analysis of the CMB does not depend on the late-time cosmology,

it puts constraints on some aspects of non standard cosmology.

1.3.3 A large scale coherent magnetic field and free streaming particles

1.3.3.1 Background

In addition to a perfect fluid, we suppose that our universe is permeated by a large scale

coherent magnetic field. By large scale coherence, we mean that the field is coherent over

a Hubble scale, and it can therefore be treated as a homogeneous magnetic field. This

magnetic field has a direction and acts thus as a source of anisotropic expansion of our

universe, which would then in turn leave imprints on the Cosmic Microwave Background.

The anisotropic geometry induced by the magnetic field leads to a plane-symmetric Bianchi
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I model with metric

ds2 = −dt2 + a2⊥(t)(dx
2 + dy2) + a2‖(t) dz

2 , (1.16)

where the scale factor a⊥(t) governs the expansion in the x− and y− directions and the

scale factor a‖(t) in the z-direction, for a magnetic field B = Bez in the z-direction.

Indeed, the contribution to the stress-energy tensor from the magnetic field is intrinsically

anisotropic

PB,⊥ = −PB,‖ = ρB , (1.17)

with PB,⊥,‖ the pressure of the magnetic field in the directions perpendicular respec-

tively parallel to its direction, and ρB is its energy density. In principle, the study of

CMB anisotropies puts constraints on the intensity of the magnetic field. However, when

free streaming relativistic particles are present, their anisotropic pressure counteracts the

anisotropic expansion sourced by the magnetic field and therefore, they tend to cancel

possible signatures in the CMB. We found that they effectively reduce them by several

orders of magnitude. In our universe, we know that neutrinos behave like relativistic free

streaming particles and may therefore play the role of isotropizers in our scenario.

1.3.3.2 Methodology

The observations show that the expansion of the universe is nearly isotropic. Motivated

by these observations, we assume that the scale factors difference always remains small

a⊥ − a‖

a
≡ δ ≪ 1 . a ≡ a

2/3
⊥ a

1/3
‖ , (1.18)

We can then expand all the relevant physical quantities up to the first order in δ. Three

different periods of the thermal history of our universe can then be distinguished. First,

at very high temperature during the radiation dominated era, the neutrinos are still very

tightly coupled to the baryons. Their caracteristic free streaming length is very small, and

their pressure remains isotropic. In this case, nothing prevents the anisotropic stress of

the homogeneous magnetic field to source the anisotropic expansion of the universe. But

then, as the universe expands, it also cools down and reaches the temperature of neutrinos

decoupling, T ν
dec ∼ 1.4MeV , when they stop interacting with baryons and begin to free-

stream. During this second phase, the neutrinos are sill relativistic, and they develop an

anisotropic stress that counteracts the anisotropic stress of the magnetic field. In our case,

for the neutrinos and the magnetic field, the anisotropic stress is actually the pressure

difference and we have

Pν,⊥ − Pν,‖ = −
(

PB,⊥ − PB,‖

)

(1.19)

where the subscripts ν and B respectively stand for neutrinos and magnetic field. Eq.(1.19)

shows that as long as the temperature T of the universe is smaller than the neutrino

decoupling temperature and larger than the neutrino massmν < T < T ν
dec, both anisotropic

stresses cancel and δ is then constant, since the expansion is isotropic. The start of the

third phase depends on the neutrino mass mν . Once the temperature of the universe drops

below the neutrino mass scale, they become non-relativistic, their pressure vanishes very

fast and the anisotropic expansion driven by the magnetic field restarts. To understand

our results, one has also to take into acount that photon decoupling occurs much later than

neutrino decoupling.
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1.3.3.3 Results

The temperature of photon decoupling is T γ
dec ∼ 0.3 eV. Current bounds [95, 2] on the sum

of the mass eigenstate indicate that
∑

ν mν < 0.36 eV. Qualitatively, two cases correpond-

ing to two different results can be distinguished. In the first case, the neutrinos become

non-relativistic before photon decoupling. Then the isotropization effect of relativistic free

streaming particles will not be present, and the CMB will be affected by the anisotropic

expansion sourced by the magnetic field. In the second case, the neutrinos become non-

relativistic after photon decoupling. Here, the imprints on the CMB of the anisotropic

expansion will be significantly reduced because the neutrinos maintain expansion isotropic

until they become non-relativistic.

Since the standard model of cosmology assumes isotropic expansion, the study of a

model whose geometry is described by the metric (1.16) covers aspects of non standard

cosmology.

1.3.4 Back reaction from walls

1.3.4.1 Background

The present universe seems to be in an accelerating phase and dark energy is the name we

give to our poor understanding of this phenomenon. Most of the cosmological evidences for

this accelerated expansion rely on measurements of distance-redshift relation in a Fried-

mann universe. The distance-redshift relation is defined in the following way. We call L

the luminosity corresponding to the energy emitted per second of a source at redshift z,

and let F be its flux, corresponding to the energy received by the observer per second per

square centimeter. Then, the luminosity distance to the source is

DL(z) =

(

L

4πF

)1/2

. (1.20)

The flux F describes how the energy is distributed over a sphere, whose radius encodes

the particular geometry of the spacetime. The luminosity distance is thus measured and

compared with the predictions of different models. As previously explained, the ΛCDM

model assumes that our universe is homogeneous and isotropic, and faces the problem of

the cosmological constant. One alternative to this model is Backreaction, which states

that inhomogeneities can indeed affect the average expansion rate of the universe and lead

to the present acceleration. Backreaction models do not need to introduce some exotic

component to the stress energy tensor, but they give up homogeneity. Several models of

universes containing only pressure-less matter can be studied. For this project, we choose

to investigate universes which are symmetric under translations and rotations in a plane

called the y-plane. This geometry is described by the metric

ds2 = −dt2 + a2(t, x)dx2 + b2(t, x)(dy21 + dy22) . (1.21)

where we denote the proper time coordinate by t and the spatial coordinates by x =

(x, y1, y2). The universe is then filled with walls of pressure-less matter separated by under

dense regions. Of interest to us is how light propagates through these walls, and whether

the corresponding luminosity distance can reproduce the observations.
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1.3.4.2 Methodology

The existence in our universe of huge inhomogeneities is a well-known fact. Their typical

size is around 80Mpc. On the one hand, it is possible to impose on our model such

inhomogeneities of matter, and to predict what would be the observed luminosity distance.

We have tried this approach for several matter density profiles. On the other hand, it is

also possible to require that our model mimics Dark Energy, i.e. reproduces the observed

luminositiy distance, and to see the size of the inhomogeneities necessary to satisfy this

condition.

For both approaches, we use the existing analytical solutions to the Einstein equations

for this geometry with pressure-less matter. In order to know how light rays propagate

through spacetime, we then solve numerically the geodesic equations and finally calculate

the luminosity distance as a function of the redshift of the source.

1.3.4.3 Results

Based on the two different approaches described in the precedent paragraph, we have

obtained the following results. First, requiring the size of the underdensities to be of

the order of the observed voids and taking into account two different density profiles,

we have clearly found that we cannot mimic acceleration by a series of dense walls of

reasonable overdensities and spacings in agreement with observations. If an effect were to

be observed, it would rely on a significant change in the photon energy on its path. But

because the photon goes through many walls on its path, the energy gained when falling

into a gravitational well is lost when escaping from it. The effect on the luminosity distance

is therefore minute, and since this effect is quite general, we think that our conclusions can

be extended to other density profiles. After having shown that realistic wall models cannot

reproduce the observed luminosity distance, we have determined the density profile which

can mimic it. We have found that an underdensity of the size of the order of the Hubble

distance is necessary to mimic ΛCDM with our walls. Such underdensities do not seem

to exist in our universe. Thus, our study tends to disfavour Backreaction as a sound

alternative to standard cosmology.
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Graviton production in brane worlds by the dynamical
Casimir effect

Ruth Durrer, Marcus Ruser, Marc Vonlanthen and Peter Wittwer

If our Universe is a 3 + 1 brane in a warped 4 + 1 dimensional bulk so that its ex-

pansion can be understood as the motion of the brane in the bulk, the time dependence

of the boundary conditions for arbitrary bulk fields can lead to particle creation via the

dynamical Casimir effect. In this talk I report results for the simplest such scenario, when

the only particle in the bulk is the graviton and the bulk is the 5 dimensional anti-de Sitter

spacetime.

PACS numbers 98.80.Cq, 04.50.-h, 04.30.-w

2.1 Introduction

The idea that our Universe be a 3+1 dimensional membrane in a higher dimensional ’bulk’

spacetime has opened new exciting prospects for cosmology, for reviews see [83, 35]. In the

simplest braneworlds motivated by string theory, the standard model particles are confined

to the brane and only the graviton can propagate in the bulk. Of particular interest is

the Randall-Sundrum (RS) model [97, 98], where the bulk is 5-dimensional anti-de Sitter

space, AdS5. If the so called RS fine tuning condition is satisfied, it can be shown that

gravity on the brane ’looks 4-dimensional’ at low energies.

Within this model, cosmological evolution can be interpreted as the motion of the

physical brane, i.e. our Universe, through the 5d bulk. Such a time-dependent boundary

does in general lead to particle production via the dynamical Casimir effect [13].

Of course one can always choose coordinates with respect to which the brane is at rest,

e.g. Gaussian normal coordinates. But then usually (except in the case of de Sitter expan-

sion on the brane [53]), the perturbation equation describing the evolution of gravitons is

not separable and can be treated only with numerical simulations [64, 71, 113]. Further-

more, in a time-dependent bulk a mode decomposition is in general ambiguous and one

cannot split the field in a zero mode and Kaluza-Klein (KK) modes in a unique way.

Based on the picture of a moving brane in AdS5, we have studied graviton production

in an ekpyrotic type scenario [63] where our Universe first approaches a second static

brane. After a ’collision’ the physical brane reverses direction and moves away from the

static brane, see Fig. 2.1. For an observer on the brane, the first phase corresponds to a

contracting Universe and the collision represents the ’Big Bang’ after which the Universe

starts expanding.

Here I report on the results which we have obtained in our previous papers [38, 109, 110].

We have found that the energy density of KK gravitons in AdS5 scales like stiff matter,
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Figure 2.1: Two branes in an AdS5 spacetime. The physical brane is to the left. While it is
approaching the static brane its scale factor is decreasing, the Universe is contracting, and
when it moves away from the static brane the Universe is expanding. The AdS curvature
radius L (dashed line) and value of the scale factor of the brane metric as function of the
extra dimension y (light (blue) line) are also indicated.

ρKK ∝ a−6, here a denotes the scale factor defined in Eq. (2.2). Therefore, KK gravitons

in AdS5 cannot represent the dark matter in the Universe. This finding is in contrast with

the results of Ref. [86] and we comment on this below. We have also found that in the

early Universe the back reaction from KK gravitons on the bulk geometry is likely to be

important.

Finally, we have derived a limit for the maximal brane velocity, the bounce velocity,

vb <∼ 0.2 in order not to over-produce zero-mode (i.e. 4d) gravitons, the energy density of

which is constrained by the nucleosynthesis bound. We have calculated the spectra of both,

the zero-mode and the KK gravitons. In Refs. [38, 109] we have, however, neglected a term

linear in the brane velocity v in the boundary conditions. In our latest work, Ref. [110]

we derived a method which includes this term and allows to treat the problem without

any low velocity approximation. We have shown that the low velocity results previously

obtained are not modified.

The remainder of this paper is organized as follows. In the next section we present the

basic equations for the evolution of tensor perturbations (gravitons) and we explain why it

is not straight forward to include the velocity term of the boundary condition. In Section 3

we quantize the system. In Section 4 we discuss our results and in Section 5 we conclude.
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2.2 A moving brane in AdS5

2.2.1 The background

In Poincaré coordinates (xA) = (t,x, y) with x = (x1, x2, x3) and A = 0, ..., 4, the AdS5
(bulk) metric is given by

ds2 = gABdx
AdxB =

L2

y2
[

−dt2 + δijdx
idxj + dy2

]

, (2.1)

where i, j = 1, 2, 3 and L is the AdS5 curvature radius which is related to the bulk cosmo-

logical constant by the 5d Einstein equation, −Λ = 6/L2. The physical brane representing

our (spatially flat) Universe is located at some time dependent position y = yb(t) in the

bulk, and the metric induced on the brane is the Friedman-Robertson-Walker metric,

ds2 = a2(η)
[

−dη2 + δijdx
idxj

]

, (2.2)

with scale factor a(η) which is given by the brane position,

a(η) =
L

yb(t)
. (2.3)

The conformal time η of an observer on the brane, is related to the bulk time t via

dη =
√

1− v2dt ≡ γ−1dt . (2.4)

Here we have introduced the brane velocity

v ≡ dyb
dt

= − LH√
1 + L2H2

and γ =
1√

1− v2
. (2.5)

H is the usual Hubble parameter,

H ≡ 1

a2
∂a

∂η
≡ a−1H = −L−1γv . (2.6)

The brane dynamics, as a result of the second junction condition, is determined by the

modified Friedmann equation [83]

H2 =
κ4ρ

3

(

1 +
ρ

2T
)

(2.7)

where T is the brane tension, ρ the energy density on the brane, and we assume the RS

fine tuning condition [97]

κ25T 2

12
=

3

L2
, and κ4 ≡ 8πG4 ≡ κ25T

6
. (2.8)

We define the string and Planck scales by

κ5 =
1

M3
5

= L3
s , κ4 =

1

M2
Pl

= L2
Pl . (2.9)
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Note that the RS fine-tuning condition is equivalent to

κ5 = κ4 L or
Ls

L
=

L2
Pl

L2
s

. (2.10)

2.2.2 Tensor perturbations

We now consider 3d tensor perturbations hij(t,x, y) of the spatial three-dimensional ge-

ometry on this background. The perturbed bulk metric reads

ds2 =
L2

y2
[

−dt2 + (δij + 2hij)dx
idxj + dy2

]

. (2.11)

Tensor modes satisfy the traceless and transverse conditions, hii = ∂ih
i
j = 0. These con-

ditions imply that hij has only two independent degrees of freedom, the two polarization

states • = ×,+. We decompose hij into spatial Fourier modes,

hij(t,x, y) =

∫

d3k

(2π)3/2

∑

•=+,×

eik·xe•ij(k)h•(t, y;k) , (2.12)

where e•ij(k) are unitary constant transverse-traceless polarization tensors which form a

basis of the two polarization states • = ×,+. Since we assume parity symmetry, we shall

neglect in the following the distinction between the two graviton polarizations and consider

only one of them. We then have to multiply the final results for e.g. particle number or

energy density by a factor of two to account for both polarizations.

The perturbed Einstein equations and the second junction condition lead to the follow-

ing boundary value problem

[

∂2
t + k2 − ∂2

y +
3

y
∂y

]

h(t, y;k) = 0 in the bulk, k2 = |k|2 , (2.13)

and

γ (v∂t + ∂y)h|yb(t) = 0 on the brane . (2.14)

We introduce also a second, static brane at position ys, which requires the additional

boundary condition

∂yh|ys = 0 on the static brane . (2.15)

Eq. (2.13) is the Klein-Gordon equation for a minimally coupled massless mode in

AdS5 , i.e. the operator acting on h is just the Klein-Gordon operator

=
1√−g

∂A
[√−ggAB∂B

]

. (2.16)

Equation (2.14) is the time-dependent boundary condition (BC) coming from the fact

that the moving brane acts like a ”moving mirror” for the gravitational perturbations. Only

in the rest-frame of the brane do we have pure Neumann BC. In a generic frame we have

the Lorentz transformed BC which contains a velocity term v∂t.

We assume that the brane is filled with a perfect fluid such that there are no anisotropic

stress perturbations in the brane energy momentum tensor, i.e. there is no coupling of

gravitational waves to matter. If this were the case, the r.h.s. of Eq. (2.14) would not be
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zero but a term coupling hij to the matter on the brane, see Eq. (2.25) of [109].

For the tensor perturbations the gravitational action up to second order in the pertur-

bations reads

Sh = 4
L3

2κ5

∫

dt

∫

d3k

∫ ys

yb(t)

dy

y3

[

|∂th|2 − |∂yh|2 − k2|h|2
]

. (2.17)

One factor of two in the action is due to Z2 symmetry while a second factor comes from

the two polarizations.

2.2.3 Dynamical Casimir effect approach

The wave equation (2.13) itself has no time dependence and simply describes the propaga-

tion of free modes. It is the time dependence of the BC (2.14) that sources the non-trivial

time-evolution of the perturbations. As it is well known, such a system of a wave equa-

tion and time-dependent BC lead, within a quantum mechanical formulation, to particle

production from vacuum fluctuations. In the context of the photon field perturbed by a

moving mirror this goes under the name “dynamical Casimir effect” [13].

In [109] we have extended a formalism which has been successfully employed for the

numerical investigation of photon production in dynamical cavities [106, 107, 108] to the

RS braneworld scenario. We have studied graviton production by a moving brane, which

we call dynamical Casimir effect for gravitons, for a bouncing braneworld scenario.

However, in order to solve the problem, we have neglected the velocity term in Eq. (2.14).

The ansatz

h =
∑

α

aα(t)e
−iωαtφα(t, y) + h.c. , ω2

α = k2 +mα(t)
2

then leads to a Sturm–Liouville problem for the instantaneous eigenfunctions φα(t, y) which

satisfy
(

−∂2
y +

3

y
∂y

)

φα = m2
αφα . (2.18)

The solutions of (2.18) are

φ0(t) =
ysyb(t)

√

y2s − y2b (t)
, (2.19)

φn(t, y) = Nn(t)y
2C2(mn(t), yb(t), y) with

Cν(m,x, y) = Y1(mx)Jν(my)−J1(mx)Yν(my) . (2.20)

The function φ0 is the zero mode which corresponds to the ordinary (3 + 1)d graviton on

the brane while the φn are the KK modes. The masses mn are determined by the boundary

condition at the static brane, see, e.g. [21] for more details. Since φα satisfies Neumann

boundary conditions, we know that the solutions (φα)α form a complete orthonormal set

of functions on the interval [yb(t), ys] normalized by the scalar product

(φα, φβ) ≡ 2

∫ ys

yb(t)

dy

y3
φαφβ = δαβ .

Therefore, any general solution which satisfies Neumann BC can be expanded in these

instantaneous eigenfunctions. If we add the term v∂t to the boundary condition this feature
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is lost, and we can no longer expect to find a complete set of instantaneous eigenfunctions.

However, since the entire effect disappears when the velocity tends to zero, neglecting

a term which is first order in the velocity seems not to be consistent. This problem led

us to search for another approach which is discussed in Ref. [110] where we transform to

a coordinate system where the velocity term disappears identically. There also show that

for low velocities v < 0.3, say the corrections obtained with this consistent treatment are

below a few percent. We therefore ignore it in the following.

2.3 Quantization

2.3.1 Equation of motion

The gravitational wave amplitude h(t, y;k) subject to Neumann boundary conditions can

be expanded as

h(t, y;k) =

√

κ5
L3

∞
∑

α=0

qα,k(t)φα(t, y) . (2.21)

The coefficients qα,k(t) are canonical variables describing the time evolution of the pertur-

bations and the factor
√

κ5/L3 has been introduced in order to render the qα,k’s canonically

normalized. For h(t, y,x) to be real, we have to impose the following reality condition on

the canonical variables,

q∗α,k = qα,−k . (2.22)

One could now insert the expansion (2.21) into the wave equation (2.13), multiply it

by φβ(t, y) and integrate out the y−dependence by using the orthonormality to derive

the equations of motion for the variables qα,k. However, as we explain in Refs. [109,

110], a Neumann boundary condition at a moving brane is not compatible with a free

wave equation. The only consistent way to implement Neumann boundary conditions is

therefore to consider the action (2.17) of the perturbations as the starting point to derive

the equations of motion for qα,k. Inserting (2.21) into (2.17) leads to the action

S =
1

2

∫

dt

∫

d3k
{

∑

α

[

|q̇α,k|2 − ω2
α,k|qα,k|2

]

+

∑

αβ

[

Mαβ (qα,kq̇β,−k + qα,−kq̇β,k) +Nαβqα,kqβ,−k

]

}

. (2.23)

We have introduced the time-dependent frequency of a graviton mode

ω2
α,k =

√

k2 +m2
α , (2.24)

and the time-dependent coupling matrices

Mαβ = (∂tφα, φβ) , (2.25)

Nαβ = (∂tφα, ∂tφβ) =
∑

γ

MαγMβγ = (MMT )αβ , (2.26)

which are given explicitely in Ref. [109] (see also [21]). The equations of motion for the
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canonical variables are the Euler–Lagrange equations from the action (2.23),

q̈α,k + ω2
α,kqα,k +

∑

β

[Mβα −Mαβ] q̇β,k +
∑

β

[

Ṁαβ −Nαβ

]

qβ,k = 0 . (2.27)

The motion of the brane through the bulk, i.e. the expansion of the universe, is encoded

in the time-dependent coupling matrices Mαβ and Nαβ . These mode couplings are caused

by the time-dependent boundary condition ∂yh•(t, y)|yb = 0 which forces the eigenfunctions

φα(t, y) to be explicitly time-dependent. In addition, the frequency of the KK modes ωα,k

is also time-dependent since the distance between the two branes changes when the brane

is in motion. Both time dependencies can lead to the amplification of tensor perturbations

and, within a quantum treatment which is developed below, to graviton production from

vacuum.

Because of translational invariance with respect to the directions parallel to the brane,

modes with different k do not couple in (2.27). The three-momentum k enters the equation

of motion for the perturbation only via the frequency ωα,k. Equation (2.27) is similar to

the equation describing the time evolution of electromagnetic field modes within a three-

dimensional dynamical cavity [107] and may effectively be described by a massive scalar

field on a time-dependent interval [108]. For the electromagnetic field, the dynamics of

the cavity, or more precisely the motion of one of its walls, leads to photon creation from

vacuum fluctuations. This phenomenon is usually referred to as dynamical Casimir effect.

Inspired by this, we call the production of gravitons by the moving brane the dynamical

Casimir effect for gravitons.

2.3.2 Quantization

Asymptotically, i.e. for t → ±∞, the physical brane approaches the Cauchy horizon

(yb → 0), moving very slowly. Then, the coupling matrices vanish and the KK masses

become constant,

lim
t→±∞

Mαβ(t) = 0 , lim
t→±∞

mα(t) = const. ∀α, β . (2.28)

In this limit, the system (2.27) reduces to an infinite set of uncoupled harmonic oscillators.

This allows to introduce an unambiguous and meaningful particle concept, i.e. the notion

of (massive) gravitons.

Canonical quantization of the gravity wave amplitude is performed by replacing the

canonical variables qα,k by the corresponding operators q̂α,k

ĥ(t, y;k) =

√

κ5
L3

∑

α

q̂α,k(t)φα(t, y) . (2.29)

Adopting the Heisenberg picture to describe the quantum time evolution, it follows that

q̂α,k satisfies the same equation (2.27) as the canonical variable qα,k.

Under the assumptions outlined above, the operator q̂α,k can be written for very early

times, t < tin, as

q̂α,k(t < tin) =
1

√

2ωin
α,k

[

âinα,ke
−i ωin

α,k t + âin†α,−k
ei ω

in
α,k t
]

, (2.30)
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where we have introduced the reference frequency

ωin
α,k ≡ ωα,k(t < tin) . (2.31)

This expansion ensures that Eq. (2.22) is satisfied. The set of annihilation and creation

operators {âinα,k, â
in†
α,k} corresponding to the notion of gravitons for t < tin is subject to the

usual commutation relations
[

âinα,k, â
in†
α′,k′

]

= δαα′δ(3)(k− k′) , (2.32)
[

âinα,k, â
in
α′,k′

]

=
[

âin†α,k, â
in†
α′,k′

]

= 0. (2.33)

For very late times, t > tout, i.e. after the motion of the brane has ceased, the operator

q̂α,k can be expanded in a similar manner,

q̂α,k(t > tout) =
1

√

2ωout
α,k

[

âoutα,ke
−i ωout

α,k t + âout †α,−k
ei ω

out
α,k t
]

(2.34)

with final state frequency

ωout
α,k ≡ ωα,k(t > tout) . (2.35)

The annihilation and creation operators {âoutα,k, â
out †
α,k } correspond to a meaningful definition

of final state gravitons (they are associated with positive and negative frequency solutions

for t ≥ tout) and satisfy the same commutation relations as the initial state operators1.

Initial |0, in〉 ≡ |0, t < tin〉 and final |0, out〉 ≡ |0, t > tout〉 vacuum states are uniquely

defined via 2

âinα,k|0, in〉 = 0 , âoutα,k|0, out〉 = 0 , ∀ α, k . (2.36)

The operators counting the number of particles defined with respect to the initial and final

vacuum state, respectively, are

N̂ in
α,k = âin †

α,kâ
in
α,k , N̂out

α,k = âout †α,k âoutα,k . (2.37)

The number of gravitons created during the motion of the brane for each momentum k

and quantum number α is given by the expectation value of the number operator N̂out
α,k of

final-state gravitons with respect to the initial vacuum state |0, in〉:

N out
α,k = 〈0, in|N̂out

α,k |0, in〉. (2.38)

If the brane undergoes a non-trivial dynamics between tin < t < tout we have â
out
α,k|0, in〉 6= 0

in general, i.e. graviton production from vacuum fluctuations takes place.

1Of course the brane never really stops moving, but before a certain time tin and after a certain time
tout the motion is so slow that no particle production takes place. We have chosen these times sufficiently
early (rsp. late) so that the numerical results are independent of their choice.

2Note that the notations |0, t < tin〉 and |0, t > tout〉 do not mean that the states are time-dependent;
states do not evolve in the Heisenberg picture.
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2.4 Results

2.4.1 Energy density

For a usual four-dimensional tensor perturbation hµν on a background metric gµν an asso-

ciated effective energy momentum tensor can be defined unambiguously by

Tµν =
1

κ4
〈hαβ‖µhαβ‖ν〉 , (2.39)

where the bracket stands for averaging over several periods of the wave and “‖” denotes

the covariant derivative with respect to the unperturbed background metric. The energy

density of gravity waves is the 00-component of the effective energy momentum tensor.

We shall use the same effective energy momentum tensor to calculate the energy density

corresponding to the four-dimensional spin-2 graviton component of the five-dimensional

tensor perturbation on the brane, i.e. for the perturbation hij(t,x, yb). For this it is

important to remember that in our low energy approach, and in particular at very late

times for which we want to calculate the energy density, the conformal time η on the brane

is identical to the conformal bulk time t. The energy density of four-dimensional spin-2

gravitons on the brane produced during the brane motion is then given by

ρ =
1

κ4 a2

〈〈

0, in| ˙̂hij(t,x, yb) ˙̂hij(t,x, yb)|0, in
〉〉

. (2.40)

Here the outer bracket denotes averaging over several oscillations, which we embrace from

the very beginning. The factor 1/a2 comes from the fact that an over-dot indicates the

derivative with respect to conformal time t ≃ η. The detailed calculation given in Ref. [109]

leads to

ρ =
2

a4

∑

α

∫

d3k

(2π)3
ωα,kNα,k(t)Y2

α(a) (2.41)

where again Nα,k(t) is the instantaneous particle number and Yα is related to value of the

wave function on the brane by

Yα(a) =
a

L
φα(t, yb(t)) .

The factor two reflects the two polarizations. At late times, t > tout, after particle creation

has ceased, the energy density is

ρ =
2

a4

∑

α

∫

d3k

(2π)3
ωout
α,k N out

α,k Y2
α(a). (2.42)

This expression looks at first sight very similar to a “naive” definition of energy density

as integration over momentum space and summation over all quantum numbers α of the

energy ωout
α,k N out

α,k of created gravitons. However, the important difference is the appearance

of the function Y2
α(a) which exhibits a different dependence on the scale factor for the zero

mode compared to the KK-modes.

Let us decompose the energy density into zero mode and KK contributions

ρ = ρ0 + ρKK. (2.43)
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Evaluating Y0(a) one then obtains for the energy density of the massless zero mode

ρ0 =
2

a4

∫

d3k

(2π)3
kN out

0,k . (2.44)

This is the expected behavior; the energy density of standard four-dimensional gravitons

scales like radiation.

In contrast, the energy density of the KK-modes at late times is found to be

ρKK =
L2

a6
π2

2

∞
∑

n=1

∫

d3k

(2π)3
ωout
n,k N out

n,k m2
nY

2
1 (mnys), (2.45)

which decays like 1/a6. As the universe expands, the energy density of massive gravitons

on the brane is therefore rapidly diluted. The total energy density of gravitational waves in

our universe at late times is dominated by the standard four-dimensional graviton (massless

zero mode). In the large mass limit, mnys ≫ 1, n ≫ 1, the KK-energy density can be

approximated by

ρKK ≃ πL2

2a6ys

∑

n

∫

d3k

(2π)3
N out

n,k ωout
n,k mn . (2.46)

Due to the factor mn coming from the function Y2
n, i.e. from the normalization of the

functions φn(t, y), in order for the summation over the KK-tower to converge, the number

of produced gravitons N out
n,k has to decrease faster than 1/m3

n for large masses and not just

faster than 1/m2
n as one might naively expect.

2.4.2 Escaping of massive gravitons and localization of gravity

As we have shown, the energy density of the KK modes scales, at late times when particle

production has ceased, with the expansion of the universe like

ρKK ∝ 1/a6 , (2.47)

i.e. it decays by a factor 1/a2 faster than the corresponding expression for the zero mode

graviton and behaves effectively like stiff matter. Mathematically, this difference arises from

the distinct behavior of the functions Y0(a) and Yn(a), n ≥ 1 , and is a direct consequence

of the warping of the fifth dimension which affects the normalization of the mode functions

φα. But what is the underlying physics? As we shall discuss now, this scaling behavior for

the KK particles has indeed a straight forward very appealing physical interpretation.

First, the mass mn is a comoving mass. The (instantaneous) ’comoving’ frequency or

energy of a KK graviton is ωn,k =
√

k2 +m2
n, with comoving wave number k. The physical

mass of a KK mode measured by an observer on the brane with cosmic time dτ = adt is

therefore mn/a, i.e. the KK masses are redshifted with the expansion of the universe. This

comes from the fact that mn is the wave number corresponding to the y-direction with

respect to the bulk time t which corresponds to conformal time η on the brane and not to

physical time. It implies that the energy of KK particles on a moving AdS brane redshifts

like that of massless particles. From this alone one would expect the energy density of

KK-modes on the brane to decay like 1/a4 (see also Appendix D of [54]).
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Now, let us define the normalized “wave function” for a graviton

Ψα(t, y) =
φα(t, y)

y3/2
, 2

∫ ys

yb

dyΨ2
α(t, y) = 1 . (2.48)

From the expansion of the gravity wave amplitude Eq. (2.21) and the normalization condi-

tion it is clear that Ψ2
n(t, y) gives the probability to find a graviton of mass mα for a given

(fixed) time t at position y in the Z2-symmetric AdS-bulk.

Figure 2.2: Evolution of Ψ2
1(t, y) = φ2

1(t, y)/y
3 corresponding to the probability to find

the first KK graviton at time t at the position y in the AdS-bulk. The static brane is at
ys = 10L and the maximal brane velocity is given by vb = 0.1. On the right hand panel a
zoom into the bulk-region close to the moving brane is shown.

In Fig. 2.2 we plot the evolution of Ψ2
1(t, y) under the influence of the brane motion with

vb = 0.1. For this motion, the physical brane starting at yb → 0 for t → −∞ moves towards

the static brane, corresponding to a contracting universe. After a bounce, it moves back

to the Cauchy horizon, i.e. the universe expands. The second brane is placed at ys = 10L

and y ranges from yb(t) to ys. As it is evident from this Figure, Ψ2
1 is effectively localized

close to the static brane, i.e. the weight of the KK-mode wave function lies in the region

of less warping, far from the physical brane. Thus the probability to find a KK-mode is

larger in the region with less warping. Since the effect of the brane motion on Ψ2
1 is hardly

visible in Fig. 2.2, we also show the behavior of Ψ2
1 close to the physical brane (right hand

panel).

This shows that Ψ2
1 peaks also at the physical brane but with an amplitude roughly

ten times smaller than the amplitude at the static brane. While the brane, coming from

t → −∞, approaches the point of closest encounter, Ψ2
1 slightly increases and peaks at the

bounce t = 0 where, as we shall see, the production of KK particles takes place. Afterwards,

for t → ∞, when the brane is moving back towards the Cauchy horizon, the amplitude Ψ2
1

decreases again and so does the probability to find a KK particle at the position of the

physical brane, i.e. in our universe. The parameter settings used in Fig. 2.2 are typical

parameters which we use in the numerical simulations. However, the effect is illustrated

much better if the second brane is closer to the moving brane. In Figure 2.3 (left panel)

we show Ψ2
1 for the same parameters as in Figure 2.2 but now with ys = L. In this case,

the probability to find a KK particle on the physical brane is of the same order as in the

region close to the second brane during times close to the bounce. However, as the universe
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expands, Ψ2
1 rapidly decreases at the position of the physical brane.

The behavior of the KK-mode wave function suggests the following interpretation: If

KK gravitons are created on the brane, or equivalently in our universe, they escape from

the brane into the bulk as the brane moves back to the Cauchy horizon, i.e. when the

universe undergoes expansion. This is the reason why the power spectrum and the energy

density imprinted by the KK-modes on the brane decrease faster with the expansion of the

universe than for the massless zero mode.

The zero mode, on the other hand, is localized at the position of the moving brane.

The profile of φ0 does not depend on the extra dimension, but the zero-mode wave function

Ψ0 does. Its square is

Ψ2
0(t, y) =

y2sy
2
b

y2s − y2b

1

y3
→ y2b

y3
=

(

L

a

)2 1

y3
if ys ≫ yb , (2.49)

such that on the brane (y = yb) it behaves as

Ψ2
0(t, yb) ≃

a

L
. (2.50)

Equation (2.49) shows that, at any time, the zero mode is localized at the position of the

moving brane. For a better illustration we show Eq. (2.49) in Fig. 2.3, right panel for the

same parameters as in the left panel. This is the “dynamical analog” of the localization

mechanism for four-dimensional gravity discussed in [97, 98].

Ψ2

0
(t, y)

t

y
0

0

= 1

ys

Figure 2.3: Left panel: evolution of Ψ2
1(t, y) for ys = L and vb = 0.1. Right panel:

localization of four-dimensional gravity on a moving brane. Evolution of Ψ2
0(t, y). Note

the opposite behavior of zero mode and massive mode.

This result is in contradiction with the findings of Ref. [86] where the authors conclude

that for an observer on the brane KK gravitons behave like dust with a negative energy

density. To arrive at this result, they use Gaussian normal coordinates,

ds2 = −N2(t, z)dt2 +Q2(t, z)a2(t)δijdx
idxj + dz2 with (2.51)

Q = cosh(z/L) − γ−1 sinh(|z|/L) N = cosh(z/L) −
(

γ−1 − γ̇

γ2H

)

sinh(|z|/L)

γ(t)−1 =
√

(HL)2 + 1 see Eq. (2.5). (2.52)
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They then argue that at low velocity, γ ≃ 1, one may neglect the difference between N

and Q so that one obtains the metric

ds2 ≃ dz2 + e−2|z|/L
(

−dt2 + a2(t)δijdx
idxj

)

.

In this metric, the mode equation for the KK modes separates and their time evolution

can be determined by simply solving the time part of the equation, see [86]. There is,

however, a flaw in this argument: the above approximation is only valid sufficiently close

to the brane (which is positioned at z ≡ 0 in these coordinates), but far from the brane,

when, e.g., (γ−1 − 1) sinh(|z|/L) > exp(−2|z|/L) the above metric is no longer a good

approximation and the difference between N and Q does become important. As we have

seen, the wave function of the KK gravitons actually is large far away from the brane and

the time dependence enters in an important way in the normalization of the mode function

which changes its scaling with time.

2.4.3 Spectra

In Fig. 2.4 we show the results of a numerical simulation for three-momentum k = 0.01/L,

static brane position ys = 10L and maximal brane velocity vb = 0.1. Depicted is the

graviton number for one polarization Nα,k(t) for the zero mode and the first ten KK-

modes as well as the evolution of the scale factor a(t) and the position of the physical

brane yb(t).
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Figure 2.4: Evolution of the graviton number Nα,k(t) for the zero mode (one polarization)
and the first ten KK-modes for three-momentum k = 0.01/L and vb = 0.1, ys = 10L.

In Fig. 2.5 we show some KK spectra which we have obtained by integrating the equa-

tion of motion numerically. More details about the numerics and results for different values

of the parameters can be found in Ref. [109]. In this paper we also derive an analytical

approximation for the spectrum which is good for KK masses mn < 1. The numerical

calculations are in very good agreement with the analytical estimates, where applicable.

Integrating the zero-mode energy density over frequency with a cutoff given by the

strong scale, kmax = 1/Ls leads to the following simple result for the gravitational wave
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Figure 2.5: Final state KK graviton spectra for k = 0.001, ys = 100, different maximal
brane velocities vb at tout = 400 for one polarization. The numerical results are compared
with the analytical prediction (dashed line).

density parameter [109]

Ωh0 ≃
vb
2
Ωrad so that vb <∼ 0.2 . (2.53)

Ωrad is the density parameter of the relativistic degrees of freedom at nucleosynthesis, the

photon and three species of neutrini. The limit vb < 0.2 follows from the nucleosynthesis

constraint which tells us that during nucleosynthesis Ωrad should not deviate by more than

10% from its standard value [36]. The graviton spectrum is blue with tensor spectral index

nT = 2. Its amplitude on Hubble scales is therefore severely suppressed and it leaves no

detectable imprint on the cosmic microwave background [36].

Also the energy density of the KK modes grows like k2 for suffiently large k,

dρKK(k)

d log k
∝ k2 , k >∼ 1

and its maximum comes from the cutoff scale kmax = 1/Ls. We find

ρKK ≃ π5v2b
a6ys

L2

L5
s

,

(

ρKK

ρrad

)

max

≃ 100 v3b

(

L

ys

)(

L

Ls

)2

. (2.54)

It is easy to see that low energy requires yb < L at all times. Therefore, to initiate a bounce,

where yb should be close to ys, we expect ys <∼L. For typical values of the string scale,

Ls ≪ L and ys ∼ L, the above ratio is not small and back reaction of the KK gravitons

on the geometry has to be taken into account. The ratio indicated is the one directly after

the big bang. As time goes on the KK mode energy density dilutes faster than radiation

and rapidly becomes subdominant.
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2.5 Conclusions

In braneworld cosmology where expansion is mimicked by a brane moving through a warped

higher dimensional spacetime, the brane motion leads to particle creation via the dynamical

Casimir effect for all bulk modes. Here we have studied the generation of gravitons.

The KK gravitons scale like stiff matter, ρKK ∝ 1/a6, and can therefore not represent

dark matter. In an ’ekpyrotic type’ scenario with an AdS5 bulk, the nucleosynthesis bound

on gravitational waves requires vb < 0.2. Furthermore, back reaction of KK gravitons on

the evolution of spacetime is most probably not negligible at early times.

In the RSII model where only one brane is present, graviton generation is negligible [21].
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Graviton production in anti-de Sitter braneworld cosmology:
A fully consistent treatment of the boundary condition

Marcus Ruser, Ruth Durrer, Marc Vonlanthen and Peter Wittwer

In recent work by two of us, [Durrer & Ruser, PRL 99, 071601 (2007); Ruser & Dur-

rer PRD 76, 104014 (2007)], graviton production due to a moving spacetime boundary

(braneworld) in a five dimensional bulk has been considered. In the same way as the pres-

ence of a conducting plate modifies the electromagnetic vacuum, the presence of a brane

modifies the graviton vacuum. As the brane moves, the time dependence of the resulting

boundary condition leads to particle creation via the so called ’dynamical Casimir effect’.

In our previous work a term in the boundary condition which is linear in the brane ve-

locity has been neglected. In this work we develop a new approach which overcomes this

approximation. We show that the previous results are not modified if the brane velocity is

low.

DOI: 10.1103/PhysRevD.79.083529 PACS numbers 98.80.Cq, 04.50.+h

3.1 Introduction

The idea that our Universe is a 3+1 dimensional membrane in a higher dimensional ’bulk’

spacetime has opened new exciting prospects for cosmology, for reviews see [83, 35]. In the

simplest braneworlds motivated by string theory, the standard model particles are confined

to the brane and only the graviton can propagate in the bulk. Of particular interest is

the Randall-Sundrum (RS) model [97, 98], where the bulk is 5-dimensional anti-de Sitter

space. If the so called RS fine tuning condition is satisfied, it can be shown that gravity

on the brane ’looks 4-dimensional’ at low energies.

Within this model, cosmological evolution can be interpreted as the motion of the

physical brane, i.e. our Universe, through the 5d bulk, acting as a moving boundary for bulk

fields, in particular for 5d gravitational perturbations. Such a time-dependent boundary

does in general lead to particle production via the dynamical Casimir effect [13, 29].

Of course one can always choose coordinates with respect to which the brane is at

rest, e.g. Gaussian normal coordinates. This leads to a time dependent bulk resulting

in the same effect, particle production from vacuum due to a time varying background

metric. But then, usually (except in the case of de Sitter expansion on the brane [53]),

the perturbation equation describing the evolution of gravitons is not separable and can

only be treated with numerical simulations [64, 71, 113]. Furthermore, in a time dependent

bulk, a mode decomposition is in general ambiguous and one cannot split the field in a

zero mode and Kaluza-Klein (KK) modes in a unique way. One of the advantages of the

dynamical Casimir effect approach presented in [38, 109] is that it allows for a clear physical

interpretation and in addition exhibits an analogy with quantum electrodynamics.
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Based on the picture of a moving brane in AdS5, we have studied graviton production

in an ekpyrotic type scenario [63] where our Universe first approaches a second static

brane. After a ’collision’ the physical brane reverses direction and moves away from the

static brane, see Fig. 3.1. For an observer on the brane, the first phase corresponds to

a contracting Universe, the collision represents the ’Big Bang’ after which the Universe

starts expanding (see Fig. 1). We do not model the details of this collision, but assume

that the brane distance is still finite at the collision. This corresponds to a cutoff of all the

physics which happens at scales smaller than the minimal brane distance when contraction

reverses into expansion. In our results we assume this to be of the order of the string scale.

We cut off the spectra at the string scale. This is a conservative assumption which signifies

that we neglect all the particle creation at energies higher than this scale.

Figure 3.1: Two branes in an AdS5 spacetime. The physical brane, a Friedmann universe
with energy density ρ is on the left. While it is approaching the static brane its scale factor
is decreasing, the Universe is contracting, and when it moves away from the static brane
the Universe is expanding. L is the AdS curvature radius which is related to the brane
tension T via Eq. (3.8). The value of the scale factor of the brane metric as a function of
the extra dimension y is also indicated.

We have obtained the following important results in our previous papers [38, 109]: first

of all, the energy density of KK gravitons in AdS5 scales like stiff matter, ∝ a−6, where a

denotes the scale factor introduced in Eq. (3.2). Therefore, KK gravitons in AdS5 cannot

represent the dark matter in the Universe 1. We have also seen that in the early Universe the

back reaction from KK gravitons on the bulk geometry is likely to be important. Finally,

we have derived a limit for the maximal brane velocity, the bounce velocity, vmax
<∼ 0.2 in

order not to over-produce zero-mode (i.e. 4d) gravitons, the energy density of which is

constrained by the nucleosynthesis bound. We have also calculated the spectra of both,

the zero-mode and the KK gravitons.

In this previous work we have, however, neglected a term linear in the brane velocity

v in the boundary conditions (junction conditions) for the tensor perturbations. Here we

derive a method which includes this term and allows to treat the problem without any low

1See [39] for a discussion on a contradicting result in the literature.
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velocity approximation. We show that the low velocity results previously obtained are not

modified. Especially, the nucleosynthesis bound on the maximal brane velocity, vmax
<∼ 0.2,

remains valid. In a subsequent study we shall investigate graviton production from branes

which achieve high velocities in detail [41].

The paper is organized as follows. In the next section we repeat the basic equations for

the evolution of tensor perturbations (gravitons) and we explain why it is not straight for-

ward to include the velocity term of the boundary condition. In Section 3.3 we present the

new approach and obtain the modified perturbation equations via a coordinate transforma-

tion which is such that the velocity term in the boundary condition disappears. We then

quantize the system in the new coordinates. In Section 5.3.3 we show numerical results

for graviton production at relatively low velocities. In Section 6.4 we conclude. Technical

details are deferred to appendices.

3.2 A moving brane in AdS5

3.2.1 The background

In Poincaré coordinates (xA) = (t,x, y) with x = (x1, x2, x3) and A = 0, ..., 4, the AdS5
(bulk) metric is given by

ds2 = gσABdx
σAdxσB =

L2

y2
[

−dt2 + δijdx
idxj + dy2

]

, (3.1)

where i, j = 1, 2, 3 and L is the AdS5 curvature radius which is related to the bulk cosmo-

logical constant by the 5d Einstein equation, −Λ = 6/L2. The physical brane representing

our (spatially flat) Universe is located at some time dependent position y = yb(t) in the

bulk, and the metric induced on the brane is the Friedman-Robertson-Walker metric

ds2 = a2(η)
[

−dη2 + δijdx
idxj

]

, (3.2)

with scale factor a(η) which is given by the brane position,

a(η) =
L

yb(t)
. (3.3)

The conformal time η of an observer on the brane, is related to the bulk time t via

dη =
√

1− v2dt ≡ γ−1dt . (3.4)

Here we have introduced the brane velocity

v ≡ dyb
dt

= − LH√
1 + L2H2

and γ =
1√

1− v2
. (3.5)

H is the usual Hubble parameter,

H ≡ 1

a2
da

dη
≡ a−1H = −L−1γv . (3.6)
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Its dynamics, as a result of the second junction condition, is determined by the modified

Friedmann equation [83]

H2 =
κ4ρ

3

(

1 +
ρ

2T
)

, (3.7)

where T is the brane tension, ρ the energy density on the brane, and we assume the RS

fine tuning condition [97]
κ25T 2

12
=

3

L2
. (3.8)

Furthermore (see [97]),

κ4 = 8πG4 =
κ25T
6

. (3.9)

We define the string and Planck scales by

κ5 =
1

M3
5

= L3
s , κ4 =

1

M2
Pl

= L2
Pl . (3.10)

Note that the RS fine-tuning condition is equivalent to

κ5 = κ4 L or
Ls

L
=

L2
Pl

L2
s

. (3.11)

Identifying κ5 with the string scale is based on the assumption that this phenomenological

model comes from string theory with one large extra-dimension L, the y direction, while

all the other extra-dimensions remain of the order of the string scale, Ls. In this case the

4d observed Planck scale is related to the string scale by Eq. (3.11).

3.2.2 The setup

We consider a radiation dominated brane which moves frome the Cauchy horizon, y = 0,

at t = −∞ to a position yb(0) < ys at t = 0, where it bounces and changes its direction.

In a radiation dominated universe ρ ∝ a−4 ∝ yb(t)
4. Defining

r(t) ≡ L2
PlL

2ρ

3
, (3.12)

we have HL =
√

r(1 + r/4). Inserting this in Eq. (3.5) yields

ẏb(t) = v(t) = ±
√

r(t)(1 + r(t)/4)

1 + r(t)/2
. (3.13)

Here the upper sign is chosen for negative times, when y is growing and the universe is

contracting while the lower sign corresponds to positive times (expanding universe). At

the bounce the maximal velocity, v(0) is reached corresponding to the maximal radiation

density given by

r(0) =
1

2

(
√

1 +
v2(0)

1− v2(0)
− 1

)

(3.14)
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At t 6= 0 the radiation density is

r(t) = r(0)

(

yb(t)

yb(0)

)4

.

Note that since the differential equation (3.13) is first order, only one initial condition, e.g

v(0) can be chosen. yb(0) is then determined by the implicit equation

y(0) =

∫ 0

−∞
v(t)dt .

(Implicit because it contains y(0) also in the integrand.) Because of this complication it is

simpler to choose the initial conditions at some early time, tin ≪ 0 so that r(tin) ≪ 1. For

t <∼ tin we can then approximate Eq. (3.13) to

ẏb(t) =
√

r(t) =
√

r(tin)
y2b (t)

y2b (tin)

with solution

yb(t) = −
√

r(tin)t
2
in

t
, t ≤ tin . (3.15)

The initial condition (tin, r(tin)) determines the bounce velocity v(0). In this first paper,

where we mainly want to present the method how to transform mixed boundary conditions

into Neumann boundary conditions, we simplify the background evolution by assuming

HL ≪ 1 or, equivalently, r(t) ≪ 1 at all times. This is of course not a good approximation

if the bounce velocity is high and we shall treat the brane motion correctly in Ref. [40].

With this (3.13) reduces to

ẏb(t) =
√

r(t) ∝ y2b (t) (3.16)

at all times. The expression

yb(t) =
L2

|t|+ tb
, (3.17)

with parameter tb solves Eq. (3.16) for all t 6= 0. Furthermore, it has the correct asymptotics

and the bounce velocity is given by

v(0) =
L2

t2b
=

yb(0)
2

L2
≡ vb .

The kink at t = 0 can be regularized by replacing |t| by
√

t2 + t2c , where tc is a small

regularization parameter. For |t| ≪ tc this does not affect the dynamics but for |t| < tc the

velocity is reduced and it actually passes through zero at t = 0. For graviton frequencies

with ωtc ≪ 1 the particle production obtained is independent of this regularization.
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3.2.3 Tensor perturbations

Allowing for tensor perturbations hij(t,x, y) of the spatial three-dimensional geometry at

fixed y, the perturbed bulk metric reads

ds2 =
L2

y2
[

−dt2 + (δij + 2hij)dx
idxj + dy2

]

. (3.18)

Tensor modes satisfy the traceless and transverse conditions, hii = ∂ih
i
j = 0. These con-

ditions imply that hij has only two independent degrees of freedom, the two polarization

states • = ×,+. We decompose hij into spatial Fourier modes,

hij(t,x, y) =

∫

d3k

(2π)3/2

∑

•=+,×

eik·xe•ij(k)h•(t, y;k) , (3.19)

where e•ij(k) are unitary constant transverse-traceless polarization tensors which form a

basis of the two polarization states • = ×,+. Since the problem at hand obeys parity

symmetry, we shall neglect in the following the distinction between the two graviton po-

larizations and consider only one of them. We then have to multiply the final results for

e.g. particle number or energy density by a factor of two to account for both polarizations.

Here we only consider 4d gravitational waves. The 5d metric has in principle five

different spin-2 polarizations. Two of them are the ones discussed here. In addition there

are the two helicities of the so-called gravi-vector and a gravi-scalar (see, e.g. [20]). The

gravi-vector and the gravi-scalar obey exactly the same propagation equation as the 4d

gravitational waves in the bulk, only their boundary conditions are different. In principle

they would add to the results obtained here. In this sense our results are conservative,

but since the different polarization states do not interact at the linear level they can be

calculated independently. These polarizations are expected to contribute on the same level

as the two considered here.

The perturbed Einstein equations and the second junction condition lead to the bound-

ary value problem

[

∂2
t + k2 − ∂2

y +
3

y
∂y

]

h(t, y;k) = 0 in the bulk (3.20)

and

γ (v∂t + ∂y) h|yb(t) = 0 (3.21)

describing the time-evolution of the tensor perturbations as the brane moves through the

bulk. We introduce also a second, static brane at position ys, which requires the additional

boundary condition

∂yh|ys = 0 . (3.22)

Eq. (3.20) is the Klein-Gordon equation for a minimally coupled massless mode in AdS5 ,

i.e. the operator acting on h is just the Klein-Gordon operator

� =
1√−g

∂A
[√−ggAB∂B

]

. (3.23)

Equation (3.21) is a time-dependent boundary condition (BC) coming from the fact

that the moving brane acts like a ”moving mirror” for the gravitational perturbations.
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Only in the rest-frame of the brane do we have pure Neumann BCs. In a generic frame we

have the Lorentz transformed BC which contains a velocity term v∂t.

We assume that the brane is filled with a perfect fluid such that there are no anisotropic

stress perturbations in the brane energy momentum tensor, i.e. there is no coupling of

gravitational waves to matter. If this were the case, the r.h.s. of Eq. (3.21) would not be

zero but a term coupling hij to the matter on the brane, see Eq. (2.25) of [109], would be

present.

The analogy to a moving mirror is actually not just a pictorial one. Transverse-magnetic

modes of the electromagnetic field in an ideal, i.e. perfectly conducting, dynamical cavity

are subject to the very same boundary condition, see, e.g., [28]. In this context, the

boundary condition (3.21) is sometimes referred to as ”generalized Neumann” boundary

condition, a terminology which we also adopt here. If the cavity is non-perfect, then also

in the case of the electromagnetic field, the right hand side of the boundary condition

contains a term describing the interaction of the photon field with cavity material, similar

to the anisotropic stress perturbations for the gravitational case considered here. This

suggests that a brane with no anisotropic stresses could be termed ”ideal brane”.

For the tensor perturbations the gravitational action up to second order in the pertur-

bations reads

Sh = 4
L3

2κ5

∫

dt

∫

d3k

∫ ys

yb(t)

dy

y3

[

|∂th|2 − |∂yh|2 − k2|h|2
]

. (3.24)

One factor of two in the action is due to Z2 symmetry while a second factor comes from

the two polarizations. As we have shown in [109], the BC’s (3.21,3.22) are indeed the only

ones for which δSh = 0 leads to the free wave equation (3.20). (In principle also Dirichlet

BC’s, i.e. h vanishing identically on the brane, lead to a wave equation in the bulk. But

besides leaving no room for a non-trivial dynamics of the gravitational waves on the brane,

these are not obtained from the Einstein equations in the bulk.)

3.2.4 Dynamical Casimir effect approach

The wave equation (3.20) itself is not time dependent and simply describes the propagation

of free modes. It is the time dependence of the BC (3.21) that sources the non-trivial time-

evolution of the perturbations. As it is well known, such a system of a wave equation

and a time-dependent BC leads, within a quantum mechanical formulation, to particle

production from vacuum fluctuations. In the context of the photon field perturbed by a

moving mirror this goes under the name “dynamical Casimir effect” [13, 29].

In [38, 109] we have extended a formalism which has been successfully employed for the

numerical investigation of photon production in dynamical cavities [106, 107, 108] to the

RS braneworld scenario. We have studied graviton production by a moving brane, which

we call dynamical Casimir effect for gravitons, for a bouncing braneworld scenario.

However, in order to solve the problem, we have neglected the velocity term in the

BC (3.21). The ansatz

h =

∞
∑

α=0

aα(t)e
−iωα,ktφα(t, y) + h.c. , ω2

α,k = k2 +m2
α(t)

then leads to a Sturm–Liouville problem for the instantaneous eigenfunctions φα(t, y) con-
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sisting of the differential equation

[

−∂2
y +

3

y
∂y

]

φα(t, y) = m2
α(t)φα(t, y) (3.25)

and Neumann BC’s at both branes. The solutions of (3.25) respecting Neumann BC’s at

both branes are

φ0(t) =
ysyb(t)

√

y2s − y2b (t)
(3.26)

φn(t, y) = Nn(t)y
2C2(mn(t), yb(t), y)

with

Cν(m,x, y) = Y1(mx)Jν(my)−J1(mx)Yν(my) . (3.27)

They form a complete orthonormal system with respect to the inner product

(φα, φβ) = 2

∫ ys

yb(t)

dy

y3
φα(t, y)φβ(t, y) = δαβ (3.28)

and the completeness relation implies

2
∑

α

φα(t, y)φα(t, ỹ) = δ(y − ỹ)y3 . (3.29)

The factor two accounts for the Z2 symmetry of the bulk.

In [109] we call φ0 and φn the zero-mode and Kaluza-Klein (KK)- mode solution,

respectively. Here φ0 is the massless mode, m0 = 0, which reduces to the usual 3 + 1 -

dimensional graviton on the brane. The KK masses mn 6= 0 are determined by the BC at

the static brane, see, e.g. [109, 21] for more details.

Due to the completeness and ortho-normality of the functions {φα} at any instant in

time, any general solution of (3.25) subject to Neumann BC’s can be expanded in these

instantaneous eigenfunctions. If we add the term v∂t to the boundary condition this feature

is lost and we can no longer expect to find a complete set of instantaneous eigenfunctions.

However, since the entire effect disappears when the velocity tends to zero, neglecting

a term which is first order in the velocity seems not to be a consistent approach. This

problem prompted us to search for another description allowing us to treat the boundary

condition (3.21) in full.

3.3 Graviton production in a time-dependent bulk with a

moving brane

In this section we introduce a new time coordinate which is chosen such that the velocity

term in the boundary condition disappears but the mode equation for the instantaneous

eigenfunctions still remains the Bessel equation (3.25) with its solution given by Eqs. (3.26)

and (3.27). We then extend the formalism of [109] to this case and shall see that for small

velocities our previous results are not modified.
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3.3.1 A new time coordinate

We introduce new variables (x̃A) = (τ,x, z) given by

τ(t, y) = t+ s(t, y) , z = y . (3.30)

The idea is to find a function s(t, y) such that τ → t for all y, when v → 0 and that

the junction condition (3.21) reduces to a normal Neumann BC in the new variables. We

can then use the mode functions (3.26) and (3.27) to formulate the problem quantum

mechanically. One might first be tempted to make a y-dependent Lorentz transformation

to the rest frame of the moving brane, but actually this does not lead to Neumann BC’s in

our case as the transformation induces new terms in the metric. We therefore first leave the

function s(t, y) completely general and formulate the conditions which have to be satisfied

in order for the new BC’s to be purely Neumann.

In (τ,x, z)-coordinates, the brane trajectory is given by the implicit equation

zb(τ) = yb
[

t(τ, zb(τ))] . (3.31)

Once we have specified the function s(t, y), the new brane trajectory zb(τ) can be found.

This is done numerically since neither s(t, y) nor the inverse t(τ, z) of (3.30) exist in closed

form. As in [109] we restrict ourselves to brane motions where asymptotically, i.e. for

t → ±∞, the physical brane approaches the Cauchy horizon (yb → 0), moving very slowly

(v → 0).

The new metric given by

ds2 = g̃AB(τ, z)dx̃
Ax̃B (3.32)

is time dependent and contains non-vanishing cross terms g̃0z. The explicit expression

is given in (3.57). We now show that the function s(t, y) can be chosen such that the

time-derivative term in the boundary condition disappears.

In the coordinates defined in Eq. (3.30), the junction condition (3.21) becomes

[

v(t)
∂τ

∂t
+

∂τ

∂y

]

∂τh(τ, z) + ∂zh(τ, z) =

[v(t) {1 + ∂ts(t, y)}+ ∂ys(t, y)] ∂τh(τ, z) + ∂zh(τ, z) = 0 at z = zb(τ) . (3.33)

In order to obtain Neumann boundary conditions, we require that the term in square

brackets vanish at zb(τ). This leads to the condition

− ∂ys(t, y)

1 + ∂ts(t, y)

∣

∣

∣

∣

y=yb(t)

= v(t) (3.34)

for the function s(t, y). Furthermore, we want to maintain the Neumann BC at the static

brane ys = zs. This yields the additional condition for the function s(t, y)

∂ys(t, y)|y=ys = 0 . (3.35)

Hence, if we can find a function s(t, y) which satisfies Eqs. (3.34) and (3.35), the junction

conditions in the new coordinates reduce to Neumann BC’s

∂zh(τ, z) = 0 at z = zs and z = zb(τ) . (3.36)
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To find a suitable function s(t, y) we choose the separation ansatz

s(t, y) = f(t)σ(y) (3.37)

leading to

v(t) = − f(t)∂yσ
(

yb(t)
)

1 +
(

∂tf(t)
)

σ
(

yb(t)
) . (3.38)

For the transformation (3.30) to be regular, we have to require 1+∂ts(t, y) = 1+ df
dt (t)σ(y) 6=

0 ∀(t, y). If we choose σ such that ∂yσ(yb(t)) is bounded from below, 0 < A < ∂yσ
(

yb(t)
)

,

this ansatz ensures the required asymptotics, f(t) → 0 for v(t) → 0. In addition we need

∂yσ(y)|y=ys = 0 . (3.39)

The function f(t) is determined by the differential equation

df(t)

dt
+

1

v(t)

σ′(yb(t))

σ(yb(t))
f(t) +

1

σ(yb(t))
= 0 . (3.40)

A simple choice for σ(y) is

σ(y) = 1 +
1

σ0

(

1− y

ys

)2

, σ0 = const., σ0 > 1 , (3.41)

so that 1 ≤ σ(y) < 2. With this, condition (3.35) is automatically satisfied. In addition,

we want the brane collision, i.e. the bounce to happen at the fixed time τ = 0. For this

we chose the initial condition

f(t = 0) = 0. (3.42)

Since f(t) → 0 for v(t) → 0, the transformation (3.30) satisfies

τ → t for t → ±∞ and τ(t = 0, y) = 0. (3.43)

For the first of these equations we use that v(t) → 0 for t → ±∞ and the form of the

differential equation (3.40).

With (3.38), f(0) = 0 implies that the velocity vanishes at the brane, v(0−) = vb =

v(0+) = 0. Hence the velocity does not jump from a large value vb to −vb at the bounce

but it evolves very rapidly but smoothly from a high positive value vmax = v(−ǫ) to a

large negative value −vmax = v(ǫ), ǫ > 0 and small (see Fig. 3.2), like the regularized

brane motion proposed in Section 3.2.2. Confirming that the results are independent of

the choice of σ0 is of course a crucial test.
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The coordinate transformation maps the problem of a moving brane in a static bulk

(3.1) onto the problem of a brane moving according to (3.31) in a time-dependent bulk. At

first glance a further complication of the problem. Its benefits, however, will become clear

in the next sections. The transformation of the metric is given explicitely in Appendix 3.6.1.
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Figure 3.2: The velocity in the new coordinates, dzb
dτ . Note that this is a coordinate

velocity, not a physical quantity. It is easy to check that g̃AB
dx̃A

b (τ)
dτ

dx̃B
b (τ)
dτ < 0 at all times,

hence the physical velocity remains timelike also if dzb
dτ becomes larger than 1. The maximal

velocity for this case is vmax = 0.3.

3.3.2 Wave equation

Transforming the Klein-Gordon operator (3.23) to the new coordinates x̃A, we obtain the

wave equation

[

g1(τ, z)∂
2
τ + g2(τ, z)∂τ − 2s2(τ, z)∂z∂τ +

3

z
∂z − ∂2

z + k2
]

h(τ, z) = 0 . (3.44)

The definitions of the functions g1(τ, z), g2(τ, z) and s2(τ, z) in terms of the coordinate

transformation s(t, y) are given in Appendix 3.6.1. These functions manifest that the bulk

itself is now time-dependent and that the metric is no longer diagonal. In Poincaré coordi-

nates the non-triviality of the time-evolution of the perturbations is purely a consequence of

the time-dependent junction condition, no time-dependent functions enter the wave equa-

tion (3.20). Our coordinate transformation which transforms the generalized Neumann BC

into a pure Neumann BC, induces explicite time-dependence in the wave equation itself.

What is important, however, is that in (3.44), in the instantaneous rest frame where we

neglect time derivatives, we get the operator (3.25) of the original Bessel equation with

normalized solutions (3.26) and (3.27). We just have to replace the variables (t, y) by (τ, z).

Writing the action (3.24) in terms of the new coordinates yields

S = 4

∫

dτ
L3

2κ5

∫

d3k

∫ zs

zb(τ)

dz

z3
1

1 + s1
× (3.45)

[

g1|∂τh|2 − 2 s2Re [(∂τh)(∂zh
∗)]− |∂zh|2 + k2|h|2

]

.

Using the expressions for s1, s2, g1 and g2 given in Appendix 3.6.1, it is readily shown that
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the variation of (3.45), demanding Neumann boundary conditions at the brane positions,

leads to the wave equation (3.44).

In the next subsections we take the action (3.45) as the starting point to set up the

dynamical Casimir effect formulation of graviton production along the same lines as in [38,

109]. For the physical interpretation of gravitons we are using the fact that asymptotically,

when the velocity of the brane goes to zero, the action (3.45) and the wave equation (3.44)

reduce to (3.24) and (3.20), respectively. However, in the new coordinates, the junction

conditions are always simple Neumann boundary conditions.

3.3.3 Mode decomposition and Hamiltonian

As a basis for a mode decomposition we chose the eigenfunctions {φα(τ, z)} obtained by

replacing (t, y) → (τ, z) in (3.26) and (3.27). As in [109] we call φ0 and φi the zero-mode

and KK mode solution, respectively. For a brane at rest, and hence τ = t, the solutions φ0

and φi do indeed represent the physical zero mode and the KK modes, see, e.g. [97]. When

the brane is moving, however, these solutions are ’instantaneous modes’, provided that the

boundary condition is Neumann. This approach is widely employed in the context of the

dynamical Casimir effect, see [106, 107, 108] and references therein. Here, working in the

(τ, z)-coordinates, the modes (3.26) and (3.27), are proper eigenfunctions respecting the

full junction condition which we have reduced to a Neumann BC. At early and late times,

i.e. asymptotically |t| → ∞, where the brane velocity tends to zero, these eigenfunctions

agree with the physical eigenfunctions corresponding to the zero mode and the KK modes.

Since the eigenfunctions {φα(τ, z)} form a complete and orthonormal set. and satisfy the

correct junction conditions at both branes, we may decompose the graviton field in φα’s

and the pre-factors qα,k(τ) become canonical variables which can then be quantized [109],

h(τ, z,k) =

√

κ5
L3

∞
∑

α=0

qα,k(τ)φα(τ, z) . (3.46)

Our coordinate transformation and the expansion (3.46) satisfy two major requirements.

First, the expansion (3.46) is consistent with the full junction condition (generalized Neu-

mann BC). This overcomes the problem of our approach in [38, 109]. Secondly, even if at

arbitrary times the qα,k’s cannot a priori be identified with physical modes, asymptotically,

i.e. when the brane moves very slowly, they do represent the independent physical gravi-

ton modes. This allows us to introduce a proper notion of particles and vacuum states for

asymptotic times. Initial and final vacuum states are then linked by the time-evolution of

the qα,k’s exactly as in [109].

We divide the wave equation (3.44) by g1 in order to isolate the second time derivative

and insert the expansion (3.46). Note that g1 → 1 for |t| → ∞ and for a sufficiently

large choice of σ0, g1 > 0 at all times. As we shall see below, this is also needed for

the Hamiltonian to be positive at all times. Inserting the expansion (3.46) into (3.44),

multiplying it by φβ and integrating over 2
∫ zs
zb(τ)

dz/z3 leads to a system of differential

equations for the qα,k which has the same form as the one of Refs. [38, 109],

q̈α,k(τ) +
∑

β

[Aβα(τ)q̇β,k(τ) +Bβα(τ)qβ,k(τ)] = 0 . (3.47)

The explicite expressions for the time-dependent coupling matrices Aβα and Bβα are given
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by integrals over the bulk which are rather cumbersome. The details can be found in

Appendix 3.6.2. Inserting the expansion (3.46) into the action (3.45) we obtain the La-

grangian L(τ) in terms of the variables qα,k(τ). We can then define the canonical momenta

pα,k = ∂L/∂q̇α,k from which, by means of a Legendre transformation, we derive the Hamil-

tonian

H(τ) =
1

2

∫

d3k
∑

αβ

[

pα,kE
−1
αβ pβ,−k + qα,k

[

1

2

(

ω2
α,k(τ) + ω2

β,k(τ)
)

δαβ + Vαβ

]

qβ,−k

− (Mβα − Sβα) [qβ,kpα,k + pα,kqβ,k]
]

(3.48)

The matrices E−1
αβ , Vαβ , Mβα and Sβα are given explicitely in Appendix 3.6.2. It is impor-

tant to note that E−1
αβ is positive definite as long as g1 > 0 and 1 + s1 > 0, which we have

to require for our approach to be consistent. In the old treatment, Eαβ was the identity

matrix and the couplings Sβα and Vαβ were missing. They are due to the time-dependence

of the bulk spacetime in the new coordinates and therefore originate from the term v∂t of

the boundary condition in Poincaré coordinates. The coupling matrix Mβα which is also

present in our previous treatment comes from the time dependent Neumann BC. Finally,

the time dependence of the bulk volume zs − zb(τ), induces the time dependence in the

frequency ωα,k (squeezing effect, see [109]).

All the coupling matrices tend to zero when v → 0. But we have not been able to show

that the new couplings, E−1
αβ − δαβ , Vαβ and Sβα are parametrically smaller than Mβα,

e.g. that they are of order v2. Therefore, the result that the particle production obtained

in our previous treatment [38, 109] is not modified if the velocity is sufficiently low is not

evident and has to be checked numerically.

3.3.4 Quantum Generation of Gravitons

The quantization procedure goes along the same lines as in [109]. The canonical variables

qα,k(τ), pα,k(τ) and the Hamiltonian H(τ) are promoted to operators q̂α,k(τ), p̂α,k(τ) and

Ĥ(τ), subject to the usual commutation relations. In the Heisenberg picture where the

time evolution of an operator Ô is determined by

˙̂
O(τ) = i[Ĥ(τ), Ô(τ)] +

(

∂Ô(τ)

∂τ

)

expl.

,

the operators q̂α,k(τ) and p̂α,k(τ) satisfy the same Hamiltonian equations of motion as their

classical counterparts, i.e.

q̇α,k =
∂H

∂pα,k
, ṗα,k = − ∂H

∂qα,k
(3.49)

Remember that we assume that asymptotically, |t| → ∞, the brane is at rest, i.e. the

brane velocity vanishes and both coordinate systems agree, τ = t. We extend this notion

of asymptotic behavior by introducing two times, tin and tout, and we shall assume that the

brane is at rest for t ≤ tin and t ≥ tout, respectively. This corresponds to a scenario where

the motion of the brane is switched on and off at finite times. Such a brane dynamics may
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seem rather artificial from a physical point of view, but what is important for us is that

before tin and after tout no significant particle creation takes place. Numerically, we test

this by varying tin and tout and choosing them large enough so that the particle number is

independent of the value chosen.

In the (τ, z)-coordinates, the brane is then at rest for times τ ≡ t ≤ τin ≡ tin and τ ≡
t ≥ τout ≡ tout, respectively. When the brane velocity is zero, the matrix Eαβ(τ) defined

in Appendix 3.6.2 becomes the identity, Eαβ(τ) →|τ |→∞ δαβ , and all other matrices which

represent the coupling terms vanish identically in this limit. Consequently, for asymptotic

times the Hamiltonian reduces to the familiar form of a collection of independent harmonic

oscillators,

Ĥ in/out =
1

2

∫

d3k
∑

α

[

|p̂α,k|2 +
(

ω
in/out
α,k

)2
|q̂α,k|2

]

(3.50)

with

p̂α,k = ˙̂qα,−k . (3.51)

We have introduced the notation

ωin
α,k ≡ ωα,k(τ ≤ τin) , ωout

α,k ≡ ωα,k(τ ≥ τout) . (3.52)

Following [109], we decompose q̂α,k in creation and annihilation operators,

q̂α,k(τ) =
∑

β

1
√

2ωin
β,k

[

âinβ,kǫ
(β)
α,k(τ) + âin†β,−k

ǫ
(β)∗
α,k (τ)

]

, (3.53)

which are defined via âinα,k|0, in〉 = 0 ∀ α,k. The initial vacuum state |0, in〉 is the ground

state of the Hamiltonian (3.50) for times τ ≤ τin. This initial state is linked to the final

vacuum state defined by âoutα,k|0, out〉 = 0 ; ∀ α,k, by means of a Bogoliubov transformation

(see [109])

âoutβ,k =
∑

α

[

Aαβ,k(τout)â
in
α,k + B∗

αβ,k(τout)â
in†
α,−k

]

(3.54)

which determines the number of produced gravitons (for each polarization)

Nout
α,k =

∑

β

|Bβα,k(τout)|2 . (3.55)

As we have discussed in detail in [109], the graviton number after the time τout, (3.55),

represents a physically meaningful quantity .

3.4 Numerical Results

In order to solve the equations of motion (3.47) numerically, we transform the system to a

first order system and introduce a mass cutoff, nmax, i.e. we neglect all modes with masses

higher than mnmax , in other words qα = 0 for α > nmax, along the lines explained in detail

in Ref. [109]. Modes close to this cutoff are of course seriously affected by it as is seen

in Figs. 3.3, 3.4 and 3.5. We have tested the stability of the results for modes n ≪ nmax

by varying the cutoff. The stability of the zero mode is illustrated in the lower panel of

Figs. 3.3 and 3.4. Typically modes with n <∼ 0.7nmax can be trusted. An indication for this
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is also the Bogoliubov test shown in Fig. 3.6 and discussed in Ref. [109].

The first order system is given explicitly in Appendix 3.6.2.3 and differs from the original

one in [109] only by additional mode couplings. We have compared our new results with

those of Ref. [38, 109] and find excellent agreement at low velocity, vmax
<∼ 0.1. This is

illustrated in Figs. 3.3 and 3.4. At bounce velocities vmax
>∼ 0.5 we do find differences as

expected, but these results cannot be taken literally since for these velocities the low energy

evolution of the scale factor adopted in this work is no longer sufficient. We will present

the full high velocity results in a forthcoming paper [40].
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Figure 3.3: The final graviton spectrum for three-momentum k = 0.01, brane separation
ys = 100 and bounce velocity vmax = 0.1. The top panel shows the final KK mode spectrum
and the lower panel depicts the time evolution of the zero mode. What we plot here is a
kind of instantaneous particle number (see Appendix C of [109]). The numerical result for
the KK spectrum is compared with the old one (shown in Fig. 13 of [109]). Like there,
lengths are in units of L and momenta/masses in the units of L−1. For low velocities
vmax ≤ 0.1 the new spectra (generalized Neumann BC) are identical with the old ones
(Neumann BC) within the numerical error which are estimated by the Bogoliubov test
(see Appendix). N0,k(τ) is shown for two cut-off parameters nmax to underline stability of
the solution.

The agreement between the old results for pure Neumann boundary conditions and the

new ones with the generalized Neumann boundary conditions is similar for other values of
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Figure 3.4: As Figure 3.3 but for vmax = 0.5. For this velocity we do see a difference of
about 10% between the previous, inconsistent approach and the new generalized Neumann
BC for both, the KK modes as well as the zero mode. Again, the 4d graviton number is
shown for two cut-off parameters nmax to indicate numerical stability. .

ys and k.

In Fig. 3.5 we show the KK spectra for vmax = 0.1 and vmax = 0.3 for the wave

number k = 0.1 and position of the static brane, ys = 10. In this case, the analytic

approximation derived in Ref. [109] which is valid for mn < 1 can only be trusted for the

first two modes. The slight difference between the old and the new spectra towards the

end, i.e. for mn > 10, is due to changes how we numerically evolve the solutions through

the bounce (see Appendix 3.6.3). This affects the sensitivity of the solutions to the cut-off.

What we observe here as a slight bending of the spectrum for generalized Neumann BC’s

is also found in our previous approach if we increase the number of modes; compare to the

nmax = 100 results shown in Fig. 15 of [109] and the discussion related to Fig. 25 of [109].

The drop in the final part of the spectrum is just an artefact of the finite cut-off (see [109]

for a detailed discussion).
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Figure 3.5: Final graviton spectra for three-momentum k = 0.1 and brane separation
ys = 10 for the bounce velocities vmax = 0.1 and 0.3. Again, the new (generalized Neumann
BC) numerical results are compared with the ones of the previous inconsistent approach
(Neumann BC), see Fig. 15 of [109], and the agreement is excellent in the regime mn < 13,
where the numerics can be trusted.

3.5 Conclusions

In this paper we have derived a method to calculate graviton production in bouncing

AdS5 braneworlds by the dynamical Casimir effect taking into account the full generalized

Neumann boundary condition. We have achieved this by transforming to a new time

coordinate, in which the generalized Neumann BC become ordinary Neumann BC. We

have shown numerically that for low bounce velocities, vmax
<∼ 0.1, the number of generated

particles agrees with the one from the simpler treatment which neglects the velocity term

in the boundary condition. Since this term is of first order in the velocity, we believe that

our result is not obvious. Furthermore, the method developed in this work can be used to

calculate particle creation for branes moving at arbitrarily high velocities. In this case, one

will have to take into account the modification of the Friedmann equation at high energy,

HL >∼ 1. This is the goal of a forthcoming paper [40].

In this work we have not derived new physical results, but we have developed a new,

fully consistent method to calculate graviton production due to the motion of a braneworld.
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Our method overcomes a shortcoming of our previous treatment [38, 109], and we have

verified that at low brane velocity, vmax
<∼ 0.3 the previous results are not affected.
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3.6 Appendix

3.6.1 The coordinate transformation

The Jacobian T of the transformation

(t, y) 7→ (τ = t+ s(t, y), z = y)

reads

T =
∂(τ,x, z)

∂(t,x, y)
=













1 + ∂ts 0 0 0 ∂ys
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













, (3.56)

and its inverse is

T−1 =
∂(t,x, y)

∂(τ,x, z)
=













1
1+∂ts

0 0 0
−∂ys
1+∂ts

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.

Under this coordinate transformation the AdS5 metric in Poincaré coordinates given in (3.1)

transforms to

g̃ABdx̃
Adx̃B =

(

(T−1)T gT−1
)

AB
dx̃Adx̃B

=
L2

z2

[ 1

(1 + s1(τ, z))2

(

− dτ2 + 2s2(τ, z)dτdz + g1(τ, z)dz
2
)

+ δijdx
idxj

]

.

We introduce the functions

s1(τ, z) = (∂ts)
(

t(τ, z), z
)

(3.57)

s2(τ, z) = (∂zs)|t=const

(

t(τ, z), z
)

(3.58)

s11(τ, z) = (∂2
t s)
(

t(τ, z), z
)

(3.59)

s22(τ, z) = (∂2
zs)
∣

∣

t=const

(

t(τ, z), z
)

(3.60)
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and

g1(τ, z) =
(

1 + s1(τ, z)
)2 − s2(τ, z)

2 (3.61)

g2(τ, z) = s11(τ, z) − s22(τ, z) +
3

z
s2(τ, z) , (3.62)

of which g1 and g2 will be used in Appendix 3.6.2.

The determinant is

g̃ = det(g̃AB) = −
(

L

z

)10 1

(1 + s1(τ, z))2
. (3.63)

3.6.2 Details on evolution equations

3.6.2.1 Wave equation

The coupling matrices which determine the mode evolution equation (3.47) are given in

terms of the following bulk integrals:

Aαβ(τ) = 2

∫ zs

zb(τ)

dz

z3

[

2φ̇α +
g2(τ, z)

g1(τ, z)
φα(τ, z)

−2s2(τ, z)

g1(τ, z)
φ′
α(τ, z)

]

φβ(τ, z) (3.64)

Bαβ(τ) = 2

∫ zs

zb(τ)

dz

z3

[

φ̈α(τ, z) +
g2(τ, z)

g1(τ, z)
φ̇α(τ, z)

−2s2(τ, z)

g1(τ, z)
φ̇′
α(τ, z) +

ω2
α,k(τ)

g1(τ, z)
φα(τ, z)

]

φβ(τ, z) (3.65)

with

ωα,k(τ) =
√

m2
α(τ) + k2 . (3.66)

The over-dot denotes the derivative w.r.t. the time τ and a prime stands for the derivative

w.r.t. the coordinate z. Compared to our former work [109], the present problem is more

complicated due to the additional couplings which are caused by the time-dependence

of the bulk spacetime. Also the Lagrangian and Hamiltonian equations for qα,k are more

complicated. Furthermore, the functions s1, s2, g1 and g2 are only known numerically. This

induces additional numerical difficulties. Note also that it is important that g1 does not

pass through zero for these integrals to be well defined, hence g1(τ, z) > 0 ∀τ, z. This is,

however, easily achieved with our ansatz (3.37, 3.41) for s(t, y) if we choose σ0 sufficiently

large.
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3.6.2.2 Lagrangian and Hamiltonian formulation

Inserting the expansion (3.46) into the action (3.45) leads (for each of the polarizations)

to the Lagrangian

L(τ) =
1

2

∫

d3k
∑

αβ

[

Eαβ q̇α,kq̇β,−k

+(Mαβ −Kαβ)(qα,kq̇β,−k + qα,−kq̇β,k)

+(Nαβ − Pαβ −Qαβ − ω2
αβ,k)qα,kqβ,−k

]

containing several time-dependent coupling terms. In detail, these read

Eαβ(τ) = 2

∫ zs

zb(τ)

dz

z3
g1(τ, z)

1 + s1(τ, z)
φα(τ, z)φβ(τ, z)

Mαβ(τ) = 2

∫ zs

zb(τ)

dz

z3
g1(τ, z)

1 + s1(τ, z)
φ̇α(τ, z)φβ(τ, z)

Nαβ(τ) = 2

∫ zs

zb(τ)

dz

z3
g1(τ, z)

1 + s1(τ, z)
φ̇α(τ, z)φ̇β(τ, z)

Kαβ(τ) = 2

∫ zs

zb(τ)

dz

z3
s2(τ, z)

1 + s1(τ, z)
φ′
α(τ, z)φβ(τ, z)

Pαβ(τ) = 2

∫ zs

zb(τ)

dz

z3
s2(τ, z)

1 + s1(τ, z)

[

φ̇α(τ, z)φ
′
β(τ, z)

+φ′
α(τ, z)φ̇β(τ, z)

]

Qαβ(τ) =

∫ zs

zb(τ)

dz

z3
s′1(τ, z)

(1 + s1(τ, z))2
[

φα(τ, z)φ
′
β(τ, z)

+φ′
α(τ, z)φβ(τ, z)

]

ω2
αβ,k(τ) = 2

[

1

2

(

m2
α(τ) +m2

β(τ)
)

+ k2
]

×
∫ zs

zb(τ)

dz

z3
φα(τ, z)φβ(τ, z)

1 + s1(τ, z)
.

Since we require g1(τ, z) > 0 and 1 + s1(τ, z) > 0, the matrix Eαβ is positive definite.

This is important for the above Lagrangian to lead to consistent second order equations of

motion for the variables qα,k (no ghosts).

The equation of motion for the canonical variables obtained from the Euler–Lagrange

equations become

∑

α

[

Eαγ q̈α,k + Ėαγ q̇α,k +
(

Ṁ − K̇
)

αγ
qα,k

+
[

(M−K)αγ − (M−K)γα

]

q̇α,k

− (Nαγ − Pαγ −Qαγ − ωαγ,k) qα,k

]

= 0 . (3.67)

Note that all the matrices introduced above apart from Eαβ tend to zero when v → 0, i.e.

for |τ | → ∞. In this limit Eαβ tends to δαβ so that Eq. (3.67) becomes the free, uncoupled
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mode evolution equation in this limit as is expected. Introducing the canonically conjugate

variables

pα,k =
∂L

∂q̇α,k
=
∑

β

[Eαβ q̇β,−k + (Mβα −Kβα)qβ,−k] (3.68)

leads by means of a Legendre transformation to the Hamiltonian (3.48) with coupling

matrices

Vαβ(τ) = 2

∫ zs

zb(τ)

dz

z3
1

1 + s1

[

(

s22
g1

− s1

)

φ
′

α(τ, z)φ
′

β(τ, z)

−k2s1(τ, z)φα(τ, z)φβ(τ, z)
]

(3.69)

Mαβ(τ) = 2

∫ zs

zb(τ)

dz

z3
φ̇α(τ, z)φβ(τ, z) (3.70)

Sαβ(τ) = 2

∫ zs

zb(τ)

dz

z3
s2
g1

φ′
α(τ, z)φβ(τ, z) . (3.71)

Thereby E−1
αβ is the inverse of Eαβ , i.e.

E−1
αβ = 2

∫ zs

zb(τ)

dz

z3
1 + s1(τ, z)

g1(τ, z)
φα(τ, z)φβ(τ, z) . (3.72)

The Hamilton equations

q̇α,k =
∂H

∂pα,k
, ṗα,k = − ∂H

∂qα,k
(3.73)

then provide the equations of motion for the variables qα,k and pα,k.

Using certain relations of the coupling matrices following from the completeness (3.29)

and ortho-normality (3.28) of the functions φα and the properties of the functions s1, s2, s11
and s22 one can show that the three systems of equations (3.47), (3.67) and the Hamilton

equations (3.73) are consistent with each other, i.e. one system follows from the other one.

This seems to be at first sight a rather trivial statement but we have to remind the reader

that this is not the case in our previous work [38, 109] as we have discussed in detail in

Section II. D of Ref. [109]. The new coupling matrices Vαβ, Sαβ and Eαβ − δαβ are missing

in our previous work. Even though they do become very small when the brane velocity

becomes small, it is not evident that these new terms must be smaller than e.g. Mαβ ,

which also tends to zero with v. In other words, it is not straight forward to show that

these contributions are, e.g., of order v2.

3.6.2.3 Bogoliubov coefficients

Performing the quantization as in Ref. [109] we again transform to a first order system of

equation. In the new coordinates the system of equations (3.34), (3.35) of [109] is replaced
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by

ξ̇(γ)α (τ) =
∑

β

{

−
[

ia+αβ(τ) + c−αβ(τ)
]

ξ
(γ)
β (τ)

+
[

ia−αβ(τ)− c+αβ(τ)
]

η
(γ)
β (τ)

}

(3.74)

η̇(γ)α (τ) =
∑

β

{[

ia+αβ(τ)− c−αβ(τ)
]

η
(γ)
β (τ)

−
[

ia−αβ(τ) + c+αβ(τ)
]

ξ
(γ)
β (τ)

}

(3.75)

where

a±αβ(τ) =
1

2

[

ωin
β,kE

−1
αβ (τ)±

1

ωin
α,k

(1

2
(ω2

α,k(τ)

+ω2
β,k(τ))δαβ + Vαβ(τ)

)]

(3.76)

c±αβ(τ) =
1

2

[

Mβα(τ)− Sβα(τ)

±
ωin
β,k

ωin
α,k

(Mαβ(τ)− Sαβ(τ))
]

. (3.77)

(Note that in Ref. [109] a factor of two is missing in the expression for MN
ij in Eq. (B8), a

simple misprint.)

3.6.3 Numerics

To compute the graviton spectra we have adapted the code described in Ref. [109] to the

new problem. Apart from calculating the new coupling matrices we also have to solve the

differential equation (3.40) numerically to calculate the coordinate transformation and its

inverse in order to determine zb(τ) via the implicit equation (3.31) as well as the functions

s1(τ, z), s2(τ, z), g1(τ, z) and g2(τ, z) which enter the integrals for the coupling matrices.

For numerical purposes we have smoothed the function yb(t). Due to this implicit nature

of the coordinate transformation, the calculation of these coupling matrices is numerically

significantly more involved than in our previous approach.

As in [109], splines are used to interpolate the various matrix elements between time

steps. The time steps used to produce the splines are not uniformly distributed but carefully

selected to take into account the steepness of the time dependence of the couplings. Close

to the bounce we use very short time steps to produce the splines (∼ 10−6) while far away

we can increase the step up to 0.2 (in units of L). Furthermore, due to the complex time

dependence of some of the couplings very close to the bounce, exact integration of the

matrix elements when propagating the solutions through the bounce is necessary in order

to obtain satisfactory accuracy for large KK masses as in Fig. 3.5. In this way the bounce

is taken into account as accurate as possible. This affects the speed of convergence of the

solutions w.r.t. nmax, leading to the behavior described below Fig. 3.5.

As an indicator for the accuracy of our calculations we use the Bogoliubov test as

described in Appendix D of [109] (Eq. (D6)). This is presented in Fig. 3.6 for the vmax = 0.3
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result given in Fig. 3.5. The quantity denoted by ’Bogoliubov test’ and shown as solid line

in Fig. 3.6 should ideally vanish. Given the complex nature of the numerical problem, the

accuracy of the results is satisfactory for mn
<∼ 10/L.

1 10 20
Kaluza - Klein mass mn

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

KK spectrum Nn,0.1

Bogoliubov test dn,0.1(τout)

vmax   = 0.3

out

Figure 3.6: Comparison of the final KK spectrum Nout
n,0.1 and the corresponding quantity

dn,0.1(τout) given in Eq. (D6) of [109]. The quantity dn,0.1(τout) is supposed to vanish
identically, see [109]. The comparison is a measure for the accuracy of the vmax = 0.3
result depicted in Fig. 3.5. In the region of the spectrum which is free from numerical
artefacts, i.e. no dependence on cut-off nmax, dn,0.1(τout) is at least about two orders of
magnitude smaller than the physically relevant quantity Nout

n,0.1 indicating a satisfactory
accuracy.
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Model-independent cosmological constraints from the CMB

Marc Vonlanthen, Syksy Räsänen, Ruth Durrer

We analyse CMB data in a manner which is as independent as possible of the model of

late-time cosmology. We encode the effects of late-time cosmology into a single parameter

which determines the distance to the last scattering surface. We exclude low multipoles

ℓ < 40 from the analysis. We consider the WMAP5 and ACBAR data. We obtain the

cosmological parameters 100ωb = 2.13 ± 0.05, ωc = 0.124 ± 0.007, ns = 0.93 ± 0.02 and

θA = 0.593◦ ± 0.001◦ (68% C.L.). The last number is the angular scale subtended by the

sound horizon at decoupling. There is a systematic shift in the parameters as more low ℓ

data are omitted, towards smaller values of ωb and ns and larger values of ωc. The scale

θA remains stable and very well determined.

4.1 Introduction

The cosmic microwave background (CMB) is one of the most important cosmological

probes. The pattern of acoustic oscillations of the baryon-photon plasma is imprinted

on the CMB at the time of decoupling, and then rescaled (and on large scales modified) as

the CMB photons propagate from the last scattering surface to the observer. The CMB is

thus sensitive to cosmological parameters in two ways, via the physics at decoupling and

via the evolution of the universe after that.

While the physics at decoupling –essentially atomic physics and general relativity of a

linearly perturbed Friedmann-Lemâıtre (FL) universe– is well understood, the evolution at

late times deviates from the predictions of linearly perturbed FL models with radiation and

matter. The difference may be due to an exotic matter component with negative pressure

such as vacuum energy, deviation of gravity from general relativity [37, 82, 72, 18], or a

breakdown of the homogeneous and isotropic approximation [99, 14, 47, 100, 127, 22]. It

is not known which of these possibilities is correct, and there are large differences between

the various models. It is therefore worthwhile to analyse the CMB in a manner which is

as independent of the details of late-time cosmology as possible. On the one hand, this

clarifies the minimal constraints that all models of late-time cosmology, whatever their

details, have to satisfy in order to agree with CMB observations. On the other hand, our

analysis provides limits on the physical parameters at decoupling that are independent of

the details of what happens at later times. This is particularly important for cosmological

parameters such as the density of baryons, density of dark matter and the spectral index,

which are used to constrain particle physics models of baryogenesis, supersymmetry and

inflation, which are independent of late-time cosmology.

Such a separation of constraints is possible because the physics after decoupling affects

the CMB in a rather limited manner (except at low multipoles), by simply changing the

angular scale and modifying the overall amplitude of the CMB pattern. We encode the

change in the angular scale in a single parameter related to the angular diameter distance
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to the last scattering surface and treat the amplitude as a nuisance parameter. We aim to

be transparent about how the different cosmological parameters enter the calculation and

the assumptions that go into the analysis.

In section 2 we discuss how the physics at early and late times affects the CMB and

explain our assumptions. In section 3 we present the results of the analysis of the WMAP 5-

year data [66, 32, 58] and the ACBAR data [104] and give the constraints on cosmological

parameters. In section 4 we summarise our results. Some details are collected in two

appendices.

4.2 Parameter dependence of the CMB

4.2.1 Our assumptions

The pattern of CMB anisotropies can be summarised in terms of a few parameters. It was

noted in [44] that models with the same primordial perturbation spectra and same values

of ωb, ωc and the shift parameter R have an identical CMB spectrum today, apart from low

multipoles (ℓ . 30). The discussion in [44] was in the context of a family of Friedmann-

Lemâıtre (FL) models, but the statement is true more generally. The shift parameter is

defined as

R ≡ ω1/2
m (1 + z∗)H0h

−1DA(z∗)

=

(

Ωm

ΩK

)1/2

sinh

(

Ω
1/2
K

∫ z∗

0
dz′

H0

H(z′)

)

, (4.1)

where z∗ is the redshift of decoupling, DA(z) is the angular diameter distance between

today and redshift z, H0 = 100hkm/s/Mpc is the Hubble parameter today, and the second

equation holds for all FL models. The density parameter ωb is the normalized dimensionless

physical density of baryonic matter, ωb = 8πGNρb/3/(100 km/s/Mpc)2, ωc is the normal-

ized dimensionless physical density of cold dark matter defined the same way, ωm = ωb+ωc

is the total physical matter density, and Ωm = ωmh
−2 and ΩK are, respectively, the matter

and the spatial curvature density parameter today. With present observations which in-

clude polarization data, one has to add a parameter to take into account collisions between

the CMB photons and baryonic matter after the cosmic medium becomes reionized. This

is usually expressed with the redshift of reionization zri or the optical depth τ .

The CMB data have been analysed in terms of the shift parameter R in various FL

models [70, 66, 46, 122, 27, 89, 67], and a similar approach has been followed for local void

models [127, 25]. The model-dependence of parameters such as R has been discussed, but

limits on them have always been derived within some specific models, and it has not been

clear which assumptions are important and what is the model-independent information.

In this work, we analyse the CMB in a manner which is as model-independent as

possible, and we are explicit about the assumptions involved. In particular, we do not

restrict our study to models which are close to FL at late times, so our constraints are

also applicable to models where the effect of non-linear structures on the expansion rate

is important, or where we are located in a large spherically symmetric density fluctuation

such as a local void. (Note that the near-isotropy of the CMB does not imply that the

universe is close to FL, even coupled with the Copernican principle [101].)

We assume that the physics up to and including decoupling is completely standard, i.e.

linearly perturbed FL evolution according to normal four-dimensional general relativity
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with Standard Model particle physics and dark matter (which we assume to be cold during

decoupling). As for physics after decoupling, we make the minimal assumptions that it

changes the small angle CMB spectrum only by 1) modifying the angular diameter distance

to the last scattering surface and 2) changing the overall amplitude. Here, small angles

refers to scales which are well inside the horizon at late times when the unknown physics

can be important, say conservatively at z <∼ 60. We discard low multipoles in our analysis,

because typically the unknown physics of dark energy, modified gravity or large deviations

from FL geometry affects the large angles in a model-dependent way, for example via the

late Integrated Sachs-Wolfe (ISW) effect. In typical perturbed FL models, the late ISW

effect is only significant at low multipoles (see appendix 4.5.1), and the Rees-Sciama effect,

gravitational lensing and the Sunyaev-Zel’dovich effect do not have a significant impact at

the present observational accuracy [80, 36, 115], though their presence is already suggested

by the ACBAR data [104]. We assume that such effects remain small in other models,

and that any multipole-dependent effect of new physics on the CMB spectrum is below the

observational precision, except at low multipoles.

In perturbed FL models, reionization has a significant effect on all angular scales, but at

high multipoles it amounts to a simple rescaling of the amplitude, and is thus degenerate

with the amplitude of primordial perturbations (see appendix 4.5.2), so we can neglect

modeling of reionization.

We assume that the primordial perturbations are adiabatic, and have a power-law

spectrum. We only consider scalar perturbations, and assume that vector and tensor

contributions are small. (This division refers to the early universe; in the late universe

it is not necessarily meaningful, because we do not assume that the late universe is close

to FL.) Within our approach it would not be easy to include tensor perturbations in the

temperature anisotropy spectrum, because they contribute mainly via the ISW effect and

are relevant up to ℓ ≈ 100. However, the contribution of tensors starts to decay already

around ℓ ≈ 50 and is probably relatively small, so their presence would not be expected

to change our results significantly. (It would be easy to take into account the tensor

contribution to the polarization spectrum, though, because it is mainly generated at the

last scattering surface.) We also neglect the effect of neutrino masses.

The idea behind these assumptions is that we can treat the CMB with a standard

Boltzmann code, and simply exclude low multipoles from the analysis. We have modified

the publicly available CAMB code and the corresponding Monte Carlo Markov Chain pro-

gram [81] to search for best-fit values of our parameters. As long as the rise to the first

peak is fully included in the analysis, discarding low multipoles should not involve a signif-

icant loss of information, because there are more high multipoles and the cosmic variance

is larger on large scales. However, our results in this respect are somewhat surprising, as

we discuss in section 4.3. Also, it has been argued that there are anomalies in the angular

distribution on large scales [56] (and a dipolar modulation at higher multipoles [57]), which

could indicate that some physics affecting the low multipoles is not understood, so they

may be unreliable for cosmological analysis; see also [48, 8].

Our assumptions do not hold for models with non-standard physics at or before de-

coupling, such as new radiation degrees of freedom, early dark energy [16] or dark matter

which undergoes significant annihilation at early times [50]. In models where we are located

in a large spherically symmetric region, it is possible to obtain a large CMB dipole [61],

and there could be a large effect at higher multipoles as well. This can only be checked

with perturbation theory adapted to such models, which is now being developed [23].
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4.2.2 The physics of the CMB parameters

Let us outline the relation between the features in the CMB spectrum and the cosmolog-

ical parameters, given our assumptions above. (See [36, 88] for detailed discussion.) We

consider five parameters, namely the overall amplitude, the baryon density ωb, the cold

dark matter density ωc, the spectral index ns and the distance to the last scattering surface

DA(z∗).

The observed amplitude of CMB perturbations is determined by a combination of the

primordial power spectrum and late-time physics, such as damping due to accelerating

expansion and scattering of CMB photons from matter due to reionization. Without

specifying a model for the late-time universe, it is not possible to disentangle these effects.

Because the overall normalization does not have a model-independent interpretation, we

treat it as a nuisance parameter, i.e., we marginalize over it and do not quote limits for it.

The spectral index ns is related to the early universe physics, such as inflation, which

produces the primordial perturbations. Extending the analysis to more complicated pri-

mordial spectra would be straightforward, though of course we would not be sensitive to

large-scale features.

The relative height and depth of the CMB peaks and troughs is set by the physics of

the baryon-photon oscillations, which depends on ωb and ωc. This pattern also depends

on the radiation density ωr = 8πGNρr/3/(100 km/s/Mpc)2, which is however accurately

determined by the CMB temperature. Note that the CMB is only sensitive to the densities

at the time of decoupling, not to their values today. As is customary, we use the symbols ωb,

ωc and ωr to refer to the densities at decoupling scaled to today with the factor (1 + z∗)
3

for baryons and dark matter and (1 + z∗)
4 for radiation, where ∗ indicates the time of

decoupling. At decoupling, the distribution of matter is still very smooth, so the densities

at that time can be understood as local or average values; the scaled numbers represent

today’s average values. In a statistically homogeneous and isotropic space, the mean energy

density of baryons and cold dark matter evolves like (1 + z)3 due to conservation of mass,

and the mean energy density of photons evolves like (1+ z)4 due to conservation of photon

number and the fact that the change of energy of the CMB photons by scattering can

be neglected [102]. FL models are of course a particular case of this. If dark matter has

significant pressure, or decays significantly [31], or if there is some extra source of baryons,

dark matter or photons, our ωb, ωc and ωr would not correspond to the physical densities

today. (Dark matter decay to radiation would also contribute to the late ISW effect [65].)

This is already true for neutrinos, which we treat as massless, but which in fact do not

contribute to the present-day radiation density, since their mass today is larger than the

temperature. This will also be the case if the factor (1 + z)3 is not simply proportional to

the volume, which can happen if statistical homogeneity and isotropy is broken, such as in

local void models where shear can contribute significantly to the redshift.

Our final parameter is the angular diameter distance to the last scattering surface.

The angular diameter distance out to redshift z is defined as DA(z) = L/θ, where L is the

proper size of an object at redshift z and θ is its observed angular size. The physical scale

of the baryon-photon oscillations is set by the sound horizon at decoupling rs(z∗) which

depends on ωb and ωc [59, 36]. With standard physics up to decoupling, the sound speed

of the photon-baryon plasma is

c2s =
1

3(1 + 3ρb/4ργ)
=

1

3
(

1 + 3ωb
(1+z)4ωγ

) ≡ 1

3[1 + r(1 + z)−1]
, (4.2)
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where we have introduced r ≡ 3ωb/4ωγ . For the sound horizon we obtain1

(1 + z∗)rs(z∗) =

∫ t∗

0

cs(t
′)

a(t′)
dt′

=
h

H0

√
3

∫ ∞

1+z∗

dx

x
√

(x+ r)(xωr + ωm)

=
2h

H0
√
3rωm

log







√
1 + z∗ + r +

√

(1+z∗)rωr

ωm
+ r

√
1 + z∗

(

1 +
√

rωr
ωm

)






. (4.3)

Note that h/H0 = 1/(100km/s/Mpc) ≈ 2998 Mpc is a fixed scale which does not depend on

the cosmological model. The photon energy density ωγ ≈ 2.48×10−5 is known as well as the

CMB temperature and we do not treat it as a free parameter. Assuming massless neutrinos,

the same is true for the radiation density [36], ωr = ωγ

(

1 + 37
8

(

4
11

)4/3
)

≈ 4.17 × 10−5.

Furthermore, for standard radiation content, z∗ ≈ 1090 and it depends weakly on ωb and

ωc (for an analytical approximation, see [59]). For standard values of the parameters, the

log in (4.3) is of order unity. The sound horizon at decoupling therefore depends only on ωb

and ωc. The angle under which it is observed today is given by θA ≡ rs(z∗)/DA(z∗). With

ωb and ωc fixed, the pattern of CMB anisotropies is determined at decoupling (apart from

low multipoles), and its angular scale changes as the distance to the last scattering surface

grows and the multipole positions of the CMB peaks and troughs scale with DA(z∗). Given

our assumptions, the CMB (apart from low multipoles) has no sensitivity to any physical

parameters other than ωb, ωc, ns,DA and the overall amplitude, and these five parameters

are a priori independent. A given model can of course couple them to each other, as well

as to parameters which do not directly affect the CMB.

In particular, in linearly perturbed FL models the spatial curvature affects the CMB

only via the angular diameter distance (apart from the late ISW effect). It is sometimes

said that the spatial curvature can be determined from CMB observations by using the

sound horizon as a standard ruler (assuming that the universe can be described by a FL

model). However, as (4.1) shows, the effect of spatial curvature on DA(z∗) is completely

degenerate with the expansion history H(z). For example, FL models with matter and

significant spatial curvature are consistent with the WMAP observations [117]. In that

case, a prior on H0 is enough to exclude large spatial curvature, but only because of

the specific form of the expansion history. The only way to really measure the spatial

curvature, as opposed to doing parameter estimation in the context of specific models, is

to use independent observations of the distance and expansion rate [24], such as from the

ages of passively evolving galaxies [62] and baryon acoustic oscillations [51]. Note also

that the CMB (apart from low multipoles) is sensitive to the expansion history between

decoupling and today only via the angular diameter distance; in particular, the CMB

contains no model-independent information about H0.

In addition to R, another parameter defined as

ℓA ≡ π

θA
= π

DA(z∗)

rs(z∗)
(4.4)

1Here rs is the physical sound horizon at the time of decoupling. In the literature, rs often denotes the
comoving sound horizon.
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has also been introduced to parametrise the distance to the last scattering surface [60].

The parameter ℓA is related to the position of the first peak in multipole space (for details,

see [36, 88, 60, 30]). The quantity ℓA has been called an independent shift parameter in

addition to R [122]. However, this is somewhat misleading, because R and ℓA contain the

same information as regards the shift in the angular scale of the CMB anisotropy pattern

due to the late-time evolution, the only difference is their dependence on ωb and ωc. Of

course, one can consider any combination of the four parameters ωb, ωc, ns and R. For our

purposes, it is useful to introduce the scale parameter S, which is defined as the ratio of

the angular diameter distance to the prediction of the simplest cosmological model,

S ≡ DA(z∗)

DA,EdS(z∗)
=

H0(1 + z∗)DA(z∗)

2[1− (1 + z∗)−1/2]
≃ 1

2
H0(1 + z∗)DA(z∗) , (4.5)

where DA,EdS is the angular diameter distance in the Einstein-de Sitter (EdS) universe

(the matter-dominated spatially flat FL model), (1 + z)DA,EdS = 2H−1
0 [1 − (1 + z)−1/2];

the last approximation in (4.5) is accurate to 3%. Using (4.1), the scale parameter S is

related to R by S = hR/(2ω
1/2
m )[1 − (1 + z∗)

−1/2]−1 ≃ hR/(2ω
1/2
m ). Unlike R and ℓA, the

scale parameter S depends on the Hubble parameter, to which the CMB has no direct

sensitivity. (This arises because FL models predict the distance in units of H0.) Therefore,

the value of S depends on how we fix the Hubble parameter.

We can simply keep H0 free and quote limits for h−1S, and one can then substitute the

Hubble parameter given by e.g. local observations of H0. The mean value is h−1S = 2.4

(see table 4.4), so for h = 0.6–0.7, the distance to the last scattering surface is a factor

of 1.4–1.7 longer than in an EdS model with the observed Hubble parameter. This is in

accordance with the usual intuition that physics in the late-time universe acts to increase

the distance compared to EdS, for example via accelerated expansion. We could instead

keep the age of the universe fixed, i.e. ask how large the distance is compared to the value

in an EdS model at the same time after the big bang. In an EdS model H0 = 2/(3t0), so

we have S = 2/(3t0100km/s/Mpc) × R/(2ω
1/2
m )[1 − (1 + z∗)

−1/2]−1, which for t0 = 13.4

Gyr [74] gives S ≈ 1.2 for our mean values ωm = 0.145 and R = 1.77.

Finally, we can ask how long the distance is compared to an EdS model which has

the correct matter density. The Hubble parameter is then simply h = ω
1/2
m , so S =

R/2[1 − (1 + z∗)
−1/2]−1 ≃ R/2 ≈ 0.9. This means that in an EdS model with the correct

matter density, the predicted distance to the last scattering surface is longer than observed.

(In other words, the real matter density decays faster as function of the distance to the last

scattering surface than in the EdS reference model.) Unless otherwise noted, we follow this

last convention, and compare with an EdS model which has the correct matter density, at

the expense of the age of the universe and the Hubble parameter. We give constraints for

θA, ℓA, R, S, h−1S, and DA(z∗) in section 4.3. For fixed ωb, ωc and ns, these quantities

contain the same information, only their correlation properties with the parameters ωb, ωc

and ns are different (see table 4.5).

4.2.3 The distance to the last scattering surface

Let us now study how the CMB spectrum depends on the angular diameter distance to the

last scattering surface DA(z∗). We consider two positions on the sky denoted by n1 and

n2 which have the temperature fluctuations ∆T (n1) and ∆T (n2) and which are separated

by proper distance L on the last scattering surface. For two different angular diameter
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distances DA and D′
A to the last scattering surface, the length L is seen under the angles

θ = L/DA and θ′ = L/D′
A, see figure 4.1.

A

θ θ’

D D’A

L

Figure 4.1: The angle under which two fixed points on the sky are seen changes with the
angular diameter distance DA.

The two-point functions C and C′ which correlate n1 and n2 for an observer at distance

DA or D′
A, respectively, can be decomposed in terms of the two angles as

C(θ) ≡ 〈∆T (n1)∆T (n2)〉 =
1

4π

∑

ℓ

(2ℓ+ 1)CℓPℓ(cos θ)

=
1

4π

∑

ℓ

(2ℓ+ 1)C ′
ℓPℓ(cos θ

′) = C′(θ′) , (4.6)

where Pℓ is the Legendre polynomial of degree ℓ, and Cℓ and C ′
ℓ are the power spectra

corresponding to the angular diameter distances DA and D′
A respectively. The equality

C(θ) = C′(θ′) means that we consider only correlations on the last scattering surface (or

very close to it) and neglect line-of-sight effects like, e.g. the late ISW effect which can be

different for the two photon paths. Using the orthogonality of the Legendre polynomials,
∫ 1
−1 Pℓ̃(µ)Pℓ(µ)dµ = 2δℓ,ℓ̃/(2ℓ + 1), we obtain the relation

Cℓ =
∑

ℓ̃

2ℓ̃+ 1

2
C ′
ℓ̃

∫ π

0
sin θdθPℓ̃[cos(θDA/D

′
A)]Pℓ(cos θ) . (4.7)

This cumbersome exact expression is only needed for low values of ℓ. At high ℓ we can

work in the flat sky approximation (see [36], section 5.4), where

Yℓm → 1

2π
exp(iℓ · x) and Pℓ(cos θ) → J0(|x|ℓ) .

Here x is a vector on the flat sky, ℓ is the variable of its 2-dimensional Fourier transform,

with ℓ = |ℓ|, and J0 is the Bessel function of order 0. Denoting r ≡ |x|, the correlation

function is

C(θ) = C(r) = 1

2π

∫ ∞

0
dℓ ℓJ0(rℓ)Cℓ . (4.8)

The correlation functions corresponding to the two angular diameter distances are related
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by C(r) = C′(r′), where r′ = rDA/D
′
A,

1

2π

∫ ∞

0
dℓ ℓJ0(rℓ)Cℓ =

1

2π

∫ ∞

0
dℓ ℓJ0(r

′ℓ)C ′
ℓ

=
1

2π

(

D′
A

DA

)2 ∫ ∞

0
dℓ ℓJ0(rℓ)C

′
D′

A
DA

ℓ
, (4.9)

where on the second line we have simply performed the change of variables ℓ → ℓDA/D
′
A.

Using the property
∫∞
0 rdrJ0(rℓ)J0(rℓ

′) = ℓ−1δ(ℓ− ℓ′), we obtain

Cℓ =

(

D′
A

DA

)2

C ′
D′

A
DA

ℓ
. (4.10)

The relation (4.10) is valid independent of spatial curvature, since we do not in-

voke three-dimensional Fourier transforms. We are simply using the fact that the CMB

anisotropies are functions on a sphere. This result agrees with [128] where it is derived in

a different way and contrasts with [25], where there is an extra power of D′
A/DA. Let us

denote the spectrum of a reference EdS Universe by CEdS
ℓ and the measured CMB spec-

trum by Cℓ. Recalling the definition (4.5) of the scale parameter S, we can assign Cℓ to

an EdS universe with the same values of ωb, ωc and ns and the angular diameter distance

DA = SDA,EdS if we scale the angular power spectrum by

Cℓ = S−2CEdS
S−1ℓ . (4.11)

The basic assumption here is that the CMB fluctuations at decoupling are the same for

both models and the only difference is the distance to the last scattering surface. If this is

true, the relation (4.11) is exact in the flat sky limit. Without the flat sky approximation

it has to be replaced by (4.7) with DA/D
′
A = S. Note that despite of the factor S−2 in

(4.11), the shift parameter S is not strongly correlated with the amplitude, it just shifts

the spectrum in angular space. This is visible on the 2D-plots shown in Fig. 4.7. We have

tested the flat sky approximation numerically and have found that for ℓ ≥ 20 the difference

between (4.11) and the exact expression (4.7) is smaller than 1% for 1.1 ≥ S ≥ 0.7, which

includes the region which is of interest to us (the mean value we obtain is S = 0.91± 0.01,

see table 4.4).

To illustrate the dependence of the CMB spectra on the scale parameter S, we show in

appendix 4.5.1 the TT, TE and EE spectra for FL models with non-zero spatial curvature

or cosmological constant, compared with the EdS result scaled with S. As shown in figures

4.9 to 4.11, the spectra for the scaled model and the model with spatial curvature lie

on top of each other for ℓ & 20, except for the case of large negative spatial curvature

with S ≈ 1.5, where there is some difference in the TT spectra until ℓ ≈ 100. For the

cosmological constant case, shown in figure 4.12, the approximation is excellent for all of

the spectra for ℓ & 20.
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ℓmin 2 20 40 60

100ωb 2.21+0.05
−0.05 2.19+0.05

−0.05 2.18+0.07
−0.07 2.15+0.08

−0.08

ωc 0.113+0.005
−0.005 0.115+0.006

−0.006 0.118+0.007
−0.007 0.120+0.008

−0.008

ns 0.95+0.01
−0.01 0.95+0.01

−0.01 0.94+0.02
−0.02 0.93+0.02

−0.02

ΩΛ 0.72+0.03
−0.03 0.71+0.04

−0.03 0.70+0.04
−0.04 0.68+0.06

−0.05

ℓmin 80 100 120 140

100ωb 2.09+0.10
−0.10 2.05+0.09

−0.09 2.11+0.13
−0.12 2.07+0.14

−0.14

ωc 0.127+0.012
−0.013 0.132+0.012

−0.012 0.126+0.013
−0.016 0.131+0.018

−0.017

ns 0.91+0.03
−0.04 0.89+0.04

−0.03 0.91+0.05
−0.04 0.90+0.05

−0.06

ΩΛ 0.62+0.09
−0.09 0.58+0.10

−0.09 0.63+0.11
−0.10 0.58+0.14

−0.14

Figure 4.2: The change in the mean parameters when more low ℓ data are omitted, in the
ΛCDM model with τ = 0. We have used the WMAP5 and ACBAR data.

4.3 Results

4.3.1 Cosmological parameters and the multipole cut

We use the WMAP5 data and the ACBAR data in our analysis. However, disregarding

ACBAR does not change the results much. We have performed a Markov Chain Monte

Carlo analysis with chain length N = 2 × 105. The results change by significantly less

than 1σ when going from N = 1.5 × 105 to 2 × 105, which indicates that the chains have

converged well [81]. As a convergence test, we have checked that when the samples are split

in two or three parts, the change of the relevant cosmological parameters is a few percent

of one standard deviation. We have also checked that the Raftery and Lewis convergence

diagnostic is satisfied [96].

In table 4.2 we show the effect of excluding a successively larger multipole range up to

ℓmin in the analysis of the ΛCDM model; ΩΛ is the vacuum energy density today, as usual.

We have set τ = 0 for consistency with the treatment of the scaled model. From ℓmin = 2

to ℓmin = 40 the errors on ωb and ωc increase by 28%, while the error on ns increases by

57%. The central values move only by 1%, 4% and 1%, respectively, and the results are

consistent within 1σ.

Nevertheless, there is a systematic trend that ωb and ns decrease and ωc increases as

ℓmin grows. Even at ℓmin = 100, where the shifts are maximized, they are less than 2σ in

terms of the new error bars. In terms of the error bars of the model with ℓmin = 2, the shift

is of course larger: for ns it more than 5σ, and for ΩΛ more than 4σ. The feature that the

error bars on ns increase more than those of ωb and ωc may be related to the fact that as

ℓmin grows, the pivot scale k = 0.05 Mpc−1 moves closer to the edge of the data [77].

Part of this shift is due to the fact that reionization is neglected. We know from the

absence of the Gunn-Peterson trough in quasar spectra that the Universe is reionized at

redshifts z <∼ 6, see [7]. The light decrease towards smaller scales which is usually attributed

to reionization is now achieved with a somewhat redder spectrum. In order not to decrease

the height of the acoustic peaks, this leads to a higher value of ωc. A redder spectrum

also enhances the amplitude difference between the well measured first and second peaks.

This can be compensated by a reduction of ωb, since a larger ωb means a larger difference

between the odd contraction and even expansion peaks [36].
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However, we have found that reionization is not the dominant effect, the systematic

shift is also present if reionization is included in the analysis. We have checked this by

including τ as a model parameter. The results of table 4.2 remain valid for also in this case.

The problem is that for ℓmin ≥ 40 the value of τ is degenerate with a renormalization of

the amplitude (see discussion in Appendix 4.5.2) and the best fit value for τ fluctuates sig-

nificantly from chain to chain. We therefore prefer to show the results for τ = 0. Note that

the change is larger than the increase in the error bars. The shape of the one-dimensional

probability distribution for the parameters is not for the most part significantly distorted,

and the two-dimensional distributions do not show strong changes in the correlation prop-

erties as ℓmin increases. Therefore, the error bars do accurately represent the statistical

error even at high ℓmin. In other words, the shift in the parameters is systematic, and is

not reflected in the statistical error estimate.

Figure 4.3: The increase in the large-scale power with increasing ℓmin in the best-fit ΛCDM
models with τ = 0. The lowest line corresponds to a cut at ℓmin = 2 the subsequent lines
have ℓmin = 40, 60, 80 and 100, respectively. At ℓmin = 120 the large scale power no longer
increases but it decreases somewhat. The WMAP and ACBAR data are superimposed.
The vertical axis is ℓ(ℓ+ 1)CTT /(2π) in (µK)2.

We conclude that the high ℓ data prefer different parameter values than the data which

include the low multipoles. In figure 4.3 we show the TT power spectra for the best-fit

ΛCDM models with different ℓmin. There is a trend of increasing large-scale power with

higher ℓmin. In all cases, the overall amplitude is fixed well by the high ℓ data, and the

effect is due to the change in ωb, ωc and ns. We have checked that the ISW effect is not

the cause: there is a similar shift for both the ΛCDM model and the scaled EdS model.

Also, increasing ℓmin corresponds to decreasing ΩΛ and hence a smaller contribution of the

ISW effect to the low multipoles.
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Parameter Scaled ΛCDM ΛCDM

ℓmin = 40 ℓmin = 40 ℓmin = 2

mean mean mean

100ωb 2.13 ± 0.05 2.21 ± 0.07 2.24 ± 0.05

ωc 0.124 ± 0.007 0.113 ± 0.007 0.111 ± 0.005

ns 0.93 ± 0.02 0.96 ± 0.02 0.97 ± 0.01

S 0.91 ± 0.01 – –

ΩΛ – 0.72 ± 0.04 0.74 ± 0.03

τ – 0.09+0.04
−0.05 0.09 ± 0.02

ωm 0.145 ± 0.007 0.136 ± 0.007 0.133 ± 0.005

h−1S 2.40 ± 0.03 – –

R 1.77 ± 0.02 1.73 ± 0.02 1.72 ± 0.02

θA 0.593◦ ± 0.001◦ 0.594◦+0.002◦

−0.001◦ 0.593◦ ± 0.002◦

ℓA 303.7 ± 0.7 303.3 ± 0.8 303.2 ± 0.7

DA(z∗)/Mpc 12.7 ± 0.2 12.9 ± 0.2 13.0 ± 0.1

rs(z∗)/Mpc 0.132 ± 0.002 0.134 ± 0.002 0.134 ± 0.001

10−3zeq 3.5 ± 0.2 3.3 ± 0.2 3.2± 0.1

z∗ 1094 ± 1 1092 ± 1 1091 ± 1

Figure 4.4: The mean values for the scaled model and the ΛCDM model. We have used
the WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40.

4.3.2 Model-independent parameter estimates

We fix our multipole cut at ℓmin = 40, which roughly corresponds to neglecting modes which

entered the horizon after z = 60. The dependence on the redshift is weak, ℓmin ∝ (1+z)1/2

for z ≫ 1. Choosing z = 30 instead would give ℓmin ≈ 30. The cut at ℓmin = 40 is

also motivated by the fact that for ℓ > 40 reionization is well approximated by a simple

rescaling of the amplitude, as well as by the multipole dependence of the late ISW effect,

see appendices 4.5.1 and 4.5.2.

In table 4.4 we give the mean values for our primary parameters ωb, ωc, ns and S, as well

as some derived parameters. In addition to the systematic effect discussed above, this table

is our main result. As already mentioned, the overall amplitude is treated as a nuisance

parameter. For comparison, we give the corresponding results for the ΛCDM model, with

non-zero τ . We use ℓmin = 40 in both cases. The ΛCDM values are in good agreement

with the WMAP5 results [32] and have comparable error bars. For the scaled model, the

errors in ωc and ns are slightly larger than those of the ΛCDM model with ℓmin = 2. We

attribute this to the fact that we start at ℓmin = 40. Furthermore, our spectral index is

somewhat redder, ns = 0.93 compared to ns = 0.96. This shift is also clearly seen in the

one-dimensional likelihood functions for the scaled model and the ΛCDM model, shown in

figure 4.6. However, these parameter changes are within one standard deviation and are

therefore not statistically significant. It is impressive how accurately present CMB data

determine ℓA. The relative error is less than 0.3% for both the scaled model and ΛCDM.

The error in the other parameters related to the angular diameter distance, S, h−1S,R and
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ωb ωc ns S ωm h−1S ℓA DA(z∗) rs(z∗) z∗

ωb 1.00 −0.31 0.84 −0.49 −0.23 −0.06 −0.56 0.02 0.14 −0.88

ωc −0.31 1.00 −0.51 0.96 1.00 −0.91 0.05 −0.94 −0.98 0.72

ns 0.84 −0.51 1.00 −0.65 −0.45 0.19 −0.51 0.26 0.38 −0.86

S −0.49 0.96 −0.65 1.00 0.94 −0.78 0.30 −0.82 −0.91 0.83

ωm −0.23 1.00 −0.45 0.94 1.00 −0.94 −0.004 −0.96 −1.00 0.66

h−1S −0.06 −0.91 0.19 −0.78 −0.94 1.00 0.32 1.00 0.96 −0.40

ℓA −0.56 0.05 −0.51 0.30 −0.004 0.32 1.00 0.27 0.06 0.43

DA(z∗) 0.02 −0.94 0.26 −0.82 −0.96 1.00 0.27 1.00 0.98 −0.47

rs(z∗) 0.14 −0.98 0.38 −0.91 −1.00 0.96 0.06 0.98 1.00 −0.58

z∗ −0.88 0.72 −0.86 0.83 0.66 −0.40 0.43 −0.47 −0.58 1.00

Figure 4.5: The normalized covariance matrix for the scaled model. We have used the
WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40. At this level of precision, the correlation
coefficients of R are the same as those of S, and those of θA are minus those of ℓA.

DA, as well as rs, is about 1%. The errors for ωb, ωc and ns are less than 3%, 6% and 2%,

respectively.

In table 4.5 we give the covariance matrix between the different variables, and in fig-

ure 4.7 we show selected two-dimensional likelihoods. We see that R and S are strongly

positively correlated with ωc and ωm. In contrast, DA is strongly anti-correlated with ωc

and ωm. This can be understood by writing DA = SDA,EdS and noting that DA,EdS ∝
h−1 = ω

−1/2
m . The variable ℓA is nearly uncorrelated with ωm, but it is quite correlated with

ωb and correspondingly also with ns. Since most of the statistical weight of the WMAP

data come from the first and second peaks, ns and ωb are strongly correlated even if the

full WMAP data (with ℓmin = 2) are taken into account [66]. This correlation becomes

stronger as some of the low ℓ data are omitted.

The standard deviations for the scaled EdS model are somewhat smaller than those of

the ΛCDM model for the same ℓmin. However, this does not mean that the fit is better,

only that the well-fitting region is somewhat smaller. Error bars for a model can be small

simply because different parts of the data prefer different regions of parameter space, so

that the fit is good only in some small overlap region. In the present case, the scaled model

and the ΛCDM model are comparably good fits to the data for ℓmin ≥ 20. In table 4.8

we show −2 logL, where L is the likelihood of the best-fit, as a function of ℓmin. There

are only differences of ≈ 1 in −2 logL, which is the same order as the differences between

different chains of the same model.
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Figure 4.6: One-dimensional likelihoods for the scaled model (black, solid) and the ΛCDM
model (red, dashed). We have used the WMAP5 and ACBAR data for ℓ ≥ ℓmin = 40.
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Figure 4.7: Two-dimensional likelihoods for the scaled model. We have used the WMAP5
and ACBAR data for ℓ ≥ ℓmin = 40.

4.3.3 Discussion

The CMB contains information about the distance to the last scattering surface, the baryon

density, the matter density and the primordial power spectrum (here taken to be a power

law), which can be extracted independently of the model used to describe the late universe.

In particular, the angular diameter distance to the last scattering surface is a factor of

S = 0.91 ± 0.01 smaller than in an EdS Universe with the same mean matter density,

ωm = 0.145 ± 0.006. With baryon density ωb = 0.0213 ± 0.001 and spectral index ns =

0.93 ± 0.03, an EdS model scaled by this factor is a good fit to the present CMB data,

apart from the low multipoles. Of course such a model is in complete disagreement with

local measurements of the Hubble parameter and supernova observations. If we want to
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ℓmin nr. of points −2logL −2logL −2logL
N(ℓmin) scaled standard, τ = 0 standard, τ 6= 0

2 2591 2717.12 2715.78 2695.29

20 1385 1508.20 1507.41 1507.72

40 1345 1382.52 1381.24 1381.24

60 1305 1234.44 1233.23 1233.46

80 1265 1073.03 1072.01 1072.16

Figure 4.8: The log of the likelihood L as function of ℓmin. In the second column we give
the number of Cℓ estimates (including the polarization data) except for the case ℓmin = 2
where a pixel-likelihood is added. For ℓmin ≥ 20, N(ℓmin) = 994+ 427− 2(ℓmin − 1), which
is the number of multipoles for the TT (WMAP5 and ACBAR data) and TE (WMAP5
data) spectra minus twice the number of cut multipoles. The only significant difference
between models appears in the first row with ℓmin = 2, where the ΛCDM model with τ 6= 0
is clearly favoured.

agree with the local value H0 = (60–70) km/s/Mpc, the observed distance is instead longer

than in an EdS model by the factor h−1S ≈ 1.4–1.7. From the CMB we cannot determine

at which point between last scattering and today the distance evolution diverges from the

EdS case; from supernova observations, we know that this happens between a redshift of

order unity and today. Any viable cosmological model has to explain this change in the

distance scale, whether the reason is dark energy, modified gravity or large deviations from

the FL geometry.

Constraints on R, ℓA and other parameters have been presented earlier in [66, 46,

122, 27, 89, 67], where the data have been analysed in the context of different models

for dark energy, also taking into account effects like neutrino masses which we do not

consider. Our mean value for R is larger (and ωb and ns are smaller) than in those studies,

because of the systematic shift due to cutting away the low multipoles. The increase in

the error bars is smaller than the change in the mean values, as they do not take into

account the systematic shift. The shift indicates that different parts of the data prefer

different parameter values, which frustrates the effort to give precise model-independent

error bars, because the only way to reduce model-dependence is to exclude the part of the

data which is most likely subject to unknown physical effects. We think that cutting the

multipoles below ℓmin = 40 strikes a good balance between reducing model-dependence

and not discarding data needlessly.

The cosmological parameter most robustly determined by the CMB in a model-independent

manner is the ratio ℓA = πDA(z∗)/rs(z∗), which does not undergo a systematic shift with

increasing ℓmin, unlike ωb, ωc, ns, R or DA(z∗). It is interesting that as low multipoles

are cut, the spectral index becomes smaller, making the evidence for violation of scale-

invariance in the initial conditions stronger. For ℓmin ≥ 80, values ns < 0.9 are within 1σ

of the mean. As for the baryon density, the shift towards smaller values is well within the

constraint 1.9 ≤ 100ωb ≤ 2.4 (95% C.L.) from Big Bang Nucleosynthesis [2]. Our value

for ωc is more than 2σ away from the ΛCDM value with no multipole cut, while the error

bars increase only by 26%. This model-dependence suggests caution about the value and

the error bars of ωc which enter into codes such as DarkSUSY [52].

In order to be independent of late-time cosmology, we cannot take into account low
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ℓ results for the CMB anisotropies. In the final parameters quoted in table 4.4 we have

used the data for ℓ ≥ ℓmin = 40. At first sight one might hope that our analysis could

be significantly improved once the Planck data with precise Cℓ’s up to ℓ ≈ 2500 will

be available. However, for ℓ & 1000 CMB lensing can no longer be neglected for data

with a precision better than about 4% for the anisotropies and 10% for the polarisation

[80, 36]. But lensing and other second order effects depend on the details of the late-time

cosmology. Hence our model-independent analysis has to be restricted to the interval of

roughly 40 ≤ ℓ ≤ 800. Higher ℓ data can only be used if the error bars are sufficiently

large. For ACBAR this is still marginally possible, but with Planck systematic errors due

to late-time effects will have to be added to the high ℓ data. Increased precision in the

multipole range 40 ≤ ℓ ≤ 800 also has to be balanced against contamination by model-

dependent secondary effects. We therefore do not expect a substantial improvement of our

results from future data.

4.4 Conclusion

We have analysed the CMB data in a way which is independent of the details of late-

time cosmology, i.e. the cosmology at redshifts z <∼ 60. The results we have obtained are

therefore valid for most models of late-time cosmology, whether they include dark energy,

modified gravity, a local void or backreaction.

We have presented model-independent limits on ωb, ωc, ns and the angular diameter

distance to the last scattering surface DA(z∗), or its ratio with the sound horizon at last

scattering, θA = rs(z∗)/DA(z∗). The present CMB data give an extraordinarily precise

measurement of θA, which every realistic model of the late universe must agree with. We

can summarize the final result by

100ωb = 2.13 ± 0.05 , ωc = 0.124 ± 0.007

ns = 0.93 ± 0.02 , θA = 0.593◦ ± 0.001◦ . (4.12)

Note that the values of ωc and ωb actually determine the matter and baryon density at

last scattering via the relation ρx(z∗) = (1 + z∗)
3(H0/h)

2ωx. The values of the densities

today may be different e.g. if dark matter decays at late times [31].

In summary, every model which satisfies equations (4.12) will automatically be in agree-

ment with the present CMB data for ℓ ≥ 40. Only lower ℓ CMB data, large scale structure,

lensing and other observations can distinguish between models which have the above values

for ωb, ωc, ns and θA.

We have also found that there is a systematic shift in the cosmological parameters as

more low ℓ data are cut. As more data from low multipoles is removed, ωb and ns decrease,

while ωc becomes larger. These changes keep the power spectrum at small scales fixed,

but tend to increase the amplitude on large scales. These changes are not reflected in the

statistical error bars: the small angle data prefer different parameter values than the full

set of CMB data. This trend is visible to at least ℓmin = 100. Whether this behaviour has

any connection with the various directional features at low multipoles [56, 57, 48, 8], is not

clear.
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4.5 Appendix

4.5.1 The scale parameter approximation

In this appendix we illustrate the accuracy of the scale parameter approximation for the

high multipoles. We consider spectra for FL models with non-zero spatial curvature or cos-

mological constant, compared with the Einstein-de Sitter result scaled with the parameter

S as discussed in section 4.2.3. We keep the matter densities fixed to the WMAP5 best-fit

values ωb = 0.023 and ωc = 0.11 [32]. Neglecting the contribution of radiation, the scale

parameter in these models is

S ≃
√
ωm

2

∫ z∗

0

dz
√

ωm(1 + z)3 + ωK(1 + z)2 + h2 − ωm − ωK

, (4.13)

where ωK ≡ ΩKh2 and h2 − ωm − ωK = ΩΛh
2 ≡ ωΛ.

In figure 4.9 we show the TT spectrum for models with positive or negative spatial

curvature and the scaled model. The spectra lie on top of each other for ℓ & 20, except

for large negative spatial curvature. In figure 4.10 and figure 4.11 we show the TE and

EE spectra. The scaled curves are practically indistinguishable from the exact ones at all

multipoles, even for large negative spatial curvature. In figure 4.12, we show the spectra for

models with positive cosmological constant compared with the scaled model. The scaling

approximation is excellent for all of the spectra for ℓ & 20.

10 100 1000l
0

2000

4000

6000

8000

10 100 1000l
0

2000

4000

6000

8000

10 100 1000l
0

2000

4000

6000

8000

10 100 1000l
0

2000

4000

6000

8000

Ω

Ω

Ω

Ω

Κ =0.6

K

K

K=-0.6

=0.3

=-0.3

S=1.51

S=0.81

S=1.18

S=0.89

Figure 4.9: The TT spectra for models with ΩΛ = 0,ΩK 6= 0. The solid curve corresponds
to the Einstein-de Sitter universe, the dotted curve corresponds to a model with ΩK as
specified in the panels, and the dashed curve shows the Einstein-de Sitter universe power
spectrum scaled with S. The vertical axis is ℓ(ℓ+ 1)CTT

ℓ /(2π) in (µK)2.
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Figure 4.10: As in figure 4.9, but for the TE spectra. The dotted curves are invisible since
they are completely overlaid by the dashed ones (scaled model).

4.5.2 Reionization

In this appendix we study the effect of reionization on the angular power spectrum of the

CMB. If the baryons are reionized at redshift zri, the effect on scales which are of the order

of the horizon size at the time is complicated, and leads to additional polarization and a

scale-dependent reduction of the amplitude of anisotropies. However, on scales which are

well inside the horizon, the rescattering of photons simply reduces the amplitude of CMB

temperature and polarization anisotropies by roughly the same amount on all scales. This

effect can therefore be absorbed in a renormalization of the spectrum. In figure 4.13 we

show the TT spectrum with and without reionization for the best-fit ΛCDM model, as

well as the relative difference of the spectrum with and without reionization. For ℓ ≥ 40,

renormalizing the spectrum with a constant reproduces the effect of reionization within

about 1.5%. We have done the same with the temperature–polarization cross-correlation

and the polarization spectra. Also there renormalization is a very good approximation

(better than 0.5% on average) for ℓ ≥ 40, see figures 4.14 and 4.15. To obtain the spectra

with τ = 0.1, we have multiplied the spectra with τ = 0 by the factor 0.82.
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Figure 4.11: As in figure 4.9, but for the EE spectra. The dotted curves are invisible since
they are completely overlaid by the dashed ones (scaled model).



Appendix 103

10 100 1000l
0

1000

2000

3000

4000

5000

6000
S = 0.90

10 100 1000l
0

1000

2000

3000

4000

5000

6000
S = 0.97

10 100 1000l

0

10

20

30

40

50

10 100 1000l

0

10

20

30

40

50

10 100 1000l
-200

-100

0

100

200

10 100 1000l

-100

0

100

Ω

Ω

Ω Ω

Ω

ΩΛ

Λ

ΛΛ

Λ

Λ = 0.7

 = 0.7

= 0.7

= 0.3

= 0.3

= 0.3

Figure 4.12: As in figure 4.9, but for ΩΛ 6= 0,ΩK = 0. We consider two different values for
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Figure 4.13: The TT power spectrum with (dashed, red) and without (solid, black) reion-
ization for optical depth τ = 0.1 for ℓ ≥ 2 (left upper panel) and ℓ ≥ 40 (right upper panel).
For the upper panels, the vertical axis is ℓ(ℓ + 1)CTT /(2π) in (µK)2. In the lower panel
we show the relative difference between the spectrum with and without reionization, when
the latter is simply rescaled by a constant. For low ℓ’s, the differences are substantial, up
to 25%, but for the values ℓ ≥ 40 we consider, the difference is less than 2%.
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Figure 4.14: The TE correlation spectrum with (dashed, red) and without (solid, black)
reionization for optical depth τ = 0.1 for ℓ ≥ 2 (left upper panel) and ℓ ≥ 40 (right upper
panel). The vertical axis is ℓ(ℓ + 1)CTT /(2π) in (µK)2. In the lower panel we show the
difference between the spectrum with and without reionization, when the latter is simply
rescaled by a constant. For the values ℓ ≥ 40 we consider, the difference is below

0.1(µK)2.
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A large scale coherent magnetic field:
interactions with free streaming particles and limits from

the CMB

Julian Adamek, Ruth Durrer, Elisa Fenu, Marc Vonlanthen

We study a homogeneous and nearly-isotropic Universe permeated by a homogeneous

magnetic field. Together with an isotropic fluid, the homogeneous magnetic field, which

is the primary source of anisotropy, leads to a plane-symmetric Bianchi I model of the

Universe. However, when free-streaming relativistic particles are present, they generate

an anisotropic pressure which counteracts the one from the magnetic field such that the

Universe becomes isotropized. We show that due to this effect, the CMB temperature

anisotropy from a homogeneous magnetic field is significantly suppressed if the the neutrino

masses are smaller than 0.3 eV.

5.1 Introduction

On very large scales, the observed Universe is well approximated by a homogeneous and

isotropic Friedmann solution of Einstein’s equations. This is best verified by the isotropy of

the Cosmic Microwave Background (CMB). The small fluctuations observed in the CMB

temperature are fully accounted for by the standard model of structure formation from

small initial fluctuations which are generated during an inflationary phase. Nevertheless,

these small fluctuations are often used to limit other processes or components which may

be present in the early Universe, like e.g. a primordial magnetic field.

The generation of the magnetic fields observed in galaxies and clusters [75] is still

unclear. It has been shown that phase transitions in the early Universe, even if they do

generate magnetic fields, have not enough power on large scale to explain the observed large

scale coherent fields [19]. These findings suggest that primordial magnetic fields must be

correlated over very large scales.

In this paper, we discuss limits on fields which are coherent over a Hubble scale and

which we can therefore treat as a homogeneous magnetic field permeating the entire Uni-

verse. We want to derive limits on a homogeneous field from CMB anisotropies. This

question has been addressed in the past [4] and limits on the order of B <∼ 2× 10−9 Gauss

have been derived from the CMB anisotropies [6]. A similar limit can also be obtained

from Faraday rotation [111, 69].

We show that the limits from the CMB temperature anisotropy actually are invalid if

free streaming neutrinos with masses mν < Tdec are present, where Tdec denotes the photon

temperature at decoupling. This is the case if the neutrino masses are not degenerate, i.e.

the largest measured mass splitting is of the order of the largest mass, hence mν
<∼ 0.04eV.

The same effect can be obtained from any other massless free streaming particle species,

like e.g. gravitons, if they contribute sufficiently to the background energy density. This is

due to the following mechanism which we derive in detal in this paper: In an anisotropic
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Bianchi-I model, free streaming relativistic particles develop an anisotropic stress. If the

geometric anisotropy is due to a magnetic field, which scales exactly like the anisotropic

stress of the massless particles, this anisotropic stress cancels the one from the magnetic

field and the Universe is isotropized. Hence the quadrupole anisotropy of the CMB due to

the magnetic field is erased. This ‘compensation’ of the magnetic field anisotropic stress

by free-streaming neutrinos has also been seen in the study of the effects of stochastic

magnetic fields on the CMB [90, 116, 12, 76] for the large scale modes. In our simple

analysis the mechanism behind it finally becomes clear.

The limits from Faraday rotation are not affected by our arguments.

In the next section we derive the CMB anisotropies in a Bianchi I Universe. In Sec-

tion 5.3 we show that relativistic free streaming neutrinos in a Bianchi I model develop

anisotropic stresses and that these back-react to remove the anisotropy of the Universe if

the latter is due to a massless mode. In Section 5.4 we discuss isotropization due to other

massless free streaming particles, with special attention to a gravitational wave background.

In Section 5.5 we conclude.

5.2 Effects on the CMB from a constant magnetic field in

an ideal fluid Universe

We consider a homogeneous magnetic field in z−direction, B = Bez in a Universe filled

otherwise with an isotropic fluid consisting, e.g. of matter and radiation. The metric of

such a Universe is of Bianchi type I,

ds2 = −dt2 + a2⊥(t)(dx
2 + dy2) + a2‖(t) dz

2 , (5.1)

where t is cosmic time. The Einstein equations in cosmic time read

2
ȧ‖

a‖

ȧ⊥
a⊥

+

(

ȧ⊥
a⊥

)2

= 8πGρ , (5.2)

ä‖

a‖
+

ä⊥
a⊥

+
ȧ‖

a‖

ȧ⊥
a⊥

= −8πGP⊥ , (5.3)

2
ä⊥
a⊥

+

(

ȧ⊥
a⊥

)2

= −8πGP‖ . (5.4)

The dot denotes the derivative with respect to t. We have introduced the total energy

density ρ = ρB + ρm + ργ + ρν + ρΛ, where ρB = B2/8π is the energy density in the

magnetic field, and ρm, ργ , ρν , ρΛ are as usual the energy densities of matter (assumed to

be baryons and cold dark matter), photons, neutrinos, and dark energy (assumed to be a

cosmological constant), respectively.

All the above constituents of the Universe, except matter (which is assumed to be

pressureless) also contribute to the pressure components P‖, P⊥. The contribution from

the magnetic field is intrinsically anisotropic and given by

PB,⊥ = −PB,‖ = ρB , (5.5)

as can be read off from the corresponding stress-energy tensor. Note that the magnetic

field B decays as a−2
⊥ , so that ρB scales as a−4

⊥ .
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For later reference we define an ‘average’ scale factor

a ≡ a
2/3
⊥ a

1/3
‖ , (5.6)

which is chosen such that it correctly describes the volume expansion.

Let us also introduce the expansion ratesH⊥ = ȧ⊥/a⊥ andH‖ = ȧ‖/a‖. The anisotropic

stress of the homogeneous magnetic field sources anisotropic expansion, which can be ex-

pressed as the difference of the expansion rates, ∆H = H⊥ −H‖. We combine eqs. (5.4)

and (5.3) to obtain an evolution equation for ∆H,

˙∆H +
(

2H⊥ +H‖

)

∆H = 8πG
(

P⊥ − P‖

)

. (5.7)

This pressure difference is actually simply the anisotropic stress. More precisely,

Πi
j ≡ Ti

j − Pδi
j , P = T i

i /3 = (2P⊥ + P‖)/3 ,

Π1
1 = Π2

2 = P⊥ − P =
1

3

(

P⊥ − P‖

)

, Π3
3 = P‖ − P = −2

3

(

P⊥ − P‖

)

. (5.8)

At very high temperatures, both photons and neutrinos are tightly coupled to baryons.

Their pressure is isotropic and thus their contribution to the right-hand-side of (5.7) van-

ishes. The collision term in Boltzmann’s equation tends to isotropize their momentum-

space distribution. Under these conditions the only source of anisotropic stress is the

magnetic field. The above equation can then easily be solved to leading order in ∆H, as

will be carried out in section 5.3.

However, as soon as the neutrinos decouple and start to free-stream, their momentum-

space distribution will be affected by the anisotropic expansion caused by the magnetic field

and thus they will develop anisotropic stress. As we will show, the neutrino anisotropic

stress counteracts the one from the magnetic field. This behavior will be maintained until

the neutrinos become non-relativistic, then their pressure decays. For the temperature

anisotropy in the CMB it is relevant whether this happens before or after photon decou-

pling. This depends, of course, on the neutrino masses.

We introduce the energy density parameters

Ωx(t) ≡
8πGρx(t)

3H2(t)
=

ρx(t)

ρc(t)
,

corresponding respectively to the magnetic field, matter and radiation etc., such that e.g.

ΩB = B2/8πρc, Ωm = ρm/ρc and Ωγ = ργ/ρc. Here we define the ‘average’ Hubble

parameter by

H2 ≡ 1

3

[

(

ȧ⊥
a⊥

)2

+ 2
ȧ⊥ȧ‖

a⊥a‖

]

. (5.9)

With this, eq. (5.2), implies

ΩT ≡ ΩB +Ωγ +Ων +Ωm +ΩΛ = 1 at all times. (5.10)

As an alternative, one could have defined the ‘average’ Hubble parameter as

Ha ≡ 1

3

[

2
ȧ⊥
a⊥

+
ȧ‖

a‖

]

.
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It can easily be verified that the difference between these definitions is of the order of the

small quantity ∆H = H⊥ −H‖. More precisely,

H2 = H2
a

[

1− 2

3

∆H

Ha
− 1

3

(

∆H

Ha

)2
]

. (5.11)

We shall mainly use the definition which yields the constraint (5.10).

The scaling of the energy densities corresponding to every species follows from the stress

energy conservation of every single fluid

ργ = ρ0γ

(a0
a

)4
, ρm = ρ0m

(a0
a

)3
, ρB = ρ0B

[

a⊥(t0)

a⊥

]4

. (5.12)

To obtain the above behavior for radiation, it is important to impose that the fluid is ideal,

i.e. that pressure is isotropic. This is the case if there are sufficiently many collisions, but

does not hold for free streaming particles as we shall see in the next section.

At a fixed initial time one may set a⊥ = a‖ as initial condition. Motivated by observa-

tions, we assume that the scale factor difference always remains small,

a⊥ − a‖

a
≡ δ ≪ 1 . (5.13)

To first order in ∆H ≪ H, as long as the magnetic field is the only anisotropic component,

eq. (5.7) becomes (see also [55])

˙∆H + 3H∆H = 8πG
(

P⊥ − P‖

)

= 6H2ΩB . (5.14)

In the following we consider both ΩB and ∆H as small quantities and want to calculate

effects to first order in them. To first order, ρB ∝ a−4 ∝ ργ . We can therefore introduce

the ratio

r =
ρB
ργ

=
ΩB

Ωγ
, (5.15)

which (to first order) is constant.

In fig. 5.1 we plot the scale factor difference δ0 − δ and ∆H/H as functions of the

temperature in a first stage where neutrinos, photons and baryons are all tightly coupled

and the magnetic field is the only source of anisotropy.

5.2.1 Lightlike geodesics in Bianchi I

Let us now determine the CMB anisotropies in a Bianchi I Universe. We are not interested

in the usual anisotropies from primordial perturbations, which we disregard in our treat-

ment, but we concentrate on the effect of the global anisotropy, which to leading order will

result in a temperature quadrupole.

We choose the tetrad basis e0 = ∂t, ei = a−1
⊥ ∂i for i = 1, 2 and e3 = a−1

‖ ∂3. The dual

basis of 1-forms is given by θ0 = dt, θi = a⊥dx
i, for i = 1, 2 and θ3 = a‖dx

3. The first

structure equation,

dθa + ωa
b ∧ θb = 0 ,
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yields

ωi
0 =

ȧ⊥
a⊥

θ0 , i = 1, 2 , and ω3
0 =

ȧ‖

a‖
θ0 . (5.16)

The other non-vanishing connection 1-forms are determined by anti-symmetry, ωab = −ωba.

After photon decoupling, the photon 4-momentum p = paea satisfies the geodesic equation

dpa

dλ
+ ωa

c(eb) p
b pc = 0 . (5.17)
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Figure 5.1: Temperature evolution of the scale factor difference δ0− δ and ∆H/H in units
of r = ΩB/Ωγ when no free-streaming particle compensates the anisotropy produced by the
magnetic field anisotropic stress. Here δ0 denotes the scale factor difference δ today. The
evolution of the ‘average’ scale factor a is the one of a ΛCDM Universe. As it is shown in
section 3, ∆H/H is constant during the radiation dominated era and δ is growing. During
the matter dominated era ∆H/H is decaying, ∆H/H ∝ 1/a ∝ T , and δ asymptotes to a
constant.

Considering the constraint relation for massless particles pap
a = 0 and setting αT0 ≡

p0 = p =
√

∑3
i=1(p

i)2, where T0 is a constant with the dimension of energy (or tempera-

ture) that multiplies all the components pa, the above equation is solved by

(pa) = T0

(

α,
n1

a⊥
,
n2

a⊥
,
n3

a‖

)

, (5.18)

where n is a unit vector in the direction of the particle momentum and α is determined by
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the condition pap
a = 0.

n1 = sin θ sinφ , n2 = sin θ cosφ and n3 = cos θ .

The temperature of photons in such an anisotropic Universe for a comoving observer,

u = ∂t, is then given by

T (t, θ) = ηabu
apb = p0 = T0α = T0

√

sin2 θ

a2⊥
+

cos2 θ

a2‖
≃ T0

a

[

1 + δ cos2 θ +O(δ2)
]

. (5.19)

We set

T̄ =
1

4π

∫

T (t, θ) sin θdθdφ =
T0

a

[

1 +
1

3
δ +O(δ2)

]

to be the temperature averaged over directions. Note that for δ = 0 and a0 = 1, T0 is

simply the CMB temperature at time t0. For the temperature fluctuations to first order

in δ we obtain

∆T

T
≡ T (t, θ)− T̄

T̄
=

1

3
δ(3 cos2 θ − 1) +O(δ2) = δ

2

3

√

4π

5
Y20(n) +O(δ2) . (5.20)

Hence, to lowest order in δ a homogeneous magnetic field generates a quadrupole which is

given by

C2 =
1

5

2
∑

m=−2

|a2m|2 = 1

5
|a20|2 =

16π

225
δ2 ≃ 0.22 × δ2 . (5.21)

Of course, in principle one can set δ(t1) = 0 at any given moment t1 which then leads

to ∆T
T (t1) = 0. However, for the CMB we know that photons start free-streaming only

at tdec when they decouple from electrons. Before that, scattering isotropizes the photon

distribution and no quadrupole can develop1. In other words, we have to make sure that

the anisotropy-induced quadrupole is fixed to zero at decoupling and only appears as a

result of differential expansion between last scattering and today. This can be taken into

account by simply choosing the initial condition δ(tdec) = 0. Without this initial condition

we have to replace δ(t) by δ(t) − δ(tdec) in eq. (5.21) 2. The general result for the CMB

quadrupole today is therefore

C2 =
16π

225
[δ(t0)− δ(tdec)]

2 . (5.22)

5.2.2 The Liouville equation

At this stage it is straightforward to check that the exact expression found above for the

temperature, eq. (5.19), satisfies the Liouville equation for photons (see, e.g. [34])

paea(fγ)− ωi
b(p)p

b∂fγ
∂pi

= 0 , (5.23)

1This is not strictly true and neglects the slight anisotropy of non-relativistic Thomson scattering.
2More generally, one can say that δ itself is not a quantity with a physical meaning as long as no reference

value is specified. In physical terms, only the difference of δ between two instants of time can be a relevant
quantity.
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when we make the following Ansatz for the distribution function of massless bosonic par-

ticles in our Bianchi I Universe

p⊥ ≡
√

(p1)2 + (p2)2 , p‖ = p3, p =
√

p2⊥ + p2‖ = p0 , (5.24)

fγ(t, T ) =
Nγ

(2π)3
1

ep/T − 1
, T = T (t, θ) . (5.25)

Indeed, using eqs. (5.16), we find the following differential equation for the temperature T

∂fγ
∂T

∂T

∂t
− ˙a⊥

a⊥

∂fγ
p⊥

p⊥ − ȧ‖

a‖

∂fγ
∂p‖

p‖ = 0 . (5.26)

With (5.25) this can be written as

Ṫ

T
+

˙a⊥
a⊥

(

p⊥
p

)2

+
ȧ‖

a‖

(

p‖

p

)2

= 0 . (5.27)

The time behavior of the different components of the photon momentum are given by

eq. (5.18) and one immediately sees that expression (5.19) for the temperature solves the

above differential equation.

Moreover, defining the time dependent unit vectors p̂i ≡ pi/p and the shear tensor

σab ≡ ϑab −
1

3
ϑc
chab , where ϑab ≡

1

2
(∇aub +∇bua) and hab ≡ ηab + uaub ,

one can rewrite the above Liouville equation as

(p̃)˙ = −p̃σij p̂
ip̂j , (5.28)

where p̃ denotes the redshift-corrected photon energy defined as p̃ ≡ ap. This last expres-

sion agrees with the corresponding equation given in [94].

Using the expression for the distribution function of massless fermions, we can also com-

pute the pressure of neutrinos once they start free-streaming. Indeed, given the fact that

neutrinos can be considered massless before they become non-relativistic, their geodesic

equation has the same solution as the one for photons found above, therefore we immedi-

ately obtain the time behavior of their temperature in an anisotropic Bianchi I background.

Taking also into account the fact that neutrinos are fermions, their distribution function

reads

fν(t, T ) =
Nν

(2π)3
1

ep/T + 1
, with T (t, θ) =

Tν

a

[

1 + δ cos2 θ +O(δ2)
]

. (5.29)

Note that the parameter T appearing in the neutrino distribution function in not a temper-

ature in the thermodynamical sense as the neutrinos are not in thermal equilibrium. It is

simply a parameter in the distribution function and its time evolution has been determined

by requiring the neutrinos to move along geodesics i.e. to free-stream.

This distribution function remains valid also in the case where neutrinos are massive,

i.e. Tν < mν . The only difference is that the relation p0 = p changes to p0 =
√

p2 + (mνa)2

which of course affects the momentum integrals for the neutrino energy density and pres-

sure.
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The energy Tν/a0 is the present neutrino ‘temperature’ in the absence of a homogeneous

magnetic field (δ = 0). The energy density ρν and the pressure Pν,i in direction i with

respect to our orthonormal basis are

ρν = Nν

∫

d3p fν(t, T )p
0 (5.30)

Pν,i = Nν

∫

d3p fν(t, T )
p2i
p0

. (5.31)

Calculating the integral (5.31) for relativistic neutrinos to first order in δ in the direc-

tions perpendicular and parallel to the magnetic field direction, one finds for the neutrino

anisotropic stress in the ultra-relativistic limit

Pν,⊥ − Pν,‖ ≃ − 8

15
ρν (δ − δ∗) , (5.32)

where δ∗ is the value of δ at neutrino decoupling and can be fixed to zero for convenience.

The temperature dependence of the neutrino pressure is shown in fig. 5.2. To leading

order, this also gives the temperature dependence of the neutrino anisotropic stress. From

the plot it is clear how the pressure scales as a−4 as long as the neutrinos are ultra-

relativistic. Once they have become effectively non-relativistic, their pressure decays more

rapidly, as a−5. The break in the power law is not precisely at T = mν , but at a somewhat

lower temperature. Because the neutrinos still have the highly relativistic Fermi-Dirac

distribution from the time of their thermal freeze-out, it takes some additional redshift

until they behave effectively non-relativisic. This will have some effect on the estimates

for the residual CMB quadrupole, as we shall see in sec. 5.3, in particular the discussion

of fig. 5.5.

5.3 Neutrino free-streaming and isotropization

5.3.1 Massless free-streaming neutrinos

We now calculate the effect of free-streaming neutrinos perturbatively, i.e. to first order

in δ, ∆H/H and ΩB. We linearize eq. (5.7), taking into account the contribution of a

free-streaming relativistic component to the right-hand side. We have shown that this

contribution, to leading order in δ, is given by eq. (5.32). Furthermore, up to O(δ2)

corrections, δ is just the integral of ∆H,

∫ t

t∗

∆H(t′)dt′ = ln
a⊥ (t)

a‖ (t)
− ln

a⊥ (t∗)

a‖ (t∗)
≃ δ − δ∗ , (5.33)

so that to first order we can identify ∆H ≃ δ̇.

Inserting this back into eq. (5.7) we find, to linear order in δ,

δ̈ + 3Hδ̇ +
8

5
H2Ων (δ − δ∗) = 6H2ΩB . (5.34)

Note that, because we are working at linear order, it is not important with respect to which

scale factor H,Ων and ΩB are defined in (5.34). We will now give analytic solutions to this

equation for different regimes in the evolution of the Universe.
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Figure 5.2: Temperature evolution of the neutrino pressure Pν,⊥ normalized to the neutrino
energy density ρν . The temperature is given in units of the neutrino mass. Note that the
break in the power law is not at T = m, but at somewhat lower temperature. This is due
to the highly relativistic Fermi-Dirac distribution of the neutrinos, see also the discussion
of fig. 5 in sec. 3.3.

Let us begin at very high temperature where the neutrinos are still strongly coupled to

baryons. In this case they do not contribute to eq. (5.34) since their pressure is isotropic

(Pν,⊥ − Pν,‖ ∼ 0) given the high rate of collisions. Furthermore, since we are in the

radiation dominated era (a ∝ t1/2), we have H = 1/2t, and ΩB is constant. The

solution to eq. (5.34) in this case is

δ̇(t) = ∆H(t) =
3ΩB

t
+

C

t3/2
. (5.35)

The dimensionless quantity ∆H/H hence asymptotes to a constant, since the homogeneous

piece decays like a−1:
∆H

H
→ 6ΩB . (5.36)

∆H soon becomes insensitive to the initial conditions and only depends on ΩB. This also

shows that in the absence of an anisotropic source (ΩB = 0), the expanding Universe

isotropizes. Integrating this equation and remembering that ΩB = constant to first order

in a radiation dominated Universe, we obtain

δ(t)− δ(t′) = 3ΩB ln(t/t′) . (5.37)

As the Universe reaches a temperature of roughly 1.4 MeV, the neutrinos decouple and

begin to free-stream, giving rise to the corresponding term in eq. (5.34). In the radiation
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dominated era, Ων remains constant as long as neutrinos are ultra-relativistic3. This is

certainly true for temperatures well above a few eV. In this regime, the general solution of

eq. (5.34) is given by

δ(t)− δ∗ =
15

4

ΩB

Ων
+ t−1/4

(

C+t
i
√

2Ων/5−1/16 + C−t
−i
√

2Ων/5−1/16
)

. (5.38)

For Ων > 5/32, the homogeneous part is oscillating with a damping envelope ∝ t−1/4 ∝
a−1/2. This means that ∆H = δ̇ will decay within a few Hubble times, which is a mat-

ter of seconds at the temperatures we are talking about. After that, δ − δ∗ will remain

constant at the value of (15/4) ΩB/Ων until the neutrinos become non-relativistic. Then

their pressure drops dramatically and so does their anisotropic stress. Until this time,

the Universe expands isotropically, because the anisotropic stress of the magnetic field is

precisely cancelled by the one of the neutrinos. Remember that a constant δ can always be

absorbed in a re-scaling of the coordinates and has no physical effect. Fig. 5.3 shows the

temperature evolution of δ − δ∗ in the radiation dominated era from neutrino decoupling

until T = 100eV.
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Figure 5.3: Temperature evolution of δ− δ∗ from neutrino decoupling to T = 100eV. After
decoupling, δ−δ∗ begins to oscillate with a decreasing amplitude around the constant 15

4
ΩB
Ων

,
as predicted by the analytic solution (5.38). This qualitative behavior is independent of
the initial conditions.

3Actually, Ων changes slightly when electron-positron annihilation takes place, a process which heats up
the photons but not the neutrinos. This happens at a temperature close to the electron mass. After that,
Ων/Ωγ remains constant until the neutrinos become non-relativistic.
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This mechanism rests on two important facts. Firstly, as long as neutrinos are ultra-

relativistic, they redshift in the same way as the magnetic field, meaning that ΩB/Ων is

constant. Once the anisotropic stress of the neutrinos has adjusted to the magnetic field,

their sum remains zero independent of the expansion of the Universe which is now in a

Friedmann phase. Secondly, the efficiency of the effect hinges on the absolute value of Ων .

In the radiation dominated era (after positron annihilation), we have Ων ≃ 0.4 so that

Ων > 5/32, and hence the system behaves as an underdamped oscillator with a damping

envelope ∝ t−1/4. Had the density parameter of the free-streaming particles been less

than 5/32, the behavior would be that of an overdamped oscillator. As it is evident from

eq. (5.38), for Ων ≪ 5/32 there would be a mode which decays extremely slowly, roughly as

t−4Ων/5. This is why a strongly subdominant free-streaming component cannot damp the

anisotropy efficiently. As we shall discuss in section 5.4, a primordial gravitational wave

background could play the role of such a free-streaming component if ΩGW & 5/32.

5.3.2 Massive neutrinos

The neutrinos become non-relativistic roughly at the time when their temperature drops

below their mass scale. Current bounds on the neutrino mass [3] are such that the highest-

mass eigenstate is somewhere between ∼ 1 eV and ∼ 0.04 eV. Since the neutrino mass

splitting is much below 1 eV, an eigenstate close to the upper bound would mean that the

neutrinos are almost degenerate and hence become non-relativistic all at the same time. If

this happens before photon decoupling, i.e., if mν > 0.3 eV, the isotropization effect will

not be present and the CMB will be affected by the anisotropic expansion sourced by the

magnetic field. However, if the neutrinos remain ultra-relativistic until long after photon

decoupling, the CMB quadrupole due to anisotropic expansion will be reduced because the

neutrinos maintain expansion isotropic until they become non-relativistic.

In order to quantify this statement, we repeat the above calculations for the matter

dominated era. For our purposes, this is a reasonable approximation for the time between

photon decoupling and today. At decoupling, radiation is already subdominant, and on

the other hand vacuum energy only begins to dominate at redshift z ∼ 0.5. We therefore

expect that both give small corrections only.

For completeness, we also give the solution of eq. (5.34) in a matter dominated Universe

for the case where we ignore any contributions from free-streaming particles (neutrinos

and, after decoupling, also photons). During matter domination we have H = 2/3t and

ΩB ∝ a−1 ∝ t−2/3. The solution to (5.14) hence reads

δ̇(t) = ∆H(t) =
8ΩB(t)

t
+

C

t2
. (5.39)

The homogeneous mode again decays more rapidly than the particular solution, so that

the dimensionless quantity ∆H/H is again asymptotically proportional to ΩB. Instead of

eqs. (5.36), (5.37), we have

∆H

H
→ 12ΩB , δ(t)− δ(teq) =

∫ t

teq

∆Hdt ≃ 12 [ΩB(teq)− ΩB(t)] . (5.40)

Let us now take into account a free-streaming component. We want to estimate the

effect on the photon distribution function caused by anisotropic expansion in two cases.

Case A: the neutrinos become non-relativistic before photon decoupling. Case B: the neu-
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trinos become non-relativistic after photon decoupling. As an approximation, we assume

that this happens instantaneously to all neutrino species, such that the contribution of

neutrinos to eq. (5.34) disappears abruptly. We know that the neutrinos are in fact spread

out in momentum space and also have a certain spread in the mass spectrum, so in reality

this will be a gentle transition. However, we only want to estimate the order of magnitude

of the effect and are not interested in these details at this point. More precice numerical

results will be presented in sec. 5.3.3. Let us consider case A first.

5.3.2.1 Case A: neutrinos become non-relativistic before photon decoupling

We know that ∆H is very nearly zero when the neutrinos become non-relativistic. After

that, ∆H/H will start to grow again to approach the value 6ΩB during radiation domina-

tion and 12ΩB during matter domination. As boundary condition at photon decoupling, we

will hence assume ∆H/H = xΩB with x . 12. This number can in principle be computed

given the neutrino masses and the evolution of the scale factor across matter-radiation

equality. We shall solve the full equations in subsection 5.3.3; here we just want to un-

derstand the results which we obtain there by numerical integration. The free-streaming

component we are interested in now are the photons after decoupling. We therefore iden-

tify δ∗ = δ(tdec), where tdec denotes the instant of photon decoupling. Furthermore, in

eq. (5.34) we replace Ων by Ωγ , our new free-streaming species. With Ωγ ∝ t−2/3 in the

matter dominated era, the (not so obvious) analytic solution to eq. (5.34) is

δ(t)− δ(tdec) =
15

4

ΩB

Ωγ
+ C [f(t) cos f(t)− sin f(t)] +D [f(t) sin f(t) + cos f(t)] , (5.41)

where we have introduced f(t) ≡ 4
√

2Ωγ(t)/5. The time derivative of eq. (5.41) yields

∆H

H
=

16

5
Ωγ [C sin f(t)−D cos f(t)] . (5.42)

Note that the slowly decaying mode has the same asymptotic behavior as (5.40) – in the

matter dominated era, the free-streaming radiation can never catch up to the magnetic field,

since both fade away too quickly. In other words, this means that free-streaming photons

are never able to counteract the magnetic field anisotropy in order to isotropize again

the Universe, even if they represent the main contribution to the background radiation

energy density, and the reason for this is that they decouple only after the end of radiation

dominantion.

In order to estimate the value of δ today (t0), we can simply take the limit of small

Ωγ(t0) ≪ 1 of (5.41). Correction terms are suppressed at least by
√

Ωγ(t0) ∼ 10−2. We

find

δ(t0)− δ(tdec) ≃
15

4

ΩB

Ωγ
+D . (5.43)

The constant D is fixed by the boundary conditions at decoupling, given by ∆H/H = xΩB

and δ = δ(tdec). These boundary conditions translate to

D =
ΩB(tdec)

Ωγ(tdec)

[

sin f(tdec)

f(tdec)

(

5

16
x− 15

4

)

− 5

16
x cos f(tdec)

]

=
ΩB(tdec)

Ωγ(tdec)

[

−15

4
+

(

4 +
2x

3

)

Ωγ(tdec) +O
(

Ω2
γ(tdec)

)

]

. (5.44)
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In order to obtain the essential behavior we have expanded the boundary term as a Taylor

series in Ωγ(tdec) ≪ 1. Our final result is

δ(t0)− δ(tdec) ≃
(

4 +
2x

3

)

ΩB(tdec) . 12ΩB(tdec) , (5.45)

up to corrections suppressed by powers of Ωγ(tdec).

In this case, the CMB quadrupole is not affected by the presence of free-streaming

neutrinos and we obtain the same result as when neglecting their presence,

C2 ≃
16π

225
[δ(t0)− δ(tdec)]

2 ≃ 768π

75
Ω2
B(tdec) ≃ 0.1r2 . (5.46)

5.3.2.2 Case B: neutrinos become non-relativistic after photon decoupling

In this case, the presence of the neutrino anisotropic stress will delay the onset of anisotropic

expansion until a time tm when the neutrinos become effectively non-relativistic. As before,

we will ignore that this is a gradual process and simply assume that one can define some

kind of “effective” tm at which the neutrino anisotropic stress drops to zero. The full

numerical result is given in section 5.3.3. The effect of anisotropic expansion on the photon

distribution function is estimated as follows. We assume there is no anisotropic expansion

between photon decoupling and tm. At later times, neutrino anisotropic stress can be

ignored. The relevant solution (5.41) is hence obtained with boundary condition δ̇(tm) =

0. Working through the steps above once again or simply taking the result (5.45) with

tdec → tm and x → 0, one finds

δ(t0)− δ(tdec) = δ(t0)− δ(tm) ≃ 4ΩB(tm) . (5.47)

Since ΩB decays as a−1, the effect of anisotropic expansion in case B is suppressed by

roughly a factor of a(tdec)/(3a(tm)) with respect to case A. For light neutrinos with a

highest-mass eigenstate close to the current lower bound, this factor can be as small as

∼ 0.03, loosening the constraint on a constant magnetic field from the CMB temperature

anisotropy correspondingly. Constraints coming from Faraday rotation are not affected.

Clearly, the heaviest neutrino becomes massive at redshift zm = mν/Tν
>∼ 0.04eV/Tν ≃

200. One might wonder whether isotropization can be supported even if only one neutrino

remains massless, since its contribution to the energy density is Ων1 ≃ 0.23Ωγ . The problem

is however that, as soon as one neutrino species becomes massive, the equilibrium between

the magnetic field and the neutrino anisotropic stresses is destroyed and, as we have seen

under case A, where one still has free streaming photons, it cannot be fully re-established

in a matter dominated Universe.

5.3.3 Numerical solutions

In order to go beyond the estimates derived so far, we have solved eqs. (5.2-5.4) numerically

with cosmological parameters corresponding to the current best-fit ΛCDM model [78]. We

use cosmological parameters ΩΛ = 0.73, Ωm = 0.27 today, where Ωm includes a contribu-

tion of massive neutrinos4 which we approximate by Ωνh
2 = Nνmν/94eV with Nν ≃ 3.

4CMB observations actually constrain the matter density at decoupling, such that neutrinos with mν .

0.3eV, which are still relativistic at that time, do not contribute to the measurement of Ωm. However, since
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The contribution to the right-hand side of eq. (5.7) from free-streaming neutrinos is ob-

tained by integrating eq. (5.31) with the full distribution function for massive fermions.

More precisely, we compute the full distribution function to first order in δ and perform

the integration numerically, including the neutrino mass as a parameter. We begin to in-

tegrate deep inside the radiation dominated era, when the neutrinos are still relativistic

but already free-streaming. The asymptotic behavior of solution (5.37) can be used as

initial condition at neutrino decoupling. The constraint equation (5.2) provides the re-

maining initial condition. We then integrate until the desired time. We define today t0 by

a(t0) = 1.

In fig. 5.4, we present the results of the numerical integration from neutrino decoupling

until today. We plot both δ− δ∗ and ∆H/H in units of the parameter r = ΩB/Ωγ so that

the plots are valid for arbitrary magnetic field strengths, as long as r ≪ 1. After neutrino

decoupling, δ oscillates and reaches its constant value as in eqs. (5.38), (5.41), while ∆H = δ̇

oscillates and decays. We choose as initial condition δ = δ∗ = 0 at neutrino decoupling.

Once the temperature of the Universe reaches the neutrinos mass scale, neutrino pressure

decreases and they become non-relativistic. At this point, they can no longer compensate

the anisotropic pressure of the magnetic field, and both δ and ∆H begin to grow. However,

it is clear from fig. 5.4 (upper plot) how, once neutrinos become non relativistic after

photon decoupling (case B), the growth of δ is suppressed with respect to case A, where

this happens before photon decoupling. Moreover, the solid black line in the lower plot

represents the temperature evolution of ∆H/H in the case where only the magnetic field

sources the anisotropy: this makes clear how the absence of any free-streaming particle

able to counteract the magnetic anisotropic stress leaves the anisotropy of the Universe

free to grow with respect to its value today.

Our quantitative final result is shown in fig. 5.5, where we plot the value of the

quadrupole generated by a constant magnetic field, rescaled by r2, as function of the

neutrino mass. We weight the final C2 with respect to the quadrupole obtained without

considering the isotropization induced by free-streaming particles, in order to underline

the relative importance of this effect. These results clearly show that the CMB quadrupole

is significantly reduced by neutrino free-streaming only if their mass is smaller than the

temperature at photon decoupling, mν < Tdec ≃ 0.26 eV. In fact, for neutrino masses in

the range 0.3eV . mν . 3eV, the quadrupole C2 is reduced by less than a factor 100 from

the result without a free-streaming component, whereas for 0 . mν . 0.3 eV, it decreases

by several orders of magnitude. Note, however, that the effect is not negligible even in

the former case with relatively large neutrino masses. Fig. 5.5 also shows our analytical

estimation for the final amplitude of the CMB quadrupole produced by this effect as given

by eq. (5.47). Of course the value of eq. (5.47) depends on the time at which neutrinos

become effectively non-relativistic, tm. Once we choose tm to be given by the time at which

T = mν , we overestimate the final quadrupole amplitude still by one order of magnitude

(dashed blue line). This is a consequence of the fact that the neutrino distribution function

is highly relativistic and therefore it takes a further redshift for them to start behaving

effectively as massive pressureless particles. This has been considered in the more elaborate

estimate given by the dashed red line where we fix the time tm to be given by the time

at which d3Pν/d(ln T )
3 = 0, i.e. the time at which the pressure reaches the break in the

power law. This is in excellent agreement with the numerical results.

their density parameter today is then also very small, their contribution to the matter density remains
practically irrelevant.



Neutrino free-streaming and isotropization 123

1 meV 1 eV 1 keV 1 MeV

5.25

5.50

5.75

6.00

6.25

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

T

1 + z

(δ
−

δ ∗
)
/
r

mν = 0.0 eV
mν = 0.01 eV
mν = 0.03 eV
mν = 0.1 eV
mν = 0.3 eV
mν = 1.0 eV

1 meV 10 meV 100 meV 1 eV 10 eV 100 eV

0.0

0.1

0.2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

T

1 + z

∆
H

/
(H

r)

no free-streaming
mν = 0.0 eV
mν = 0.01 eV
mν = 0.03 eV
mν = 0.1 eV
mν = 0.3 eV
mν = 1.0 eV

Figure 5.4: Temperature evolution of ∆H/H and δ − δ∗ for different neutrino masses. We
chose the initial conditions to be given by δ∗ = 0 at neutrino decoupling. The black solid
line in the lower plot represents the temperature evolution of ∆H/H in the case where
only the magnetic field sources the anisotropy and no free-streaming particle is present to
compensate this effect. The dotted vertical line indicates the instant of photon decoupling.
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Figure 5.5: Effect of free-streaming neutrinos with different masses on the quadrupole gen-
erated by a homogeneous magnetic field, weighted on the quadrupole obtained without
considering the effect of any free-streaming particles. The solid black line represents the
result of the numerical integration, the dashed blue and red lines correspond to our an-
alytical prediction given by eq. (5.47) for two different choices of tm, the time at which
neutrinos are effectively non-relativistic (see the text for clarification).

5.4 A gravitational wave background and other massless

free-streaming components in an anisotropic Universe

From our previous discussion it is evident that any massless free-streaming particle species

X can isotropize the Bianchi I model with a constant magnetic field, if present with suf-

ficient contribution ΩX already in the radiation dominated era. This has to be accounted

for if we want to estimate the CMB quadrupole induced by a homogeneous magnetic field.

So far we have discussed the standard model neutrinos as an example of such a particle.

However, also other massless particles can play this role, for instance gravitons, but also

particle species outside of the spectrum of the standard model. Interestingly, the current

bounds on the number of relativistic degrees of freedom during nucleosynthesis, often

parameterized by the effective number of additional neutrino species ∆Nν , allow for the

possibility that such a species could be sufficiently abundant. The present bound on Nν

from nucleosynthesis is [3]

Nν = 3.2 ± 1.2 ,

g∗ = 2 +
7Nν

4

(

4

11

)4/3

= 3.36 + (Nν − 3)× 0.454

= 3.36 + (0.2 ± 1.2)× 0.454 at 95% confidence. (5.48)

Here we have taken into account that the photon and neutrino temperatures are related by
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Tν = (4/11)1/3Tγ [36]. The effective g∗ from γ and three species of neutrino corresponds

to g∗(γ, 3ν) = 3.36. This is equivalent to a limit on an additional relativistic contribution

at nucleosynthesis of ΩX . 0.2. From the solution (5.38) we know that a free-streaming

relativistic species with a density parameter ΩX & 5/32 ≃ 0.156 during the radiation

dominated era will isotropize expansion within a few Hubble times. Since this species will

presumably decouple before the neutrinos (otherwise it should have been discovered in

laboratory experiments), expansion can be isotropic already at neutrino decoupling, and

thus neither the cosmic neutrino background nor the CMB will be affected by anisotropic

expansion. In this case therefore, unless we are able to detect the background of the species

X, we will never find a trace of the anisotropic stress produced by a homogeneous magnetic

field. An interesting example are gravitons, which we now want to discuss.

Inflationary models generically predict a background of cosmological gravitational waves

which are produced from quantum fluctuations during the inflationary phase. The ampli-

tude of this background, usually expressed by the so-called tensor-to-scalar ratio, rT , has

not yet been measured, but for a certain class of inflationary models, forthcoming experi-

ments such as Planck might be able to detect these gravitational waves. This is in contrast

to the cosmic neutrino background, for which there is no hope of direct detection with

current or foreseeable technology. However, this background typically contributes only a

very small energy density,

ΩGW, inf/Ωγ ≃ 10−10rT , nT
<∼ 0 .

Only non-standard inflationary models which allow for nT > 0 can contribute a significant

background, see [17].

Gravitational waves can also be produced during phase transitions in the early Uni-

verse [43], after the end of inflation. Such gravitational wave backgrounds can easily

contribute the required energy density. Let us therefore concentrate on this possibility.

If the highest energy scales of our Universe remain some orders of magnitude below the

Planck scale, gravitational waves are never in thermal equilibrium and can be considered

as free-streaming radiation throughout the entire history. Therefore, if the gravitational

wave background was statistically isotropic at some very early time, then any amount

of anisotropic expansion taking place between this initial time and today will affect the

gravitons in a similar fashion as any other free-streaming component, and therefore our

present gravitational wave background would be anisotropic. Loosely speaking, the in-

tensity of gravitational waves would be larger in those directions which have experienced

less expansion in total since the initial time when the gravitational wave background was

isotropic.

As we have specified above, with the current limits on ∆Nν , the density parameter of

gravitons ΩGW during nucleosynthesis can be as large as ∼ 0.2. At higher temperatures

(that is, at earlier times), the number of relativistic degrees of freedom increases (more

particle species are effectively massless), such that ΩGW at earlier time can even be larger5.

It is therefore conceivable that gravitons acquire sufficient anisotropic stress to compensate

the magnetic field and hence take over the role which neutrinos have played in section 5.3.

5During a transition from g1 relativistic degrees of freedom to g2 < g1, the temperature changes from
T1 to T2. Since entropy is conserved during the transition we have g1T

3
1 = g2T

3
2 . Hence ρ2 = g2T

4
2 =

g2

[

(

g1
g2

)1/3

T1

]4

=
(

g1
g2

)1/3

ρ1 > ρ1. In other words, the energy density of all species which are still in

thermal equilibrium increases if one reduces the number of degrees of freedom at constant entropy.
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As already pointed out, in this case, neither neutrinos nor photons will ever experience any

significant anisotropic expansion, since the Universe remains in a Friedmann phase after

the gravitons have adjusted to the magnetic field. Of course, gravitons remain relativistic

for all times and the mass effect which we discussed for the neutrinos does not occur.

In order to rule out this scenario, it would be very interesting not only to measure the

background of cosmological gravitational waves but also to determine whether or not it

shows a quadrupole anisotropy compatible with such a compensating anisotropic stress.

Or in other words: just as the smallness of the CMB quadrupole is a direct indication

for isotropic expansion between decoupling of photons and today, the smallness of the

quadrupole of a gravitational wave background would inform us about the isotropy of

expansion between today and a much earlier epoch where this background was generated.

5.5 Conclusions

In this paper we have studied a magnetic field coherent over very large scales so that it

can be considered homogeneous. We have shown that in the radiation dominated era the

well known Bianchi I solution for this geometry is isotropized if a free streaming relativistic

component is present and contributes sufficiently to the energy density, ΩX & 5/32. This

is in tune with the numerical finding [90, 116, 76] that the neutrino anisotropic stresses

‘compensate’ large scale magnetic field stresses. A perturbative explanation of this effect is

attempted in [12]. Here we explain the effect for the simple case of a homogeneous magnetic

field: free streaming of relativistic particles leads to larger redshift, hence smaller pressure

in the directions orthogonal to the field lines where the magnetic field pressure is positive

and to smaller redshift, hence larger pressure in the direction parallel to the magnetic field,

where the magnetic field pressure is negative. To first order in the difference of the scale

factors this effect leads to a build up of anisotropic stress in the free streaming component

until it exactly cancels the magnetic field anisotropic stress. This is possible since both

these anisotropic stresses scale like a−4.

In standard cosmology this free-streaming component is given by neutrinos. However,

as soon as neutrinos become massive, their pressure, Pν ∝ a−5, decays much faster than

their energy density, ρν ∝ a−3, and the effect of compensation is lost. If this happens

significantly after decoupling, there is still a partial cancellation, but if it happens be-

fore decoupling, the neutrinos no longer compensate the magnetic field anisotropic stress.

Furthermore, a component which starts to free-stream only in the matter era (like e.g.

the photons) does not significantly reduce the anisotropic stress. Actually, inserting the

dominant part of the constant D from eq. (5.44) in (5.42) one finds

∆H

H
= 12ΩB , (5.49)

like without a free-streaming component.

This cancellation of anisotropic stresses does not affect Faraday rotation. A constant

magnetic field with amplitude B0
>∼ 10−9Gauss can therefore be discovered either by the

Faraday rotation it induces in the CMB [111], or, if a sufficiently intense gravitational wave

background exists, by the quadrupole (anisotropic stress) it generates in it.

Finally, Planck and certainly future large scale structure surveys like Euclid will most

probably determine the absolute neutrino mass scale. Once this is known, we can infer

exactly by how much the CMB quadrupole from a constant magnetic field is reduced by
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their presence.
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Back Reaction from Walls

Enea Didio, Marc Vonlanthen, Ruth Durrer

We study the distance–redshift relation in a universe filled with ’walls’ of pressure-less

dust separated by under dense regions. We show that as long as the density contrast of the

walls is small, or the diameter of the under dense regions is much smaller than the Hubble

scale, the distance–redshift relation remains close to what is obtained in a Friedmann

universe. However, when arbitrary density contrasts are allowed, every prescribed distance–

redshift relation can be reproduced with such models.

6.1 Introduction

Since more than a decade, cosmology research is facing the dark energy problem: the

present Universe seems to be in an accelerating phase. This conclusion was first drawn from

measurements of the distance–redshift relation from type Ia Supernovae (SNIa) [105, 1] and

is confirmed by many other datasets, from the cosmic microwave background [33] to baryon

acoustic oscillations and other aspects of large scale structure. Until very recently the

measurements inferring the existence of dark energy rely mainly on the distance–redshift

relation which is valid in a Friedmann Universe [42]. New independent measurements of,

e.g. the expansion rate H(z) are now being performed see e.g. [9]. Hence this situation

is changing, so that we shall soon know both, dA(z) and H(z) with good accuracy. The

general opinion is that fluctuations on large scales are small so that they can be treated

with linear perturbation theory and linear perturbations average out in the mean over many

directions and large scales, and therefore fluctuations are not relevant for the determination

of quantities like dA(z) and H(z). This expectation has been confirmed by perturbative

calculations. Within linear perturbation theory, the fluctuations of the distance–redshift

relation for redshift z > 0.2 is on the level of a few percent [11].

However, perturbations on smaller scales can become very large, density fluctuations

e.g. in galaxies are δρ/ρ ∼ ρgal/ρm ∼ 108. Since the relation between metric perturbations,

or more precisely the Christoffel symbols, and density fluctuations is non-linear, it is not

evident that large amplitude, non-linear, small scale density fluctuations cannot add up to

affect the distance–redshift relation on large scales.

To study the real problem one would need to analyse light rays passing through a

realistic Universe with high density fluctuations. So far, this has been done only within

Newtonian N-body simulations, see e.g. [121]. However, it is well known that Newtonian

gravity misses the terms which are relevant for the back reaction problem [103], hence a

full, non-linear relativistic treatment is needed. Since this is very difficult, so far mainly

toy models which mimic reality to a certain extent have been studied.

The present work inscribes in this framework. Instead of considering spherically sym-

metric solutions of general relativity (GR), the so called Lemâıtre [79]-Tolman [120]-Bondi

(LTB) models, for recent reviews see [10], we study a Universe containing high density
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walls. We shall consider infinitely extended parallel walls. The considered model is a sub-

case of the Szekeres solution [119]. Light propagation in general Szekeres model has been

studied recently [73, 85]. This is of course a gross over-simplification, but we know that

galaxies tend to be aligned in filaments and photons coming to us from a far away super-

nova, might experience a geometry similar to the one of such a symmetric wall universe.

The weakest point of our toy model is that all the walls are parallel while we expect a

typical photon to traverse filaments which are aligned in different directions. We shall take

this into account to some extent by studying photons coming in from different directions

with respect to the walls.

Such walls have been studied in the past [26], but only perturbatively. Since we know

that the effects are small within linear perturbation theory, we cannot trust higher order

perturbation theory if it predicts large deviations from the Friedmann distance-redshift

relation. For this reasons we analyse exact, fully relativistic wall-universes in this work.

In the next section we present the wall metric and the Einstein equations. We also

study the conditions on the parameters which have to be satisfied so that no singularity

apart from the Big Bang is present in the backward light cone of the observer. In section 6.3

we present the results for the distance-redshift relation for ’realistic’ walls and for a wall

universe which mimics the observed relation. In section 6.4 we conclude.

6.2 Wall Universes

In this section we study universes containing only pressure-less matter (dust) and which are

symmetric under translations and rotations in a plane which we call the y-plane. They have

the same number of symmetries as LTB models and can be solved analytically, see [126].

The metric is of the form

ds2 = −dt2 + a2(t, x)dx2 + b2(t, x)(dy21 + dy22) . (6.1)

Note that the only difference to the LTB geometry is that our symmetrical 2d manifolds

are planes, dy21 + dy22 = dr2+ r2dφ2 while those of LTB are spheres, dΩ2 = dθ2+sin2 θdφ2.

We denote the spatial coordinates by x = (x, y1, y2) in order to reserve the letter z for

the redshift. In the following a prime denotes a derivative w.r.t. x while a dot denotes

derivative w.r.t. t. The Einstein equations for this geometry and for pure dust matter

yield [119, 126, 93]

∂t

(

b′

a

)

≡ ∂tE = 0 , (6.2)

ḃ2 −
(

b′

a

)2

= 2
M(x)

b
, (6.3)

M ′ = 4πGρb2b′ = 4πGρb2aE(x) . (6.4)

In Eq. (6.2) we have introduced the time-independent function

E(x) = b′/a (6.5)

and Eq. (6.3) defines M(x) which is also time-independent. In LTB models M/G can be

interpreted as mass density (Note that in the LTB case a term b/(2G) has to be added

to M which is a consequence of the curvature of the 2-sphere. For more details see [93].),
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and (M ′/G)r2dr is the mass in a shell of thickness dr. However as the mass in an infinite

plane is not well defined, this interpretation is not meaningful in the planar case. In our

case it is therefore not unreasonable that M may become negative even though a, b and ρ

are supposed to be positive at all times.

From the matter conservation equation we also obtain ∂t(ρb
2a) = 0, which, on the other

hand, is a consequence of Eq. (6.4).

6.2.1 The solutions

Eq. (6.3) can we rewritten as

ḃ2 =
2M(x)

b
+ E(x)2 , (6.6)

with parametric solutions [119, 126]

for E 6= 0 : b =
M

E2
(cosh η − 1) =

2M

E2
sinh2(η/2) , (6.7)

t =
M

E3
(sinh η − η) + tB(x), for M > 0 ; (6.8)

b = −M

E2
(cosh η + 1) = −2M

E2

(

sinh2(η/2) + 1
)

, (6.9)

t = −M

E3
(sinh η + η) + tB(x), for M < 0 ; (6.10)

b = |E|(t− tB(x)) for M = 0 ; (6.11)

for E = 0 : b =

(

3

2

√
2M (t− tB(x))

)2/3

, for M > 0 , (6.12)

b = b0 = const. , for M = 0 . (6.13)

Note that for E = 0 Eq. (6.6) implies that M ≥ 0. This equation also implies

b ≥ −2M

E2

at all times, in all cases.

The function tB(x) is arbitrary; it is called the ’bang time’. For M ≥ 0, at t = tB, i.e

η = 0, we have b = 0 which represents the Big Bang singularity. Positions with M < 0

have no Big Bang singularity but a ’bounce’ at t = tB. We shall simplify below to the

case tB ≡ 0, i.e., uniform bang time. Note that we have chosen expanding solutions. From

these we can obtain the collapsing solutions simply by changing the sign of t. Since in the

Einstein equations only ḃ2 appears they are invariant under t → −t.

Of course the {t =const.} hypersurfaces are not parallel to the {η =const.} hypersur-

faces, but their position depends on x. For fixed position x, Eqs. (6.7,6.8) and (6.12).

correspond to Friedmann solutions with curvature K = −E2 ≤ 0 and M = 4πGρb3/3.

Note that unlike in the Friedmann case, wall solutions with M < 0 need not be unphysical.

The parametric representation with η is chosen in order to express the solutions in

terms of elementary functions, but it is of course not necessary. For example, for M > 0,

setting

τ(t, x) = −E2

(

t

6M

)2/3

and
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S(τ) = (−3τ)−1 sinh2
(

1

2
[sinh−id]−1

(

6 (−τ)3/2
)

)

we obtain

b(t, x) = −M

E2
6τS(τ) .

Note that in the definition of S, [sinh−id]−1 denotes the inverse of the function in brackets,

and id is the identity function, id(x) = x. One can check that S solves the differential

equation [125]
4

3

(

S + τS′
)2

+ 3τ − 1

S
= 0. (6.14)

with initial condition S(0) =
(

3
4

)1/3
. Note that this is the only regular solution, i.e solution

with S′(0) 6= ∞. This expression will be useful in Section 6.3.3.

The function a(x, η) can be obtained from Eq. (6.5). For example for M > 0 we find

a = E−1

(

∂b

∂x

)

t

for E 6= 0 : a =
2

E

(

M

E2

)′

sinh
(η

2

)2
− coth

(η

2

) [

t′B +

(

M

E3

)′

(sinh η−η)
]

,(6.15)

for E = 0 : a =
(t− tB)

2/3

M1/361/3

[

M−1/3M
′

E
+

9(t− tB)
2/3E′

5× 61/3

]

. (6.16)

(The suffix t in ∂b/∂x indicates that we have to interpret b as functions of (t, x), not (x, η),

in this derivative.) Even if E = 0, Eq. (6.4) implies that 0 < M ′/E < ∞, so that the

r.h.s. of Eq. (6.16) is well defined. Below, we shall choose the x-coordinate such that

M ′/E =constant.

Note that M(x) and E(x) can pass through zero so that in general different solutions

from above have to be glued together at the boundary of their validity. We have checked

that this gluing process can be performed in a smooth way and does not induce singularities

in the scale factor b. However, for M → 0 the scale factor a → ∞. Nevertheless, we believe

this to be a coordinate singularity, since, as we have checked, both, the Kretschmann scalar,

K ≡ RαβµνR
αβµν and the scalar curvature remain finite for M → 0. In our examples below

we shall haveM > 0 throughout and therefore we do not encounter this problem. However,

when computing a from Eq. (6.5), one has to be careful to use the result (6.15) and take

the limit E → 0 for fixed t, hence also η → 0. One cannot use (6.12) and (6.5), since

for E = 0 we have M ′ = 0 so that Eq. (6.5) is identically satisfied and cannot be used to

obtain a(t, x).

6.2.2 Singularities

Singularities can occur when a, b or ρ become either infinite or zero. To have no singularities

(apart from the Big Bang) which occurs at t = tB , hence b = 0, in the past light cone of

every possible observer we might be interested in, we must demand that all singularities

lie in the future. In more precise models, when one specifies the observer location, one can

relax this condition to the one that no singularity lies within the background lightcone of

the specific observer.

In general, the question of singularities depends on the choice of the functions M(x)
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and E(x). From our solutions it is clear that b behaves monotonically as a function of time

for fixed x. This is to be expected since no clustering goes on in the directions y1 and y2
described by this scale factor. Since we are interested in an expanding b, a singularity is

present when the the scale factor a of the x-direction tends to zero. From Eq. (6.15) we

infer that for tB ≡ 0, a = 0 implies

2

E

(M/E2)′

(M/E3)′
=

cosh(η/2)

sinh3(η/2)
(sinh η − η) ≥ 4/3 .

It is easy to verify that the right hand side is an even positive function with minimum 4/3

at η = 0. Hence there is a singularity at some finite value of η if the l.h.s. ever becomes

> 4/3 or, equivalently, if

E′

E

M/E3

(M/E3)′
=

cosh(η/2)

2 sinh3(η/2)
(sinh η − η)− 1 > −1/3

for some value of x.

We now consider a simple ansatz motivated by the perturbative analysis presented in

Ref. [26]. We choose

M(x) =
2

9t20
(1 + ǫh(x)) (6.17)

and

4πGρb2a =
M ′

E
=

2

3
t−2
0 = const. (6.18)

so that

E = ǫ
h′

3
. (6.19)

In full generality M ′/E = f(x) could be an arbitrary positive function of x. But we

can always make a coordinate transformation to x̃(x) determined by

dx

dx̃
=

1

6πGρb2at20
,

so that with respect to the new coordinate M ′/E =constant. Hence we just fix the co-

ordinate x (up to a constant shift) by this choice. In addition, we have chosen uniform

bang time, tB(x) ≡ 0. This is a true restriction. With this we have reduced the three

free functions of x to one, h(x) which defines the density profile. Furthermore, we have

introduced the parameter ǫ such that for ǫ = 0 we reproduce the matter dominated Fried-

mann solution. We may also require |h(x)| ≤ 1 so that ǫ indicates the amplitude of the

perturbations. We do this in one of the examples below.

The above requirement for a singularity at some time t 6= 0 now reduces to MM ′′ <

M ′2/3. (Strictly our derivation applies only for M ′ 6= 0. For M ′ ∝ E = 0, one sees

directly from Eq. (6.16) that M ′′ ∝ E′ < 0 is the necessary and sufficient condition for

a = 0 at some time t > tB.) We have found that most interesting mass profiles satisfy

this condition for some values of x and therefore have singularities at some time in some

places. This is not surprising but actually expected from gravitational collapse. However,

when over densities become very high and we approach the collapse, pressure forces and

heating become important and our simple pressure-less dust model for matter no longer

holds. In order to be able to stay within the present framework, we therefore demand
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that such singularities be in the future and not in the past for the density profiles under

consideration.

Let us consider as a first example

h(x) = cos(kx) .

Then the condition for the existence of a singularity (at t 6= 0) becomes

−
(

ǫ cos(kx) + ǫ2 cos2(kx)
)

< (ǫ2/3) sin2(kx) .

which is always satisfied for some values of x, irrespective of k and ǫ. A similar behavior is

expected whenever h is not a convex function, but a function representing several under-

and over-densities cannot be convex.

However, this is not so important for our considerations. As we have said, the require-

ment of singularities to be absent is mainly a technical one and it is actually sufficient not

to have a singularity in the past.

Using the above expression for a (for M > 0) and the ansatz (6.17,6.19) for M and E,

we find that a = 0 is equivalent to

(1 + ǫh)h′′

ǫh′2 − 3(1 + ǫh)h′′
= −1

3

1

1− ǫh′2

3(1+ǫh)h′′

=
1

2

cosh(η/2)

sinh3(η/2)
(sinh η − η)− 1 > −1/3 . (6.20)

Interestingly, in extremal positions of h, with h′ = 0, the l.h.s. of the above expression

is exactly −1/3. This comes from the fact that for this case η = 0 ∀ t and we have to

replace the condition that there is no singularity before some given time t0 by a(t) > 0 for

t < t0 using expression (6.16) for a(t). If h′′′ = 0 when h′ = 0 (as in our example) one can

show that in the positions where h has a maximum, hence h′ = 0 and h′′ < 0, 1 + ǫh > 0,

singularities occur first. Furthermore, when 1 + ǫh > 0 and h′′ < 0, the denominator of

the l.h.s. of Eq. (6.20) is larger than 1 and hence the l.h.s. becomes > −1/3. Therefore,

there exists a finite value ηs(x) where Eq. (6.20) is satisfies and a(x, ηs(x)) = 0. If, on the

contrary, 1+ ǫh > 0 and h′′ > 0 the l.h.s. of Eq. (6.20) is smaller than −1/3. For positions

in the vicinity of an extremum this implies that if the extremum is a minimum of h, the

position x does not encounter a singularity in the future while positions close to maxima

do.

Let us study in more detail the request that the second singularity (not the big bang

one) lies in the future, t > t0. Using the expression (6.8) for t, we can rewrite the condition

a(x, ηs) = 0 as

(1 + ǫh)h′′

ǫh′2 − 3(1 + ǫh)h′′
=

9

4

cosh(ηs/2)

sinh3(ηs/2)

t20t(x, ηs)ǫ
3h′3

(1 + ǫh)
− 1 .

The condition t(x, ηs) > t0, for h
′ < 0 which we shall consider hence ηs < 0 for t(x, ηs) > 0,

then becomes
(1 + ǫh)

ǫ3h′3

[

1 +
(1 + ǫh)h′′

ǫh′2 − 3(1 + ǫh)h′′

]

4

9t30
<

cosh(ηs/2)

sinh3(ηs/2)
.

This equation for ηs(x) can only be solved numerically. However, often we realize that the

l.h.s. is smallest at small |h′| i.e. for small values of |E(x)|. Hence singularities will develop
first in positions with small |h′|. This requires also small |ηs| so that we may develop the
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scale factor a and t in ηs. The above inequality then leads to power law relations and

inserting the above expression for E = (3/2)M ′t20 yields the constraint

1 +
(3t20)

7/331/322/3

80

(

6M ′′M1/3 − M ′2

M2/3

)

> 0 ,

1− 1

20
(t0k)

2/3
(

6ǫ cos(kx) (1 + ǫ cos(kx))1/3 +
ǫ2 (sin (kx))2

(1 + ǫ cos (kx))2/3

)

> 0. (6.21)

The first inequality is general while for the second inequality we have chosen h = cos(kx).

In Fig. 6.1 we plot the constraint for this case together with the condition to use the

limiting solution for E = 0, (6.16), (which is not necessary for our analysis) in the ǫ–λ

plane, where λ denotes the wavelength of the perturbation λ = 2π/k.
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Figure 6.1: The region above the red line has singularities in the future only. While the
blue line describes the condition to use the limiting solution for E = 0, (6.16). This can be
used when tE3/M ≪ 1, where with ”≪”we mean at least two orders of magnitude smaller.
The two black lines describe the physical parameters ǫ = 9.5 × 10−6 and λ = 80 Mpc.
The green line is the Hubble scale H−1

0 . With physical parameters we mean an amplitude
as determined by WMAP [68] observations and a wavelength agrees with the size of the
largest observed voids [45] which is about 40-90 Mpc. More precisely we find ǫ requiring
that at early time there is only a single density fluctuation in each Hubble distance. This
leads, at first order, to δ = 8π2ǫ/15, and the matter density fluctuation at early times,
δ ∼= 5× 10−5 can be inferred from WMAP observations. For more details see [26].
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6.3 The distance redshift relation in a wall universe

6.3.1 Generalities

6.3.1.1 Redshift

We now consider a photon emitted from a source at some position and time (ts,xs) arriving

in our telescope at position and time (t0,x0). We denote the matter 4-velocity field, hence

the 4-velocity of source and observer by u(t,x) and the photon 4-velocity by n. The redshift

of the source, z is then given by

1 + z =
g(n, u)|s
g(n, u)|0

. (6.22)

We consider a co-moving source and observer, hence u = ∂t and normalize the affine

parameter of the photon, s, such that n0(s0) = 1. The redshift then reduces to

1 + z = n0|s (6.23)

for our geometry with g00 = −1 and g0i = 0. From the geodesic equation for the photon

we infer that its momenta in y1- and y2-direction are simply redshifted so that

J1 ≡ b2n1 = b2
dy1
ds

= const. and J2 ≡ b2n2 = b2
dy2
ds

= const. (6.24)

hence

(nx)2 =

(

n0

a

)2

− 1

a2b2
(

J2
1 + J2

1

)

. (6.25)

From the geodesic equation for n0 we can now derive the evolution of the redshift:

dz

ds
= −dn0

ds
= (1 + z)2

ḃ′

b′
+

J2
1 + J2

2

b2

(

ḃ

b
− ḃ′

b′

)

. (6.26)

Here we have used a = b′/E to eliminate the scale factor a. Note also that the prime and

the dot in the above equation denote partial derivatives while d/ds is a total derivative

along the path of the photon.

6.3.1.2 Distance

The evolution of the distance to the source is given by the Sachs focussing equation [112],

d2D

ds2
= −

(

|σ|2 +R
)

D . (6.27)

D is the angular diameter distance to the source, σ is the complex scalar shear of the light

bundle which we define below and

R =
1

2
Rµνn

µnν = 4πGTµνn
µnν = 4πG(1 + z)2(ρ+ P̄ ) . (6.28)

Here P̄ = ninjP is the pressure in the direction of the photon. The important point is that

this quantity is non-negative for any energy momentum tensor which satisfies the dominant
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energy condition ρ ≥ P̄ in all directions, hence also for a cosmological constant where we

have R ≡ 0. In terms of the affine parameter of the photon, the growth of the angular

diameter distance to the source is not accelerated. If the dominant energy condition is

satisfied D(s) is always a concave function. Furthermore, clustering which leads to the

production of non-vanishing shear is only increasing the deceleration of D as function of

the affine parameter s. But of course we do not measure this function but D(z) which can

behave very differently.

The complex shear of the light ray bundle is defined as follows [118]: We consider two

spatial orthonormal vectors e1 and e2 which are normal to both, u and n at the observer

and are parallel transported along n, such that ∇nea = 0 for a = 1, 2. The vectors e1, e2 are

a basis of the so called ’screen’. Note that we do not require that u be parallel transported

along n, hence e1, e2 are in general not normal to u elsewhere than at the observer, where

we have given their initial conditions. The complex shear is defined by

σ =
1

2
g(ǫ,∇ǫn) , ǫ ≡ e1 + ie2 (6.29)

In order to compute the shear we must know n not only along the photon geodesic itself

but we must determine its derivatives in directions normal to n. We shall directly use the

transport equations [118]. For a vorticity free ray bundle (which is the case here) with

expansion rate θ ≡ 1
2n

µ
;µ these are

θ̇ + θ2 + σ2
1 + σ2

2 = −R, (6.30)

σ̇1 + 2θσ1 = −Re (F) , (6.31)

σ̇2 + 2θσ2 = Im(F) , (6.32)

where σ1 = Re (σ), σ2 = Im (σ), and F = 1
2Rαµβν ǭ

αǭβnµnν . To determine the shear σ

we need to know the initial conditions for the differential equations (6.30) to (6.32). It

is possible to determine the behavior of the shear and the expansion of the light near

the vertex [114]. Choosing the affine parameter of the photon to vanish at the observer

position, s0 = 0, these are

σ(s) = −s

3
F̄0 +O

(

s2
)

, (6.33)

θ(s) =
1

s

(

1− 1

3
R0s

2

)

+O
(

s3
)

. (6.34)

F0 and R0 are the values of F and R at the observer position. The light bundle expansion

θ diverges at the observer position, but we can consider an initial condition not exactly

at the observer. This choice can affect the numerical precision. After determining R, ǫ

and F for a given geometry and photon direction, we can solve the system (6.30) to (6.32)

together with the Sachs focusing equation (6.27) numerically.

6.3.2 ’Realistic’ walls

We want to investigate whether the system of equations derived above for z(s) and D(s)

can lead to a distance-redshift relation close to the one observed. For wall universes we
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consider,

R = 4πGρ(1 + z)2 =
2(1 + z)2

3t20b
2a

. (6.35)

For a chosen density contrast h(x) we can determine b(t, x) and a(t, x) and solve the photon

geodesic Eq. (6.26) for a given angle θ0 of the observed photon w.r.t. the y-plane,

cos θ0 =

√

J2
1 + J2

2

b(x0, t0)n0(0)
. (6.36)

We again set the initial value or the affine parameter to 0, hence x0 = x(0) etc.

We have investigated two choices forM(x). The first is simplyM(x) = 2
9t20

(1 + ǫ cos(kx))

which we have already discussed before. The results for this case are shown in Fig. 6.2.
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Figure 6.2: We show the relative luminosity distance redshift relation ∆D(z)
DEdS(z)

=
D(z)−DEdS(z)

DEDS(z)
, for different models with luminosity distance D(z). The blue dotted curve

is for a Milne Universe, the red dashed curve is for ΛCDM universe with ΩΛ = 0.7 and
ΩM = 0.3. The remaining two lines are our wall universe. The black solid line is in an
under density while the purple dot-dashed line is in an over density. In the top panel, we
consider light propagating in the x-direction only. The bottom panel is the same but for
light propagating in the y-direction. The parameters for the wall model are the physical
ones, ǫ = 9.5 × 10−6 and λ = 80 Mpc.

The result is quite striking: The deviation from the Einstein-de Sitter distance-redshift

relation is very small. On the level of a few percent in the most extreme case. Much smaller

than the deviation for an open (Milne) Universe or even for ΛCDM. Hence voids and walls

with the chosen parameters cannot simulate the observed distance redshift relation. We

have also studied different values of the parameters (ǫ, k), but all cases which are such that

there is no singularity before t0 lead to small deviation from Einstein-de Sitter. Only for

wavelengths of approximately Hubble scale, k ∼ H0, where we can choose ǫ ∼ 10−3 do the
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deviations become relatively large. But the density profile chosen here does not at all lead

to a relation that resembles the observations.

As a second profile we consider thin, highly concentrated over-dense walls with an

exponential profile:

h (x) =
λ√
2πσ2

∑

i

exp

(−(x− xi)
2

2σ2

)

− 1, (6.37)

where λ = xi+1 − xi. In the limit σ ≪ λ the mean of h (x) vanishes and minxh (x) = −1.

Again, we choose ǫ such that there is no singularity before t0.
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Figure 6.3: We show the relative difference between the distances in ’realistic’ wall models
and in EdS universe for photons propagating in x-direction. The top panel is obtained
with ǫ = 10−9, λ = 40 Mpc and σ = 1 Mpc, while the bottom one with ǫ = 5 × 10−8,
λ = 15 Mpc and σ = 1 Mpc. In both cases the observer is at the center of the void. We
have checked that the order of magnitude does not change for a observer in a over density.
In the second case, we see that we obtain an effect of the same order of magnitude as the
swiss cheese universe discussed in [84].

We have obtained the following result in these two examples (and other profiles which

we do not present here explicitly): The modification of D(z) never goes beyond the case

of the open universe. We do not obtain acceleration by a series of dense walls. Even

though we present here only two simple profiles, we think the conclusion is valid beyond

these cases: if a photon passes through many compensated under- and over-densities in

the integrated distance D(z) the effect is minute as long as the time the photon spends

inside a wall is much smaller than the time scale at which the gravitational potential of the

wall evolves. A perturbative (first order) calculation gives a flavour of this effect. Indeed,

at first order in the perturbed direction, the difference between D(z) in our models and
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DEdS(z) of a matter dominated universe can be written as

DL (ze)−DEdS
L = (1 + ze) (ηo − ηe)

( ǫ

3
(h (ηo) + h (ηe))

)

− (1 + ze)

∫ ηo

ηe

2ǫ

3
h (η) dη

+(1 + ze)

∫ ηo

ηe

dη

∫ η

ηe

dη′
ǫ

15
h′′
(

η′
)

η′ − 1 + ze
He

∫ ηo

ηe

dη
ǫ

15
h′′ (η) η (6.38)

where the subscripts e and o respectively mean that the conformal time is evaluated at the

source (emission) or at the observer and expresses the perturbation of the energy density

in under and over densities (see Appendix C for a derivation of the linearized result). From

this expression, valid in the linear regime only, and for a periodic perturbation, it becomes

clear that the deviation of DL(z) with respect to DEdS
L depends on the amplitude ǫ of the

perturbation and on the values of the conformal time at the source and at the observer. In

the case of periodic perturbations, the contributions from photon path are mostly cancelled

in the integral terms. Of course in the full non-linear calculation there is no simple relation

between the matter over density h and the gravitational potential. In this case in principle

the full non-linear Einstein equation have to be solved and Eqs. (6.26) and (6.27) govern

DL(z).

Surprisingly, however, our non-linear simulations show that this result holds also to

some extent in the non-linear regime. Note that, even though our value of ǫ is small, the

over densities in the walls are large at late times, such that they develop singularities soon

after today and we are deeply in the non-linear regime. While we do not have a proof that

our conclusion holds in all cases, we have tested this also with other periodic wall profiles.

In Fig. 6.4 we show the deviations of the expansion rates with respect to the Hubble

expansion in EdS universe. We note that the deviations in the unperturbed directions

are small. However, in the perturbed direction these deviations can be large locally inside

a wall, and they would be measurable by direct, local measurements of H(z). However,

they compensate when averaged over a wall thickness and do not show up in integrated

quantities like D(z).
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Figure 6.4: We show the relative differences between the expansion rates in the thin, highly
concentrated over-dense wall model and the Hubble expansion in EdS universe. The top
panels are obtained with ǫ = 10−9, λ = 40 Mpc and σ = 1 Mpc, while the bottom ones
with ǫ = 5× 10−8, λ = 15 Mpc and σ = 1 Mpc. In both cases the observer is at the center
of the void. The left panels show the expansion rates in the perturbed direction, while the
right ones in the y-direction. The results for the cosine profile not shown here are similar
to the two top panels.

6.3.3 Mimicking dark energy

Yoo et al. [125] have shown that in an LTB model every given distance–redshift relation

can be mimicked by a suitable choice of the density profile. The same is true for a wall

universe. For a given function D(z) we can find a density profile which leads to exactly

this distance–redshift relation for a photon coming in x-direction. First of all, for such

a photon the shear vanishes for symmetry reasons and R is given by (6.35). To find the

density profile, which is equivalent to finding M(x) or M(z) ≡ M(x(z)) we have to solve

the following coupled system of six ordinary differential equations (in principle none of the

other equations couples to (6.41) since both, FM and Fβ do not depend on x explicitly),
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which is very similar to the system solved in Ref. [125]:

dM

ds
= FM (t, z,M, β, ζ) , (6.39)

dβ

ds
= Fβ (t, z,M, β, ζ) , (6.40)

dx

ds
=

FM (t, z,M, β, ζ)

β
(6.41)

dt

ds
= 1 + z, (6.42)

dz

ds
=

ζ
dD
dz

, (6.43)

dζ

ds
= −4π (1 + z)2 ρD, (6.44)

where we have defined

ζ =
dz

ds

dD

dz
and β =

dM
ds
dx
ds

= M ′ =
2

3t20
E . (6.45)

In Appendix 6.5.1 we give the derivation of this system and the detailed expressions for

FM and Fβ. There, we also explain the method used to specify the initial conditions at

the observer. All the constraints are fixed by requiring the system to have no critical

points. Note also that z(s) need not to be monotonic. If dz/ds = 0 at a value of s where

ζ = dD/ds 6= 0, the derivative dD/dz is not well defined. This is, however, not the case of a

ΛCDM Universe which we want to mimic here. We are then left with one initial condition,

which we choose by requiring

H0 =
ȧ

a

∣

∣

∣

∣

s0

=
ḃ

b

∣

∣

∣

∣

∣

s0

, (6.46)

i.e. the value of the Hubble rate at the observer today does not depend on direction. In

Fig. 6.5 we show M(x) as well as its derivative with respect to the x coordinate, β (x),

for the solution mimicking the ΛCDM expression for D(z), for ΩK = 0, Ωm = 0.3 and

ΩDE(z) = 0.7 =constant.

D(z) =
1

1 + z
χK

(∫ z

0

dz′

H(z′)

)

where (6.47)

χK(r) =
1√
K

sin(r
√
K) , and

H(z) = H0

(

Ωm(1 + z)3 +ΩK(1 + z)2 +Ωr(1 + z)4 +ΩDE(z)
)1/2

.

In Fig. 6.6, we show how the luminosity distance deviates when the observer looks at

photons coming in with different angles θ0. For θ0 = 90 degrees, we have photons traveling

in x-direction, in this case the luminosity distance is fitted to the one of ΛCDM by solving

the system of Eqs. (6.39-6.44) with the functions M(x) and β(x) shown in Fig. 6.5. It is

interesting to remark that a given angle of θ0 ∈ [0; 90] degrees at the observer corresponds
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Figure 6.5: We show the function M(x), top panel, and its derivative β(x), bottom panel.
In principle, there is a entire family of functions M(x) parametrized by the initial value
M(0) = M0 that we are free to choose (appendix A). Here, we present the solutions

corresponding to H0 =
ȧ
a

∣

∣
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= ḃ

b

∣

∣

∣

s0
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Figure 6.6: We show the relative differences between luminosity distances for photons trav-
eling in the x-direction (perpendicular to the walls) and photons observed with an angle θ0
(see Eq.(6.36)). From the top to the bottom, we respectively have θ0 = 75, 60, 45, 30, 15, 5
degrees.
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to an angle at the emission θe > θ0. This is a consequence of the spacetime geometry

induced by the walls: due to the clustering in direction x, corresponding to θ = 90o, its

expansion slows down in time.
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Figure 6.7: We show the ratio of our density profile to the Einstein-de Sitter one as a
function of the cosmological redshift.

In Fig. 6.7, we present the density profile corrected by the isotropic expansion rate,

(1 + z)−3ρ(z)/ρ0, ρ0 = ρ(z = 0), obtained for our model to mimic ΛCDM luminosity

distance. Finally, in Fig. 6.8, we plot the expansion rates in the longitudinal and transverse

directions, Ha = ȧ/a and Hb = ḃ/b. It is interesting to estimate roughly the features of the

under density needed to fit ΛCDM luminosity distance. For example, if one considers the

highest redshift for which we have data from supernovae, at around z ∼ 1.7. This roughly

corresponds to a size ∼ H−1
0 . (Of course we have another data point from the CMB.

The angular size of the acoustic oscillations provides an excellent measure of the angular

diameter distance to the last scattering surface, z ≃ 1090. But this is not very relevant in

our context as the Universe is to a good approximation matter dominated from z = 2 to

z = 1090.) An under density of the size of the order of the Hubble distance is necessary

to mimic ΛCDM with our walls. Moreover, we can also determine the ratio of the energy

density normalized at the observer to the energy density in an Einstein-de Sitter model at

z ∼ 1.7 which is about 4. At high redshift, z & 10 the anisotropy is very small and the

Universe is close to a Friedmann Universe with about 5 times the matter density obtained

from local estimates.

6.3.4 Redshift drift

In the previous section we have fixed M(x) to reproduce the distance redshift relation of

ΛCDM universe. Of course, having one free function to play with, namely M(x), we expect

to be able to fit one function, in our case D(z). If we now proceed to another, independent

observable, we shall most probably not fit it. We have done this by looking at the redshift
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Figure 6.8: We show the relative expansion rates in the transverse and longitudinal
directions as functions of the cosmological redshift. We use the following notation :
∆Ha,b = Ha,b − HF , where HF is the expansion rate in an Einstein-de Sitter universe,
and Ha,b are the expansion rates in the longitudinal and transverse directions, normalized
to the their values at the observer.

drift, defined as the rate of change of the redshift of a co-moving source per unit of observer

time. In a Friedmann Universe the redshift drift is simply

dz

dt0
≡ lim

∆t0→0

z(ts +∆ts)− z(ts)

∆t0
= H0(1 + z)−H(z) , (6.48)

where H(z) = H(ts) and H0 denote the Hubble parameter at the source position at time ts
and at the observer at the moment t0. We have computed the corresponding function (for

light rays in x-direction) from our solution M(x). The general expression for the redshift

drift of a wall Universe in x–direction is (see Appendix 6.5.2),

dz

dt0
= (1 + z)

∫ z

0

(

b̈′

ḃ′

)

(

1 + z′
)−2

dz′ =

= − (1 + z)

∫ z

0

(

4πGρ− 2M

b3

)

a

ȧ

(

1 + z′
)−2

dz′ . (6.49)

Since we do not require M0 = 0 as in LTB model, we can in principle have a positive

redshift drift at low redshift; but we do not obtain this for our best fit profile M(x) with

tB(x) ≡ 0. The result is compared with ΛCDM in Fig. 6.9.

Clearly the redshift drift for the two cosmologies are very different. We do have a second

function to play with, the bang time tB(x), so that we could probably fix this observable.

This has been done for LTB models in [15]. However, as it is show there, models which

have both, the same redshift distance relation and the same redshift drift as ΛCDM can
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Figure 6.9: We show the redshift drift for the wall Universe (black solid line) which mimics
the distance redshift relation of ΛCDM and compare it with the redshift drift of the latter
(red dashed line).

be ruled out with a third observable, the kinematic Sunyaev-Zel’dovich effect which comes

from the recession velocity of clusters.

6.4 Conclusions

We have studied the effect of matter perturbations on the luminosity distance in a model

with planar symmetry described by the metric (6.1). Considering ’realistic’ walls we find

that the effect from density inhomogeneities is very small, it nearly averages out. It leads

to fluctuations of the luminosity distance around the ’background’ distance, but not to a

significant global shift. Our results (Fig. 6.3) show that these fluctuations are due to matter

inhomogeneities at the source and the observer positions, without any relevant contribution

from the integrated effects of light propagation, like in the linear approach (6.38). Hence we

can not mimic acceleration with many dense walls which grow by gravitational instability.

Since we consider pressure-less matter only, the amplitude of density fluctuations is limited

by the presence of singularities. This is a limitation of the model.

After having shown that ’realistic’ wall models can not reproduce the observed distance-

redshift relation, we have determined the density profile which can mimic it. We have fixed

the free function of our model, M(x), to mimic the luminosity (or angular) distance of the

ΛCDM universe. We have shown that the observation of the redshift drift can distinguish

between this model and ΛCDM. Abandoning the assumption of an uniform bang time we

could arrange the second degree of freedom, tB(x), to fit the redshift drift too. We have

found that the redshift drift in our model can be positive at low redshift, contrarily to the
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LTB model [124].

With our solution M(x) we can fit ΛCDM distance for photons coming in x-direction

for positive x only. This preferred direction corresponds to the radial incoming direction

for LTB model. The deviation from ΛCDM for photons coming from different angles is

typically a few percent (see Fig. 6.6).
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6.5 Appendices

6.5.1 Derivation of the system of differential equations and initial con-

ditions

6.5.1.1 The system

Here we derive in more detail the system (6.39) to (6.44) and give the initial conditions

used for the solution.

Since we choose the photon affine parameter such that n0|0 = 1 we have

1 + z(s) = n0(s) =
dt

ds

Furthermore, the null condition for a light ray in x–direction implies

(

dt

ds

)2

=

(

b′

E

)2(dx

ds

)2

=

(

2b′

3t20M
′

)2(dx

ds

)2

. (6.50)

The geodesic equation gives

dz

ds
=

d2t

ds2
= − ȧ

a
(1 + z)2 = − ḃ′

b′
(1 + z)2 . (6.51)

Hence, when the expansion in x-direction changes into contraction, ȧ = 0, also dz/ds passes

through zero. However, this does not happen in our case which mimics ΛCDM. Noting

that geodesics in x-direction have no shear, the Sachs focusing equation yields

d2z

ds2
dD

dz
+

(

dz

ds

)2 d2D

dz2
= −4πGρ (1 + z)2D, (6.52)

where we have used R = 4πG (1 + z)2 ρ. We can now rewrite these equations in terms of

the system (6.39) to (6.44). To find the functions FM and Fβ we first derive the following
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useful relations

τ̇ =
2

3t
τ, (6.53)

τ ′ = τ

(

2
dβ
ds
dM
ds

− 2

3

β

M

)

. (6.54)

b′ = − 8

9t40

τ

β

(

S − 2τS′
)

− 16

3t40
τ2

M

β2

dβ
ds
dM
ds

S′, (6.55)

ḃ′ = − 16

27t40

τ

t

1

β

(

S − 3τS′ − 2τ2S′′
)

− 32

9t40

M

β2

dβ
ds
dM
ds

τ2

t

(

2S′ + τS′′
)

. (6.56)

Here S′ always indicates the derivative of S with respect to its argument τ while as for all

other functions of (t, x) the prime denotes the partial derivative w.r.t. x and the dot the

one w.r.t. t. The null condition for the light ray can be written as

dM

ds
A1 +

dβ

ds
B1 = ±1,

with

A1 = − 16

27t6O

τ

β3 (1 + z)

(

S − 2τS′
)

, (6.57)

B1 = − 32

9t6O

τ2M

β4 (1 + z)
S′. (6.58)

The geodesic equation takes the form

dM

ds
A2 +

dβ

ds
B2 = 0, (6.59)

where

A2 = − ζ
dD
dz

8

9t40

τ

β

(

S − 2τS′
)

− (1 + z)2
16

27t40

τ

t

1

β

(

S − 3τS′ − 2τ2S′′
)

, (6.60)

B2 = − ζ
dD
dz

16

3t4O
τ2

M

β2
S′ − (1 + z)2

32

9t40

M

β2

τ2

t

(

2S′ + τS′′
)

, (6.61)

with ζ = dD
ds = dz

ds
dD
dz . From this we infer

FM (t, z,M, β, ζ) = ± B2

A1B2 −A2B1
, (6.62)

Fβ (t, z,M, β, ζ) = ∓ A2

A1B2 −A2B1
. (6.63)

Since τ is a function of M , β and t, we now have expressed everything in terms of our
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variables (t, z,M, β, ζ) and the given function D(z). Explicitly, FM and Fβ are given by

FM = ±3t2O
4

β

(

6M

t

)2/3
ζ
dD
dz

3t
2

S′

1+z + (1 + z) (2S′ + τS′′)

SS′ + τSS′′ − τS′2
, (6.64)

Fβ = ± 1

18t2O

1

M

(

6M

t

)4/3
ζ
dD
dz

3t
2

(S−2τS′)
1+z + (1 + z)

(

S − τS′ − 2τ2S′′
)

SS′ + τSS′′ − τS′2
. (6.65)

6.5.1.2 Initial conditions

Let us now turn to the initial conditions at s0 = 0. Without loss of generality we can set

x(0) = 0. Clearly also z(0) = 0. From definition (6.45) we have

ζ (0) =
dD

ds

∣

∣

∣

∣

s=0

. (6.66)

Since this is an initial condition for the Sachs focusing equation, we have consistently with

our affine parameter normalization [114, 91],

ζ (0) = −1. (6.67)

From (6.43) we note that our system of coupled differential equations has a critical point

zcr defined by
dD

dz

∣

∣

∣

∣

z=zcr

= 0. (6.68)

For our ΛCDM parameters zcr ≈ 1.6. To obtain a regular solution we must therefore

impose ζ (zcr) = 0. We remark that Eqs. (6.67) and (6.51) imply

ȧ

a
= H0, (6.69)

where we have used

dD

dz

∣

∣

∣

∣

z=0

= H−1
0 .

Hence the rate expansion in x-direction coincides with the measured Hubble expansion.

In order to solve the system of five differential equations (Eq. (6.41) is an independent

equation, since the solution x (s) can also be inferred from Eq. (6.42) via the null condition),

five initial conditions are needed. However, we only have two of them

z (0) = 0 ζ (0) = −1. (6.70)

We have two other constraints which we must satisfy at the critical point where (6.68)

holds. Denoting the affine parameter at the critical point by scr, we have

z (scr) = zcr ζ (scr) = 0. (6.71)
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These lead to two other initial conditions which can be determined using the shooting

method. One remaining constraint is needed and we fix it by requiring

ȧ

a

∣

∣

∣

∣

0

=
ḃ

b

∣

∣

∣

∣

∣

0

= H0. (6.72)

This last condition fixes M(0) and makes sure that the Hubble rate measured today is the

same in any direction. We then numerically integrate the system from the critical point

to the observer by varying the three remaining conditions at the critical point until the

initial conditions (6.70) and (6.72) are satisfied. This matching is obtained by using the

three dimensional Newton-Raphson method. Once the desired precision has been reached,

the two remaining initial conditions β(0) and t(0) can simply be read from the numerical

data.

6.5.2 Derivation of the system of differential equations for the redshift

drift

The redshift drift for a LTB model has been derived in [124]. This approach can also be

applied to our model. The null condition for the light ray (in x-direction) and the geodesic

equation lead to

dz

dx
=

ḃ′

E
(1 + z) ,

dt

dx
= − b′

E
. (6.73)

We consider two infinitesimally close geodesics at fixed comoving position x, parametrized

by

{zc, tc} and {zc + δz, tc + δz} .

Since the geodesic {zc, tc} satisfies (6.73), it follows

dδz

dx
=

b̈′

E
(1 + z) δt+

ḃ′

E
δz,

dδt

dx
= − ḃ′

E
δt.

Then, inserting (6.73) we obtain

dδz

dz
=

b̈′

ḃ′
δt+

δz

1 + z
, (6.74)

dδt

dz
= − δt

1 + z
. (6.75)

Integrating (6.75) we find

δt =
δt0
1 + z

.
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This solution together with (6.74) leads to

d

dz

(

δz

δt0

)

=
1

1 + z

(

b̈′

ḃ′
+

δz

δt0

)

.

This equation is solved by (6.49). Deriving the Einstein equation (6.3) twice (once w.r.t.

x and once w.r.t. t), we obtain

b̈′ =
2Mb′

b3
− M ′

b2
. (6.76)

With (6.2) and (6.4) this results in the second line of (6.49).

6.5.3 The linearized approach

We determine the luminosity distance within linear perturbation theory for small deviations

from a Friedmann–Lemâıtre background. Let us define

a(t, x) = ā(t) (1 + ǫf(t, x)) , (6.77)

b(t, x) = ā(t) (1 + ǫg(t, x)) , (6.78)

ρ(t, x) = ρ̄(t) (1 + ǫδ(t, x)) , (6.79)

where the unperturbed quantities ā (t), ρ̄ (t) satisfy the Einstein equation for a flat matter

dominated Friedmann universe (EdS). The perturbed quantities are determined by the

Einstein equations at first order in ǫ,

−6t
4/3
0 g′′ + 4t1/3

(

ḟ + 2ġ
)

3t4/3
= 8πGρ̄δ, (6.80)

ġ′ = 0, (6.81)

t1/3 (2ġ + tg̈) = 0, (6.82)

t
4/3
0 g′′ − t1/3

(

2ḟ + 2ġ + t
(

f̈ + g̈
))

= 0. (6.83)

Neglecting the decaying mode and imposing that at the beginning the scale factors in all

three directions agree, we obtain [26],

g =
δO
3
, (6.84)

f =
3

10
δ′′Ot

4/3
O t2/3 +

δO
3
, (6.85)

where δO (x) = δ (t, x) + f (t, x) + 2g (t, x) is independent of time. This is a consequence

of energy conservation and can also be derived by combining (6.80) to (6.83).

We are interested in finding the relation between δO and M,E in the perturbative

regime. Following [126] we expand the solution (6.7, 6.8) around η = 0 in terms of tB(x)
t ≪ 1

and E3t
M ≪ 1. Comparing the expanded solution with the linear one we find

M =
2

9t20
(1 + ǫδO) , E =

ǫδ′O
3

. (6.86)

With the ansatz (6.17, 6.19) we can identify δO (x) with h (x) in the perturbative regime.
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The angular distance is determined by Sachs focusing equation (6.27). We note that

the shear term does not contribute to first order. Since light propagation is not affected by

a conformal transformation, it is convenient to work with the conformally related geometry

ds2 = −dη2 + (1 + 2ǫf) dx2 + (1 + 2ǫg)
(

dy21 + dy22
)

. (6.87)

From this, we compute the Christoffel symbols (here we denote the derivative w.r.t. the

conformal time η by a dot)

Γ0
11

∼= ǫḟ , Γ0
22 = Γ0

33
∼= ǫġ,

Γ1
10

∼= ǫḟ , Γ1
11

∼= ǫf ′, Γ1
22 = Γ1

33
∼= −ǫg′,

Γ2
20 = Γ3

30
∼= ǫġ, Γ2

21 = Γ3
31

∼= ǫg′.

and the Ricci tensor

R00
∼= −ǫ

(

f̈ + 2g̈
)

,

R10
∼= −2ǫġ′,

R11
∼= ǫ

(

f̈ − 2g′′
)

,

R22 = R33
∼= ǫ

(

g̈ − g′′
)

.

At 0-order we are free to parametrize the affine parameter s such that n̄0 = 1 and n̄i = δi1

(we are interested in the distance in x-direction). With this we obtain the coefficient R

R = −ǫ
(

g̈ + g′′ + 2ġ′
)

.

Consistently with the parametrization of the affine parameter s such that n0 (s0) = 1, the

initial conditions are D (so) = 0 and D′ (so) = −1. After an integration by parts we find

the solution to Sachs focusing equation (6.27),

D (s) = (so − s) (1 + ǫg (so) + ǫg (s)) + 2

∫ s

so

ds′ǫg
(

s′
)

. (6.88)

With the above initial conditions for the Sachs focusing equation, we consider a thin light

bundle with the vertex at the observer position. Hence the solution (6.88) is the angular

diameter distance, see [114]. To determine the luminosity distance we have to compute

also the redshift, using the geodesic equation for n0,

1 + z =
gµνn

µuν |e
gµνnµuν |o

= n0
∣

∣

e
= 1−

∫ se

so

ds ǫḟ , (6.89)

where |e denotes the emission point, the source, and we denote the affine parameter at

the source by se. With the same geodesic equation we derive the relation between the

conformal time η and the affine parameter s, n0 = dη/ds,

ηo − ηe = so − se +

∫ se

so

ds

∫ s

so

ds′ǫḟ(s′). (6.90)
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In terms of conformal time the luminosity distance then becomes

DL (ηe) = (ηo − ηe)

(

1 + ǫgo + ǫge − 2

∫ ηe

ηo

dη ǫḟ

)

+2

∫ ηe

ηo

dη ǫg−
∫ ηe

ηo

dη

∫ η

ηo

dη′ǫḟ . (6.91)

All of this is valid in the conformal geometry, where the expansion of the Universe is divided

out. Taking into account the expansion of the universe, changes the relation between the

affine parameter and conformal time. The luminosity distance scales as [11]

D̃L =
ā2 (ηo)

ā (ηe)
DL =

DL

ā (ηe)
= (1 + z̄e)DL.

Since conformal time is not an observable quantity, we rewrite the distance in term of the

observed redshift. We define the observed redshift as ze = z̄e + δze and we compute the

correction term. The same calculation as presented in Ref. [11] leads to

(

d

dz
D̃L

)

δze =
(

(ηo − ηe) +H−1
e

)

δze, (6.92)

where

δze = − (1 + ze)

∫ ηe

ηo

dη ǫḟ . (6.93)

Subtracting (6.92) we obtain the distance–redshift relation

D̃L (ze) = (1 + ze) (ηo − ηe)

(

1 + ǫgo + ǫge −
∫ ηe

ηo

dη ǫḟ

)

(6.94)

+ (1 + ze)

(

2

∫ ηe

ηo

dη ǫg −
∫ ηe

ηo

dη

∫ η

ηo

dη′ǫḟ

)

+
1 + ze
He

∫ ηe

ηo

dη ǫḟ .

With

−
∫ ηe

ηo

dη

∫ η

ηo

dη′ǫḟ = (ηe − ηo)

∫ ηo

ηe

dη ǫḟ +

∫ ηo

ηe

dη

∫ η

ηe

dη′ǫḟ ,

we can rewrite the above expression in the form as

D̃L (ze) = (1 + ze) (ηo − ηe) (1 + ǫgo + ǫge) (6.95)

+ (1 + ze)

(

−2

∫ ηo

ηe

dη ǫg +

∫ ηo

ηe

dη

∫ η

ηe

dη′ǫḟ

)

− 1 + ze
He

∫ ηo

ηe

dη ǫḟ .

Using the solutions (6.84, 6.85) we express the distance in terms of δO (η). Conformal time

is defined as

dη =
dt

ā (t)
⇒ η (t) = 3t1/3t

2/3
0 , setting η (0) = 0.
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This leads to

g (η, x (η)) =
δO (x(η))

3
,

f (η, x (η)) =
1

30
δ′′O (x(η)) η2 +

δO (x(η))

3
,

ḟ (η, x (η)) =
1

15
δ′′O (x(η)) η.

and consequently to the following distance–redshift relation

DL (ze) = (1 + ze) (ηO − ηe)
(

1 +
ǫ

3
(δO (x(ηo)) + δO (x(ηe)))

)

− (1 + ze)

∫ ηo

ηe

2ǫ

3
δO (x(η)) dη

+ (1 + ze)

∫ ηo

ηe

dη

∫ η

ηe

dη′
ǫ

15
δ′′O
(

x(η′)
)

η′ − 1 + ze
He

∫ ηo

ηe

dη
ǫ

15
δ′′O (x(η)) η. (6.96)
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Conclusions

In this thesis, we focused on different aspects of non standard cosmology through four

different projects. We addressed some theoretical but also some observational issues of

alternative cosmological models. This is certainly of interest, since the standard model of

cosmology faces many problems mainly related to the cosmological constant Λ

• the origin of this ”dark” component

• the lack of understanding of the smallness of the energy density ρΛ associated to the

cosmological constant Λ or Fine Tunning Problem

• why has the cosmological constant energy density just started to dominate the uni-

verse at the present cosmological time or the Coincidence Problem.

These problems are strong hints that the standard model of cosmology will need to be

improved or even overtaken in the future, and any attempt in this direction will therefore

have to integrate some aspects of non standard cosmology.

In our first project, we studied graviton production in anti-de Sitter braneworlds cos-

mology. In this model, the expansion of the universe is mimicked by a brane moving

through a higher dimensional spacetime and the brane motion leads to particle creation

via the dynamical Casimir effect. The Kaluza-Klein gravitons, which are candidates for

Dark Matter, scale like ρKK ∝ a−6, and can therefore not represent Dark Matter in our

setup. Furthermore, we derived a method to calculate graviton production taking into

account the full generalized Neumann boundary conditions, method therefore valid for a

brane moving at arbitrarily high velocities. However, for arbitrarily high velocities one

has also to take into account the modification of the Friedmann equations at high energy.

Implemented this effect of backreaction on the very general method developped in this

project would be the next step of this study.

In our second project, we derived model-independent cosmological constraints from the

CMB, i.e. we have analysed the CMB data in a way which is independent of the details

of the late-time cosmology. We have presented model-independent limits on the physical

densities of baryonic matter ωb and dark matter ωc, the spectral index ns and the angu-

lar diameter distance to the last scattering surface DA(z∗). Every model which satisfies

our limits on these cosmological parameters will automatically be in agreement with the

present CMB data, except the forty lowest multipoles which have been excluded from the
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analysis. A prospect for future projects would be to divide the CMB sky into patches and

do a model-independent analysis for each patch. This will give the directional variation of

the angular diameter distance and other cosmological parameters.

In our third project, we studied the effects on the CMB of a homogeneous magnetic

field in the presence of free streaming particles. The presence of the magnetic field sources

an anisotropic expansion of the universe, geometrically described by a plane-symmetric

Bianchi I model. Neutrinos are particularly well suited candidates to play the role of the

free streaming component. As long as the neutrinos are relativistic, their anisotropic stress

cancel the magnetic field’s one, and despite of the presence of the magnetic field, the ex-

pansion is isotropic. Once the temperature of the universe drops below the neutrinos mass

scale, their pressures decay very fast and the effect of compensation is lost. If the neutrino

masses are smaller that 0.3 eV, i.e. if they are still relativistic at photon decoupling, we

found that possible signature of the anisotropic expansion due to the magnetic field on the

CMB anisotropies is significantly supressed. Planck and other surveys like Euclid will most

probably determine the neutrino mass scale. Once this is known, we will be able to choose

between the different scenarios investigated in this project and quantify more precisely the

reduction of the CMB quadrupole.

In our last project, we studied the distance-redshift relation in a universe filled with

walls of pressure-less dust separated by under dense regions. We showed that for under

dense regions whose diameter corresponds to observed voids, the distance remains close

to what is obtained in a homogeneous and isotropic universe with pressure-less matter.

We also imposed the observed distance on walls model, and found that this would require

voids of size comparable to the observable universe, which are not observed. These two

results disfavour our model of inhomogeneities as an alternative to dark energy: we cannot

mimic acceleration with many dense walls. Our conclusions agree with previous studies

where the Lemâıtre-Tolman-Bondi (LTB) dust universe whose distance redshift relation is

equivalent to that in the standard model of cosmology is constructed. The LTB model is

the spherically symmetric dust solution of Einstein’s field equations. In summary, simple

inhomogeneous cosmological models with plane or spherical symmetry provide strong hints

that the observed accelerated expansion of the universe is a real effect sourced by some

exotic and unknown component rather than a ”feigned” effect of fluctuations and inhomo-

geneities on the average expansion rate.

The different projects achieved during this thesis point out the interest, the necessity

and the opportunities of exploring cosmology beyond the standard ΛCDM model. During

my thesis, I had mainly been involved on projects related to the dark energy problem, but

the fundamental understanding of dark matter is also one additionnal issue of the standard

model of cosmology. This fundamental understanding will certainly require to go beyond

the standard model of particles, and in this domain, a lot is expected from experimental

physics, above all the current experiments at the LHC. In a near future, Planck and Euclid

satellites will provide more accurate cosmological data which will allow to exclude some

dark energy and dark matter models, and thus, lead to a better understanding of the whole

dark sector of our universe. Physics being an empirical science, it essentialy proceeds by a

a combination of theoretical and observational studies, and this approach will for sure be

the key of many exciting problems highlighted in this thesis.
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