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Abstract. The low-lying collective states of the ground, β and γ bands in 154Sm and 238U are investigated
within the framework of the microscopic proton-neutron symplectic model (PNSM). For this purpose, the model
Hamiltonian is diagonalized in a U(6)-coupled basis, restricted to the symplectic state space spanned by the fully
symmetric U(6) vectors. A good description of the energy levels of the three bands under consideration, as well
as the intraband B(E2) transition strengths between the states of the ground band is obtained for the two nuclei
without the use of an effective charge. The calculations show that when the collective quadrupole dynamics is
covered already by the symplectic bandhead structure, as in the case of 154Sm, the results show the presence
of a very good U(6) dynamical symmetry. In the case of 238U, when we have an observed enhancement of the
intraband B(E2) transition strengths, then the results show small admixtures from the higher major shells and a
highly coherent mixing of different irreps which is manifested by the presence of a good U(6) quasi-dynamical
symmetry in the microscopic structure of the collective states under consideration.

1 Introduction

Experimental spectra in heavy nuclei show the emergence
of simple collective patterns represented primarily by the
nuclear collective rotation. The microscopic shell-model
structure of these low-lying rotational states is still a chal-
lenge for the microscopic many-particle nuclear theory.
This is particularly so because the model space dimension-
ality rules out the use of standard shell-model theory. As
a consequence, different algebraic models which capital-
ize on symmetries, exact or approximate, have been devel-
oped to reduce the model space in manageable size.

The first microscopic, algebraic, model of nuclear col-
lective motion in light nuclei is the Elliott’s SU(3) model
[1] which showed how states with rotational properties
could emerge within the framework of the nuclear shell
model. It defined a relevant coupling scheme for identify-
ing the collective dynamics and performing a large shell-
model calculations. Further, a natural multi-shell general-
ization of the Elliott model has been incorporated in the
one-component Sp(6,R) symplectic model [2, 3], which
together with valence shell also includes monopole and
quadrupole giant vibrational degrees of freedom. From
the hydrodynamic perspective, it has been shown that the
Sp(6,R) symplectic model is a microscopic generalization
of the Bohr-Mottelson [4] collective model, augmented by
the intrinsic vortex spin degrees of freedom, which is also
compatible with the microscopic nucleon structure of nu-
cleus [5]. The vortex spin degrees of freedom allows for
the presence of full range of collective flows in nuclei −
from irrotational to the rigid-rotor rotations. The internal
∗e-mail: huben@theor.jinr.ru

vortex degrees of freedom play also an important role in
the construction of the microscopic wave functions with
the proper antisymmetric properties and are responsible
for the appearance of low-lying collective states in nuclear
spectra.

Recently, the fully microscopic proton-neutron sym-
plectic model (PNSM) of nuclear collective motion with
Sp(12,R) dynamical symmetry was introduced by con-
sidering the symplectic geometry and possible collective
flows in the two-component many-particle nuclear sys-
tem [6]. Further, it was shown that, in its hydrodynamic
limit, it reduces to the U(6)-phonon model with the semi-
direct product structure [HW(21)]U(6) which unifies both
the two-fluid irrotational-flow collective model of Bohr-
Mottelson type and a microscopically based U(6) model
[7]. The latter naturally generalizes the SU(3) model of
Elliott [1] for the case of two-component many-particle
nuclear system and is related to the valence proton-neutron
degrees of freedom. From the hydrodynamic perspective,
the U(6)-phonon model therefore includes the irrotational
collective flows and their coupling to the intrinsic vortex
degrees of freedom. In this way the extra degrees of free-
dom contained in this larger U(6) algebraic structure will
therefore embrace the basic SU(3) rotor as well as the low-
lying vibrational degrees of freedom.

The appearance of an U(6) intrinsic structure in both
the PNSM and U(6)-phonon model is of significant im-
portance for the microscopic theory of nuclear collective
excitations. In this regard, we recall that the popular In-
teracting Boson Model [8] has clearly demonstrated that
simple algebraic ways exist to get collective spectra within
U(6)-based scheme. Then, within the framework of the
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PNSM (or its macroscopic hydrodynamic limit), the full
range of low-lying states could be described by microscop-
ically based U(6) structure along the lines of the IBM, al-
beit in contrast to the latter, renormalized by their coupling
to the giant resonance vibrations. This result could not
be overestimated recalling also that in order to obtain the
low-lying excited collective bands (e.g., beta bands) within
the framework of the one-component symplectic model
[2] one needs to involve a representation mixing caused
by, e.g., pairing, spin-orbit and other symplectic-breaking
components of the nuclear interaction (cf. Ref. [9]).

2 The proton-neutron symplectic model

Collective observables of the proton-neutron symplectic
model, which span the Sp(12,R) algebra, are given by the
following one-body operators [6]:

Qi j(α, β) =
m∑

s=1

xis(α)x js(β), (1)

S i j(α, β) =
m∑

s=1

(
xis(α)pjs(β) + pis(α)x js(β)

)
, (2)

Li j(α, β) =
m∑

s=1

(
xis(α)p js(β) − x js(β)pis(α)

)
, (3)

Ti j(α, β) =
m∑

s=1

pis(α)p js(β), (4)

where i, j = 1, 2, 3; α, β = p, n and s = 1, . . . ,m = A−1. In
Eqs. (1)−(4), xis(α) and pis(α) denote the coordinates and
corresponding momenta of the translationally-invariant Ja-
cobi vectors of the m-quasiparticle two-component nuclear
system and A is the number of protons and neutrons.

In terms of the harmonic oscillator creation and anni-
hilation operators

b†iα,s =
√

mαω
2�

(
xis(α) − i

mαω
pis(α)

)
,

biα,s =

√
mαω
2�

(
xis(α) +

i
mαω

pis(α)
)
, (5)

the many-particle realization of the Sp(12,R) Lie algebra
is given by [10]:

Fi j(α, β) =
m∑

s=1

b†iα,sb
†
jβ,s, (6)

Gi j(α, β) =
m∑

s=1

biα,sb jβ,s, (7)

Ai j(α, β) =
1
2

m∑
s=1

(b†iα,sb jβ,s + b jβ,sb
†
iα,s). (8)

An Sp(12,R) unitary irreducible representation is char-
acterized by the U(6) quantum numbers σ = [σ1, . . . , σ6]
of its lowest-weight state |σ⟩, i.e. |σ⟩ satisfies

Gab|σ⟩ = 0;
Aab|σ⟩ = 0, a < b;

Aaa|σ⟩ =
(
σa +

m
2

)
|σ⟩ (9)

for the indices a ≡ iα and b ≡ jβ taking the values
1, . . . , 6. If we introduce the U(6) tensor product opera-
tors P(n)(F) = [F × . . . × F](n), where n = [n1, . . . , n6] is a
partition with even integer parts, then by an U(6) coupling
of these tensor products to the lowest-weight state |σ⟩, one
constructs the whole basis of states for an Sp(12,R) irrep

|Ψ(σnρEη)⟩ = [P(n)(F) × |σ⟩]ρEη , (10)

where E = [E1, . . . , E6] indicates the U(6) quantum num-
bers of the coupled state, η labels a basis of states for the
coupled U(6) irrep E and ρ is a multiplicity index. In this
way we obtain a basis of Sp(12,R) states that reduces the
subgroup chain Sp(12,R) ⊃ U(6). To fix the basis η one
has to consider further the reduction of the U(6) to the
3-dimensional rotational group SO(3). Thus, in order to
completely classify the basis states, we use the following
reduction chain [10]:

Sp(12,R) ⊃
σ nρ

⊃ U(6) ⊃ SUp(3) ⊗ SUn(3)
E γ (λp, µp) (λn, µn)

⊃ SU(3) ⊃ SO(3) ⊃ SO(2),
ϱ (λ, µ) K L M (11)

which defines a shell-model coupling scheme. The chain
(11) corresponds to the following choice of the index
η = γ(λp, µp) (λn, µn) ϱ(λ, µ)KLM, labeling the basis states
(10) of an Sp(12,R) irrep. Each Sp(12,R) irreducible rep-
resentation is determined by a symplectic bandhead or an
intrinsic U(6) space, which in turn is fixed by the under-
lying proton-neutron shell-model structure. So, the theory
becomes completely compatible with the Pauli principle.

In the present paper, we consider the Hilbert space
spanned by the fully symmetric U(6) irreducible represen-
tations only, which are multiplicity free, i.e. ρ = 1. As a
consequence, in this case, all the multiplicity indices, ex-
cept the quantum number K, in the basis (11) are equal to
1 and can be dropped in our further considerations.

3 Application

A more general Hamiltonian of the PNSM can be repre-
sented in the form

H = H0 + Hhead + V(A, F,G), (12)

consisting of the spherical harmonic oscillator part H0, a
term which determines the bandhead energies of different
bands, and a collective potential V = V(A, F,G), which is
a rotational scalar function of the Sp(12,R) generators (6)-
(8). Such a Hamiltonian contains the main components
of nuclear interaction and covers simultaneously both the
single particle and collective aspects of nuclear dynamics.
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sented in the form

H = H0 + Hhead + V(A, F,G), (12)

consisting of the spherical harmonic oscillator part H0, a
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In particular, we use the following Hamiltonian

H =N�ω − ξC2[SU(3)] − 1
2
χ�Qp · �Qn

− κ
∑
α�β

(
A2(α, α) ·G2(β, β) +G2(α, α) ·G2(β, β)

+ h.c.
)
+ aL2, (13)

where N = Np + Nn and where �Qα,m = A2m(α, α) with α =
p, n are the in-shell truncated Elliott SU(3) quadrupole
operators for the proton and neutron subsystems, respec-
tively. The SU(3) second-order Casimir operator of the
combined proton-neutron system is given by

C2[S U(3)] = �Q · �Q + 1
2

L2 (14)

and has an eigenvalue ⟨C2[SU(3)]⟩ = 2
3 (λ2 + µ2 + λµ +

3λ + 3µ). The forth term provides a vertical coupling of
states from different major shells. Its role will be clari-
fied further. Finally, the last term in (13), which represents
a residual rotor part, allows the experimentally observed
moment of inertia to be reproduced without altering the
wave functions. The Hamiltonian (13) preserves the sym-
plectic symmetry, thus having Sp(12,R) as its dynamical
symmetry. The full dynamics for it therefore occurs within
a single irreducible representation of Sp(12,R).

The first point in the practical application of the theory
for description of the low-lying collective states in strongly
deformed nuclei is the determination of the relevant irre-
ducible representations of Sp(12,R). Different approaches
exist to determine these symplectic irreps by fixing the
shell-model structure of the ground state using isotropic
or anisotropic harmonic oscillator with or without spin-
orbit interaction. It is well known that, for heavy mass
nuclei from the rare-earth and actinide regions, the latter
is strong and destroys the oscillator structure. Due to this,
we use the pseudo-SU(3) scheme to determine the relevant
irreducible representations of Sp(12,R). The shell-model
considerations based on the pseudo-SU(3) thus give the
symplectic irreps ⟨σ⟩ = ⟨72 + 153

2 , 42 + 153
2 , 42 + 153

2 , 42 +
153

2 , 42+ 153
2 , 42+ 153

2 ⟩ and ⟨σ⟩ = ⟨111+ 237
2 , 57+ 237

2 , 57+
237

2 , 57+ 237
2 , 57+ 237

2 , 57+ 237
2 ⟩, which are determined by

the intrinsic U(6) structure of the corresponding lowest-
weight states σ = [72, 42, 42, 42, 42, 42]6 ≡ [30]6 and
σ = [111 + 57, 57, 57, 57, 57, 57]6 ≡ [54]6, as relevant for
154Sm and 238U, respectively. The latter are fixed by the
proton-neutron shell-model structure of the corresponding
ground states. More details about the construction and
structure of the shell-model representations of the PNSM
can be found in Ref. [10].

Once the appropriate symplectic irreps are fixed, the
model Hamiltonian (13) is further used to determine the
microscopic structure of the low-lying collective states in
the two isotopes 154Sm and 238U, respectively. For this
purpose, we diagonalize the model Hamiltonian (13) in a
U(6)-coupled basis, restricted to state space spanned by
the fully symmetric U(6) irreps.

Consider first the 154Sm. The theoretical energy levels
of the states of ground, β and γ bands in this nucleus, ob-
tained by the Hamiltonian with κ = 0 are compared with

Figure 1. (Color online) Comparison of the theoretical and ex-
perimental energy levels for the ground, β, and γ bands in 154Sm.
The values for the model parameters are as follows (in MeV):
χ = 0.011, ξ = 0.0073, κ = 0, and a = 0.014.

experiment [11] in Fig. 1. From the latter one sees a good
agreement with the experimental data.

In Fig. 2, we show the SU(3) probability distributions,
obtained in the calculations, for the 0+ states of the ground
and β bands,as well as the 2+ state of the γ band in 154Sm.
From the figure we see that the SU(3) dynamical symme-
try is slightly broken due to the mixing. In particular, for
the states of ground and β bands we see a comparatively
simple structure in which several SU(3) multiplets con-
tribute. For the 2+ states of the γ band one sees almost a
pure SU(3) structure, determined by the SU(3) irrep (26, 2)
which exhausts 99, 589%. Since κ = 0 (there is no vertical
mixing), all SU(3) states, contributing to the structure of
the collective states under consideration, belong to a single
U(6) irrep, namely that of the symplectic bandhead. The
same picture is obtained for the other collective states.

We also calculate the reduced intraband E2 electro-
magnetic transition strengths between the states of the
ground state band

B(E2; Li → Lf ) =
2Lf + 1
2Li + 1

( 5
16π

)( eZ
A − 1

)2���⟨ f ||Q(p, p)||i⟩
���2.

(15)
Note that in the definition of the operator Q(p, p) (cf.
Eq. (1)), the summation is over the (A − 1) Jacobi quasi-
particles. Thus, in order to obtain the proton charge
quadrupole operator, the Q(p, p) operator is multiplied by
the factor Z/(A − 1). The calculated reduced intraband
E2 electromagnetic transition strengths in 154Sm are com-
pared with experiment [11] in Fig. 3. We note that no ef-
fective charge is used in the calculation, i.e. e = 1.

From the results for the energy levels and B(E2) tran-
sition strengths, shown in Figs. 1-3, it follows that the
collective dynamics in 154Sm is already reproduced at the
level of Sp(12,R) bandhead intrinsic structure. Something
more, the calculations with the Hamiltonian (13) (with
κ = 0), in which the collective potential �Qp · �Qn is re-
placed by the full major-shell mixing Qp · Qn interaction,
show that its eigenvectors obtained as a reasult of the di-
agonalization in a model space up to 40�ω belong prac-
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Figure 2. (Color online) Calculated SU(3) probability distri-
butions for the wave functions of the 0+ states of the ground
and β bands, as well as the 2+ state of the γ band. The values
for the model parameters are as follows (in MeV): χ = 0.011,
ξ = 0.0073, κ = 0, and a = 0.014.

tically to the Sp(12,R) bandhead state space only. (Ac-
tually, this was the reason to introduce an additional term
(the κ-term) to the Hamiltonian (13), which provides more
stronger vertical mixing than that provided by the full
major-shell mixing quadrupole-quadrupole driving force,
Qp · Qn.) All this reveals the very good U(6) dynamical
symmetry, present in the spectra of 154Sm.

Next, we consider the isotope 238U. The latter is a typ-
ical rotational nucleus and, in addition, clearly shows en-
hanced quadrupole collective dynamics through the mea-
sured B(E2) transition strengths between collective states
of the ground band. In Fig. 4, we show the E2 transition
probability between the ground and first excited states of
the ground band in 238U as a function of the parameter

Figure 3. (Color online) Calculated and experimental intraband
B(E2) values between the states of the ground band in 154Sm. No
effective charge is used. The values for the model parameters
are as follows (in MeV): χ = 0.011, ξ = 0.0073, κ = 0, and
a = 0.014.

χ, changing in a certain interval of physically meaningful
values and κ = 0. From the latter we see a reduction of the
B(E2) strength with the increase of χ.

Figure 4. (Color online) Calculated B(E2; 2+1 → 0+1 ) transition
strength in 238U as a function of the model parameter χ and κ = 0.
No effective charge is used.

Figure 4 shows clearly that the observed collective dy-
namics in 238U is not covered by the Sp(12,R) bandhead
structure and that in order to build up the required col-
lectivity, in contrast to the Sp(6,R) case, one needs to
introduce a vertical mixing term which is different from
the full major-shell quadrupole-quadrupole mixing inter-
action. Such a mixing can be obtained by switching on the
forth term in the Hamiltonian (13), allowing κ to be varied.

In Fig. 5, the calculated intraband B(E2) transition
strengths between the collective states of the ground band
in 238U are compared with experiment [11]. The theo-
retical results are obtained with the following model pa-
rameters: χ = 0.0055, ξ = 0.0034, a = 0.006, and
κ = 0.0101. From the figure one sees that the enhanced
B(E2) strengths, observed in 238U, are already well repro-
duced by switching on the κ vertical mixing term. Addi-
tionally, in Fig. 6, the energy levels of the ground, β, and γ
bands in 238U are also shown. One sees a good description
of the three collective bands under consideration.
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Figure 4 shows clearly that the observed collective dy-
namics in 238U is not covered by the Sp(12,R) bandhead
structure and that in order to build up the required col-
lectivity, in contrast to the Sp(6,R) case, one needs to
introduce a vertical mixing term which is different from
the full major-shell quadrupole-quadrupole mixing inter-
action. Such a mixing can be obtained by switching on the
forth term in the Hamiltonian (13), allowing κ to be varied.

In Fig. 5, the calculated intraband B(E2) transition
strengths between the collective states of the ground band
in 238U are compared with experiment [11]. The theo-
retical results are obtained with the following model pa-
rameters: χ = 0.0055, ξ = 0.0034, a = 0.006, and
κ = 0.0101. From the figure one sees that the enhanced
B(E2) strengths, observed in 238U, are already well repro-
duced by switching on the κ vertical mixing term. Addi-
tionally, in Fig. 6, the energy levels of the ground, β, and γ
bands in 238U are also shown. One sees a good description
of the three collective bands under consideration.

Figure 5. (Color online) Calculated and experimental intraband
B(E2) values between the states of the ground band in 238U. No
effective charge is used. The values for the model parameters are
as follows (in MeV): χ = 0.0055, ξ = 0.0034, a = 0.006, and
κ = 0.0101.

Figure 6. (Color online) Comparison of the theoretical and ex-
perimental energy levels for the ground, β, and γ bands in 238U.
The values for the model parameters are as follows (in MeV):
χ = 0.0055, ξ = 0.0034, a = 0.006, and κ = 0.0101.

In Fig. 7, we show the SU(3) probability distribution
for the ground state, 0+ state of the β, and 2+ state of
the γ bands. One sees a simple structure which is dom-
inated by the so called SU(3) stretched states, defined as
the set of SU(3) states (λ0 + 2n, µ0) [5], where (λ0, µ0)
is the leading irreducible representation for the combined
proton-neutron nuclear system and n = 0, 1, 2, 3, . . . . This
is in agreement with the results for the ground band within
the framework of the one-component Sp(6,R) symplec-
tic model [12]. The present calculations show that the
stretched SU(3) states built on the leading SU(3) irre-
ducible representation (54, 0) of the Sp(12,R) bandhead
exhaust ∼ 98.52% of the structure for the ground state in
238U. Similar picture was obtained within the contracted
version of the Sp(6,R) model, in which the stretched states
give rise up to 93, 7% to the structure of the ground state in
238U [12]. Similar structure is obtained for the wave func-
tion of the 0+ state of β band, in which the stretched S U(3)
states built on the SU(3) irrep (50, 2) make up ∼ 99%.
From Fig. 7, one sees a wider S U(3) decomposition for

Figure 7. (Color online) Calculated SU(3) probability distri-
butions for the wave functions of the ground, β, and γ bands.
The values for the model parameters are as follows (in MeV):
χ = 0.0055, ξ = 0.0034, a = 0.006, and κ = 0.0101.

the 2+ state of the γ band, in which the corresponding con-
tribution of stretched SU(3) states built on the SU(3) irrep
(50, 2) is ∼ 53%.

In order to obtain a more generalized picture of the
microscopic structure of the rotational states in 238U, we
plot the U(6) wave function decomposition for the ground
state, 0+ state of the β, and 2+ state of the γ bands, re-
spectively, in Fig. 8. From the latter, one sees that the
U(6) symmetry is broken due to the mixing of different
irreps. Nevertheless, one observes a simple structure to
which only a few U(6) irreducible representations con-
tribute. From the figure, one sees also that although the
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Figure 8. (Color online) Calculated U(6) probability distribu-
tions for the wave functions of the 0+ states of the ground and
β bands, as well as the 2+ state of the γ band. The values for
the model parameters are as follows (in MeV): χ = 0.0055,
ξ = 0.0034, a = 0.006, and κ = 0.0101.

SU(3) decomposition of the 2+ state of the γ band looks
differently from those of 0+ states of ground and β bands,
the wave functions of the three states share a similar U(6)
decomposition, in which the lowest-grade U(6) irrep of
the Sp(12,R) bandhead predominates the structure mak-
ing up ∼ 85 − 90%, plus small admixtures from the next
few higher major shells.

Additionally, in Fig. 9, the U(6) decomposition of the
wave functions of ground, β, and γ bands, respectively, for
three different values of the angular momentum in each
band is shown. From the figure, one sees a highly coherent
mixing in which the squared amplitudes are practically L-

Figure 9. (Color online) Calculated U(6) probability distribu-
tions for the wave functions of the ground, β, and γ bands for
three different angular momentum values.

independent, at least for low angular momenta for which
the Coriolis and centrifugal forces are not so strong. The
latter means that the low-lying collective states of the three
bands under consideration in 238U reveal the presence of a
good U(6) quasi-dynamical symmetry, in the sense given
in Refs. [13, 14]. Then the obtained linear combinations
of U(6) irreducible representations can be represented by
an average effective irrep.

4 Conclusions

In the present paper, the low-lying collective states of the
ground, β and γ bands in the two strongly deformed nu-
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Figure 9. (Color online) Calculated U(6) probability distribu-
tions for the wave functions of the ground, β, and γ bands for
three different angular momentum values.

independent, at least for low angular momenta for which
the Coriolis and centrifugal forces are not so strong. The
latter means that the low-lying collective states of the three
bands under consideration in 238U reveal the presence of a
good U(6) quasi-dynamical symmetry, in the sense given
in Refs. [13, 14]. Then the obtained linear combinations
of U(6) irreducible representations can be represented by
an average effective irrep.

4 Conclusions

In the present paper, the low-lying collective states of the
ground, β and γ bands in the two strongly deformed nu-

clei 154Sm and 238U are investigated within the framework
of the microscopic proton-neutron symplectic model. For
this purpose, the model Hamiltonian is diagonalized in a
U(6)-coupled basis, restricted to the symplectic state space
spanned by the fully symmetric U(6) vectors. A good
description of the energy levels of the three bands under
consideration, as well as the intraband B(E2) transition
strengths between the states of the ground band is obtained
for the two nuclei without the use of an effective charge.
The calculations show that when the collective quadrupole
dynamics is already covered by the symplectic bandhead
structure, as in the case of 154Sm, the results reveal the
presence of a very good U(6) dynamical symmetry. In the
case of 238U, when we have an observed enhancement of
the intraband B(E2) transition strengths, then the results
show small admixtures from the higher major shells and a
highly coherent mixing of different irreps which is man-
ifested by the presence of a good U(6) quasi-dynamical
symmetry in the microscopic structure of the collective
states under consideration.
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