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Abstract: The purpose of this paper is to explain at the simplest possible level why finite mathematics

based on a finite ring of characteristic p is more general (fundamental) than standard mathematics.

The belief of most mathematicians and physicists that standard mathematics is the most fundamental

arose for historical reasons. However, simple mathematical arguments show that standard mathematics

(involving the concept of infinities) is a degenerate case of finite mathematics in the formal limit

p → ∞; standard mathematics arises from finite mathematics in the degenerate case when operations

modulo a number are discarded. Quantum theory based on a finite ring of characteristic p is more

general than standard quantum theory because the latter is a degenerate case of the former in the

formal limit p → ∞.

Keywords: finite mathematics; standard mathematics; finite quantum theory

1. The Main Goal of This Paper

In [1,2] and other our publications, we investigated in detail why finite mathematics
based on a finite ring of characteristic p is more general (fundamental) than standard
mathematics. These publications contain detailed proofs of statements on which our
approach is based. The purpose of this paper is to explain the main ideas of our approach
at the simplest possible level. Therefore, we do not provide technical details of the proofs,
but, for interested readers, we provide links through which those proofs can be found.

SM deals with relations

a + b = c, a · b = c, etc. (1)

On the other hand, FM deals with relations

a + b = c (mod p), a · b = c (mod p), etc. (2)

where all the numbers a, b, c, ... can take only values 0, 1, 2, ...p − 1 and p is called the
characteristic of the ring. Therefore, in FM, there are no infinities and all numbers do not
exceed p in absolute value.

Before discussing these versions of mathematics, let us discuss the following: Whether
we should treat mathematics (i) as a purely abstract science or (ii) as a science that should
describe nature. I am a physicist and have worked among physicists for most of my life.
For them, only approach (ii) is acceptable. However, when I discussed this issue with
mathematicians and philosophers, I discovered that many of them view mathematics only
from the point of view of (i) and arguments related to the description of nature are not
significant for them. Approach (i) can be called the approach of Hilbert, who was its
most famous proponent. There is a great discussion in the literature between him and
Gödel about whether Gödel’s incompleteness theorems indicate that the approach has
foundational problems.

The fact that Hilbert’s approach does not raise the question of describing nature
does not mean that this approach should be rejected out of hand. For example, Dirac’s
philosophy is “I learned to distrust all physical concepts as a basis for a theory. Instead one should
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put one’s trust in a mathematical scheme, even if the scheme does not appear at first sight to be
connected with physics. One should concentrate on getting an interesting mathematics”. Dirac
also said that, for him, the most important thing in any physical theory is the beauty of the
formulas in this theory. That is, he meant that, sooner or later, in any beautiful mathematical
theory, its physical meaning will be found. But even if it is not found, the beauty of the
theory itself has aesthetic value. For example, in music, we appreciate its beauty and do
not demand that music should somehow describe nature.

Nevertheless, in this paper, we treat mathematics only as a tool for describing nature.
In the framework of this approach, most mathematicians and physicists believe that, at
the most fundamental level, nature is described by SM, and FM is needed only in some
special model problems. This opinion has developed despite the fact that modern quantum
theory has known problems, and, despite the numerous efforts of many highly qualified
mathematicians and physicists over the years, these problems have not yet been solved.

Modern QFT can calculate observable quantities only within the framework of per-
turbation theory, and it is not known whether its series is convergent or only asymptotic.
However, even within this framework, one of the key problems of QFT (based on SM) is
the problem of divergences: the theory gives divergent expressions for the S-matrix. In
renormalized theories, the divergences can be eliminated by renormalization where finite
observable quantities are formally expressed as products and sums of singularities. From
the mathematical point of view, such procedures are not legitimate but, in some cases, they
result in impressive agreement with experiments. The most famous case is that the results
for the electron and muon magnetic moments obtained at the end of 40th agree with the
experiment with the accuracy of eight decimal digits. In view of this and the other successes
of QFT, most physicists believe that agreement with the data is much more important than
rigorous mathematical substantiation.

At the same time, in non-renormalized QFTs, divergences cannot be eliminated by
renormalization, and this is a great obstacle for constructing quantum gravity based on QFT.
As the famous Nobel Prize laureate Steven Weinberg wrote in his book [3], “Disappointingly
this problem appeared with even greater severity in the early days of quantum theory, and although
greatly ameliorated by subsequent improvements in the theory, it remains with us to the present
day”. The title of Weinberg’s paper [4] is “Living with infinities”.

The main goal of the present paper is to explain at the simplest possible level that,
contrary to the belief of most mathematicians and physicists, FM is the most general
(fundamental) mathematics, and SM is its degenerate case. For this purpose, it is necessary
to give a definition when mathematics A is more general (fundamental) than mathematics
B, and mathematics B is a degenerate case of mathematics A. In [1,2], we proposed the
following definition:

Definition 1. Let theory A contain a finite nonzero parameter and theory B be obtained from theory
A in the formal limit when the parameter goes to zero or infinity. Suppose that, with any desired
accuracy, A can reproduce any result of B by choosing a value of the parameter. On the contrary,
when the limit is already taken, one cannot return to A and reproduce all results of A. Then, A is
more general than B and B is a degenerate case of A.

In this paper, we discuss the result of [1,2] where, contrary to the belief of most
mathematicians and physicists, as follows from the Definition, the following applies:

Statement: SM is a degenerate case of FM in the formal limit p → ∞, where p is the
characteristic of the ring in FM.

As explained below, this Statement implies that any result of SM can be obtained
in FM with a choice of p, and, on the other hand, SM cannot reproduce those results of
FM where it is important that p is finite and not infinitely large. As explained below, a
consequence of this statement is that FM is more general (fundamental) than SM because
SM is obtained from FM in the case where all operations modulo a number are discarded.
Also, as discussed in [1,2,5] and this paper, a consequence of this Statement is that, for
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describing nature at the most fundamental level, the concepts of infinitesimals, infinitely large,
limits, continuity, etc., are not needed; they are needed only for describing nature approximately.

Kronecker’s famous phrase is that God invented integers, and humans invented
everything else. However, in view of this Statement, this phrase can be reformulated
so that God came up with only finite sets of numbers and everything else was invented
by people.

As follows from the Statement, in QT based on FM (which we call finite quantum
theory, FQT), the problem of divergences does not exist in principle because, in FM, there
are no infinities. We emphasize that the Statement is not only our wish, but a fact proven
mathematically in [1,2,5] and Section 2. Therefore, those mathematicians and physicists
who insist on their position that SM is more general (fundamental) than FM must either give
arguments that the Definition is not justified or show that the proof in [1,2,5] and Section 2
is erroneous. In numerous discussions with me, those mathematicians and physicists have
presented various arguments that, in their opinion, emphasize the correctness of their
position. The typical arguments are as follows:

(a) Formally, you have no divergences, but you introduce the cutoff p which is a huge
number. Therefore, in cases where infinities arise in the standard theory, you will
obtain a huge number p which is practically infinite.

(b) In your theory, there is only one parameter, p, and it is not clear why this parameter
is this and not another. Is it not reasonable to prefer the approach with adeles when
there are many characteristics which are on equal footing?

(c) An argument that has some similarities with (b) is the following: When you say that
God only invented finite sets of numbers and everything else (infinitesimals, infinitely
large, etc.) was invented by people, do you think that he “invented” the biggest
(finite) p?

These arguments will be discussed below.
The paper is organized as follows: In Section 2, we explain why a theory proceeding

from a finite ring is more general than a theory proceeding from the infinite ring Z. In
Section 3, we explain why special relativity where speeds cannot be greater than c is more
general than classical mechanics where there is no speed limit. In Section 4, we describe
the main ideas of quantum theory based on finite mathematics. In Sections 5 and 6, we
explain why quantum theory based on finite mathematics is more general (fundamental)
than standard quantum theory. In Section 7, we answer questions that are commonly asked
in connection with our approach.

2. Basic Facts about Finite Mathematics

SM starts from the infinite ring of integers Z = (−∞, ... − 1, 0, 1, ...∞) but FM can
involve only a finite number of elements. FM starts from the ring Rp = (0, 1, 2, ...p − 1),
where addition, subtraction and multiplication are defined as usual but modulo p. In our
opinion, the notation Z/p for Rp is not adequate because it may give the wrong impression
that FM starts from the infinite set Z and that Z is more general than Rp. However, although
Z has more elements than Rp, Z cannot be more general than Rp because Z does not contain
operations modulo a number. If p is prime, then Rp becomes the Galois field Fp where all
the four operations are possible. The number p is called the characteristic of the ring Rp

or the field Fp. For example, if p = 5, then 3 + 1 = 4 as usual but 3·2 = 1, 4·3 = 2, 4·4 = 1
and 3 + 2 = 0. Therefore, −2 = 3, −4 = 1, 1/2 = 3, 1/4 = 4, etc. The theory of finite rings and
fields is described in standard textbooks (see, e.g., [6–8]).

One might say that the above examples have nothing to do with reality since 3 + 2 always
equals 5 and not zero. However, since operations in Rp are modulo p, one can represent Rp as
a set {0,±1,±2, ...,±(p − 1)/2)} if p is odd or as a set {0,±1,±2, ...,±(p/2− 1), p/2} if p is
even. Let f be a function from Rp to Z such that f (a) has the same notation in Z as a in Rp.
Then, for elements a ∈ Rp such that | f (a)| ≪ p, addition, subtraction and multiplication
are the same as in Z. In other words, for such elements, we do not notice the existence of p.
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One might say that, nevertheless, the field Fp cannot be used in physics since
1/2 = (p + 1)/2, i.e., a very large number, when p is large. However, as explained in [1,2,5]
and Section 4, since quantum states are projective, then, even in SQT, quantum states can be
described with any desired accuracy by using only integers and therefore the concepts of rational
and real numbers play only an auxiliary role.

If elements of Z are depicted as integer points on the x axis of the xy plane, then, if
p is odd, the elements of Rp can be depicted as points of the circumference in Figure 1
and analogously if p is even. This picture is natural from the following considerations. As
explained in textbooks, both Rp and Z are cyclic groups with respect to addition. However,
Rp has a higher symmetry because it has a property which we call strong cyclicity; if we
take any element a ∈ Rp and sequentially add 1, then, after p steps, we will exhaust the
whole set Rp by analogy with the property so that if we move along a circumference in the
same direction, then sooner or later we will arrive at the initial point. At the same time,
if we take an element a ∈ Z, then the set Z can be exhausted only if we first successively
add +1 to a and then −1 to a or vice versa and those operations should be performed an
infinite number of times. As noted in [1,2], in FQT, strong cyclicity plays an important role.
In particular, it explains why one IR of the symmetry algebra describes a particle and its
antiparticle simultaneously.

Figure 1. Relation between Rp and Z.

The above construction has a known historical analogy. For many years, people
believed that the Earth was flat and infinite, and, only after a long period of time, they
realized that it was finite and curved. It is difficult to notice the curvature when we deal
only with distances much less than the radius of curvature. Analogously, one might think
that the set of numbers describing physics in our universe has a “curvature” defined by a
very large number p but we do not notice it when we deal only with numbers much lower
than p.

By analogy with SM, one can say that, if a ∈ Rp, then a > 0 if f (a) > 0 and a < 0 if
f (a) < 0. In other words, “positive” elements of Rp are on the right half-circle of Figure 1
and “negative” elements on the left half-circle. In SM, if a > 0 and b > 0, then (a + b) > 0.
However, in FM, this is not necessarily the case because the operations here are modulo p.
For example, (p − 1)/2 > 0 and 1 > 0 but (p − 1)/2 + 1 = (p + 1)/2 = −(p − 1)/2, i.e.,
f ((p − 1)/2 + 1) < 0. Therefore, in Rp, the concepts of > and < have the same meaning as
in SM only if they apply to numbers a such that | f (a)| is much less than p.

In Section 6.3 of [1,2], the following is proved from the Definition:
Statement 1: The ring Rp is more general than the ring Z and the latter is a degenerate case of

the former in formal limit p → ∞.
This implies that the ring Z is the limit of the ring Rp when p → ∞. Note that, in the

technique of SM, infinity is understood only as a limit (i.e., as potential infinity) but the basis of SM
does involve actual infinity. SM starts from the infinite ring Z and, even in standard textbooks
on mathematics, whether Z can be treated as a limit of finite rings is not even posed as a
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problem. The problem of actual infinity is discussed in a vast portion of the literature, and,
in SM, Z is treated as actual and not potential infinity, i.e., there is no rigorous definition
of Z as a limit of finite rings. Moreover, classical set theory considers infinite sets with
different cardinalities.

As explained in [1,2,5], Statement 1 is the basic stage in proving the Statement, i.e.,
that FM is more general than SM. In particular, in approach (ii), this means that FQT is
more general (fundamental) than SQT. This issue will be also discussed in Sections 4 and 6.
Therefore, Statement 1 should not be based on the properties of the ring Z derived in
SM. The statement should be proved by analogy with the standard proof that a sequence
of natural numbers (an) goes to infinity if ∀M > 0 ∃n0 such that an ≥ M ∀n ≥ n0. In
particular, the proof should involve only potential infinity but not actual infinity.

The meaning of Statement 1 is that, for any p0 > 0, there exists a set S belonging to
all Rp with p ≥ p0 and a natural number n such that for any m ≤ n, the result of any m
operations of summation, subtraction or multiplication of elements from S is the same as in
Rp for any p ≥ p0 and that the cardinality of S and the number n formally go to infinity
when p0 → ∞. This means that, for the set S and number n, there is no manifestation
of operations modulo p, i.e., the results of any m ≤ n operations of elements from S are
formally the same in Rp and Z. This implies that, for experiments involving only sets S
and numbers n, it is not possible to conclude whether the experiments are described by a
theory involving Rp with a large p or by a theory involving Z.

As noted, e.g., in [1,2], Z can be treated as a limit of Rp when p → ∞ follows from
a construction called ultraproducts. However, the theory of ultraproducts is essentially
based on classical results involving actual infinity, in particular, on Łoŝ’ theorem involving
the axiom of choice. Therefore, the theory of ultraproducts cannot be used in proving that
FM is more general than SM.

When the radius of the circumference in Figure 1 becomes infinitely large, then a
vicinity of zero in Rp becomes the infinite set Z when p → ∞. Therefore, even from a pure
mathematical point of view, the concept of infinity cannot be fundamental because as soon as we
involve infinity and replace Rp by Z, we automatically obtain a degenerate theory because, in Z,
there are no operations modulo a number.

In FQT, states are elements of linear spaces over Rp. One might think that SQT is
a more general theory than FQT because, in SM, Z is generalized to the case of rational
and real numbers. However, as noted in [1,2] and Section 4, since, in SQT, the states are
projective, then even in standard quantum theory, it suffices to use only integers for describing
experimental data with any desired accuracy.

3. Analogy between SR and FM

As noted in Section 1, in the standard physics literature, the fundamental nature of
various physical theories is discussed on the basis of physical considerations. However, in
Section 4, we will discuss purely mathematical criteria for comparing the fundamentality
of various physical theories over SM. Nevertheless, for illustrative purposes, in this section,
we consider a comparison of SR and NM from the point of view of a very simple example.

Before the creation of SR, it was believed that NM was the most general (fundamental)
mechanics. There are no restrictions on the magnitude of speed there, which can be in the
interval [0, ∞). However, in SR, the speed cannot exceed c.

The fact that there is a speed limit greatly changes the standard philosophy of NM.
For example, in NM, it seems unnatural that the speed of 0.99c is possible but 1.01c is
not. For this and other reasons, it took a long time for SR to be accepted by the majority
of physicists.

Let us consider a simple model example where, in our reference frame, an observer
moves with speed v1 and, in the reference frame of this observer, a particle moves in the
same direction with speed v2. Then, according to the rules of NM, the speed of the particle
in our reference frame will be V = v1 + v2. Therefore, even if v1 < c and v2 < c, then, in
NM, a situation is possible where V > c and this may suggest that the statement of SR
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about the speed limit is not consistent. However, the result of SR in such a situation is not
V = v1 + v2 but

V =
v1 + v2

1 + v1v2/c2
(3)

and this value cannot exceed c. In particular, if v1 = v2 = 0.6c, then V is not equal to 1.2c as
one might think from naive considerations but V ≈ 0.882c, and, if v1 = v2 = 0.99c, then V
is not equal to 1.98c but V ≈ 0.9999495c. The lesson of this example is that it is not always
correct to make judgments proceeding from “common sense”.

Here, there is an analogy with FM. For example, if a and b are such natural numbers
that a < p, b < p, and, in SM, there may be a situation when (a + b) > p, then, in FM, such
a situation cannot exist because the following always applies: (a + b) (mod p) < p.

It is now generally accepted that SR is confirmed experimentally to a greater extent
than NM. Also, as explained in Section 4, it follows from the Definition that NM is a
degenerate case of SR since SR can reproduce any fact of NM with a choice of c, while NM
cannot reproduce those facts of SR in which it is essential that c is finite and not infinite.
Thus, SR does not disprove NM but shows that it works with high accuracy when speeds
are much less than c. There is an analogy here with the fact that, as shown in Section 2,
FM does not refute SM but shows that the latter is a good approximation to reality only in
situations where the numbers in a given problem are much less than p.

In complete logical analogy with the objections to FM in points (a–c) in Section 1, one
can put forward similar objections to SR but now the role of p will be played by c. Therefore,
I think that, being completely consistent, if we reject FM, we must also reject SR, and, if we accept
SR, then by the same logic we must also accept that FM is more general (fundamental) than SM.

As follows from the above results, it is not necessary to apply SR in everyday life when
speeds are much less than c because, in this case, NM works with a very high accuracy.
Analogously, for describing almost all phenomena at the macroscopic level, there is no
need to apply QT. For example, there is no need to describe the motion of the Moon by the
Schrödinger equation. In principle, this is possible, but results in unnecessary complications.
At the same time, microscopic phenomena can be correctly described only in the framework
of QT.

4. Quantum Theory Based on Finite Mathematics

In QFT, symmetry at the quantum level is described as follows: First, the existence
of a background space-time is postulated, e.g., Galilei, Minkowski, dS, AdS or some other
background. This background has a group of motions. It is postulated that the basic
operators for the system under consideration commute as required in the Lie algebra
representation of this group. That is, these operators form a representation of the Galilei
algebra, Poincare algebra, dS algebra, AdS algebra or some other algebra. This approach to
symmetry is in the spirit of Felix Klein’s Erlangen program.

The Erlangen program was proposed in 1872 when quantum theory did not yet exist.
As discussed in detail in [1,2,5], the approach to symmetry at the quantum level should be
the opposite. The fact is that background is a purely classical concept. In quantum theory,
each physical quantity must have a corresponding operator, but there are no operators for
coordinates x of the background. Therefore, the approach to symmetry at the quantum level
should be as follows: Each system is described by a set of basic operators and symmetry is
determined by how these operators commute with each other. For example, by definition,
dS symmetry should not involve the fact that the dS group is the group of motions of
dS space. Instead, the definition is that the operators Mab (a, b = 0, 1, 2, 3, 4, Mab = −Mba)
describing the system under consideration satisfy the commutation relations

[Mab, Mcd] = −i(ηac Mbd + ηbd Mac − ηad Mbc − ηbc Mad) (4)

where ηab is the diagonal tensor such that η00 = −η11 = −η22 = −η33 = −η44 = 1. The
definition of AdS symmetry is given by the same equations but η44 = 1.
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The concepts (kg, m, s) come from classical theory, so these concepts should not exist in
quantum theory. In particular, quantum theory should not contain the parameters (c, h̄, R)
if c is understood as the speed of light in m/s, h̄ is understood as the Planck constant in
kg· m2/s and R is understood as the radius of dS or AdS space in meters. With such a
treatment of (c, h̄, R), these parameters may be different at different stages of the universe.
However, as argued by Dyson in his famous paper [9], in quantum theory, (c, h̄, R) can
be treated as contraction parameters from RQT to NQT, from QT to CT and from dSQT
or AdSQT to RQT, respectively. Then, the parameters (c, h̄, R) can be identified with their
respected classical values in semiclassical approximation. For the first time, the concept of
contraction has been discussed by Inonu and Wigner [10].

The following is argued by Dyson [9] (see also [1,2,5]):

(i) NQT is a degenerate case of RQT in the formal limit c → ∞;
(ii) CT is a degenerate case of QT in the formal limit h̄ → 0;
(iii) RQT is a degenerate case of dSQT and AdSQT in the formal limit R → ∞.

In the literature, those properties are usually discussed from physical considerations.
However, as shown in Section 1.3 of [1,2], those properties can be proved purely mathemat-
ically taking into account the Definition and the fact that symmetry at the quantum level is
defined by the corresponding representation of the symmetry algebra.

The above facts prove that R is fundamental to the same extent as h̄ and c (see
also [1,2,11] for details). By analogy with the fact that c must be finite, R must be fi-
nite too; the formal case R = ∞ corresponds to the situation where the dS and AdS algebras
do not exist because they become the Poincare algebra. At the quantum level, R is only the
parameter of contraction from dS or AdS algebras to the Poincare one and has nothing to do with the
radius of the dS or AdS space. As shown in [11], the result for the cosmological acceleration
obtained in semiclassical approximation to dSQT without any geometry is the same as in
GR when the radius of the dS space equals R.

The properties (i)–(iii) have been proved in SQT based on complex numbers. How to
generalize these results to the case of FQT is a problem that has arisen. In this theory, the
space of states is a linear space over the ring Rp2 or the field Fp2 , which contain p2 elements.
Any element of Rp2 can be represented as a + bi where a, b ∈ Rp and i is a formal element

such that i2 = −1. Then, the definition of addition, subtraction and multiplication in Rp2 is
obvious and Rp2 is a ring regardless of whether p is prime or not.

However, Fp2 can be a field only if p is prime and this condition is not sufficient. By

analogy with the field of complex numbers, one could define division as (a + bi)−1 =
(a − ib)/(a2 + b2). This definition can be meaningful only if a2 + b2 ̸= 0 in Fp for any
a, b ∈ Fp, i.e., a2 + b2 is not divisible by p. Therefore, the definition is meaningful only if p
cannot be represented as a sum of two squares. For example, Fp2 can be defined as Fp + iFp

if p = 7 but cannot be defined in this way if p = 5.
We will not consider the case p = 2 and therefore p is necessarily odd. Then we

have two possibilities; the value of p (mod 4) is either 1 or 3. The known result of number
theory [6–8] is that a prime number p can be represented as a sum of two squares only in
the former case and not in the latter one. Therefore, Fp2 = Fp + iFp only if p (mod 4) = 3.
Nevertheless, as shown in standard textbooks [6–8], quadratic extensions of Fp exist also in
the case p = 1(mod 4).

Every quadratic finite ring or field has only one nontrivial automorphism ∗. If Rp2 =

Rp + iRp or Fp2 = Fp + iFp, this automorphism is the complex conjugation (a + bi)∗ =

(a − bi); however, as shown in standard textbooks (e.g., in [6–8]), the automorphism of Fp2

can also be defined if p = 1 (mod 4).
In spaces over Rp2 or Fp2 , one can formally define a scalar product (y, x) for the

elements x, y belonging to those spaces such that (y, λx) = λ(y, x) and (λy, x) = λ∗(y, x)
where λ ∈ Rp2 or λ ∈ Fp2 , respectively.

In SQT, operators A of physical quantities act in Hilbert spaces H supplied by a scalar
product (...,...), and these operators are selfadjoint: (Ax, y) = (y, Ax) ∀x, y ∈ H belonging
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to the domain of A. In particular, the operators in Equation (4) are selfadjoint. By analogy,
in FQT, linear operators A of physical quantities act in spaces over Rp2 or Fp2 and, formally,

such operators can be called selfadjoint if (Ax, y) = (y, Ax) for all elements x, y belonging
to such spaces.

In SM, scalar products in Hilbert spaces have a property (x, x) > 0 if x ̸= 0, and,
in SQT, this property has a known probabilistic interpretation. The physical meaning of
probability is such that it is defined by an infinite number of experiments. In nature, there
can be no infinite number of experiments and so the concept of probability is based on an
idealization. However, as explained in Section 2, in FM, the concepts of > and < have a
limited meaning. For example, if e1, e2, , , en are elements of the basis in a space over Rp2

such that (ej, ek) = 0 if j ̸= k, and a1, a2, ...an are elements of Rp2 , then

(a1e1 + ...anen, a1en + ...anen) = a1a∗1(e1, e1) + ...ana∗n(en, en) (5)

In SM, the analogous expression will always be positive but, since in FM the operations
are performed modulo p, this expression may even be “negative”, even if all the quantities
aja

∗
j and (ej, ej) are “positive”. Therefore, in FQT, the probabilistic interpretation has only a

limited meaning when not only f (aja
∗
j ) > 0 and f ((ej, ej)) > 0 ∀j but also

f (a1a∗1) f ((e1, e1)) + ... f (ana∗n) f ((en, en)) > 0 (6)

It is clear that only those quantum theories over SM can be generalized to theories
over FM where all physical quantities are dimensionless and discrete. As shown in [1,2],
among the theories considered in this section, only in dSQT and AdSQT are all physical
quantities dimensionless and those theories are the most general.

In SQT, IRs of the algebras in Equation (4) when the operators in these expressions
are selfadjoint are described in a wide range of the literature. All such IRs are infinite-
dimensional. Representations in spaces over a ring or field of nonzero characteristic are
called modular representations. According to the Zassenhaus theorem (see, e.g., [12,13]), all
modular IRs are finite-dimensional. In [14,15], we constructed modular IRs of the algebras
defined by Equation (4).

In SQT, all Hilbert spaces are separable, i.e., they contain a countable dense subset. As
shown in standard textbooks on Hilbert spaces (see, e.g., [16]), a Hilbert space is separable
if and only if it admits a countable orthonormal basis (e1, e2, ...en, ...). It is always possible
to choose a basis such that the norm of each ej is an integer. The elements of such spaces
can be denoted as (c1, c2, ...cn, ...), where all the coordinates cj are complex numbers. The
known result of the theory of Hilbert spaces is that the set of all points (c1, c2, ...) with only
finitely many nonzero coordinates, each a rational number, is dense in the separable Hilbert
space (see, e.g., [16]). This implies that, with any desired accuracy, each element of the Hilbert
space can be approximated by a finite linear combination

x =
n

∑
j=1

cjej (7)

where cj = aj + ibj and all the numbers (aj, bj) (j = 1, 2, ....n) are rational.
The next observation is that spaces in quantum theory are projective, i.e., for any

complex number c ̸= 0, the elements x and cx describe the same state. The meaning of
this statement is that it is not the probability itself but ratios of different probabilities that
have a physical meaning. As a consequence, both parts of Equation (7) can be multiplied
by a common denominator of all the nonzero numbers aj and bj. As a consequence, the
following applies:

Statement 2: Each element of a separable Hilbert space can be approximated with any desired
accuracy by a finite linear combination (7) where all the numbers aj and bj are integers, i.e., belong
to Z.
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The important consequence for understanding standard quantum theory is that,

in this theory, there is a large excess of states. Although, formally, the theory involves

Hilbert spaces of states (c1, c2, ...cn, ...) where all the cj are arbitrary complex numbers

and the only limitation is the condition ∑
∞
j=1 |cj|

2
< ∞, for describing experiments with

any desired accuracy, it suffices to involve only states where only a finite number of the

coefficients cj = aj + ibj are nonzero and all the numbers (aj, bj) are integers.

Now a problem arises regarding how to use the Definition for proving that FQT is
more general (fundamental) than SQT and the latter is a degenerate case of the former in
the formal limit p → ∞. According to this Definition, the proof should consist of proving
the following two statements:

(A) There exists a value of p = p0 such that any result of SQT can be obtained in FQT for
all p ≥ p0;

(B) There exist phenomena which FQT can describe while SQT cannot.

Let us first consider property (A).
In SQT, states of a system are described by Equation (7) where the ej are elements of a

basis in a Hilbert space and the cj = aj + ibj are complex numbers. At the same time, in
FQT, states of a system are also described by Equation (7) but now the ej are elements of a
basis in a space over Rp2 and cj = aj + ibj where the elements aj and bj belong to Rp. As
explained above, in SQT, it is always possible to find the elements ej such that their norms
are integers and, as noted in Statement 2, it suffices to consider such states (7) where only
finite numbers of the aj and bj are nonzero integers, i.e., they are elements of Z.

As noted above, it follows from (i)–(iii) that, among quantum theories in which the
symmetry algebras are ten-parameter, dSQT and AdSQT are the most general. While, in
RQT, there are operators having dimensions expressed in terms of (kg, m, s) and containing
a continuous spectrum, in dSQT and AdSQT, all the operators in Equation (4) are dimen-
sionless and, as shown in [14,15], it is possible to choose bases in which they have only a
discrete spectrum, i.e., the spectrum belonging to Z.

Then, as follows from Statement 1 in Section 2, if Equations (5) and (6) are satisfied at
some p = p0, they will also be satisfied at all p > p0. Therefore, if at some p = p0, FQT
gives the same results as SQT, then the same will take place at all p > p0, i.e., property (A)
is satisfied.

Property (B) will be demonstrated in Section 6.

5. Why Finite Mathematics Is More Natural than Classical Mathematics

The belief that SM is the most fundamental mathematics arose after Newton and
Leibniz proposed the theory of infinitesimals more than 300 years ago. This belief was in the
spirit of existing ideas where, when people did not know about the existence of elementary
particles, they believed that any object could be divided into arbitrarily large number of
arbitrarily small parts. However, the very fact of the existence of elementary particles
(which cannot be divided into parts) indicates that, in nature, there are no infinitesimals
or continuity. Therefore, theories involving these concepts (including standard geometry)
at best can only be a good approximation when the discrete nature of matter is not taken
into account.

It seems unnatural that SQT involves SM with differential equations and infinitesimals.
Even the name “quantum theory” reflects a belief that nature is quantized, i.e., discrete,
and this name has arisen because, in QT, some quantities have a discrete spectrum (e.g., the
spectrum of the angular momentum operator, the energy spectrum of the hydrogen atom,
etc.). But this discrete spectrum has appeared in the framework of SM.

As a rule, physicists agree that, in nature, there are no infinitesimals. They say that,
for example, dx/dt should be understood as ∆x/∆t where ∆x and ∆t are small but not
infinitesimal. I point out that they work with dx/dt not ∆x/∆t. They reply that, since
mathematics with derivatives works well, then there is no need to philosophize and develop
something else (and they are not familiar with FM). So, people invented continuity and
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infinitesimals which do not exist in nature, created problems for themselves and now apply
titanic efforts for solving those problems.

The founders of QT and the scientists who essentially contributed to it were highly
educated. But they used only SM, and, even now, FM is not a part of the standard education
for physicists. The development of QFT has shown that the theory contains anomalies and
divergences. Most physicists considering those problems work in the framework of SM
and do not acknowledge that they arise just because this mathematics is applied.

Several famous physicists (e.g., the Nobel Prize laureates Gross, Nambu and Schwinger)
discussed approaches where QT involves FM (see, e.g., [17]). A detailed discussion of these
approaches is given in book [18], where they are characterized as hybrid quantum systems.
The reason is that, here, momenta and coordinates belong to a finite ring or field but wave
functions are elements of standard Hilbert spaces. Then, the problem of the foundation of
QT is related to the problem of the foundation of SM. On the other hand, in [1,2,5,14,15],
we have proposed an approach called finite quantum theory (FQT) where not only physical
quantities but also wave functions involve finite rings or fields.

In view of this discussion, a problem arises as to whether it is justified to use mathemat-
ics with infinitesimals for describing nature in which infinitesimals do not exist. Although
SM describes many physical phenomena with a very high accuracy, a problem arises as
to whether there are phenomena which cannot be correctly described by mathematics
involving infinitesimals.

Some facts of SM seem to be unnatural. For example, tg(x) is a one-to-one reflection
of (−π/2, π/2) onto (−∞, ∞), i.e., the impression might arise that both intervals have the
same numbers of elements although the first interval is a nontrivial part of the second one.
However, Hilbert said, “No one shall expel us from the paradise that Cantor has created
for us”.

From the point of view of Hilbert’s approach (see Section 1), it is not important
whether some statements of SM are natural or not since the goal of the approach is to find a
complete and consistent set of axioms. In the framework of this approach, the problem of
the foundation of SM has been investigated by many great mathematicians (e.g., Cantor,
Fraenkel, Gödel, Hilbert, Kronecker, Russell, Zermelo and others). Their philosophy was
based on macroscopic experience in which the concepts of infinitesimals, continuity and
standard division are natural. However, as noted above, those concepts contradict the
existence of elementary particles and are not natural in QT. The illusion of continuity arises
when one neglects the discrete structure of matter.

The existence of foundational problems in Hilbert’s approach follows, in particular,
from Gödel’s incompleteness theorems, which state that no system of axioms can ensure
that all facts about natural numbers can be proved, and the system of axioms in SM cannot
demonstrate its own consistency. The theorems are written in highly technical terms of
mathematical logics. As already noted, in this paper, we do not consider Hilbert’s approach
to mathematics. However, simple arguments in [1,2] show that, if mathematics is treated as
a tool for describing nature, then the foundational problems of SM follow from the simple
arguments described below.

In the 1920s, the Viennese circle of philosophers developed an approach called log-
ical positivism which contains the following verification principle: A proposition is only
cognitively meaningful if it can be definitively and conclusively determined to be either true or
false [19,20]. However, this principle does not work if SM is treated as a tool for describing
nature. For example, in Hilbert’s approach, one of axioms is that a + b = b + a for all
natural numbers a and b, and the question as to whether this is true or false does not arise.
However, if mathematics is treated as a tool for describing nature, it cannot be determined
whether this statement is true or false.

As noted by Grayling [21], “The general laws of science are not, even in principle, verifiable,
if verifying means furnishing conclusive proof of their truth. They can be strongly supported by
repeated experiments and accumulated evidence but they cannot be verified completely”. So, from
the point of view of SM and physics, the verification principle is too strong.
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Popper proposed the concept of falsificationism [22]: If no cases where a claim is false
can be found, then the hypothesis is accepted as provisionally true. In particular, this has been
related to the statement that a + b = b + a for all natural numbers a and b can be treated as
provisionally true until one has found some numbers a and b for which a + b ̸= b + a.

According to the philosophy of quantum theory, there should be no statements ac-
cepted without proof and based on belief in their correctness (i.e., axioms). The theory
should contain only those statements that can be verified where by “verified” physicists
mean an experiment involving only a finite number of steps. This philosophy is the result
of the fact that quantum theory describes phenomena which, from the point of view of
“common sense”, seem meaningless but have been experimentally verified. So, the philoso-
phy of QT is similar to verificationism, not falsificationism. Note that Popper was a strong
opponent of QT and supported Einstein in his dispute with Bohr.

From the point of view of verificationism and the philosophy of QT, SM is not well
defined not only because it contains an infinite number of numbers. Consider, for example,
whether the rules of standard arithmetic can be justified.

We can verify that 100 + 100 = 200 and 1000 + 1000 = 2000, but can we verify that, say,
10100,000 + 10100,000 = 2 · 10100,000? One might think that this is obvious, and, in Hilbert’s
approach, this follows from the main axioms. However, if mathematics is treated as a
tool for describing nature, then this is only a belief based on extrapolating our everyday
experience to numbers where it is not clear whether the experience still works.

In Section 3, we discussed that our life experience works well at speeds that are much
less than c, but this experience cannot be extrapolated to situations where speeds are
comparable to c. Likewise, our experience with the numbers we deal with in everyday life
cannot be extrapolated to situations where the numbers are much greater.

According to verificationism and the principles of quantum theory, whether the state-
ment 10100,000 + 10100,000 = 2 · 10100,000 is true or false depends on whether this statement
can be verified. Is there a computer which can verify this statement? Any computing
device can operate only with a finite number of resources and can perform calculations
only modulo some number p. If our universe contains only a finite number of elementary
particles, then, in principle, it is not possible to verify that standard rules of arithmetic are
valid for any numbers.

That is why the statements in Equation (1) are ambiguous: because they do not contain
information on the computing device which verifies those statements. For example, let us
ask whether 100 + 200 equals 300. If our computing device is such that p = 400, then the
experiment will confirm this, while, if p = 250, then we will obtain 100 + 200 = 50.

So, the statements that 100 + 200 = 300 and even that 2 · 2 = 4 are ambiguous because they
do not contain information on how they should be verified. On the other hand, the statements

100 + 200 = 300 (mod 400), 100 + 200 = 50 (mod 250),

2 · 2 = 4 (mod 5), 2 · 2 = 2 (mod 2)

are well defined because they do contain such information. Therefore, only operations
modulo a number are well defined.

We believe the following observation is very important: Although SM is a part of our
everyday life, people typically do not realize that standard operations with natural numbers
are implicitly treated as limits of operations modulo p when p → ∞. For example, if (a, b, c, p)
are natural numbers, then Equation (1) is implicitly treated as

lim
p→∞

[(a + b) (mod p)] = c, lim
p→∞

[(a · b) (mod p)] = c, etc.

As a rule, every limit in mathematics is thoroughly investigated; however, in the
case of standard operations with natural numbers, it is not even mentioned that those
operations are limits of operations modulo p. In real life, such limits might not even exist if,
for example, the universe contains a finite number of elementary particles.
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So we can see that the question of what 100 + 200 is equal to is not a question of what some
theory says, but a question of how an experiment will be set up to test what this value is equal to.
In one experiment, the result may be 300, in another, 50, and there is no theory that says that one
experiment is preferable to another.

Now let us discuss the question of what p can be equal to in the theory describing
modern physics. Recently, an increasing number of works have appeared that say that the
universe works like a computer (see, for example, [23]). From this point of view, the value
of p is determined by the state of the universe at a given stage. And, since the state of the
universe is changing, it is natural to expect that the number p describing physics at different
stages of the evolution of the universe will be different at different stages. Therefore, by
analogy with the discussion of what 100 + 200 is equal to, we can say that p is not a number
that is determined by some fundamental theory, but a number that depends on the state of
the universe at a given stage.

The problem of time is one of the most fundamental problems of quantum theory.
Every physical quantity should be described by a selfadjoined operator, but, as noted by
Pauli, the existence of the time operator is a problem (see, e.g., the discussion in [1,2]). One
of the principles of physics is that the definition of a physical quantity is a description
of how this quantity should be measured, and it is not correct to say that a certain quantity
exists but cannot be measured. The present definition of a second is the time during which
9,192,631,770 transitions in a cesium-133 atom occur. The time cannot be measured with
absolute accuracy because the number of transitions is finite. Then, one second is defined
with the accuracy 10−15 s, and [24] describes efforts to measure time with the accuracy
10−19 s. However, a problem arises as to how to define time in the early stages of the
universe when atoms did not exist. Therefore, treating time t as a continuous quantity
is an approximation which can only work in some conditions. In [1,2], we discussed the
conjecture that standard classical time t manifests itself because the value of p changes, i.e.,
t is a function of p. We do not say that p changes over time because classical time t cannot
be present in quantum theory; we say that we feel changing time because p changes. As
shown in [11] (see also the subsequent section), with such an approach, the known problem
of the baryon asymmetry of the universe does not arise.

6. Examples Where Finite Mathematics Can Solve Problems Which Standard
Mathematics Cannot

As noted in Section 4, for proving that FQT is more general (fundamental) than SQT, it
is necessary to prove the properties (A) and (B) described at the end of this section. Property
(A) has already been demonstrated at the end of Section 4. Property (B) means that there
are phenomena that FQT can explain but SQT cannot. In [1,2], we discussed phenomena
where it is important that p is finite. They cannot be described in SQT by analogy with the
fact that NM cannot describe cases where it is important that c is finite. Below, we describe
several such phenomena.

Example 1. Gravity. The Newton gravitational law cannot be derived in QFT because the theory is
not renormalizable. However, the law can be derived from FQT in semiclassical approximation [1,2].
Then, the gravitational constant G is not taken from the outside but depends on p as 1/ln(p). By
comparing this result with the experimental value, one discovers that ln(p) is of the order of 1080 or
more, and, therefore, p is a huge number of the order of exp(1080) or more. One might think that,
since p is so huge, then, in practice, p can be treated as an infinite number. However, since ln(p) is
“only” of the order of 1080, gravity is observable. In the formal limit p → ∞, G becomes zero and
gravity disappears. Therefore, in our approach, gravity is a consequence of the finiteness of nature.

Example 2. The Dirac vacuum energy problem. In quantum electrodynamics, the vacuum
energy should be zero, but, in QFT, the sum for this energy diverges. This problem was posed by
Dirac. To obtain the zero value, the artificial requirement that the operators should be written in the
normal order is imposed, but this requirement does not follow from the construction of the theory.
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In Section 8.8 of [1,2], I take the standard expression for this sum and explicitly calculate it in FM
without any assumptions. Then, since the calculations are modulo p, I obtain zero as it should be.

Example 3. Equality of masses of particles and their antiparticles. This is an example
demonstrating the power of finite mathematics. A discussion in [1,2,5] and Section 4 shows that,
in QT, an elementary particle and its antiparticle should be considered only from the point of view
of IRs of the symmetry algebra. In SQT, the algebras are such that their IRs contain either only
positive or only negative energies. In the first case, the objects are called particles and, in the second
one, antiparticles. Then, the energies of antiparticles become positive after second quantization.

In QFT, the spectrum of positive energies contains the values (m1, m1 + 1, m1 + 2, · · ·∞),
and, for negative energies, the values (−m2,−m2 − 1,−m2 − 2, · · · − ∞), where m1 > 0,
m2 > 0, m1 is called the mass of a particle and m2 is called the mass of the corresponding
antiparticle. Experimentally, m1 = m2, but, in QFT, IRs with positive and negative energies
are fully independent of each other. It is claimed that m1 = m2 because local covariant
equations are CPT invariant. However, as explained in [1,2,5], the argument x in local
quantized fields does not have a physical meaning because it is not associated with any
operator. Therefore, in fact, SQT cannot explain why m1 = m2.

Consider now what happens in FQT. For definiteness, we consider the case where p is
odd and the case where p is even can be considered analogously. One starts constructing
the IR with the value m1, and, by acting on the states by raising operators, one obtains the
values m1 + 1, m1 + 2, · · · . However, now we are moving not along the x axis but along the
circle in Figure 1. When we reach the value (p − 1)/2, the next value is −(p − 1)/2, i.e., one
can say that, by adding 1 to a large positive number (p − 1)/2, one obtains a large negative
number −(p− 1)/2. By continuing this process, one obtains the numbers −(p− 1)/2+ 1 =
−(p − 3)/2, −(p − 3)/2 + 1 = −(p − 5)/2, etc. The explicit calculation [1,2] shows that
the procedure ends when the value −m1 is reached.

Therefore, FM gives a clear proof that m1 = m2 and shows that, instead of two indepen-
dent IRs in SM, one obtains only one IR describing both a particle and its antiparticle. The
case described by SM is degenerate because, in the formal limit p → ∞, one IR in FM splits
into two IRs in SM. So, when p → ∞, we obtain symmetry breaking. This example shows
that the standard concept of particle–antiparticle is only approximate and is approximately
valid only when p is very large. Therefore, constructing a complete QT based on FM should
be based on new principles.

Example 4. The problem of baryon asymmetry of the universe. Modern cosmological
theories state that the numbers of baryons and antibaryons in the early stages of the universe were
the same. Then, since the baryon number is the conserved quantum number, those numbers should
be the same at the present stage. However, at this stage, the number of baryons is much greater than
the number of antibaryons.

To understand this problem, one should understand the concept of particle–antiparticle.
In SQT, this concept takes place because IRs describing particles and antiparticles are such
that energies in them can be either only positive or only negative but cannot have both
signs. However, as explained in Example 3, IRs in FQT necessarily contain both positive
and negative energies, and, in the formal limit p → ∞, one IR in FQT splits into two IRs in
SQT with positive and negative energies.

As noted above, the number p is different at different stages of the universe. As noted
in Example 1, at the present stage of the universe, this number is huge, and, therefore, the
concepts of particles and antiparticles have a physical meaning. However, arguments given
in [1,2] indicate that, in the early stages of the universe, the value of p was much less than
now. Then, each object described by IR is a superposition of a particle and antiparticle (in
SQT, such a situation is prohibited), and the electric charge and baryon quantum number
are not conserved. Therefore, in the early stages of the universe, SQT does not work,
and the statement asserting that, at such stages, the numbers of baryons and antibaryons
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were the same does not have a physical meaning. Therefore, the problem of the baryon
asymmetry of the universe does not arise.

Example 5. As argued in Section 6.8 of [1,2], the ultimate QT will be based on a ring not a field,
i.e., only addition, subtraction and multiplication are fundamental mathematical operations while
division is not.

The above examples demonstrate that there are phenomena which can be explained
only in FQT because, for them, it is important that p is finite and not infinitely large.
Therefore, FQT is more general (fundamental) than SQT. Here, we have an analogy with
the case where SR can explain phenomena where c is finite while NM cannot explain
such phenomena.

7. Answers to Arguments (a–c) in Section 1

To remove divergences, physicists usually carry out the following: In integrals over
the absolute values of momenta, the upper limit of integration is taken not as ∞ as it should
be, but as the value L, called the Pauli–Villars cutoff. Then, all integrals formally become
finite, but they depend on the nonphysical very large quantity L. In renormalizable theories,
various contributions to the S-matrix can be arranged in such a way that the contributions
with L cancel, but, in non-renormalizable theories, it is not possible to remove L.

The idea of argument (a) is such that, by analogy with SQT, where there are divergent
integrals that are cut off by the value of L, in FQT, there are formally no divergences, but
there are quantities depending on the enormous value p. However, this analogy does not
work for several reasons.

In Section 3, we noted that, from our experience in NM, we think that some of the
arguments are based on common sense. But these arguments only work at speeds which
are much less than c and often fail at speeds comparable to c. Likewise, some arguments
which, from our experience in SM, seem to come from common sense, usually work in FM
only for numbers much less than p and often fail for numbers comparable to p.

As noted in Section 2, in FM, there are no strict concepts of positive and negative or
concepts of > and <. These concepts approximately work for numbers that are much less
than p and are in the neighborhood of zero according to Figure 1.

In SM, when we add two positive numbers, we always obtain a positive number that
is greater than the original numbers. However, since, in FM, calculations are carried out
modulo p, situations are possible where we add two “positive” numbers and obtain a
“negative” number. For example, in finite mathematics, (p − 1)/2 + 1 = −(p − 1)/2, i.e.,
adding two numbers which in Figure 1 are in the right half-plane, we obtain a number that,
in this figure, is in the left half-plane.

In Example 2 in Section 6, we describe an example where, in SQT, as a result of adding
many positive values, a divergent expression is obtained, while, in FQT, the result is 0
because the calculations are carried out modulo p. Thus, argument (a) does not always
work in FQT.

Argument (b) is unacceptable because even the theory with adeles is not finite and
therefore automatically has foundational problems. Arguments (b) and (c) (that it is not
clear from what considerations p is chosen) are not a refutation of FQT for the following
reason: As explained in Section 5, the value of p is not a fundamental parameter that
follows from some theory. This value is determined by the state of the universe at the given
stage of its development, and, at different stages, the values of p are different.

To conclude this section, we note the following: One of the objections to FQT is that
the authors of these objections interpret p as the greatest possible number in nature and
invoke the argument attributed to Euclid that there can be no greatest number in nature
because if p is such a number, then (p + 1) > p. Similarly, one can say that c cannot be
the greatest possible speed because 1.01c > c. As explained above, these arguments arise
because our experience at speeds which are much less than c and numbers which are much
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less than p is extrapolated to situations where speeds are comparable to c or numbers are
comparable to p.

8. Conclusions

The goal of this paper is to explain at the simplest possible level why FM is more
general (fundamental) than SM. As noted in Section 5, the belief of most mathematicians
and physicists that SM is the most fundamental arose for historical reasons. However,
as explained in Section 2, simple mathematical arguments show that SM (involving the
concept of infinities) is a degenerate case of FM; SM arises from FM in the degenerate case
when operations modulo a number are discarded.

We call FQT a quantum theory based on FM. It is determined by a parameter p which
is the characteristic of the ring in finite mathematics describing physics. We note that, in
FQT, there are no infinities and that is why divergences are absent in principle. Probabilistic
interpretation of FQT is only approximate; it applies only to states described by numbers
which are much less than p.

In Section 5, we give arguments that p is not a fundamental quantity that is determined
by some theory but depends on the state of the universe at a given stage. Therefore, p is
different at different stages of the universe.

The question of why p is this value and not another is similar to the question of why
the values of (c, h̄,R) are certain values and not others. As explained in [1,2,11], currently,
they are such simply because people want to measure c in m/s, h̄ in kg·m2/s and R in
meters, and it is natural to expect that these values at different stages of the universe
are different.

As noted in Section 6, at the present stage of the universe, p is an enormous quantity
of the order of exp(1080). Therefore, at present, SM almost always works with very high
accuracy. At the same time, in [1,2,11] and Section 6, we argue that, in the early stages,
of the universe, p was much less than now. Therefore, at these stages, the finitude of
mathematics played a much greater role than it does now. As a result, the problem of the
baryon asymmetry of the universe does not arise.

The famous Kronecker’s expression is “God made the natural numbers, all else is
the work of man”. However, in view of the above discussion, I propose to reformulate
this expression as “God made only finite sets of natural numbers, all else is the work of
man”. For illustration, consider a case where an experiment is conducted N times; the
first event happens n1 times, the second one n2 times, etc., such that n1 + n2 + ... = N.
Then, the experiment is fully described by a finite set of natural numbers. However, people
introduce rational numbers wi = wi(N) = ni/N, introduce the concept of limit and define
probabilities as limits of the quantities wi(N) when N → ∞.

The above discussion shows that FM is not only more general (fundamental) than SM
but, in addition, in FM, there are no foundational problems because every statement can be
explicitly verified by a finite number of steps. The conclusion from the above consideration
can be formulated as:

Mathematics describing nature at the most fundamental level involves only a finite

number of numbers, while the concepts of limit, infinitesimals and continuity are needed

only in calculations describing nature approximately.
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List of Abbreviations

FM finite mathematics

SM standard mathematics

SR special relativity

NM nonrelativistic mechanics

QT quantum theory

CT classical theory

FQT quantum theory based on finite mathematics

SQT standard quantum theory

IR irreducible representation

QFT quantum field theory

NQT nonrelativistic quantum theory

RQT relativistic quantum theory

dS de Sitter

AdS anti de Sitter

dSQT de Sitter quantum theory

AdSQT anti de Sitter quantum theory
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