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JHEP 1801 (2018) 041. arXiv:1709.03985 [hep-th].

https://arxiv.org/abs/2003.02269
https://arxiv.org/abs/2001.10020
https://arxiv.org/abs/1907.05295
https://arxiv.org/abs/1905.00016
https://arxiv.org/abs/1901.01315
https://arxiv.org/abs/1808.10449
https://arxiv.org/abs/1808.03651
https://arxiv.org/abs/1806.08377
https://arxiv.org/abs/1803.04463
https://arxiv.org/abs/1802.03332
https://arxiv.org/abs/1802.00018
https://arxiv.org/abs/1710.00764
https://arxiv.org/abs/1709.03985




Abstract

The low-energy limit of superstring theories admits a description in terms of an effective
field theory for its massless modes. The corresponding action is given by a double per-
turbative expansion in gs, the string coupling, and in α′, the square of the string length.
The leading term of this expansion is given by one of the different ten-dimensional su-
pergravity theories, whereas subleading terms involve terms of higher order in derivatives.
The work presented in this thesis is the result of a research program that starts with the
study of supersymmetric solutions of gauged supergravity and reaches the summit with
the understanding of the effects produced by the α′ corrections to solutions of the heterotic
superstring effective action.

This thesis is divided in two parts. The first one focuses on the supersymmetric
solutions of a minimal extension of the STU model of N = 1, d = 5 supergravity whose
main interest lies on the fact that it can be obtained as a toroidal compactification of ten-
dimensional N = 1 supergravity coupled to a triplet of SU(2) gauge fields. Concretely, we
construct and study solutions describing black holes and smooth horizonless geometries
with non-trivial Yang-Mills fields.

The understanding of this type of solutions from the framework of string theory
serves as a motivation for the work of the second part of the thesis, which is devoted to
the study of solutions of the effective action of the heterotic string at first order in α′.
The latter does not simply coincide with the action of N = 1, d = 10 supergravity coupled
to a Yang-Mills vector multiplet as the Green-Schwarz anomaly cancellation mechanism
and supersymmetry enforce us to introduce additional terms in the action. These terms
are constructed out of the spin connection with torsion given by the field strength associ-
ated to the Kalb-Ramond 2-form and their contributions to the equations of motion are
analogous to those of the Yang-Mills fields. This fact is exploited to construct analytic
supersymmetric black-hole solutions with α′ corrections.

The most important lesson to extract from our results is that the mass and the
conserved charges of the black holes do get modified by the α′ corrections. This is what
one would expect on physical grounds as the corrections act in the string equations of
motion as effective sources of energy, momentum and charge. This information is crucial
to establish a correspondence between the parameters that characterize the effective or
coarse-grained description (the black hole) and those that characterize the microscopic
system of string theory that it describes. The effects on the charges introduced by the
higher-derivative corrections has a major impact in the understanding of the so-called
small black holes, which are an effective description of a fundamental string with winding
and momentum charges. Small black holes are singular solutions with vanishing horizon
area in the supergravity approximation. It has long been believed that higher-derivative
corrections would be able to stretch the horizon, making the solution regular. Our results
reveal that this is not the case at first order in α′, and that previous regularizations of
heterotic small black holes actually describe a different microscopic system which is already
regular in the supergravity approximation.

The last chapter of the thesis contains the computation of the most general correction
to the four-dimensional Kerr solution when the Einstein-Hilbert term is supplemented with
higher-curvature terms up to cubic order, including the possibility of having dynamical
couplings. This general set-up includes, as a particular case, the corrections predicted by
the heterotic superstring effective action.
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1
Introduction

1.1 Black holes

Black holes, regions of spacetime from where not even light can escape, are one of the most
fascinating predictions of Einstein’s theory of general relativity. Initially regarded as a
mathematical curiosity, it was later understood that they could be created by gravitational
collapse of massive stars [1–4], or even in the early universe, where conditions were so
extreme that density perturbations might have undergone gravitational collapse [5, 6].1

Nowadays, there is strong evidence that almost all large galaxies contain a supermassive
black hole (M ∼ 106 − 1010M�) at their centers. One such example would be Sagittarius
A*, which is believed to be a supermassive black hole of about four million solar masses
at the center of our galaxy [8–10]. Another popular example is the supermassive black
hole candidate at the center of the galaxy M87, which last year made the headlines after
the Event Horizon Telescope obtained an image of its shadow [11].

From an experimental perspective, black holes, together with neutron stars, rep-
resent extraordinary laboratories where Einstein’s theory can be tested in extreme con-
ditions. In particular, the recent observation of gravitational waves coming from binary
black hole and neutron star mergers [12] has provided very valuable information that has
been already used to perform precision tests of general relativity [13–17] and also to con-
strain the parameter space of its possible extensions [18–22]. What is even more exciting
is that this is just the dawn of a promising era in which future-planned gravitational wave
detectors will play a crucial rôle in deciphering the fundamental nature of the gravitational
interaction [23,24].

On the other hand, black holes have been a central area of research in theoretical
physics in the last decades, as they pose profound theoretical puzzles regarding the inter-
play of gravity and quantum mechanics which have even questioned the solid foundations
of the quantum theory. The study of these puzzles is a mandatory task for the theoretical
physics community, as their resolution is something that must be achieved by any con-
sistent theory of quantum gravity aimed to describe our real world. From this point of
view, black holes can be considered as our guides in the path towards a theory of quantum
gravity.

Before considering quantum aspects of black holes, it is convenient first to study
them from a classical perspective, as described by general relativity.

1Although experimental evidence supporting the existence of primordial black holes is still lacking, they
have attracted a great deal of attention over the last fifty years, having even been proposed as possible
dark matter candidates [7].
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Chapter 1. Introduction

1.1.1 Classical black holes

Preliminar definitions

A black hole region B in an asymptotically-flat spacetime (M, gµν) is defined as the set
of events from which outgoing null geodesics cannot reach future null infinity, I +. This
can be recasted in mathematical terms as follows:

B =M− J−(I +) , (1.1)

where J− (I +) is the chronological or causal past of I +, i.e. the set of all points that can
be reached from future null infinity by means of a past-directed geodesic, either timelike
or null. The event horizon, defined as the boundary of the black-hole region,

H = ∂B = ∂J−(I +) , (1.2)

can be proven to be a null hypersurface generated by null geodesics that have no future
end points [25].

These definitions highlight one of the most intriguing properties of the event horizon,
its teleological nature, as the future history of the spacetime must be known before its
position can be determined. This shows that the event horizon is a global property of the
spacetime. In fact, according to the Equivalence Principle, it has no local relevance at
all, which implies that an observer falling into a black hole does not encounter anything
special when crossing its event horizon.

In order to further characterize the event horizon, we need to make additional as-
sumptions on the black-hole spacetime. A very powerful one is to assume that the space-
time is stationary. This means that the metric gµν admits a one-parameter family of
isometries generated by a Killing vector which is timelike in the asymptotic region. In
this case, the rigidity theorems [26, 27] establish that the event horizon is also a Killing
horizon, i.e. a null hypersurface whose normal vector kµ is a Killing vector of gµν .2 As
a consequence, the null generators of the horizon are given by the integral curves of kµ,
which satisfy

kν∇νkµ = κ kµ , (1.3)

when evaluated at the horizon. The function κ is called the surface gravity of the Killing
horizon, and measures the failure of the integral curves of kµ to be affinely parametrized.
According to the zeroth law of black-hole mechanics [28], which we shall study later, the
surface gravity is constant over the horizon. It was proved in [29] that the horizon is
bifurcate when κ 6= 0. In contrast, when κ = 0, the horizon is degenerate and the black
hole is said to be extremal.

The Schwarzshild black hole

The best way to delve into the concept of black hole is to study a particular example. The
simplest and most important one is the Schwarzschild black hole [30], which was the first
non-trivial exact solution to Einstein’s field equations and, in fact, according to Birkhoff’s

2This means that kµ satisfies the Killing equation: ∇(µkν) = 0 .
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Chapter 1. Introduction

theorem [31], their only spherically-symmetric vacuum solution. The line element of the
Schwarzschild solution is given by

ds2 =

(
1− RS

r

)
dt2 − dr2

1− RS
r

− r2
(
dθ2 + sin2 θ dφ2

)
, (1.4)

where RS = 2GNM is the Schwarzschild radius (the unique parameter of the solution)
and M is the mass of the solution that one can obtain by making use of the Arnowitt-
Deser-Misner (ADM) prescription [32]

M =
1

16πGN

∫
S2
∞

(∂jhij − ∂ihjj) εijk dxj ∧ dxk , (1.5)

where hµν = gµν − ηµν is the metric perturbation and ηµν is the Minkowski metric in
Cartesian coordinates, xµ = (x0 = t, xi).

The ADM mass is a conserved quantity that represents the total mass (or energy)
of the spacetime, the only notion of energy that is well defined and conserved in general
relativity. This is owed to the fact that the gravitational energy cannot be defined locally.
The main obstacle that one finds is the Equivalence Principle itself, which tells us that
all the effects of the gravitational field (including the gravitational energy) can always be
locally eliminated in a suitable reference frame.3

At first sight, there are two special values of the radial coordinate for which the
Schwarzschild metric is not well behaved: r = 0 and r = RS . This signals possible
spacetime singularities where the laws that rule the dynamics of the gravitational field
—namely, Einstein’s equations— break down.

This is in fact what happens at r = 0, where there is a curvature singularity. The
easiest way to see this is to check that at least one curvature invariant diverges there. In
the case of the Schwarzschild solution, the simplest non-trivial curvature invariant is the
Kretschmann invariant,

RµνρσR
µνρσ =

48M2 cos2 θ

r6
+ . . . , (1.6)

which, as we can see, blows up at r = 0. One could be tempted to think that the
singularity of the Schwarzschild solution is due to the fact that it describes an idealized
system with too much symmetry, and that small perturbations around the solution could
result into a regular spacetime. After all, this is what occurs in the Newtonian description
of gravitational collapse. Nevertheless, the singularity theorems [34,35] proven by Hawking
and Penrose tell us that singularities in black-hole spacetimes are a generic prediction of
general relativity. Concretely, they showed that the presence of trapped surfaces4 inside
black holes leads to the formation of singularities if one assumes that some form of energy
condition holds. According to the cosmic censorship conjecture [37–39], all spacetime
singularities in our Universe must be hidden behind event horizons.

3A somewhat exotic proposal that avoids the conflict with the Equivalence Principle is the construction
of an energy-momentum tensor out of the curvature tensors [33].

4A trapped surface T is a spacelike closed two-dimensional surface such that for both congruences of
ingoing and outgoing null geodesics orthogonal to T , the cross-sectional area decreases as we proceed into
the future [34,36].

3



Chapter 1. Introduction

It was not until 1933 when Lemâıtre [40] understood that the singularity at r = RS
was only a coordinate singularity, i.e. a mathematical artefact rather than a physical
pathology. In fact, the hypersurface r = RS is the event horizon of the Schwarzschild black
hole. However, in order to see this, one has to extend the solution through r = RS . This
can be achieved, for instance, by introducing the ingoing Eddington-Finkelstein coordinate,

v = t+ r∗ , (1.7)

where r∗ is the so-called tortoise coordinate, defined as

r∗ = r +RS log
∣∣∣ r
RS
− 1
∣∣∣ . (1.8)

Replacing t for v in the Schwarzschild metric (1.4), one gets the following metric

ds2 =

(
1− RS

r

)
dv2 − 2dvdr − r2

(
dθ2 + sin2 θ dφ2

)
, (1.9)

which is now smooth for all r > 0. Then, we can use it to study the geodesic motion of
a test particle in a neighborhood of the horizon. It is instructive to consider radial null
geodesics, which satisfy either

v̇ = 0 , or

(
1− RS

r

)
v̇ = 2ṙ , (1.10)

corresponding, respectively, to ingoing and outgoing null geodesics. The ingoing ones
always end up at the singularity. The outgoing ones can avoid it and escape to the
asymptotic region, but only if r > RS . If, instead, r < RS , then r must decrease as v
increases. Therefore, when r < RS , both possibilities in (1.10) describe null geodesics that
eventually hit the singularity. Let us observe that there are also null geodesics given by
r(v) = RS whose tangent vector, k = ∂v, is a Killing vector of the metric (1.9). These
are the null generators of the horizon. It is straightforward to check that the norm of the
Killing vector

kµkµ = gvv = 1− RS
r
, (1.11)

vanishes at r = RS , which shows that the event horizon is a Killing horizon, as predicted
by the rigidity theorems. These apply because the exterior of the Schwarzschild solu-
tion (r > RS) is stationary, as the Killing vector (1.11) becomes timelike in that region.
More precisely, the Schwarzschild solution is static, which means that there is a family of
spacelike hypersurfaces orthogonal to the Killing vector kµ.

The global structure of the Schwarzschild spacetime can be better appreciated in
its Carter-Penrose diagram. In order to construct it, we first need the maximal analytic
extension of the Schwarzschild solution. This is given by the Kruskal-Szekeres coordinates
(U, V, θ, φ) [41,42], which are defined in terms of the Schwarzschild coordinates as follows(

r

RS
− 1

)
er/RS = −UV , V

U
= −et/RS . (1.12)

In these coordinates, the Schwarzschild metric reads
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Chapter 1. Introduction

ds2 =
4R3

Se
−r/RS

r
dUdV − r2

(
dθ2 + sin2 θdφ2

)
. (1.13)

The Kruskal-Szekeres coordinates reveal us a larger spacetime than the patch covered by
the Eddington-Finkelstein coordinates, which corresponds to regions I and II in the Carter-
Penrose diagram of Fig. 1.1. Region I is the exterior of the black hole, the only region
that is covered by the Schwarzschild coordinates. Region II is the black-hole interior that
we discovered using the Eddington-Finkelstein coordinates. The zigzagging line represents
the singularity, which appears in the future of any point that enters region II. In fact, the
interior of the black hole (which is non-static) admits the interpretation of an anisotropic
and homogeneous universe that collapses into a big crunch singularity. Apart from regions
I and II, we can see in the diagram that there are two new regions, labeled by III and IV.
Region III is an exact copy of region I. Its appearance (as well as that of IV) is owed to
the fact that U and V can take values in the real line. Then, for instance, a hypersurface
of constant r is now a 2-branch hyperbola. One of the branches falls either in region I (if
r > RS) or in region II (if r < RS) and the other in either of the two new regions: in III
(if r > RS) or in IV (if r < RS). In particular, the event horizon bifurcates into two null
hypersurfaces, U = 0 and V = 0, which are sometimes called the future and past event
horizons.5 They intersect at U = V = 0, the bifurcation 2-sphere. The region between
the past horizons is IV, the white hole, where nothing from the outside can enter and
everything inside eventually comes out. As opposed to the singularity in II, the one in IV
has the interpretation of a big bang singularity.

I

II

III

IV

i+

i−

i0

i+

i−

i0

I +

I −

U
=
0 ,
r
=
2MI +

I −

V
=
0 , r

=
2M

r = 0

r = 0

Figure 1.1: Carter-Penrose diagram of the maximally extended Schwarzschild spacetime.
I + (I −) and i+ (i−) denote respectively the future (past) null and timelike infinities and
i0 the spatial infinity. The rules to interpret this diagram are simple: light rays propagate
in straight lines at 45o (each point of the diagram is a 2-sphere) and one must think time
increases as we move upwards.

5The future (past) horizon for region I is U = 0 (V = 0), while for region III is V = 0 (U = 0).
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Uniqueness theorems

Astrophysical black holes formed by gravitational collapse eventually settle down into an
equilibrium state in which they are expected to be well described by a stationary solution
of Einstein’s equations. Then, one would expect they admit a cornucopia of solutions
describing stationary black holes with a wide variety of shapes and features inherited from
their stellar predecessors. Surprisingly, this reasonable expectation was proven to be false
by the uniqueness theorems.

The first of this class of theorems is due to Israel [43] and states that any static black-
hole solution of the vacuum Einstein’s equations must be a Schwarzschild black hole. This
striking result poses a rather interesting question: what happens with the higher multiple
moments of the initial object? The answer to this question was provided by Price [44,45],
who showed that these multiple moments are radiated away either to infinity or to the
interior of the black hole.

Yet, Israel’s theorem is not sufficiently general for astrophysical purposes, as it
assumes staticity. The extension of this result to non-static spacetimes was provided by
Carter [46] and Robinson [47], who proved that any stationary and axisymmetric vacuum
black hole must be described by the Kerr solution [48], whose line element in Boyer-
Lindquist coordinates is given by

ds2 =

(
1− 2GNMr

Σ

)
dt2 +

4GNMar sin2 θ

Σ
dtdφ− Σ

(
dr2

∆
+ dθ2

)
−
(
r2 + a2 +

2GNMra2 sin2 θ

Σ

)
sin2 θdφ2 ,

(1.14)

where

Σ = r2 + a2 cos2 θ , and ∆ = r2 − 2GNMr + a2 . (1.15)

The Kerr solution depends on two parameters: M , the ADM mass, and a, which is
related to the total angular momentum of the spacetime J by J = aM . It is stationary
and axisymmetric with respect to the Killing vectors ∂t and ∂φ and the event horizon is
placed at r = r+ ≡ M +

√
M2 − a2, the largest root of ∆. One can check that the norm

of the following linear combination of the aforementioned Killing vectors,6

k = ∂t + ΩH∂φ , (1.16)

vanishes at r = r+.

These uniqueness theorems were generalized to charged black-hole solutions of the
Einstein-Maxwell theory [49]. Concretely, the extension of Israel’s theorem states that a
static black hole of this theory is either described by the Reissner-Nordström [50, 51] or
Majumdar-Papapetrou [52,53] solutions. If, instead, one only assumes axisymmetry, then,
the most general black-hole solution is the Kerr-Newmann [54] solution. All these results
gave raise to the famous no-hair conjecture [55], according to which a black hole would be

6This is also a Killing vector since ΩH ≡
gtφ
|gφφ|

∣∣∣
r+

= a

2M
(
M+
√
M2−a2

) , the angular velocity at the

horizon, is constant.
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Chapter 1. Introduction

fully determined by the values of its conserved charges: the mass, M , the total angular
momentum, J , and the possible electric and magnetic charges, collectively denoted as Q.

Since charged black holes are probably not relevant for astrophysical purposes, the
conclusion that one extracts from these classical results is that all astrophysical black
holes in our Universe end up being described by the Kerr solution. It is fair to mention,
however, that these are mathematical theorems which are based on certain premises that
in a realistic situation might not be a good approximation. For instance, they are derived
assuming that the black hole constitutes a perfect isolated system, which in the real world
is not completely true. Another premise that can be relaxed is that the theory that
describes these black holes might not be general relativity. Even if it has passed a large
number of experimental tests, there are very good theoretical motivations to expect that
it will be modified at high energies. This is a generic prediction of quantum gravity and,
in particular, of string theory, which predicts the appearance of an infinite series of higher-
derivative terms correcting the Einstein-Hilbert action. In general, the presence of these
terms implies that the vacuum solutions of general relativity, such as the Schwarzschild
and Kerr solutions, no longer solve the equations of motion of the corrected theories. It is
therefore an interesting task to determine the new black-hole solutions and to study their
properties, even if the deviations with respect to the general relativity predictions are still
too small to be detected with our current technology.

The laws of black-hole mechanics

In 1973, Bardeen, Carten and Hawking [28] established four laws governing the behaviour
of black holes, which, because of their close resemblance with the four laws of thermody-
namics, were called the four laws of black-hole mechanics.

The first of these laws, known as the zeroth law of black-hole mechanics, establishes
that the surface gravity κ of a black hole —which was defined in (1.3)— is constant over
the event horizon. This is analogous to the zeroth law of thermodynamics, which states
that a thermodynamical system in equilibrium has uniform temperature. However, this
analogy must be merely coincidental, as the temperature of a classical black hole must be
absolute zero. A simple argument that justifies this statement is that a black hole cannot
be in equilibrium with black body radiation at any non-zero temperature.

The first law of black-hole mechanics tells us that the changes in the mass M , area
of the horizon AH and angular momentum J of a stationary black hole in a quasi-static
process are related by

δM =
κ

8πGN
δAH + ΩH δJ . (1.17)

In combination with the zeroth law, the first one suggests that the area of the horizon
plays the same rôle as the entropy in a thermodynamical system. This is in agreement
with independent work by Bekenstein [56], who had argued just few months before the
publication of [28] that black holes should have an entropy proportional to area of the
horizon in order to avoid violations of the second law of thermodynamics.

The first law has been extended in many respects to account for the different con-
tributions of the matter fields as well as for different asymptotics [57]. For example, in
the context of electrically-charged black holes, it includes an additional contribution in
the right-hand side of (1.17) of the form ΦHδQ, ΦH being the value of the electrostatic
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Chapter 1. Introduction

potential at the horizon.7 The reason why it can be so easily extended was understood
years later by Wald in [58], where he showed that the first law was actually a consequence
of general covariance.

The content of the second law is the same as the area theorem proved by Hawking
in 1971, [59]. It states that if the null energy condition is satisfied, the horizon area of a
black hole never decreases

δAH ≥ 0 . (1.18)

Finally, a third law was proposed stating that the surface gravity cannot be reduced
to zero in a finite time. This was later proved by Israel [60].

1.1.2 Quantum aspects of black holes

Hawking radiation

Just one year after the publication of the four laws of black-hole mechanics, Hawking came
up with an astonishing discovery that would revolutionize the field [61,62]. He found that
quantum fluctuations of the vacuum in the presence of black holes cause them to create
and emit particles as if they were black bodies at temperature

TH =
~κ
2π

. (1.19)

This removed any reluctance to a complete identification of black holes as ordinary ther-
modynamical systems, and also allowed to fix the proportionality constant between the
black-hole entropy SBH and the area of the horizon AH by virtue of the first law (1.17):

SBH =
AH

4~GN
. (1.20)

As we have already mentioned, the first law remains valid even when the gravitational
dynamics is not dictated by the Einstein-Hilbert term, though in this case the entropy
that appears in the first law is not simply given by the Bekenstein-Hawking formula, but
by that of Wald [58], which reads8

SW = −2π

~

∫
Σ
d2x
√
|h| EabcdR εabεcd , (1.21)

where |h| is the determinant of the induced metric at the bifurcation surface Σ, εab is the
binormal at the horizon normalized such that εabε

ab = −2 and, finally, EabcdR is what would
be the equation of motion of the Riemann tensor if it were treated as a fundamental field,
namely

EabcdR =
1√
|g|

δS

δRabcd
. (1.22)

7It is assumed we work in a gauge in which the electrostatic potential vanishes asymptotically. Other-
wise, the term ΦHδQ would not be gauge invariant.

8Wald’s formula will play an important rôle in Chapter 5 of this thesis, where we will use it to compute
the entropy of stringy black holes with higher-derivative corrections.
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The physical mechanism behind particle creation by black holes is analogous to the
Schwinger pair production in strong electric fields [63]. In the case of black holes, pairs of
virtual particles are created just outside the event horizon. One member of the pair has
positive energy and escapes to infinity to become part of the Hawking radiation, while
the other has negative energy and falls into the black-hole interior, to the region where it
can exist as a real particle. The net effect is that the mass and the area of the black hole
decrease, hence violating the second law of black-hole mechanics. Still, the evaporation
process does not violate the generalized second law of thermodynamics [64], which states
that the total entropy, i.e. the sum of the black-hole entropy and the entropy of the matter
fields in the exterior region, never decreases.

The inmediate consequence of the emission of particles is that black holes evaporate.
Let us consider a Schwarzschild black hole of mass M . The surface gravity can be readily
computed by using the Killing vector given in (1.11), and the result is κ−1 = 4GNM .
Substituting this expression into (1.19), one obtains the Hawking temperature of the
Schwarzschild black hole:

TH =
~

8πGNM
. (1.23)

As the above equation indicates, the temperature of the black hole is inversely proportional
to its mass. Then, the black hole gets hotter and hotter as it evaporates. The evaporation
rate can be deduced from Boltzmann’s law to be inversely proportional to the square of
the mass, dM/dt ∼ −M−2, which implies that the end of the life of a black hole is a violent
explosion [61]. Hawking himself estimated that in the last 0.1 seconds, 1023 J would be
realeased, which is equivalent to about a million of 1 Mt hydrogen bombs. He further
calculated that the lifetime of a black hole would be roughly

τ ≈ 1071 (M/M�)3 s . (1.24)

Hence, the lifetime of a stellar black hole of a few solar masses is more than fifty orders of
magnitude greater than the age of our Universe, which means that they hardly evaporate
at present. Instead, the effects of Hawking radiation would be significant in primordial
black holes that might have been produced in the early universe [5, 6]. In fact, Eq. (1.24)
tells us that those with masses smaller than 1015 grams would have been evaporated by
now.

The information paradox

The application of quantum mechanics to black holes poses very intriguing puzzles. In first
place, we have learnt that a black hole has an entropy given by the Bekenstein-Hawking
formula. But according to the principles of statistical mechanics, this implies that there
are N ≈ eS microstates characterized by the same conserved charges as the black hole
(M,J,Q, . . . ). However, the classical uniqueness theorems and the no-hair conjecture tell
us that a black hole is univocally characterized by its conserved charges so that the entropy
should be S = log 1 = 0. Then, this raises the following question: what are the microstates
of a black hole?

There is a second puzzle that concerns the evaporation process itself. Let us imagine
that the initial matter that is undergoing gravitational collapse has been arranged in a pure
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quantum state. As time evolves, an event horizon is formed and the evaporation process
starts taking place until we end up in a final state with just the Hawking radiation. This
final state cannot be described quantum-mechanically by a pure state but by a mixed one,
since the radiation is exactly thermal. In Hawking’s own words:

One would hope that, in the spirit of the ”no hair” theorems, the rate of emission
would not depend on details of the collapse process except through the mass, angular
momentum and charge of the resulting black hole. I shall show that this is indeed
the case but that, in addition to the emission in the super- radiant modes, there is
a steady rate of emission in all modes at the rate one would expect if the black hole
were an ordinary body with temperature κ/(2π).

The controversial point is that a theory that preserves information —namely, a unitary
theory— forbids the evolution from a pure to a mixed state. Therefore, the evaporation of
a black hole necessarily entails loss of information if the radiation emitted is in a thermal
state. This is the essence of the information paradox. A convenient diagnostic of the
problem is the von Neumann or entanglement entropy of the radiation, given by SR =
−TrρR log ρR, where ρR denotes the density matrix of the Hawking radiation. This entropy
is not a “coarse-grained” entropy as the thermodynamical entropy but rather a “fine-
grained” entropy that characterizes the fundamental ignorance about the quantum system.
Consequently, the total von Neumann entropy must remain constant in a unitary evolution,
where there is no information loss. Yet, the entropy of the radiation can grow initially,
but it must decrease back to zero at the end of the evaporation process, following the Page
curve [65]. However, according to Hawking’s computation, the von Neumann entropy of
the radiation increases monotonically under time. This led to an intense debate about
the reliability of the semiclassical approximation used by Hawking and about whether a
consistent theory of quantum gravity would preserve information or not.

The lack of a theory of quantum gravity initially hampered the study of these puzzles
until in the mid 1980s, the community started to get convinced that string theory was a
consistent theory of quantum gravity. Some years later, it was suggested by Susskind that
black holes could represent effective descriptions of ordinary quantum systems constituted
by strings and branes [66], which opened up the possibility of reproducing the black-hole
entropy by microstate counting. After some initial attempts, this was finally achieved by
Strominger and Vafa [67], who were able to show that the Bekenstein-Hawking entropy
of a specific type of extremal black hole could be reproduced by counting the degeneracy
of BPS states of a system of D-branes wrapped on internal cycles, hence solving the
microstate problem at least for this class of black holes.9 This constitutes one of the
major achievements of string theory and suggests, further supported by the AdS/CFT
correspondence [68–70], that black-hole evaporation is indeed a unitary process.

However, a complete resolution of the information paradox would imply a precise
understanding of the mechanism by which information is recovered. In fact, some authors
have pointed out that this would only be possible if there is non-trivial structure at the scale
of the horizon [71,72]. A proposal along these lines is the so-called fuzzball proposal [73,74],
which posits that in the true quantum description of black holes, the event horizon would
be replaced by a horizonless geometry with non-trivial structure.

9A precise matching between the black-hole entropy and degeneracy of string states is only possible for
a certain type of extremal and near-extremal black holes. This is due to the fact that we only have control
of the theory in the perturbative limit. We will further comment on this in the next section.
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Before closing this section, we would like to draw the attention of the reader to recent
developments in the context of the information paradox [75–81], where a new technique
to compute the entropy of the Hawking radiation has been developed. The final result,
which differs from Hawking’s, turns out to be consistent with unitary evolution.

1.2 String theory

String theory departs from the idea that point particles get replaced by strings, one-
dimensional objects whose mass and length scale is given by ms = `−1

s = α′−1/2, where α′

is the so-called Regge slope, the unique dimensionful parameter of the theory. Besides α′,
there is a dimensionless parameter, the string coupling constant gs, which naturally arises
as the vacuum expectation value of the dilaton field, gs = 〈eφ〉. The spectrum of ordinary
particles emerges as the spectrum of the different vibrational modes of strings and its
most remarkable aspect is that it always10 contains a (massless) graviton, the quantum
of the gravitational field. Hence, string theory is a quantum theory of the gravitational
interaction.

The many successes of the theory, as well as its structural beauty, place string theory
in a privileged position with respect to other candidate theories of quantum gravity such
as loop quantum gravity [82–84]. For the purposes of this thesis, the most interesting
aspect is that it provides a self-consistent ultraviolet completion of Einstein’s theory of
general relativity which has satisfactorily answered some of the questions raised by black
holes.

This section is devoted to review the aspects of string theory that will be more
relevant to us later. After a brief description of the worldsheet formulation and of the
quantization of the theory, we will study the low-energy string dynamics, which has proved
to be a rich source of information about the non-perturbative structure of the theory.
Although a complete non-perturbative formulation of string theory is lacking, we know
that it has very interesting non-perturbative dynamics, as it contains extended objects
(p-branes) which are dynamical in the strong coupling regime gs >> 1. These extended
objects have played a prominent rôle in establishing string dualities and, what is more
interesting to us, in the study of black holes.

1.2.1 Worldsheet formulation

Bosonic string theories

The dynamics of a free relativistic string moving in a d-dimensional curved background
with metric gµν is encoded in the Nambu-Goto action

SNG = −T
∫
W
d2ξ

√
|gij | , (1.25)

where ξi, i = 0, 1, are the worldsheet coordinates and |gij | denotes the determinant of the
induced metric on the worldsheet,

10The graviton arises in the closed string sector, which must always be present in any consistent (unitary)
string theory.
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gij = gµν(X) ∂iX
µ∂jX

ν . (1.26)

The Xµ(ξ) coordinates parametrize the position of the string in the ambient spacetime,
so we will simply refer to them as the embedding coordinates. The constant T in front of
the action is the string tension, related to the Regge slope α′ by

T =
1

2πα′
. (1.27)

The Nambu-Goto action is highly non-linear and therefore very difficult to quantize
even in flat space. For this purpose, it is convenient to introduce the Polyakov action,

SP = −T
2

∫
W
d2ξ

√
|γ| γijgµν(X) ∂iX

µ∂jX
ν , (1.28)

where now γij(ξ) plays the rôle of a non-dynamical worldsheet metric. Its equation of
motion gives the vanishing of the energy-momentum tensor,

gµν(X) ∂iX
µ∂jX

ν − 1

2
γijγ

klgµν(X) ∂kX
µ∂lX

ν = 0 , (1.29)

which can be used to obtain the following (on-shell) relation between the worldsheet metric
and the pullback of the background metric:

γij =
2gij
gkk

, where gk
k = γklgkl . (1.30)

It is straightforward to check that when the above relation is substituted into the action
(1.28), the Nambu-Goto action (1.25) is recovered, which shows that both actions are
clasically equivalent.

Let us note, however, that the Polyakov action, apart from being invariant under
worldsheet reparametrizations, is also invariant under the following local scale transfor-
mations of the worldsheet metric:

γij → Ω2(ξ)γij . (1.31)

This invariance is called Weyl or conformal invariance and turns out to have very important
physical consequences, specially regarding the quantization of the theory. It has also con-
sequences already at the classical level: it implies that the trace of the energy-momentum
tensor vanishes off-shell.

At this stage, we can wonder if the Polyakov action can be generalized to include
a dynamical term for the worldsheet metric γij while still preserving its symmetries. It
turns out that this is not possible at the classical level, since the candidate meeting these
requirements, the Einstein-Hilbert worldsheet term,

− φ0

4π

∫
W
d2ξ

√
|γ|R(γ) , (1.32)

is a total derivative and therefore clasically irrelevant. More precisely, it is a topological
invariant, the Euler characteristic of the worldsheet (times φ0):
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− φ0

4π

∫
W
d2ξ

√
|γ|R(γ) = φ0χ , (1.33)

where χ = 2− 2g− b− c, being g the genus, b the number of boundaries and c the number
of crosscaps, if we consider unoriented strings.

In spite of being classically irrelevant, the Einstein-Hilbert term does play a rôle in
the quantization of the Polyakov action, and in fact an important one: the exponential of
φ0 has the interpretation of string coupling constant, gs ≡ eφ0 . This may sound weird.
Since the worldsheet theory is non-interacting, one would expect to have no notion of cou-
pling constant whatsoever. However, when computing string amplitudes, one has to sum
over all worldsheet geometries with given boundaries. Because of (1.33), each worldsheet
will be multiplied by a factor g−χs , which provides a notion of string coupling constant
in the usual sense and, at the same time, with a well-defined perturbative description
of the quantum worldsheet theory. What is even more remarkable is that the free (non-
interacting) theory motivates us in a certain sense to include the Einstein-Hilbert term. As
we are about to see, the quantization of free strings predicts the appearance of the dilaton,
a massless scalar whose natural coupling to the string is described by (1.33). From this
point view, the string coupling constant gs does not appear as a parameter put by hand,
but rather as the expectation value of the dilaton field on the vacuum where strings are
quantized, gs = 〈eφ〉.

Keeping this in mind, let us briefly discuss the canonical quantization of a free
bosonic string. To this aim, it is crucial to first discuss the issue of the boundary conditions,
as these will constrain the vibrational modes of strings. In this respect, we must take into
account that the variation of the Polyakov action (1.28) yields the following boundary
term ∫

∂W
dW iδXµ∂iX

νgµν , (1.34)

which does not vanish for open strings. In order to make it vanish, one can impose either
Neumann (N) boundary conditions,

ni∂iX
µ|∂W = 0 , (1.35)

or Dirichlet (D) boundary conditions,

ti∂iX
µ|∂W = 0 , (1.36)

where ni and ti are, respectively, a normal and a tangent vector to the boundary of the
worldsheet ∂W . For a free open string, the Neumann boundary conditions are equivalent
to imposing that no momentum is flowing through the endpoints of the strings,

∂1X
µ|ξ1=0,` = 0 . (1.37)

In turn, the imposition of Dirichlet boundary conditions on (d−1−p) spacelike directions
is equivalent to restricting the motion of the endpoints of strings to (p + 1)-dimensional
timelike hypersurfaces, explicitly breaking translation invariance in the transverse direc-
tions. As we will see later, these hypersurfaces correspond to the worldvolume of dynamical
objects of the theory, the Dp-branes [85].
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These boundary conditions completely determine the different spectra that can arise.
In a relativistic theory, the polarization states must belong to representations of the little
group, i.e. the subgroup of the Lorentz group preserving the particle momenta.11 An
analysis of the spectra of closed and open bosonic strings reveals that this only occurs
in d = 26 spacetime dimensions, which is known as the anomalous dimension. We are
interested in the lightest states of the spectra, as these are the ones that govern the low-
energy dynamics. In the closed string sector, the lightest states are massless, which means
that they fit into representations of SO(24). These are a graviton gµν , a 2-form Bµν and a
scalar φ, the dilaton. In the open-string sector with NN boundary conditions, the lightest
state is also massless and corresponds to a vector field Aµ. Finally, for an open string
with DD boundary conditions imposed on just one spacelike direction (let us call it Z),
the mass of the lightest state depends on the separation between the D24-branes on which
the endpoints of the string are allowed to move. Let us consider, for simplicity, that
both ends lie on the same hypersurface, Z|ξ1=0 = Z|ξ1=`. Then, the spectrum contains a
vector field and a scalar, both massless, and they only propagate in the worldvolume of
the D24-brane. The scalar corresponds to the Goldstone boson associated to the breaking
of translation invariance of the vacuum, owing to the presence of the D-brane. Its vacuum
expectation value gives the position of the brane in the z-axis and its non-trivial profile
describes fluctuations of the brane around this position.

Besides these massless excitations, there are also tachyonic scalars signaling that the
vacuum of bosonic string theories is quantum-mechanically unstable. This pathology can
nevertheless be cured. The ingredient that is missing is supersymmetry.12

Superstring theories

The generalization of the Polyakov action which is also invariant under local supersym-
metry transformations is [86,87]

S = −T
2

∫
W
d2ξ e

[
γij∂iX

µ∂jXµ − iψ
µD
/
ψµ + χiρ

jρi(2ψµ∂jXµ +
1

2
χjψ

µ
ψµ)

]
, (1.38)

where ψµ and χi are the worldsheet spinors, eαi is the zweibein and ρi = ρα eα
i are the

two-dimensional gamma matrices. The invariance of the above action under super-Weyl
transformations can be used to eliminate the zweibein and the gravitino χi. This gives
raise to the Ramond-Neveu-Schwarz (RNS) action [88,89],

SRNS = −T
2

∫
W
d2ξ

(
ηij∂iX

µ∂jXµ − iψ
µ
∂
/
ψµ

)
, (1.39)

which is subject to the constraints derived from the equations of motion of the zweibein
and gravitino. The variation of the RNS action with respect to ψµ yields another non-
trivial boundary term (even for closed strings) which must be cancelled by imposing the
appropiate boundary conditions on the spinors.

11The little group is SO(d− 1) for massive particles and SO(d− 2) for massless particles.
12It is worth mentioning that worldsheet supersymmetry does not directly lead to spacetime supersym-

metry. An example is the Type 0 superstring, which has worldsheet supersymmetry but not spacetime
supersymmetry. In fact, it does not have any spacetime fermions at all.
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For open strings, there are two possibilities: either Ramond (R) boundary condi-
tions,

ψµL|ξ1=0 = ψµR|ξ1=0 , ψµL|ξ1=` = ψµR|ξ1=` , (1.40)

or Neveu-Schwarz (NS) boundary conditions,

ψµL|ξ1=0 = ψµR|ξ1=0 , ψµL|ξ1=` = −ψµR|ξ1=` , (1.41)

where ψµL,R denote the left- and right-moving components of ψµ.

For closed strings, we can choose the boundary conditions for the left- and right-
moving fields independently. This gives raise to four possibilities: NSNS, NSR, RNS, RR,
which correspond to chosing either Ramond (R) boundary conditions

ψµL,R|ξ1=0 = ψµL,R|ξ1=` , (1.42)

or Neveu-Schwarz (NS) boundary conditions

ψµL,R|ξ1=0 = −ψµL,R|ξ1=` . (1.43)

The quantization of superstring theories proceeds in an analogous fashion as in the
bosonic case. In particular, there also exists an anomalous dimension, d = 10, where su-
perstrings can be quantized while preserving Lorentz invariance. The physical (quantum)
states are constructed by combining the left- and right-moving components in a very pre-
cise manner to avoid the appearance of tachyons. This leaves five different possibilities:
type IIA, type IIB, type I, heterotic SO(32) (HO) and heterotic E8 × E8 (HE). Their
massless spectra are presented in Table 1.1.

Type II theories preserve N = 2 (spacetime) supersymmetry and their massless
spectra fit into the supergravity multiplets of the two ten-dimensional supergravities with
N = 2 supersymmetry: N = 2A (non-chiral) and N = 2B (chiral). Instead, heterotic and
type I strings preserve only N = 1 supersymmetry. Heterotic strings are constructed by
combining the right-moving fields of a type II superstring with the left-moving fields of the
closed bosonic string. The compactification of the sixteen extra dimensions leads to the
appearance of vector fields AA and gaugini χA, which fill a vector multiplet with N = 1
supersymmetry. The gauge group is fixed by modular invariance to be either SO(32) or
E8 × E8. The last possibility that is left, the type I superstring, also contains vector
multiplets, though their origin is completely different. They arise from the open-string
sector, and it turns out that SO(32) is the only anomaly-free gauge group.

Theory NSNS RR Chiral Non-chiral Vector
fermions fermions multiplets

Type IIA gµν , Bµν , φ C(1)
µ, C

(3)
µνρ ψµ, λ

Type IIB gµν , Bµν , φ C(0), C(2)
µν , C

(4)
µνρσ ψiµ, λ

i

Type I gµν , φ C(2)
µν ψµ, λ AA, χA

Heterotic gµν , Bµν , φ ψµ, λ AA, χA

Table 1.1: Massless excitations of the different superstring theories.
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1.2.2 String effective actions

For each (super)string theory there is an effective field theory that describes its low-
energy dynamics. This is very natural from a physical point of view since the low-energy
limit corresponds to the limit in which the size of the strings becomes infinitely small,
i.e. α′ → 0. Hence, a theory of particles —namely, a field theory— must be recovered.
The fields of these effective theories correspond exclusively to the massless modes of the
strings. The massive ones decouple from the low-energy dynamics since their masses are
proportional to 1/

√
α′.

The orthodox procedure to find these effective actions would be to construct a field
theory reproducing the string amplitudes in the α′ → 0 limit. However, there are simpler
approaches which at the end yield the same result. A particularly interesting one, which
reflects how crucial conformal invariance is in string theory, consists of coupling a string
to general background fields and studying which conditions must be satisfied by the latter
in order to preserve conformal invariance at the quantum level.

In order to illustrate this method, let us consider the closed bosonic string, whose
coupling to the background fields gµν , Bµν and φ is given by the following generalization
of the Polyakov action:

S = − 1

4πα′

∫
d2ξ
√
|γ|

{[
γijgµν(X)− εijBµν(X)√

|γ|

]
∂iX

µ∂jX
ν + α′φ(X)R(γ)

}
. (1.44)

The conditions under which conformal invariance is preserved were studied in [90], where
it was shown that they boil down to the vanishing of the following β-functionals:13

βgµν = α′
(
Rµν − 2∇µ∂νφ+

1

4
Hµ

ρσHνρσ

)
+O(α′2) , (1.45)

βBµν =
α′

2
e2φ∇ρ

(
e−2φHρµν

)
+O(α′2) , (1.46)

βφ = −α
′

2

(
∇2φ− (∂φ)2 − 1

4
R− 1

48
H2

)
+O(α′2) , (1.47)

where Hµνρ = 3∂[µBνρ] is the 3-form field strength of the Kalb-Ramond 2-form Bµν . As we
can see, the β-functionals are given by an expansion in α′. Therefore, their vanishing has
to be imposed order by order in α′. At leading order, this is equivalent to the equations
of motion that can be derived from the following action

S =

∫
d26x

√
|g| e−2φ

[
R− 4 (∂φ)2 +

1

2 · 3!
H2

]
, (1.48)

which is nothing but the effective action of the bosonic string at zeroth order in α′. The
next-to-leading order was studied in [92], where it was shown that the vanishing of the
β-functionals is captured by the following action14

13As recently showed in [91], these are a set of sufficient but not necessary conditions.
14See also [93,94].
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S =

∫
d26x

√
|g| e−2φ

[
R− 4 (∂φ)2 +

1

2 · 3!
H2

−α
′

8

(
R(−)µνabR(−)

µνab +R(+)µνabR(+)
µνab

)
+O(α′2)

]
,

(1.49)

where now the 3-form field strength is defined as

H = dB +
α′

4

(
ωL

(−) − ω
L
(+)

)
, (1.50)

ωL
(±) being the Lorentz Chern-Simons 3-forms of the torsionful spin connections:

ωL
(±) = dΩ(±)

a
b ∧ Ω(±)

b
a −

2

3
Ω(±)

a
c ∧ Ω(±)

c
b ∧ Ω(±)

b
a , (1.51)

Ω(±)
a
b = ωab ±

1

2
Hµ

a
b dx

µ . (1.52)

The curvature 2-forms R(±)
a
b that appear in (1.49) are explicitly given by

R(±)
a
b = dΩ(±)

a
b − Ω(±)

a
c ∧ Ω(±)

c
b . (1.53)

The implementation of this procedure order by order in α′ would lead to the deter-
mination of the complete α′ expansion of the effective action of the bosonic string, which
would contain an infinite series of higher-curvature terms.

In the case of superstring theories, the identification of the corresponding effective
action is much simpler, as they are almost fixed by supersymmetry, which strongly con-
strains the form of the action and the matter field content, specially in higher dimensions.
As a matter of fact, there is only one supergravity theory in eleven dimensions. It was
constructed by Cremmer, Julia and Scherk in [95], and it is believed to correspond to
the low-energy limit of M-theory [96–99], whose connection with the type IIA superstring
will be discussed in the next section. In ten dimensions, the catalogue of supergravity
theories is a bit more extensive. Firstly, there are two different supergravity theories with
N = 2 supersymmetry: the so-called N = 2A and N = 2B [100–103].15 They describe,
respectively, the low-energy dynamics of type IIA and type IIB theories at lowest order
in the α′ expansion. In addition to these, there is a N = 1 (chiral) supergravity in ten
dimensions [105, 106] which describes both the low-energy effective actions of heterotic
and type I theories. The supergravity multiplet of this theory contains the zehnbein eaµ,
the dilaton φ, the gravitino ψµ, the dilatino λ and a 2-form, which can be either the KR
2-form Bµν or the RR 2-form C(2)

µν , whose main difference at the level of the low-energy
action lies on the coupling to the dilaton. This supergravity multiplet can be consistently
coupled to a Yang-Mills vector multiplet, which contains a vector field AAµ and a gaugino
χA. Focusing on the fields and couplings of the heterotic theory, the bosonic part of the
action is given by16

15N = 2A, d = 10 supergravity admits a massive deformation which was found by Romans in [104].
16Since our primary interest in this thesis will be on the solutions of the effective action, we shall be

working with a consistent truncation that sets all the fermions to zero.
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S =
g2
s

16πG
(10)
N

∫
d10x

√
|g| e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 − α′

8
FA · FA

]
, (1.54)

where

H = dB +
α′

4
ωYM , (1.55)

and ωYM is the Chern-Simons 3-form associated to the gauge connection, whose explicit
expression is

ωYM = dAA ∧AA − 1

3!
fABCA

A ∧AB ∧AC . (1.56)

The field strength is defined as

FA = dAA +
1

2
fBC

AAB ∧AC . (1.57)

It is well known that ten-dimensional N = 1 supergravity suffers from both gauge
and gravitational anomalies. However, Green and Schwarz showed in [107] that they can
be cancelled for special choices of the gauge group —namely, SO(32) and E8 × E8— if
suitable local interactions are added. These interactions modify the local definition of the
3-form H as follows

H = dB +
α′

4

(
ωYM + ωL

(−)

)
, (1.58)

where ωL
(−) is the Lorentz Chern-Simons 3-form of the torsionful spin connection 1-form

Ω(−)
a
b, previously defined in (1.51) and (1.52).

The presence of the Lorentz Chern-Simons 3-form spoils the invariance of the original
theory under local supersymmetry transformations. It can be restored, but at the cost
of adding an infinite series of higher-derivative terms into the action and supersymmetry
transformations. These terms were found in [108] up to order eight in derivatives. In our
conventions, the bosonic part of the corrected action is given by

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g| e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 − α′

2
T (0)

−α
′3

4
(T (2))2 − α′3

48
(T (4))2 + . . .

]
,

(1.59)

where

T (4) ≡ 1

4

(
FA ∧ FA −R(−)ab ∧R(−)

ab
)
, (1.60)

T (2)
µν ≡ 1

4

(
FAµρF

A
ν
ρ −R(−)µρabR(−)ν

ρab
)
, (1.61)

T (0) ≡ T (2)µ
µ , (1.62)
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are the so-called T-tensors, defined in terms of the curvature 2-forms of the gauge AA and
torsionful spin Ω(−)

a
b connections.

The action (1.59) is the quartic effective action of the heterotic string [108, 109]. It
will play a fundamental rôle in the second part of this thesis, where we will study solutions
to this action (keeping only the first-order α′ corrections) describing supersymmetric black
holes in five and four dimensions.

1.2.3 Dualities

One of the most fascinating aspects of string theory is that there is a considerable body of
evidence on a web of dualities that relates the different string theories and which suggests
that they are different limits of the same underlying theory.

Some of these, the so-called S-dualities, are strong-weak coupling dualities. There-
fore, they are necessarily non-perturbative and their existence is mostly inferred from
properties of the effective actions and of the non-perturbative states. One example is
the type IIB self-duality, which is represented at the level of the effective action by a
SL(2,R) global symmetry that is broken to SL(2,Z) by quantum effects [97]. Some of the
SL(2,R) transformations act on the complex scalar τ = C(0) + ie−φ (constructed out of
the RR scalar C(0) and the dilaton φ) in such a way that the string coupling constant,
gs = 〈eφ〉, gets inverted. This strong-weak coupling self-duality implies that there must be
one-dimensional objects in the non-perturbative spectrum of type IIB becoming light and
governing the dynamics in the strong-coupling limit. These objects are the D1-branes,
which are the S-duals of the fundamental strings. Another well-known example of this
type of dualities is the strong-weak coupling duality between type IIA and M-theory. In
this case, the relation between the corresponding effective field theories occurs via di-
mensional reduction, as N = 2A, d = 10 supergravity can be obtained by compactifying
N = 1, d = 11 supergravity on a circle. The type IIA dilaton emerges as the Kaluza-
Klein scalar that measures the radius of the eleventh dimension, clearly suggesting that
the strong coupling limit of type IIA (which coincides with the decompactification limit)
is M-theory, which is not a string theory [99].

Another type of string dualities are the so-called T-dualities. These are the ones
which are better understood since they they are associated to a symmetry of the pertur-
bative spectrum that interchanges winding and momentum (Kaluza-Klein) modes.

Let us consider the simplest set-up consisting of a closed bosonic string in a spacetime
where only one spacelike coordinate, Xd−1 ≡ Z, is compact, Z ∼ Z+2πRz. This gives raise
to two different types of modes: the Kaluza-Klein or momentum modes, which are already
present in field theory, and the winding modes. The latter are a purely stringy effect that
corresponds to the ability of closed strings to be wrapped on the compact direction. These
two new modes modify the mass operator and the level matching constraint as

M2 =
n2

R2
z

+
R2
zw

2

α′2
+

2

α′

(
N + Ñ − 2

)
, with N = Ñ + nw , (1.63)

where n and w are integers associated to the momentum and winding modes respectively,
and N and Ñ are the level operators. It is straightforward to check that (1.63) is invariant
under the following transformations
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n→ n′ = w , w → w′ = n , Rz → R′z =
α′

Rz
. (1.64)

This is actually a symmetry of the full spectrum which, furthermore, has been proven
to hold at all orders in perturbation theory [110]. It turns out that it is related to the
invariance of the Polyakov action under Poincaré dualization of the embedding coordinate
Z, see e.g. [111].

We are more interested in the manifestation of T-duality at the level of the effective
action. In order to study it, we first need to introduce the basics of the Kaluza-Klein (KK)
dimensional reduction [112,113]. The original idea, which goes back to the twenties of the
past century, was to unify gravity and electromagnetism by assuming that the spacetime
has an extra dimension so that both four-dimensional spacetime and gauge symmetries
arise from spacetime symmetries in five dimensions. This beautiful idea, although aban-
doned for its original purpose, became an extraordinarily powerful tool in the general
context of theoretical physics and particularly in string theory, where it is crucial in order
to make contact with the four-dimensional world that we experience.

We will follow the modern Scherk-Schwarz formalism [114], which makes use of the
vielbein and which is therefore well adapted to describe the dimensional reduction of
theories with fermionic degrees of freedom, such as supergravity theories. We will always
assume that none of the fields depends on the coordinate z ∼ z+ 2πRz that parametrizes
the compact dimension S1

z. This is equivalent to just keeping the zero mode in the Fourier
expansion of the higher-dimensional fields,

Φ(x, z) =
∑
n∈Z

Φ(n)(x)e
inz
Rz ≈ Φ(0)(x) , (1.65)

which is guaranteed to be a good approximation as long as the typical energy scale E
of a given physical process is much lower than the KK scale: E << mKK ∼ R−1

z . The
reasoning is analogous to the one we made before for the massive string modes. The higher
modes in the Fourier expansion will generically acquire a mass inversely proportional to
the radius of the circle, Rz. Therefore, they decouple from the low-energy dynamics.

Having said this, let us now carry out the dimensional reduction of the Einstein-
Hilbert action. We start by decomposing the (d + 1)-dimensional vielbein, êâµ̂, and its
inverse, êâ

µ̂, in terms of the lower-dimensional fields as follows17

êa = eaµ dx
µ , êz = k (dz +Aµ dx

µ) ,

êa = ea
µ ∂µ −Aa ∂z , êz = k ∂z ,

(1.66)

where eaµ and ea
µ are the d-dimensional vielbein and its inverse, Aµ is the KK vector and

k is the KK scalar. The latter measures the radius of the circle S1
z as a function of the

non-compact coordinates xµ:

R(x) =
1

2π

∫ 2πRz

0

√
|gzz| = Rzk(x) . (1.67)

17The (d+ 1)-dimensional fields and indices will be denoted with hats. Then, we have â = (a, z) for flat
indices and µ̂ = (µ, z) for world indices.
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This can be better appreciated after writing down the (d+ 1)-dimensional metric,

dŝ2 = ĝµ̂ν̂ dx
µ̂dxν̂ = gµν dx

µdxν + k2 (dz +Aµ dx
µ)2 , (1.68)

where gµν = eaµe
b
νηab.

The simplest way of computing the dimensional reduction of the Einstein-Hilbert
action is perhaps by using Palatini’s identity, which tells us that

∫
dd+1x

√
|ĝ|KR̂ =

∫
dd+1x

√
|ĝ|K

[
−ω̂b̂

b̂âω̂ĉ
ĉ
â − ω̂âb̂ĉω̂b̂ĉ

â + 2ω̂b̂
b̂â∂â logK

]
, (1.69)

up to boundary terms. In order to apply it, we must first compute the spin connection.
In the vielbein basis we have chosen, one obtains

ω̂ab = ωcab ê
c − 1

2
kFab ê

z , ω̂az =
1

2
kFba ê

b − ∂a log k êz , (1.70)

where Fab = 2∇[aAb] is the field strength of the KK vector potential.

Then, making use of Palatini’s identity (1.69), one obtains

SEH =
1

16πG
(d+1)
N

∫
dd+1x

√
|ĝ| R̂ =

1

16πG
(d+1)
N

∫
dd+1x

√
|ĝ|
[
−ω̂b̂

b̂âω̂ĉ
ĉ
â − ω̂âb̂ĉω̂b̂ĉ

â
]

=
2πRz

16πG
(d+1)
N

∫
ddx

√
|g| k

[
−ωbbaωcca − ωabcωbca + 2ωb

ba∂a log k − 1

4
k2F 2

]

=
1

16πG
(d)
N

∫
ddx
√
|g| k

[
R− 1

4
k2F 2

]
,

(1.71)

where in the last step we have defined the d-dimensional Newton’s constant as

G
(d)
N =

G
(d+1)
N

2πRz
. (1.72)

In the general case in which a (d+n)-dimensional manifoldM(d+n) contains a n-dimensional
compact space C(n), the relation between the Newton’s constants is

G
(d)
N =

G
(d+n)
N

Vn
, (1.73)

where Vn is the volume of C(n).

Rewriting the action (1.71) in terms of the metric in the Einstein frame, gE µν =

k
2
d−2 gµν ,18

18The Einstein frame is the one in which there is no conformal factor multiplying the Ricci scalar.
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SEH =
1

16πG
(d)
N

∫
ddx
√
|gE|

[
RE +

d− 1

d− 2
(∂ log k)2 − 1

4
k

2(d−1)
d−2 F 2

]
, (1.74)

we clearly see that the KK scalar is dynamical and cannot be truncated to a fixed value
without imposing the corresponding constraint derived from its equation of motion (F 2 = 0
in this case).

Once we know how to reduce the Einstein-Hilbert term, the last piece of information
that we need is to learn how to reduce p-forms. The dimensional reduction of a p-form
Ĉ(p)

µ̂1...µ̂p on a circle gives raise to a p-form C(p)
µ1...µp and to a (p−1)-form C(p−1)

µ1...µp−1

in d dimensions:

Ĉ(p)
µ1...µp =C(p)

µ1...µp + pA[µ1
C(p−1)

µ2...µp] ,

Ĉ(p)
µ1...µp−1z =C(p−1)

µ1...µp−1 .

(1.75)

This is, however, subject to field redefinitions. In the case of the Kalb-Ramond 2-form,
we find convenient to define

B̂µν =Bµν −A[µBν] , with Bµ = B̂µz , (1.76)

where Bµ is the winding vector.

Using Eq. (1.76) and the dimensional reduction of the Einstein-Hilbert term, one
finds that the dimensional reduction on a circle of the effective action of the closed bosonic
string (1.48) is

S ∼
∫
ddx

√
|g| e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 + (∂ log k)2 − 1

4
k2F 2 − 1

4
k−2G2

]
, (1.77)

where G = dB is the field strength of the winding vector and

φ = φ̂− 1

2
log k , (1.78)

is the lower-dimensional dilaton. As one can easily check, the action is invariant under
the following transformations

Aµ → A′µ = Bµ , Bµ → B′µ = Aµ , k → k′ = k−1 , (1.79)

which expressed in terms of the higher-dimensional fields lead to

ĝ′zz = 1/ĝzz , B̂′µz = ĝµz/ĝzz ,

ĝ′µz = B̂µz/ĝzz , B̂′µν = B̂µν + 2ĝ[µ|zB̂ν]z/ĝzz ,

ĝ′µν = ĝµν − (ĝµz ĝνz − B̂µzB̂νz)/ĝzz , e−2φ̂′ = e−2φ̂|ĝzz| .

(1.80)
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This set of rules are known as the Buscher rules and tell us that two different backgrounds
compactified on circles of inverse radii are equivalent from the perspective of string the-
ory.19 In the case at hands, the relation is between different backgrounds of the same
theory, the bosonic string. However, this is not always the case. The most representative
example in which T-duality relates backgrounds of a priori different theories is the T-
duality between type IIA and type IIB theories. As in the bosonic case, this occurs both
at the level of the effective actions [115,116] and of the perturbative spectra.

We would like now to pay attention to T-duality of heterotic strings. At zeroth
order in α′, without gauge fields, the bosonic action has exactly the same form as the
effective action of the bosonic string with the sole difference that in the heterotic case the
dimension of the spacetime is d = 10. Therefore, the Buscher rules at zeroth order are just
given by the rules presented above for the bosonic string. In chapters 4 and 5, we will be
interested in studying the transformations under T-duality of solutions of the α′-corrected
action (1.59), including the gauge fields. Hence, we will need to know how the Buscher
rules are modified by the gauge fields and by the α′ corrections. Fortunately to us, these
were derived at first order in α′ (which is enough for our purposes) in [117]:20

g′zz = gzz/G
2
zz , B′zµ = −Bzµ/Gzz −Gzµ/Gzz ,

g′zµ = −gzµ/Gzz + gzzGzµ/G
2
zz , A′Aµ = AAµ −AAz Gzµ/Gzz ,

g′µν = gµν +
[
gzzGzµGzν − 2GzzGz(µgν)z

]
/G2

zz , A′Az = −AAz /Gzz ,

B′µν = Bµν −Gz[µGν]z/Gzz , e−2φ′ = e−2φ|Gzz| ,
(1.81)

where the tensor Gµν is defined by

Gµν ≡ gµν −Bµν −
α′

4

(
AAµA

A
ν + Ω(−)µ

a
bΩ(−) ν

b
a

)
. (1.82)

The Buscher rules have very interesting practical applications (e.g., they can be
used to generate new solutions) but in order to explore them we need at least a solution
to the effective string equations with a spacelike isometry. This is precisely the reason
why the α′-corrected Buscher rules of [117] have hardly been exploited. To the best of
our knowledge, most part of the known analytic solutions with α′ corrections (if not all of
them) consisted of the heterotic string solitons of [118–120]. These solutions have spacelike
isometries but they act with fixed points (rotations) and, in this case, the equivalence of
the two backgrounds related by the Buscher rules needs not to be true [121]. In this
thesis, we will construct a family of α′-corrected solutions which will allow us to put these
rules into practice. We will show that the aforementioned family is self-T-dual, as it is
expected. This is considered to be a non-trivial consistency check of both the solutions
and the Buscher rules.

19The transformation of the dilaton is a quantum effect. The reason why it is captured by the effective
action is because the latter contains information about the quantum theory, see the paragraph below (1.44).

20We are omitting the hats for the ten-dimensional fields and µ, ν = 0, . . . , 8 and z ≡ x9.
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1.2.4 Extended objects and black holes

String theory is not only a theory of strings. It also has other extended objects which
are non-perturbative. Among these, the best understood are the Dp-branes (or D-branes)
since, in spite of their non-perturbative nature, they can be defined in perturbative string
theory as the rigid walls where open strings end. Thereby, the open-string sector encodes
very valuable information about the fluctuations of the theory around the D-branes. As
we have already mentioned, D-branes are a crucial ingredient to establish string duali-
ties, which often predict the existence of non-perturbative objects that do not admit a
description in perturbative string theory and, in consequence, are much less understood
than D-branes. For instance, the type IIB spectrum must be enlarged in order to make it
consistent with S-duality to include S5-branes (as well as S7- and S9-branes), which couple
to the 6-form B̃, the magnetic dual of the Kalb-Ramond 2-form B. One can now go a
step further and wonder which type IIA object is the T-dual of the S5-brane. This is the
KK monopole or the KK6-brane. There is nothing that prevents us from continuing this
procedure until we go back to the original object, completing a U-duality orbit.21 This is
precisely the way in which the extended objects of string/M-theory can be classified into
U-duality multiplets [122–127].

All these non-perturbative objects can be thought to be the string theory analogs
to solitons in gauge theories, such as magnetic monopoles or instantons. Consequently,
we expect that at least some of them can be approximately described as solutions to the
string effective equations of motion. This approach has been extraordinarily useful to
provide evidence for the existence of the extended objects predicted from dualities, and
also to predict the existence of new ones.

Extended objects from supergravity solutions

Among all the solutions to the ten-dimensional supergravity equations describing the
leading-order approximation to extended objects of string theory (see [111] for a complete
review), the most relevant ones for us here will be those which have unbroken supersym-
metries, often referred to as BPS objects. Let us review some of them.

Dp-brane solutions. These solutions describe p-dimensional extended objects that
are charged with respect to the RR (p + 1)-form potential, C(p+1). Therefore, they exist
for p even in type IIA, for p odd in type IIB and for p = 1, 5 in type I string theories. The
non-vanishing fields of the solutions are given by [128]

21U duality is the combination of both T- and S-dualities.
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ds2 = Z
− 1

2
Dp

(
dt2 − d~y2

p

)
− Z

1
2
Dpd~x

2
9−p , (1.83)

C(p+1) = ±e−φ0

(
Z−1

Dp − 1
)
dt ∧ dpy , (1.84)

e2φ = e2φ0 Z
3−p

2
Dp , (1.85)

ZDp = 1 +
qDp

|~x9−p|7−p
, qDp =

(2π`s)
7−p eφ0NDp

(7− p) ΩS8−p
, 0 < p < 7 , (1.86)

where ΩS8−p is the volume of the unit (8− p)-sphere and NDp is the number of coincident
Dp-branes. These solutions are asymptotically flat and have a singular horizon at |~x9−p| =
0 for p 6= 3. For p = 3, the horizon is completely regular and the near-horizon geometry
is AdS5 × S5, which has played a crucial rôle in the AdS/CFT correspondence [68,129].

S5-brane solution. This is a solution describing a solitonic 5-brane that is electrically
charged under the magnetic dual of the KR 2-form, B̃ (therefore, magnetically charged
with respect to B). It exists in type II and heterotic theories but not in type I. The
non-vanishing fields are given by:

ds2 = dt2 − d~y2
5 − ZS5d~x

2
4 , (1.87)

B̃ = ±e−2φ0
(
Z−1

S5 − 1
)
dt ∧ d5y , (1.88)

e2φ = e2φ0ZS5 , (1.89)

ZS5 = 1 +
qS5

|~x4|2
, qS5 = N`2s , (1.90)

where N is the number of 5-branes. The metric of this solution (in the string frame)
interpolates between the ten-dimensional Minkowski metric at infinity |~x4| → ∞ and the
metric of the product R1,6 × S3 at the core |~x4| → 0.

F1 solution. Finally, we would like to present an interesting solution of both type
II and heterotic theories that describes the supergravity background created by a funda-
mental string at finite coupling [130]
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ds2
E = Z

− 3
4

F1

(
dt2 − dy2

)
− Z

1
4
F1d~x

2
8 (1.91)

ds2 = Z−1
F1

(
dt2 − dy2

)
− d~x2

8 , (1.92)

B = ±
(
Z−1

F1 − 1
)
dt ∧ dy , (1.93)

e2φ = e2φ0Z−1
F1 , (1.94)

ZF1 = 1 +
qF1

|~x8|6
, qF1 =

(2π`s)
6g2
sw

6ΩS7

. (1.95)

where w is the total winding number along y ∼ y+ 2πRy. This solution describes a string
with a singular horizon at |~x8| = 0. If we forget for a moment about the singularity and
reduce this solution along the compact direction, we find the following metric

ds2
E = H

− 6
7

F1 dt
2 −H

1
7
F1d~x

2
8 , (1.96)

which describes a supersymmetric black hole with a singular horizon of zero size. This
was expectable, as the original solution was already singular. It turns out that exactly
the same occurs if one tries to make a black hole in 10− p dimensions out of a Dp-brane
wrapped on a torus Tp.

Despite this first attempt of making a black hole out of a wrapped string/D-brane
has failed, it is helpful to illustrate how black holes in string theory can be understood as
complementary descriptions at finite string coupling of certain string states, as suggested
by Susskind [66]. This offers the possibility of reproducing the Bekenstein-Hawking entropy
of a (regular) black hole by counting the degeneracy of string states at weak coupling
gs << 1. For that to be possible, however, the degeneracy of states must remain invariant
when varying gs, otherwise it cannot be safely extrapolated from the perturbative regime
where it can be computed to the strong coupling regime where the black hole is expected
to exist. This is precisely what happens for BPS or supersymmetric string states.

Before discussing how supersymmetric black holes with regular horizons can be con-
structed in string theory, we would like to consider the possibility of adding a momentum
wave to the fundamental string solution. The corresponding supergravity solution was
found by Garfinkle [131] and later generalized in [132, 133]. The only modification with
respect to the F1 solution occurs in the metric, which now is given by

ds2 = Z−1
F1 du [dv + (1− ZP) du]− d~x2

8 , (1.97)

where v = t+ y, u = t− y and

ZP = 1 +
qP

|~x8|6
,

qP

(2π`s)6
=

g2
sα
′n

6ΩS7R2
y

, (1.98)

n being the quantized momentum.
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This is a supersymmetric solution of both type II and heterotic theories which pro-
vides an effective description of the BPS states of a fundamental string with winding and
momentum charges, also known as Dabholkar-Harvey (DH) states [134]. For large charges,
the degeneracy of these states is given by

log d (n,w) ≈ c
√
nw , with c =

{
2
√

2π type II
4π heterotic

. (1.99)

Given this, the hope is that a supersymmetric black hole with a regular horizon capable
to account for the degeneracy of the DH states would arise upon compactification on Sy.
However, as we will see, the resulting horizon is also singular and has vanishing area. The
intuitive explanation that it is often given in order to explain this mismatch between the
macroscopic and microscopic descriptions is that the event horizon scale of these black
holes is so small (roughly of the order of the string length

√
α′) that it is not resolved by

the supergravity approximation. For this reason, they where dubbed small black holes.
This certainly makes sense, as on general grounds one expects that the higher-derivative
correcctions to the supergravity action will significantly modify the solution near the
singular horizon, where these terms are no longer subleading. This was advocated by Sen
in [135], who further showed that the corrected entropy, if finite, would scale correctly
with the charges. The study of the α′ corrections to the heterotic small black holes and
black rings constitutes an important part of this thesis. We will address it in chapters
6 and 7, where we will show that quadratic curvature corrections are not not enough to
regularize these solutions.

For the time being, we can consider other types of supersymmetric black holes which
are regular already in the supergravity approximation.

Supersymmetric black holes

Supersymmetric (BPS) black holes can be constructed as solutions of the lower-dimensional
string equations of motion only in five and four dimensions. Let us focus for definiteness on
five-dimensional black holes of type IIB compactified on a torus T5. The low-energy effec-
tive theory is N = 4, d = 5 supergravity, which has a E6,6 U-duality symmetry group. The
most general supersymmetric black hole of this theory has 27 different charges (as many
as vector fields in the theory) and it can be constructed out of the generating solution (the
one with the minimum number of charges) by performing a U-duality transformation that
leaves the metric of the solution invariant. Since all the solutions related by a U-duality
transformation are equivalent from the point of view of string theory, we will focus on the
simplest one, the generating solution, which has three electric charges and is given by

ds2 = (ZD1ZD5ZP)−
2
3 dt2 − (ZD1ZD5ZP)

1
3

[
dρ2 + ρ2dΩ2

(3)

]
, (1.100)

Ai = −
(
Z−1
i − 1

)
dt , Zi = 1 +

qi
ρ2
, i = D1,D5,P , (1.101)

kV 4 =
ZD1

ZD5
, k1 = k1,0

Z
1
2
P

Z
1
4
D1Z

1
4
D5

, e2ϕ = e2ϕ0
Z

1
4
D1Z

1
4
D5

Z
1
2
P

. (1.102)
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As we will see, this is also a solution of the STU model of N = 1, d = 5 supergravity
that arises as a consistent truncation of N = 4, d = 5 supergravity. The metric has a
spherical horizon at ρ = 0 with area

AH = 2π2√qD1qD5qP . (1.103)

The parameters qi have the physical interpretation of three electric charges associated
to each of the three Abelian vector fields present in the STU model. However, we are
more interested in understanding the stringy interpretation of these parameters. For
this, it is necessary to write this five-dimensional solution as a ten-dimensional string
background. There is not a unique way of doing this, though all of them are related by
duality transformations. In the frame we are working (type IIB on T5), we have

ds2 = Z
−1/2
D1 Z

−1/2
D5 Z−1

P dt2 − Z1/2
D1 Z

1/2
D5 ds

2
(
E4
)
− Z1/2

D1 Z
−1/2
D5 ds2

(
T4
)

−Z−1/2
D1 Z

−1/2
D5 ZP (dz +AP)2 , (1.104)

C(2) = e−φ0AD1 ∧ dz , C(6) = e−φ0AD5 ∧ dz ∧ ωT4 , (1.105)

e2φ = e2φ0
ZD1

ZD5
, (1.106)

where ωT4 represents the volume form of T4, which together with S1
z constitute the total

compact space T5 = T4 × S1
z.

This solution describes a bound state of the D1-D5-P system. Concretely, there are
ND1 D1-branes wrapped on S1

z, ND5 D5-branes wrapped on T5 = T4 × S1
z and NP units

of KK momentum along z, see Table 1.2.

t z z1 z2 z3 z4 x1 x2 x3 x4

D1 × × ∼ ∼ ∼ ∼ − − − −
D5 × × × × × × − − − −
P × × ∼ ∼ ∼ ∼ − − − −

Table 1.2: Sources of the ten-dimensional backgrounds which give raise to five-dimensional
black holes after dimensional reduction on T4×S1

z. × stands for the worldvolume directions
and − for the transverse directions. The symbol ∼ stands for the transverse directions
over which the corresponding extended object has been smeared.

The number of D-branes and KK momentum are related to the electric charges of
the black hole by

qD5 = gsα
′ND5 , qD1 =

gsα
′3ND1

V
, qP =

g2
sα
′4

R2V
NP , (1.107)

where R is the radius of S1
z and V =

∫
T4 ωT4 is the volume of T4. The five-dimensional

Newton’s constant can be expressed in terms of these moduli, the string coupling constant
gs and α′ as
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G
(5)
N =

G
(10)
N

(2π)5RV
=
πg2

sα
′4

4RV
. (1.108)

Using this and (1.103), we find that the Bekenstein-Hawking entropy is given by

SBH = 2π
√
ND1ND5NP . (1.109)

Let us notice that the entropy is given by the product of three integers, which strongly
suggests that it is possible to reproduce it from microstate counting. This is precisely
what Strominger and Vafa did in [67]. Let us discuss very succinctly how.

Under the assumption that the size of the circle S1
z is much larger than the size

of the torus T4, the low-energy dynamics of the D1-D5 system is described by a two-
dimensional CFT defined on S1

z. The fields of this CFT correspond to the zero modes of
open strings that connect the D-branes, and its central charge is given by c = 6ND1ND5.
Hence, we need to count the different possibilities that these states have to carry NP units
of momentum or, what is equivalent, a total energy E = NP/R. When NP is large, we
can use Cardy formula [136], which tells us that the degeneracy of states with energy E
is given by

S(E) ≈ 2π

√
cER

6
= 2π

√
ND1ND5NP , (1.110)

in agreement with the Bekenstein-Hawking entropy (1.109).

However, both the macroscopic (black-hole) and microscopic entropies receive cor-
rections when the charges are large but finite, so it is natural to ask if the agreement also
holds beyond the leading order. In the macroscopic side, the corrections arise from the
higher-derivative terms in the corresponding effective action, which yield non-negligible
contributions. We will compute them in Chapter 5 for both the three-charge black holes
considered here and for four-charge black holes in four dimensions. For convenience, we
will embed these black-hole solutions in the heterotic theory compactified on a torus, where
we can make use of the action (1.59) to compute the higher-derivative corrections.

1.3 Summary of the main results

Let us briefly summarize the content and the main results of each of the chapters, which
are based on [137–143].

Part I: Non-Abelian supersymmetric solutions from gauged supergravity

In the first part, which consists of chapters 2 and 3, we study supersymmetric solutions
of the SU(2)-gauged ST[2, 6] model of N = 1, d = 5 gauged supergravity:

• In Chapter 2, which is based on [137], we construct novel rotating BPS black holes
with non-trivial Yang-Mills fields in five and four dimensions. They can be under-
stood as the distortion caused by a dyonic SU(2) instanton (closely related to the
one considered in [144, 145]) on the three- and four-charge supersymmetric black
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holes of the heterotic theory on a torus [146, 147]. The instanton is characterized
by two parameters: its size, denoted as κ or λ, and ξ, the parameter that controls
the dyonic deformation, which is related to the electric charge of the instanton. As
it occurs in [144, 145], the size of the instanton (which for ξ = 0 is a free parame-
ter) gets fixed in terms of the angular momenta of the solution. Then, these black
holes do not have non-Abelian hair, contrary to what occurs in most non-Abelian
supersymmetric black holes constructed so far, see e.g. [148–154].

• In Chapter 3, based on [138], we propose a systematic method to construct five-
dimensional BPS microstate geometries free of closed timelike curves (CTCs). A set
of rules to construct this type of solutions in supergravity was discovered in [155–157].
The recipe, however, does not tell one how to choose the parameters of the solution
so as to avoid the appearance CTCs. Firstly, not all the parameters are independent
since the so-called bubble equations (which ensure that the solution is free of Dirac-
Misner type singularities) must be imposed. These equations have been traditionally
solved taking the centers of the solution as the unknowns, which already represents
strenuous task. Still, their resolution is only a necessary condition to avoid CTCs.
In fact, they generically appear even after these equations have been solved, which
enormously hamper the construction of explicit (physically meaningful) solutions.
The method that we propose to tackle these two problems at once can be summarized
as follows:

1. The bubble equations are non-linear and hard to solve if the locations of the
centers are taken as the unknowns. However, those can be rewritten as a simple
system of linear equations by choosing a different set of variables: the magnetic
fluxes. The bubble equations become

MX = B , (1.111)

for some symmetric matrix M.

2. We show evidence that any solution satisfying the bubble equations is free of
CTCs if and only if all the eigenvalues of the matrix M are positive.

Part II: Black holes with higher-derivative corrections

The second part of the thesis consists of the chapters 4, 5, 6, 7 and 8, and it is devoted to
the investigation of the effects produced by the higher-derivative corrections on black-hole
solutions, mainly in the context of string theory.

• In Chapter 4, based on [139], we find a family of α′-corrected solutions that can be
used to describe BPS bound states of the F1-P-S5 system at first order in α′. The
field configuration considered is the following
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ds2 =
2

Z−
du

(
dt− Z+

2
du

)
−Z0 dσ

2 − dzαdzα , (1.112)

H = ?σdZ0 + dZ−1
− ∧ du ∧ dt , (1.113)

e2φ = e2φ∞ Z0

Z−
, (1.114)

Ai = M−mn ∂n logPi v
m , i = 1, . . . , n , (1.115)

where

dσ2 = hmn dx
mdxn = vmvm , m, n = ], 1, 2, 3 , (1.116)

is the metric of a four-dimensional hyper-Kähler space where the functions Z0,+,−
and Pi take values. The latter determine the n triplets of SU(2) gauge fields through
the ‘t Hooft ansatz. We impose that the Pi functions are harmonic on the hyper-
Kähler space so that the field strengths Fi obey the self-duality imposed by the
Killing spinor equations, namely Fi = ?σFi. The remaining Killing spinor equations
are automatically satisfied four our ansatz without imposing further constraints.
We impose, for the sake of convenience, that the hyper-Kähler metric admits a
triholomorphic isometry. In other words, we assume it is a Gibbons-Hawking space
[158,159].

The main result of the chapter is that the above configuration satisfies the α′-
corrected equations of motion if the functions Z0,Z+ and Z− are given by22

Z+ = Z(0)
+ − α′

2

(
∂nZ(0)

+ ∂nZ(0)
−

Z(0)
0 Z

(0)
−

)
+O(α′2) , (1.117)

Z− = Z(0)
− +O(α′2) , (1.118)

Z0 = Z(0)
0 − α′

4

 2∑
i=1

(∂Pi)
2

Pi
2 − (∂Z(0)

0 )2

Z(0)
0

2 − (∂H)2

H2

+O(α′2) , (1.119)

where Z(0)
0 ,Z(0)

0 and Z(0)
− are three harmonic functions that determine the zeroth

order (supergravity) solution and H is the Gibbons-Hawking function that charac-
terizes the hyper-Kähler metric.

• In Chapter 5, based on [140], we apply the results of the previous chapter to study the
higher-derivative corrections to supersymmetric black-hole solutions of the heterotic

22The functions Z0,+,− are not completely determined since we have the freedom of adding a harmonic
function to them. This will be done in order to remove the spurious singularities that appear in the
correction terms, and which are solely due to the use of a singular gauge to compute them. We will discuss
this issue in more detail in chapters 4 and 5.

31



Chapter 1. Introduction

theory on a torus. We analyze two cases: three-charge black holes in five dimen-
sions and four-charge black holes in four dimensions. The most relevant aspect is
that the higher-derivative corrections play the rôle of effective sources of energy,
momentum and charge in the equations of motion. As a consequence, the Maxwell
(or asymptotic) S5- and momentum charges —which we shall denote as QS5 and
QP, respectively—, no longer coincide with the number of S5-branes, N , and KK
momentum, n. This distinction results being crucial for comparing the black-hole
entropy with earlier results obtained for the degeneracy of BPS microstates.

Let us then summarize the expressions that we have obtained for the mass M and
the black-hole (Wald) entropy SW both in terms of the “source parameters” and the
Maxwell charges:

– 3-charge black holes:

M =
Rz
g2
s`

2
s

(N + n− 1) +
n

Rz

(
1 +

2

N

)
+
Rz
`2s
w

(1.120)

=
Rz
g2
s`

2
s

QS5 +
QP

Rz
+
Rz
`2s
QF1 ,

SW = 2π
√
nwN

(
1 +

2

N

)
(1.121)

= 2π
√
QF1QP (QS5 + 3− n) ,

where

QP = n

(
1 +

2

N

)
, QF1 = w , QS5 = N + n− 1 , (1.122)

w being the winding number of the fundamental string and Rz the radius of
the wrapped circle.

– 4-charge black holes:

M =
Rz
g2
s`

2
s

(
N +

n− 2

W

)
+

n

Rz

(
1 +

2

NW

)
+
Rz
`2s
w +

RzR
2
η

g2
sα
′2 W

(1.123)

=
Rz
g2
s`

2
s

QS5 +
QP

Rz
+
Rz
`2s
QF1 +

RzR
2
η

g2
sα
′2 QKK ,

SW = 2π
√
nwNW

(
1 +

2

NW

)
(1.124)

= 2π
√
QF1QP (QS5QKK + 4− n),

where
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QP = n

(
1 +

2

NW

)
, QF1 = w , QS5 = N +

n− 2

W
, QKK = W ,

(1.125)

W being the topological charge of the KK monopole and Rη the asymptotic
radius associated to the isometric direction of the Gibbons-Hawking space.

• In Chapter 6, based on [141], we argue that a horizon resolution of small black holes
via higher-derivative corrections does not actually occur at least at first order in α′.
First, we show that the corrected ten-dimensional metric has a curvature singularity
at the would-be horizon —see Eq. (6.11)—, which further implies that the solution
cannot be trusted near the singularity, where the perturbative approach ceases to
be justified. Second, we argue that, from our perspective, the horizon resolution
of the four-dimensional small black hole previously found in the literature actually
corresponds to a particular extremal black hole with four near-horizon (or brane-
source) charges whose asymptotic (or Maxwell) S5-brane charge vanishes, QS5 = 0,
hence matching the microscopic degeneracy of the Dabholkar-Harvey states23

Smicro = 4π
√
nw . (1.126)

These, however, correspond to the BPS states of a fundamental string with winding
and momentum charges, whereas the macroscopic configuration also contains S5-
branes and a KK monopole. Therefore, the system described be these “fake” small
black holes is not the F1-P system. This can be easily seen from the fact that the
vanishing of the S5-charge implies that

QS5 = 0 ,

(n=0)︷︸︸︷⇒ NW = 2 , (1.127)

so that both N and W must be non-vanishing. In fact, we check that, whenever these
(or any other brane-source charge) are set to zero, a curvature singularity develops
at the horizon, putting the solution out of perturbative control.

This leads us to the conclusion that an effective black-hole description of the F1-P
system seems unlikely to occur perturbatively in α′, even including the higher-order
terms that we have not take into account in our analysis.

• In Chapter 7, based on [142], we construct a general family of α′-corrected solutions
describing bound states of the rotating F1-P system. We study a particular solution
within this family that gives raise to small black rings in five dimensions. We show
that both the five- and ten-dimensional metrics have a curvature singularity so that
the solution does not get regularized at first order in α′. Static solutions giving rise
to small black holes in 4 ≤ d ≤ 9 dimensions are also discussed. The results of this
chapter lend further support to those of Chapter 6.

• In Chapter 8, based on [143], we construct an effective field theory in four dimensions
that parametrizes the most general correction to any vacuum solution of general

23If one also identifies the quantized momentum n with the momentum charge QP.
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relativity when the Einstein-Hilbert term is supplemented with higher-curvature
terms up to cubic order in the curvature, considering also the possibility of having
dynamical couplings controlled by massless scalar fields. The action of such effective
theory is

S =

∫
d4x
√
|g|
{
R+ α1φ1`

2X4 + α2 (φ2 cos θm + φ1 sin θm) `2RµνρσR̃
µνρσ

+ λev`
4R ρσ

µν R δγ
ρσ R µν

δγ + λodd`
4R ρσ

µν R δγ
ρσ R̃ µν

δγ −
2∑
i=1

1

2
(∂φi)

2

}
,

(1.128)

where
X4 = RµνρσR

µνρσ − 4RµνR
µν +R2 (1.129)

is the Gauss-Bonnet density and φ1, φ2 are scalar fields.

Besides the overall length scale `, there are only five parameters in the theory: α1, α2,
λev, λodd and θm. The parameter λodd violates parity, while the “mixing angle” θm
represents as well a sort of parity breaking phase. For θm = 0, π (no mixing between
scalars), φ2 is actually a pseudoscalar and the quadratic sector is parity-invariant.
For any other value (θm 6= 0, π), parity is also violated by this sector.

We investigate the corrections to the Kerr solution predicted by this theory. We
work perturbatively in ` (the scale associated to the higher-derivative terms) and in
the spin parameter χ, although we provide an algorithmic method implemented in
Mathematica24 that computes the solution at the desired order in the spin parameter,
which gives a reasonably good approximation for high values of the spin. We study
some properties of the corrected solutions such as the surface gravity, the shape of
the horizon and ergosphere, photon rings, etc.

24https://arxiv.org/src/1901.01315v3/anc.
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2
Non-Abelian supersymmetric black holes

The study of classical solutions of general relativity and its supersymmetric extensions,
supergravity theories, has been one of the major sources of information about the prop-
erties of these theories. The main interest of supergravity theories is that many of them
describe the low-energy dynamics of the different superstring theories. For this reason, a
great deal of work has been devoted to them and their classical solutions1, specially to
those describing (supersymmetric) black holes. The major discovery in this context —and
one of the most important breakthroughs of string theory— was achieved by Strominger
and Vafa [67], who were able to reproduce the Bekenstein-Hawking entropy of a certain
class of supersymmetric black holes by counting the degeneracy of BPS states of a system
of D-branes wrapped on internal cycles.

A generic feature of supergravity theories is the presence of vector and scalar fields
that give rise to many interesting phenomena and modify the properties of black-hole
solutions. The electric and magnetic charges associated to those vectors play a crucial
rôle in the stringy interpretation of the black holes that carry them. However, most
part of the literature has only dealt with Abelian vector fields even though non-Abelian
(Yang-Mills) vector fields play a more relevant rôle in our current description of Nature.
Furthermore, most string models, specially the most realistic ones, contain them in their
spectra. Thus, it is clearly important to study their interplay between gravity and Yang-
Mills fields in this context and to understand how the results obtained in the Abelian case
are modified by the presence of the latter.

During the last decade, there has been progress in studying and classifying the
supersymmetric solutions of N = 1, d = 5 and N = 2, d = 4 gauged supergravities
[162–164]. This has allowed the development of solution-generating techniques which
have been used to construct a plethora of analytic solutions with non-trivial Yang-Mills
fields [137,149–154,157,165,166], most of them describing supersymmetric black holes.

In this chapter, we are going to construct novel supersymmetric solutions of a par-
ticular model of N = 1, d = 5 gauged supergravity which can be obtained by dimensional
reduction of heterotic supergravity2 [106] on a five-dimensional torus. A summary of the
contents of this chapter is the following. In Section 2.1 we review the class of theories of
N = 1, d = 5 gauged supergravity we are going to work with as well as their (timelike) su-
persymmetric solutions. We show how the task of constructing supersymmetric solutions
boils down, under certain assumptions, to solving a set of differential equations on E3. In
Section 2.2, we study solutions to the differential equations that arise in the non-Abelian
sector of the theory when the gauge group is SU(2). This is then used to construct ro-

1See e.g. Refs. [111,160,161]
2More precisely, ten-dimensional N = 1 supergravity coupled to a triplet of SU(2) fields.
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tating black holes in five and four dimensions in Sections 2.3 and 2.4 respectively. These
solutions are then uplifted to ten dimensions in Section 2.5. Finally, Section 2.6 contains
a summary and a brief discussion of the main results.

2.1 N = 1, d = 5 Super-Einstein-Yang-Mills theories

The aim of this section is, in first place, to give a brief description of the class of theories
we are going to work with, which are called N = 1, d = 5 Super-Einstein-Yang-Mills
(SEYM) theories, and, in second place, to explain a solution-generating technique that
we will put in practice to construct supersymmetric black-hole solutions. Our conventions
will be those of [162,163], which are based on [167]. We shall describe N = 1, d = 5 SEYM
theories as the result of gauging a subgroup of the isometry group of the scalar manifold
of a N = 1, d = 5 supergravity theory coupled to nv vector multiplets, whose field content
is the following:

• The supergravity multiplet is constituted by the graviton eaµ, the graviphoton A0
µ

and the gravitino ψiµ.

• Each of the nv vector multiplets —that we label with an index x = 1, . . . , nv—-
contains a real scalar φx, a vector Axµ and a gaugino λix.3

In order to describe these theories, it is highly convenient to combine all the vectors into
a single object, AIµ =

(
A0
µ, A

x
µ

)
, as well as to introduce nv + 1 functions of the (physical)

scalars, hI = hI (φ). These nv + 1 functions of the nv scalars must satisfy a constraint,
which N = 1, d = 5 supersymmetry determines to be of the form

CIJKh
IhJhK = 1, (2.1)

where CIJK is a constant symmetric tensor which completely characterizes the theory and
the real special geometry of the scalar manifold.4 In particular, the kinetic matrix of the
vector fields, aIJ(φ), and the metric of the scalar manifold, gxy(φ), can be derived from it
as follows. First, we define

hI ≡ CIJKhJhK , ⇒ hIhI = 1, (2.2)

and

hIx ≡ −
√

3hI ,x ≡ −
√

3
∂hI

∂φx
, hIx ≡ +

√
3hI,x, ⇒ hIh

I
x = hIhIx = 0. (2.3)

Then, aIJ is defined implicitly by the relations

hI = aIJh
I , hIx = aIJh

J
x. (2.4)

It can be checked that

3The spinors are simplectic Majorana spinors and carry a fundamental SU(2) R-symmetry index.
4For more details about real special geometry, see for instance Appendix H of [111].
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aIJ = −2CIJKh
K + 3hIhJ . (2.5)

The metric of the scalar manifold, gxy, which is used to raise and lower x, y indices
is proportional to the pullback of aIJ onto the scalar manifold

gxy ≡ aIJhIxhJy = −2CIJKh
I
xh

J
yh

K . (2.6)

The functions hI and their derivatives hIx satisfy the following completeness relation:

aIJ = hIhJ + gxyh
x
Ih

y
J . (2.7)

Generically, an ungauged theory of N = 1, d = 5 supergravity coupled to vector
multiplets will be invariant under certain group of symmetries acting only on the vector
and scalar fields.5 The action of these symmetries on the scalars has to preserve gxy(φ),
the metric of the scalar manifold and, therefore, it will act on them as the isometries
generated by the Killing vectors kI

x(φ),6

δφx = cIkI
x , (2.8)

which satisfy the Lie algebra

[kI , kJ ] = −fIJKkK . (2.9)

At the same time, because of the non-trivial couplings between scalar and vector fields,
the vectors will be rotated by some given matrices. In many cases, it is possible to gauge a
non-Abelian subgroup of this symmetry group using as gauge fields a subset of the vector
fields of the theory. In the gauging procedure, the constant parameters cI are promoted
to arbitrary spacetime functions cI → −gεI(x). The gauge transformations of the scalars
φx, the functions hI and the vector fields AI are the following:

δεφ
x = −gεIkIx , (2.10)

δεh
I = −gfJKIεJhK , (2.11)

δεA
I
µ = Dµε

I ≡ ∂µεI + gfJK
IAJµε

K , (2.12)

where g is the gauge coupling constant. As usual, the derivatives of the scalars are pro-
moted to gauge-covariant derivatives, defined as

Dµφ
x = ∂µφ

x + gAIµkI
x , (2.13)

and also

Dµh
I = ∂µh

I + gfJK
IAJµh

K , DµhI = ∂µhI + gfIJ
KAJµhK . (2.14)

5Here we are ignoring R-symmetry.
6Some of these Killing vectors can vanish for some values of I.
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Finally, the gauge-covariant field strength has the standard form

F Iµν = 2∂[µA
I
ν] + gfJK

IAJµA
K
ν , (2.15)

Besides these modifications, gauge symmetry also demands the addition of further terms
into the action —apart from the Chern-Simons terms that are already present in the
ungauged theory—. However, as different from what happens in the gauging of many
other supergravity theories, supersymmetry does not demand the addition of a scalar
potential and no effective cosmological constant is present in the theory and its solutions.

All in all, the bosonic action of N = 1, d = 5 SEYM —fully characterized, as we
have seen, by the CIJK tensor and the structure constants of the gauge group, fIJ

K— is
given by

S =

∫
d5x
√
|g|
{
R+

1

2
gxyDµφ

xDµφy − 1

4
aIJF

I µνF Jµν +
1

12
√

3
CIJK

εµνρσα√
|g|

[
F IµνF

J
ρσA

K
α

−1

2
gfLM

IF JµνA
K
ρA

L
σA

M
α +

1

10
g2fLM

IfNP
JAKµA

L
νA

M
ρA

N
σA

P
α

]}
.

(2.16)

The equations of motion that follow from this action are

Eµν ≡ 1

2
√
g
ea(µ

δS

δeaν)

= Gµν −
1

2
aIJ

(
F Iµ

ρF Jνρ −
1

4
gµνF

I ρσF Jρσ

)

+
1

2
gxy

(
Dµφ

xDνφ
y − 1

2
gµνDρφ

xDρφy
)
, (2.17)

EIµ ≡ 1
√
g

δS

δAIµ

= Dν

(
aIJF

J νµ
)

+
1

4
√

3

εµνρσα
√
g

CIJKF
J
νρF

k
σα + gkI xD

µφx , (2.18)

Ex ≡ −gxy
√
g

δS

δφy

= DµD
µφx +

1

4
gxy∂yaIJF

I ρσF Jρσ. (2.19)

2.1.1 Timelike supersymmetric solutions

Let us now explain a recipe to construct supersymmetric solutions of N = 1, d = 5 SEYM
theories which stems from the general characterization of the supersymmetric solutions
of N = 1, d = 5 gauged supergravity carried out in [163]. Let us assume that the scalar
manifold is symmetric, which in practice means that the tensor CIJK that one obtains by
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raising the indices with the inverse of aIJ is constant and identical to CIJK . This implies
that

hI = 27CIJKhJhK . (2.20)

It was shown in [163] that supersymmetric solutions admit a Killing vector V with
non-negative norm, VµV

µ = f2 ≥ 0. We restrict to the timelike case, VµV
µ = f2 > 0 and

work in coordinates adapted to the isometry so that V = ∂t. Then, from the analysis of
the Killing spinor equations made in [163], we know that the general form of the bosonic
fields in this kind of solutions is the following

ds2 = f2 (dt+ ω)2 − f−1dσ2 , (2.21)

AI = −27
√

3f3CIJKZJZK (dt+ ω) + ÂI , (2.22)

φx =
Zx
Z0

, (2.23)

where we have defined ZI ≡ hI/f . The four-dimensional metric dσ2 = hmn dx
mdxn is the

metric of a four-dimensional hyperKähler space —often referred to as base space— where
the 1-form ω = ωm dx

m, the vector fields ÂI = ÂIm dx
m and the scalars ZI are defined.

The metric function f can be obtained in terms of the ZI functions by using (2.20) and
the constraint (2.2):

f−3 = 27CIJKZIZJZK . (2.24)

The building blocks in terms of which the solutions are constructed (ÂI , ZI and ω) must
satisfy the following set of non-linear differential equations

F̂ I = ?σF̂
I , (2.25)

D̂ ?σ D̂ZI = −1
3CIJK F̂

I ∧ F̂ J , (2.26)

dω + ?σdω =
√

3ZI F̂
I , (2.27)

where ?σ is the Hodge dual operator associated to the metric dσ2, D̂ is the gauge-covariant
derivative associated to ÂI ,

D̂ZI = dZI + gfIJ
KÂJ ∧ ZK , (2.28)

and

F̂ I = dÂI +
g

2
fJK

IÂJ ∧ ÂK . (2.29)

As we see, the demand of unbroken supersymmetry has drastically simplified the
task of constructing solutions of the full second-order equations of motion. Still, the system
(2.25)-(2.27) is hard to solve and therefore one has to make additional assumptions.
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Timelike supersymmetric solutions with one isometry

In order to make further progress, let us assume that the base-space metric, dσ2, enjoys
a triholomorphic isometry, i.e. an isometry respecting the hyperKähler structure. In this
case, it was shown in [159] that the metric, in adapted coordinates,7 is of the Gibbons-
Hawking type [158], namely

dσ2 = H−1 (dη + χ)2 +H dxidxi , i = 1, 2, 3 , (2.30)

where η is a compact coordinate with period 2π` and where H and χ are a function and
a 1-form defined on E3 satisfying

dH = ?3dχ , (2.31)

being ?3 the Hodge dual on E3. The integrability condition of this equation tells us that
the function H must be harmonic on E3, namely

d ?3 dH = 0 . (2.32)

Therefore, the choice of the base space metric has boiled down to the choice of a harmonic
function on E3, H, and the subsequent determination of χ through (2.31).

Let us further assume that the connection ÂI and the 1-form ω can be decomposed
in terms of functions (ΦI , ω5) and 1-forms (ĂI , ω̆) defined on E3 as follows [152]

ÂI = −2
√

6
[
−H−1ΦI (dη + χ) + ĂI

]
, (2.33)

ω = ω5 (dη + χ) + ω̆ . (2.34)

As it was shown by Kronheimer [168], when (2.33) is substituted back into the
selfduality condition (2.25), one obtains the Bogmol’nyi equations for the Yang-Mills-
Higgs system in the BPS limit [169], namely

D̆ΦI = ?3F̆
I , (2.35)

where

D̆ΦI = dΦI + ğfJK
IĂJΦK , (2.36)

F̆ I = dĂI + ğfJK
IĂJ ∧ ĂK , (2.37)

with ğ = −2
√

6g. The integrability condition of (2.35) is a non-Abelian generalization of
Laplace’s equation

D̆ ?3 D̆ΦI = 0 . (2.38)

7η is the coordinate adapted to the isometry.

42



Chapter 2. Non-Abelian supersymmetric black holes

Let us now analyze (2.26), for which it is convenient to introduce a new set of
functions LI as follows

LI = ZI − 8CIJKΦJΦKH−1 . (2.39)

In terms of these functions, (2.26) reads

D̆2LI − ğ2fIJ
LfKL

MΦJΦKLM = 0 . (2.40)

Finally, (2.27) imposes that ω5 is given by

ω5 = K + 16
√

2H−2CIJKΦIΦJΦK + 3
√

2H−1LIΦ
I , where d ?3 dK = 0 , (2.41)

and the following equation for ω̆:

?3 dω̆ = HdK −KdH + 3
√

2
(

ΦID̆LI − LID̆ΦI
)
, (2.42)

whose integrability condition is satisfied wherever the above equations for H,K,ΦI , LI are
satisfied.

Let us recap the main results of this section. We have studied the timelike su-
persymmetric solutions of N = 1, d = 5 SEYM theories under the assumption that the
hyperKähler metric dσ2 admits a triholomorphic isometry. Then, the system of equations
(2.25), (2.26) and (2.27) has been reduced to finding a set of functions H,ΦI , LI ,K and
1-forms χ, ĂI , ω̆ on E3 satisfying the following equations

?3dH − dχ = 0 , (2.43)

?3D̆ΦI − F̆ I = 0 , (2.44)

D̆2LI − ğ2fIJ
LfKL

MΦJΦKLM = 0 , (2.45)

d ?3 dK = 0 , (2.46)

?3dω̆ −
{
HdK −KdH + 3

√
2(ΦID̆LI − LID̆ΦI)

}
= 0 . (2.47)

Let us notice that in the Abelian limit, Eqs. (2.43)-(2.46) tell us that all the functions
that determine the solutions —namely, H,ΦI , LI and K— are harmonic functions on E3.
The 1-forms χ, ĂI and ω̆ are then found by solving Eqs. (2.43), (2.44) and (2.47).

In the non-Abelian case, however, one has to face the task of solving Eqs. (2.44) and
(2.45), for which one needs to know in first place the gauge group. In the next section, we
shall assume the gauge group is SU(2).
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2.2 Timelike supersymmetric solutions with SU(2) gaugings

Let us then restrict to models of N = 1, d = 5 supergravity whose scalar manifold has an
isometry group G such that SU(2) is a subgroup of G. We assume this is the subgroup that
will be gauged so that the non-vanishing structure constants are given by fAB

C = εAB
C

and (2.44) and (2.45) reduce to

?3D̆ΦA = F̆A , (2.48)

D̆2LA = ğ2εAB
DεCD

FΦBΦCLF , (2.49)

where

D̆ΦA = dΦA + ğ εBC
AĂBΦC , D̆LA = dLA + ğ εAB

CĂBLC , (2.50)

and

F̆A = dĂA + ğ εBC
AĂB ∧ ĂC . (2.51)

The main advantage of studying SU(2) gaugings is that there is a huge amount of results
available in the literature, specially regarding Eq. (2.48). The goal of this section will be to
review some of these results, which will be used later to construct non-Abelian black-hole
solutions.

2.2.1 SU(2) Bogomol’nyi equations on E3

Spherically-symmetric solutions

A popular class of solutions of the SU(2) Bogomol’nyi equations (2.48) was found by
Protogenov in [170] by making use of the hedgehog ansatz :

ΦA = −δAif (r)xi , (2.52)

ĂA = εAjk x
jh(r) dxk , (2.53)

where r =
√
xixi is the radial coordinate of E3. When this ansatz is plugged into (2.48),

one obtains a system of first-order ODEs which have two independent families of solutions:

1. The first one corresponds to the so-called colored monopole [148, 151, 171] and de-
pends on just one parameter that we called λ

fλ(r) = hλ(r) = − 1

ğr2

1

1 + λ2r
. (2.54)

2. The second family depends on two parameters, µ and s, and it is given by
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fµ,s (r) = − 1

ğr2
[1− µr coth (µr + s)] , hµ,s(r) = − 1

ğr2

[
1− µr

sinh (µr + s)

]
.

(2.55)

The s = 0 member of this family corresponds to the ‘t Hooft-Polyakov magnetic
monopole [172, 173] in the Prasad-Sommerfeld limit [174]. In the s → ∞ limit, we
get

fµ,∞ (r) = − 1

ğr2
+

µ

ğr
, hµ,∞ = − 1

ğr2
, (2.56)

a µ-dependent generalization of the Wu-Yang monopole [175]. The µ = 0 case,
that corresponds to the Wu-Yang monopole, can also be recovered from the colored
monopole (2.54) when λ = 0.

The magnetic monopole charge is defined as

p =
1

4π

∫
S2
∞

Tr(Φ̂F̆ ) , Φ̂ =
Φ√
|Tr(Φ2)|

, (2.57)

and yields p = 1/ğ for the 2-parameter family and p = 0 for the colored monopole
[148,150].

The multi-colored monopole solution

The spherically-symmetric colored monopole solution (2.54) can be generalized to a solu-
tion without spherical symmetry, which we call the multi-colored monopole solution. It is
given by

ğΦA = −δAi∂i logP , (2.58)

ğĂA = εAjk ∂i logP dxk , (2.59)

with P is a harmonic function on E3.

2.2.2 Solving Eq. (2.49)

The last stumbling block that we have is (2.49). Unlike (2.48), this equation has barely
received attention in the literature, not even in the supergravity literature. The reason is
that there is a very simple (almost trivial) solution which corresponds to taking LA ∝ ΦA

which in turn has allowed to study black-hole and black-ring solutions in the past, see
e.g. [152, 176]. However, there are more sofisticated solutions —such as those describing
the microstate geometries of non-Abelian three-charge black holes and black rings— for
which this simple solution is not enough. For this kind of solutions, one can make use of
the non-trivial solution to (2.49) found in [157]. The solution assumes that ΦA and ĂA

are given by (2.58) and (2.59) respectively. If this is the case, then
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ğLA = δA
i∂iQ

P
, (2.60)

solves (2.49) if Q is harmonic on E3.

2.3 Rotating black holes of N = 1, d = 5 gauged supergravity

2.3.1 The model

Let us now apply the solution-generating technique described in the previous sections
to a particular model in which we are interested, the SU(2)-gauged ST[2, 6] model of
N = 1, d = 5 supergravity.8 The main motivation to study solutions of this model is that
it can be obtained by a truncation of ten-dimensional N = 1 supergravity coupled to a
triplet of SU(2) gauge fields, see Appendix E. The ungauged model has nv = 5 vector
multiplets and is characterized by a CIJK tensor whose only non-vanishing components
are

C0xy = 1
6ηxy , where ηxy = diag (+−−−−) and x, y = 1, . . . , 5 . (2.61)

The Real Special manifold parametrized by the five real scalars φx can be identified with
the Riemannian symmetric space

SO(1, 1)× SO(1, 4)

SO(4)
. (2.62)

The isometry group of the scalar manifold has a SU(2) subgroup acting in the adjoint on
the coordinates 3, 4 and 5, which are the directions that we are going to gauge. Therefore,
we find convenient to split the index that label the vector fields into a couple of indices:
I = (a,A), where a = 0, 1, 2 and A = 3, 4, 5 label the Abelian and non-Abelian sectors
respectively.

We find convenient to perform the following field redefinitions. In first place, instead
of the standard parametrization of the physical scalars given in (2.23), we are going to use
the parametrization given in [177]. The new physical scalars, φ, k and `A, are related to
those appearing in (2.23) by

e−2φ = 1
2(φ1 − φ2) , (2.63)

k4 = 2

[(
φ1
)2 − (φ2

)2 − φAφA
φ1 − φ2

]2

, (2.64)

`A = φA/(φ1 − φ2) . (2.65)

In second place, we introduce the following linear combinations of the Abelian vectors A1

and A2,

8The name of this model stems from the fact that it is related by dimensional reduction on a circle to
the so-called SU(2)-gauged ST[2, 6] model of N = 2, d = 4 supergravity [152].
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A± ≡ A1 ±A2 , (2.66)

and

Z± = Z1 ± Z2 , L± = L1 ± L2 and Φ± = Φ1 ± Φ2 . (2.67)

Given this, the general form of the timelike supersymmetric solutions (2.21)-(2.23)
reduces, for the model at hands, to

ds2 = f2 (dt+ ω)2 − f−1dσ2 , (2.68)

A0 = − 1√
3Z0

(dt+ ω) + Â0 , (2.69)

A± = − 2Z+√
3Z±Z̃+

(dt+ ω) + Â± , (2.70)

AA =
2ZA√
3Z−Z̃+

(dt+ ω) + ÂA , (2.71)

e2φ =
2Z0

Z−
, k =

(
2Z̃2

+

Z0Z−

)1/4

, `A =
ZA
Z−

. (2.72)

where

f−3 =
27

2
Z0Z̃+Z− , and Z̃+ = Z+ −

ZAZA
Z−

. (2.73)

2.3.2 Seed functions

Let us make a suitable choice of the seed functions H,ΦI , LI ,K to describe rotating black
holes.

Gibbons-Hawking metric

First of all, we take the base space metric to be simply the four-dimensional Euclidean
metric, hmn = δmn, which corresponds with the following choice of Gibbons-Hawking
function

H =
`

2r
, ⇒ χ =

`

2
cos θ dφ , (2.74)

where ` is a length scale and where we have introduced the spherical coordinates (r, θ, φ),
defined as

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ . (2.75)
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It is not difficult to see that introducing a new radial coordinate, ρ2 = 2`r, and an angular
coordinate, ψ = 2η/`9, the Gibbons-Hawking metric (2.30) can be rewritten as

dσ2 = dρ2 + ρ2dΩ2
(3) , (2.76)

where

dΩ2
(3) =

1

4

(
dψ2 + dφ2 + dθ2 + 2 cos θdψdφ

)
, (2.77)

is the metric of the round 3-sphere, S3.

ΦI and LI functions

Let us continue with the choice of the ΦI and LI functions, which will determine the form
of the vector fields and the metric function f . As already discussed, in the Abelian sector
these functions must be harmonic on E3. Our choice is

L0,+,− = a0,+,− +
b0,+,−
r

= a0,+,− +
2`b0,+,−
ρ2

, (2.78)

Φ0,+,− = 0 . (2.79)

It follows then from (2.44) that F̆ 0,+,− = 0 so that we can always work in the gauge in
which Ă0,+,− vanish, which in turn implies that also Â0,+,− = 0.

In the non-Abelian sector, out of all the solutions to the SU(2) Bogomol’nyi equations dis-
cussed in Section 2.2.1, we are going to select the spherically-symmetric colored monopole,
namely

ΦA =
δA−2

i x
i

ğr2 (1 + λ2r)
, (2.80)

ĂA = −εA−2
jk

xj

ğr2 (1 + λ2r)
dxk . (2.81)

The hatted connection ÂA is found by using (2.33), and corresponds to the well-known
BPST instanton [178],

gÂA = − κ2

ρ2 + κ2
vA−2 , (2.82)

where κ2 ≡ 2`λ−2 and the triplet of 1-forms vA−2 are a set of Maurer-Cartan 1-forms:

v1 = − sinφdθ+ sin θ cosφdψ , v2 = cosφdθ+ sin θ sinφdψ , v3 = dφ+ cos θ dψ . (2.83)

9ψ ∼ ψ + 4π.
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The main advantage of having selected a member of the colored monopole family is that
we can now make use of the solution to (2.49) given by (2.60). The harmonic function
that determines it, Q, is chosen to be

Q = −2
√

6ξx3 , (2.84)

which implies (the function P is given by P = 1 + λ−2/r)

L3 = L4 = 0 , L5 =
ξλ2r

g (1 + λ2r)
=

ξρ2

g (ρ2 + κ2)
. (2.85)

Once the functions ΦI and LI have been chosen, we can find the functions ZI by using
(2.39). We get

Z0 = L0 −
4

3

ΦAΦA

H
= a0

[
1 +
Q0

ρ2
+

2

9a0g2

ρ2 + 2κ2

(ρ2 + κ2)2

]
, (2.86)

Z± = L± = a±

[
1 +
Q±
ρ2

]
, (2.87)

ZA = LA = δA
3 ξρ2

g (ρ2 + κ2)
, (2.88)

Z̃+ = ã+

[
1 +
Q̃+

ρ2
+

ξ2

ã+a−g2

(
Q− + 2κ2

)
ρ4 +

(
2Q− + κ2

)
κ2ρ2 +Q−κ4

(ρ2 + κ2)2 (ρ2 +Q−)

]
,(2.89)

where we have defined

Q0 =
2`b0
a0
− 2

9g2a0
, Q± =

2`b±
a±

, Q̃+ =
2`b+
ã+

, (2.90)

and

ã+ = a+ −
ξ2

a−g2
. (2.91)

1-form ω

The final step to determine completely the solution is to figure out what ω is. This is done
in two steps. In first place, we have to make a choice for the harmonic function K, which
will allow us to find ω5 through (2.41). Our choice is

K =
QK
2`2r

=
QK
`ρ2

. (2.92)

Then, using (2.41), we find

ω5 = K +
√

32H−1LAΦA =
2

`

[
QK
2ρ2
−
√

3ξκ2ρ2 cos θ

2g2 (ρ2 + κ2)2

]
. (2.93)
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The second step consists of solving (2.47) to find the 1-form ω̆. After a bit of algebra, one
finds

ω̆ = −
√

3ξκ2ρ2 sin2 θ

2g2 (ρ2 + κ2)2 dφ . (2.94)

Finally, from (2.34), we have that ω is given by

ω =
QK
2ρ2

(dψ + cos θdφ)−
√

3ξκ2ρ2

2g2 (ρ2 + κ2)2 (dφ+ cos θdψ) . (2.95)

2.3.3 The solutions

Before writing down the full solution, let us rewrite the parameters a0, ã+, a− and ξ in
terms of the asymptotic values of the scalars, φ∞, k∞ and `∞ ≡ limρ→∞

√
`A`A by fixing

the asymptotic value of the metric function to f∞ = 1, as customary. We obtain that

a0 =
1

3
eφ∞k−2/3

∞ , ã+ =
1

3
k4/3
∞ , a− =

2

3
e−φ∞k−2/3

∞ ,
ξ

g
=

2

3
e−φ∞k−2/3

∞ `∞ . (2.96)

Making use of these relations to rewrite the five-dimensional fields, given in (2.68)-(2.72),
we get

ds2 = (Z0Z̃+Z−)−
2
3 (dt+ ω)2 − (Z0Z̃+Z−)

1
3

[
dρ2 + ρ2dΩ2

(3)

]
, (2.97)

A0 = −
√

3 e−φ∞k2/3
∞ Z−1

0 (dt+ ω) , (2.98)

A+ = −2
√

3 k−4/3
∞ Z̃−1

+ (dt+ ω) , (2.99)

A− = −
√

3 eφ∞k2/3
∞

(
1 +

2`2∞
eφ∞k2

∞

)
Z+

Z−Z̃+

(dt+ ω) , (2.100)

AA =
2
√

3 `∞

k
4/3
∞

ZA
Z̃+Z−

(dt+ ω)− κ2

ρ2 + κ2
vA−2 , (2.101)

e2φ = e2φ∞ Z0

Z−
,

k

k∞
=

(
Z̃2

+

Z0Z−

)4

,
`A

`∞
=
ZA
Z−

, (2.102)

with

ω =
QK
2ρ2

(dψ + cos θdφ)− `∞κ
2ρ2

√
3eφ∞k

2/3
∞ g (ρ2 + κ2)2

(dφ+ cos θdψ) , (2.103)

and
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Z0 = 1 +
Q0

ρ2
+

2e−φ∞k
2/3
∞

3g2

ρ2 + 2κ2

(ρ2 + κ2)2 , Z± = 1 +
Q±
ρ2

, (2.104)

Z3 = Z4 = 0 , Z5 =
ρ2

ρ2 + κ2
, (2.105)

Z̃+ = 1 +
Q̃+

ρ2
+

2`2∞
eφ∞k2

∞

(
Q− + 2κ2

)
ρ4 +

(
2Q− + κ2

)
κ2ρ2 +Q−κ4

(ρ2 + κ2)2 (ρ2 +Q−)
. (2.106)

Let us analyze the solution. The first we can already observe is that when the non-
Abelian fields are removed (setting κ = `∞ = 0, for instance), the solution reduces to
the well-known extremal three-charge black holes of N = 1, d = 5 ungauge supergravity.
These were first obtained in [146] as the BPS limit of a general family of non-extremal
rotating black-hole solutions of the heterotic effective action compactified on T5. Hence,
our solutions describe the distorsion on these black holes caused by the presence of the
SU(2) Yang-Mills vector and scalar fields, which describe a dyonic deformation of the
BPST instanton that is qualitatively identical to the one considered in [144, 145]. The
parameter that characterizes the dyonic deformation, ξ (or `∞), also characterizes the
breaking of the SU(2) gauge symmetry in our solution.

Physical properties

The solution is characterized by nine parameters:

• four of them, φ∞, k∞, `∞, g, are moduli parameters (asymptotic values of the scalars
and gauge coupling constant).

• Q0, Q̃+,Q− are expected to be related to the electric charges of the solution, as it
occurs when the non-Abelian fields are removed. However, we must take into account
that the non-Abelian fields introduce delocalized sources of electric charge that can
contribute to the different notions of charge that one can define when Chern-Simons
terms are present in the action [179,180]. We will come back to this issue.

• QK is related, as we are going to see, to the sum of the two angular momenta of the
solution.

• and, finally, κ is the parameter that characterizes the “size” of the dyonic BPST
instanton. It was shown in Ref. [144,145] to be related to its electric charge by

Qdyon ∼
ξκ2

g
. (2.107)

This is quite interesting, as it tells us that the size of the instanton does not have
the interpretation of non-Abelian hair, as it happens when ξ = 0, see e.g. [152, 153,
157, 166, 176]. In fact, according to [144], the electric charge is what supports this
configuration with broken SU(2) symmetry from collapse.
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Horizon. The metric of the solution (2.97) has a regular horizon at ρ = 0. The
induced metric at ρ = 0 is that of a squashed 3-sphere

− ds2
H =

R2
H

4

[
1

1 + β

(
dψ2 + cos θdφ

)2
+ dθ2 + sin2 θdφ2

]
, (2.108)

with radius and squashing parameter given by

RH =
(
Q0Q̃+Q−

)1/6
, β =

Q2
K

Q0Q̃+Q− −Q2
K

. (2.109)

The Bekenstein-Hawking entropy is given by

SBH =
AH

4G
(5)
N

=
π2

2G
(5)
N

√
Q0Q̃+Q− −Q2

K . (2.110)

Mass and angular momenta. The mass and the angular momenta of the solutions
can be easily found by first computing the large ρ-expansion of the metric (2.97) and then
comparing the result with the metric of the Myers-Perry black hole [181]. To this aim, it
is convenient to introduce a new set of coordinates (t, %,Θ, ϕ+, ϕ−), defined as

% = ρ
(
Z0Z̃+Z−

)1/3
, Θ =

θ

2
, ϕ± =

ψ ± φ
2

, (2.111)

in terms of which the large ρ-expansion of the metric (2.97) reads

ds2 ∼

(
1−

8G
(5)
N M

3π%2

)
dt2 +

8G
(5)
N J+

π%2
cos2 Θ dt dϕ+ +

8G
(5)
N J−
π%2

sin2 Θ dt dϕ−

−

(
1 +

8G
(5)
N M

3π%2

)
d%2 − %2

(
dΘ2 + cos2 Θ dϕ2

+ + sin2 Θ dϕ2
−
)
,

(2.112)

where M is the ADM mass of the solution

M =
π

4G
(5)
N

(
Q∞0 + Q̃∞+ +Q∞−

)
, (2.113)

with

Q∞0 ≡ lim
ρ→∞

ρ2 (Z0 − 1) = Q0 +
2e−φ∞k

2/3
∞

3g2
, (2.114)

Q̃∞+ ≡ lim
ρ→∞

ρ2
(
Z̃+ − 1

)
= Q̃+ +

2`2∞
(
Q− + 2κ2

)
eφ∞k2

∞
, (2.115)

Q∞− ≡ lim
ρ→∞

ρ2 (Z− − 1) = Q− , (2.116)

and J± are the two independent angular momenta of the solution
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J± =
π

4G
(5)
N

(
QK ∓

√
3κ2ξ

g2

)
. (2.117)

Inverting the last expression, we find that QK is given by the sum of the two angular
momenta

QK =
2G

(5)
N

π
(J+ + J−) , (2.118)

and that the instanton size, κ, gets fixed by its diference

κ2 =
2g2G

(5)
N√

3πξ
(J− − J+) , Qdyon ∼

2g2G
(5)
N√

3π
(J− − J+) . (2.119)

Regularity of the solution. The presence of closed timelike curves (CTCs) is a quite
common feature of this kind of metrics. The condition that guarantees the spacetime is
free of closed timelike curves is studied in Appendix D, see Eq. (D.36). For the case at
hands, it reduces to

Z0Z̃+Z−H − (ω5H)2 −
(

ω̆φ

r sin θ

)2

≥ 0 . (2.120)

We have checked numerically that this condition is satisfied without apparently imposing
constraints on the parameters other than the positivity of the mass and horizon area.

Electric charges of the solution. When a 0-brane is coupled to the vector field AI ,
its equation of motion, Eq. (2.18), gets modified by a 1-form current JSI as follows

1

16πG
(5)
N

{
−D

(
aIJ ? F

J
)

+
1√
3
CIJKF

J ∧ FK + gkI xDφ
x

}
= ?JSI . (2.121)

Then, following [180], we can define the so-called “brane-source” charges, QSI , by integrat-
ing both sides over some spacelike hypersurface, V :

QSI ≡
∫
V
?JSI =

1

16πG
(5)
N

∫
V

{
−D(aIJ ? F

J) +
1√
3
CIJKF

J ∧ FK + gkI xDφ
x

}
. (2.122)

In general, this charge is not conserved, d ? JSI 6= 0, because the left-hand-side of (2.121)
is not closed. In the ungauged directions (I = a), the Killing vectors kI

x vanish and the
gauge-covariant derivative becomes an ordinary exterior derivative. Then, we have that:

QSa =
1

16πG
(5)
N

∫
V

{
−d(aaJ ? F

J) +
1√
3
CaJKF

J ∧ FK
}
, (2.123)

is conserved if the CaJKF
J ∧FK term is a closed 4-form. This is for instance what occurs

in the ungauged case. In the gauged case, however, this will depend on the model.

Alternatively, it is possible to define the so-called Maxwell charges as
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QMa ≡ −
1

16πG
(5)
N

∫
V
d
(
aaJ ? F

J
)
, (2.124)

which are always conserved, independently of the model under consideration. Applying
Stokes’ theorem,

QMa ≡ −
1

16πG
(5)
N

∫
∂V
aaJ ? F

J , (2.125)

where ∂V denotes the boundary of V .

For the SU(2)-gauged ST[2, 6] model, the explicit expressions for these Maxwell
charges are

QM0 = − 1

48πG
(5)
N

∫
∂V
e2φk−4/3 ? F 0 , (2.126)

QM+ = − 1

48πG
(5)
N

∫
∂V

{
1

4
k8/3

(
1 + 2e−φk−2`B`B

)2
? F+ + e−2φk−4/3`B`B ? F−

+e−φk2/3
(

1 + 2e−φk−2`B`B
)
`A ? FA

}
, (2.127)

QM− = − 1

48πG
(5)
N

∫
∂V
e−2φk−4/3 ?

(
F− + `B`

BF+ + 2`AFA
)
, (2.128)

and the relation between these and the brane-source charges for this model is the following

QS0 = QM0 +
1

96
√

3πG
(5)
N

∫
V

(
F+ ∧ F− − FA ∧ FA

)
, (2.129)

QS± = QM± +
1

48
√

3πG
(5)
N

∫
V
F 0 ∧ F∓ . (2.130)

Let us point out that for this model the brane-source charges are also conserved since
the non-Abelian contributions to the F ∧ F terms amounts to FA ∧ FA which is a closed
4-form.

Let us now compute these charges for our solutions. Let us start with the Maxwell
charges, which are given by

QM0 =
π

4
√

3G
(5)
N

eφ∞k−2/3
∞ Q∞0 , (2.131)

QM+ =
π

8
√

3G
(5)
N

k4/3
∞ Q̃+ , (2.132)

QM− =
π

4
√

3G
(5)
N

e−φ∞k−2/3
∞

(
1 +

2`2∞
eφ∞k2

∞

)
Q∞− . (2.133)
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For the brane-source charges, we find

QS0 =
π

4
√

3G
(5)
N

eφ∞k−2/3
∞

(
1 +

β

1 + β

)
Q0 , (2.134)

QS+ =
π

8
√

3G
(5)
N

k4/3
∞

(
1 +

β

1 + β

)
Q̃+ , (2.135)

QS− =
π

4
√

3G
(5)
N

e−φ∞k−2/3
∞

(
1 +

2`2∞
eφ∞k2

∞
+

β

1 + β

)
Q− . (2.136)

As we can see, the brane-source charges QS0 ,QS+ and QS− are proportional to Q0, Q̃+ and

Q−, the coefficients of the poles of the functions Z0, Z̃+ and Z−. The Maxwell charges,
instead, are more difficult to interpret since, on the one hand, QM0 andQM− are proportional
to Q∞0 and Q∞− , the coefficients controlling the large ρ-expansion of the functions Z0 and

Z−, and, on the other hand, QM+ is proportional to Q̃+. Finally, we notice that the mass
of the solution can be rewritten as the sum of the Maxwell charges plus an additional term

M =
√

3
(
e−φ∞k2/3

∞ QM0 + 2k−4/3
∞ QM+ + eφ∞k2/3

∞ QM−
)

+
π`2∞κ

2

eφ∞k2
∞G

(5)
N

, (2.137)

which is proportional, up to moduli factors, to the electric charge of the dyon (2.107) as
computed in [144,145].

2.4 Rotating black holes of N = 2, d = 4 gauged supergravity

The solution-generating technique described in Section 2.1 is specially well-adapted to
describe four-dimensional solutions of the N = 2 SEYM theories that one obtains upon
dimensional reduction of five-dimensional N = 1 SEYM theories on a circle. In order to
exploit the results of Section 2.2, we focus again on solutions of the same supergravity
model as in Section 2.3. Its dimensional reduction on a circle gives, as we have explained,
the so-called SU(2)-gauged ST[2, 6] model of N = 2, d = 4 supergravity. Let us give an
extremely brief description of the model. For further details, see e.g. [111,182].

2.4.1 The model

The bosonic field content of the SU(2)-gauged ST[2, 6] model of four-dimensional N = 2
supergravity is:10 the vierbein ẽãµ̃, six vector fields ÃΛ

µ̃ (Λ = 0, 1, . . . , 5) and six complex
scalars Z̃i (i = 1, . . . , 6) that parametrize the coset space

SL(2,R)

SO(2)
× SO(2, 5)

SO(2)× SO(5)
, (2.138)

which is a Kähler-Hodge manifold.

10The four-dimensional fields and indices will carry a tilde to distinguish them from the five-dimensional
ones.
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N = 2, d = 4 (ungauged) supergravity without hypermultiplets is fully specified by the
choice of special Kähler geometry, which in turn is determined by the choice of the prepo-
tential F , from which one can derive the couplings of the theory. For the ST[2, 6] model,
this prepotential is given by

F = − 1
3!

dijkX iX jX k

X 0
, (2.139)

where the XΛ are seven functions of the scalars Z̃i and dijk is a constant, fully-symmetric,
tensor that is related to the tensor CIJK of the 5-dimensional theory by

dijk = 6Ci−1 j−1 k−1 , i, j, k = 1, . . . , 6 . (2.140)

Therefore, the index 1 corresponds to the five-dimensional 0 and the four-dimensional 0 is
associated to the Kaluza-Klein vector. The SU(2) gauge group acts on the complex scalars
and vector fields with indices 4, 5, 6. Furthermore, the + and − combinations defined in
the five-dimensional case now correspond to

Ã±µ̃ ≡ Ã2
µ̃ ± Ã3

µ̃ . (2.141)

The explicit relation between the four and five-dimensional fields can be found in
[152], and it is the following (µ̃, ν̃ = 0, . . . , 3 and η ≡ x]):

g̃µ̃ν̃ = |gηη|1/2
(
gµ̃ν̃ −

gµ̃ηgν̃η

gηη

)
, (2.142)

Ã0
µ̃ =

1

2
√

2

gµ̃η

gηη
, Ãiµ̃ = − 1

2
√

6

(
Ai−1

µ̃ −
Ai−1

ηgµ̃η

gηη

)
, (2.143)

Z̃i =
1√
3
Ai−1

η + i|gηη|1/2hi−1 . (2.144)

Before making use of the above formulae, let us determine the five-dimensional
solutions by making a choice for the seed functions ΦI , LI , H,M suitable to describe black
holes in one dimension less.

2.4.2 Seed functions

Gibbons-Hawking metric

The main difference between the five-dimensional black holes described in the previous
section and the four-dimensional black holes that we are going to describe lies in the
choice of the Gibbons-Hawking function H, which is now given by

H = aH +
bH
r
, ⇒ χ = bH cos θdφ . (2.145)

As it stands, the Gibbons-Hawking metric (2.30) presents a Dirac-Misner string singularity
at θ = 0, π (x3-axis), where the 1-form χ is not well-defined. To cure this pathology, we
must cover the Gibbons-Hawking manifold with two different patches
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η± = η ± bHφ , (2.146)

which implies that

dη + χ = dη± + χ± , where χ± = bH (cos θ ∓ 1) dφ . (2.147)

Now, χ+ and χ− are well-defined, respectively, in the positive and negative x3-axis. Hence,
the problem is solved. However, this restricts the possible values that bH can take since η±

have the same periodicity as η (namely, η± ∼ η±+ 2π`) and the period of φ is φ ∼ φ+ 2π.
Then, because of (2.146), the allowed values that bH can take are

bH =
m`

2
, with m ∈ Z . (2.148)

ΦI and LI functions

These functions will be the same as for the five-dimensional black holes. Therefore, we
have

Φ0,+,− = 0 , L0,+,− = a0,+,− +
b0,+,−
r

, (2.149)

and, in the non-Abelian sector,

ΦA =
δA−2
i xi

ğr2 (1 + λ2r)
, L3 = L4 = 0 , L5 =

ξλ2r

g (1 + λ2r)
. (2.150)

Using (2.39), we find that the ZI functions are:

Z0 = a0

[
1 +

q0

r
+

2

9a0aHg2

1 + (qH + r)
(
2λ2 + λ4r

)
4qH (qH + r) (1 + λ2r)2

]
, (2.151)

Z± = a±

[
1 +

q±
r

]
, (2.152)

Z3 = Z4 = 0 , Z5 =
ξλ2r

g (1 + λ2r)
, (2.153)

Z̃+ = ã+

[
1 +

q̃+

r
+

ξ2

ã+a−g2

(r + q−)
(
1 + 2λ2r

)
+ q−λ

4r2

(r + q−) (1 + λ2r)2

]
, (2.154)

where we have defined

q0 ≡
b0
a0
− 1

18g2a0bH
, q± ≡

b±
a±

, qH ≡
bH
aH

, (2.155)

and

q̃+ ≡
b+
ã+

, where ã+ = a+ −
ξ2

g2a−
. (2.156)
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1-form ω

We recall that in order to find ω5, we have to make a choice of the harmonic function K.
For simplicity, we choose K = 0. Then, ω5 is found to be given by

ω5 = −
√

3 ξ

2aHg2

λ2r cos θ

(r + qH) (1 + λ2r)2 . (2.157)

Taking into account the above choices, one can find ω̆ by solving (2.47). The result is

ω̆ = −
√

3ξ

2g2

λ2r sin2 θ

(1 + λ2r)2dφ . (2.158)

2.4.3 Four-dimensional solutions

All that is left is to obtain the four-dimensional fields is to apply the formulae (2.142)-
(2.144). Before writing down the four-dimensional metric, let us impose that it is in the
so-called modified Einstein-frame [183], which is the one that yields the correct results for
the masses of asymptotically-flat solutions [111]. We do this by normalizing the compact
coordinate η in such a way that ` represents the asymptotic radius of the compactification
circle S1

η. Then, we have that the KK scalar is given by

(kη/kη,∞)2 ≡ |gηη| = f−1H−1 − f2ω2
5 . (2.159)

The above equation implies the following relation between the asymptotic values of the
functions involved

aH = f−1
∞ , where f−3

∞ =
27

2
a0ã+a− . (2.160)

Keeping this in mind, let us make use of (2.142) to obtain the four-dimensional
metric. We get:

ds̃2 = e2U (dt+ ω̆)2 − e−2U
[
dr2 + r2dΩ2

(2)

]
, (2.161)

where

e−2U =

√
f−3H − (ω5H)2 , and f−3 =

27

2
Z0Z̃+Z− . (2.162)

We can now get rid of one of the unphysical parameters by imposing the standard
normalization of asymptotically-flat metrics, which amounts to impose that e−2U → 1 at
infinity. This implies —see Eq. (2.160)—:

aH = 1 , and a0ã+a− =
2

27
, (2.163)
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Now, as we did in Section 2.3, we can use (2.163) and (2.72) to write a0, ã+ and a− in
terms of the asymptotic values of the five-dimensional scalars11

a0 =
1

3
eφ∞k−2/3

∞ , a− =
2

3
e−φ∞k−2/3

∞ , ã+ =
1

3
k4/3
∞ . (2.164)

The four-dimensional complex scalars are found by using (2.144). We get:

Z̃1 = − 1

3Z0H

(
ω5H − ie−2U

)
, (2.165)

Z̃+ = − 2

3 Z̃+H

(
ω5H − ie−2U

)
, (2.166)

Z̃− = − 2Z+

3 Z̃+ Z−H

(
ω5H − ie−2U

)
, (2.167)

Z̃A+1 =
2ZA

3 Z̃+ Z−H

(
ω5H − ie−2U

)
+ 2
√

2H−1ΦA . (2.168)

Their asymptotic values are determined by eφ∞ , k∞ and ξ:

ImZ̃1
∞ = e−φ∞k2/3

∞ , ImZ̃−∞ = eφ∞k2/3
∞

(
1 +

9 eφ∞ ξ2

2g2k
2/3
∞

)
, (2.169)

ImZ̃+
∞ = 2k−4/3

∞ , ImZ̃4
∞ = ImZ̃5

∞ = 0 , ImZ̃6
∞ = −3 eφ∞k−2/3

∞ ξ/g , (2.170)

where Im Z̃i∞ denotes the imaginary part. The real parts simply vanish, Re Z̃i∞ = 0.

Finally, the vector fields (2.143) are given by

Ã0 =
1

2
√

2

[
−e4UH2ω5 (dt+ ω̆) + χ

]
, (2.171)

Ã1 =
1

6
√

2

e4UHf−3

Z0
(dt+ ω̆) , (2.172)

Ã± =
1

3
√

2

e4UHf−3Z+

Z±Z̃+

(dt+ ω̆) , (2.173)

ÃA+1 = −e4UH

(
9

2
√

2
Z0ZA + ω5ΦA

)
(dt+ ω̆)−

εA−2
jk x

j

ğr2 (1 + λ2r)
dxk . (2.174)

The analysis of the solutions is similar to the five-dimensional case, so we shall be
brief. They describe a non-Abelian generalization of the four-charge extremal black holes

11The reason why it is interesting to write them in terms of φ∞ and k∞ is that these have a direct
“stringy” interpretation: they are the vacuum expectation value of the dilaton and the asymptotic radius
of one of the circles (that will be denoted later as S1

z) which forms part of the total compact space.

59



Chapter 2. Non-Abelian supersymmetric black holes

studied in [147,183,184]. The additional charge with respect to the five-dimensional case
is qH , which represents the magnetic charge of the Kaluza-Klein vector Ã0. The SU(2)
vector fields (2.174) are a dyonic deformation of the so-called colored monopoles [170,171],
which are characterized by having vanishing magnetic charge (2.57). Contrary to what
occurs with the colored black holes of Refs. [148,151], the parameter λ, which characterizes
the “size” of the colored monopole, does not play the rôle of non-Abelian hair since it is
fixed in terms of the total angular momentum of the solution, J . By analogy with the
five-dimensional case, we expect qdyon ∼ ξ

gλ2 to represent the electric charge of the colored
dyon.

It is worth to mention that a different class of colored dyons [157] has also been
used in [153] to construct multicenter black-hole solutions. This colored dyon, however,
has different properties from the one considered here. In particular, it does not seem that
we can assign an electric charge to it, see [137] for a discussion about this.

Physical properties of the solution

Horizon. The metric (2.162) has a regular horizon at r = 0, where e2U vanishes. The
near-horizon geometry is AdS2×S2, exactly as in the Abelian case [147]. The Bekenstein-
Hawking entropy is given by

SBH =
π

G
(4)
N

√
q0q̃+q−qH . (2.175)

Then, as in the five-dimensional case, the black-hole entropy is not affected by the non-
Abelian fields when the latter is written in terms of the near-horizon charges.

Mass and angular momentum. The ADM mass M and the angular momentum J
of the solution can be easily computed by comparing the asymptotic expansion of (2.162)
with that of the Kerr solution. We find:

4G
(4)
N M = q0 + q̃+ + q− + qH +

e−φ∞k
2/3
∞

6g2qH
+

9eφ∞k
−2/3
∞ ξ2

2g2

(
q− + 2λ−2

)
, (2.176)

J = −
√

3ξ

4g2λ2G
(4)
N

, (2.177)

As we see, the colored dyon contributes positively to the total mass and angular momentum
of the solution. Let us observe that the parameter λ is fixed in terms of the angular
momentum (and the moduli) by

λ2 = −
√

3ξ

4g2G
(4)
N J

. (2.178)

Hence, the solution has no hair.

Regularity of the solution. The metric of the solutions would contain naked singular-
ities if the function e−2U vanishes outside the event horizon. To the best of our knowledge,
this is a feature that is present so far in all single-center, rotating, supersymmetric black
holes in four dimensions, see e.g. [185–187]. We recall that function e−2U is given by
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e−2U =

√
27

2
Z0Z̃+Z−H − (ω5H)2 . (2.179)

The first term in the square root is positive for r ≥ 0 if we take the moduli parameters and
the charges to be positive. There is the second term, however, which is always negative
except in the static limit (ξ = 0), where it simply vanishes, see (2.157). In the rotating
case, ξ 6= 0, the second term is always subdominant in the near-horizon and asymptotic
limits, where we have, respectively, that

ω5 ∼ O(r) , and ω5 ∼ O(1/r2) . (2.180)

There is, however, the possibility of e−2U having a necessarily even number of roots at
the intermediate region. We have studied this numerically for different values of the
parameters and we have found that the first term always dominates over the second. This
is shown in Fig. 2.1, where we have plotted e−2U |θ=0 as a function of r for different values
of ξ.
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Figure 2.1: Metric function e−2U |θ=0 as a function of the radial coordinate for different
values of the parameter that characterizes the dyonic deformation, ξ. The remaining
parameters of the solutions are kept fixed to the following values: eφ∞ = 0.1, k∞ = 10,

q0 = q+ = q− = qH = 10`, λ−2 = ` and g = 2k
2/3
∞

3eφ∞`2
.

Therefore, we see that the negative term in (2.179) does not represent a real problem
in order to construct solutions without naked singularities. Instead, we find that the
behaviour of the metric function is improved as we turn on the non-Abelian parameter ξ.

2.5 Uplift to ten dimensions

Let us give a first step to study these non-Abelian black holes in the framework of string
theory. As already discussed, the SU(2)-gauged ST[2, 6] model of N = 1, d = 5 supergrav-
ity can be obtained by a truncation of ten-dimensional N = 1 supergravity compactified
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on T4×S1
z.

12 The bosonic field content of the ten-dimensional theory is: the graviton êâµ̂,

the Kalb-Ramond 2-form B̂µ̂ν̂ , the dilaton φ̂ and the three SU(2) vector fields ÂÂ.13 The
bosonic action is

Ŝ =
g2
s

16πG
(10)
N

∫
d10x̂

√
|ĝ| e−2φ̂

{
R̂− 4(∂φ̂)2 +

1

12
Ĥ2 − α′

8
F̂ Â · F̂ Â

}
, (2.181)

where α′ = `2s is the square of the string length and gs is the string coupling constant

(related to the asymptotic value of the dilaton by: gs = eφ̂∞). The ten-dimensional

Newton’s constant, G
(10)
N , is given in terms of the string moduli by

G
(10)
N = 8π6g2

sα
′4 . (2.182)

The field strength of the Kalb-Ramond 2-form, Ĥ, is defined as

Ĥ = dB̂ +
α′

4
ωYM , (2.183)

where ωYM is the Chern-Simons 3-form of the connection ÂÂ, namely

ωYM = dÂÂ ∧ ÂÂ +
1

3
εÂB̂Ĉ Â

Â ∧ ÂB̂ ∧ ÂĈ , dωYM = F̂ Â ∧ F̂ Â . (2.184)

The relation between the ten- and five-dimensional fields is given in Appendix E,
which is mostly based on the results of [177]. Using it, we find that the ten-dimensional up-
lift of the class of solutions considered in this chapter (both the five- and four-dimensional)
is the following:

dŝ2 = 2
a−
Z−

du

(
dt+ ω − 1

2

Z̃+

ã+
du

)
− Z0

a0
dσ2 − ds2

(
T4
)
, (2.185)

e2φ̂ = g2
s

Z0/a0

Z−/a−
, (2.186)

Ĥ = ?σd

(
Z0

a0

)
+ du ∧

[
(dt+ ω) ∧ d

(
a−
Z−

)
+
a−
Z−

?σ dω

]
, (2.187)

ÂÂ =
3
√

3 ggs

k
2/3
∞

a−
Z−

ZA du+ gÂA , (2.188)

where u = t − z and z ∼ z + 2πk∞`s is the coordinate parametrizing the circle S1
z. The

gauge coupling constant, g, is related to the ten-dimensional moduli by

12The truncation consists of keeping just a triplet of SU(2) gauge filds and setting to zero all the Kaluza-
Klein fields (vectors and scalars) associated to the torus T4. See Appendix E for more details.

13We use hats to denote the ten-dimensional world (µ̂, ν̂, . . . ) and flat indices (â, b̂, . . . ), as well as to

denote the index labelling the triplet of ten-dimensional SU(2) fields, ÂÂ, with Â = A − 2 = 1, 2, 3. This
also serves as a distinction between these and the base space vector fields defined in (2.22), ÂA, which
carry an index A = 3, 4, 5.

62



Chapter 2. Non-Abelian supersymmetric black holes

g2 =
2k

2/3
∞

3gsα′
. (2.189)

We would like to start analyzing these ten-dimensional solutions in order to figure
out how the distorsion introduced by the Yang-Mills fields can be understood from the
point of view of string theory. In order to do so, however, we have to take into account
that the Green-Schwarz anomaly cancellation mechanism and supersymmetry force us to
add local interactions which modify the action (2.181) and its equations of motion at first
order in α′, see (1.59). Consequently, a rigorous analysis of the Yang-Mills fields can only
be done if those terms, which are of quadratic order in the curvature, are also considered.
We will do this in the second part of the thesis. But now, we can study a class of simple
solutions for which the quadratic curvature corrections are subdominant (i.e. of order α′2).

2.5.1 Heterotic solitons

They arise as a particular case of the five-dimensional black holes of Section 2.3. In order
to obtain them, we must set to zero some of the charges of the solution, namely

Q0 = Q̃+ = Q− = QK = 0 . (2.190)

The vanishing of these near-horizon charges has two important consequences. First, that
the brane-source charges vanish, so that the equations of motion are solved exactly, i.e.
without the need of adding δ-like source terms. And second, that the solution has no
horizon nor singularity.

The investigation of this type of solitonic solutions has received a great deal of
attention, specially in the nineties [118–120, 160, 188–190]. One of the first solutions of
this kind was Strominger’s gauge five-brane [118, 188, 189], whose main ingredient is the
well-known BPST instanton [166]. This is precisely the solution that we obtain in the
static limit, ξ = 0. The rotating case, ξ 6= 0, corresponds to the generalization of the
gauge five-brane found in [145]. The ten-dimensional solution is given by

dŝ2 = 2du

(
dt+ ω − Z̃+

2
du

)
−Z0

(
dρ2 + ρ2dΩ2

(3)

)
− ds2

(
T4
)
, (2.191)

e2φ̂ = g2
sZ0 , (2.192)

Ĥ = ?4dZ0 + du ∧ ?4dω , (2.193)

ÂÂ = δA3
2µρ2

ρ2 + κ2
du− κ2

ρ2 + κ2
vA , (2.194)

where
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Z0 = 1 + α′
ρ2 + 2κ2

(ρ2 + κ2)2 , (2.195)

Z̃+ = 1 + α′
µ2κ2

(
2ρ2 + κ2

)
(ρ2 + κ2)2 , (2.196)

and

ω = − α′κ2µρ2

2 (ρ2 + κ2)2 (dφ+ cos θdψ) , (2.197)

where we have defined µ ≡ 3
√

3gsξ

2k
2/3
∞

in order to reabsorb the moduli factors.

This solution describes a rotating superposition of the gauge five-brane and a mo-
mentum wave. Down in five dimensions, it describes the backreaction of the dyonic BPST
instanton found in Ref. [144]. There is the possibility that this solution could be inter-
preted as a D1-D5 microstate geometry, though it is not entirely clear to us how the
non-Abelian sector arises in this duality frame.

Furthermore, it would be interesting to study if the heterotic solitons constructed
in [119, 120]14 admit dyonic deformations such as the one we have just studied for the
gauge five-brane.

2.6 Discussion

In this chapter, we have constructed and studied non-Abelian supersymmetric black holes
in supergravity models that arise from toroidal compactifications of ten-dimensionalN = 1
supergravity coupled to an additional triplet of SU(2) vector fields.

Both the five- and four-dimensional solutions can be understood as non-Abelian
generalizations of well-known supersymmetric black holes with three [146] and four charges
[147, 183, 184] that arise in various string compactifications (in particular, in the toroidal
compactification of the heterotic string). The novel ingredient of the solutions is the
addition of a dyonic BPST instanton [144, 145] and its four-dimensional descendant, the
dyonic colored monopole. Our current understanding of these objects (see e.g. [154]) is
that they contribute to the total mass, charges and angular momenta of the black hole
but not to the Bekenstein-Hawking entropy. However, in order to see this, the entropy
must be written in terms of the “near-horizon” charges, which are expected to be the ones
counting the number of “stringy objects”, as it occurs in the ξ = 0 case, [140,154,193]. In
the five-dimensional case, it is possible to switch-off all the near-horizon or brane-source
Abelian charges to recover a smooth solitonic solution describing a self-gravitating dyonic
BPST instanton, which can be obtained by toroidal compactification of the heterotic
dyonic instanton found in [145].

Perhaps the most interesting property of these dyonic deformations is that they give
raise to non-static solutions. This is specially relevant in the context of four-dimensional

14These solutions are based on the eight-dimensional octonionic instanton of [191] and on the seven-
dimensional G2-instanton of [120]. These solutions have been later generalized to include multicenter
instantons in [192].
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black holes since the solution presented here is, as far as we are aware, the first non-
singular example of a supersymmetric, single-center, asymptotically-flat black hole that is
non-static.
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3
Closed timelike curves in microstate geometries

Microstate geometries are solitonic solutions of the equations of motion of supergrav-
ity theories. Classical results from general relativity established that this type of non-
singular solutions cannot be accommodated in a four-dimensional spacetime,1 at least
when non-Abelian matter fields are absent. Actually, asymptotically-flat, spherically-
symmetric non-Abelian solitons have been known to exist in four and more dimensions
for decades, [118, 149, 150, 166, 196–199], although multicenter solutions have only been
discovered very recently [157]. Abelian solitons in supergravity, however, are only possible
in five dimensions or more. In that case earlier no-go theorems can be circumvented due to
the presence of Chern-Simons topological terms in the action; magnetic fluxes threading
non-contractible two-cycles become effective sources of electric charge, mass and angular
momentum. It is for this reason that Abelian microstate geometries require the spacetime
manifold to have non-trivial topology.

A set of rules to construct Abelian microstate geometries as supersymmetric so-
lutions of five-dimensional supergravity was discovered in [155, 156], where these were
conjectured to be related to the classical description of black hole microstates within the
context of the fuzzball proposal [74]. These works generalized earlier results [73, 200–205]
by making use of the solution generating technique of [206, 207]. On the other hand,
based on the results of the program for the study of non-Abelian black holes in string
theory [148, 152–154, 163, 171, 176, 177], this technique has been extended to include the
construction of non-Abelian microstate geometries in [157]. In this article we introduce a
unified framework, so our discussion can be applied to all five-dimensional supersymmetric
microstate geometries on a Gibbons-Hawking base.2

The aforementioned solution generating technique, however, has very limited appli-
cations. In few words, this is due to the fact that it is not known how to systematically
avoid the presence of Dirac-Misner string singularities or general closed timelike curves
(CTCs). We refer to this fact generically as the CTCs problem, since Dirac-Misner strings,
if present, can only be resolved if the time coordinate is periodic, which introduces CTCs
as well. According to the technique to construct solutions, Dirac-Misner strings are absent
when the bubble equations are solved, see (3.6), while the geometry is free of general CTCs
when the quartic invariant function is positive everywhere, (3.15). The problem arises
because it is not known how the parameters that specify the solution must be chosen in
order to satisfy these two types of constraints. For this reason, the solution generating

1See for instance the early work [194]. A more recent article with emphasis in microstate geometries
is [195].

2The recent solutions of [208] describing supertubes with non-Abelian monodromies are constructed
using harmonic functions with codimension-2 singularities and are not included in our framework.
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technique of [155, 156] is rarely directly applied to find explicit solutions, being effective
only for simplified configurations with few centers or with very special relations among
the specifying parameters, see [209, 210] and references therein. More general solutions
have been found by making use of more sophisticated tools, like the merging of several
few-center solutions, [211,212], or the link between three-charge supertube configurations
and five-dimensional microstate geometries on a Gibbons-Hawking base, [213–215]. Su-
perstrata solutions, which belong to a different class of smooth horizonless solutions of
six-dimensional supergravity, deserve a special mention, as they might reproduce the de-
generacy of microstates of general three-charge black holes, [216,217].

In order to understand the situation better, it is convenient to discuss the origin
of these pathologies. Timelike supersymmetric solutions of five-dimensional supergravity
have a metric of conformastationary form,

ds2 = f2 (dt+ ω)2 − f−1hmndx
mdxn . (3.1)

Here hmndx
mdxn is a four-dimensional hyperKähler metric —usually a Gibbons-Hawking

space [158,159]— known as the base space, while f and ω are respectively a function and
a 1-form defined on this base space.3 The 1-form ω must transform as a tensor under
coordinate transformations on the base space, since otherwise the hypersurfaces defined
by constant values of the coordinate t would not be Cauchy surfaces. As ω is specified by a
differential equation, this just means that we need to satisfy the corresponding integrability
condition everywhere. This integrability condition becomes a set of algebraic relations
known as the bubble equations. From a physical perspective, this phenomena is related to
the frame-dragging generated by the interactions between electric and magnetic sources.
These sources have Dirac string singularities, and their elimination from any influence in
electromagnetic interactions requires imposing charge quantization. In a similar manner,
we can think of the bubble equations as the conditions that require the frame-dragging is
also invisible to those string singularities.4 These constraints relate the charge parameters
with the sizes of the non-contractible 2-cycles, and are typically interpreted as restrictions
for the latter. On the other side, the above condition is necessary but not sufficient to
ensure t is a global time coordinate. Besides, it is necessary that any hypersurface defined
by a constant value of t is a Riemannian manifold with timelike normal vector, so that
there are no CTCs. For these solutions, this requires the quartic invariant function to be
positive. In the context of BPS microstate geometries, this can be rephrased in terms of
the signs of charge and energy densities at separated locations. The existence of stationary
multicenter supersymmetric solutions is typically related to the cancellation of attractive
and repulsive (gravitational and electromagnetic) interactions5. If these cancellations cease

3This metric can be interpreted as a fibration of an R-bundle over a four-dimensional space; the hy-
persurfaces with constant t define a local section and γmn = −f−1hmn is the projection of the spacetime
metric orthogonal to the fibres defined by the horizontal connection ω. On the other hand, the metric
induced in that hypersurfaces is gmn = f2ωmωn−f−1hmn. As discussed in [195], for microstate geometries
the coordinate t is a global time function and the sections it defines are Cauchy surfaces.

4Alternatively, one could get rid of the string singularities without solving the integrability condition
by interpreting ω as a connection and solving its defining equation on different patches (as it is done,
for instance, for the Dirac monopole). However, the consistency of this construction requires the time
coordinate t to be compact, as shown by Misner in [218].

5Interestingly, one may notice that the action does not contain any terms introducing “Lorentz-like”
electromagnetic forces. However, metric-based theories of gravity “know” about the existence of those
interactions through the coupling of the spacetime metric and the electromagnetic energy-momentum
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to take place the configuration is not truly supersymmetric, and this is reflected in the
form of CTCs when trying to describe the solution as such. Hence, the problem is to find
configurations for which all charge densities are of the same sign. However, the relation
between the parameters specifying the solution and the charge densities, which arise from
the interactions of magnetic fluxes threading non-contractible cycles, is rather complex.
This is the reason why the solution of this problem has remained unclear.

Results and plan of the chapter

In this chapter we propose a systematic method to solve the CTCs problem that can
be used to find all five-dimensional BPS microstate geometries on a Gibbons-Hawking
hyper-Kähler space. It can be summarized as follows:

1. The bubble equations are non-linear and hard to solve if the locations of the centers
are taken as the unknowns. However, those can be rewritten as a simple system
of linear equations by choosing a different set of unknown variables: the magnetic
fluxes. The bubble equations become

MX = B , (3.2)

for some symmetric matrix M.

2. We conjecture that any solution satisfying the bubble equations is free of CTCs if
and only if all the eigenvalues of the matrix M are positive.

When trying to build generic microstate geometries, all parameters specifying the
solution can be treated on an equal footing. Therefore, there is no reason to consider
the charge parameters more fundamental than the size of the bubbles. We begin with
a description of the parameter space in Section 3.1. Then, we consider the CTCs prob-
lem in Section 3.2. In particular, in Section 3.2.1 we rewrite the bubble equations as a
linear system with the same number of equations than variables, while in Section 3.2.2
we expose our conjecture and discuss evidence in its support. In Section 3.2.3 we discuss
the application of our method to the construction of scaling solutions, describing how the
introduction of non-Abelian fields strongly enriches the spectrum of this type of solutions.
Afterwards, in Section 3.3, we put our method in practice and describe some solutions
with properties and characteristics previously absent in the literature. For instance, as
a striking result, we are able to find smooth horizonless five-dimensional solutions with
arbitrarily small angular momentum. Those had not been discovered so far and they were
even thought to be non-existent. We also describe some solutions with the centers lying
on a circle or a line whose parameters can be specified with complete accuracy (to the
best of our knowledge, all the explicit microstate geometries with several centers known
so far can only be obtained approximately). Last but not least, to show how powerful is
our method, we use it to construct a solution with 50 centers that contains more than a
thousand 2-cycles. Finally, some final comments are made in Section 3.4.

tensor. See for example [219].
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3.1 The parameter space and its restrictions

This section is devoted to the description of the parameter space of supersymmetric five-
dimensional microstate geometries and the restrictions that physical configurations must
fulfill. As in the previous chapter, we are going to focus on solutions of the SU(2)-gauged
ST[2, 6]-model of N = 1, d = 5 supergravity, which is described in detail in Section 2.3.1.
When the non-Abelian vector multiplets are truncated, we recover the STU model of
supergravity, which is the theory in which five-dimensional Abelian microstate geometries
are constructed. Our scheme, therefore, is completely general and accommodates both
classes of solutions, Abelian and non-Abelian.

The construction of (non-Abelian) microstate geometries with a Gibbons-Hawking
base in the supergravity model under consideration is described in [157] and reviewed in
our conventions in Appendix D. These solutions are completely specified by a set of har-
monic functions in three-dimensional Euclidean space and some restrictions that strongly
constrain the parameter space. Let us first introduce the parameter space and discuss the
constraints afterwards. We distinguish the harmonic functions in the Abelian sector

H =
n∑
a=1

qa
ra
, Φi =

n∑
a=1

kia
ra
, Li = li0 +

n∑
a=1

lia
ra
, M = m0 +

n∑
a=1

ma

ra
, (3.3)

(where the index i takes three possible values i = 0, 1, 2) and those in the non-Abelian
sector

P = 1 +
n∑
a=1

λa
ra
, Q =

n∑
a=1

σaλa
ra

, with λa ≥ 0 . (3.4)

We refer to the n poles of the harmonic functions as centers, so ra ≡ |~x−~xa| is the Euclidean
distance from the ath center. The first function, H, plays a special role. It determines the
geometry of a four-dimensional Gibbons-Hawking ambipolar space [195,220],

hmndx
mdxn = H−1(dϕ+ χ)2 +Hd~x · d~x , ?3dH = dχ . (3.5)

To describe asymptotically-flat solutions we need to recover four-dimensional Euclidean
geometry in the base space in the ||~x|| → ∞ limit. Hence, we shall impose

∑
a qa = 1. On

the other hand, regularity at the centers demands that the Gibbons-Hawking charges qa
are integer numbers, and therefore some of them must be negative.

The horizonless condition and the regularity of the metric at the centers require
that the parameters lia, ma and σa are given by a certain combination of qa, k

i
a and other

constants, which are specified in Appendix D.3. Moreover, asymptotic flatness also fixes
the value of m0 and imposes one constraint on the product of l00, l10 and l20. The two
remaining degrees of freedom in these constants are related to the moduli of the solution;
that is, to the asymptotic value of the two Abelian scalars of the theory. Also, as discussed
in the appendix, only (n− 1) of the kia parameters are physical, as there is one redundant
degree of freedom associated to gauge transformations of the vectors.

Therefore, asymptotically flat horizonless configurations are specified by 4(n − 1)
charge parameters (kia and qa), the 2 moduli parameters, the n non-Abelian hair param-
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eters λa and, of course, the coordinates of the centers, which add 3(n − 2) degrees of
freedom. In total, the parameter space of the solutions is 8(n− 1)-dimensional.

Not every point in the parameter space, however, yields a physically sensible solution.
Actually, it is most frequent that a random choice of such point gives a solution with
closed timelike curves (CTCs) and Dirac-Misner string singularities connecting some of
the centers. The absence of Dirac-Misner strings is achieved by imposing the so-called
bubble equations,

∑
b 6=a

qaqb
rab

Π0
ab

(
Π1
abΠ

2
ab −

1

2g2
Tab
)

=
∑
b,i

qaqbl
i
0Πi

ab. (3.6)

where

Πi
ab =

kib
qb
− kia
qa
, Tab =

1

q2
a

+
1

q2
b

, (3.7)

the non-Abelian gauge coupling constant is denoted by g and rab is the distance separating
the centers a and b. The combinations Πi

ab are the magnetic fluxes of the ith Abelian vector
threading the non-contractible 2-cycle defined by the two centers a and b. Notice that only
(n− 1) equations are independent, as the sum in the index a that labels the n equations
yields a trivial identity. Typically, solving the bubble equations constitutes a very hard
step when constructing explicit microstate geometries. This is because, traditionally, those
have been understood as equations for the variables rab, which have to be solved in terms
of the independent charge parameters kia and qa and the moduli.6 Then, after solving the
system, usually by numerical methods, one finds that the obtained values of rab rarely
represent the distances between a collection of points, as they should all be real, positive
numbers satisfying the triangle inequalities rac ≤ rab + rbc for all a, b, c. To construct
explicit microstate geometries, one usually relies on further restrictions that reduce the
number of independent parameters but make it easier for the bubble equations to admit
proper solutions.

However, there seems to be no reason for considering the charge parameters more
fundamental than the locations of the centers not only in the bubble equations, but also in
the complete description of a particular microstate geometry. On one side, the system looks
asymptotically like a black hole and its main characteristics are determined by the charge
parameters and the moduli. On the other side, the existence of well-separated centers is
of the utmost importance for resolving the horizon, and their locations are responsible for
the distinction between the different microstates associated to the same black hole. In this
chapter we show that the bubble equations can be solved analytically in full generality,
with complete access to the whole parameter space of regular solutions, by considering the
location of the centers among the independent variables.

As far as general CTCs are concerned, so far there has been no known analytically
solvable restriction to guarantee their absence. Usually this has to be checked by evalu-
ating numerically the positivity of the quartic invariant of the solution, once the bubble
equations have been solved and all parameters are already specified. In the next section
we propose an algebraic condition on the space of parameters that allows us to distinguish

6The hair parameters λa are absent in the bubble equations, although the non-Abelian fields are indi-
rectly present through the term 1

2g2
Tab.
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whether or not the solution has CTCs, without making use of the numerical analysis of a
function.

3.2 The solution of the CTCs problem

3.2.1 Solving the bubble equations analytically

As we outlined in the previous section, the bubble equations have been traditionally solved
for the distances between the centers using numerical methods. This, in turn, makes the
task of constructing explicit microstate geometries complex and typically limits the regions
of the parameter space that can be accessed. Here we use a different approach to address
the problem that allows for the analytic resolution of the bubble equations in full generality.

Since the number of independent magnetic fluxes associated to a given vector is the
same as the number of independent equations, (n − 1), and those appear linearly in the
system, it is reasonable to take them as the unknown variables for which the system is
solved. As there are three different Abelian vectors, there are three possible ways in which
we can write the system. In this section we write the explicit expressions when the 2-fluxes
are taken as the unknowns, although equivalent relations can be readily obtained for the
0- and the 1- fluxes. If we define

α2
ab =

qaqb
rab

(
Π0
abΠ

1
ab − l20rab

)
, with α2

aa = 0 , (3.8)

and

β2
a =

n∑
b=1
b 6=a

qaqb
rab

[
1

2g2
TabΠ0

ab +
(
l00Π0

ab + l10Π1
ab

)
rab

]
, (3.9)

it is straightforward to see that (3.6) can be rewritten as

n∑
b=1

α2
abΠ

2
ab = β2

a. (3.10)

This is a system of n equations, but the sum of all of them is trivially satisfied.7

Therefore, we can directly eliminate one of the equations, which is chosen to be the first
one. We define the variables that will play the role of unknowns in the system of equations
as follows

X2
a ≡ Π2

1(a+1) , a = 1, . . . , n− 1 . (3.11)

Then, the rest of the 2-fluxes can be easily written in terms of these quantities as

Π2
(a+1)(b+1) = X2

b −X2
a (3.12)

For this variables, we get a system of (n− 1) linear equations

7Notice that the fluxes Πi
ab are antisymmetric in their indices, while the matrix α2

ab is defined to be
symmetric. Also, we have that

∑
a β

2
a = 0.
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M2
abX

2
b = B2

a , (3.13)

where the components of the matrix M2 and the vector B2 are given by

M2
ab = α2

(a+1)(b+1) − δ
b
a

n∑
c=1

α2
(a+1)c , B2

a = β2
(a+1) . (3.14)

Thus, in our scheme the bubble equations can be solved by standard linear algebra
methods for an arbitrarily large number of centers.8 This is, of course, if the solution exists.
Let us go back some steps to understand this issue. We explained in the previous section
that asymptotically flat horizonless configurations are determined by 8(n−1) parameters.
To become regular microstate geometries, these configurations need to satisfy (n − 1)
independent algebraic constraints known as bubble equations. This means that there are
at most 7(n− 1) independent parameters. In this section we have shown a way in which
the independent parameters can be chosen in order to solve the bubble equations in full
generality. But, still, there are special values of the independent parameters for which the
bubble equations do not admit a solution: the values for which the determinant of the
coefficient matrix M2 is zero.

To get some intuition about this, let us suppose for a moment that the 7(n − 1)
independent parameters are continuous variables. Then, the condition |M| = 0 defines
a codimension one hypersurface in the parameter space, to which we refer as a wall.
Although walls represent a very small region of the total space, we strongly believe that
their presence is highly relevant.

3.2.2 Absence of CTCs: an algebraic criterion

At this stage, there is one last restriction that physically sensible configurations must
satisfy: the spacetime cannot contain closed timelike curves. As we already mentioned,
this problem is translated to the positivity of a function, the quartic invariant

I4 ≡ CIJKZIZJZKH − ω2
5H

2 ≥ 0 , (3.15)

where we use the combinations (see the appendices for more information)

ZI = LI + 3CIJK
ΦJΦK

H
, ω5 = M +

1

2
LIΦ

IH−1 + CIJKΦIΦJΦKH−2 . (3.16)

The parameters are chosen such that ZI and ω5 do not diverge at the centers. More-
over, when the bubble equations are satisfied ω5 vanishes at the centers. Asymptotically,
Zi (just the Abelian sector) go to the positive constant li0 while ω5 goes to zero. In short,
this means that I4 is dominated by the first factor both near the centers and far from
them. Motivated by this observation, we claim that the positivity of the quartic invariant
is guaranteed if the first term is strictly positive,

CIJKZIZJZKH = Z0H(Z1Z2 −
1

2
ZαZα) > 0 , (3.17)

8Provided computational resources are unlimited.

73



Chapter 3. Closed timelike curves in microstate geometries

which implies that the term with ω5 is irrelevant for the study of CTCs, even at interme-
diate regions, unless the first term in I4 vanishes.9

As Zi changes sign when H does, the inequality (3.17) can be converted into a
collection of simpler inequations

ZiH > 0 , Z1Z2 −
1

2
ZαZα > 0 . (3.18)

In terms of the parameters, these combinations of functions can be written as

ZiH = li0

n∑
a=1

qa
ra
− 3Cijk

n∑
a,b=1
a>b

qaqb
rarb

Πj
abΠ

k
ab + δ0

i

1

2g2

n∑
a,b=1

1

rarb

(
qa
qb
− λaλb~na · ~nb

rarbP 2

)
,

ZαH =
n∑

a,b=1
a6=b

qaλbΠ
0
ab

gPrar2
b

n
(α−2)
b , (3.19)

where n
(α−2)
a are the coordinates of the unit vector ~na ≡ ~x−~xa

ra
(recall that α = 3, 4, 5).

Evaluating the Abelian functions ZiH at the centers we obtain

lim
ra→0

Z0H =
1

ra

l00qa − n∑
b=1
b 6=a

qaqb
rab

(
Π1
abΠ

2
ab −

1

2g2
Tab
)

+
1

g2λa

λ0 +
∑
b6=a

λb
rab


+O(r0

a) ,

lim
ra→0

Z1H =
1

ra

l10qa − n∑
b=1
b 6=a

qaqb
rab

Π0
abΠ

2
ab

+O(r0
a) ,

lim
ra→0

Z2H =
1

ra

l20qa − n∑
b=1
b 6=a

qaqb
rab

Π0
abΠ

1
ab

+O(r0
a) , (3.20)

and, from the first set of inequalities in (3.18), we find that the combination of parameters
inside the brackets must be positive for all centers. Notice that in these expressions the
purely Abelian limit is effectively recovered by taking g → ∞, and that in this limit the
last inequality in (3.18) is trivial. At first sight, it is noteworthy that these combinations
of parameters look very similar to the elements in the diagonal of the coefficient matrices
M0, M1 and M2, which are

Mi
(a−1)(a−1) = −

n∑
b=1
b 6=a

qaqb
rab

(
3CijkΠ

j
abΠ

k
ab − δi0

1

2g2
Tab
)

+ li0qa(1− qa) . (3.21)

9While we have not been able to prove this claim in full generality, we have checked its validity in
hundreds of thousands of pseudorandom configurations by computer analysis. In all the cases studied, the
inequalities (3.15) and (3.17) are both true or both untrue.
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But, however, what it is truly remarkable is that the positivity of the elements in the
diagonal of those matrices is sufficient to ensure the positivity of the divergences of the
functions ZiH at the centers10. This suggests that there might be a relation between
the properties of the linear system of bubble equations and the absence of CTCs. To
understand this relation better, it is convenient to consider simple configurations.

The study of two-center, purely Abelian microstate geometries provides a great deal
of insight in this problem. In this case the bubble equation is

− q1q2

r12

(
Π0

12Π1
12 − l20r12

)
X2

1 = −q1q2

(
l00Π0

12 + l10Π1
12

)
, (3.22)

where X2
1 = Π2

12. This configuration will not contain CTCs if

ZiH =
1

r1r2

[
li0 (q1r2 + q2r1)− 3Cijkq1q2Πj

12Πk
12

]
> 0 , (3.23)

for i = 0, 1, 2. Since r1 and r2 are positive numbers, we just need to impose the positivity
of the function inside the bracket. Without loss of generality, we can take q1 to be positive
and q2 to be negative, with q1 + q2 = 1. Then, the function (q1r2 + q2r1) is bounded from
below by the number q2r12, so we can write

ZiH ≥
1

r1r2

(
li0q2r12 − 3Cijkq1q2Πj

12Πk
12

)
. (3.24)

In particular, for Z2H we need the combination
(
l20q2r12 − q1q2Π0

12Π1
12

)
to be positive.

This combination looks very similar to the eigenvalue of the matrixM2 (in this case a 1×1
matrix) that defines the bubble equation (3.22). Actually, as q1q2 < q2, if the eigenvalue
is positive then the above combination is positive and therefore Z2H > 0.

In purely Abelian configurations, the three different type of fluxes appear in the
bubble equations exactly in the same manner. Then, the bubble equations can be solved for
the 0-fluxes or the 1-fluxes, defining two more matricesM0 andM1 respectively. Following
the same reasoning as in the previous paragraph, we conclude that if the eigenvalues of
the three matricesMi are positive then ZiH > 0 and therefore the configuration is free of
CTCs. Of course, M0 and M1 depend on the 2-fluxes, which play the role of unknowns
in the bubble equations. So, naively, it might seem that this criterion for identifying
CTCs is of little help in practice, as we would like to dispose of a set of conditions on the
parameter space only. However, using the bubble equations, it is immediate to prove that
the eigenvalues of the three matrices are of the same sign. For example, for M0 we have
that its eigenvalue is positive if Π1

12Π2
12 − l00r12 > 0. This combination can be rewritten

using the bubble equations (3.22) as

Π1
12Π2

12 − l00r12 =
l10(Π1

12)2r12 + l00l
2
0(r12)2

Π0
12Π1

12 − l20r12
. (3.25)

Since the numerator on the right hand side is positive, the left hand side has the same
sign as the denominator, which proves our point.

10Except, perhaps, at the first center, for which the coefficient of the divergence is not directly related to
any diagonal element of the coefficient matricesMi. This is because in the previous section we decided to
eliminate the first of the bubble equations and take Πi

1b as the unknowns. Of course, it is possible to take
any other center as reference, obtaining additional conditions to guarantee the positivity of the divergence
at the first center.
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At this stage we have shown that if the eigenvalue of M2 is positive, then we have
ZiH > 0 and, according to our claim at the beginning of this section, the quartic invariant
is positive and the solution does not contain CTCs. But, what would happen if the
eigenvalue were negative? According to the preceding discussion it might be possible to
have Z2H > 0 even when the eigenvalue is not positive. That is, it is possible to choose
the parameters such that

(
l20q2r12 − q1q2Π0

12Π1
12

)
> 0 >

(
l20q1q2r12 − q1q2Π0

12Π1
12

)
. (3.26)

Remarkably, it turns out that these inequalities imply that Z0H and Z1H eventually
become negative! For instance, we can check it explicitly for the latter (both proofs are
identical). In first place, notice that the first inequality requires Π0

12Π1
12 > 0. Using the

bubble equations we can write

Z1H =
l00

[
−q1q2r12

(
Π0

12

)2
+
(
Π0

12Π1
12 − l20r12

)
(q1r2 + q2r1)−Π0

12Π1
12q1q2r12

]
r1r2

(
Π0

12Π1
12 − l20r12

) . (3.27)

This function is positive asymptotically, but negative at r2 = 0, r1 = r12 whenever(
Π0

12Π1
12 − l20r12

)
< 0.

In summary, we have proved that Abelian two-center microstate geometries do not
contain CTCs if and only if the eigenvalue of M2 is positive. The same conclusion can
be obtained for non-Abelian two-center microstate geometries. In this case the proof
is similar, although it is more technical and not particularly illuminating. In view of
this result and based on the observations exposed at the beginning of this section for
multicenter configurations, we make the following proposal.

Conjecture: Five-dimensional microstate geometries on a Gibbons-Hawking base,
with or without non-Abelian fields, do not contain CTCs if and only if the coefficient
matrix of the bubble equations is positive-definite.

If our conjecture is true, the construction of five-dimensional microstate geometries
without CTCs will no longer require the numerical evaluation of any function on R3, but
it will be sufficient to check an algebraic property of a matrix. This would extraordinarily
simplify the problem of describing and studying this type of supergravity solutions, giving
rise to a new plethora of smooth geometries.

To close this section let us mention that, although we have not been able to prove
our conjecture in full generality, we have tested its validity with a large number of multi-
center configurations. We have analyzed more than 100,000 solutions with pseudo-random
parameters, finding a perfect agreement with our proposal.

3.2.3 Contractible clusters and scaling solutions

Scaling microstate geometries can be defined as solutions for which the centers can be
brought arbitrarily close without significantly modifying the asymptotic charges [211]. As
the centers approach each other, the geometry of the system does not only reproduce
the asymptotic charges of an extremal black hole, but also starts to look like one at
intermediate regions. In the zero-size limit all centers merge, a horizon is developed and
the configuration becomes a black hole. But right before reaching the black hole limit,
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the solution is still horizonless and partially reproduces the throat that characterizes the
near-horizon geometry of a black hole, capping off smoothly at some finite depth, although
arbitrarily large. It is for this reason that scaling microstate geometries are expected to
correspond to the classical description of individual microstates of a black hole [210]. We
now show that the formalism we have presented is extraordinarily well-suited to describe
and study scaling solutions.

We consider scaling solutions that preserve the shape of the distribution.11 This
means that we can write the distances between centers as

rab = µdab , (3.28)

where dab remain constant in the scaling process, which is controlled by varying µ to
arbitrarily small positive numbers. We can define the following quantities,

ᾱ2
ab =

qaqb
dab

Π0
abΠ

1
ab , α̊2

ab = −qaqbl20 , (3.29)

and

β̄2
a =

n∑
b=1

qaqb
dab

4

g2
TabΠ0

ab , β̊2
a =

n∑
b=1

qaqb
(
l00Π0

ab + l10Π1
ab

)
, (3.30)

which are manifestly invariant during the scaling process. Then, upon substitution of
(3.28) in (3.13), the bubble equations can be written as(

M̄2
ab + µM̊2

ab

)
X2
b = B̄2

a + µB̊2
a . (3.31)

If compared with the original equation, we have µM2 = M̄2 + µM̊2 for the coefficient
matrix and µB2 = B̄2 + µB̊2 for the column vector. In terms of the parameters, we have

M̄2
ab = ᾱ2

(a+1)(b+1) − δ
b
a

n∑
c=1

ᾱ2
(a+1)c , B̄2

a = β̄2
(a+1) , (3.32)

M̊2
ab = α̊2

(a+1)(b+1) − δ
b
a

n∑
c=1

α̊2
(a+1)c , B̊2

a = β̊2
(a+1) . (3.33)

The bubble equations as written in (3.31) are well defined even in the zero-size limit
µ = 0, where they cease to have a physical meaning. Scaling solutions can be identified
as those for which one can take the zero-size limit through a continuous transformation
and still obtain a valid solution of the bubble equations, without any of the asymptotic
charges becoming zero. The existence of this limit cannot be taken for granted. Actually,
for purely Abelian solutions one always has B̄2 = 0 and the bubble equations become a
homogeneous system in the zero-size limit. Then, there are non-trivial solutions (that is,
solutions with X2

a 6= 0 for some a) only if the determinant of the corresponding coefficient

11Ideal scaling solutions would preserve the asymptotic charges while slightly modifying the relative
distances of the cluster. However these type of scalings are extremely hard to describe and, as we are more
interested in the scaled configurations than in the scaling process itself, we ignore this issue.
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matrix, M̄2, vanishes. In other words, purely Abelian scaling solutions necessarily flow to
special points of the parameter space when taking the zero-size limit. It is for this reason
that many Abelian solutions cannot be scaled without some of the asymptotic charges
becoming zero.

The situation is completely different when non-Abelian fields are also considered. In
this situation we have B̄2 6= 0 and the system is still inhomogeneous in the zero-size limit.
This means that non-Abelian microstate geometries can typically be scaled.12 Actually,
from our point of view this is the most important contribution that non-Abelian fields
bring to the “microstate geometries program”. Typically these fields enter the solutions
modifying the spacetime metric, the asymptotic charges and the size of the bubbles very
softly; in most cases these physical properties are practically preserved after introducing
the non-Abelian distortion. However, this distortion becomes critical when we take the
zero-size limit, enlarging the spectrum of scaling solutions.

3.3 One Thousand and One Bubbles

3.3.1 Exact solutions on lines and circles

There is one issue that might worry some of the readers: the fluxes that solve the bubble
equations are in general irrational numbers. This is because the distances between a
collection of points in three dimensions are usually irrational. However, the fluxes and the
asymptotic charges, which are directly related through equations (D.41), are expected to
be quantized when these solutions are properly interpreted within the context of string
theory. More precisely, in the seminal article [156] it was pointed out that the dipole
parameters kia satisfy a quantization condition which can be derived from an analysis of
the topology of the gauge fields,

kia =
(2π)2`3Planck

Vi
kia , (3.34)

where kia is a set of integer numbers and Vi is the volume of a compact space that depends
on the details of the embedding of the solution in higher-dimensional supergravity.13 This
quantization condition implies that the quotients kia/k

i
b are rational numbers.

The simplest possibility to ensure that the quantization condition can be satisfied is
to have the fluxes given by rational quantities. In this manner, it is always possible to find
an appropriate embedding of the solution in higher dimensional supergravity satisfying
(3.34). This fact can be seen as a motivation for the traditional approach to solve the
bubble equations, in which the fluxes are guaranteed to be rational numbers.14

As the method we present in this article is completely general, it must also describe
all microstate geometries with rational fluxes. These classes of solutions are obtained
if the centers are chosen such that all the relative distances between them are rational

12The reason why some solutions might not be scaling is because they need to cross a wall in the parame-
ter space while being subjected to the scaling process. On the other hand, since non-Abelian configurations
can always be truncated to Abelian solutions, we can always recover Abelian scaling configurations if the
truncation is implemented at some stage of the scaling process.

13The precise expression for the prefactor multiplying kia in (3.34) can be vary for different embeddings.
14Notice, however, that in the traditional approach the centers are generally separated by irrational

distances and their location can only be known approximately.
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numbers. An obvious possibility is to take all centers laying on a line, so the solution
is axisymmetric. This kind of microstate geometries are easier to build and study, and
most of the explicit constructions known are axisymmetric. As a first application of the
aforementioned procedure we show in Table 3.1 a first example of a 5-center solution.15

Motivated by the recent results of [214,215], the locations of the centers present a hierar-
chical structure; i.e. the values of the relative distances vary between different orders of
magnitude. As argued in those articles, such structure potentially favors finding solutions
whose angular momentum is far from maximal. The 5-center solution described here has
negligible angular momentum, see Table 3.3, and constitutes the first five-dimensional mi-
crostate geometry that exhibits this property. As shown in Table 3.1, the solution can be
scaled without any problem introducing a conformal factor µ for the coordinates of the
centers.

In order to go beyond axisymmetry, we now define a very interesting, arbitrarily
large set of points with rational relative distances lying on a circle. The result is based
on the original proof of the Erdős-Anning theorem, [221], that states that any infinite
collection of points can have integral distances only if these are aligned. However, as
we are about to see, it is possible to have an infinite set of points with mutual rational
distances. First, pick a circle with unit diameter centered at the origin of coordinates.
A primitive Pythagorean triple16 Pi is composed of three coprime natural numbers ai, bi
and ci such that a2

i + b2i = c2
i . The triple Pi defines a right triangle whose hypotenuse and

catheti lengths are 1, ai/ci and bi/ci respectively. This triangle can be place such that the
hypotenuse lies on the x-axis and the coordinates of the vertices are (−1

2 , 0), (−1
2 + li, hi)

and (1
2 , 0), where li =

(
ai
ci

)2
and hi = aibi

c2i
. Then, the triangle defines three points at

rational distances on the unit diameter circle.

In virtue of Ptolemy’s theorem, any other point with rational distances to the pair of
points (−1

2 , 0) and (1
2 , 0) is necessarily separated by a rational distance from (−1

2 +li, hi) as
well. In particular, this means that we can use the same Pythagorean triple Pi to find three
more valid points: (−1

2 + li,−hi), (1
2 − li, hi) and (1

2 − li,−hi). Any additional primitive
triple can add up to four points more to the set in the obvious manner. Moreover, since the
four points associated to a triple define two new diameters of the circle those can also be
used as hypotenuses, providing new possibilities to enlarge the collection. The procedure
can be prolonged without end, defining a dense set of points on the circle. Finally, the
value of the radius can be set to any rational number µ. Therefore, these configurations
are very well-suited to build scaling solutions.

Table 3.1 contains a couple of examples of microstate geometries with 6 and 10
centers lying on a circle. Once again, a hierarchic structure has been imposed by making
use of Pythagorean triples for which ai � bi.

Some of these solutions have more bubbles than any previously known example and,
furthermore, can be specified with exact accuracy. Increasing the number of centers is
feasible, although computationally demanding. On one side, solving a linear system of

15Our criterion to find a solution free of CTCs is to systematically look for parameters for which the
coefficient matrix M2 is positive definite. In any case, we have also checked numerically the absence of
CTCs for all the examples displayed in this article.

16Primitive Pythagorean triples are generated through Euclid’s formula,

ai = m2
i − n2

i , bi = 2mini , ci = m2
i + n2

i , (3.35)

for any pair of coprime integers mi > ni > 0.
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Table 3.1: Input and output parameters of solutions. l10 =
√

2, l20 = 1/
√

2 and g = 1 for all the
cases. Output parameter values shown are only approximate.

5 centers on a line

x -1 -0.999 0 0.999 1

q 1 -1 1 -1 1

k0 10 -27 -37 17 1

k1 38 -68 46 14 -11

k2(µ = 1) 1 -1.03739 0.223899 2.25387 -1.79766

k2(µ = 0.0005) 1 -1.03707 0.2834 2.10992 -1.65908

10 centers on a circle

l1 =
(

2001
2002001

)2
, h1 = 2001 · 2002000

20020012 , l2 =
(

6001
18006001

)2
, h2 = 6001 · 18006000

180060012

x 0.5 0.5− l2 0.5− l1 −0.5 + l1 −0.5 + l2 -0.5 -0.5 + l2 −0.5 + l1 0.5− l1 0.5− l2
y 0 h2 h1 h1 h2 0 −h2 −h1 −h1 −h2

q 2 -1 1 -1 1 -1 1 -1 1 -1

k0 32 72 12 60 39 30 38 11 9 51

k1 51 99 32 24 90 11 57 26 9 78

k2(µ = 1) 1 -0.495548 0.503203 -0.461338 0.467769 -0.456857 0.471085 -0.454882 0.505734 -0.493379

k2(µ = 0.0005) 1 -0.495561 0.503179 -0.483632 0.490029 -0.479143 0.493333 -0.477239 0.505681 -0.493401

6 centers on a circle

l =
(

2001
2002001

)2
, h = 2001 · 2002000

20020012

x 0.5 0.5− l l − 0.5 -0.5 l− 0.5 0.5− l
y 0 h h 0 -h -h

q 2 -1 1 -1 1 -1

k0 -100 69 46 -95 -7 73

k1 -98 56 -15 -68 36 79

k2(µ = 1) 1 0.133637 11.6034 -11.6405 11.598 -0.421436

k2(µ = 0.0005) 1 0.102875 10.9491 -10.9852 10.9439 -0.425198
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Table 3.2: Input and output parameters of a 50 centre example. l10 =
√

2, l20 = 1/
√

2 and g = 1.
Output parameter values shown are only approximate.

50 centers on a line

x q k0 k1 k2

0.0330053 2 -20 -55 1
0.0984265 -1 -32 -14 -0.540293
-0.0179676 1 -70 -52 0.510139
0.092019 -1 -33 -2 -0.544646
0.011303 1 -33 -56 0.507942
0.0159932 -1 -42 -97 -0.513755
-0.0419008 1 -59 -83 0.506483
0.00449896 -1 -30 -35 -0.523255
-0.0371543 1 -83 -82 0.520376
0.0249915 -1 -13 -61 -0.523077
0.904343 1 -66 -90 0.51483
0.966033 -1 -100 -27 -0.521793
1.06745 1 -83 -11 0.500632
0.991016 -1 -40 -89 -0.518794
0.918601 1 -79 -38 0.507973
1.09964 -1 -27 -65 -0.515174
0.998465 1 -17 -28 0.502238
0.913144 -1 -41 -12 -0.529991
1.09778 1 -12 -31 0.50078
0.959097 -1 -99 -71 -0.515806
2.04383 1 -74 -77 0.531604
2.03968 -1 -6 -7 -0.561911
1.92718 1 -95 -77 0.531914
1.97688 -1 -23 -78 -0.52514
1.90891 1 -95 -33 0.509497
1.98718 -1 -74 -13 -0.525948
1.95846 1 0 -37 0.446919
2.03144 -1 -46 -7 -0.541284
1.99207 1 -53 -25 0.50149
2.04206 -1 -57 -3 -0.540974
2.96983 1 -9 -84 0.500777
2.92655 -1 -54 -27 -0.515791
2.94343 1 -1 0 0.430675
2.96789 -1 -59 -35 -0.514717
2.96737 1 -55 -7 0.49317
2.97213 -1 -83 -25 -0.511543
2.99724 1 -17 -42 0.49296
2.93693 -1 -1 -61 -0.536688
2.99367 1 -19 -15 0.482956
3.09503 -1 -70 -48 -0.515729
3.97904 1 -35 -38 0.526046
3.98217 -1 -85 -11 -0.540595
4.09649 1 -46 -39 0.491727
3.99963 -1 -17 -2 -1.11207
4.0424 1 -78 -63 0.506147
4.03426 -1 -67 -54 -0.497783
3.99249 1 -51 -20 0.556606
4.01874 -1 -72 -93 -0.452374
4.02437 1 -30 0 0.443444
4.0978 -1 -61 -80 -0.499799
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50-center line 5-center line 10-center circle 6-center circle

Q0 2378.38 46.7351 48.5981 448.285

Q1 2749.4 43.2695 37.403 509.907

Q2 5058525 2723 175063 12273

JR -5.7506 · 106 -1.0708 17689.5 25956.7

H 2.7 · 10−4 0.9999998 0.017 0.76

Table 3.3: Asymptotic charges and angular momenta of the solutions for µ = 1.

equations is a problem of complexity P of order O(n3). That is, the time required to solve
the bubble equations approximately scales with the cube of the number of centers. On
the other side, increasing the number of centers seems to favor the appearance of CTCs,
so it is more likely that random elections of the parameters yield to unphysical solutions.
According to our conjecture, this is just a natural consequence; as the coefficient matrix
becomes bigger it is harder and harder to find the parameters such that all its eigenvalues
are positive. Nevertheless, we have been able to describe solutions with a very large
number of centers by focusing on regions of the parameter space that seem to favor the
coefficient matrix is positive definite17. A particular example of an axisymmetric 50-center
solution is given in Table 3.2.

Another interesting issue is that the parameters λa that determine the non-Abelian
seed functions seems to play a subleading role in the CTCs problem. In fact, once a
solution without CTCs has been found, we can generate as many as we want by modifying
the non-Abelian parameters18, as long as all of them remain positive. This is the reason
why we have not specified any particular values in the tables. Therefore, the inclusion of
non-Abelian fields not only makes it easier to find scaling solutions, but also enlarges the
number of solutions with a given set of asymptotic charges, as expected [157].

3.3.2 General locations

It is comforting that we can use our method to describe, for the first time, many-center
five-dimensional microstate geometries with an exact accuracy. Nevertheless, we are also
interested in the possibility of describing more general solutions with centers at general
locations, which includes the possibility of having irrational distances. In practice, this
implies that the bubble equations must be solved approximately. We distinguish two
possibilities:

• Approximate fluxes. The first possibility is to solve the bubble equations for the
fluxes. In this case these will be given by irrational numbers and, as discussed at the
beginning of the preceding subsection, this can be considered inconvenient because
they are related to the asymptotic charges. Then, one valid option is to round the
fluxes such that the charges take valid values, and admit that the solution is only
specified approximately. This can be a useful possibility when one is interested in

17Our main guides are to impose the presence of hierarchical structures and to take all k0,1
a coefficients

of the same sign.
18We have checked this by taking arbitrary values of the non-Abelian parameters in a finite range.

However, based on how these parameters appear in the non-Abelian seed functions, we think that one can
take any positive value for them and CTCs will not appear.

82



Chapter 3. Closed timelike curves in microstate geometries

studying generic properties of the solutions, rather than in performing a very precise
analysis.

• Approximate locations. The procedure that we follow to avoid having approx-
imate fluxes can be summarized as follows. In a first step, we choose our favorite
distribution of centers and solve the bubble equations for the fluxes. Then, we round
the values and solve again the equations for the distances between the centers, using
the fluxes as input data now. We expect the distances not to change too much for
small enough changes of the fluxes. Once we know the distances, we have to place
the centers in the tridimensional space R3. Unfortunately, this can only be done in
full generality for four centers at most, so in configurations with more centers one
has to impose restrictions in the locations when solving the bubble equations the
second time (for example, one can consider axisymmetric configurations only).

3.4 Final comments

In this chapter we have presented an efficient method to construct general five-dimensional
supersymmetric microstate geometries on a Gibbons-Hawking base. We have conjectured
that the CTCs problem can be solved through the evaluation of a simple algebraic relation
without the need to numerically evaluate the quartic invariant function. We have accom-
panied the exposition with a few explicit solutions, which were found making use of our
method. These solutions exhibit novel properties in their class, such as arbitrarily small
angular momentum or large number of centers, being some of them not axisymmetric
distributions. This not only reveals that the spectrum of smooth microstate geometries
on a Gibbons-Hawking base is actually very rich, but also that it is possible to find and
study this type of solutions.

In particular, this method can be used to describe simple five-dimensional smooth,
horizonless scaling solutions with the asymptotic charges of a D1-D5-P black hole without
angular momentum. It would be interesting to study general properties of these geometries
and compare them with those of a black hole; their geodesics, how they interact with
incoming particles or their stability under perturbations. So far, this type of analysis has
only been performed for two-charge microstate geometries or three-charge geometries with
atypical asymptotic charges and angular momentum [222–225].19

As the procedure described is systematic, it would be very interesting to apply the
tools developed in [214] to perform macroscopic explorations of the parameter space. For
instance, in [215] this type of analysis has been successfully used to study generic four-
center axisymmetric configurations, which can be constructed systematically, showing that
those can only reproduce solutions with an angular momentum larger than 80% of the
cosmic censorship bound when they are smooth in five dimensions, while it is possible
to find solutions with arbitrarily small angular momentum if the configuration contains a
supertube (which are smooth only in six dimensions or more). Making use of the method
that we propose here, we can access the full space of parameters of multicenter, not
necessarily axisymmetric, solutions.

19See [226] for a first approach to the study of such properties in superstrata microstate geometries,
which have arbitrarily small angular momentum but are technically hard to describe and examine.
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4
A family of α′-corrected heterotic backgrounds

In 1984, Green and Schwarz discovered that the gauge and gravitational anomalies of Yang-
Mills theory coupled to N = 1, d = 10 supergravity partially cancel if one introduces
suitable local interactions [107]. The remaining pieces automatically vanish when the
gauge group is either SO(32) or E8 × E8.1 The aforementioned local interactions modify
the definition of the 3-form field strength H associated to the Kalb-Ramond 2-form B as
follows

H = dB +
α′

4

(
ωYM + ωL

(−)

)
, (4.1)

where ωYM and ωL
(−) are the Chern-Simons 3-forms —see (4.16) and (4.17)— of the Yang-

Mills connection, AA, and of the torsionful spin connection,

Ω(−)
a
b = ωab −

1

2
Hµ

a
b dx

µ , (4.2)

being ωab the Levi-Civita spin-connection 1-form.

This implies that the Bianchi identity is modified as follows

dH − α′

4

(
FA ∧ FA −R(−)ab ∧R(−)

ab
)

= 0 , (4.3)

where FA and R(−)
a
b denote, respectively, the curvature 2-forms of AA and Ω(−)

a
b.

These new local interactions break the invariance under local supersymmetry trans-
formations. Fortunately, it can be recovered at the prize of introducing additional terms
of higher order in derivatives. By dimensional analysis, a term with 2n derivatives must
be multiplied by a coupling of dimension length2n−2. In the context of superstring theory,
such a coupling must necessarily be the string scale `s =

√
α′ since this is the unique

dimensionful parameter of the theory. As we will see, these higher-derivative terms are
constructed out of contractions of the curvatures of the Yang-Mills and torsionful spin
connections and they are less and less relevant as long as these curvatures are small in
string units, i.e. as compared to α′. In this limit, the effective action of the heterotic
string can be written as a higher-derivative expansion [108, 109], which is known as the
α′-expansion.

Our goal in this chapter will be precisely to solve the α′-corrected equations of motion
at first order in α′. This is in general a tough task even if we work perturbatively in α′,

1This discovery gave raise to the first superstring revolution.
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specially if one aims to obtain full analytic solutions not restricting just to near-horizon
or asymptotic regimes. Nevertheless, the authors of [193], fueled by previous studies on
non-Abelian black holes [150, 152, 154, 166, 171, 177], have shown very recently that it is
feasible.

Let us first discuss the ten-dimensional background studied in [193]. The metric
gµν , the NSNS 3-form H and the dilaton are respectively given by

ds2 =
2

Z−
du

(
dt− Z+

2
du

)
−Z0

(
dρ2 + ρ2dΩ2

(3)

)
− dzαdzα , (4.4)

H = ?4dZ0 + dZ−1
− ∧ du ∧ dt , (4.5)

e2φ = g2
s

Z0

Z−
, (4.6)

where ?4 is the Hodge star operator associated to the metric of E4 and where the functions
Z0,Z+ and Z− are assumed to depend only on ρ, the radial coordinate of this Euclidean
space. The coordinates zα ∼ zα + 2π`s parametrize a four-dimensional torus T4 with
no dynamics and u = t − z is a light-cone coordinate. The coordinate z ∼ z + 2πRz
parametrize a fifth compact direction.

The zeroth-order equations of motion and Bianchi identity tell us that the three
functions that determine the solution are harmonic on E4, hence

Z0,+,− = 1 +
Q0,+,−
ρ2

, (4.7)

since, by assumption, they only depend on the radial coordinate. This ten-dimensional
background describes an intersection of the following extended objects:

• A fundamental string that is wounded around the circle parametrized by the coor-
dinate z. The winding number is related to the charge Q−.

• A pp-wave travelling along z whose momentum is related to Q+.

• A stack of N solitonic or Neveu-Schwarz 5-branes. The number of branes, N , is
related to Q0.

This ten-dimensional configuration is already familiar to us since it can be obtained
from the uplift to ten dimensions of the five-dimensional black holea studied in Section 2.3
by simply switching off the non-Abelian fields and the angular momenta of the solutions.2

We have now learned that in order to trust the non-Abelian ten-dimensional backgrounds
studied in Chapter 2 as genuine heterotic backgrounds, we must also take into account
the α′ corrections that follow from the supersymmetrization of the Chern-Simons term
associated to the torsionful spin connection. This is precisely what it was done in [193].

It turns out that the first obstacle that one faces when trying to find a solution
at first order in α′ is to solve the Bianchi identity of H, see (4.3). This is due to the

2This can be done by setting κ = ξ = QK = 0.

88



Chapter 4. A family of α′-corrected heterotic backgrounds

fact that one typically works with an ansatz for H and then, the Bianchi identity must
be imposed. Let us briefly explain how it can be solved analytically for the background
under consideration. The first step is to make an ansatz for the gauge fields.3 As in [118],
the authors of [193] considered the addition of a triplet of SU(2) vector fields given by

AA = − κ2

ρ2 + κ2
vA , (4.8)

which corresponds to the well-known BPST instanton. It was observed that the instanton
number density FA ∧ FA takes the form of the Laplacian of a function in E4 times the
volume form. Therefore, if the 3-form H is assumed to be of the form H = ?4dZ0 (up to a
closed 3-form on E4) for some function Z0 defined on the same space, the first two terms in
the above Bianchi identity become the Laplacian of a linear combination of functions with
constant coefficients. Almost magically, the third term turns out to be another Laplacian
over the same space and the Bianchi identity is solved by equating the argument of the
Laplacian to zero, up to a harmonic function on E4. Furthermore, in this case it is possible
to tune the parameter κ associated to the BPST instanton so as to cancel part of the α′

corrections, which is indeed a great motivation to consider configurations with non-trivial
gauge-fields.

From experience, the simplest generalization one can make to this kind of solutions
is to extend the ansatz to multicenter solutions, allowing the functions occurring in the
metric to be arbitrary functions of the E4 coordinates. In the case of the gauge field,
this requires the use of the so-called ’t Hooft ansatz which can describe multicenter BPST
instantons. This ansatz is reviewed and generalized in Section 4.2. Perhaps not so sur-
prisingly, allowing the function Z0 to have arbitrary dependence on the E4 coordinates
automatically forces some components of the torsionful spin connection to take the form
of the ’t Hooft ansatz too. Then, one can show that the instanton density 4-forms are,
once again, Laplacians, and the Bianchi identity can be solved in exactly the same way.

It is natural to wonder if this result can be extended further. An interesting gen-
eralization is obtained by replacing E4 with a four-dimensional hyper-Kähler space that
has a curvature with the same self-duality properties as the gauge field. It is well known
that the simplest heterotic four-dimensional black holes that one can construct include a
Kaluza-Klein monopole, which is a hyper-Kähler space with one additional triholomor-
phic isometry: a Gibbons-Hawking space [158,159]. This additional isometry is necessary
to obtain a four-dimensional solution by compactification on a 6-torus. Therefore, this
generalization could be used to compute α′ corrections to four-dimensional black holes.

First of all, one needs to generalize the ’t Hooft ansatz to an arbitrary hyper-Kähler
space and show that, again, one gets the Laplacian of some function in that space. This is
done in Section 4.2. Now, from the torsionful spin connection we get terms with the form
of this ansatz, which lead to the same result, and other terms corresponding to the spin
connection of the four-dimensional hyper-Kähler manifold. Fortunately, the self-duality
properties of these two contributions are opposite and they do to not mix. However, the
contribution of the latter to the instanton number density might not necessarily take the
form of the Laplacian of some function. At this stage one could try to add a second SU(2)
gauge field whose instanton number density cancels that of the hyper-Kähler manifold,

3One can simply set them to zero.
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as it has been done for this kind of solutions4 in [227]. However, it turns out that if
we restrict ourselves to Gibbons-Hawking spaces, then the instanton number density is
also a Laplacian (times the volume form of this space). Funnily enough, we find that the
connection can also be written in a ’t Hooft ansatz-like form that we have called twisted
,’t Hooft ansatz. Therefore, adding a second SU(2) gauge field is optional but convenient
if we want to cancel some of the α′ corrections, as we will see.

Self-dual connections and the Atiyah-Hitchin-Singer theorem

Before closing this introduction, it is amusing to think about the relation between the
’t Hooft ansatz that we use for the Yang-Mills fields and which naturally arises in the
torsionful spin connection and the Atiyah-Hitchin-Singer theorem [228] on self-duality in
Riemannian geometry.5 The theorem deals with four-dimensional Riemannian manifolds
and the decomposition of the components of their Levi-Civita spin-connection 1-forms
into self- and anti-self-dual combinations according to the well-known local isomorphism
so(4) ∼= su+(2) ⊕ su−(2). We will denote the two terms corresponding to this decompo-
sition by ω+mn, respectively ω−mn. On the one hand, the theorem states about ω+mn

that:

The curvature 2-form of ω+mn is self-dual if and only if the manifold is Ricci
flat.

This statement applies, in particular, to hyperKähler manifolds, which are Ricci flat and,
therefore, for them, ω+mn has self-dual curvature. Moreover, since these have special
SU(2) holonomy, ω−mn = 0. On the other hand, the theorem also says that:

The curvature 2-form of ω−mn is self-dual if and only if the Ricci scalar vanishes
and the manifold is conformal to another one with self-dual curvature 2-form.

This can be used to construct self-dual SU(2) instantons. Let us consider the metric

ds2 = P 2dσ2 , (4.9)

where dσ2 is a hyperKähler metric and where P is some function defined on it. The Ricci
scalar of the full metric is proportional to the Laplacian of P in the hyperKähler space
and therefore it vanishes if P is harmonic on the hyperKähler metric, so in this case the
second part of the theorem applies. If we choose the vierbein basis em = Pvm where
vm is a Vierbein basis of the hyperKähler manifold, the first Cartan structure equation
dem + ωmn ∧ en = 0 leads to

d logP ∧ vm −$mn ∧ vn + ωmn ∧ vn = 0 , ⇒ ωmn = $mn − ∂[m logPδn]pv
p . (4.10)

where we have used the same equation for the hyperKähler spin connection dvm +$mn ∧
vn = 0. We can now project the above equation onto the anti-self-dual part of so(4) with
the matrices (M−mn)pq defined in (4.40), getting

4Without the additional two functions that our class of solutions contains.
5The theorem is reviewed and applied to the construction of self-dual Yang-Mills instantons on Gibbons-

Hawking spaces in [229,230].
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ω− pq = (M−nm)pq ∂m logP vn , (4.11)

and, then, the theorem tells us that the expression in the right-hand-side is a connection
with self-dual curvature 2-form, or, equivalently, a SU(2) gauge connection with self-dual
field strength, i.e. an instanton. This is explicitly proven in Section 4.2. This provides
a justification for the generalized ’t Hooft ansatz that we are using, albeit it does not let
one suspect that the instanton number density will be proportional to a Laplacian.

On the other hand, the ten-dimensional metric ansatz (4.83) has a four-dimensional
piece which is conformal to the four-dimensional hyperKähler manifold, which reads

ds2 = Z0 dσ
2 . (4.12)

At zeroth-order in α′, Z0 is a harmonic function in the hyperKähler manifold, as we
will see. Now the Ricci scalar does not vanish, because there is a missing factor of 2 in
the exponent of Z0, and the theorem does not apply. This is, nevertheless, the metric
associated to solitonic 5-branes, and we cannot change it at will. If we repeat the above
calculation we get

ω− pq =
1

2
(M−nm)pq∂m logZ0v

n , (4.13)

but now the curvature 2-form of this connection will not be self-dual. Moreover, ω+ pq

contains the spin connection of the hyperKähler manifold $mn and some additional terms,
which spoil the self-duality in the su+(2) piece as well.

This is where the magic of the heterotic superstring comes to our rescue because,
now, the object of interest is not the Levi-Civita connection, but the torsionful spin con-
nection 1-form (4.2) and the contribution of the torsion is such that

Ω−(−)
mn = (M−pq)mn ∂q logZ0 v

p , Ω+
(−)

mn = $mn . (4.14)

Therefore, the curvature 2-form of both projections, Ω±(−)
mn, is self-dual.

As we see, in this kind of heterotic backgrounds, the same kind of objects come up
naturally in both the Yang-Mills and torsionful spin connections, via the Atiyah-Hitchin-
Singer theorem or via a different construction which, perhaps, can be related to a general-
ization of that theorem. An interesting recent result from [231], which considers the case
of compact spaces, sheds light on this direction. It states that given two instantons on a
given background that satisfies the equations of motion of the heterotic theory at zeroth
order in α′, it is always possible to rescale this background to obtain a solution of first
order in α′.

4.1 The effective action of the heterotic string

As shallowly discussed at the beginning of this chapter, Green and Schwarz showed that
ten-dimensional N = 1 supergravity coupled to Yang-Mills fields is free of gauge and
gravitational anomalies when the gauge group is either SO(32) or E8×E8 if one introduces
the following local terms in the definition of the NSNS 3-form:
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H = dB +
α′

4

(
ωYM + ωL

(−)

)
, (4.15)

where

ωYM = dAA ∧AA +
1

3
fABCA

A ∧AB ∧AC , (4.16)

ωL
(−) = dΩ(−)

a
b ∧ Ω(−)

b
a −

2

3
Ω(−)

a
b ∧ Ω(−)

b
c ∧ Ω(−)

c
a . (4.17)

We recall that the torsionful spin connection is defined as

Ω(−)
a
b = ωab −

1

2
Hµ

a
b dx

µ , (4.18)

where ωab is the Levi-Civita spin connection.

These local terms modify the Bianchi identity, which at zeroth order in α′ simply
reads

dH = 0 . (4.19)

Now, given that

dωYM = FA ∧ FA , and dωL = R(−)
a
b ∧R(−)

b
a , (4.20)

one has that

dH =
α′

4

(
FA ∧ FA +R(−)

a
b ∧R(−)

b
a

)
. (4.21)

The terms that appear due to the presence of the Chern-Simons 3-form of the tor-
sionful spin connection in the definition of the 3-form field strength (4.15) spoil the in-
variance of the theory under local supersymmetry transformations. In order to recover
it, one assumes that the action and supersymmetry transformations can be written in a
series expansion in α′ and demands invariance under local supersymmetry transformation
at each order in α′. It was shown in [108] that this can be done if suitable higher-order
derivative terms are added to the supergravity action and this is how one can arrive to
the α′-expansion of the heterotic effective action.6 Although this is an infinite series, only
a few terms have been explicitly constructed. Fortunately, this is more than enough for
our purposes since we only need the action up to first order in α′. Without any more
preambles, the effective action of the heterotic string is given by7

S =
g2
s

16πG
(10)
N

∫
d10x
√
−g e−2φ

[
R− 4 ∂µφ∂

µφ+
1

2 · 3!
HµνρH

µνρ

−α
′

8

(
FAµνF

Aµν −R(−)µνabR(−)
µνab

)
+O

(
α′3
)]

,

(4.22)

6There are, of course, alternative ways of arriving to the same action, see e.g. [109].
7We adapt the action given in [108] to the conventions of [111].
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where R is the Ricci scalar of gµν , the metric in the string frame, and φ represents the
dilaton. The curvature 2-forms of the Yang-Mills and torsionful spin connections are
defined as

FA = dAA +
1

2
fBC

AAB ∧AC , (4.23)

R(−)
a
b = dΩ(−)

a
b − Ω(−)

a
c ∧ Ω(−)

c
b . (4.24)

Finally, gs is the string coupling constant and G
(10)
N is the ten-dimensional Newton’s con-

stant, whose expression in terms of the string moduli is

G
(10)
N = 8π6g2

sα
′4 . (4.25)

The O
(
α′3
)

terms are given in [108] and involve contractions of two of the so-called T -
tensors which are quadratic in the curvatures. Apart from these, string theory predicts the
appearance of a different set of corrections at cubic order in α′ which would be unrelated
to the supersymmetrization of the Chern-Simons [232]. These are not so well-known in
the context of the heterotic string and, in any case, we are going to neglect them since we
will be working, by assumption, in the low-curvature regime in which these α′3 corrections
are subleading. In this regard, it is important to notice that the term H2 in the action
(4.22) actually contains an infinite tower of implicit α′ corrections since the definition of
the 3-form field strength (4.1) is a recursive one and so it has to be implemented order by
order in α′. Let us do this. First, at zeroth order in α′, we have

H(0) ≡ dB . (4.26)

Next, we use this 3-form, H(0), to construct zeroth-order torsionful spin connection

Ω
(0)
(−)

a
b = ωab − 1

2H
(0)

µ
a
b dx

µ , (4.27)

and, using it, we define the Chern-Simons 3-form

ω
L (0)
(±) = dΩ

(0)
(±)

a
b ∧ Ω

(0)
(±)

b
a −

2

3
Ω

(0)
(±)

a
b ∧ Ω

(0)
(±)

b
c ∧ Ω

(0)
(±)

c
a . (4.28)

Then, we are ready to define recursively

H(1) = dB +
α′

4

(
ωYM + ω

L (0)
(−)

)
,

Ω
(1)
(−)

a
b = ωab −

1

2
H(1)

µ
a
b dx

µ ,

ω
L (1)
(−) = dΩ

(1)
(−)

a
b ∧ Ω

(1)
(−)

b
a −

2

3
Ω

(1)
(−)

a
b ∧ Ω

(1)
(−)

b
c ∧ Ω

(1)
(−)

c
a .

H(2) = dB +
α′

4

(
ωYM + ω

L (1)
(−)

)
, (4.29)

and so on.
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4.1.1 Equations of motion

The equations of motion that follow from the action (4.22) are quite intricate since they
involve terms with higher order derivatives. However, it should be emphasized once more
that it only makes sense to work with them perturbatively in α′ since the action was
derived under this premise. It is in this context where the lemma proven by Bergshoeff
and de Roo in [233] acquires its greatest significance. Let us review it here. To this aim,
we are going to separate the variations with respect to each field into those corresponding
to occurrences via Ω(−)

a
b, that we will call implicit, and the rest, that we will call explicit :

δS =
δS

δgµν
δgµν +

δS

δBµν
δBµν +

δS

δAAµ
δAAµ +

δS

δφ
δφ

=
δS

δgµν

∣∣∣∣
exp.

δgµν +
δS

δBµν

∣∣∣∣
exp.

δBµν +
δS

δAAµ

∣∣∣∣
exp.

δAAµ +
δS

δφ
δφ

+
δS

δΩ(−)
a
b

(
δΩ(−)

a
b

δgµν
+
δΩ(−)

a
b

δBµν
δBµν +

δΩ(−)
a
b

δAAµ
δAAµ

)
. (4.30)

Then, the lemma states that δS/δΩ(−)
a
b is proportional to α′ and to the zeroth-

order equations of motion of gµν , Bµν and φ plus terms of higher order in α′. This means
that the last line of (4.30) can be safely ignored if we work perturbatively in α′8 since it
will only introduce terms of second order in α′, which we are going to neglect.

Doing so, we find that, up to O
(
α′2
)

terms, the equations of motion reduce to

Rµν − 2∇µ∂νφ+
1

4
HµρσHν

ρσ =
α′

4

(
FAµρF

A
ν
ρ −R(−)µρabR(−) ν

ρ ab
)
, (4.31)

(∂φ)2 − 1

2
∇2φ− 1

4 · 3!
H2 = −α

′

32

(
FAµνF

Aµν −R(−)µνabR(−)
µνab

)
, (4.32)

d
(
e−2φ ? H

)
= 0 , (4.33)

α′e2φD(+)

(
e−2φ ? FA

)
= 0 , (4.34)

where the covariant dervative D(+) is defined as

α′e2φD(+)

(
e−2φ ? FA

)
≡ α′e2φd

(
e−2φ ? FA

)
+ fBC

AAB ∧ ?FC + ?H ∧ FA . (4.35)

4.2 ’t Hooft ansatz in four-dimensional hyperKähler spaces

The 6 generators of the Lie algebra so(4) in the defining (vector) representation can be
labeled by a pair of antisymmetric indices m,n = ], 1, 2, 3. If (Mmn)pq denotes the pq
matrix element of the generator labeled with the pair mn, we have that9

8This means that Φ = Φ(0) + α′Φ(1) +O
(
α′2
)

where Φ denotes schematically any background field.
9There is no difference between upper and lower indices. The position is chosen for the sake of clarity.
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(Mmn)pq ≡ 2δmn
pq = δm

pδn
q − δmqδnp , (4.36)

and their commutators are given by

[Mmn,Mpq] = −2M[m|r(Mpq)
r
|n] . (4.37)

These labels are very convenient but they introduce a twofold redundancy, as each gener-
ator appears twice: once as M]1, for instance, and once as M1]. Thus, if we want to sum
once over all the independent generators and we sum over these labels, we must introduce
additional factors of 1/2. For instance, the structure constants have to be defined by

[Mmn,Mpq] ≡ 1
2fmnpq

rsMrs , (4.38)

and, comparing with the above commutators, we get

fmnpq
rs = −4(Mpq)

r
[mδn]

s . (4.39)

Let us define the self- and anti-self-dual combinations

M±mn ≡ 1
2

(
Mmn ± 1

2εmn
pqMpq

)
, 1

2εmn
pqM±pq = ±M±mn , (4.40)

which are explicitly given by10

(M±mn)pq = δmn
pq ± 1

2εmn
pq = (M±pq)mn , (4.41)

and which must generate two independent subalgebras because they satisfy the commu-
tation relations

[M±mn,M±pq] = −2M±[m|r(M
±
pq)

r
|n] , (4.42)

[
M+
mn,M−pq

]
= 0 , (4.43)

The (anti-)self-duality properties imply that only three of each kind are independent and
we can pick representatives M±]A, with A = 1, 2, 3, at the expense of losing manifest so(4)-
covariance. When working with an antisymmetric pair of so(4) indices, their fourfold
redundancy has to be taken into account introducing factors of 1/4:

[M±mn,M±pq] ≡ 1
4f
±
mnpq

rsM±rs , ⇒ f±mnpq
rs = 4 (M±pq)x[m(M±n]x)rs . (4.44)

In order to identify the two three-dimensional Lie subalgebras, it is convenient to
use the representatives. From the above commutation relations, and with the convention
ε]123 = +1, we find

[M±]A,M
±
]B] = ∓εABCM±]C . (4.45)

10Due to the interchange property, their self-duality properties hold in both sets of indices.
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Therefore, they are two su(2) subalgebras that we are going to denote by su±(2). This
corresponds to the well known Lie algebra isomorphism so(4) ∼= su+(2)⊕ su−(2).

The (anti-)-self-dual combinations can be used in different ways. To start with, they
can be used as a hypercomplex structure in a hyperKähler space in the basis in which the
components are constant.11 To fix our conventions and get rid of an excess of ± and ∓
symbols, we are only going to use anti-self-dual hypercomplex structures and we are going
to define

JAmn ≡ 2(M−]A)mn . (4.46)

Then, the preservation of the hypercomplex structure by the hyperKähler space’s Levi-
Civita connection 1-form $mn,12

∇σmJAnp = 0 , (4.47)

implies

[$,JA] = 0 , ⇒ $ = $+ ∈ su+(2) , (4.48)

so the Levi-Civita connection is self-dual in the so(4) indices. The integrability condition
of the preservation equation

[∇σm,∇σn]JApq = 0 , (4.49)

implies

[R, JA] = 0 , ⇒ R = R+ , (4.50)

and the Riemann tensor is also self-dual in the so(4) indices. This property combined with
the Bianchi identity εmnpqRnpqr = 0 leads to one of the main properties of hyperKähler
spaces: their Ricci flatness

Rmn = Rmpn
p = 0 . (4.51)

The second use of the hypercomplex structures we are interested in is the construc-
tion of anti-self-dual SU(2) instantons through the so-called ’t Hooft ansatz, since they
can also be seen as generators of the su(2) algebra. In this context they are usually called
’t Hooft symbols and the following notation is commonly used

ηApq ≡ 2(M+
]A)pq , ηApq ≡ 2(M−]A)pq = JApq . (4.52)

In this case however, we will stick to the SO(4)-covariant notation, in terms of which the
’t Hooft Ansatz for SU(2) connection 1-forms reads

A =
1

2
AmnMmn , where Amn = (M±pq)mnV q vp , (4.53)

11This basis may not always exists.
12∇σ denotes the covariant derivative associated to the hyperKähler metric, always denoted in this text

by dσ2.
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for some SO(4) vector field V m(x) and some basis of 1-forms in the hyperKähler space
vm = vmn dx

n, related to the Levi-Civita 1-form connection by

dvm +$mn ∧ vn = 0 , (4.54)

in our conventions. Then, as we see, the ‘t Hooft ansatz projects the so(4) connection A
into one of the two su±(2) subalgebras,

A = M±mn V n vm ∈ su±(2) . (4.55)

To compute the field strength, which will be demanded to be self-dual, we must first
compute

dA = ∇σm
(
M±npVp

)
vm ∧ vn . (4.56)

At this point, the computations drastically simplify if

∇σmM±np = 0 , (4.57)

where only the lower indices of M± are taken into account in the covariant derivative.
This property, however, is only satisfied by either the self- or the anti-self-dual set of so(4)
generators. In our case, it is by assumption the anti-self-dual set, M−mn, the one that is
covariantly conserved, see (4.47).13Thus, from now on we shall use only this one, which
means that the gauge connection

A = M−mpVp vm ∈ su−(2) , (4.58)

and the spin-connection 1-form $mn ∈ su+(2) live in orthogonal subspaces, see (4.48).
With this ansatz, and taking into account the commutation relations of the representatives
M−]A in (4.45), the definition for the field strength which leads to the standard SU(2) Yang-
Mills field strength

FA = dAA +
1

2
εBC

AAB ∧AC , (4.59)

is

Fmn = dAmn +Amp ∧Apn , (4.60)

and a simple calculation gives

F = −
[

1
2M
−
mnV

pV p + M−mp(∇σnV p − VnV p)
]
vm ∧ vn . (4.61)

Demanding now self-duality

Fmn = +1
2εmnpqFpq , ⇒ ∇σ [mVn] = 0 , and ∇σmV m + VmV

m = 0 , (4.62)

13There is the trivial exception of the Euclidean space, whose connection is both self- and anti-self-dual
simultaneously.
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which is solved by

Vm = ∂m logP , where ∇2
σP = 0 , (4.63)

so P is a harmonic function on the hyperKähler space. Observe that the gauge connection
and field strengths are both anti-self-dual in the Lie algebra indices, as a consequence
of (4.58). However, in the tangent space indices the field strength is self-dual, because
of (4.62). There is no chance that the components Fmn

pq can be interpreted as the
components of a Riemann curvature tensor because, as we have just remarked, Fmn

pq 6=
F pqmn. We could have made that interpretation if we had demanded anti-self-duality of
the field strength, which leads to more complicated equations for V m.

The Chern-Simons 3-form, defined by

ωYM ≡ −
(
dAmn ∧Anm + 2

3A
mn ∧Anp ∧Apm

)
, (4.64)

takes for this connection the value

ωYM = − ?σ dV 2 = − ?σ d
[
(∂ logP )2

]
, (4.65)

where V 2 = V mV m. The instanton number density is, then, given by

FA ∧ FA = dωYM = −d ?σ d
[
(∂ logP )2

]
= ∇2

σ

[
(∂ logP )2

]
|v| d4x , (4.66)

where |v| is the determinant of the Vierbein or the square root of the determinant of the
metric. In this and other calculations one should be extremely careful to substract, in the
end, any spurious, non-physical singularities arising from the singularities of the ’t Hooft
ansatz, as explained in Section 4.4.

The Lorentz Chern-Simons 3-form of a SO(4) connection Ωmn in a four-dimensional
manifold is defined in this case by14

ωL ≡ dΩmn ∧ Ωnm + 2
3Ωmn ∧ Ωnp ∧ Ωpm . (4.67)

If the connection Ω takes the form of the ’t Hooft ansatz in a hyperKähler space

Ω = M−mpW pvm , Wm = ∂m logK , where ∇2
σK = 0 , (4.68)

then,

ωL = ?dW 2 = ?σd
[
(∂ logK)2

]
, (4.69)

and

Rmn ∧Rnm = dωL = d ?σ d
[
(∂ logK)2

]
= −∇2

σ

[
(∂ logK)2

]
|v| d4x . (4.70)

14Observe that now the trace directly implies sum over pairs mn,nm, which leads to a different global
sign.
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4.2.1 The twisted ’t Hooft ansatz in Gibbons-Hawking spaces

The metric of hyperKähler spaces admitting a triholomorphic isometry (Gibbons-Hawking
spaces) can always be written in the form

dσ2 = H−1(dη + χ)2 +H dxidxi , dH = ?3dχ (4.71)

where ?3 is the Hodge dual in E3. In the frame

v] = H−
1
2 [dη + χidx

i] , v] = H
1
2∂η ≡ ∂] ,

vi = H
1
2dxi , vi = H−

1
2 [∂i − χi∂η] = ∂i ,

(4.72)

the non-vanishing components of the Levi-Civita connection (4.54) are given by

$]]i = −1
2∂i logH , $i]j = −1

2εijk∂k logH ,

$]ij = −1
2εijk∂k logH , $ijk = δi[j∂k] logH ,

(4.73)

and they look very similar to those of a so(4) connection based on the ’t Hooft ansatz
(4.53). As we have explained, the ’t Hooft ansatz does not give a spin connection that can
be associated to a vierbein, or a proper Riemann tensor and a careful inspection indeed
shows that not all signs of the above components match with that ansatz.

Nevertheless, it is possible to twist the ’t Hooft ansatz to adapt it to the above
spin connection 1-form, at the expense of breaking the manifest so(4) invariance of the
ansatz, which is in agreement with the existence of an isometric direction in the space.
This requires the introduction of a new set of self- and anti-self-dual so(4) generators

N±mn = ±1
2εmnpqN

±
pq , (4.74)

whose representation matrices (N±mn)pq have the opposite self-duality properties, that is

(N±mn)pq = ∓1
2εpqrs(N

±
mn)rs . (4.75)

These matrices can be constructed using the M±mn matrices and a metric ηmn = diag(−+
++)

(N±mn)pq ≡ ηmrηns(M∓rs)pq ⇒ (N±mn)pq = (N∓pq)mn , (4.76)

and satisfy the algebra

[N±mn,N±pq] = −2N±[m|r(N
±
pq)

stηsrηt|n] = −2N±[m|r(M
±
pq)

r
|n] , (4.77)

[
N+
mn,N−pq

]
= 0 , (4.78)

Then, in terms of these matrices, the above spin connection can be rewritten in the form

$mn = (N+
mn)pq∂q logH vp ≡ (N+

mn)pq V
q vp , (4.79)
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with curvature

Rmn = −
{

1
2(N+

mn)rsV
pV p + (N+

mn)rp(∇sV p − VsV p)
}
vr ∧ vs . (4.80)

The Chern-Simons 3-form is given by

ωLHK = ?σd
[
(∂ logH)2

]
, (4.81)

and, therefore

Rmn ∧Rnm = dωLHK = d ?σ d
[
(∂ logH)2

]
= −∇2

σ

[
(∂ logH)2

]
|v| d4x . (4.82)

4.3 The ansatz

It is convenient to describe our ansatz for each field separately, starting with the metric,
which is assumed to take the general form

ds2 =
2

Z−
du

(
dt− Z+

2
du

)
−Z0 dσ

2 − dzαdzα , (4.83)

where

dσ2 = hmn dx
mdxn , m, n = ], 1, 2, 3 , (4.84)

is the metric of a four-dimensional hyper-Kähler space where the functions Z0,+,− take
values.

Since most of the computations are conveniently performed using flat indices, it is
convenient to introduce the following zehnbein basis

e+ =
du

Z−
, e− = dt− 1

2Z+du , em = Z1/2
0 vm , eα = dzα , (4.85)

where vm is the vierbein of the hyper-Kähler metric

hmn = δpq v
p
mv

q
n , (4.86)

which is characterized by the self-duality of its spin-connection 1-form $mn with respect
to the orientation ε]123 = +1. As we have already said, in order to be able to solve
the Bianchi identity of the 3-form H to first order in α′, we will restrict ourselves to
Gibbons-Hawking (GH) spaces (4.71).

The 3-form field strength is assumed to take the form

H = ?σdZ0 + dZ−1
− ∧ du ∧ dt , (4.87)

where ?σ is the Hodge operator in the four-dimensional hyper-Kähler metric dσ2 with the
above choice of orientation.

The dilaton field is given by
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e−2φ = e−2φ∞Z−
Z0

, (4.88)

where φ∞ is a constant that, in spaces which asymptote to some vacuum solution, can be
identified with the vacuum expectation value of the dilaton, i.e. eφ∞ = gs.

Finally, we will include two triplets of SU(2) vector fields defined on the hyper-
Kähler space and the ansatz for them will be just the ‘Hooft ansatz discussed in the
previous section. Then,

Ai = M−mn ∂n logPi v
m , i = 1, 2 , (4.89)

with Pi harmonic so that their field strength are self-dual

Fi = + ?σ Fi . (4.90)

This ansatz generalizes the one recently considered in [193] in three respects:

1. No spherical symmetry is assumed: the ansatz can describe multicenter configura-
tions.

2. The R4 space transverse to the S5-branes has been replaced by an arbitrary hyper-
Kähler space.

3. A second SU(2) gauge field has been added. We will show that it can be used to
cancel the α′ corrections associated to the non-trivial hyper-Kähler space, just as the
first SU(2) gauge field can compensate the α′ corrections associated to the S5-brane.

4.3.1 Supersymmetry of the ansatz

All the configurations encompassed by our ansatz preserve 1/4 of the 16 possible super-
symmetries, no matter whether they solve the equations of motion or not. The Killing
spinor equations associated to the local supersymmetry transformations of the gravitino,
dilatino and gaugino are, respectively

∇(+)
µ ε ≡

(
∂µ − 1

4 6Ω(+)µ

)
ε = 0 , (4.91)

(
6∂φ− 1

12 6H
)
ε = 0 , (4.92)

−1
4α
′6Fmni ε = 0 . (4.93)

and, using the results of Appendix F it is easy to see that the above equations take the
same form as in Section 2.1 of [193], except for the m component of the first equation,
which receives a contribution from the spin connection of the four-dimensional hyperKähler
space and the “doubling” of the last equation, owed to the presence of a second triplet of
SU(2) vector fields.

Since the contribution of the spin connection of the four-dimensional hyperKähler
space is self-dual, just as the contribution coming from the conformal factor Z0, the m
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component of the equation simply gets another term containing the chirality projector
1
2(1 − Γ̃) where Γ̃ ≡ Γ2345 is the chirality matrix in the four-dimensional hyperKähler
space. Since the two SU(2) gauge fields have self-dual field strengths, the two associated
equations (4.93) contain the same chirality projector 1

2(1− Γ̃) acting on ε.

In order to make the paper more self-contained, we write below all the components
of the Killing spinor equations in the frame specified in (4.85):

[
∂+ + 1

4

Z−∂mZ+

Z1/2
0

ΓmΓ+

]
ε = 0 , (4.94)

[
∂− + 1

2

∂m logZ−
Z1/2

0

ΓmΓ+

]
ε = 0 , (4.95)

{
∂m +

1

8Z1/2
0

[
∂q logH(N+

np)qm + ∂q logZ0(M+
qm)np

]
Γnp(1− Γ̃)

}
ε = 0 , (4.96)

∂iε = 0 , (4.97)

− 1

2Z1/2
0

Γm
[
∂m logZ−Γ−Γ+ − ∂m logZ0(1− Γ̃)

]
ε = 0 , (4.98)

−1

8
α′6FAi (1− Γ̃)ε = 0 . (4.99)

We conclude that the Killing spinor equations are solved by constant spinors satisfying
the constraints

Γ̃ε = +ε , Γ+ε = 0 , (4.100)

exactly as in the solution studied in [193].

4.4 Solving the equations of motion

Since our ansatz is given in terms of the 3-form field strength, it is convenient to start by
solving its Bianchi identity (4.3). Due to the structure of our ansatz for H, dH is just a
Laplacian in the four-dimensional hyper-Kähler space,

dH = d ?σ dZ0 = −∇2
σZ0 |v| d4x . (4.101)

For the remaining pieces appearing in the Bianchi identity we can use (4.66) for the
contributions coming from the gauge fields and (F.9) for the contribution coming from the
torsionful spin connection.15 Substituting these partial results in (4.3), we get

∇2
σ

{
Z0 +

α′

4

[
(∂ logP1)2 + (∂ logP2)2 −

(
∂ logZ(0)

0

)2
− (∂ logH)2

]}
= O(α′2) ,

(4.102)

15Recall we are assuming the hyper-Kähler space to be a GH space.
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which is solved exactly to this order by16

Z0 = Z(0)
0 −

α′

4

[
(∂ logP1)2 + (∂ logP2)2 −

(
∂ logZ(0)

0

)2
− (∂ logH)2

]
+O(α′2) , (4.103)

with

∇2
σZ

(0)
0 = 0 . (4.104)

Some regular gauge fields, when written in the gauge associated to the ’t Hooft
ansatz, have singularities that can be removed by a gauge transformation. However, these
unphysical singularities end up contributing to the instanton number densities FA ∧ FA
and R(−)

a
b ∧ R(−)

b
a as δ-functions, basically because one is taking derivatives at points

in which the local form of the gauge field we are using becomes singular. In virtue of
the removable singularity theorem of Uhlenbeck [234], it is possible to perform a local
gauge transformation that precisely removes those singularities from the evaluation of the
instanton number densities and, in the preceding expressions this should be carefully done
in the terms inside the squared brackets. Thus, if the gauge fields are indeed regular, and
one has eliminated those singularies, the only δ-function singularity that remains is the one

associated to the harmonic function Z(0)
0 and this singularity is associated to the presence

of solitonic 5-branes, as we will see in the next chapter. These delocalized contributions
associated to the instantons correspond, precisely, to the non-singular terms in brackets.

The removal of the singularities is a very subtle problem, because, at the end, the
hyperKähler space is not part of the physical space, which is the one that dictates where the
physical singularities are and we will not deal with it here. However, this is an important
issue from the physical point of view which should be discussed in more depth on a case
by case basis. We will make some further comments concerning this point in Section 4.5.

Let us then move to the equations of motion (4.31)-(4.34).

In first place, we find that the Yang-Mills equation (4.34) is automatically satisfied
by our ansatz.

The Kalb-Ramond field equation (4.33) reduces to the following Laplace equation
in the hyperKähler space

∇2
σZ− = 0 , (4.105)

which means that the function Z− is not corrected at first order in α′:

Z− = Z(0)
− +O

(
α′2
)
, with ∇2

σZ
(0)
− = 0 . (4.106)

It turns out that there is only one more equation of motion giving non-trivial infor-
mation, which is the ++ component of Einstein equations.17 Using the results given in
Appendix F, we find

16The equations are solved everywhere except at the singularities of the harmonic function Z(0)
0 , which,

in general, will give δ-function singularities that, in general, indicate the presence of solitonic 5-branes.
17We use the frame specified in (4.85).
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Z−
2Z0
∇2
σZ+ =− α′

4
R

(0)
(−) +abcR

(0)
(−) +

abc +O
(
α′2
)

=− α′

4

Z(0)
−

Z(0)
0

∇2
σ

(
∂nZ(0)

+ ∂nZ(0)
−

Z(0)
0 Z

(0)
−

)
+O(α′2) ,

whose general solution is

Z+ = Z(0)
+ − α′

2

(
∂nZ(0)

+ ∂nZ(0)
−

Z(0)
0 Z

(0)
−

)
+O(α′2) , (4.107)

with Z(0)
+ being, again, a harmonic function. Obviously, the same comment concerning

the removal of spurious singularities applies here.

It is straightforward to check that the remaining Einstein equations and the dilaton
equation of motion (4.32) are satisfied.

Let us recap. We have solved α′-corrected equations of motion and Bianchi identity
to first order in α′ by making use of the ansatz specified in Section 4.3. The solutions
are characterized by a hyperKähler space with metric dσ2 which is assumed to enjoy a
triholomorphic isometry (GH space) and five harmonic functions defined on that space:

Z(0)
+ ,Z(0)

− ,Z(0)
0 and Pi. In other words, the α′-corrected solution is determined by the

solution to the zeroth order equations of motion with the form that we have assumed for
the metric, dilaton and NSNS 3-form and by the choice of harmonic functions Pi that
determines gauge fields given in (4.89). Given this, the form of the metric, dilaton and
NSNS 3-form in the α′-corrected solution is exactly the same as in the zeroth order solution

(by assumption) but now with the functions Z(0)
+ ,Z(0)

− ,Z(0)
0 replaced by

Z+ = Z(0)
+ − α′

2

(
∂nZ(0)

+ ∂nZ(0)
−

Z(0)
0 Z0

−

)
+O(α′2) , (4.108)

Z− = Z(0)
− +O(α′2) , (4.109)

Z0 = Z(0)
0 − α′

4

[
2∑

i=1

(∂ logPi)
2 − (∂ logZ(0)

0 )2 − (∂ logH)2

]
+O(α′2) . (4.110)

As we see, the α′ corrections to the function Z0 can be easily cancelled by setting

P1 = Z(0)
0 and P2 = H. This is however an option and in general the functions Pi are

arbitrary harmonic functions. In fact, if we do not care about the cancellation of the α′

corrections to Z0, nothing prevents us from adding as many conmuting SU(2) instantons
as we want, as long as the gauge group SU(2)×· · ·×SU(2) fits into one of the two possible
heterotic gauge groups: SO(32) or E8 × E8. If that is the case, the only difference would
be that now the sum in (4.110) would run from i = 1 to n, where n is the number of
instantons.
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4.5 T-duality

As we have discussed in Section 4.3, the solutions we have found are a generalization
of those studied in [193] with a very similar structure but more non-trivial harmonic
functions that can be interpreted as describing more extended objects. As we have already
commented, the functions Z−,+,0 are associated, respectively, to a fundamental string
(F1), a momentum wave (P) and Neveu-Schwarz solitonic 5-branes (S5). The functions
P1,2 are associated to gauge 5-branes sourced by the instantons. The qualitatively new
feature is the non-trivial hyperKähler space which, generically, describes gravitational
instantons, and the additional (triholomorphic) isometry of this space, which reduces the
possible hyperKähler spaces to be of GH type. These are completely determined by a
harmonic function, H. The typical choice, H = 1 + qH

r , corresponds to a Kaluza-Klein
(KK) monopole, often called Euclidean Taub-NUT space.

In [193], it was studied how T-duality acts in the direction along which the fun-
damental string is wounded, z, in the presence of first-order α′ corrections which affect
Z+ but not Z−. At zeroth order in α′ the standard Buscher rules would simply inter-
change Z+ ↔ Z−. This would be wrong once the corrections are incorporated since only
the transformed Z ′+ can receive α′ corrections. Somewhat extraordinarily, using the α′-
corrected Buscher rules proposed in [117], it was shown in [193] that the α′ corrections of
the transformed solution only occur where they should and, therefore, the solutions, as a
family, are self-T-dual, as it happens at zeroth order in α′. This was a highly non-trivial
test for both the solutions and the T-duality rules.

The existence of a second non-trivial isometry in the GH space transverse to the
S5-branes provides us with another non-trivial test. At zeroth order in α′, the single S5-
brane solution and the KK monopole are T-dual, and T-duality simply interchanges their
associated harmonic functions Z0 and H. Now, only the former has α′ corrections and
T-duality should leave them there since the solutions we have found should be self-T-dual
as a family.

Let us write down the α′-corrected T-duality rules proposed in [117]. If x is the
direction along which we want to perform the T-duality transformation, they read (µ, ν 6=
x)

g′xx = gxx/G
2
xx , B′xµ = −Bxµ/Gxx −Gxµ/Gxx ,

g′xµ = −gxµ/Gxx + gxxGxµ/G
2
xx , A′Aµ = AAµ −AAxGxµ/Gxx ,

g′µν = gµν +
[
gxxGxµGxν − 2GxxGx(µgν)x

]
/G2

xx , A′Ax = −AAx /Gxx ,

B′µν = Bµν −Gx[µGν]x/Gxx , e−2φ′ = e−2φ|Gxx| ,
(4.111)

where Gµν (for all the possible values of the indices µ, ν including x) is defined by

Gµν ≡ gµν −Bµν −
α′

4

(
AAµA

A
ν + Ω(−)µ

a
bΩ(−) ν

b
a

)
. (4.112)

The use of these rules requires the explicit knowledge of the components of the
Kalb-Ramond 2-form B, which are gauge-dependent. It is natural to use the gauge of the
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’t Hooft ansatz in which the Chern-Simons terms take the forms computed in (4.65) and
(F.8), which we reproduce here for convenience18

ωYM = − ?σ d
[
(∂ logP1)2 + (∂ logP2)2

]
+O(α′) , (4.113)

ωL
(−) = ?σd

[
(∂ logH)2 +

(
∂ logZ(0)

0

)2
]

+O(α′) . (4.114)

Then,

dB = H − α′

4

(
ωYM + ωL

(−)

)
= ?σdZ(0)

0 + dZ−−1 ∧ du ∧ dt+O(α′2) , (4.115)

and

B = ξ0 + Z−−1 du ∧ dt+O(α′2) , (4.116)

where ξ0 = 1
2ξ0mn v

m ∧ vn is a 2-form on the hyperKähler space such that

dξ0 = ?σdZ(0)
0 . (4.117)

The integrability condition of this equation is the harmonicity of Z(0)
0 in the hyperKähler

space, which guarantees the existence of ξ0.

In order to apply the Buscher T-duality rules, one needs to compute the tensor Gµν
defined above in (4.112). In ten-dimensional flat indices, its non-vanishing components
are

G++ = −α′∂mZ+∂mZ−
Z0

, (4.118)

G−+ = 2 , (4.119)

Gαβ = −δαβ , (4.120)

Gmn = −δmn −
ξ0mn

Z0
− α′

4Z0

{
δmn

[
2∑

i=1

(∂ logPi)
2 − (∂logH)2 −

(
∂logZ(0)

0

)2
]

−
2∑

i=1

∂m logPi ∂n logPi + ∂m logH ∂n logH+ ∂m logZ(0)
0 ∂n logZ(0)

0

+2∂m logZ−∂n logZ−} . (4.121)

18According to the discussion in the previous section, in certain cases at least, we should eliminate the
spurious singularities from these Chern-Simons terms. In general, this should simply result in a shift by a
harmonic function of Z0 that can be absorbed in Z(0)

0 .
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If we T-dualize along z = t− u, we get

ds2′ =
2

Z ′−
du′
(
dt′ −

Z ′+
2
du′
)
−Z0 dσ

2 − dzαdzα , (4.122)

A′i
A

= AAi , (4.123)

B′ = ξ0 +

(
1

Z ′−
− 1

)
du′ ∧ dt′ , (4.124)

e2φ′ = e2φ∞ Z0

Z ′−
, (4.125)

where t′ = −t and u′ = z and

Z ′− = Z(0)
+ +O

(
α′2
)
, (4.126)

Z ′+ = Z(0)
− −

α′

2

∂nZ(0)
− ∂nZ(0)

+

Z(0)
0 Z

(0)
+

+O
(
α′2
)

(4.127)

Then, as we can see, the T-dual solution belongs to the same family as the original. This is
the result obtained in [193], extended to accomodate a non-trivial hyperKähler transverse
space.

Let us assume that the functions Z0,+,− and Pi are independent of the coordinate
adapted to the triholomorphic isometry of the GH metric, η, as H is. Then the isometry
of the GH space is also an isometry of the full solution and one can T-dualize it along η.
In this case, the harmonic functions are harmonic in E3 and (4.117) can be rewritten as

dξ0 = (dη + χ) ∧ ?3dZ(0)
0 ≡ (dη + χ) ∧ dχ0 , where


dχ = ?3dH

dχ0 ≡ ?3dZ(0)
0

. (4.128)

This implies that, up to a closed 2-form,

ξ0 = χ0 ∧ (dz + χ) + ξ̃0 , (4.129)

where ξ̃0 is a 2-form on E3 such that

dξ̃0 = dχ ∧ χ0 . (4.130)

Then, the original solution, written in coordinates adapted to the isometry we want
to T-dualize with respect to, is
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ds2 =
2

Z−
du

(
dt− Z+

2
du

)
−Z0

[
1

H
(dη + χ)2 +H dxidxi

]
− dzαdzα , (4.131)

Ai = M−mn ∂n logPi v
m

= H−1M−]j ∂j logPi (dη + χ) + M−jk ∂k logPi dx
j , (4.132)

B = χ0 ∧ (dη + χ) + ξ̃0 +
1

Z−
du ∧ dt , (4.133)

e2φ = e2φ∞ Z0

Z−
. (4.134)

and the T-dual solution is

ds′
2

=
2

Z−
du

(
dt− Z+

2
du

)
−Z ′0

[
1

H′
(dη + χ0)2 +H′dxidxi

]
− dzαdzα, (4.135)

A′i = M−mn ∂′n logPi v
′m

= H′−1 M−]j ∂j logPi (dη + χ0) + M−jk ∂k logPi dx
j , (4.136)

B′ = χ0 ∧ (dη + χ) + ξ̃′0 +
1

Z−
du ∧ dt , (4.137)

e2φ = e2φ∞ Z
′
0

Z−
. (4.138)

where

H′ = Z(0)
0 , (4.139)

Z ′0 = H− α′

4

[
2∑

i=1

(∂′ logPi)
2 − (∂′ logZ(0)

0 )2 − (∂′ logH)2

]
+O(α′

2
) , (4.140)

ξ̃′0 is a 2-form on E3 such that

dξ̃′0 = dχ0 ∧ χ , (4.141)

and ∂′m = v′m
m ∂m and v′m are derivatives in flat indices and vierbein associated with the

new GH space obtained by replacing H → H′ = Z(0)
0 and χ→ χ0.

The T-dual solution clearly belongs to the same family as the original and the net
effect of the T-duality transformation is the interchange between the harmonic functions

associated to S5-branes and KK monopoles (Z(0)
0 and H) everywhere, including the α′

corrections. This interchange necessarily has to be accompanied by the interchange of
associated 1-forms χ0 and χ.
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4.6 Discussion

In this section we have found a wide class of α′-corrected backgrounds that, in general,
describes supersymmetric intersections of several extended objects of string theory and
which can give raise, upon toroidal compactification, to extremal black holes in five and
four dimensions. The α′ → 0 limit of some of the heterotic black holes that can be
described with our ansatz is well-known since the nineties [146,147] and the corresponding
Bekenstein-Hawking entropy has been reproduced by counting BPS states [67, 183, 184,
235]. However, not much is known about the α′ corrections to these backgrounds and we
believe this is an important aspect that deserves to be studied since it is precisely there
where purely stringy effects start taking place. Therefore, this is the ideal arena to start
applying the results derived in this chapter.

It would also be interesting to study if our results can be extended further in several
directions. For instance, to include hyperKähler spaces which do not enjoy a triholomor-
phic isometry, such as the Atiyah-Hitchin space [236], which has already been considered
in the context of supergravity in [237,238]. This would amount to figure out if the instan-
ton number density of these kind of metrics can also be written as a Laplacian. Another
possible direction would be to extend our ansatz to accomodate rotating spacetimes. This,
in particular, would allow us to compute the α′ corrections to the three-charge black ring
of [239]. We will come back to this point in Chapter 7.
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5
Stringy corrections to heterotic black holes

In Chapter 4, we have constructed a large family of solutions of the heterotic superstring
effective action at first order in α′. Generically, these solutions describe well-known systems
consisting of (supersymmetric) intersections of fundamental strings (F1) with momentum
flowing along them (P), solitonic 5-branes (NS or S5) and Kaluza-Klein monopoles (KK).
The five-dimensional, extremal, three-charge black holes studied in [154, 193] are simple
members of this family without KK monopoles. The main goal of this chapter will be to
study the case with a KK monopole, although we will also review the five-dimensional case
studied in [193] for the sake of completeness. The addition of a KK monopole will allow
us to study four-dimensional, extremal, four-charge black holes which will contain the
first-order in α′ corrections to the heterotic version of the black holes whose microscopic
entropy was computed and compared with the supergravity result in [183,184,235].1

The agreement between the Bekenstein-Hawking entropy and the degeneracy of
string microstates for the black holes mentioned above, initially obtained in regimes in
which the α′ corrections can be safely ignored (large charge regime), is one of the greatest
triumphs of string theory. These results have been extended in several directions to include
rotation [242], non-trivial horizon topologies (black rings) [239], etc.

A very important question to study is whether this agreement between the values
of the Bekenstein-Hawking entropy calculated by macroscopic and microscopic methods
still holds when α′ corrections —genuinely stringy effects associated to the finite size of
the strings— are taken into account.

In the calculation of the entropy by microstate counting, the AdS/CFT correspon-
dence has proven extraordinarily useful, shedding results that account for all the contri-
butions in the α′ perturbative expansion. This is due to the fact that the near-horizon
geometry of all the black hole solutions we consider is AdS3×S3/ZW ×T4. The AdS3 and
S3 factors are standard in the three-charge family of extremal black holes. The quotient
of the sphere by ZW is related to the presence of a KK monopole with topological charge
W . Heterotic string theory on this background was studied in [243], identifying the cen-
tral charges of the dual CFT. Applying the Cardy formula [136] one obtains the following
expression for the entropy

SCFT = 2π
√
QF1QP (k + 2) , (5.1)

where QF1 and QP are the winding and momentum charges and k is the total level of affine

algebra ŜL(2) in the right-moving sector. This number, minus two units, was identified

1See also [240, 241] and references therein. The α′ → 0 limits of these solutions are well known and
were first obtained in [147] directly in the heterotic frame.
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in [243] with the product of the KK monopole charge and S5 charge: k = QS5W+2. As we
are going to study in this chapter, the presence of Chern-Simons terms in the action allows
for more than one notion of charge [179,180]. On the one hand, there is the “near-horizon”
or “brane-source” charge, which is proportional to the parameters that characterize the
sources of the solution (e.g. the number of S5-branes, N). On the other hand, there is the
“Maxwell” or “asymptotic” charge, which receive contributions from the higher-curvature
terms. Being able to make this distinction is essential in order to write the entropy in
terms of the same variables used in the counting of string microstates.

The macroscopic calculation of the α′ corrections to the black-hole entropy faces a
number of difficulties:

1. Finding the α′-corrected solutions is a quite complicated task, owing to the higher-
order in curvature terms present in the equations of motion and the complicated
interactions between them. In the heterotic superstring effective action, there is an
infinite series of terms related to the supersymmetrization of the Lorentz Chern-
Simons 3-form present in the definition of the NS 3-form H, [108, 244]. Apart from
these, there are also terms of higher order in the curvature that seem to be unrelated
to them [232]. We will not deal with them here, since they appear at order α′3 and
we will just work at first order in α′.

2. The black-hole entropy of the α′-corrected solutions is no longer simply given by the
Bekenstein-Hawking formula. Instead, one has to make use of the Wald formula,
valid when the action contains higher-curvature terms [58, 245]. We will discuss,
however, that the presence of Chern-Simons terms represents an obstacle for the
direct application of the formula which can nevertheless be avoided by rewriting the
heterotic effective action in convenient form [246,247].

In order to circumvent these difficulties one may try to work with the near-horizon
limit. The entropy function formalism developed by Sen [241, 248] provides an elegant
and powerful tool to find the near-horizon solutions of extremal black holes and to com-
pute their entropy, making a comparison with the microscopic result (5.1) possible. This
approach has important drawbacks, though: it is not guaranteed that a solution in-
terpolating between the near-horizon geometry and Minkowski spacetime describing an
asymptotically-flat black-hole spacetime exists and, if it does, it does not give any in-
formation on how the higher-derivative corrections affect the physical properties of the
solution, such as the values of the conserved charges.

Fortunately, the family of solutions constructed in Chapter 4 allows us to study,
for the first time, the complete black-hole spacetime without having to restrict to the
near-horizon solution.

5.1 Review of the zeroth-order solutions

Let us present the family of heterotic backgrounds whose dimensional reduction to five
and four dimensions gives raise to the supersymmetric (and therefore extremal) black holes
that we want to study at first order in α′. These are solutions of ten-dimensional N = 1
supergravity without vector multiplets and they preserve one quarter out of the sixteen
possible spacetime supersymmetries. The metric gµν , the NSNS 3-form H and the dilaton
φ are respectively given by
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ds2 =
2

Z(0)
−
du

(
dt−

Z(0)
+

2
du

)
−Z(0)

0 dσ2 − dzαdzα , (5.2)

H = ?σdZ(0)
0 + d

(
1/Z(0)

−

)
∧ du ∧ dt , (5.3)

e2φ = e2φ∞Z
(0)
0

Z(0)
−

, (5.4)

where dσ2 = hmn dx
mdxn is the metric of a four-dimensional hyper-Kähler space where the

functions Z(0)
+,−,0 are defined. Therefore, all the fields of this configuration are independent

of the time coordinate t, of the coordinates zα ∼ zα + 2π`s (with α = 1, . . . , 4) and of
the light-cone coordinate u = t − z. The coordinate z ∼ z + 2πRz is the fifth compact
direction necessary to reduce the solutions down to, at least, five dimensions.

The zeroth-order equations of motion and the Bianchi identity, dH = 0, are satisfied
if the functions that determine the configuration are harmonic in the hyper-Kähler space,
namely

∇2
σZ

(0)
0,+,− = 0 . (5.5)

It is then clear that the zeroth-order solutions are specified by the choice of an hyper-Kähler

metric hmn and three harmonic functions on this space: Z(0)
0 ,Z(0)

+ and Z(0)
− . Generically,

this background corresponds to a superposition of solitonic 5-branes (S5), fundamental
string (F1), momentum (P) and Kaluza-Klein monopoles (KK):

• The function Z(0)
0 is associated to S5-branes that wrap the 5-torus T5 = T4 × S1

z,
where T4 is the four-dimensional torus parametrized by the coordinates zα.

• The function Z(0)
− is associated to a fundamental string wrapping the circle S1

z which
has been smeared over the torus T4.

• The function Z(0)
+ is associated to a pp-wave travelling along z which has also been

smeared over the torus T4.

• Finally, since the hyper-Kähler metric has self-dual curvature, it generically describes
gravitational instantons (except when it is trivial). As in the previous chapter, we
will restrict to a metric of the Gibbons-Hawking type, which are those that will allow
us to study the four-dimensional black holes of [147]. This kind of metrics are often
known in the literature as KK monopoles, since the KK vector that one obtains after
dimensional reduction over the isometric coordinate of the Gibbons-Hawking space
satisfies the Dirac magnetic monopole equation, see (5.10).

5.1.1 Dimensional reduction to five and four dimensions

Let us reduce these ten-dimensional solutions over the compact space T4 × S1
z. For the

purposes of this chapter, it is more than enough with the dimensional reduction of the
metric. For further details, we refer to Appendix E.
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The relation between the five-dimensional metric in the modified Einstein frame
(whose line element is denoted as ds2

E,5) and the ten-dimensional string-frame metric is

ds2 = eφ−φ∞
[
(k/k∞)−2/3ds2

E,5 − (k/k∞)2
(
dz +A+

)2]− dzαdzα , (5.6)

where

(k/k∞)2 =
Z(0)

+√
Z(0)

0 Z
(0)
−

, and A+ =

(
Z(0)

+

−1
− 1

)
dt , (5.7)

are the Kaluza-Klein scalar and vector respectively. The asymptotic value of the scalar,
k∞, is related to the asymptotic radius of the compact direction z by Rz = k∞`s. Finally,
the five-dimensional metric is found to be

ds2
E,5 =

(
Z(0)

0 Z
(0)
+ Z

(0)
−

)−2/3
dt2 −

(
Z(0)

0 Z
(0)
+ Z

(0)
−

)1/3
dσ2 . (5.8)

Let us now assume that there is an additional spacelike isometry that respects the
hyper-Kähler structure. Then, the metric dσ2 can be written as a Gibbons-Hawking
metric [158,159]:

dσ2 = H−1 (dη + χ)2 +H dxidxi , i = 1, 2, 3. , (5.9)

where χ and H are a 1-form and a function on E3 satisfying

dχ = ?3dH , (5.10)

which implies that H is harmonic in E3. Further assuming that the functions Z(0)
0,+,− are

also independent of η ∼ η + 2πRη, we can compactify the five-dimensional solution along
this coordinate, which yields

ds2
E,5 = (`/`∞)−1 ds2

E,4 − (`/`∞)2 (dη + χ)2 , (5.11)

where now the Kaluza-Klein scalar, `, is given by

(`/`∞)2 =

(
Z(0)

0 Z
(0)
+ Z

(0)
−

)1/3

H
, with Rη = `∞`s . (5.12)

Finally, the four-dimensional metric is

ds2
E,4 = e2U dt2 − e−2U dxidxi , with e−2U =

√
Z(0)

0 Z
(0)
+ Z

(0)
− H . (5.13)

Let us see now how particular choices of the harmonic functions and of the hyper-
Kähler metric allow us to describe five- and four-dimensional supersymmetric black holes.
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5.1.2 Five-dimensional black holes

Let us start with the description of the simplest five-dimensional black holes that one can
describe with our ansatz. The hyper-Kähler metric is taken to be simply the Euclidean
metric, i.e. hmn = δmn. In spherical coordinates, ρ2 ≡ xmxm, we have

dσ2 = dρ2 + ρ2dΩ2
(3) , (5.14)

where

dΩ2
(3) =

1

4

(
dΨ2 + dθ2 + dφ2 + 2 cos θdΨdφ

)
, (5.15)

is the metric of the round 3-sphere S3. Then, the five-dimensional metric (5.11) reduces
to

ds2
E,5 =

(
Z(0)

0 Z
(0)
+ Z

(0)
−

)−2/3
dt2 −

(
Z(0)

0 Z
(0)
+ Z

(0)
−

)1/3 (
dρ2 + ρ2dΩ2

(3)

)
. (5.16)

The simplest possible choice of harmonic functions,

Z(0)
0 = 1 +

Q0

ρ2
, Z(0)

+ = 1 +
Q+

ρ2
, Z(0)

− = 1 +
Q−
ρ2

, (5.17)

gives raise to an extremal, asymptotically-flat, spherically-symmetric black hole with three
electric charges given by Q0,Q+ and Q−. This solution was first found Cvetič and Youm
as a particular case of a more general family of five-dimensional heterotic black holes [146].
The horizon is placed at ρ = 0 and the near-horizon geometry is AdS2 × S3. The ADM
mass M and the Bekenstein-Hawking entropy SBH are given by

M =
π

4G
(5)
N

(Q0 +Q+ +Q−) , (5.18)

SBH =
π2

2G
(5)
N

√
Q0Q+Q− , (5.19)

where G
(5)
N is the five-dimensional Newton constant, whose expression in terms of the

ten-dimensional moduli is

G
(5)
N =

G
(10)
N

2πRz (2π`s)
4 =

πg2
sα
′2

4Rz
. (5.20)

The electric charges of the black hole (Q0,Q+ and Q−) can be related to the parameters
that characterize the ten-dimensional (string) sources, whose intersection diagram is given
in Table 5.1. We will discuss this in detail in Section 5.3 after the computation of the α′

corrections. Advancing information, the relation between the electric charges of the black
hole and the sources is

Q0 = α′N , Q+ =
g2
sα
′2

R2
z

n , Q− = g2
sα
′w , (5.21)
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where N is the number of S5-branes, n is the quantized momentum along the z-direction
and w is the winding number of the fundamental string. We can now use these relations
to rewrite the mass and the entropy in terms of N,w and n as follows

M =
Rz
g2
s`

2
s

N +
n

Rz
+
Rz
`2s
w , (5.22)

SBH = 2π
√
nwN . (5.23)

t z z1 z2 z3 z4 x1 x2 x3 x4

F1 × × ∼ ∼ ∼ ∼ − − − −
P × × ∼ ∼ ∼ ∼ − − − −
S5 × × × × × × − − − −

Table 5.1: Sources of the ten-dimensional backgrounds which give raise to five-dimensional
black holes after dimensional reduction on T4×S1

z. × stands for the worldvolume directions
and − for the transverse directions. The symbol ∼ stands for the transverse directions
over which the corresponding extended object has been smeared.

5.1.3 Four-dimensional black holes

The simplest supersymmetric black holes in four dimensions that one can construct as
solutions of the heterotic effective action contain a KK monopole (see Table 5.2). Let
us explain in detail how it arises in our set-up. As already discussed in Section 5.1.1,
we assume that the isometry that is needed to reduce the solutions to four dimensions is
triholomorphic (i.e., that it respects the hyper-Kähler structure). Then, we can write the
hyper-Kähler metric as a Gibbons-Hawking metric (5.9) using coordinates adapted to the
isometry. This metric is characterized by a harmonic function H and 1-form χ satisfying
(5.10), which is nothing but the Dirac magnetic monopole. The simplest non-trivial choice
for H is

H = 1 +
qH
r
, (5.24)

where r =
√
xixi is the radial coordinate of E3. It is then convenient to introduce the

angular coordinates θ and φ, defined as usual

x1

r
= sin θ cosφ ,

x2

r
= sin θ sinφ ,

x3

r
= cos θ , (5.25)

so that, locally, the 1-form χ reads

χ = qH cos θ dφ . (5.26)

This is the Kaluza-Klein vector of the dimensional reduction and, as we can see, it has the
same form as the Dirac magnetic monopole with charge qH . This is the reason why (5.9) is
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dubbed the KK monopole metric.2 In the spherical coordinates we have just introduced,
the metric (5.9) takes the form

dσ2 = H−1(dη + qH cos θdφ)2 +H
(
dr2 + r2dΩ2

(2)

)
, (5.27)

where

dΩ2
(2) = dθ2 + sin2 θdφ2 , (5.28)

is the metric of the round S2 of unit radius. Observe that a global description of the
solution requires two patches since the 1-form χ = qH cos θdφ contains a Dirac-Misner
string at the poles θ = 0, π, or equivalently, in the line x1 = x2 = 0. This can be easily
checked by computing the norm of χ:

| cos θdφ|2 = q2
H

cot2 θ

Hr2
, (5.29)

which is divergent at those points. In order to fix this singularity, we work with two
different patches,

χ± = qH (cos θ ∓ 1) dφ . (5.30)

In this way, χ+ is regular everywhere except at θ = π, and χ− is regular everywhere except
at θ = 0. We also have to use different coordinates η+ and η− in every patch, but in the
intersection we must have

dη+ + χ+ = dη− + χ− ⇒ d
(
η+ − η−

)
= 2qHdφ . (5.31)

Hence, we conclude that

η+ − η− = 2qHφ . (5.32)

Since φ has period 2π and both η± have period 2πRη by definition, this relation can only
hold if qH satisfies the quantization condition

qH =
WRη

2
, W = 1, 2, . . . , (5.33)

as η ∼ η + 2πRη trivially implies η ∼ η + 2πWRη if W ∈ Z.

Introducing the angular coordinate,

ψ =
2η

Rη
⇒ ψ ∼ ψ + 4π , (5.34)

and taking into account the quantization of the magnetic charge qH , we can write the
metric (locally) as

dσ2 = H−1
R2
η

4
(dψ +W cos θdφ)2 +H

(
dr2 + r2dΩ2

(2)

)
. (5.35)

2The KK monopole metric (5.27) coincides with the extreme limit of the Euclidean Taub-NUT solution.
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Let us study the r → 0 and r →∞ limits of this metric.

• In the r → 0 limit we must use that H ∼ WRη
2r , and after performing the change of

coordinates

r =
ρ2

2WRη
, (5.36)

we obtain

dσ2(r → 0) ∼ dρ2 +
ρ2

4

[(
dψ

W
+ cos θdφ

)2

+ dθ2 + sin2 θdφ2

]
. (5.37)

When W = 1, we recognize the factor that ρ2 multiplies as the metric of the round
S3. However, for W > 1 the cyclic coordinate ψ does not cover the full sphere, but
only a 1/W part of it. This corresponds to the metric of a lens space S3/ZW , and
hence the full space near r = 0 is the orbifold E4/ZW . Although lens spaces are
regular, the full Gibbons-Hawking metric contains a conical singularity at r = 0,
because at this point the periodicity of ψ is not “the right one”. Nevertheless, it is
important to point out that the full ten-dimensional metric (5.2) does not have such
a conical singularity if the number of solitonic 5-branes is different from zero. If this
is the case, the conformal factor in front of dσ2 will behaves as

Z(0)
0 ∼ 2WRηq0

ρ2
, for q0 6= 0 , (5.38)

near r = 0, which makes the conical singularity disappear from the ten-dimensional
metric.3

• In the asymptotic limit r → ∞, we have H → 1 and the metric becomes the direct
product S1

η × E3:

dσ2(r →∞) = dη2 + dxidxi . (5.39)

This can be better seen by using Cartesian coordinates (xi) and the two patches
introduced previously. In that case, the 1-forms χ(±) read

χ(±) = qH
x1dx2 − x2dx1

r(x3 ± r)
, where r =

√
(x1)2 + (x2)2 + (x3)2 . (5.40)

We use χ(+) in the upper space x3 ≥ 0 and χ(−) in the lower one x3 ≤ 0. In this way,
it is explicit that χ(±) are regular in their respective regions, and we observe that
limr→∞ χ

(±) = 0, where the limit is again taken in the respective region. Hence, the
metric (5.9) becomes (5.39).

3In the near-horizon limit, the space is AdS3 × S3/ZW × T4.
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Let us recall that in Section 5.1.1 we assumed no dependence on η in order to perform

a standard Kaluza-Klein reduction. This amounts to impose that Z(0)
0 ,Z(0)

+ and Z(0)
− are

functions of the xi coordinates exclusively. In this case, the harmonicity condition on the
full hyper-Kähler space translates into the harmonicity condition on E3. The choice we
make to describe spherically-symmetric black holes is

Z(0)
0,+,− = 1 +

q0,+,−
r

, (5.41)

which is equivalent to keeping the zero mode of the Fourier expansions of the functions

Z(0)
0,+,− appearing in (5.17) with ρ2 = η2 + xixi. In other words, we have smeared the

solution over η.

The final step is to use (5.13) to obtain the four-dimensional metric:

ds2
E,4 =

dt2√
Z(0)

0 Z
(0)
+ Z

(0)
− H

−
√
Z(0)

0 Z
(0)
+ Z

(0)
− H

(
dr2 + r2dΩ2

(2)

)
. (5.42)

This metric describes a static, spherically-symmetric extremal black hole with four charges
[147]: three of them, q0, q+ and q−, are electric and one of them, qH , magnetic. The horizon
is at r = 0, where gtt vanishes. The near-horizon limit is AdS2 × S2 and the ADM mass
M and entropy SBH are given by

M =
1

4G
(4)
N

(q0 + q+ + q− + qH) , (5.43)

SBH =
π

G
(4)
N

√
q0q+q−qH . (5.44)

The expression of the four-dimensional Newton constant in terms of the ten-dimensional
moduli is

G
(4)
N =

G
(5)
N

2πRη
=

g2
sα
′2

8RzRη
. (5.45)

As in the five-dimensional case, the electric charges of the solution q0, q+ and q− are
related to the number of S5-branes N , momentum n and winding w of the fundamental
string. As we will see in Section 5.3, the precise relations are

q0 =
α′

2Rη
N , q+ =

g2
sα
′2

2R2
zRη

n , q− =
g2
sα
′

2Rη
w . (5.46)

This must be complemented with the quantization condition for the charge of the KK
monopole obtained in (5.33), that we repeat here for convenience

qH =
WRη

2
. (5.47)

These relations allow us to rewrite the mass and the black-hole entropy as
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M =
Rz
g2
sα
′N +

n

Rz
+
Rz
α′

w +
RzR

2
η

g2
sα
′2 , (5.48)

SBH = 2π
√
nwNW . (5.49)

t z z1 z2 z3 z4 η x1 x2 x3

F1 × × ∼ ∼ ∼ ∼ ∼ − − −
P × × ∼ ∼ ∼ ∼ ∼ − − −
S5 × × × × × × ∼ − − −

KK5 × × × × × × ∼ − − −

Table 5.2: Sources for the configuration that gives raise to four-dimensional black holes.
The main differences with respect to the five-dimensional case are the presence of a KK
monopole and the fact that S5-branes, fundamental string and momentum are smeared
over the isometric direction of the GH space, η.

5.2 α′-corrected solutions

Let us now make use of the results derived in Chapter 4 in order to find the α′ corrections
to the black holes considered in the previous section. We recall that the form of the
α′-corrected metric, NSNS 3-form and dilaton is exactly the same as in the zeroth-order
solution (5.2)-(5.4), namely

ds2 =
2

Z−
du

(
dt− Z+

2
du

)
−Z0 dσ

2 − dzαdzα , (5.50)

H = ?σdZ0 + d (1/Z−) ∧ du ∧ dt , (5.51)

e2φ = e2φ∞ Z0

Z−
. (5.52)

In addition to these background fields, we studied how to include n conmuting triplets of
SU(2) vector fields, Ai = Ai

m dx
m (i = 1, . . . , n), obeying a self-duality condition on the

hyper-Kähler space where they are defined:4

F i = + ?σ F
i . (5.53)

We know (see Chapter 4) that this self-duality condition is satisfied by5

4At this point, this is just an assumption on the vector fields. However, it has been recently showed
in [249] that this is indeed imposed by the gaugini Killing spinor equations (if we assume that the gauge
fields live in the hyper-Kähler space).

5Different types of instantonic fields which are not covered by the ‘t Hooft ansatz have been considered
in [140] and they are based on the uplift of the two-parameter family of spherically-symmetric solutions
of the SU(2) Bogomol’nyi equations in E3 found by Protogenov [170], which are reviewed in Section 2.2.
It turns out that these instantons also enjoy the “Laplacian property”: FA ∧ FA = d ?4 dF , for a certain
function F .
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Ai = M−mn∂n logPi v
m , (5.54)

if the functions Pi are harmonic with respect to the hyper-Kähler metric hmn:

∇2
σPi = 0 . (5.55)

Let us recall that in Eq. (5.54), the 1-forms vm denote the vierbein of the hyper-Kähler
space, dσ2 = vmvm, and that M−mn are the anti-selfdual combinations of the so(4) gener-
ators given in (4.40).

Then, the results obtained in Chapter 4 tell us that the α′-corrected equations of
motion are solved if the functions Z0,Z+ and Z− are given (up to a harmonic function)
by

Z+ = Z(0)
+ − α′

2

(
∂nZ(0)

+ ∂nZ(0)
−

Z(0)
0 Z

(0)
−

)
+O(α′2) , (5.56)

Z− = Z(0)
− +O(α′2) , (5.57)

Z0 = Z(0)
0 − α′

4

[
n∑

i=1

(∂ logPi)
2 − (∂ logZ(0)

0 )2 −W 2

]
+O(α′2) , (5.58)

where W 2 is a function of the xm coordinates that determines the Chern-Simons 3-form
of $mn, the spin connection of the Gibbons-Hawking space, and which depends on the
frame we use to compute it. In the frame specified in (4.72), it is given by

W 2 = (∂ logH)2 ≡ ∂m logH ∂m logH , where ∂m ≡ vmm∂m . (5.59)

This frame is not the most suitable one when the Gibbons-Hawking space is the four-
dimensional Euclidean space hmn = δmn, as it introduces spurious singularities —see the
discussion below (4.104)—. In this case, the best frame choice is vm = dxm, where one
simply finds

W = 0 , (5.60)

since the spin connection $mn vanishes.

5.2.1 Five-dimensional black holes

Let us now apply the generic formulae (5.56)-(5.58) to the specific ten-dimensional back-

grounds of Section 5.1.2 for which hmn = δmn and the functions Z(0)
0,+,− are given by (5.17).

Before doing so, we have to select the harmonic functions Pi that determine the type of
instanton configurations that we are going to include. A convenient choice for us is

Pi = 1 +
κ2
i

ρ2
. (5.61)
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Then, the gauge connection (5.54) is given by

Ai = −2M−mn
κ2
i

ρ2 + κ2
i

xn

ρ

dxm

ρ
, (5.62)

which is nothing but one of the multiple ways of writing the BPST instanton [178].

After a direct application of (5.56), (5.57) and (5.58), one finds that the corrected
functions Z0,Z− and Z+ are given by

Z+ = 1 +
Q+

ρ2
− 2α′

Q+Q−
ρ2 (ρ2 +Q0) (ρ2 +Q−)

+O(α′2) , (5.63)

Z− = 1 +
Q−
ρ2

+O(α′2) , (5.64)

Z0 = 1 +
Q0

ρ2
− α′

[
n∑

i=1

κ4
i

ρ2(ρ2 + κ2
i )

2
− Q4

0

ρ2(ρ2 +Q0)2

]
+O(α′2) . (5.65)

Let us note, however, that these functions are not univocally determined since we
are free to add an arbitrary harmonic function to each of them, and the resulting field
configuration is still a solution of the equations of motion at first order in α′. This is
nothing but the freedom that we have to fix the boundary conditions. We will use it to
impose that Z+,−,0 → 1 at infinity and that the 1/ρ2 pole of the Z+,−,0 functions is not
changed by the α′ corrections. There are two reasons why we proceed this way:

1. The α′ corrections are associated to the curvatures of the gauge instantons and
torsionful spin connection, which are regular. Thus, they should be regular as well.
The poles are spurious and their presence is solely due to the fact that we are using
a singular gauge to write the different connections.

2. The residues of the poles are associated to the sources of the solution, and these
should not be modified by the α′ corrections.

For the functions above this amounts to the changes

Z+ → Z+ +
2α′Q+

Q0ρ2
, Z0 → Z0 +

α′ (n− 1)

ρ2
, (5.66)

after which the functions read

Z+ = 1 +
Q+

ρ2
+ 2α′

Q+

(
ρ2 +Q0 +Q−

)
Q0 (ρ2 +Q0) (ρ2 +Q−)

+O(α′2) , (5.67)

Z− = 1 +
Q−
ρ2

+O(α′2) , (5.68)

Z0 = 1 +
Q0

ρ2
+ α′

[
n∑

i=1

ρ2 + 2κ2
i

(ρ2 + κ2
i )

2
− ρ2 + 2Q0

(ρ2 +Q0)2

]
+O(α′2) , (5.69)
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in agreement with the results of [193].

Let us analyze the corrections to the function Z0. The first correction is due to
the presence of the BPST instantons. This is already familiar to us since it is exactly
the same as the one obtained for the five-dimensional non-Abelian black holes studied in
Section 2.3. The physical interpretation of this correction is that the SU(2) instanton acts
as a (delocalized) source of S5-brane charge. The second correction to Z0 comes from the
contribution of the torsionful spin connection to the Bianchi identity of the 3-form H, and
it is identical (up to a global minus sign) to that of the SU(2) connections. Therefore,
its interpretation is analogous: there is a sort of “gravitational instanton” sourced by the
S5-branes which, in turn, acts as a delocalized source of S5-charge, thus correcting the
function Z0.

At this point of the discussion, it is obvious from (5.69) that we can cancel the
first-order α′ corrections to the function Z0 by including just one BPST instanton (n = 1)
with size fixed by κ2

1 = Q0. This means that

Z0 = 1 +
Q0

ρ2
+O

(
α′2
)
. (5.70)

We will refer to this particular solution as the symmetric solution since it is the one that
reduces to the symmetric S5-brane of [190] when Q+ = Q− = 0.

Let us observe that the parameters Q0 and Q+ controlling the near-horizon limit of
the functions Z0 and Z+, to which we will refer as “near-horizon” charges, are not equal
to those controlling the large ρ-expansion: Q∞0,+ ≡ limρ→∞ ρ

2 (Z0,+ − 1), to which we will

refer as “asymptotic” charges.6 In particular, the expression for Q∞0 is

Q∞0 = Q0 + α′ (n− 1) . (5.71)

The natural question now is which of these charges is the one “counting” the number of
S5-branes. In order to answer this question, we have to study the coupling of a stack of
N S5-branes to the background fields. Such analysis was performed in [193], and it turns
out that it is Q0, the near-horizon charge, the one that counts the number of S5-branes.
We will repeat such analysis, complementing it, in Section 5.3.

Let us now focus on the correction to the function Z+. This is qualitatively of the
same type as the one obtained for the five-dimensional non-Abelian black holes studied in
Section 2.3. In both cases, the correction can be understood as a delocalized contribution
to the momentum of the wave coming either from the Yang-Mills fields or from the higher-
curvature corrections. This is reflected in the asymptotic momentum charge,

Q∞+ = Q+

(
1 +

2α′

Q0

)
, (5.72)

which no longer coincides with the near-horizon charge Q+. Again, as it happens for
the S5-charge, it is the near-horizon charge Q+ the one which is proportional to n, the
quantized momentum.

6The shrewd reader may be worried because we have assigned the names near-horizon and asympotic
charges without actually proving that they correspond to well-defined notions of charge. We will clarify
this point in Section 5.3.
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The five-dimensional metric incorporating the first-order α′ corrections is equal to

(5.16) with the functions Z(0)
0,+,− replaced by Z0,+,−, i.e.

ds2
E,5 = (Z0Z+Z−)−2/3 dt2 − (Z0Z+Z−)1/3

(
dρ2 + ρ2dΩ2

(3)

)
. (5.73)

The near-horizon geometry is left invariant by the α′ corrections, so it is again the metric
of AdS2 × S3,

ds2
E,5 (ρ→ 0) = (ρ/RH)4 dt2 − dρ2

(ρ/RH)2 −R
2
H dΩ2

(3) , (5.74)

where RH = (Q0Q+Q−)1/3 is the horizon radius. Hence, the area of the horizon is

AH = 2π2R3
H = 2π2

√
Q0Q+Q− . (5.75)

Since the action contains higher-curvature terms, the entropy is not simply given by the
Bekenstein-Hawking formula and one has to use Wald’s entropy formula [58,245] instead.
This is done in Section 5.4.

The ADM mass of the solution is computed as usual from the asymptotic expansion
of the metric, obtaining

M =
π

4G
(5)
N

[
Q0 + α′ (n− 1) +Q+

(
1 +

2α′

Q0

)
+Q−

]
. (5.76)

Finally, if we compare this expression with (5.18), we see that the mass is affected by
the presence of the instantons and of the higher-curvature corrections. The first of these
corrections was already known to us from Chapter 2. The second is a new effect which
lies in the fact that the higher-curvature corrections act in the α′-corrected equations of
motion as effective sources of energy, momentum and charge.

5.2.2 Four-dimensional black holes

Let us now study the α′ corrections to the extremal four-charge black holes of Section 5.1.3.
We recall that in this case the zeroth-order solution is specified by four spherically-

symmetric harmonic functions on E3: Z(0)
+ ,Z(0)

− ,Z(0)
0 and H, see (5.41) and (5.24).

Before making use of the formulae (5.56)-(5.58), we make the following choice for
the harmonic functions Pi that determine the gauge fields:

Pi = 1 +
λ−2
i

r
, i = 1, . . . , n , (5.77)

where we recall that r =
√
xixi is the radial coordinate of E3. This choice corresponds

to keeping the Fourier zero mode of the BPST instanton periodic in the coordinate η.
This is just the standard smearing procedure now applied to the functions Pi. We stud-
ied in Chapter 2 that smeared instantons on Gibbons-Hawking spaces are in one-to-one
correspondence with SU(2) magnetic monopoles solving the Bogomol’nyi equations [169]
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in the Prasad-Sommerfeld limit [174] (i.e. with SU(2) BPS magnetic monopoles). Con-
cretely, those characterized by the choice (5.77) correspond to the one-parameter family
of solutions (2.54) found by Protogenov [170], which we have dubbed colored monopoles.

Making use of (5.56)-(5.58), one finds that the corrected functions Z+,Z− and Z0

are given by

Z+ = 1 +
q+

r
− α′

2

q+q−
r(r + qH)(r + q0)(r + q−)

+O(α′2) , (5.78)

Z− = 1 +
q−
r

+O(α′2) , (5.79)

Z0 = 1 +
q0

r
+

α′

4r(r + qH)

{
q2

0

(r + q0)2
+

q2
H

(r + qH)2
−

n∑
i=1

1

(1 + λ2
i r)

2

}
+O

(
α′2
)
, (5.80)

where we recall that the charge qH is quantized according to (5.33). As in the five-
dimensional case, the functions are not entirely determined since we can always add to
them a harmonic function, which at the end of the day amounts to a redefinition of the
charges q0, q+ and q−. Let us then redefine the charges q0 and q+ in the following way

q0 → q0 +
α′

4qH
(2− n) , q+ → q+

(
1 +

α′

2q0qH

)
, (5.81)

so that the functions now read

Z+ = 1 +
q+

r
+

α′q+

2qHq0

r2 + r(q0 + q− + qH) + qHq0 + qHq− + q0q−
(r + qH)(r + q0)(r + q−)

+O(α′2) , (5.82)

Z− = 1 +
q−
r

+O(α′2) , (5.83)

Z0 = 1 +
q0

r
+ α′

{
− F (r; q0)− F (r; qH) +

n∑
i=1

F (r;λ−2
i )

}
+O(α′2) , (5.84)

where we have introduced the function

F (r; k) ≡ (r + qH)(r + 2k) + k2

4qH(r + qH)(r + k)2
, (5.85)

Expressed in this way, it is obvious that we can eliminate all the α′ corrections to
Z0 if we use n = 2 instantons of sizes λ−2

1 = q0, λ−2
2 = qH . We will come back to this point

later. This choice is that of the symmetric 5-brane of [190] but now adapted to include a
KK monopole of charge W .

The analysis of the α′ corrections is very similar to the five-dimensional case except
for an important difference which lies in the fact that now the torsionful spin connection
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Ω(−)
a
b gives raise to two different contributions. One of them was already present in

the five-dimensional case. It is due to the presence of the stack of S5-branes, which act
as a source of a sort of a gravitational instanton. Such gravitational instanton lives in
so−(3), being this one of the two so(3) subspaces in which so(4) = so+(3)⊕ so−(3) can be
decomposed. This corresponds to the first correction in (5.84). The second one, however, is
new and its presence is caused by the KK monopole, which sources a second gravitational
instanton which lives in the other so+(3) subspace, see (F.5). As we see from (5.84),
these contributions are identical to those coming from the SU(2) instantons. This was
explained in Chapter 4, where it was shown that the gravitational instanton sourced by
the S5-branes can be written using the ‘t Hooft ansatz, exactly as the SU(2) instantons,
whereas the spin connection a Gibbons-Hawking space (KK monopole) requires a slight
modification of the aforementioned ansatz which nevertheless yields the same result for
the Chern-Simons 3-form, see (4.81).

For the rest we find the same qualitative features as the one we found for the
five-dimensional black holes. In particular, we find that the higher-curvature corrections
introduce delocalized sources of momentum which leave an imprint on the function Z+,
which also receives α′ corrections. It is worth to mention that we do not know of any
(necessarily dyonic) gauge field that can be introduced to cancel these α′ corrections,
analogously to what can be done for Z0. This would be very interesting since it would
allow us to describe α′-exact black holes.

After reducing the solution on T4 × S1
z × S1

η, the four-dimensional metric (in the
Einstein frame) incorporating the α′ corrections to the family of extremal four-charge
black holes studied in Section 5.1.3 is found to be

ds2
E,4 = e2Udt2 − e−2U

(
dr2 + r2dΩ2

(2)

)
, (5.86)

with

e−2U =
√
Z0Z+Z−H . (5.87)

As it occurs with their five-dimensional counterparts, the near-horizon geometry
r → 0 remains unaffected by the α′-corrections:

ds2(r → 0) = (r/RH)2 dt2 +
dr2

(r/RH)2 −R
2
H dΩ2

(2) , (5.88)

which corresponds to the metric of AdS2 × S2. The horizon radius and the area are given
by

R2
H =
√
q0q+q−qH , ⇒ AH = 4π

√
q0q+q−qH . (5.89)

The mass M of the solution is found, as usual, from the asymptotic behaviour of
the metric function:

e−2U = 1 +
2G

(4)
N M

r
+O

(
1

r2

)
. (5.90)

We get
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M =
1

4G
(4)
N

[
q0 +

α′(n− 2)

4qH
+ q− + q+

(
1 +

α′

2qHq0

)
+ qH

]
. (5.91)

Corrections to the extremal Reissner-Nordström black hole

The extremal Reissner-Nordström black hole corresponds to the zeroth-order in α′ solution
with q+ = q− = q0 = qH ≡ q. This choice of charges gives constant scalars eφ = eφ∞ , k =
k∞ and ` = `∞ at this order. However, taking into account the constituents of the black
hole, we can only take those charges equal at given points in moduli space

gs = eφ∞ =

√
N

w
, Rz/`s = k∞ =

√
n

w
, Rη/`s = kη,∞ =

√
N

W
, (5.92)

which fixes the asymptotic values of the scalars to their attractor values.

Applying the general result to this particular case is straightforward. Taking the
symmetric case, we find that the corrected metric function e−2U and the scalars take the
form

e−2U =
(

1 +
q

r

)2
+
α′

4q

[r2 + 3rq + 3q2]

r(r + q)2
+O(α′2) , (5.93)

e2φ = e2φ∞ , (5.94)

k = k∞ +
α′k∞

4q

r[r2 + 3rq + 3q2]

(r + q)4
+O(α′2) , (5.95)

` = `∞ +
α′`∞
12q

r[r2 + 3rq + 3q2]

(r + q)4
+O(α′2) , (5.96)

with

q =
`s
2

√
NW . (5.97)

We also have to take into account that the 4-dimensional Newton constant given in
Eq. (5.45) now has the value

G
(4)
N =

`2s
8

√
NW

nw
. (5.98)

Then, if we do not want G
(4)
N to change with q, we must set nw = ℵ2NW for some positive

dimensionless constant ℵ so that

G
(4)
N =

`2s
8ℵ

. (5.99)
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Staying at weak coupling (so the loop corrections can be safely ignored) and away of
the self-dual radii at which new massless degrees of freedom arise, demands the following
hierarchy

n > w > N > W , ⇒ ℵ >> 1 . (5.100)

5.3 String sources and T-duality

In order to figure out the relation between the charges of the corresponding black holes
and the parameters that characterize the sources, we need to know how the latter couple
to the background fields and, more concretely, how the equations of motion of these fields
change when one takes into account the δ-like contributions of the sources.

5.3.1 Solitonic 5-branes

The coupling of a stack of N S5-branes to B̃, the magnetic dual of the Kalb-Ramond
2-form,

dB̃ = e−2φ ? H , (5.101)

is described by a Wess-Zumino term of the form

SWZ = g2
sTS5N

∫
W 6

B̃ , (5.102)

where W 6 stands for the worldvolume of the five-branes and

TS5 =
1

g2
s (2π)5 α′3

, (5.103)

for the brane tension. The term (5.102) modifies the equation of motion of B̃, which in
absence of sources is just the Bianchi identity of B, by adding a δ-like source term at the
position of the branes:

dH − α′

4

(
n∑
i=1

FAi ∧ FAi +R(−)
a
b ∧R(−)

b
a

)
= 4π2α′N ?σ δ , (5.104)

where ?σδ is a top form in the transverse space of the S5-branes whose integral is equal
to 1. Therefore, the number of S5-branes N can be computed by integrating (5.104) over
the transverse space M4. Applying Stokes’ theorem:

N =
1

4π2α′

∫
∂M4

H − 1

16π2

∫
M4

{
n∑
i=1

FAi ∧ FAi +R(−)
a
b ∧R(−)

b
a

}
, (5.105)

where ∂M4 denotes de boundary of M4. Let us consider the five- and four-dimensional
cases separately:
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• For the five-dimensional black holes, we have M4 = E4 and, therefore, ∂M4 = S3
∞.

For the first term, we find

1

4π2α′

∫
S3
∞

H =
1

4π2α′

∫
S3
∞

?σdZ0 =
Q0

α′
+ n− 1 . (5.106)

The second term is just the sum of the instanton numbers of the n BPST instantons,
which is just n:

1

16π2

n∑
i=1

∫
E4

FAi ∧ FAi = n , (5.107)

Finally, the last term can be evaluated by using (F.9), and the result is

1

16π2

∫
E4

R(−)
a
b ∧R(−)

b
a = −1 . (5.108)

Plugging these partial results into (5.105), we find that

Q0 = α′N , (5.109)

which is exactly what one obtains at zeroth order in α′. This is what one could
expect on general grounds since the α′ corrections do not introduce localized sources
but delocalized ones that contribute, instead, to the S5-charge, which is defined as

QS5 ≡
1

4π2α′

∫
S3
∞

H = N + n− 1 . (5.110)

This formula tells us that each of the BPST instantons carries +1 unit of S5-charge
whereas a stack of solitonic 5-branes carries N − 1 units of S5-charge instead of
N , which would be the charge that one would obtain ignoring the higher-curvature
terms in (5.104). A nice property of this formula is that it is exact at all orders in
α′, as it comes from the evaluation of a topological invariant. Therefore, continuous
deformations of the torsionful spin connection, such as those introduced by the α′-
corrections, do not change this result.

• In the four-dimensional case,M4 is the Gibbons-Hawking space, whose boundary is
∂M4 = S1

η × S2
∞. Then, the first term now gives

1

4π2α′

∫
S1
η×S2

∞

H =
1

4π2α′

∫
S1
η×S2

∞

?σdZ0 =
2Rηq0

α′
+

n− 2

W
. (5.111)

The instanton number can be easily computed by making use of (4.66). We obtain:

1

16π2

n∑
i=1

∫
M4

FAi ∧ FAi =
1

16π2

n∑
i=1

∫
M4

d ?σ dF
(
r;λ−2

i

)
=

n

W
. (5.112)

As we see, the instanton number is quantized although its value is not necessarily an
integer. This is related to the presence of the lens space S3/ZW , and it shows that
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these instantons, when W > 1, are somewhat exotic in a mathematical sense. Other
solutions with rational but discrete instanton number are known in the literature,
see e.g. [250,251].

Finally, in order to compute the last integral, we make use again of (F.9), obtaining

1

16π2

∫
M4

R(−)
a
b ∧R(−)

b
a = − 1

16π2

∫
M4

d ?σ d [F (r; q0) + F (r; qH)] = − 2

W
.

(5.113)

Substituting these results into (5.105), we find that

q0 =
α′N

2Rη
, (5.114)

and that the S5-charge is in this case given by

QS5 = N +
n− 2

W
. (5.115)

Comparing this formula with the one obtained in the five-dimensional case, Eq. (5.110),
we observe two differences. The first one is the factor of 1/W which is due to the
presence of the lens space S3/ZW , as we have already explained. The second dif-
ference is the extra contribution from the torsionful spin connection (5.113) due to
the KK monopole, which carries −1/W units of S5-charge. That a KK monopole of
unit charge (W = 1) carries −1 unit of S5-charge was already known [252] and, in
fact, it has played an important rôle in testing heterotic/type II S-duality.

5.3.2 Fundamental strings

The coupling of a fundamental string with winding number w to the KR 2-form B is given
by the following Wess-Zumino term

w

2πα′

∫
W 2

B , (5.116)

where W 2 denotes the worldsheet. When this contribution is taken into account, the
equation of motion of the Kalb-Ramond 2-form is modified as follows

d
(
e−2φ ? H

)
= w (2π`s)

6 ?8 δ , (5.117)

where ?8δ is by definition an 8-form that is normalized to 1 when integrated over the
transverse space to the string: M4 × T4. Applying Stokes’ theorem, we find

w =
1

(2π`s)
6

∫
∂M4×T4

e−2φ ? H . (5.118)

Let us point out that this is the same formula that one would use to compute the wind-
ing number at zeroth order in α′ since the equation of motion of B does not receive α′
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corrections (at least at the order we are working). This was also the reason why the func-
tion Z− did not receive any correction. Then, the relation between the winding number
w and the electric charge Q− is the same. If we compute this integral in the five- and
four-dimensional cases, we get

Q− = g2
sα
′w , and q− =

g2
sα
′

2Rη
w . (5.119)

5.3.3 Momentum wave

The simplest way to find the relation between Q+ and n first at zeroth order in α′ is
to T-dualize our solutions in the z-direction since we know that this operation, at the
microscopic level, interchanges winding w and momentum n

n→ n′ = w , w → w′ = n , (5.120)

and,

gs → g′s =
gs`s
Rz

, Rz → R′z =
α′

Rz
. (5.121)

As we have seen in Section 4.5, at the macroscopic (supergravity) level, it interchanges

the functions Z(0)
+ and Z(0)

− or, equivalently, the charges Q+ and Q−. Therefore, one has

Q+ = Q′− = α′g′s
2
w′ = α′

(
gs`s
Rz

)2

n ⇒ Q+ =
g2
sα
′2

R2
z

n . (5.122)

The same operation in the four-dimensional case gives

q+ = q′− =
g′s

2α′

2Rη
w′ ⇒ q+ =

g2
sα
′2

2R2
zRη

n . (5.123)

Since the α′ corrections do not introduce localized sources, the relations (5.122) and
(5.123) still hold after the α′ corrections have been taken into account. This means, in
the language used in this chapter, that the near-horizon charges Q+ and q+ are the ones
which are proportional to n, the quantized momentum.

In order to quantify the effect of the higher-derivative corrections on the momentum
(P), we find convenient to define the asymptotic momentum charge QP as

QP ≡
R2
z

g2
sα
′2Q

∞
+ = n

(
1 +

2

N

)
, QP ≡

2R2
zRη

g2
sα
′2 q

∞
+ = n

(
1 +

2

NW

)
. (5.124)

As we see, QP, which in the absence of the α′ corrections is just equal to the quantized
momentum n, receives now O(1/N) corrections. This charge (QP) is expected to coincide
with the charge carried by the Kaluza-Klein vector associated to the compactification on
the circle S1

z. Nonetheless, in order to prove this rigorously, one needs the compactification
of the α′-corrected action (4.22), which is something that has not been available until very
recently [253,254]. Due to the presence of Chern-Simons terms in the action, we expect to
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be able to define more than one notion of charge (as it happens with the S5-brane charge)
which would correspond to what we call here the near-horizon and asymptotic charges.

5.3.4 Mass and T-duality

Let us close this section by rewriting the mass of the five- and four-dimensional black holes
in terms of the quantities that we have just defined. In the five-dimensional case, we get

M =
Rz
g2
sα
′QS5 +

QP

Rz
+
Rz
α′
QF1 , (5.125)

where we have introduced QF1 ≡ w for convenience. In the four-dimensional case, we get
an additional contribution from the KK monopole,

M =
Rz
g2
sα
′QS5 +

QP

Rz
+
Rz
α′
QF1 +

RzR
2
η

g2
sα
′2 QKK , (5.126)

where QKK ≡W .

Notice that both expressions are left invariant under the following transformations

gs → g′s =
gs`s
Rz

, Rz → R′z =
α′

Rz
, (5.127)

and

QP → Q′P = QF1 , QF1 → Q′F1 = QP , (5.128)

which clearly suggest that these would be the corrected version of the microscopic T-
duality transformations (5.120). This implies that the transformation of the momentum
n and the winding w is

n→ n′ =
w

1 + 2
NW

≈ w
(

1− 2

NW

)
, w → w′ = n

(
1 +

2

NW

)
, (5.129)

which reduces to (5.120) in the large-charge regime.

At this level, the proposed modification of the T-duality rules are just based on
the observation that the mass remains invariant under these transformations. However,
it turns out that these modifications are also predicted by the α′-corrected Buscher rules
proposed in [117]. Let us illustrate this with the T-dualization of the four-dimensional
solutions along z, which amounts to the following changes in the functions —see Sec-
tion 4.5—

Z− → Z ′− = 1 +
1

r

(
q+ +

α′q+

2qHq0

)
,

(5.130)

Z+ → Z ′+ = 1 +
1

r

(
q− −

α′q−
2qHq0

)
+

α′q−
2qHq0

r2 + r(q0 + q+ + qH) + qHq0 + qq+ + q0q+

(r + qH)(r + q0)(r + q+)
.
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Hence, we see that the net effect is

q+ → q′+ =

(
q− −

α′q−
2qHq0

)
, q− → q′− =

(
q+ +

α′q+

2qHq0

)
. (5.131)

Now, it is straightforward to check by using the expressions of the charges q0, q+, q− and
qH in terms of N,n,w and W derived before that (5.131) is equivalent to (5.129).

5.4 Black-hole entropy

In this section, we compute the Wald entropy of the α′-corrected black holes. Following
[58,245], the Wald entropy SW in a D-dimensional theory is

SW = −2π

∫
Σ
dD−2x

√
|h| EabcdR εabεcd , (5.132)

where Σ is a cross-section of the horizon, h is the determinant of the metric induced on
Σ, εab is the binormal to Σ,7 and, finally, EabcdR is the equation of motion one would obtain
for the Riemann tensor Rabcd treating it as an independent field of the theory, i.e.

EabcdR =
1√
|g|

δS

δRabcd
, (5.133)

where S is the D-dimensional action.

We find convenient to apply the formula in D = 6 dimensions, after performing the
trivial compactification on T4. The six-dimensional action is

S =
g2
s

16πG
(6)
N

∫
d6x
√
|g|e−2φ

{
R− 4 (∂φ)2 +

1

2 · 3!
HµνρH

µνρ

−α
′

8

[
FAµνF

Aµν −R(−)µνab
R(−)

µνab
]

+O
(
α′3
)}

,

(5.134)

where

G
(6)
N =

G
(10)
N

(2π`s)
4 . (5.135)

In order to apply Wald’s formula, it is convenient to recast the six-dimensional
string-frame metric as follows

ds2
s,6 = eφ−φ∞

[
(k/k∞)−2/3ds2

E,5 − (k/k∞)2
(
dz +A+

)2]
, (5.136)

where A+ =
(
Z−1

+ − 1
)
dt and

ds2
E,5 = (`/`∞)−1 ds2

E,4 − (`/`∞)2 (dη + χ)2 , (5.137)

7The binormal εab is normalized so that εabε
ab = −2.
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is the five-dimensional metric in the modified Einstein frame. The four-dimensional one,
ds2

E,4, the dilaton φ and the Kaluza-Klein scalars k and ` are given by

ds2
E,4 = e2Udt2 − e−2U

(
dr2 + r2dΩ2

(2)

)
,

e2φ = e2φ∞
Z0

Z−
, k = k∞

Z1/2
+

Z1/4
0 Z

1/4
−

, ` = `∞
Z1/6

0 Z1/6
+ Z1/6

−
H1/2

,

(5.138)

where

e−2U =
√
Z0Z+Z−H . (5.139)

We define, for later convenience, the following sechsbein basis:

e0,1,2,3 = e
φ−φ∞

2

(
k

k∞

)− 1
3

(`/`∞)−1/2 v0,1,2,3, (5.140)

e4 = e
φ−φ∞

2

(
k

k∞

)− 1
3

`/`∞ (dη + χ) , (5.141)

e5 = e
φ−φ∞

2
k

k∞

(
dz +A+

)
, (5.142)

where v0,1,2,3 is the vierbein asociated to the four-dimensional metric ds2
E,4,

v0 = eU dt , v1 = e−U dr , v2 = e−Ur dθ , v3 = e−Ur sin θ dφ . (5.143)

In this frame, we have that the non-vanishing component of the binormal is ε01 = −ε10 = 1.

The volume element is given by√
|h| d4x = e2(φΣ−φ∞)√q0q+q−qH sin θ dθ dφ dη dz , (5.144)

where φΣ means the dilaton evaluated at the horizon.

It turns out that the result obtained when Wald’s formula is directly applied to
the above action is not invariant under local Lorentz transformations. This is due to the
presence, once more, of the Chern-Simons term ωL

(−) in the definition of H. Although it
would be desirable to derive from first principles a generalization of Wald’s formula which
can be applied to actions that contain explicit occurrences of Chern-Simons terms, this
seems to be a tough task and we are not going to deal with it here.8 Instead, it is possible
to rewrite the action in a smart way so as to avoid the problem with the Chern-Simons,
see e.g. [246,247].

In first place, let us modify the action (5.134) by adding the following surface term
—which does not modify the entropy according to [245]—

8Recent progress in this direction has been made in [253–255].
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S̃ = S +
g2
s

16πG
(6)
N

∫
H̃ ∧

(
H − α′

4
(ωL

(−) + ωYM)

)
, (5.145)

where

H̃ = e−2φ ? H ≡ dB̃ . (5.146)

Then, let us take H as an auxiliary field and B̃ as the dynamical one. The equation of
motion of B̃ gives the Bianchi identity of H whereas the Bianchi identity, dH̃ = 0, is the
former equation of motion of the Kalb-Ramond 2-form B. The next step is to eliminate
H in terms of H̃ from the action S̃ by using its equation of motion or, equivalently, its
definition (5.146). Then, we have

S̃ = S′ − g2
s

16πG
(6)
N

α′

4

∫
H̃ ∧ ωL

(−) , (5.147)

where

S′ =
g2
s

16πG
(6)
N

∫
d6x
√
|g|
{
e−2φ

[
R− 4 (∂φ)2

]
+

1

2 · 3!
e2φH̃µνρH̃µνρ

−α
′

4
H̃µνρ

εµνραβγ ωYM
αβγ

(3!)2
√
|g|

+
α′

8
e−2φ

(
FAµνF

Aµν −R(−)µνab
R(−)

µνab
)}

.

(5.148)

The unique term of this piece of the action that contributes to the Wald entropy is the
Ricci scalar since the curvature of the torsionful spin connection vanishes when evaluated
at the horizon: R(−)

a
b|Σ = 0. Then, the contribution from S′ is

1√
|g|

δS′

δRabcd
=
e−2(φ−φ∞)

16πG
(6)
N

ηc[aηb]d . (5.149)

This gives the leading contribution to the Wald entropy, the Bekenstein-Hawking term.

Let us now analyze the second term in (5.147). First, let us split the Chern-Simons
3-form of the torsionful spin connection in two pieces,

ωL
(−) = ωL +A , (5.150)

where ωL is the Chern-Simons 3-form of the Levi-Civita spin connection ωab and where
the 3-form A is given by

A =
1

2
d
(
ωab ∧Hb

a

)
+

1

4
Hb

a ∧DHb
a −Rab ∧Hb

a +
1

12
Ha

b ∧Hb
c ∧Hc

a , (5.151)

where Ha
b ≡ Hµ

a
b dx

µ and DHa
b = dHa

b + ωac ∧Hc
a − ωcb ∧Ha

c. The first term can
be ignored since it gives a total derivative. Then, we are left with the third term, whose
contribution is found to be
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1√
|g|

δ

δRabcd

{
− g2

s

16πG
(6)
N

α′

4

∫
H̃ ∧ A

}
=
e−2(φ−φ∞)

16πG
(6)
N

α′

8
HabeHe

cd . (5.152)

The last contribution due to ωL is also the most subtle. In order to compute it, we
are going to take the variation of the corresponding piece of the action with respect to
the only component of the Riemann tensor which is relevant for the application of Wald
formula, the 0101 component:

1√
|g|

δ

δR0101

{
− g2

s

16πG
(6)
N

α′

4

∫
H̃ ∧ ωL

}
=

g2
s

16πG
(6)
N

α′

4

εµνραβγH̃αβγ

(3!)2
√
|g|

δωL
µνρ

δR0101

=
e−2(φ−φ∞)

16πG
(6)
N

α′

4

Hµνρ

3!

δωL
µνρ

δR0101
,

(5.153)

where we have used that9

Hµνρ =
1

3!
e2φ ε

µνραβγ√
|g|

H̃αβγ . (5.154)

Finally, in order to express the dependence of the Chern-Simons 3-form on the Riemann
tensor in a covariant form, we are going to use that in the near horizon limit, the six-
dimensional metric is the metric of the direct product AdS3 × S3/ZW and that only the
AdS part gives a contribution to (5.153). The last piece of information that we need is
that for three-dimensional metrics that have a spacelike isometry —such as the metric of
AdS3—,

ds2 = e2ϕ(y)
[
γmn dy

mdyn −
(
dξ + Vm(y) dym

)2]
, m, n = 0, 1 , (5.155)

the Chern-Simons 3-form is given by [256]

ωL
01ξ =

εmn

2

[
R(γ) (dV )mn + (dV )mp (dV )pq (dV )qn − ∂m

(
ωn

pq (dV )pq

)]
, (5.156)

where R(γ) is the Ricci scalar of the two dimensional metric γmn and ωmn the spin-
connection 1-form.10 Particularizing this expression for the case at hands (y0 = t, y1 = r
and ξ = z), we find

δωL
trz

δR0101
= −1

2
e
φ−φ∞

2

(
k

k∞

)2 (
dA+

)
tr
, (5.157)

9In the conventions of [111], ε0...d−1 = +1 and ε0...d−1 = (−1)d−1|g|, where d is the spacetime dimension
and g the metric in mostly minus signature.

10Underlined and non-underlined indices are world and flat indices respectively.
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where we have used that e2ϕ = eφ−φ∞
(

k
k∞

)2
and V = A+. Then, coming back to the

Wald entropy, we have

SW =− 2π

∫
Σ
d4x
√
|h| EabcdR εabεcd

=− 8π
√
q0q+q−qHe

2(φΣ−φ∞)

∫
sin θ dθ dφ dη dz E0101

R ,

(5.158)

where

E0101
R =− e2(φ∞−φΣ)

32πG
(6)
N

[
1 +

α′

4

(
−H01dH01d + e(φ−φ∞)

(
k

k∞

)2

HtrzF+
tr

)∣∣∣∣∣
Σ

]

=− e2(φ∞−φΣ)

32πG
(6)
N

(
1 +

α′

2q0qH

)
.

(5.159)

Finally, substituting in (5.158), we obtain

SW =
π

G
(4)
N

√
q0q+q−qH

(
1 +

α′

2q0qH

)
, (5.160)

which can be rewritten in terms of the parameters characterizing the extended objects by
using Eqs. (5.114), (5.119), (5.123), and (5.33), getting:

SW = 2π
√
nwNW

(
1 +

2

NW

)
. (5.161)

The entropy for the three-charge black holes can be recovered from this expression by just
setting W = 1, as the near-horizon limit is exactly the same except for the quotient of the
3-sphere S3 by ZW , owed to the presence of the KK monopole.

A different derivation of the Wald entropy for this class of black holes has been
recently provided in [253, 254], further supporting the robustness of the result presented
here.

At this point, we can ask ourselves if the expression (5.158) will suffer from α′2

corrections, which would be what one should expect on general grounds. The case we are
dealing with is quite special because, as we have shown, the near-horizon limit, AdS3 ×
S3/ZW × T4, remains uncorrected at first order in α′. Furthermore, since the curvature
of the torsionful spin connection vanishes for this background, we expect it to remain
invariant at all orders in α′. Under this premise, it was shown in [257,258] that the Wald
entropy does not receive any further α′ corrections. Hence, the formula (5.161) can be
trusted at all orders in the α′ expansion.
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5.5 Conclusions

In this chapter we have found the first-order α′ corrections to two well-known families of
heterotic black holes in five and four dimensions [146,147] whose ten-dimensional descrip-
tion consists of a superposition of S5-branes, fundamental strings, a momentum wave, and,
in the four-dimensional case, a KK monopole.

At zeroth order in α′, the expressions for the ADM mass M and the Bekenstein-
Hawking entropy SBH in terms of the number of S5-branes, N , the momentum of the wave,
n, the winding number of the fundamental string, w, the charge of the KK monopole, W ,
and the moduli parameters Rz, Rη, gs and α′ = `2s are,

• 3-charge black holes:

M =
Rz
g2
s`

2
s

N +
n

Rz
+
Rz
`2s
w , (5.162)

SBH = 2π
√
nwN . (5.163)

• 4-charge black holes:

M =
Rz
g2
s`

2
s

N +
n

Rz
+
Rz
`2s
w +

RzR
2
η

g2
sα
′2 W , (5.164)

SBH = 2π
√
nwNW . (5.165)

At first order in α′, the main lesson to extract from our studies is that one has to
properly distinguish between the asymptotic or Maxwell S5-brane and momentum charges
and the number of S5-branes, N , and quantized momentum, n. As we have seen, this is
due to the fact that the α′ corrections introduce delocalized sources of momentum and
S5-brane charge. In the latter case, the different contributions to the S5-brane charge are
very well understood, thanks in part to the work done in Chapter 4. In first place, we have
the leading contribution from the own S5-branes, which is normalized to be just equal to
the number of branes, N , and which correspond to the zeroth order result. Then, we have
the subleading contributions coming from the instanton number of the gauge fields and
of the torsionful spin connection. The latter arises because the S5-branes and the KK
monopole act as sources of two instantons that live each in one of the su±(2) subspaces in
which so(4) ∼= su+(2) ⊕ su−(2) can be decomposed. This reveals, on the one hand, that
KK monopoles carry S5-brane charge —something that was well-known [252] and that
has indeed played a fundamental rôle in S-duality of heterotic/type IIB—, and, on the
other hand, that the S5-brane charge of a stack of N S5-branes is not simply N but gets
a (negative) correction of order O (1), which of course is negligible in the N →∞ limit.

Given this, one can write the expressions for the mass and the black-hole entropy
using both types of variables and this turns out to be crucial for the comparison with the
exhisting results in the literature. Let us collect the different expressions here for the sake
of completeness,
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• 3-charge black holes:

M =
Rz
g2
s`

2
s

(N + n− 1) +
n

Rz

(
1 +

2

N

)
+
Rz
`2s
w

(5.166)

=
Rz
g2
s`

2
s

QS5 +
QP

Rz
+
Rz
`2s
QF1 ,

SW = 2π
√
nwN

(
1 +

2

N

)
(5.167)

= 2π
√
QF1QP (QS5 + 3− n) ,

where we have used that the expression of the asymptotic charges in terms of n,w
and N —see Eqs. (5.124) and (5.110)— is

QP = n

(
1 +

2

N

)
, QF1 = w , QS5 = N + n− 1 . (5.168)

• 4-charge black holes:

M =
Rz
g2
s`

2
s

(
N +

n− 2

W

)
+

n

Rz

(
1 +

2

NW

)
+
Rz
`2s
w +

RzR
2
η

g2
sα
′2 W

(5.169)

=
Rz
g2
s`

2
s

QS5 +
QP

Rz
+
Rz
`2s
QF1 +

RzR
2
η

g2
sα
′2 QKK , (5.170)

SW = 2π
√
nwNW

(
1 +

2

NW

)
(5.171)

= 2π
√
QF1QP (QS5QKK + 4− n),

where

QP = n

(
1 +

2

NW

)
, QF1 = w , QS5 = N +

n− 2

W
, QKK = W . (5.172)

This is the main result of this chapter. We can now compare the expressions obtained
here for the black-hole entropy with those obtained in [243] by using AdS/CFT methods.
We observe that both agree when the variables chosen to write the black-hole entropy
are the asymptotic charges and if the number of instantons, n, is set to zero. This was
expected since the analysis performed in the that reference does not take into account the
gauge fields.

Let us emphasize that although our original motivation was simply to study the
next-to-leading order in α′ corrections to heterotic black holes, we have been able to
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actually obtain certain expressions that are exact to all orders in the α′ expansion, even if
to obtain them we have made an explicit use of the first-order α′-corrected solutions. One
of these expressions is the black-hole entropy, whose exactness is based on the assumption
that the near-horizon geometry is not modified by the α′ corrections. In addition to this,
we have also argued that the S5-brane charge, which is obtained through the evaluation of
a topological invariant, is not expected to be modified by the higher-order α′ corrections,
see e.g. [259]. Finally, the authors of [246] used these two facts to show that, under very
reasonable assumptions, the relations between the asymptotic charges and the parameters
that specify the sources of the system N,n,w and W are expected to be exact all orders
in the α′ expansion.

So far, we have restricted our attention to black-hole solutions which in the α′ → 0
limit have a horizon with a radius much larger than the string scale, RH >> `s. At
this point, the next question would be to ask ourselves what occurs if, for instance, we
set one of the black-hole charges to zero. This would imply that the horizon shrinks to
zero size in the α′ → 0 limit since the horizon area of these black holes is proportional
to the square root of the product of the charges. Then, it would be interesting to study
if the α′ corrections can stretch the horizon, thus covering the naked singularity that is
left behind. This naive question is deeper than it seems since it turns out that some
of the corresponding ten-dimensional backgrounds describe very well-known system in
string theory whose degeneracy of BPS sates has been found to be non-vanishing, e.g.:
[134,260]. Therefore, an agreement between the macroscopic (black-hole) entropy and the
microscopic counting of BPS states is missing in these cases as the Bekenstein-Hawking
entropy vanishes. However, it may happen, as suggested in [135], that the Wald entropy for
these kind of small black holes could give a finite answer in agreement with the microscopic
result. This is a subtle issue that we shall study in detail in the next two chapters.
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6
The small black hole illusion

Consider a fundamental heterotic string carrying winding number w and momentum n
charges along a circle S1

z [130, 134], which forms part of the compact space T4 × S1
z × S1

η.
For large values of n and w, the entropy associated to the degeneracy of these states is

Smicro ≈ 4π
√
nw , n,w >> 1 . (6.1)

It was soon suggested that this system, among others, could be also represented as a black
hole at strong coupling [66, 261]. In this case the black hole would be small, because the
event horizon scale would be of the order of the string length.

Working with the heterotic effective action at lowest order in the perturbative expan-
sion, a solution to the equations of motion carrying the same two charges and preserving
the same amount of supersymmetry as this configuration was found in [262]. That solution
is characterized by a singular horizon of vanishing area and entropy, so higher-curvature
terms in the effective expansion cannot be ignored in the near-horizon region. This just
means that the effective classical description fails to give a good approximation of the
system. In a seminal article [135] it was then conjectured that the higher-curvature cor-
rections might somehow render the horizon regular, and that the Wald entropy of such
black hole would match the microscopic value (6.1).

Always assuming the existence of a regular horizon and making use of the associated
attractor mechanism, a precise matching of the macroscopic and microscopic computations
of the entropy was later reported in [263] —see also [264]. This correlation was widely
interpreted as a proof of the resolution of the horizon previously conjectured. However,
in order to firmly establish if there is causation, there are certain aspects of these studies
that need clarification.

In the first place, the techniques employed in those articles only allow for the study
of the near-horizon regime, but the analytic construction of a full black hole solution
interpolating between those and asymptotic Minkowski space is missing. According to
numerical studies [265, 266], the solution exists and its causal structure is identical to
that of four-charge regular black holes.1 Nevertheless, in order to fully understand the
system studied an analytic solution is needed, specially if we take into consideration that
higher-curvature corrections introduce significant global interactions, as we have seen in
Chapter 5.

1In these studies the asymptotic solution presents oscillations, which should be removable by appropriate
field redefinitions by consistency of string theory [265,267]. As a consequence of a lemma proved in [108],
the supersymmetric formulation of the heterotic theory that we use is free of this undesired feature and
our solutions do not present asymptotic oscillations.
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Chapter 6. The small black hole illusion

In the second place, it is certainly surprising that the resolution of the small black
hole described in [263–266] is achieved with the inclusion of only curvature squared terms.
Since the departing system is singular, there is no reason to expect that further higher-
derivative corrections can be disregarded for that purpose.

And in the third place, the resolution of similar singular systems, like a Type II string
with winding and momentum charges, has not been observed. The different behavior of
small black holes in diverse theories raises a puzzle whose resolution has remained unclear
so far.

In this chapter we argue that the resolution of the heterotic small black hole via
higher-curvature corrections does not actually occur. To do so, we apply the results of the
previous chapter, where the analytic construction of general four-charge, supersymmetric
black holes including curvature squared terms has been performed. A simple argument
illustrates that apparently regular four-dimensional, two-charge black holes contain a cur-
vature singularity when embedded in the heterotic theory.

We claim that the resolution of the horizon previously reported is an illusion; the
higher-curvature corrections do not really resolve the singularity of [262]. Instead, we find
a special four-charge black hole whose entropy is precisely given by 4π

√
nw and whose

asymptotic S5-brane charge vanishes, but that does not actually describe the two-charge
system. We call this solution a fake small black hole and we argue that the resolution of
the horizon observed in the literature corresponds to this system.

Although this might seem to represent a step back in the understanding of small
black holes, we actually believe that our result clarifies the situation. It puts every small
black hole at the same qualitative level; the system is non-perturbative in α′ and cannot
be properly described incorporating a subgroup of the higher-curvature corrections. More-
over, we recall that the heterotic small black hole can be resolved in the type IIB frame
using the uncorrected effective action [73, 200], via smooth geometries whose degeneracy
agrees with (6.1), an observation that gave rise to the fuzzball proposal [74,268].

6.1 The zeroth-order solution

Let us review the singular small black hole solution. We shall ignore, for the time being, the
higher-derivative corrections. We find convenient to first present the four-charge regular
black holes and then particularize to the two-charge case. The ten-dimensional embedding
of the four-charge black holes is given by

ds2 =
2

Z−
du

(
dt− Z+

2
du

)
−Z0 dσ

2 − dzαdzα , (6.2)

H = dZ−1
− ∧ du ∧ dt+ ?σdZ0 (6.3)

e2φ = g2
s

Z0

Z−
, (6.4)

where ds2 denotes the ten-dimensional metric in the string frame and ?σ is the Hodge dual
associated to the four-dimensional metric dσ2, which is a Gibbons-Hawking space:
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dσ2 = H−1 (dη + χ)2 +H dxidxi , dH = ?3dχ . (6.5)

Six of the coordinates are compact: the coordinates zα parametrize a four-torus T4 with
no dynamics, while z = t − u and η have respective periods 2πRz and 2πRη and they
parametrize two circles that we denote S1

z and S1
η.

The functions Z0,± and H that determine the solution are given by

Z0,+,− = 1 +
q0,+,−
r

, and H = 1 +
qH
r
, (6.6)

where r =
√
xixi is the radial coordinate of E3. Notice that all of these functions are

harmonic in this space. This solution represents the superposition of:

• a string wrapping the circle S1
z with winding number w and momentum n charges,

• a stack of N solitonic 5-branes (S5) wrapped on T4 × S1
z,

• and a Kaluza-Klein monopole (KK) of charge W associated with S1
η.

We recall that the charge parameters q0, q+, q− and qH are given in terms of the
integer numbers n, w, N and W according to

q0 =
α′

2Rη
N , q+ =

g2
sα
′2

2R2
zRη

n , q− =
g2
sα
′

2Rη
w , qH =

WRη
2

. (6.7)

After compactification in T4 × S1
z × S1

η, the lower-dimensional spacetime metric in
the Einstein frame is

ds2
E,4 =

dt2√
Z+Z−Z0H

−
√
Z+Z−Z0H

[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
. (6.8)

For non-vanishing charges this geometry represents an extremal black hole whose horizon
is placed at r = 0 and its area is AH = 2π

√
nwNW .

The small black hole described in the introduction is that without KK monopole and
S5 brane: N = W = 0. In that case, at r = 0 there is still a horizon because gtt vanishes.
However, its area is zero and, even worse, its curvature diverges. Hence, classically, these
solutions have singular horizon and vanishing Bekenstein-Hawking entropy.2 The dilaton
eφ vanishes at the horizon, so loop corrections can be neglected in this region, but the
singularity in curvature signals that the tree-level supergravity description of this system
is not valid for small values of r. When trying to describe the physics near the horizon,
one is forced to include the tower of higher-curvature corrections to the heterotic effective
action [108]. For quite some time, it has been believed that their inclusion would render
the horizon regular and make the value of the Wald entropy of the solution coincide with
that of the microscopic entropy (6.1).

Let us discuss how the first set of these corrections, which are quadratic in the
curvature, alter relevant aspects of the solutions.

2This statement holds when any of the four charges vanishes.
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6.2 Two-charge solution at first order in α′

The origin of part of the α′ corrections in the context of the heterotic superstring has
already been discussed in Chapter 4. They arise from the supersymmetrization of the
Lorentz Chern-Simons 3-form of the torsionful spin connection. We are not going to enter
into more details here, since all we need is to apply the results derived in that chapter to
the solution describing the two-charge small black hole. As we have seen in the previous
section, it is obtained by setting q0 = qH = 0, so that

Z± = 1 +
q±
r
, and Z0 = H = 1 . (6.9)

The corrected solution has exactly the same form as (6.2)-(6.4) but with the function Z+

now given by

Z+ = 1 +
q+ + α′δq+

r
− α′q+q−

2r3(r + q−)
+O(α′2) . (6.10)

The remaining functions, Z−,Z0,H, do not get corrected at first order in α′. Thus, they
are given by the expressions appearing in Eq. (6.9). By looking at the expression for
Z+

3, we see that for the two-charge system limr→0Z+ ∼ 1/r3, which is just the right
behavior to obtain a horizon with non-vanishing area in (6.8). However, this does not fix
the singularity problem, since the Kaluza-Klein scalars as well as the curvature of the full
ten-dimensional solution are still divergent at r = 0. In particular, the ten-dimensional
Ricci scalar is given by

R =
7q2
−

2r2 (r + q−)2 . (6.11)

This implies that the expression for Z+ cannot be trusted near r = 0, since in its derivation
it is assumed that the ten-dimensional curvature is regular at several stages. The conclu-
sion is that the perturbative expansion in α′ is not valid near r = 0 when q0 = qH = 0,
and one would need to include the full tower of higher-curvature corrections.

From these observations we doubt there exists a true resolution of the heterotic
small black hole, as it does not seem that we can modify the structure of the fields4, and
a finite sized horizon built with only two functions active (Z+ and Z−) is headed towards
a singularity in curvature. A similar analysis can also be performed for other singular
solutions, like those containing three type of localized sources (say that we add S5-brane
sources), with the same conclusion. Corrections of quadratic order in curvature are not
sufficient to resolve the singular black hole.

6.3 Delocalized sources and fake small black holes

This indicates that the four parameters q0, q+, q−, qH must be non-vanishing if we want
to describe a consistent black hole solution with a regular horizon, even if we include

3Here α′δq+ << q+ is an integration constant whose relation with q± is undetermined due to the
singular behaviour of the system.

4The structure of the fields is tightly constrained by supersymmetry, see e.g. [249].
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quadratic curvature terms. Let us therefore consider the corrections to the zeroth-order
solution with q0q+q−qH 6= 0. These were studied in Chapter 5, where we showed that Z−
and H are uncorrected while Z0 and Z+ were given by5

Z+ = 1 +
q+

r
+
α′q+[r2 + r(q0 + q− + qH) + qHq0 + qHq− + q0q−]

2qHq0(r + qH)(r + q0)(r + q−)
+O(α′2),(6.12)

Z0 = 1 +
q0

r
− α′ [F (r; q0) + F (r; qH)] +O

(
α′2
)
, (6.13)

where

F (r; k) :=
(r + qH)(r + 2k) + k2

4qH(r + qH)(r + k)2
. (6.14)

The most important property of the corrections is that they introduce delocalized
sources so that the asymptotic charges and the near-horizon charges do not coincide. These
charges are effectively defined as the coefficient of the 1/r term in the functions Z0,±, H
when r →∞ and when r → 0, respectively. Of course, this poses the question of which of
those counts the number of the corresponding stringy objects. It is particularly relevant
for our discussion the case of S5-brane charge, codified by Z0. In the limits r → 0 and
r →∞, this function behaves as

lim
r→0
Z0 =

q0

r
, lim

r→∞
Z0 = 1 +

q0 − α′/(2qH)

r
, (6.15)

so that near-horizon and asymptotic charges do not coincide. In the language of [180],
these are respectively the brane-source and Maxwell charges.

The correct way to determine the relation between those and the number of solitonic
5-branes is to couple the theory to a stack of N of these branes. This can be done by
dualizing the Kalb-Ramond 3-form into the NSNS 7-form H̃ = dB̃ = e−2φ?H and coupling
the 6-form B̃ to the worldvolume action of N solitonic 5-branes by means of a Wess-Zumino
term, as we did in Section 5.3. The net effect is a localized source at the right-hand-side
of the Bianchi identity. Thus, the number of S5-branes in our solution may be computed
according to

N =
1

4π2α′

∫
S1
η×S2

∞

H − 1

16π2

∫
R(−)

a
b ∧R(−)

b
a . (6.16)

In the first term we used Stokes’ theorem and the integral is taken on the boundary of
the GH space (6.5), while in the second the integral is taken over the full GH space. The
result of the integration coincides with the identification in (6.7) —see Section 5.3— and
therefore it is the near-horizon charge q0 the one that counts the number of S5-branes.

On the other hand, the asymptotic charge does have a physical meaning by itself and,
moreover, gives the contribution to the mass of the black hole. The negative subtraction in
(6.15) is telling us that the higher-curvature terms introduce a screening mechanism such
that the charge and mass detected at infinity are smaller than the local charge produced
by the 5-branes:

5We point out that these expressions are only valid when both q0 and qH are non-vanishing.
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QS5 = N − 2

W
. (6.17)

The origin of the negative shift can be identified with precision. It is caused by the presence
of two self-dual gravitational instantons in the four-dimensional Gibbons-Hawking space,
one for each so(3) factor in the decomposition of the group of local Lorentz transformations
so(4) ∼= so+(3)× so−(3). The two instantons are sourced by the KK monopole and by the
stack of S5-branes respectively, and each one contributes to the asymptotic charge with a
factor of −1/W .

We obtained this result from the first-order corrected solution (6.13), which is ex-
pected to receive other corrections in the α′ expansion. However, one can see that (6.17)
is actually α′-exact and receives no further corrections. The way to prove it is to note
that the S5-brane charge is given by

QS5 =
1

4π2α′

∫
S1
η×S2

∞

H

= N +
1

16π2

∫
R(−)

a
b ∧R(−)

b
a ,

(6.18)

where in the second line we used (6.16). But now, the integral in the second line is
actually a topological invariant: it is not modified at all by continuous deformations of
the connection Ω(−)

a
b, such as the ones introduced by α′ corrections. Hence, the value of

that integral is always −32π2/W , and the S5-brane charge measured at infinity is exactly
given by (6.17).

A very important consequence of this result is that the asymptotic S5-charge vanishes
for configurations with NW = 2.

6.3.1 Fake small black holes

We are now ready to present a fake resolution of the singular small black hole. Let us
describe a four-charge black hole of the form (6.2)-(6.4) as a solution of the heterotic
effective theory that includes all the relevant terms of quadratic order in curvature. The
functions Z− and H remain uncorrected as in (6.6), while Z0 and Z+ are given respectively
by (6.13) and (6.12). The solution has a regular event horizon at r = 0, with area
AH = 2π

√
nwNW . The near-horizon geometry is AdS3 × S3/ZW × T4, and the Wald

entropy is

SW = 2π
√
QF1QP (QS5QKK + 2) , (6.19)

where

QP = n

(
1 +

2

NW

)
, QF1 = w , QKK = W . (6.20)

The crucial point is that the shift between asymptotic charge and number of branes re-
mained unnoticed, so in the preceding literature QS5 was incorrectly identified with the
number of branes. There, the parameters of the near-horizon solution are identified in
terms of the asymptotic charges using the zeroth-order solution. However, as we have
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just seen, the relation between the near-horizon parameters and the asymptotic charges
is altered when the higher-curvature corrections are included. It is for this reason that
setting QS5 = 0 does not automatically imply the absence of solitonic 5-branes.

The fake small black hole is a very special four-charge solution with NW = 2
and arbitrary n, w. It has a regular horizon and its entropy just happens to match the
value (6.1). On the other hand, it is clearly not a small black hole; it contains solitonic
five-branes and Kaluza-Klein monopole localized sources, and its asymptotic charges are
different than those of [130, 134]. One should also notice that fake small black holes are
already regular in the zeroth-order supergravity approximation.

6.4 Discussion

The resolution of this system reported in [263–266] considered regular near-horizon solu-
tions in the dual frame of Type IIA on K3×T2, using a four-dimensional effective descrip-
tion. This phenomenon was also observed directly in the heterotic string on T4 × S1

z × S1
η

in [259]. In all the cases, the S5-brane asymptotic charge, QS5, is set to zero under the
assumption that this implies the absence of S5-branes. As we just saw, that premise is
not true. On the other hand, in those works it is also stated that W = 0 but, as we have
just argued, we found this fact to be incompatible with the assumption of a regular hori-
zon. This incompatibility remains hidden in effective descriptions that only have access to
partial information of the solution. This is a crucial point that, if dismissed, can produce
the illusion of a stretched horizon. Then, from all angles, it seems the solution described
in these studies corresponds to the fake small black hole we presented above.

Our conclusions can be straightforwardly extended to five-dimensional small black
holes by using E4 for the Gibbons-Hawking space dσ2. This case is simpler because there
is no KK monopole and we get QS5 = N − 1 for the screening effect. A fake resolution
of the five-dimensional small black hole is then straightforward. In this case there is just
one solitonic 5-brane, whose asymptotic charge and mass vanish. The entropy is then
given by SW = 2π

√
QF1QP (QS5 + 3),6 which no longer happens to coincide with (6.1)

for N = 1. Notice that the resolution of five-dimensional small black holes had so far
remained uncertain —see the discussion in [259,269].

Notice that our results do not apply to the qualitatively different class of solutions
that come into existence only after the corrections are included —see [270, 271] for an
explicit example. The understanding of these black holes in the context of string theory
is still an open issue.

Before closing the chapter, we can very briefly consider the small black hole made of
a Type II string carrying winding and momentum charges. We recall that in this theory
the Bianchi identity does not receive corrections, so the charges are the same at the horizon
and asymptotically. This means that one cannot design a fake resolution of the singularity
in the terms we just described, which according to our findings clarifies why no cure for
their singularity had been reported.

6The momentum charge is given by QP = n
(
1 + 2

N

)
.
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7
Higher-derivative corrections to small black rings

In the previous chapter, we have studied if a heterotic fundamental string with winding w
and momentum n charges along a circle S1

z (usually referred to as the F1-P system) can
be described as a black hole with a regular horizon once the first-order α′ corrections have
been taken into account. We have shown that although the four-dimensional metric has
a regular horizon with finite size, the full solution is singular, as the Kaluza-Klein scalar
that measures the radius of the circle S1

z diverges at the horizon. This is reflected in ten
dimensions in a curvature singularity that tell us that the solution cannot be trusted near
the horizon, since in its derivation is assumed that the curvature is small with respect
to α′. Furthermore, we have argued that previous regularizations of four-dimensional
small black holes would correspond to a very special type of extremal black holes with
four charges (which have been dubbed fake small black holes) whose entropy happens to
coincide numerically with the microscopic degeneracy of the F1-P system [134], but which
describe a system that also contains S5-branes and KK monopoles.

We would like now to add angular momentum to the F1-P system. The degeneracy
of BPS states of this system was computed by Russo and Susskind in [260] —see also
[272,273]. The result is

Smicro = 4π
√
nw − JW , (7.1)

where J and W are the angular momentum and the winding number along the direction
of rotation. Supergravity solutions with the same conserved charges as the rotating F1-P
system were constructed in [132,133,274].1 It was shown in [275,276] that a particular class
of them gives raise to supersymmetric two-charge black rings which also have a singular
horizon with vanishing area, analogously to what occurs for small black holes. Then, the
question is: do higher-derivative corrections stretch the horizon of small black rings? Some
indirect evidence in favor was given in [277], where the entropy of five-dimensional small
black rings was related to that of static four-dimensional small black holes by making use of
the 4d-5d connection [278–281]. Furthermore, by means of a generalization of the scaling
analysis presented in [135], it was argued in [276] that the Wald entropy of the α′-corrected
small black ring would reproduce (7.1) up to an overall proportionality constant.

However, these arguments are based on certain premises that need not to be true.
On the one hand, the evidence presented in [277] is based on the regularization of four-
dimensional small black holes, which has been refuted in the previous chapter. On the
other, the scaling argument of [135, 276] only works if the correction to the Bekenstein-
Hawking entropy is finite. However, we already know —see Eqs. (5.167) and (5.171)—

1These are reviewed in Section 7.3.
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that this is not the case for small black holes and, by analogy, we expect the same for
small black rings.

These aspects could be clarified by a computing the α′ corrections to the singular
small black ring. This is the main goal of this chapter.

7.1 The effective action of the heterotic superstring

Let us briefly review the relevant information about the effective field theory of the het-
erotic superstring that we shall need in the remaining of the chapter. We are going to
assume that the string coupling constant is small so that loop or quantum corrections
can be safely ignored. Even in this limit, the effective action of the heterotic super-
string [108,109] contains an infinite tower of higher-derivative terms, although only a few
of them have been explicitly constructed. This higher-derivative expansion is usually re-
ferred to as α′-expansion since a term with 2n derivatives will be multiplied by α′n−1,
where α′ = `2s and `s is the string scale.2 For our purposes, however, it is enough to
present the action up to second order in α′. Using the conventions of [111], we have3

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g| e−2φ

{
R− 4 (∂φ)2 +

1

2 · 3!
H2 +

α′

8
R(−)µνabR(−)

µνab +O
(
α′2
)}

,

(7.2)

where G
(10)
N is the 10-dimensional Newton constant and gs is the string coupling constant.

The metric gµν is the string frame metric, φ is the dilaton and H is the 3-form field
strength of the Kalb-Ramond 2-form B, whose definition is

H = dB +
α′

4
ωL

(−) , (7.3)

where ωL
(−) is the Lorentz Chern-Simons 3-form associated to the torsionful spin connection

ωL
(−) = dΩ(−)

a
b ∧ Ω(−)

b
a −

2

3
Ω(−)

a
b ∧ Ω(−)

b
c ∧ Ω(−)

c
a , (7.4)

which in turn is defined as

Ω(−)
a
b = ωab −

1

2
Hc

a
b e
c , (7.5)

where ωab represents the Levi-Civita spin connection. Finally,

R(−)
a
b = dΩ(−)

a
b − Ω(−)

a
c ∧ Ω(−)

c
b , (7.6)

is the curvature 2-form associated to the torsionful spin connection.

2By dimensional analysis, a term with 2n derivatives must be multiplied by a coupling of dimension
length2n−2. In the case of the superstring theory, these couplings must be fully controlled by α′, which is
the unique dimensionful parameter of the theory.

3We have set to zero the gauge fields that are also active at first order in α′, which is always a consistent
truncation.
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Let us notice two important aspects of the definition (7.3). The first one is that it
implies that the Bianchi identity of H gets corrected by

dH − α′

4
R(−)

a
b ∧R(−)

b
a = 0 . (7.7)

The second one is that (7.3) is a recursive definition that one has to implement order by
order in α′. Hence, the action (7.2) and the Bianchi identity (7.7) actually contain an
infinite tower of implicit α′ corrections.

We want to emphasize that the action (7.2) makes sense only in the limit where
the higher-order α′-corrections are subleading. This occurs, on general grounds, when the
curvature is small as compared to α′, namely

α′R << 1 , (7.8)

where R denotes schematically the curvature. If this is case, then it is justified to ignore
terms with increasing number of derivatives since these will be more and more suppressed.

7.1.1 Equations of motion

In order to write the equations of motion derived from (7.2), we shall use a lemma which
was proven in [108]. The lemma states that the variation of the action with respect to the
torsionful spin connection δS

δΩ(−)a
b

is proportional to α′ and the zeroth-order equations of

motion plus O
(
α′2
)

terms. Taking this into account, let us now separate the variation of
the action with respect to the fields into explicit and implicit variations occurring through
the torsionful spin connection as follows

δS =
δS

δeaµ

∣∣∣∣∣
ex

δeaµ+
δS

δφ
δφ+

δS

δBµν

∣∣∣∣∣
ex

δBµν+
δS

δΩ(−)
a
b

[
δΩ(−)

a
b

δecρ
δecρ +

δΩ(−)
a
b

δBµν
δBµν

]
. (7.9)

Because of the aforementioned lemma, if we work perturbatively in α′ the last term above
will yield O

(
α′2
)

terms which we shall ignore. Then, taking into account only the explicit
variations, one has that the α′-corrected equations of motion are

Rµν − 2∇µ∂νφ+
1

4
HµρσHν

ρσ = −α
′

4
R

(0)
(−)µρabR

(0)
(−)ν

ρab +O
(
α′2
)
, (7.10)

(∂φ)2 − 1

2
∇2φ− 1

4 · 3!
H2 =

α′

32
R

(0)
(−)µνabR

(0)
(−)

µνab +O
(
α′2
)
, (7.11)

d
(
e−2φ ? H

)
= O

(
α′2
)
, (7.12)

where R
(0)
(−)µνab denotes the zeroth-order curvature. Therefore, the equations of motion

will be of second-order in derivatives since the quadratic-curvature terms in the action
only act as effective “sources” of energy and momentum.
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7.2 A family of α′-corrected heterotic backgrounds

7.2.1 The zeroth-order solutions

Let us consider the following field configuration at zeroth order in α′

ds2 =
2

Z(0)
−
du

(
dt+ ω(0) −

Z(0)
+

2
du

)
− dxmdxm − dzαdzα , (7.13)

B =
1

Z(0)
−

du ∧
(
dt+ ω(0)

)
, (7.14)

e2φ =
g2
s

Z(0)
−

, (7.15)

where xm, with m = 1, . . . , d−1, are the Cartesian coordinates of the Euclidean space Ed−1

where the functions Z(0)
± and the 1-form ω(0) are defined. The coordinates zα ∼ zα+2π`s,

with α = 1, . . . , 9− d, parametrize a torus T9−d with no dynamics. There is an additional
compact direction, z = t − u, which parametrizes a circle whose asymptotic radius is
denoted by Rz.

This configuration has been extensively studied in the literature, see e.g. [73,130–133,
233, 274, 276, 282–284]. It preserves half of the spacetime supersymmetries and describes,
as we will see in the next section, a rotating superposition of a fundamental string and a
momentum wave.

The zeroth-order equations of motion can be straightforwardly derived from (7.10),
(7.11) and (7.12) by just setting α′ = 0. One finds that they are satisfied by our configu-
ration if

∂2Z(0)
± = 0 , (7.16)

∂pΩ
(0)

pm = 0 , (7.17)

where ∂2 = ∂m∂m and Ω(0) = dω(0).

7.2.2 First-order α′ corrections

Assuming that we have a solution to the zeroth-order equations of motion4, let us try to
find a solution to the corrected equations of motion. For that, we will assume the same
ansatz as before, i.e.:

4Namely, two functions Z(0)
± and a 1-form ω(0) satisfying (7.16) and (7.17), respectively.
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ds2 =
2

Z−
du

(
dt+ ω − Z+

2
du

)
− dxmdxm − dzαdzα , (7.18)

B =
1

Z−
du ∧ (dt+ ω) , (7.19)

e2φ =
g2
s

Z−
, (7.20)

with

Z± = Z(0)
± + α′Z(1)

± +O
(
α′2
)
, (7.21)

ω = ω(0) + α′ω(1) +O
(
α′2
)
. (7.22)

For the sake of convenience, we define the following zehbein basis

e+ = Z−1
− du , e− = dt− Z+

2
du+ ω , em = dxm , eα = dzα . (7.23)

It is not difficult to see by using the results of Appendix F.2 that the Lorentz Chern-
Simons 3-form (7.4) vanishes for our ansatz. Then, we find that the form of H is exactly
the same as in the zeroth-order case

H = dB =
∂mZ−
Z2
−

dxm ∧ (dt+ ω) ∧ du− 1

Z−
Ω ∧ du , (7.24)

where Ω = dω. This implies that the conditions imposed by the equation of motion of the
Kalb-Ramon 2-form, Eq. (7.12), are exactly those that we already found at zeroth order
in α′, namely

∂2Z− = O
(
α′2
)
, (7.25)

∂pΩpm = O
(
α′2
)
. (7.26)

As a consequence of supersymmetry [249], the equation of motion of the dilaton is
also satisfied if (7.25) holds. For the Einstein equations (7.10), we find that the +− and
+m components are satisfied if (7.25) and (7.26) hold, whereas the ++ component gives
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Z(0)
−
2
∂2Z+ =− α′R(0)

(−)+mn+R
(0)
(−)+mn− +

α′

4
R

(0)
(−)+mnpR

(0)
(−)+mnp +O

(
α′2
)

=α′Z(0)
−

{
−1

2

(
∂m∂nZ(0)

+ −
∂mZ(0)

+ ∂nZ(0)
−

Z(0)
−

)(
∂m∂nZ(0)

−

Z(0)
−

−
∂mZ(0)

− ∂nZ(0)
−

(Z(0)
− )2

)

+
1

4
Z(0)
− ∂m

(
Ω

(0)
np

Z(0)
−

)
∂m

(
Ω

(0)
np

Z(0)
−

)}
+O

(
α′2
)
.

(7.27)

This equation can be rewritten using that Z(0)
± and ω(0) satisfy (7.16) and (7.17). We

obtain

∂2

{
Z+ − α′

Ω(0)
mnΩ(0)mn − 2∂mZ(0)

+ ∂mZ(0)
−

4Z(0)
−

}
= O

(
α′

2
)
, (7.28)

whose solution is

Z+ = Z(0)
+ + α′

Ω(0)
mnΩ(0)mn − 2∂mZ(0)

+ ∂mZ(0)
−

4Z(0)
−

+O
(
α′2
)
, (7.29)

with Z(0)
+ harmonic in Ed−1. The remaining components of Einstein’s equations are auto-

matically satisfied for our ansatz.

7.3 Small black rings from rotating strings

Let us discuss a particular class of solutions to which the results of Section 7.2 can be
applied. These can be derived from the ones obtained originally in [132, 133], where also

dependence in u is allowed. The functions Z(0)
± and the 1-form ω(0) are given by

Z(0)
− = 1 +

q−
||xm − Fm||d−3

, (7.30)

Z(0)
+ = 1 +

q+ + q−Ḟ
2

||xm − Fm||d−3
, (7.31)

ω(0)
m =

q−Ḟ
m

||xm − Fm||d−3
, (7.32)

where Fm = Fm(u) are arbitrary functions of u = t− z, q− and q+ are constants and the
dot denotes derivative with respect to u.

In the static limit, which corresponds to Fm = const, one recovers the solutions of
Refs. [130,131]. These describe a fundamental string wrapped along S1

z with winding and
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a momentum charges. The dimensional reduction of these solutions on T9−d × S1
z yields

singular two-charge black holes (namely, small black holes) in 4 ≤ d ≤ 9 dimensions.

In the rotating case, Fm 6= const, the string is no longer located at a point in the
non-compact space. In turn, its position is parametrically given by

xm = Fm(u) . (7.33)

From this general family of rotating string backgrounds, one can obtain a class of
solutions with no dependence in the internal coordinate z (see [274]) by the usual smearing
procedure, which amounts to keeping only the zero mode in the Fourier expansion, namely:

Z(0)
− = 1 +

∫ `

0

q−
||xm − Fm||d−3

du , (7.34)

Z(0)
+ = 1 +

∫ `

0

q+ + q−Ḟ
2

||xm − Fm||d−3
du , (7.35)

ω(0)
m =

∫ `

0

q−Ḟ
m

||xm − Fm||d−3
du , (7.36)

where ` = 2πwRz.

Let us check that the smearing procedure yields a solution. In first place, it is clear

that Z(0)
± are harmonic functions in Ed−1, so that Eqs. (7.16) are satisfied.5 It remains to

check that Eq. (7.17) is also satisfied. Since ω
(0)
m are harmonic in Ed−1, we have to show

that

∂m∂pω
(0)
p = 0 . (7.37)

From (7.36), we have that

∂pω
(0)
p =

q−
||xm − Fm (0) ||d−3

− q−
||xm − Fm (`) ||d−3

, (7.38)

which vanishes if Fm (u) = Fm (u+ `), in which case (7.17) is satisfied. We shall assume
this in what follows. In fact, as in [132, 274], we will restrict to a circular profile of the
form

F 1 = R cos

(
Wu

wRz

)
, F 2 = R sin

(
Wu

wRz

)
, F 3 = · · · = F d−1 = 0 , (7.39)

with W ∈ Z. For this particular choice, the string is wound over a two-dimensional
torus parametrized by the coordinates z and ψ, the latter being the angular direction in
the x1 − x2 plane. The integers w and W tell us how many times the string is wound
around the z− and ψ−directions, respectively. Upon compactification on T9−d × S1

z, the
solution gives raise to singular two-charge black rings (small black rings) in 4 ≤ d ≤ 9
dimensions [276,285]. Let us study the five-dimensional case.

5Except at the pole of the harmonic function, where one must take into account also the contribution
from the sources [132].
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7.3.1 Five-dimensional small black rings

Let us consider the ten-dimensional configuration (7.13), (7.14) and(7.15) for d = 5. If
we reduce it on T4 × S1

z —using the results of Appendix E—, we obtain the following
five-dimensional configuration6

ds2
E,5 =

(
Z(0)

+ Z
(0)
−

)−2/3 (
dt+ ω(0)

)2
−
(
Z(0)

+ Z
(0)
−

)1/3
ds2

(
E4
)
, (7.40)

A± = c±
dt+ ω(0)

Z(0)
±

, A0 = c0χ , (7.41)

e2φ =
g2
s

Z(0)
−

, k = k∞
Z(0)

+

1/2

Z(0)
−

1/4
, (7.42)

where c+ = 2
√

3k
−4/3
∞ , c− =

√
3eφ∞k

2/3
∞ , c0 = −

√
3e−φ∞k

2/3
∞ and χ is a 1-form defined on

E4 such that

dχ = ?4dω , (7.43)

where ?4 is the Hodge dual with respect to the Euclidean metric.7 The functions Z(0)
± and

the 1-form ω(0) are given by

Z(0)
− = 1 +

Q−
`

∫ `

0

du

||xm − Fm||2
, (7.44)

Z(0)
+ = 1 +

Q+

`

∫ `

0

du

||xm − Fm||2
, (7.45)

ω(0)
m =

Q−
`

∫ `

0

Ḟmdu

||xm − Fm||2
, (7.46)

where we have defined

Q− = q−` , Q+ = q+`+
4π2W 2R2q−

`
. (7.47)

As shown in [275,276], this five-dimensional solution is a particular case of the supersym-
metric three-charge black ring constructed in [207,239,286]. In order to see this, we have
to perform the integrals appearing in (7.44), (7.45) and (7.46), for which it is convenient
to introduce a new set of coordinates (ξ, η, ψ, φ) defined as

x1 = ξ cosψ , x2 = ξ sinψ , x3 = η cosφ , x4 = η sinφ . (7.48)

6This is a solution of the STU model of five-dimensional N = 1 supergravity.
7The integrability condition of χ is guaranteed to be satisfied because of the equation of motion of the

Kalb-Ramond 2-form (7.17).
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Then, after a bit of algebra, one finds

Z(0)
± = 1 +

Q±√
(ξ2 + η2 +R2)2 − 4R2ξ2

, (7.49)

ω(0) =
πQ−W

`

 ξ2 + η2 +R2√
(ξ2 + η2 +R2)2 − 4R2ξ2

− 1

 dψ , (7.50)

where we have used that

∫ 2π

0

cosn x dx

1 + a cosx
=

2π√
1− a2

(√
1− a2 − 1

a

)n
. (7.51)

The solution can be written in a more recognizable form in terms of the so-called “ring
coordinates” [287], which are defined as

ξ =

√
y2 − 1

x− y
R , η =

√
1− x2

x− y
R , (7.52)

where −∞ ≤ y ≤ −1 and −1 ≤ x ≤ 1. In term of these coordinates, the four-dimensional

Euclidean metric, the functions Z(0)
± , and the 1-form ω(0) take the following form

ds2
(
E4
)

=
R2

(x− y)2

[
dy2

y2 − 1
+
(
y2 − 1

)
dψ2 +

dx2

1− x2
+
(
1− x2

)
dφ2

]
, (7.53)

Z(0)
± = 1 +

Q±
2R2

(x− y) , (7.54)

ω(0) = −q
2

(1 + y) dψ , (7.55)

where

q =
2πQ−W

`
. (7.56)

Written in this way, it is straightforward to check that our solution can be obtained from
the supersymmetric three-charge black ring of [207,239,286] by setting to zero one of the
monopole charges and two of the dipole charges.

Physical parameters

Let us discuss the physical interpretation of the four parameters, Q+,Q−, q and R, that,
together with the asymptotic values of the scalars, determine the solution. To this aim, it
is convenient to introduce a new pair of coordinates ρ and θ such that

ρ sin θ = R

√
y2 − 1

x− y
, ρ cos θ = R

√
1− x2

x− y
. (7.57)
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In terms of these coordinates, the Euclidean metric, the functions Z(0)
± and the 1-form

ω(0) are given by

ds2
(
E4
)

= dρ2 + ρ2
(
dθ2 + sin2 θ dψ2 + cos2 θ dφ2

)
, (7.58)

Z(0)
± = 1 +

Q±
Σ

, (7.59)

ω(0) = −q
2

(
1− ρ2 +R2

Σ

)
dψ , (7.60)

where

Σ =

√
(ρ2 −R2)2 + 4R2ρ2 cos2 θ . (7.61)

The physical parameters can be easily identified by studying the large ρ-expansion
of the fields. In particular, the asymptotic form of the vector fields (7.41), which is given
by

A±t ∼ c±

[
1− Q±

ρ2
+O

(
1

ρ4

)]
, (7.62)

A±ψ ∼ c±

[
qR2 sin2 θ

ρ2
+O

(
1

ρ4

)]
, (7.63)

A0
φ ∼ c0

[
qR2 cos2 θ

ρ2
+O

(
1

ρ4

)]
, (7.64)

informs us that the parameters Q+ and Q− are the monopole electric charges, and that
the parameter q controls the magnetic dipole charges. The relation between these and the
parameters that characterize the sources is: [193,276]

Q− = g2
sα
′w , Q+ =

g2
sα
′2

R2
z

n , q =
g2
sα
′W

Rz
. (7.65)

The mass and angular momenta can be easily obtained by first computing the large
ρ-expansion of the metric (7.40) and then comparing the result with the Myers-Perry
solution [181]. We get:

M =
π (Q+ +Q−)

4G
(5)
N

=
n

Rz
+
Rz
α′
w, (7.66)

Jψ =
πqR2

4G
(5)
N

= W (R/`s)
2 , (7.67)

where we have used Eq. (7.65) and that the five-dimensional Newton’s constant is given
in terms of the string moduli by
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G
(5)
N =

πg2
sα
′2

4Rz
. (7.68)

Singular horizon

The supersymmetric three-charge black ring has a regular horizon at y → −∞ with
topology S1 × S2, see [239]. However, the area vanishes when we set two dipole charges
and one monopole charge to zero. Therefore, at the supergravity level, small black rings
are characterized by having a null singularity instead of a regular event horizon. This
implies that the solution can only be trusted far away from the singularity, where the
higher-derivative corrections to the supergravity action can be safely ignored. As soon as
we get close to the singularity, we lose control over the solution, as we expect on general
grounds that the higher-derivative corrections will modify it significantly in that region.
It may happen, as suggested in [135], that the solution is modified in a way such that a
regular horizon with finite size appears. We shall explore this interesting possibility in the
next section.

7.3.2 Higher-derivative corrections to small black rings

Let us use the results of Section 7.2 to obtain the first-order α′ corrections to the singular
small black ring solution. The correction to the function Z+ is obtained by plugging (7.54)
and (7.55) into (7.29). We find:

Z+ = 1 +
Q+

2R2
(x− y) +

α′

4R4

(x− y)3 [q2R2(x− y) +Q+Q− (x+ y)
]

2R2 +Q− (x− y)
+O

(
α′2
)
. (7.69)

As shown in Section 7.2, the function Z− and the 1-form ω remain uncorrected, hence

Z− = 1 +
Q−
2R2

(x− y) +O
(
α′2
)
, (7.70)

ω = −q
2

(1 + y) dψ +O
(
α′2
)
. (7.71)

The metric of the α′-corrected small black ring is obtained from (7.40) by simply replacing

Z(0)
+ , Z(0)

− and ω(0) by the above expressions, (7.69), (7.70) and (7.71). As it occurs in
the zeroth-order solution, the would-be horizon is at y → −∞, where the product Z+Z−
diverges. In Fig. 7.1, we have represented the Ricci scalar of the five-dimensional metric
RE,5 as a function of log |y|. We see that the curvature singularity at y → −∞ persists.
In fact, we find that in the y → −∞ limit, the radius of the two-sphere S2 goes to zero as
R2 ∼ |y|−1/3, whereas the radius of the circle S1 diverges as Rψ ∼ |y|2/3.8

8This implies that the product R2
2Rψ, which would be proportional to the area, is finite and indeed

proportional to
√
q2R2 −Q+Q−, which would be in agreement with the scaling argument of [135,276].
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Figure 7.1: In the plot on the left we have represented the five-dimensional Ricci scalar
RE,5 as a function of log |y| for x = −1 and for the particular values of the parameters:
R = 10

√
α′, Q+ = Q− = 2 · 103α′ and q = 4 · 102

√
α′. We find that the Ricci scalar

diverges as |y|2/3 as we approach y → −∞. This behaviour of the Ricci scalar near the
singularity can be better appreciated in the plot on the right, where we have represented
the logarithm of the Ricci scalar in the vertical axis.

The R→ 0 limit: small black holes

The five-dimensional small black holes studied in [193] can be obtained in the R→ 0 limit.
In order to take this limit, we have to first write the solution using the coordinate system
defined in (7.57). Doing so, we find that the 1-form ω vanishes, and that the functions Z±
are given by

Z+ = 1 +
Q+

ρ2
− 2α′Q+Q−
ρ4 (ρ2 +Q−)

+O
(
α′2
)
, (7.72)

Z− = 1 +
Q−
ρ2

+O
(
α′2
)
, (7.73)

in agreement with Ref. [193]. As we observed in the four-dimensional case, the correction

to the function Z+ is such that limρ→0Z+ ∼ −2α′Q+

ρ4 , just what one would need in order
to obtain a regular horizon at ρ = 0. However, further inspection reveals that the Kaluza-
Klein scalar k, given in Eq. (7.42), diverges at the horizon as k ∼ ρ−3/2, which is clearly not
acceptable. This divergence manifests in ten dimensions as a curvature singularity, which
implies that our solution cannot be trusted near the singularity, where the low-curvature
assumption under which it was derived is not satisfied.

This is in fact what happens for small black holes in any dimension 4 ≤ d ≤ 9. The
metric that describes them is given by

ds2
E,d = (Z+Z−)

3−d
d−2 dt2 − (Z+Z−)

1
d−2

[
dρ2 + ρ2dΩ2

(d−2)

]
, (7.74)

where ρ =
√
xmxm is the radial coordinate of Ed−1 and dΩ2

(d−2) is the metric of the round

(d− 2)-dimensional sphere, Sd−2. The functions Z+ and Z− are obtained by plugging the
static limit of Eqs. (7.34), (7.35) and (7.36) into (7.29):
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Z+ = 1 +
Q+

ρd−3
− (3− d)2α′

2

Q+Q−
ρd−1(ρd−3 +Q−)

+O
(
α′2
)
, (7.75)

Z− = 1 +
Q−
ρd−3

+O
(
α′2
)
. (7.76)

The area of the apparently regular horizon is now given by

AH =
(d− 3)π

d−1
2

Γ
(
d−1

2

) √
−2α′Q+Q− , ⇒ AH

4G
(d)
N

= 2
√

2π
√
nw , (7.77)

where we have used that the general relation between the charges and the winding and
momentum is

|Q+|
16πG

(d)
N

=
Γ
(
d−1

2

)
2 (d− 3)π

d−1
2

n

Rz
,

Q−
16πG

(d)
N

=
Γ
(
d−1

2

)
2 (d− 3)π

d−1
2

Rzw

α′
. (7.78)

However, as anticipated, the Kaluza-Klein scalar always diverges at the horizon

k = k∞
Z1/2

+

Z
d−3

2(d−1)

−

, ⇒ k(ρ→ 0) ∼ ρ−
2(d−2)
d−1 . (7.79)

7.4 Discussion

In this chapter, we have computed the first-order α′ corrections (which are quadratic in
the curvature) to a family of solutions of the low-energy heterotic effective action which
describes, after toroidal compactification, small black holes and small black rings in 4 ≤
d ≤ 9 dimensions.

We have studied in detail small black rings in d = 5 dimensions, finding that this
subset of α′ corrections is not enough to regularize the solution. In turn, we have found
that the would-be horizon is still a null singularity, as in the supergravity (zeroth-order)
description. We expect that the same will occur in any dimension, since the torus T9−d

(which forms part of the total compact space T9−d × S1
z) does not have dynamics.

We have also studied small black holes in 4 ≤ d ≤ 9 dimensions, finding the same
behaviour as in four dimensions. Albeit the α′-corrected metric apparently has a regular
horizon with finite area, the Kaluza-Klein scalar that measures the radius of the circle S1

z

always diverges as k ∼ ρ−
2(d−2)
d−1 at ρ = 0, where the would-be horizon is located. This

divergence manifests in ten dimensions as a curvature singularity, which tells us that the
solution cannot be trusted near ρ = 0, where the curvature is no longer small in string
units.
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8
Leading higher-derivative corrections to the Kerr

geometry

General relativity (GR) describes the gravitational interaction as the effect of spacetime
curvature. Einstein’s field equations, that rule the dynamics of the gravitational field, can
be derived from the Einstein-Hilbert (EH) action

S =
1

16πG

∫
d4x
√
|g|R , (8.1)

which is essentially the simplest non-trivial covariant action one can write for the metric
tensor. This beautiful theory has passed a large number of experimental tests —including
the recent detection of gravitational waves coming from black hole and neutron star bina-
ries [13, 15, 288–291]— and it is broadly accepted as the correct description of the gravi-
tational interaction.

However, there are good reasons to think that GR should be modified at high ener-
gies. One of these reasons is that GR is incompatible with quantum mechanics. Although
we still lack a quantum theory of gravity, it is a common prediction of many quantum
gravity candidates that the gravitational action (8.1) will be modified when the curvature
is large enough. For instance, string theory predicts the appearance of an infinite series of
higher-derivative terms [109, 292, 293] correcting the Einstein-Hilbert action. The precise
terms and the scale at which they appear depend on the scheme and on the compacti-
fication chosen. Nevertheless, whatever the modification of GR is, it should be possible
to describe it following the rules of Effective Field Theory (EFT): we add to the action
all the possible terms compatible with the symmetries of the theory and we group them
following an increasing order of derivatives (or more generally, an increasing energy dimen-
sion). In the case of gravity, we would like to preserve diff. invariance and local Lorentz
invariance,1 and this means that the corrections take the form of a higher-curvature, or
higher-derivative gravity [298]. A more general possibility —that we will also consider
here— is to increase the degrees of freedom in the gravitational sector, by adding other
fields that are not active at low energies [299].

Generically, the introduction of higher-derivative interactions means that Ricci-
flat metrics no longer solve the gravitational field equations. As a consequence, the
Schwarzschild [30] and Kerr [48] metrics, that describe static and rotating black holes
(BHs) in GR, are not solutions of the modified theories. One has to solve the modi-
fied field equations in order to determine the corrected black hole solutions, and it is an
interesting task to look at the properties of these corrected geometries.

1See e.g. [294–297] for other possible extensions of GR.
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On general grounds, the higher-derivative corrections modify the gravitational in-
teraction when the curvature is large, and they usually improve the UV behaviour of
gravity [300]. The effect of the corrections will be drastic precisely in situations where GR
fails, such as in the Big-Bang or black hole singularities, and it is expected that higher-
derivative terms can resolve these divergencies [301–309]. However, the corrections can
also significantly modify the properties of a black hole at the level of the horizon if its
mass is small enough. For example, the divergence of Hawking temperature in the limit
M → 0 in Einstein gravity (EG) black holes can be cured by higher-derivative interac-
tions [310–312]. In this way, one learns about new high-energy phenomena that might be
interpreted as the signature of a UV-complete theory of gravity.

Besides its intrinsic interest, there is another reason why studying higher-derivative-
corrected black hole geometries is interesting: they can be used to obtain phenomenological
implications of modified gravity. Thanks to the LIGO/VIRGO collaborations [313, 314]
and the Event Horizon Telescope [315], amongst other initiatives [316], it will be possible
in the next years to test GR with an unprecedented accuracy, and to set bounds on possible
modifications of this theory [14, 16, 23, 317–320]. But in order to do so, we first need to
derive observational signatures of modified gravity. In order to measure deviations from
GR on astrophysical black holes, the corrections should appear at a scale of the order
of few kilometers, which is roughly the radius of the horizon for those BHs. Although
this seems to be an enormous scale for short-distance modifications of gravity, we should
only discard it if there is some fundamental obstruction that forbids unnaturally large
couplings in the effective theory [321]. But if that is not the case, the possibility of
observing higher-derivative corrections on astrophysical black holes should be considered
[322]. Hence, studying in a systematic way black hole solutions of modified gravity and
their observational implications is a mandatory task for the black hole community in the
coming years.

Black hole solutions in alternative theories of gravity have been largely explored in
the literature, but for obvious reasons we will restrict our attention to four-dimensional
solutions that modify in a continuous way the Einstein gravity black holes, and that
do not include matter. This excludes, for example, solutions of pure quadratic gravity,
without a linear R term [323–326]. In the same way, theories such as f(R) gravity are not
interesting for us, since they do not modify EG solutions in the vacuum (see e.g. [327]).
Some other theories allow for EG solutions, but additionally possess disconnected branches
of different solutions, as is the case of black holes in quadratic gravity [328, 329]. We
will not consider this case here either, since we are interested in continuous deviations
from GR. On the contrary, static black holes correcting Schwarzschild’s solution have
been studied in the context of Einstein-dilaton-Gauss-Bonnet gravity (EdGB) [299, 330–
332], and in other scalar-Gauss-Bonnet theories, e.g. [333–336]. Those theories contain
a scalar that is activated due to the higher-curvature terms. In the case of pure-metric
theories, spherically symmetric black holes have been constructed, non-perturbatively in
the coupling, in Einsteinian cubic gravity [337–339]. Although the profile of the solution
has to be determined numerically, this theory has the remarkable property that black
hole thermodynamics can be determined analytically. These results have recently been
generalized to higher-order versions of the theory [312,340,341].

The case of rotating black holes, which is more interesting from an astrophysical
perspective, is also more challenging. Obtaining rotating black hole solutions of higher-
derivative gravity theories is a very complicated task, and for that reason only approximate
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solutions or numerical ones are known. One of the most studied theories in this context
is EdGB gravity, where rotating black holes have been constructed perturbatively in the
spin and in the coupling [322, 342, 343], and numerically [344, 345]. Rotating black holes
in dynamical Chern-Simons (dCS) modified gravity2 [346] have also been studied, both
perturbatively [347–349] and numerically [350]. On the other hand, Ref. [351] considers
a generalization of EdGB and dCS theories. Finally, for pure-metric theories, the recent
work [352] studies rotating black holes in the eight-derivative effective theory introduced
in [22].

A usual approximation, that is used by many of the papers above, consists in obtain-
ing the solution perturbatively in the higher-order couplings. For some purposes it is also
interesting to obtain non-perturbative solutions —for which one usually needs numerical
methods— but, from the perspective of EFT, it does not make any sense to go beyond
perturbative level, since the theory will include further corrections at that order. Addi-
tionally, the solution is often expanded in a power series of the spin parameter χ = a/M .
In most of the literature, only few terms in this expansion are included, so the solutions
are only valid for slowly-rotating black holes. However, astrophysical black holes —and in
particular those created after the merging of a black hole binary [353]— can have relatively
high spin. Moreover, some effects of rotation —such as the deformation of the black hole
shadow [315, 354–356]— are barely observable when the spin is low, and other phenom-
ena only happen for rapidly spinning black holes [357–359]. Although numerical solutions
are not in principle limited to small values of the spin, analytic solutions are most useful
for evident reasons. Hence, it would be interesting to provide analytic solutions valid for
high-enough angular momentum. Finally, instead of having a large catalogue of alternative
theories of gravity and their black hole solutions, it would be desirable to describe a mini-
mal model that captures all the possible modifications of GR at a given order —probably,
up to field redefinitions— and to characterize the black holes of that theory.

The preceding discussion motivates the three main objectives of the present work.
First, to establish a general effective theory that can be used to study the leading-order
higher-derivative corrections to Einstein gravity vacuum solutions. Second, to obtain the
corrections to Kerr black hole in these theories, providing an analytic solution that is
accurate for high enough values of the spin. And third, to study in detail some of the
properties of these rotating black holes, such as the shape of horizon or the surface gravity,
that have often been disregarded in the literature.

8.1 Leading order effective theory

The most general diffeomorphism-invariant and locally Lorentz-invariant metric theory of
gravity is given by an action of the form

S =

∫
d4x
√
|g|L (gµν , Rµνρσ,∇αRµνρσ,∇α∇βRµνρσ, . . .) . (8.2)

This is, the most general Lagrangian for such theory will be an invariant formed from
contractions and products of the metric, the Riemann tensor, and its derivatives. However,

2This theory does not modify spherically symmetric GR solutions, because the corrections are sourced
by the Pontryagin density, that vanishes in the presence of spherical symmetry. However, it does modify
rotating black holes.
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the theory above can be generalized by slightly relaxing some of the postulates. We may
construct the Lagrangian using as well the dual Riemann tensor:

R̃µναβ =
1

2
εµνρσR

ρσ
αβ . (8.3)

These terms generically lead to violation of parity, hence the theory is not (locally) in-
variant under the full Lorentz group, but only under one of its connected components.
However, we know that parity is not a symmetry of nature, so in principle there is no
reason to discard terms constructed with R̃µναβ . In general, one expands this Lagrangian
in terms containing increasing numbers of derivatives, being the first one the Einstein-
Hilbert term R, with two derivatives. The rest of the terms can symbolically be written
as

∇pRn . (8.4)

Since this term contains 2n + p derivatives, it should be multiplied by a constant of
dimensions of length2n+p−2 with respect to the Einstein-Hilbert term. This is the length
scale ` at which the higher-derivative terms modify the law of gravitation. When the
curvature is much smaller than this length scale (||Rµνρσ|| << `−2), the effect of the higher-
derivative terms can be treated as a perturbative correction, and terms with increasing
number of derivatives become more and more irrelevant. Thus, it is an interesting exercise
to obtain the most general theory that includes all the possible leading-order corrections.
Here we summarize how we construct this theory, but we refer to the Appendix G.1 for
the details. The first terms one may introduce in the action are quadratic in the curvature
and hence they contain four derivatives. These terms would induce corrections in the
metric tensor at order `2, but in four dimensions it turns out that all of these terms
either are topological or do not introduce corrections at all. Thus, the first corrections
in a metric theory appear at order `4 and they are associated to six-derivative terms. As
we show in Appendix G.1, it turns out that, up to field redefinitions, there are only two
inequivalent six-derivative curvature invariants, one of them parity-even and the other one
parity-odd. However, one could consider a more general theory, allowing the coefficients of
the higher-derivative terms to be dynamical i.e., controlled by scalars. This is actually a
very natural possibility that is predicted, for instance, by string theory [299]. In that case,
some of the four-derivative terms do contribute to the equations and they also correct the
metric at order `4. For simplicity, we will restrict ourselves to massless scalars, but we will
allow, in principle, to have an undetermined number of them. Within this large family
of theories, it is possible to show that the most general leading correction to Einstein’s
theory is captured by the action

S =
1

16πG

∫
d4x
√
|g|
{
R+ α1φ1`

2X4 + α2 (φ2 cos θm + φ1 sin θm) `2RµνρσR̃
µνρσ

+ λev`
4R ρσ

µν R δγ
ρσ R µν

δγ + λodd`
4R ρσ

µν R δγ
ρσ R̃ µν

δγ − 1

2
(∂φ1)2 − 1

2
(∂φ2)2

}
,

(8.5)

where

X4 = RµνρσR
µνρσ − 4RµνR

µν +R2 (8.6)

is the Gauss-Bonnet density and φ1, φ2 are scalar fields. Besides the overall length scale
`, there are only five parameters: α1, α2, λev, λodd and θm. The parameter λodd violates
parity, while the “mixing angle” θm represents as well a sort of parity breaking phase. For
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θm = 0, π (no mixing between scalars), φ2 is actually a pseudoscalar and the quadratic
sector is parity-invariant. For any other value (θm 6= 0, π), parity is also violated by this
sector.

The theory (8.5) contains, as particular cases, some well-known models that have
been frequently used in the literature. The case λev = λodd = θm = 0, α2 = −α1 = 1/8
corresponds to the prediction of string theory, where the length scale of the corrections
in that case is the string length `2 = `2s ≡ α′. As we show in the appendix G.2, the
corresponding action can be obtained from direct compactification and truncation of the
Heterotic superstring effective action at order α′. In that case, φ1 is identified with the
dilaton, while φ2 is the axion, which appears after dualization of the Kalb-Ramond 2-form.
Another well-known possibility (which is also claimed to proceed from the low-energy
limit of string theory) is λodd = λev = α2 = 0, which corresponds to the Einstein-dilaton-
Gauss-Bonnet theory. Rotating black holes in EdGB gravity have been studied both
numerically [344,345] and in the slowly-rotating limit [322,342,343]. The case θm = π/2,
which represents an extension of EdGB gravity, has also been considered [351] (note that
this case only contains one dynamical scalar and violates parity). On the other hand,
the case α2 6= 0 with the rest of couplings set to zero corresponds to dynamical Chern-
Simons gravity, whose rotating black holes were studied in Refs. [347–349] in the slowly-
rotating approximation, while Ref. [350] performs a non-perturbative numerical study. As
for the cubic theories, the parity-even term (controlled by λev) can be mapped (modulo
field redefinitions) to the Einsteinian cubic gravity (ECG) term [337], for which static
black hole solutions have been constructed non-perturbatively in the coupling [338, 339].
Phenomenological signatures of static black holes in ECG have also been recently studied
in [360, 361], where a first bound on the coupling was provided, and the possibility to
detect deviations from GR in gravitational lensing observations was discussed. Rotating
black holes in ECG have not been studied so far. Lastly, to the best of our knowledge,
the parity odd cubic term has never been used in the context of black hole solutions.

The theory (8.5) has been constructed following the sole requirement of diff. invari-
ance, but there are some other constraints that could be imposed on physical grounds. For
instance, if one wants to preserve parity, then one should set θm = λodd = 0. Nevertheless,
we know that nature is not parity-invariant, so keeping these terms is not unreasonable.
If one does not wish to include additional light degrees of freedom the scalars should be
removed, which amounts to setting α1 = α2 = 0 (in that case the scalars are just not
activated). On the other hand it is known that higher-derivative terms may break uni-
tarity by introducing ghost modes — non normalizable states. In the case of the scalar
fields and the quadratic terms in (8.5) this problem does not exist since the field equations
of that sector are actually of second order. The equations of the cubic terms do contain
higher-order derivatives —namely of fourth order—, but the mass scale at which we expect
the new modes to appear is

m2 ∼ 1

`4||Rµνρσ||
. (8.7)

This is simply telling us that Effective Field Theory works up to the scale ||Rµνρσ|| ∼
`−2, which is something we already knew. Finally, it is also possible to study causality
constraints [362]. In relation to this, the results in [321] impose a severe bound on the
coupling constants λev`

4, λodd`
4 of the cubic terms. If one wants to observe any effects

of higher-derivative corrections on astrophysical black holes, necessarily the corrections
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should appear at a scale ` of the order of few kilometers (otherwise the effect would be
too small to be detected). Such large couplings are very unnatural, since the natural scale
of (quantum) gravity should be Planck length. According to [321], these large couplings
lead to violation of causality, that could only be restored by adding an infinite tower
of higher-spin particles of mass ∼ `−1. Since, obviously, this is not observed, it was
concluded that the couplings associated to the cubic terms should be of the order of
Planck scale, hence those corrections are not viable phenomenologically. However, it
was noted in [22] that the analysis of [321] relies on certain assumptions about the UV
completion, and that it has not been proven yet that the result applies for any possible
UV completion. The conclusion of [22] was that one should cautiously include the cubic
terms for phenomenological purposes.

In any case, nothing prevents us from studying the effect of the cubic curvature
terms on black holes, no matter the scale at which they appear. These corrections give
us valuable information about the effects of modified gravity at high energies, and this is
intrinsically interesting, even if those corrections are not viable on an observational basis.

If, for some reason, all the theories in the model (8.5) were discarded, then the leading
correction to GR would be given by the quartic-curvature terms introduced in [22]. These
terms modify the metric at order O(`6) hence they are subleading when the couplings
in (8.5) are non-vanishing. Rotating black holes in those theories were recently studied
in [352] up to order χ4 in the spin. The methods that we present in this chapter could be
applied to the quartic theories as well and could be used in order to extend some of the
results in [352]. For instance, one might compute the solution for higher values of the spin
or obtain the form of the horizon, as we do in Sec. 8.3.1.

8.1.1 Equations of motion

Our goal is to compute the leading corrections to vacuum solutions of Einstein’s theory.

Thus, our starting point is a metric g
(0)
µν that satisfies vacuum Einstein’s equations

R(0)
µν = 0 , (8.8)

while the scalars φ
(0)
1 , φ

(0)
2 take a constant value that can be chosen to be zero without loss

of generality.3 But this field configuration is not a solution when we take into account the
higher-derivative terms. First we note that the coupling between scalars and the curvature
densities in the action (8.5) induce source terms in the scalar equations of motion, so that
they will not be constant anymore. More precisely the first correction is of order `2,

φ1 = `2φ
(2)
1 , φ2 = `2φ

(2)
2 , (8.9)

and it satisfies

∇2φ
(2)
1 = −α1RµνρσR

µνρσ
∣∣∣
g=g(0)

− α2 sin θmRµνρσR̃
µνρσ

∣∣∣
g=g(0)

, (8.10)

∇2φ
(2)
2 = −α2 cos θmRµνρσR̃

µνρσ
∣∣∣
g=g(0)

. (8.11)

On the other hand, the modified Einstein equations, derived from the action (8.5), can be
written as

3The action 8.5 is invariant (up to a surface term) under constant shifts of the scalars.
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Gµν = T scalars
µν + T cubic

µν , (8.12)

where we have passed all the corrections to the right-hand-side in the form of some energy-
momentum tensors, that read

T scalars
µν =− α1`

2gνλδ
λσαβ
µργδ R

γδ
αβ∇ρ∇σφ1 + 4α2`

2∇ρ∇σ
[
R̃ρ(µν)σ (cos θmφ2 + sin θmφ1)

]
+

1

2

[
∂µφ1∂νφ1 −

1

2
gµν (∂φ1)2

]
+

1

2

[
∂µφ2∂νφ2 −

1

2
gµν (∂φ2)2

]
,

(8.13)
and

T cubic
µν =λev`

4

[
3Rµ

σαβRαβ
ρλRρλσν +

1

2
gµνR

ρσ
αβ R δγ

ρσ R αβ
δγ − 6∇α∇β

(
RµαρλRνβ

ρλ
)]

+ λodd`
4

[
− 3

2
R ραβ
µ RαβσλR̃

σλ
νρ − 3

2
R ραβ
µ RνρσλR̃

σλ
αβ +

1

2
gµνR

ρσ
µν R δγ

ρσ R̃ µν
δγ

+ 3∇α∇β
(
RµασλR̃

σλ
νβ +RνβσλR̃

σλ
µα

)]
(8.14)

Since the scalars are of order O(`2), we can see that the leading correction to the metric
associated to the scalar sector is of order O(`4), the same order at which cubic curvature
terms come into play. Thus, we expand the metric as

gµν = g(0)
µν + `4g(4)

µν , (8.15)

where g
(4)
µν is a perturbative correction. Now, taking into account that g

(0)
µν solves Einstein’s

equations, we get the value of the Einstein tensor to linear order in g
(4)
µν :

Gµν = `4
[
−1

2
∇2ĝ(4)

µν −
1

2
g(0)
µν∇α∇β ĝ

(4)
αβ +∇α∇(µĝ

(4)
ν)α

]
+O(`6) . (8.16)

where ∇ is the covariant derivative associated with the zeroth-order metric, and ĝ
(4)
µν is

the trace-reversed metric perturbation

ĝ(4)
µν = g(4)

µν −
1

2
g(0)
µν g

(4)
αβg

(0)αβ . (8.17)

Then, ĝ
(4)
µν satisfies the equation

− 1

2
∇2ĝ(4)

µν −
1

2
g(0)
µν∇α∇β ĝ

(4)
αβ +∇α∇(µĝ

(4)
ν)α = `−4

[
T scalars
µν + T cubic

µν

] ∣∣∣
g=g(0) , φi=`2φ

(2)
i

(8.18)

8.2 The corrected Kerr metric

After introducing the theory (8.5), here we present the rotating black hole ansatz that
we will use in the rest of the text, and in Sec. 8.2.1 we sketch how to solve the equations

169



Chapter 8. Leading higher-derivative corrections to the Kerr geometry

of motion. From now on we set G = 1. Let us first consider Kerr’s metric expressed in
Boyer-Lindquist coordinates:

ds2 =−
(

1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdφ+ Σ

(
dr2

∆
+ dθ2

)
+

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdφ2 ,

(8.19)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 . (8.20)

Let us very briefly recall some of the properties of this metric.

• Being a solution of vacuum Einstein’s equations, it is Ricci flat: Rµν = 0.

• It is stationary and axisymmetric, with related Killing vectors ∂t and ∂φ respectively.

• It represents an asymptotically flat spacetime with total mass M and total angular
momentum J = aM .

• When M > |a| the solution represents a black hole, whose (outer) horizon is placed
at the largest radius r+ where ∆ vanishes:

r+ = M +
√
M2 − a2 . (8.21)

Since Ricci flat metrics do not solve the modified Einstein’s equations, the rotating
black holes of the theory (8.5) will not be described by Kerr metric. The search for an
appropriate metric ansatz that can be used to parametrize deviations from Kerr metric
is a far from trivial problem that has been studied in the literature [363, 364]. However,
as long as the mass is much larger than the scale at which the higher-derivative terms
appear, M >> `, the deviation with respect to general relativity will be small —at least
outside the horizon. In that case, we can build the rotating black hole solution of (8.5) as
a perturbative correction over Kerr metric. Since we want to describe an stationary and
axisymmetric solution, the corrected metric has to conserve the Killing vectors ∂t and ∂φ.
On the other hand, we do not expect to “activate” additional components of the metric, so
that the corrections appear in the already non-vanishing components. Taking into account
these observations, we can write a general ansatz for the corrected Kerr metric

ds2 =−
(

1− 2Mρ

Σ
−H1

)
dt2 − (1 +H2)

4Maρ(1− x2)

Σ
dtdφ+ (1 +H3)

Σ

∆
dρ2

+ (1 +H5)
Σdx2

1− x2
+ (1 +H4)

(
ρ2 + a2 +

2Mρa2(1− x2)

Σ

)
(1− x2)dφ2 ,

(8.22)

where H1,2,3,4,5 are functions of x = cos θ and ρ only, and they are assumed to be small
|Hi| << 1. Note that we have introduced the coordinate ρ in order to distinguish it from
the coordinate r in Kerr metric. We have also introduced the functions

Σ = ρ2 + a2x2 , ∆ = ρ2 − 2Mρ+ a2 . (8.23)
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However, the ansatz (8.22) is far too general, and it turns out that we can fix some
of the functions Hi by performing a change of coordinates. In particular, it can be shown
that there exists a (infinitesimal) change of coordinates (ρ, x)→ (ρ′, x′) that preserves the
form of the metric and for which H ′5 = H ′3. Thus, we are free to choose H3 = H5, and in
that case, the metric reads

ds2 =−
(

1− 2Mρ

Σ
−H1

)
dt2 − (1 +H2)

4Maρ(1− x2)

Σ
dtdφ+ (1 +H3) Σ

(
dρ2

∆
+

dx2

1− x2

)
+ (1 +H4)

(
ρ2 + a2 +

2Mρa2(1− x2)

Σ

)
(1− x2)dφ2 .

(8.24)

Note that we are choosing the coordinates x and ρ such that the form of the (ρ, x)-
metric is respected —up to a conformal factor— when the corrections are included. It is
easy to see that this choice of coordinates has a crucial advantage: the horizon of the metric
(8.24) will still be placed at the (first) point where ∆ vanishes: ρ+ = M +

√
M2 − a2. If

we were not careful enough choosing the coordinates, the description of the horizon could
be very messy, and this is perhaps the reason why in previous studies the horizon of the
corrected solutions has not been studied in depth.

We note that, whenever we consider the corrections, the coordinate ρ does not
coincide asymptotically with the usual radial coordinate r. Advancing the results in next
subsection, we get that the functions Hi behave asymptotically as

Hi = h
(0)
i +

h
(1)
i

ρ
+O

(
1

ρ2

)
, i = 1, 2, 3, 4 , (8.25)

where h
(k)
i are constant coefficients. Then, we can see that the usual radial coordinate r

that asymptotically measures the area of 2-spheres is related to ρ according to

ρ = r

(
1− h

(0)
3

2

)
− h

(1)
3

2
+O

(
1

r

)
. (8.26)

Using this coordinate, the asymptotic expansion of the metric (8.24) reads

ds2(r →∞) =−

(
1− h(0)

1 −
2M +Mh

(0)
3 + h

(1)
1

r

)
dt2 −

(
1 + h

(0)
2 + h

(0)
3 /2

) 4Ma sin2 θ

r
dtdφ

+ dr2

(
1 +

2M +Mh
(0)
3 + h

(1)
3

r

)
+ r2dθ2 +

(
1 + h

(0)
4 − h

(0)
3

)
r2 sin2 θdφ2 .

(8.27)

When we solve the equations, we see that we are free to fix the asymptotic values of

the coefficients h
(0)
i . On the other hand, the metric must be asymptotically flat (with the

correct normalization at infinity), and we want the parameters M and a to still represent
the mass and the angular momentum per mass of the solution, so the asymptotic expansion
should read
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ds2(r →∞) =−
(

1− 2M

r

)
dt2 − 4Ma sin2 θ

r
dtdφ+ dr2

(
1 +

2M

r

)
+ r2dθ2 + r2 sin2 θdφ2 .

(8.28)
From this, we derive the asymptotic conditions that we have to impose on our solution:

h
(0)
1 = 0 , h

(0)
3 = h

(0)
4 = −h

(1)
3

M
, h

(0)
2 = −h

(0)
3

2
. (8.29)

Apparently, the condition Mh
(0)
3 + h

(1)
1 = 0 is also required, but this is actually imposed

by the field equations.

8.2.1 Solving the equations

Once we have found an appropriate ansatz for our metric, Eq. (8.24), we have to solve the
equations of the theory (8.5). The first step is to solve the equations for the scalars (8.10),
(8.11), from where we obtain φ1 and φ2 at order O(`2). Using this result we determine the
right-hand-side of (8.18), while in the left-hand-side we introduce the metric correction

g
(4)
µν ,

`4g(4)
µν dx

µdxν =H1dt
2 −H2

4Maρ(1− x2)

Σ
dtdφ+H3Σ

(
dρ2

∆
+

dx2

1− x2

)
+H4

(
ρ2 + a2 +

2Mρa2(1− x2)

Σ

)
(1− x2)dφ2 ,

(8.30)

which can be read from (8.24). In this way, we get a (complicated) system of equations
for the functions Hi, that we have to solve. Unfortunately, these equations (including the
ones for the scalars) are very intricate and we are not able to obtain an exact solution.
However, a possible strategy is to expand the solution in powers of the angular momentum
a, assuming that it is a small parameter. In previous works [322, 342, 343, 347, 348, 351],
this method has been employed in order to obtain a few terms in the expansion, which
yields an approximate solution for slowly rotating black holes. Nonetheless, if one includes
enough terms in the expansion, the result should give a good approximation to the solution
also for high values of the spin. One of the goals of this chapter is precisely to provide a
method that allows for the construction of the solution at arbitrarily high-orders in the
spin.

For simplicity, let us first introduce the dimensionless parameter

χ =
a

M
, (8.31)

that ranges from 0 to 1 in Kerr’s solution, χ = 0 corresponding to static black holes and
χ = 1 to extremal ones.4 Then, we expand our unknown functions in a power series in χ

φ1 =
∞∑
n=0

φ
(n)
1 χn , φ2 =

∞∑
n=0

φ
(n)
2 χn , Hi =

∞∑
n=0

H
(n)
i χn , i = 1, 2, 3, 4 , (8.32)

4When the corrections are included, we expect that the extremality condition is modified, χext 6= 1, but
this is not important for our discussion, since we will not deal with extremal or near-extremal geometries
here.
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where we recall that all the functions depend on ρ and x. Then, the idea is to plug these
expansions in (8.10), (8.11), (8.18), expand the equations in powers of χ, and solve them
order by order. The equations satisfied by the n-th components are much simpler than the
full equations, and we are indeed able to solve them analytically. These are second-order,
linear, inhomogeneous, partial differential equations, so that the general solution can be
expressed as the sum of a particular solution plus all the solutions of the homogeneous
equation. In general, the “homogeneous part” of the solution represents infinitesimal
changes of coordinates, and the physics is contained in the inhomogeneous part, which
is the one sourced by the higher-derivative terms. So, we have to find the solution that
captures the corrections but does not introduce unnecessary changes of coordinates. We
observe that the appropriate solution can always be expressed as a polynomial in x and
in 1/ρ. More precisely, we get5

φ
(n)
1,2 =

n∑
p=0

kmax∑
k=0

φ
(n,p,k)
1,2 xpρ−k , H

(n)
i =

n∑
p=0

kmax∑
k=0

H
(n,p,k)
i xpρ−k , (8.33)

where φ
(n,p,k)
1,2 , H

(n,p,k)
i are constant coefficients and in each case the value of kmax depends

on n and p. When we solve the equations we also observe that all the terms in these
series are determined except the constant ones: those with p = k = 0. However, those
coefficients are fixed by the boundary conditions. In the case of the scalars, their value at
infinity is arbitrary, so we can set it to zero for simplicity (this does not affect the rest of
the solution)

φ
(n,0,0)
1 = φ

(n,0,0)
2 = 0 , n = 0, 1, 2, . . . . (8.34)

On the other hand, for the Hi functions we take into account the relations (8.29) that we
derived previously, which imply that

H
(n,0,0)
1 = 0 , H

(n,0,0)
3 = H

(n,0,0)
4 = −H

(n,0,1)
3

M
, H

(n,0,0)
2 = −H

(n,0,0)
3

2
. (8.35)

In this way, the solution is completely determined. Since this process is systematic, we
can easily program an algorithm that computes the series (8.32) at any (finite) order
n. A Mathematica notebook that does the job is provided in https://arxiv.org/src/

1901.01315v3/anc. Using this code, we have computed the solution up to order χ14.
As we show in Appendix G.4, this expansion provides a minimum accuracy of about 1%
everywhere outside the horizon for χ = 0.7, and much higher for smaller χ. Thus, we have
an analytic solution that works for relatively high values of χ, and we will exploit this
fact in next section. Due to the length of the expressions, in Appendix G.3 we show the
solution explicitly up to order χ3, but the full series up to order n = 14 is available in the
Mathematica notebook.

Before closing this section, we would like to clarify the following point. In the
preceding scheme the corrections are expressed as a powers series in the spin, but we are
taking the zeroth-order solution to be the exact Kerr’s metric, which is non-perturbative
in the spin. Thus, for consistency sake, one should imagine that we also expand the zeroth-
order solution in the spin up to the same order at which the corrections were computed.
However, for evident reasons we do not do this explicitly. Thus, in the next section, we

5Equivalently, one may expand these functions using Legendre polynomials Pp(x).
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will write the formulas for several quantities as the result for Kerr’s metric, exact in the
spin, plus linear corrections, perturbative in the spin, but one should bear in mind that
the zeroth-order result should also be expanded.

8.3 Properties of the corrected black hole

In this section we analyze some of the most relevant physical properties of the rotating
black hole solutions we have found. We study the geometry of the horizon and of the
ergosphere, light rings on the equatorial plane, and scalar hair.

8.3.1 Horizon

In order for the metric (8.24) to represent a black hole, we have to show that it contains
an event horizon. We have argued that, with the choice of coordinates we have made, the
horizon is defined by the equation ∆ = 0, whose roots are ρ = ρ±, where

ρ± = M
(

1±
√

1− χ2
)
. (8.36)

The largest root ρ+ corresponds to the event horizon, while ρ = ρ− is in principle an inner
horizon.6 Here we will only deal with the exterior solution ρ ≥ ρ+.

Then, let us show that ρ = ρ+ is indeed an event horizon. More precisely, we will
show that it is a Killing horizon, i.e. a null hypersurface whose normal is a Killing vector.
Let us first check that the hypersurface defined by ρ = ρ+ is null. In order to do so, we
consider the induced metric at some constant ρ, which is given by

ds2|ρ=const = −
(

1− 2Mρ

Σ
−H1

)
dt2 − (1 +H2)

4Maρ(1− x2)

Σ
dtdφ+ (1 +H3)

Σdx2

1− x2

+ (1 +H4)

(
ρ2 + a2 +

2Mρa2(1− x2)

Σ

)
(1− x2)dφ2 .

(8.37)

Then, we can see that when we evaluate at ρ = ρ+, the previous metric is singular,
namely it has rank 2. Evaluating the determinant of the (t, φ)-metric at ρ+, we get

(
gttgφφ − g2

tφ

) ∣∣∣
ρ=ρ+

=
4M2ρ2

+(1− x2)

ρ2
+ + a2x2

[
H1 −

a2
(
1− x2

)
ρ2

+ + a2x2
(2H2 −H4)

] ∣∣∣∣∣
ρ=ρ+

, (8.38)

where, for consistency with the perturbative approach, we have expanded linearly in the
Hi functions. When we expand the combination between brackets in powers of χ using
the solution we found, we see that all the terms vanish. Thus, the determinant vanishes,

(
gttgφφ − g2

tφ

) ∣∣∣
ρ=ρ+

= 0 , (8.39)

6When the corrections are included, most likely the inner horizon of Kerr’s black hole becomes singular.
For instance, one expects that the scalars diverge there.
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which proves that this hypersurface is null. The next step is to show that there exists a
Killing vector whose norm vanishes at ρ = ρ+. Such vector is a linear combination of the
two Killing vectors ∂t and ∂φ:

ξ = ∂t + ΩH∂φ , (8.40)

for some constant ΩH . One can check that the only possible choice of ΩH for which ξ is
null at ρ+ is

ΩH =
|gtφ|
gφφ

∣∣∣∣
ρ=ρ+

=
a

2Mρ+
(1 +H2 −H4)

∣∣
ρ=ρ+

, (8.41)

which represents the angular velocity at the horizon. It is then clear that the norm of the
vector ξ vanishes at ρ = ρ+, since

ξ2
∣∣∣
ρ=ρ+

=
(
gtt + 2gtφΩH + Ω2

Hgφφ
) ∣∣∣
ρ=ρ+

=

(
gtt −

g2
tφ

gφφ

)∣∣∣∣∣
ρ=ρ+

= 0 , (8.42)

where in the last step we have used (8.39). However, the crucial point here is whether
ΩH , given by (8.41), is constant. A priori, this quantity could well depend on x, in whose
case ξ would not be a Killing vector, and therefore ρ = ρ+ would not be a Killing horizon.
Nevertheless, expanding this quantity in powers of χ we do find that it is constant (see
(8.43) below), a fact that provides a very strong check on the validity of our results. Thus,
we have shown that ρ = ρ+ is a Killing horizon, and hence it should correspond to the
event horizon of the black hole.

We can now evaluate the angular velocity in order to study deviations with respect
to Kerr’s solution. A useful way to express it is the following,

ΩH =
χ

2M
(

1 +
√

1− χ2
) +

`4

M5

[
α2

1 ∆Ω
(1)
H + α2

2 ∆Ω
(2)
H + λev ∆Ω

(ev)
H

]
, (8.43)

where the first term is the value in Kerr black hole and we made explicit the linear
corrections related to the different terms in the action. It turns out that the parity
breaking terms do not contribute to this quantity —nor to many others, as we will see.

The dimensionless coefficients ∆Ω
(i)
H depend on the spin, and the first terms in the χ-

expansion read7

∆Ω
(1)
H =

21χ

80
− 21103

201600
χ3 − 1356809

8870400
χ5 − 78288521

461260800
χ7 +O(χ9) , (8.44)

∆Ω
(2)
H = −709χ

1792
− 169

1536
χ3 − 254929

2365440
χ5 − 613099

5271552
χ7 +O(χ9) , (8.45)

∆Ω
(ev)
H =

5χ

32
+

1

64
χ3 +

3

448
χ5 +

11

1792
χ7 +O(χ9) . (8.46)

7The first term in each of the formulas (8.44) and (8.45) reproduces previous results in the cases of
EdGB gravity [342] and dCS gravity [349], respectively. The horizon area we obtain (see Eqs. (8.59) and
(8.60) below) also agrees with the results in those works, that computed the area at quadratic order in the
spin.

175



Chapter 8. Leading higher-derivative corrections to the Kerr geometry

Figure 8.1: Correction to the angular velocity of the black hole associated to every inter-
action.

The profile of these coefficients is shown in Fig 8.1. This plot was done using the expansion
up to order χ15, which provides an accurate result up to χ = 0.7. Interestingly, we observe
that the correction related to α1 increases the angular velocity, while the one related to
α2 decreases it. The one associated to λev can have either effect, since the sign of λev

is in principle arbitrary. We observe that the effect of these terms is larger for smaller
masses: the quantity that controls how relevant the corrections are is `4/M4 times the
corresponding coupling. They become of order 1 when M ∼ `, which marks the limit of
validity of the perturbative approach.

Surface gravity

At this stage, the natural step is to compute the surface gravity κ, defined by the relation

ξν∇νξµ = κξµ , (8.47)

that the Killing vector (8.40) must satisfy on the horizon. The computation of κ is
not straightforward because the coordinates we are using are singular at the horizon. A
possibility in order in order to circumvent this problem consists in working in Eddington-
Finkelstein coordinates, that cover the horizon. However, there exist a number of alterna-
tive methods that can be used in order to obtain the surface gravity even if the coordinates
are not well-behaved. Here we will follow a trick proposed in [36]. First, let us rewrite
(8.47) as

− ∂µξ2 = 2κξµ , (8.48)

where we made use of the Killing property ∇(µξν) = 0. Then, let us focus on the left hand
side of the equation. The norm ξ2 is a function of x and ρ, so that ∂µξ

2 only has non-
vanishing µ = x, ρ components. However, one can explicitly check that limρ→ρ+ ∂xξ

2 = 0,
hence the only non-vanishing component is µ = ρ, and it is given by
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−∂ρ ξ2|ρ=ρ+ =
(ρ+ −M)

2M2ρ2
+

(
ρ2

+ + a2x2
)

[1 + 2H2 −H4

+4M2ρ2
+

∂ρ
(
−H1Σ + a2(1− x2)(2H2 −H4)

)
+ 2 (ρ+ −M) (H4 − 2H2)

2 (ρ+ −M)
(
ρ2

+ + a2x2
)2

] ∣∣∣∣∣
ρ=ρ+

,

(8.49)
where, as usual, we are expanding linearly in the Hi functions. On the other hand, since
ξ is normal to the horizon, we must have ξµ = C δµ

ρ for some constant C. Of course,
this is not true in general: one should imagine that the previous formula holds only on
the horizon, where the coordinate ρ is singular. The exact factor C is computed by taking
the norm ξ2 = C2gρρ and evaluating at the horizon, so that we get

C = lim
ρ→ρ+

√
ξ2

gρρ
=
ρ2

+ + a2x2

2Mρ+

[
1 +H2 +

H3

2
− H4

2

+4M2ρ2
+

∂ρ
(
−H1Σ + a2(1− x2)(2H2 −H4)

)
+ 2 (ρ+ −M) (H4 − 2H2)

4 (ρ+ −M)
(
ρ2

+ + a2x2
)2

] ∣∣∣∣∣
ρ=ρ+

.

(8.50)
Then, we can plug (8.49) and (8.50) into (8.48) to find

κ =−
∂ρ ξ

2|ρ=ρ+

C
=

(ρ+ −M)

2Mρ+

[
1 +H2 −

H3

2
− H4

2

+M2ρ2
+

∂ρ
(
−H1Σ + a2(1− x2)(2H2 −H4)

)
+ 2 (ρ+ −M) (H4 − 2H2)

(ρ+ −M)
(
ρ2

+ + a2x2
)2

] ∣∣∣∣∣
ρ=ρ+

.

(8.51)
Finally, evaluating this expression on the solution and expanding order by order in χ we
find

κ =

√
1− χ2

2M
(

1 +
√

1− χ2
) +

`4

M5

[
α2

1∆κ(1) + α2
2∆κ(2) + λev∆κ(ev)

]
, (8.52)

where the coefficients ∆κ(i) read

∆κ(1) =
73

480
− 61

384
χ2 +

3001

322560
χ4 +

5376451

70963200
χ6 +O

(
χ8
)
, (8.53)

∆κ(2) =
2127

7168
χ2 +

14423

86016
χ4 +

429437

3153920
χ6 +O

(
χ8
)
, (8.54)

∆κ(ev) =
1

32
− 7

64
χ2 − 3

64
χ4 − 7

256
χ6 +O

(
χ8
)
. (8.55)

Again, we observe that parity-breaking terms do not modify this quantity. In addition,
the fact that we obtain a constant surface gravity is another strong check of our solution,
since this is a general property that any event horizon must satisfy. The profile of these
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coefficients as functions of χ is shown in Fig 8.2, using an expansion up to order χ14.
We see that both quadratic curvature terms controlled by α1 and α2 increase the surface
gravity, with the difference that the α2 correction vanishes for static black holes. On the
other hand, the contribution from λev has a different sign depending on χ. For χ < 0.5
the surface gravity is greater than in Kerr black hole, while for χ > 0.5 it is lower, or
viceversa, depending on the sign of λev. Another aspect that we can mention is that these
contributions do not seem to be vanishing when χ → 1. This means that the extremal
limit will not exactly coincide with χ = 1, so we will have a correction to the extremality
condition. However, the series expansion in χ breaks down for χ = 1, so the perturbative
approach is not reliable in order to analyze the corrections to the extremal Kerr solution.

Figure 8.2: Variation of the surface gravity ∆κ(i) due to every correction, as a function
of χ. We can observe that contributions coming from curvature-squared terms always
increase the temperature, since ∆κ(1) and ∆κ(2) are positive and also the coefficients
multiplying them. The contribution from λev has different sign depending on χ.

Horizon geometry

Let us finally study the size and shape of the horizon, which will be affected by the
corrections. The induced metric at the horizon is

ds2
H = (1 +H3) |ρ=ρ+

ρ2
+ + a2x2

1− x2
dx2 + (1 +H4) |ρ=ρ+

4M2ρ2
+

(
1− x2

)
ρ2

+ + a2x2
dφ2 . (8.56)

First, we can find the area, which is given by the integral

AH =4πMρ+

∫ 1

−1
dx

(
1 +

H3

2
+
H4

2

) ∣∣∣∣∣
ρ=ρ+

. (8.57)

Computing the integral order by order in χ, we can write the area as

AH = 8πM2
(

1 +
√

1− χ2
)

+
π`4

M2

(
α2

1 ∆A(1) + α2
2 ∆A(2) + λev ∆A(ev)

)
, (8.58)

where every contribution ∆A(i) depends on χ, and the first terms read
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∆A(1) = −98

5
+

11χ2

10
+

28267χ4

25200
+

11920241χ6

7761600
+O

(
χ8
)
, (8.59)

∆A(2) = −915χ2

112
− 25063χ4

6720
− 528793χ6

295680
+O

(
χ8
)
, (8.60)

∆A(ev) = −10 + 4χ2 +
69χ4

40
+

263χ6

280
+O

(
χ8
)
. (8.61)

In Fig. 8.3 we show the profile of these quantities as functions of χ, using the expansion up
to order χ14. We observe that the quadratic corrections always reduce the area (except α2

in the static case, that does not contribute). On the other hand, the cubic even correction
reduces or increases the area depending on whether λev > 0 or λev < 0, respectively.

Figure 8.3: Variation of the black hole area ∆A(i) due to every one of the corrections. The
quadratic curvature corrections, controlled by α1 and α2 always decrease the area with
respect to the result in Einstein gravity, while for the even cubic correction the contribution
depends on the sign of λev.

So far, we have not observed the effect of the parity-breaking corrections —they do
not contribute either to the area, the surface gravity or the angular velocity of the black
hole. This is expected on general grounds since these corrections contain only odd powers
of x, and it is easy to see that the contribution, for instance, to the area, must vanish.
Nevertheless, these terms do change the geometry and they will affect the shape of the
horizon. Indeed, these parity-breaking corrections break the Z2 symmetry of the solution,
i.e. the reflection symmetry on the equatorial plane x→ −x. It is expected that this loss
of symmetry is manifest in the form of the horizon.

In order to visualize the event horizon, we perform an isometric embedding of it in
3-dimensional Euclidean space E3. In terms of Cartesian coordinates (x1, x2, x3), we can
parametrize the most general axisymmetric surface as

x1 = f(x) sinφ , x2 = f(x) cosφ , x3 = g(x) , (8.62)

where f(x) and g(x) are some functions that must be determined by imposing that the
induced metric on the surface, given by

ds2 =
[(
f ′
)2

+
(
g′
)2]

dx2 + f2 dφ2 , (8.63)
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coincides with (8.56). We get immediately that these functions are given by

f(x) = 2Mρ+

(
1 +

H4

2

) ∣∣∣∣∣
ρ=ρ+

(
1− x2

ρ2
+ + a2x2

)1/2

, (8.64)

g(x) =

∫
dx

[
(1 +H3) |ρ=ρ+

ρ2
+ + a2x2

1− x2
−
(
f ′
)2]1/2

. (8.65)

However, it can happen that the solution does not exist if the argument of the square root
in the integral becomes negative. In that case, the horizon cannot be embedded completely
in E3. It turns out that this only happens for quite large values of χ (around χ ∼ 0.9),
and for the values we are considering here, the complete horizon can be embedded. As
usual, we expand the expressions (8.64) and (8.65) linearly on Hi and at the desired order
in χ and we obtain explicit formulas for f and g that we do not reproduce here for a sake
of clarity.
Now we can use the result to visualize the horizon. In Fig. 8.4 we show the horizon for

parity-preserving theories. We fix the mass to some constant value and χ = 0.65 and we
compare the horizon of Kerr black hole with the one in the corrected solutions for different
values of the couplings. In this way, we can observe clearly the change in size and in shape
of the horizon. As we already noted, both α1 and α2 reduce the area, but it turns out that
they deform the horizon in different ways: α1 squashes it while α2 squeezes it. We also
show the deformation corresponding to the “stringy” prediction α1 = α2. In that case
we observe that the effect of both terms together is to make to horizon rounder than in
Einstein gravity. As for the cubic even correction, it mainly changes the size of the black
hole while its shape is almost unaffected.

In Fig. 8.5 we present the horizon in the parity-breaking theories (characterized
by the two parameters θm and λodd). In the top row we plot the horizon for a fixed
choice of higher-order couplings and for various masses, keeping χ = 0.65 constant. The
visualization is clearer in this way since these corrections do not change the area. In
addition, we can see that for large M the horizon has almost the same form as in EG, but
as we decrease the mass the corrections become relevant and it is deformed. We observe in
this case that the Z2 symmetry is manifestly broken. Due to exotic form of these horizons
we include as well a 3D plot in which we can appreciate them better. Very recently other
works have described black hole solutions that do not possess Z2 symmetry [352, 365].
However, to the best of our knowledge, these are the first plots of black hole horizons
without Z2 symmetry in purely gravitational theories.

8.3.2 Ergosphere

Another important surface of rotating black holes is the ergosphere, which marks the limit
in which an object can remain static outside the black hole. When gtt < 0, there are no
timelike trajectories with constant (ρ, x, φ), so the ergosphere is identified by the condition
gtt = 0, which for the metric (8.24) can be written as

1− 2Mρ

Σ
= H1 . (8.66)

This equation determines the value of the “ergosphere radius” ρerg. Unlike the horizon
radius ρ+, that does not receive corrections due to the clever choice of coordinates, the
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Figure 8.4: Isometric embedding of the horizon in E3 for different values of the parameters
and for χ = 0.65. In black we represent the horizon of Kerr black hole and in blue the
horizon of the corrected solution for a fixed mass and different values of the couplings.
From light to darker blue we increase the value of the corresponding coupling. In each
case, only the indicated couplings are non-vanishing. Top left: `4

M4α
2
1 = 0.05, 0.1, 0.15, 0.2,

top right: `4

M4α
2
2 = 0.05, 0.1, 0.15, 0.2, bottom left: `4

M4α
2
1 = `4

M4α
2
2 = 0.05, 0.1, 0.15, 0.2,

bottom right: `4

M4λev = −0.4,−0.2, 0.2, 0.4.

ergosphere radius is modified with respect to its value in Kerr metric. We may express
the corrections to ρerg as

ρerg =M
(

1 +
√

1− χ2x2
)

+
`4

M3

[
α2

1∆ρ(1) + α2
2∆ρ(2) + α1α2 sin θm∆ρ(m)

+λev∆ρ(ev) + λodd∆ρ(odd)
]
,

(8.67)
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Figure 8.5: Isometric embedding of the horizon in E3 for parity-breaking theories. For
clarity reasons we do not include the comparison with Kerr solution. In the top row we
plot the horizon for different masses (M0 ≥M ≥ 0.7M0 for some reference mass M0) while
keeping χ = 0.65 and the couplings constant. In each case, only the indicated couplings
are non-vanishing. Left: α1 = α2, θm = π/2, M0 ≈ 2.23`

√
|α1|. Right: λodd > 0,

M0 ≈ 1.46`λ
1/4
odd. Bottom row: 3D embedding of the horizon for `4

M4α
2
1 = `4

M4α
2
2 = 0.15,

θm = π/2 (left) and for `4

M4λodd = 0.6 (right). In both cases, the Z2 symmetry is manifestly
broken.

where the first term represents the result in Einstein gravity and we have to determine
the value of the coefficients ∆ρ(i). Plugging this into (8.66), we find these coefficients,
whose first terms in the χ-expansion are shown in Eq. (G.36). In this case, we do get
a non-vanishing contribution from the parity-breaking terms, though this is not directly
relevant, since ρerg has no physical meaning by itself. However, an interesting property
that we note by looking at (G.36) is that all the corrections to ρerg vanish at x = ±1,
corresponding to the north and south poles of the ergosphere. There is a nice interpretation
of this fact: the ergosphere and the horizon overlap at the poles. Indeed, the horizon
radius ρ+ does not have corrections, and the zeroth-order value of the ergosphere radius

ρ
(0)
erg = M

(
1 +

√
1− χ2x2

)
already coincides with ρ+ at the poles ρ

(0)
erg(x = ±1) = ρ+.

Hence, the corrections to ρ
(0)
erg must vanish at x = ±1 if we want the horizon and the

ergosphere to still overlap.
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In order to study the geometry of the ergosphere, we can compute the induced metric
for ρ = ρerg(x) at a constant time t = t0, which reads

ds2
erg = (1 +H3) Σ

(
1

∆

(
dρerg

dx

)2

+
1

1− x2

)
dx2

+ (1 +H4)

(
ρ2 + a2 +

2Mρa2(1− x2)

Σ

)
(1− x2)dφ2

∣∣∣∣
ρ=ρerg(x)

,

(8.68)

Using the value of ρerg that we have found yields a complicated expression that
we omit here for clarity sake. The most useful way to visualize the geometric properties
of the ergosphere is to find an isometric embedding of the previous metric in Euclidean
space, as we have just done with the horizon. The embedding is shown in Fig. 8.6 for
parity-preserving theories, and in Fig. 8.7 for parity-breaking ones. In the former case, we
plot the ergosphere for a fixed mass and χ = 0.65, and for different values of the couplings,
including the GR result. We observe that the corrections change the size and shape of
the ergosphere. The quadratic terms α1 and α2 both reduce the area of the ergosphere,
while the cubic even term reduces its size for λev > 0, and increases it for λev < 0.
The characteristic conical singularity at the poles of the ergosphere is also considerable
affected by some corrections. In particular, we see that α2 and λev < 0 have the effect of
making the cone less sharp. In the top row of Fig. 8.7 we show instead the embedding of
the ergosphere for several values of the mass, while keeping the couplings and χ = 0.65
constant. This helps the visualization since parity-breaking interactions do not change
the area of the ergosphere. As the mass decreases, the effect of the corrections becomes
relevant and we observe, as in the case of the horizon, that the ergosphere does not possess
Z2 symmetry. This is more explicit for the cubic odd correction λodd that deforms the
ergosphere giving it a characteristic “trompo” shape. The effect of Z2 symmetry breaking
is less obvious for the θm deformation, but nevertheless it can still be observed. To the
best of our knowledge, these are the first examples of ergospheres without Z2 symmetry.

8.3.3 Photon rings

Another aspect of the modified Kerr black holes we would like to explore is their geodesics.
The analysis of geodesics is necessary in order to obtain some observable quantities, such
as the form of the black hole shadow [319]. However, a detailed analysis of geodesics
will require of an independent study due to their intricate character.8 For that reason,
here we consider only a special type of geodesics that are particularly interesting: circular
orbits (ρ = constant) for light rays at the equatorial plane, i.e. at x = 0, known as
the photon rings or light rings of the black hole. However, an appropriate question that
we must answer first is whether there are geodesics contained in the equatorial plane at
all. In the case of Kerr metric, the reason of their existence is the reflection symmetry
x → −x, but we have seen that in our black holes this symmetry does not exist if we
include parity-breaking terms. In fact, in those solutions there is no equatorial plane!
Therefore, we should not expect the existence of geodesics contained in the plane x = 0
if we include those corrections. In order to understand this better, let us examine the

8For instance, a preliminary exploration shows that integrability is lost, i.e., there is no Carter constant
[366].
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Figure 8.6: Isometric embedding of the ergosphere in E3 for different values of the pa-
rameters and for χ = 0.65. In black we represent the ergosphere of Kerr black hole and
in blue the ergosphere of the corrected solution, for a fixed mass and different values
of the couplings. From light to darker blue we increase the value of the correspond-
ing coupling. In each case, only the indicated couplings are non-vanishing. From left
to right and top to bottom: `4

M4α
2
1 = 0.03, 0.07, 0.11, 0.15, `4

M4α
2
2 = 0.03, 0.07, 0.11, 0.15,

`4

M4α
2
1 = `4

M4α
2
2 = 0.03, 0.07, 0.11, 0.15, `4

M4λev = −0.6,−0.3, 0.3, 0.6.

geodesic equations:
ẍµ + Γµαβẋ

αẋβ = 0 , (8.69)

where ẋµ = dxµ

dλ and λ parametrizes the curve xµ(λ). Let us evaluate these equations for
a trajectory with ρ̇ = 0 and x = 0, which represents a circular orbit. We find that the
µ = x component of (8.69) reads

− ∂xH1|x=0

2ρ2
±

ṫ2 +
2M2χ

ρ3
±

∂xH2|x=0 ṫ φ̇−
ρ3
± + 2M3χ2 +M2χ2ρ±

2ρ3
±

∂xH4|x=0 φ̇
2 = 0 . (8.70)
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Figure 8.7: Isometric embedding of the ergosphere in E3 for parity-breaking theories. In
the top row we plot the ergosphere for different masses (M0 ≥ M ≥ 0.7M0 for some
reference mass M0) while keeping χ = 0.65 and the couplings constant. In each case, only
the indicated couplings are non-vanishing. Left: α1 = α2, θm = π/2, M0 ≈ 2.23`

√
|α1|.

Right: λodd > 0, M0 ≈ 1.35`λ
1/4
odd. In the bottom row we show a 3D embedding of the

ergosphere for `4

M4α
2
1 = `4

M4α
2
2 = 0.15, θm = π/2 (left) and for `4

M4λodd = 0.6 (right). In the
latter case we observe clearly that the Z2 symmetry is broken and the ergosphere acquires
a characteristic “trompo” shape. The effect is more subtle in the left picture, but the Z2

symmetry is also broken.

In order for the truncation x = 0 to be consistent, the left-hand-side should vanish in-
dependently of the value of ṫ and φ̇. This does not always happens, and the reason is
precisely the presence of parity-breaking interactions, controlled by λodd and sin θm. Note
that all the terms appearing in (8.70) are proportional to ∂xHi|x=0. When the theory
preserves parity, the solution possesses Z2 symmetry and the functions Hi only contain
even powers of x, so that ∂xHi|x=0 = 0. On the contrary, the parity-breaking terms in-
troduce odd powers of x in the Hi functions —in particular terms linear in x— implying
that ∂xHi|x=0 6= 0. Thus, in such theories setting x = 0 is not consistent and there are
no orbits contained in the plane x = 0 (probably there are no orbits contained in a plane
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at all, besides the radial geodesics at the axes x = ±1).9 For simplicity, from now on we
set the parity-violating parameters to zero, λodd = θm = 0, so that we can study equa-
torial geodesics. However, we believe that studying the geodesics in those theories is an
interesting problem that should be addressed elsewhere.

Let us then focus on the remaining equations. When they are evaluated on ρ̇ = 0
and x = 0, the µ = t and µ = φ components of the geodesic equations (8.69) tell us
that ṫ = const and φ̇ = const and, consequently, the angular velocity ω ≡ dφ/dt is also
constant. On the other hand, the component µ = ρ gives an equation for ω:

Γρφφω
2 + 2Γρtφ ω + Γρtt = 0 , (8.71)

where the Christoffel symbols are shown in Eq. (G.41). Finally, we take into account that
for massless particles we have gµν ẋ

µẋν = 0, that gives the following equation

(1 +H4)
(
ρ3 +M2χ2ρ+ 2M3χ2

)
ω2 − 4M2χ (1 +H2) ω = ρ− 2M − ρH1 . (8.72)

Now, using the equations (8.71) and (8.72) we can solve for ρ and ω. We get two
solutions that we can express as the result in Einstein gravity plus corrections:

ρph±
M

= 2

(
1 + cos

(
2

3
arccos (∓χ)

))
+

`4

M4

[
α2

1∆ρ
(1)
ph± + α2

2∆ρ
(2)
ph± + λev∆ρ

(ev)
ph±

]
,

(8.73)

Mω± = ±

 1√
48 cos4

(
1
3 arccos (∓χ)

)
+ χ2

+
`4

M4

(
α2

1∆ω
(1)
± + α2

1∆ω
(1)
± + λev∆ω

(ev)
±

) ,

(8.74)

The “+” solution corresponds to the prograde photon ring (the photons rotate in the same
direction as the black hole), while the “−” solution represents the retrograde photon ring.

9In Ref. [352], rotating black holes were studied in the presence of quartic-curvature corrections, includ-
ing a parity-violating combination, and it was stated that this interaction does not have effects on equatorial
geodesics. Apparently, the analysis of geodesics in that paper missed the fact that those geodesics are not
permitted if the parity-violating term is activated. On the other hand, that analysis should be perfectly
valid if the problematic term is removed.
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We reproduce here the values of the coefficients ∆ω
(i)
± expanded up to order χ6 in the spin

∆ω
(1)
± =

4397

65610
√

3
± 20596χ

295245
+

1028803χ2

14467005
√

3
± 45262543χ3

3906091350
(8.75)

− 3685587061χ4

328111673400
√

3
∓ 110632797883χ5

5413842611100
− 910228742414947χ6

17151053391964800
√

3
+O

(
χ7
)
,

∆ω
(2)
± = ∓131χ

5103
− 11047χ2

381024
√

3
∓ 9491513χ3

1388832480
− 19022279χ4

925888320
√

3
(8.76)

∓353193404087χ5

23099061807360
− 2452581602509χ6

63522419970240
√

3
+O

(
χ7
)
,

∆ω
(ev)
± =

20

2187
√

3
± 320χ

19683
+

26749χ2

1928934
√

3
∓ 12967χ3

104162436
− 4415651χ4

1249949232
√

3
(8.77)

∓3101153χ5

937461924
− 33998483χ6

6629195034
√

3
+O

(
χ7
)
,

while the coefficients ∆ρ
(i)
ph± are shown in Eq. (G.44) of the Appendix. However, ρph± is a

meaningless quantity, since ρ does not have a direct interpretation as a radius. What we
should really consider as the radius of the light rings is

R± =
√
gφφ

∣∣∣
x=0, ρ=ρph±

. (8.78)

Since the light ring (more precisely, the photon sphere) determines the shape of the black
hole shadow, this quantity give us information about the deformation of the shadow (near
the equator) due to the corrections. On the other hand, ω± is also an interesting quantity,
since it is related to the time-scale of the response of the black hole when it is perturbed.
In fact, there is a known quantitative relation between the orbital frequency of the light
ring and the quasinormal frequencies of static black holes in the eikonal limit [367, 368].
Although the relation probably does not extend to the rotating case, we do expect that
ω± captures qualitatively the (real) frequencies of the first quasinormal modes. Hence, we
can use ω± in order to perform a first estimation of the effects of the corrections on the
black hole quasinormal frequencies.

In Fig. 8.8 we show the frequencies ω± and the radius R± for several values of the
higher-order couplings and we compare them to the GR values. These plots were computed
using an expansion up to order χ14 of both quantities. We note some characteristic features
for each correction. In the case of the quadratic correction controlled by α1 we see that
both ω+ and |ω−| increase with respect to the Einstein gravity values. On the other hand,
for α2 corrections we observe that ω+ decreases while |ω−| increases so that the difference
between the two frequencies is reduced. As for the cubic correction, it increases or decreases
ω+ if λev > 0 or λev < 0 respectively. It has little effect on ω−, but interestingly the sign
is different depending on the value of χ. However, in order to characterize deviations from
GR it is more useful to look at the ratio of frequencies ω+/|ω−|, that we show for a few
cases in Fig. ??. In GR, this quantity is completely determined by the spin parameter χ,
but in these theories it also depends on the combination `4/M4. Thus, if one is able to
determine χ by other means, the ratio ω+/|ω−| can be used to constrain the higher-order
couplings.
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Figure 8.8: Frequencies and radii of the light rings in parity-preserving theories. In blue
we plot the quantity corresponding to the prograde orbit and in purple that corresponding
to the retrograde one. In the left column we show the frequencies for different values of
the couplings and compare them to GR. In the right column we plot the radii R± for the
same values of the couplings.

8.3.4 Scalar hair

So far, we have only focused on the geometry, but one of the most remarkable features
of the solutions of (8.5) is that the scalar fields acquire a non-trivial profile. In fact, the
coupling of the scalars to the quadratic curvature invariants prevent these from being
constant whenever the invariants are non-vanishing. A slightly less trivial fact —though
also well-known [299,330–332,369]— is that the scalars actually get a charge that can be
measured at infinity. More precisely, the scalar φ1 gets a charge Q while φ2 gets dipolar
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Figure 8.9: Ratio of light ring frequencies ω+/|ω−| in several theories.

moment P , that can be identified by looking at the asymptotic behaviour10

φ1 ∼ −
Q

ρ
, φ2 ∼ P

x

ρ2
. (8.80)

Using the solution in powers of χ that we have found, we obtain

Q = −α1`
2

M

(
2− χ2

2
− χ4

4
− 5χ6

32
− 7χ8

64
− 21χ10

256
− 33χ12

512
+ . . .

)
, (8.81)

P = α2`
2 cos θm

(
5χ

2
− χ3

4
− 3χ5

32
− 3χ7

64
− 7χ9

256
− 9χ11

512
− 99χ13

8192
+ . . .

)
. (8.82)

Remarkably enough, it is possible to guess the general term of these series and to sum
them. We find

Q = −4α1`
2

M

√
1− χ2

1 +
√

1− χ2
, (8.83)

P = α2`
2 cos θm

2χ(5− 8χ2 + 4χ4)

2− 3χ2 + 2χ4 + 2(1− χ2)3/2
. (8.84)

One can check that the series expansion of these expressions matches those in (8.81) and
(8.82), so they are most likely correct, and they give the exact value of the charges as
functions of the spin. In the case of the charge Q, we also check that it agrees with
previous results [14,16,370].

Despite having non-vanishing scalar charge, we note however that the solution has
no “hair”, because the charge is completely fixed in terms of the mass and the spin. In
other words, the charge cannot be arbitrary. The reason is that the previous value of the
charge is the only one compatible with the requirement of regularity of the solution at

10The reason for the negative sign in front of Q is that the charge is conventionally defined as

Q =
1

4π

∫
d2Σµ∂µφ1 , (8.79)

where the integral is taken on spatial infinity.
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the horizon. If we introduce, by hand, any other value of the scalar charge, the resulting
solution would develop a singularity at the horizon.

As we mentioned in Sec. 8.1, in the context of string theory φ1 is related to the
dilaton, while φ2 is the axion. In Appendix G.2 we show that the precise identification
with the effective action of the heterotic superstring is α1 = −α2 = −1/8 , `2 = α′,
ϕ = ϕ∞ + φ1

2 . Then, the dilaton charge D associated to a rotating black hole reads, at
leading order in α′,

D =
α′

4M

√
1− χ2

1 +
√

1− χ2
. (8.85)

This can be expressed in a very appealing form as D = α′πT , where T = κ/(2π) is
the Hawking temperature of the black hole. It turns out that this intriguing connection
between asymptotic charge and temperature (or surface gravity) is not a coincidence, but
a general phenomenon that happens in EdGB theory with linear coupling [370].

The field φ2 gets a dipolar moment instead of charge because it is sourced by the
parity-violating Pontryagin density —φ2 is essentially the scalar that appears in dynamical
Chern-Simons gravity [346]. When the spin vanishes we get P = 0, and in fact, φ2 = 0,
so that this kind of scalar hair is not present in spherically symmetric solutions [371].

Besides the asymptotic behaviour, it is also interesting to study the profile of the
scalar fields as a function of x. The field φ2 is odd under the Z2 transformation x→ −x,
while φ1 is even only for θm = nπ, n ∈ Z. For other values of θm, φ1 does not have a
defined parity, which is a manifestation of the breaking of the Z2 symmetry. For instance,
when evaluated on the horizon, ρ = ρ+, the field φ1 is given by

φ1

∣∣∣
ρ+

=
`2

M2

[
α1

(
11

6
+

(
5

16
− 59x2

40

)
χ2 +

(
11

160
− 117x2

80
+

167x4

224

)
χ4 + . . .

)
+α2 sin (θm)

(
29xχ

16
+

(
187x

160
− 13x3

12

)
χ3 +

(
67x

80
− 629x3

448
+

251x5

512

)
χ5 + . . .

)]
.

(8.86)

We only show here a few terms in the χ-expansion for definiteness, but using the
solution up to order χ14 we can determine accurately the profile of φ1 on the horizon for
high values of χ. In Fig. 8.10 we plot φ1 as a colormap on the horizon for χ = 0.65, and
`2α1 = `2α2 = 0.4M2. From left to right, the parity-breaking parameter θm takes the
values θm = 0, π/4, π/2. For θm = 0 the profile is Z2-symmetric and has a mild variation,
taking a maximum value at the equator. When θm 6= 0, we observe the deformation of
the horizon that we reported in Sec. 8.3.1, plus a “polarization” of the scalar field, that
develops a maximum at the north pole and a minimum at the south one.

Interestingly enough, the scalar profile provides an intuitive picture of the deforma-
tion of the horizon. The northern “hemisphere” grows due to the θm correction, while
the southern one has a smaller size, and this coincides with the fact that the scalar field
is “concentrated” on the northern hemisphere, producing a larger energy density there.
Thus, the horizon is enlarged in the region that has a greater scalar energy density.
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Figure 8.10: Profile of the scalar field φ1 on the horizon. We show here the case for
`2α1 = `2α2 = 0.4M2 and for a parity-breaking phase θm = 0, π/4, π/2, from left to right.

8.4 Conclusions

In this chapter, we have computed the modified Kerr black hole solution in the effective
theory (8.5), which provides a general framework to study the leading-order deviations
from GR associated to higher-derivative corrections. We expressed the solution as a power
series in the spin parameter χ and we showed that including enough terms we get an
accurate result even for large values of χ. In this text we have worked with an expansion
up to order χ14, that provides a good approximation for χ ≤ 0.7, but with the software
we supply it should be possible to compute the series to higher orders in χ and to get a
solution valid for χ ∼ 1. Although the series expansion involves lengthy expressions, it has
obvious advantages with respect to numerical solutions, since it allows for many analytic
computations, as we have illustrated in Section 8.3.

We have studied some of the most remarkable properties of these rotating black
holes, with special emphasis on the horizon. We have shown that the corrections modify
the shape of the horizon, and in particular, that parity-violating interactions break the
Z2 symmetry of Kerr’s black hole. We observed the same phenomenon in the case of
the ergosphere, and, as far as we know, Fig. 8.7 contains the first example of ergospheres
without Z2 symmetry.

In addition, we have computed some quantities that were disregarded in previous
studies on rotating black holes in modified gravity. In particular, we have obtained the
surface gravity of these black holes, from which one obtains the Hawking temperature
according to T = κ

2π , in natural units. Thus, from the results in Sec. 8.3.1 we conclude
that the quadratic curvature terms with non-minimally coupled scalars always increase
the temperature of black holes, for any value of the spin. On the other hand, the cubic
curvature term raises or lowers the temperature depending on the sign of the coupling
λev and on the value of the spin χ. The modification of Hawking temperature may have
important consequences for the evaporation process of black holes [312], and it would
be interesting to extend these results by obtaining the value of the temperature non-
perturbatively in the coupling and in the spin.

As a first step in analyzing the geodesics of the modified Kerr black holes, we studied
the photon rings, i.e. circular light-like geodesics on the equatorial plane. Remarkably,
we have found that for parity-breaking theories there are no such orbits: indeed, there
are no orbits contained in the equatorial plane because there is no equator at all. Thus,
we computed the photon rings for parity-even theories, characterizing the deviations from
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GR.

Finally, we also noticed the non-trivial scalar fields, and we were able to obtain
exact formulas for the monopole and dipole charges. We also computed the profile of
the scalar φ1 on the horizon and we observed how the Z2 symmetry is broken when the
parity-violating phase θm is activated.

Let us now comment on some possible extensions and future directions. As we
already mentioned, it would be interesting to obtain the solution for even larger values
of the angular momentum, since the effects of rotation are more drastic when the spin is
close to the extremal value. It would also be more or less straightforward to extend the
results of this chapter to other theories that we did not consider here, particularly the
quartic ones in [22, 352]. Another possible extension would entail adding a mass term for
the scalars in (8.5), though this would considerably increase the difficulty of finding an
analytic solution.

We have studied some basic properties of the modified Kerr black holes, but the
next natural step is to derive observational signatures of these spacetimes. Analyzing the
geodesics of these black holes is an interesting task, as one would potentially observe effects
coming from the loss of integrability or from the absence of Z2 symmetry in parity-violating
theories. Once the geodesics are determined, one could study gravitational lensing or the
black hole shadow, similarly as done e.g. in [354, 355]. However, the most sensitive
quantity to the corrections —and that we expect to measure in the near-future thanks to
gravitational wave detectors [17]— is the quasinormal mode spectrum of the black hole.
Hence, the determination of the quasinormal modes and frequencies of the rotating black
holes presented here is a very relevant task, for which one needs to perform perturbation
theory. The analysis of the scalar perturbations has been recently performed in [372].
On the other hand, the study of gravitational perturbations presents a more challenging
problem, since one would need to derive the analogous of the Teukolsky equation [373] for
the modified Kerr black holes.

The observation of deviations from general relativity in astrophysical black holes
would represent a tremendous breakthrough that would revolutionize our current under-
standing of gravity. But even if this is not the case, the expectation that these corrections
appear at some higher energy scale is a realistic one. Studying their effects on black hole
geometries provides us with a rich source of new physics, and allows us to learn about new
phenomena that could be inherent to an underlying UV-complete theory of gravity.
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A
Resumen

El ĺımite de bajas enerǵıas de las teoŕıas de supercuerdas admite una descripción en
términos de una teoŕıa de campos efectiva para sus modos sin masa. La correspondiente
acción efectiva viene dada por una doble expansión perturbativa en gs, el acoplamiento de
la cuerda, y α′, el cuadrado de su longitud. El término dominante en esta expansión viene
dado por la acción de las diferentes supergravedades en diez dimensiones, mientras que
términos subdominantes involucran términos con derivadas de orden superior. El trabajo
que se presenta en esta tesis es el resultado de un programa de investigación que empieza
con el estudio de las soluciones supersimétricas de supergravedad gaugeada y culmina con
el análisis de los efectos producidos por las correcciones en α′ en soluciones de la acción
efectiva de la supercuerda heterótica.

Esta tesis está dividida en dos partes. La primera se centra en las soluciones super-
simétricas de una extensión mı́nima del modelo STU de la supergravedad N = 1 en cinco
dimensiones cuyo principal interés radica en el hecho de que puede obtenerse a partir de
la compactificación toroidal de la supergravedad N = 1 en diez dimensiones acoplada a
un triplete de campos gauge de SU(2). Concretamente, construimos y estudiamos solu-
ciones que describen agujeros negros y geometŕıas regulares sin horizonte con campos de
Yang-Mills no triviales.

El entendimiento este tipo de soluciones desde el marco de la teoŕıa de cuerdas
sirve como motivación para la segunda parte de la tesis, la cual está dedicada a estudiar
soluciones de la acción efectiva de la supercuerda heterótica a primer orden en α′. Ésta
no coincide simplemente con la acción de la supergravedad N = 1 acoplada a un multi-
plete vectorial de Yang-Mills en diez dimensiones, ya que el mecanismo de cancelación de
anomaĺıas de Green-Schwarz y supersimetŕıa nos obligan a introducir términos adicionales
en la acción. Estos términos se construyen a partir de la conexión de esṕın con torsión dada
por la intensidad de campo asociada a la 2-forma de Kalb-Ramond y las contribuciones
de éstos a las ecuaciones de movimento son análogas a las de los campos de Yang-Mills.
Este hecho es explotado para construir soluciones anaĺıticas que describen agujeros negros
supersimétricos con correcciones en α′.

La lección más importante a extraer de nuestros resultados es que la masa y las
cargas conservadas de los agujeros negros se ven modificadas por las correcciones en α′.
Esto es lo que cabŕıa esperar desde un punto de vista f́ısico ya que las correcciones apare-
cen en las ecuaciones de movimiento como términos efectivos de enerǵıa, momento y
carga. Esta información resulta ser crucial para establecer una correspondencia entre los
parámetros que caracterizan la descripción efectiva o “de grano grueso” (el agujero negro)
y los parámetros que caracterizan el sistema microscópico de teoŕıa de cuerdas descrito. La
mayor relevancia de los efectos producidos por los términos de orden superior en derivadas
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en las cargas se alcanza en los llamados agujeros negros pequeños, los cuales describen de
manera efectiva una cuerda fundamental con cargas de “enrollamiento” y momento. Los
agujeros negros pequeños son soluciones singulares cuyo horizonte tiene tamaño nulo en la
aproximación de supergravedad. Durante mucho tiempo se ha créıdo que las correcciones
de orden superior en derivadas seŕıan capaces de estirar el horizonte, haciendo la solución
regular. Nuestros resultados revelan que éste no es el caso a primer orden en α′, y que las
regularizaciones existentes de los agujeros negros pequeños heteróticos parecen en reali-
dad describir un sistema microscópico diferente que es regular ya en la aproximación de
supergravedad.

El último caṕıtulo de la tesis contiene el cálculo de la corrección más general a
la solución de Kerr en cuatro dimensiones cuando al término de Einstein-Hilbert se le
añaden términos de orden superior en curvatura hasta orden cúbico, teniendo en cuenta
la posibilidad de tener acoplamientos dinámicos. Ésto incluye, como caso particular, las
correcciones predichas por la acción efectiva de la supercuerda heterótica.
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Conclusiones

El objetivo principal de esta tesis ha sido el de profundizar en nuestra comprensión sobre
agujeros negros en el contexto de las teoŕıas de supergravedad y de supercuerdas.

La primera parte de esta tesis se enmarca en una ĺınea de investigación cuyo obje-
tivo es el de entender la interacción entre los campos de Yang-Mills y la gravedad a través
del estudio y la construcción de nuevas soluciones de supergravedad gaugeada. Concre-
tamente, en esta tesis presentamos nuevas soluciones de tipo agujero negro en cuatro y
en cinco dimensiones con propiedades interesantes que no se hab́ıan observado antes en la
literatura. Además, proponemos un procedimiento sistemático para construir geometŕıas
de microestado supersimétricas evitando la aparición de curvas temporales cerradas, lo
cual simplifica enormemente la construcción expĺıcita y la exploración de este tipo de
soluciones.

El estudio de las correcciones de orden superior en derivadas (o en α′) en agujeros
negros en el contexto de la teoŕıa de cuerdas constituye la parte más importante de esta
tesis. La relevancia que ésto tiene desde un punto de vista teórico radica en que nos permite
comprobar la consistencia de teoŕıa de cuerdas más allá del ĺımite de supergravedad, donde
los efectos genuinamente cuerdosos empiezan a ser relevantes.

Esta tesis contiene el cálculo anaĺıtico de las correcciones de orden cuadrático en
curvatura a agujeros negros supersimétricos de tres y de cuatro cargas en el marco de la
supercuerda heterótica. Ésto nos permite verificar que la entroṕıa de los agujeros negros
calculada siguiendo la prescripción de Wald está en consonancia con el cálculo microscópico
de la degeneración de estados cuánticos del sistema, lo cual es un test altamente no trivial
de la consistencia de la teoŕıa.

Otro problema que atacamos es el estudio de las correcciones en curvatura en los
llamados agujeros negros pequeños, donde se espera que éstas jueguen un papel fundamen-
tal ya que los agujeros negros pequeños tienen un horizonte singular de tamaño nulo en la
aproximación de supergravedad. De acuerdo con una propuesta hecha por Sen, las correc-
ciones en curvatura vendŕıan al rescate para resolver el horizonte de modo que la entroṕıa
de la solución corregida estuviese de acuerdo con el contaje de la degeneración de estados
microscópicos. Sin embargo, nuestro análisis nos lleva a concluir que las correcciones de
segundo orden en curvatura no son suficientes para regularizar la solución, lo cual con-
tradice una creencia ampliamente establecida en la comunidad de teoŕıa de cuerdas. Este
resultado se extiende a los anillos negros pequeños en cinco dimensiones.

El último caṕıtulo de la tesis es el único en el que abordamos las correcciones de
orden superior en derivadas en un contexto más amplio que teoŕıa de cuerdas. En él
construimos la teoŕıa efectiva más general que parametriza las correcciones a las soluciones
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de vaćıo de la relatividad general cuando al término de Einstein-Hilbert se le añaden
términos de orden superior en curvatura hasta orden cúbico, incluyendo la posibilidad
de tener acoplos dinámicos controlados por escalares sin masa. Además, estudiamos las
correcciones predichas por esta teoŕıa efectiva a la solución de agujero negro de Kerr,
analizando en detalle las propiedades del horizonte y de la ergoesfera.
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C
Conclusions

The main goal of this thesis has been to delve in our understanding of black holes in the
context of supergravity and superstring theories.

The first part of this thesis lies in the context of a research program whose aim
is to understand the interplay between Yang-Mills fields and gravity through the study
and construction of new solutions of gauged supergravity. Concretely, in this thesis we
present novel black-hole solutions in four and five dimensions which exhibit interesting
properties which have not been observed in the literature so far. Furthermore, we propose
a systematic procedure to construct supersymmetric microstate geometries avoiding the
appearance of closed timelike curves, which enormously simplifies the explicit construction
and exploration of this type of solutions.

The study of higher-derivative (or α′) corrections to black holes in the context of
string theory constitutes the most important part of this thesis. The relevance that this
has from a theoretical point of view lies in the fact that it allows to check the consistency
of string theory beyond the supergravity approximation, where genuinely stringy effects
start becoming relevant.

This thesis contains the analytic computation of the quadratic curvature corrections
to supersymmetric black holes with three and four charges in the context of the heterotic
superstring. This allows us to verify that the black-hole entropy computed following
Wald’s prescription is in agreement with the microscopic computation of the degeneracy
of quantum states of the system, which is a highly non-trivial test of the consistency of
the theory.

Another problem that we address is the study of the higher-curvature corrections
in the so-called small black holes, where they are expected to play a fundamental rôle
since small black holes have a singular horizon with vanishing area in the supergravity
approximation. According to a proposal raised by Sen, the higher-curvature corrections
would come to the rescue to resolve the horizon in such a way that the entropy of the
corrected solution would match the microscopic counting of quantum states. However, our
analysis leads us to the conclusion that quadratic curvature corrections are not enough
to regularize the solution, which contradicts a widely spread belief in the string theory
community. This result is extended to five-dimensional small black rings.

The last chapter of the thesis is the only one in which we address the issue of the
higher-derivative corrections in a broader context than string theory. We construct the
most general effective field theory parametrizing the corrections to vacuum solutions of
general relativity when the Einstein-Hilbert term is supplemented with higher-curvature
terms up to cubic order, including the possibility of having dynamical couplings controlled
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by massless scalars. In addition, we study the corrections predicted by this effective theory
on the Kerr solution, analyzing in detail the properties of the horizon and ergosphere.
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D
Regular, horizonless solutions of SEYM theories

Here we fix the notation used in Chapter 3 and summarize the construction of microstate
geometries. We start with a very brief description of SEYM theories and continue in
Section D.2 with a summary of the results of [152], but in slightly different conventions.
In Section D.3 we describe the construction of microstate geometries, adapting the results
of [157] to our current conventions, which have chosen to make contact with most of the
literature on five-dimensional microstate geometries. Finally Section D.4 contains the
expressions for the asymptotic charges in terms of the parameters of the solutions.

D.1 Theory and conventions

SEYM theories are N = 1, d = 5 supergravities in which a non-Abelian subgroup, typ-
ically SU(2), of the isometries of the scalar manifold has been gauged. For a thoughtful
description of these theories we recommend the magnificent book [111]. We set all fermions
to zero and consider the bosonic part of the action,

S =

∫
d5x
√
|g|
{
R+ 1

2gxyDµφ
xDµφy − 1

4aIJF
I µνF Jµν − 1

4CIJK
εµνρσλ√
|g|

[
F IµνF

J
ρσA

K
λ

−1
2gfLM

IF JµνA
K
ρA

L
σA

M
λ + 1

10g
2fLM

IfNP
JAKµA

L
νA

M
ρA

N
σA

P
λ

]}
,

(D.1)

that describes the coupling of the metric, nv scalars labeled as x, y = 1, . . . , nv and (nv+1)
vector fields labeled with the indices I, J, . . . = 0, . . . , nv. The full theory is completely
determined by the election of the constant symmetric tensor CIJK and the structure
constants of the gauge group fJK

I . We consider the SU(2)-gauged ST[2, 6] model, that
contains nv = 5 vector multiplets. This model is characterized by a constant symmetric
tensor with the following non-vanishing components

C0xy =
1

6


0 1 0 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 . (D.2)

The first three vectors, A0, A1 and A2 are Abelian, while A3, A4 and A5 correspond to
a SU(2) triplet. For convenience, we separate the range of values of the indices I, J in
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two sectors: the Abelian sector i, j = 0, 1, 2 and the non-Abelian sector α, β = 3, 4, 5.
Therefore, if the latter sector is truncated we immediately recover the STU model of
supergravity, with Cijk = |εijk|/6, the theory in which five-dimensional BPS microstate
geometries are naturally described.

It is convenient to introduce (nv + 1) functions of the physical scalars hI(φx), which
are subjected to the following constraint

CIJKh
IhJhK = 1 . (D.3)

The functions hI can be interpreted as coordinates in a (nv+1)-dimensional ambient space,
so the above constraint defines a codimension 1 hypersurface parametrized by the scalars
φx known as the scalar manifold. In the ST [2, 6] model, a convenient parametrization is

h0 = e−φe2k/3, h1 =
√

2e−4k/3, h2 =
√

2e−4k/3

(
~l2 +

1

2
eφe2k

)
, h3,4,5 = −2e−4k/3l3,4,5,

(D.4)

where the physical scalars coincide with the Heterotic dilaton eφ, the Kaluza-Klein scalar
ek of the dimensional reduction from six to five dimensions and the non-Abelian scalars
lα appearing in the reduction of the vectors.

We also define

hI ≡
∂

∂hI
CJKLh

JhKhL = 3CIJKh
JhK , hI = aIJh

J . (D.5)

The matrix aIJ is the metric in the ambient space, and the σ-model metric gxy in the
action is given by the pullback of aIJ on the hypersurface. They are both determined by
the election of CIJK as

aIJ = −6CIJKh
K + hIhJ , gxy = aIJ

∂hI

∂φx
∂hJ

∂φy
. (D.6)

We only consider symmetric scalar manifolds, for which

CIJKhIhJhK = 1 , hI = 3CIJKhJhK , with CIJK ≡ CIJK . (D.7)

The field strength and covariant derivatives are defined in the usual manner,

F I µν = 2∂[µA
I
ν] + gfJK

IAJ µA
K
ν , Dµφ

x = ∂µφ
x + gAα µkα

x . (D.8)

We consider the gauge group SU(2) with structure constants fIJ
K = εIJ

K , with the
understanding that they vanish whenever any of the indices takes values in the Abelian
sector. The covariant derivatives of the functions of the scalars are

Dµh
I = ∂µh

I + gfJK
IAJhK , DµhI = ∂µhI + gfIJ

KAJhK . (D.9)
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D.2 Timelike supersymmetric solutions with one isometry

Supersymmetric solutions of this theory admit a Killing vector of non-negative norm.
In adapted coordinates the metric and vectors are independent of the time coordinate,
see [163], and can be written as

ds2 = f 2(dt+ ω)2 − f −1dŝ2 , (D.10)

AI = hIf(dt+ ω) + ÂI , (D.11)

where dŝ2 is a hyperKähler metric. The equations of motion are reduced to the following
BPS system of differential equations on this four-dimensional space,

F̂ I = ?4F̂
I , (D.12)

D̂2ZI = 3CIJK ?4

(
F̂ J ∧ F̂K

)
, (D.13)

dω + ?4dω = ZI F̂
I , (D.14)

where ?4 is the Hodge dual in the hyperKähler space, F̂ I is the field strength of the
vector ÂI and D̂ is the covariant derivative with connection Â. In these equations we have
introduced the functions ZI ≡ hI/f , so the metric function f is conveniently obtained as

f−3 = CIJKZIZJZK , (D.15)

by virtue of equation (D.7).

The system of BPS equations is non-linear due to the presence of non-Abelian fields,
although the three equations could be solved independently in the order they have been
presented. However, it is possible to further simplify the system under the assumption
that the solution admits a spacelike isometry [152], in a way that reduces the problem
to a set of equations in three dimensional Euclidean space. First, consider the following
decompositions

dŝ2 = H−1(dψ + χ)2 +Hdxsdxs , (D.16)

ÂI = −H−1ΦI(dψ + χ) + ĂI , (D.17)

ZI = LI + 3CIJKΦJΦKH−1 , (D.18)

ω = ω5(dψ + χ) + ω̆ , (D.19)

where ψ is the coordinate adapted to the spatial isometry. When these expressions are
substituted in the BPS system of equations, we obtain the following simplified system of
differential equations and algebraic relations
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?3dH = dχ , (D.20)

?3D̆ΦI = F̆ I , (D.21)

D̆2LI = g2fIJ
LfKL

MΦJΦKLM , (D.22)

?3dω̆ = HdM −MdH +
1

2
(ΦID̆LI − LID̆ΦI) , (D.23)

ω5 = M +
1

2
LIΦ

IH−1 + CIJKΦIΦJΦKH−2 , (D.24)

where F̆ I is the field strength of the vector ĂI and D̆ is the covariant derivative with
connection Ă.

The Abelian functions H, M , Φi and Li are just harmonic functions in E3, and the
1-forms χ and Ăi are completely determined from those functions. In the non-Abelian
sector, equations (D.21) are non-linear and must be solved simultaneously for Φα and
Ăα, which make their presence in (D.22). The construction of non-Abelian microstate
geometries requires finding a multicenter solution to these equations. The only known
example of such solution is the multicolored dyon, found by one of us in [157], which we
review in appendix D.3. Last but not least, we have the differential equation (D.23), whose
integrability condition will give rise to the bubble equations.

Notice that these solutions are left invariant under the following transformations
of the harmonic functions generated by the parameters gi, whose sole effect is a gauge
transformation of the Abelian vectors,

H ′ = H, Φi ′ = Φi + giH,

L′i = Li − 6Cijk g
jΦk − 3Cijk g

jgkH,

M ′ = M − 1

2
giLi +

3

2
Cijk g

igjΦk +
1

2
Cijk g

igjgkH,

(D.25)

D.3 Microstate geometries in a nutshell

The previous section describes a procedure to find supersymmetric solutions of SEYM
theories in terms of a set of three-dimensional seed functions: H,M,ΦI and LI . As we
already commented, those in the Abelian sector are just multicenter harmonic functions
with poles in a collection of n points located at (x1

a, x
2
a, x

3
a) called centers,

H =

n∑
a=1

qa
ra
, Φi =

n∑
a=1

kia
ra
, Li = li0 +

n∑
a=1

lia
ra
, M = m0 +

n∑
a=1

ma

ra
, (D.26)

with ra = |~x − ~xa|. Notice that these functions solve the equations (D.20)-(D.22) in the
Abelian sector everywhere except at the locations of the poles. This is the reason why the
bubble equations are needed.
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In the non-Abelian sector, the Bogomoln’yi equations (D.21) can be readily solved
by making use of the following ansatz

Φα = − 1

gP

∂P

∂xs
δαs , Ăα µ = − 1

gP

∂P

∂xs
εα µs . (D.27)

Obtaining the condition for the function

1

P
∇2P = 0 , (D.28)

which is solved again by a harmonic function P , even at the locations of the poles. Equa-
tions (D.22) for the non-Abelian sector can also be solved using the ansatz

Lα = − 1

gP

∂Q

∂xs
δsα , (D.29)

which yields

∂

∂xs

(
1

P 2
∇2Q

)
= 0 . (D.30)

This condition is solved everywhere if Q is a harmonic function with the poles at the same
locations than P . Therefore, the complete non-Abelian multicolored dyon is specified by
two harmonic functions1

P = 1 +

n∑
a=1

λa
ra
, Q =

n∑
a=1

σaλa
ra

, with λa > 0 . (D.31)

In order to avoid the presence of event horizons or singularities at the centers, it is
necessary to fix the value of some of the parameters,

l0a = − 1

qa

(
k1
ak

2
a −

1

2g2

)
, l1,2a = −k

0
ak

2,1
a

qa
, σa =

k0
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qa
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k0
a

2q2
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(
k1
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2
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1

2g2

)
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(D.32)

On its side, asymptotic flatness requires

l00l
1
0l

2
0 = 1 , m0 = −1

2

∑
i,a

li0k
i
a . (D.33)

The integrability condition of equation (D.23) gives the set of constraints known as
bubble equations

∑
b 6=a

qaqb
rab

Π0
ab

(
Π1
abΠ

2
ab −

1

2g2
Tab
)

=
∑
b,i

qaqbl
i
0Πi

ab . (D.34)

where
1We assume that the constant term of the function P is non-vanishing, in which case it can always

be taken to be 1. From the Bogomol’nyi equation perspective, truncating this constant is equivalent to
adding a unit charge monopole at infinity. We leave the study of this possibility for future works.
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Πi
ab ≡

1

4π

∫
∆ab

F i =

(
kib
qb
− kia
qa

)
, Tab ≡

(
1

q2
a

+
1

q2
b

)
. (D.35)

The term Tab appears due to the presence of non-Abelian fields, that alter the value of the
parameters l0a when compared with purely Abelian configurations. The i-fluxes threading
the non-contractible 2-cycles ∆ab defined by any path connecting two centers ~xa and ~xb
behave effectively as sources of electric charge and mass. When all the bubble equations
are satisfied, the solutions are regular at the centers and do not present Dirac-Misner string
singularities, which otherwise could only be removed by compactifying the time direction.

The last restriction for the construction of physically sensible microstate geometries
comes from demanding that the solution does not contain closed timelike curves (CTCs).
The metric can be rewritten in the following manner

ds2 = f2dt2 + 2f2dtω − I4

f−2H2

(
dψ + χ− ω5H

2

I4
ω̆

)2

− f−1H

(
d~x · d~x− ω̆2

I4

)
, (D.36)

where I4 is the quartic invariant, defined as

I4 ≡ f−3H − ω2
5H

2 . (D.37)

Therefore, a general restriction that must be satisfied in order to avoid CTCs is the
positivity of the quartic invariant

I4 ≥ 0 . (D.38)

When studying its positivity numerically, it is sometimes useful to employ the expression
for the quartic invariant in terms of the seed functions directly

I = −M2H2 − 1
4

(
ΦILI

)2 − 2MCIJKΦIΦJΦK −MHLIΦ
I

+HCIJKLILJLK + 9CIJKCKLMLILJΦLΦM ≥ 0 .

(D.39)

D.4 Asymptotic charges

The electric asymptotic charge of each Abelian vector can be readily obtained from the
asymptotic expansion of the associated warp factor, see [210],

Zi,∞ = li0 +
Qi
r

+O(r−2) . (D.40)

This can be easily seen from the fact that, asymptotically, Ai t,∞ ∼ Z−1
i . The electric

charges are
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Q0 = −
∑
a,b,c

qaqbqcΠ
1
abΠ

2
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∑
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qa
, (D.41)

Q1 = −
∑
a,b,c

qaqbqcΠ
0
abΠ

2
ac , (D.42)

Q2 = −
∑
a,b,c

qaqbqcΠ
0
abΠ

1
ac . (D.43)

In a similar manner, the two angular momenta can be read from the term in dψ at the
asymptotic expansion of ω [210], whose contribution comes entirely from the function ω5,
obtaining

JR = −1

2
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qaqbqcqdΠ
0
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1
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2
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, (D.44)

~JL = −1

4

∑
a,b
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qaqbΠ
0
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abΠ

2
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2g2
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)
~xa − ~xb
|~xa − ~xb|

. (D.45)

such that

ω5,∞ =
1

r
(JR + JL cos θL) +O(r−2) , (D.46)

where θL is the angle measured with respect to ~JL, and JL is the norm of this vector.

The ADM mass is just

M =
π

G
(5)
N

(
Q0

l00
+
Q1

l10
+
Q2

l20

)
. (D.47)

If all the centers were placed at the same location, the solution would describe a
black hole with the same asymptotic charges (with JL = 0) and an event horizon whose
area would be given by

AH = 2π2
√
Q0Q1Q2 − J2

R . (D.48)

It is convenient to define the entropy parameter H of a microstate geometry as

H ≡ 1−
J2
R

Q0Q1Q2
, (D.49)

whose value indicates how far from maximal rotation the represented black hole is.
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E
Truncation of heterotic supergravity on a 5-torus

The aim of this appendix is to present a consistent truncation of heterotic supergravity1

compactified on a five-dimensional torus that preserves an SU(2) triplet of vector fields.
The resulting five-dimensional theory turns out to be a particular model of gauged N =
1, d = 5 supergravity to which one can apply the solution-generating technique explained
in Chapter 2.

E.1 Dimensional reduction and truncation of heterotic su-
pergravity

The action of ten-dimensional N = 1 supergravity coupled to a triplet of SU(2) vector
fields is given by

Ŝ =
g2
s

16πG
(10)
N

∫
d10x

√
|ĝ| e−2φ̂

[
R̂− 4(∂φ̂)2 +

1

2 · 3!
Ĥ2 − α′

8
F̂AF̂A

]
, (E.1)

where the field strengths are defined as

F̂A = dÂA + 1
2ε
ABCÂB ∧ ÂC , (E.2)

Ĥ = dB̂ +
α′

4
ωYM , (E.3)

and ωYM is the Chern-Simons 3-form

ωYM ≡ F̂A ∧ ÂA − 1
3!ε

ABCÂA ∧ ÂB ∧ ÂC , dωYM = F̂A ∧ F̂A . (E.4)

In the above expressions, the Regge slope α′ is related to the string length `s by α′ = `2s,
and the string coupling gs is the exponential of the vacuum expectation value of the
dilaton, gs = eφ∞ . The ten-dimensional Newton’s constant is given in terms of the string
moduli by the following expression:

G
(10)
N = 8π6g2

sα
′4 . (E.5)

1Namely, ten-dimensional N = 1 supergravity coupled to vector multiplets
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Let us compactify the action (E.1) on a four-dimensional torus T4 (that will be
later parametrized by the coordinates zα ∼ zα + 2π`s) and truncate all the Kaluza-Klein
degrees of freedom (scalars and vectors). The six-dimensional action only differs from the
ten-dimensional one (E.1) by a global factor given by the volume of the four-dimensional
torus T4 which is reabsorbed into the six-dimensional Newton’s constant:

Ŝ =
g2
s

16πG
(6)
N

∫
d6x
√
|g| e−2φ̂

[
R̂− 4(∂φ̂)2 +

1

2 · 3!
Ĥ2 − α′

8
F̂AF̂A

]
. (E.6)

where

G
(6)
N =

G
(10)
N

(2π`s)
4 =

π2

2
g2
sα
′2 . (E.7)

The metric ĝµ̂ν̂ that appears in (E.6) is in the string frame. The relation between
this and the metric in the modified Einstein frame ĝE µ̂ν̂ is

ĝµ̂ν̂ = g−1
s eφ̂ĝE µ̂ν̂ . (E.8)

Rewriting the action in terms of ĝE µ̂ν̂ , one finds

Ŝ =
(2π`s)

4

16πG
(10)
N

∫
d6x
√
|g|
[
R̂E + (∂φ̂)2 +

1

2 · 3!
g2
se
−2φ̂Ĥ2 − α′gs

8
e−φ̂F̂AF̂A

]
, (E.9)

which is nothing but the action of the theory of gaugedN = (2, 0), d = 6 supergravity [177].
The relations between the fields in that reference (tilded ones) and ours is

φ̂ = −ϕ̃/
√

2 , gsĤ/2 = H̃ ,
√
gsα′F̂

A = 2
√

2F̃A . (E.10)

The last relation leads to the introduction of the six-dimensional Yang-Mills coupling
constant

g6 =
2
√

2√
gsα′

. (E.11)

As shown in [177], the compactification of this six-dimensional theory on a circle
S1
z yields the SU(2)-gauged ST[2, 6] model of N = 1, d = 5 supergravity which will be

discussed in detail in the next section. The five-dimensional Newton and Yang-Mills
constants are given by

G
(5)
N =

G
(10)
N

(2π)5`4sRz
=
πg2

s`
4
s

4Rz
, and g =

g6k
1/3
∞

2
√

3
=

√
2k

1/3
∞√

3gs`2s
, (E.12)

where Rz is the radius of the circle S1
z, parametrized by the coordinate z ∼ z + 2πRz.

The relation between the six- and five-dimensional fields is given in [177]. We can
use it together with (E.10) to find the relation between the ten- and five-dimensional
fields, which is all we need here. The latter are: the metric gµν , five scalars φ, k, `A and six
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vectors A+
µ , A

−
µ, A

0
µ, A

A. Their relation with the ten-dimensional heterotic supergravity
fields is:

dŝ2 = eφ−φ∞
[
(k/k∞)−2/3ds2 − (k/k∞)2A2

]
− dzαdzα ,

φ̂ = φ ,

ÂA =

√
2 k

1/3
∞√

3 gsα′

(
AA − 2

√
3

k
4/3
∞

`AA

)
,

Ĥ = − k
2/3
∞

gs
√

3
e2φk−4/3 ?5 F

0 +
k
−2/3
∞

gs
√

3
A ∧ F ,

(E.13)

where we have introduced the auxiliary fields

A ≡ dz +
k

4/3
∞√
12
A+ ,

F ≡ F− + `2F+ − 2`AFA ,

(E.14)

and ?5 is the Hodge star operator associated to the five-dimensional metric.

E.2 The 5-dimensional theory as a model of N = 1, d = 5
SEYM

Let us see how the SU(2)-gauged ST[2, 6] model obtained in the previous section fits into
the general description of the N = 1, d = 5 SEYM theories given in Chapter 2. As we
have seen, the different models are characterized by the number of vector multiplets nv,
the symmetric CIJK tensor and the structure constants of the gauge group fJK

I .

The SU(2)-gauged ST[2, 6] model has nv = 5 vector multiplets — which are labeled
by an index x = 1, . . . , nv — each of which contains a scalar φx, a vector Axµ and
a gaugino λix. In addition to these, the supergravity multiplet contains the fünfbein
eaµ, the graviphoton A0

µ and the gravitino ψiµ. It is convenient to introduce the indices

I, J = 0, 1, . . . , nv to label all the vectors of the theory AIµ in a unified fashion. Moreover,
we introduce nv + 1 functions of the physical scalars hI = hI(φ) satisfying the cubic
constraint

CIJKh
IhJhK = 1 , ⇒ hIhI = 1 , (E.15)

where we have defined

hI = CIJKh
JhK . (E.16)
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For the SU(2)-gauged ST[2, 6] model, the non-vanishing components of the CIJK
tensor are

C0xy = 1
6ηxy , where η = diag(+− · · ·−) . (E.17)

The real special manifold parametrized by the physical scalars can be identified with the
Riemannian symmetric space

SO(1, 1)× SO(1, 4)

SO(4)
, (E.18)

and the special parametrization used in the previous section corresponds to

h0 = e−φk2/3 , h1,2 = k−4/3
[
1± (`2 + 1

2e
φk2)

]
, h3,4,5 = −2k−4/3`3,4,5 . (E.19)

As we have seen, φ is the dilaton field, k is the KK scalar of the dimensional reduction
from 6 to 5 dimensions and the triplet `3,4,5 correspond to the z-component of the gauge
fields.

The SU(2) group acts in the adjoint on the coordinates x = 3, 4, 5 which we are
going to denote by A,B, . . . and this is the sector that is gauged without the use of Fayet-
Iliopoulos terms. The structure constants are fAB

C = +εAB
C .2 We will denote with

a, b, . . . = 1, 2 the ungauged directions. Observe that this sector of the theory corresponds
to the so-called STU model: in absence of the hAs we can make the linear redefinitions

h1′ ≡ 1√
2
(h1 + h2) , h2′ ≡ 1√

2
(h1 − h2) , ⇒ Cabch

ahbhc = h0h1′h2′ . (E.20)

Thus, our model can be also understood as the STU model with an additional SU(2)
triplet of vector multiplets. The Kaluza-Klein vector A+ and the vector A− correspond
to the following linear combinations of the Abelian vectors:

A± = A1 ±A2 . (E.21)

The bosonic part of the action for this model is given by

S =

∫
d5x
√
g

{
R+ ∂µφ∂

µφ+ 4
3∂µ log k∂µ log k + 2e−φk−2Dµ`

ADµ`A

− 1
12e

2φk−4/3F 0 · F 0 + 1
12

(
ηxye

−φk2/3 − 9hxhy
)
F x · F y

+ 1
24
√

3

εµνρσα
√
g

A0
µηxyF

x
νρF

y
σα

}
,

(E.22)

where

2The lower and upper indices are identical since they will always be raised and lowered with δAB .
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Dµ`
A = ∂µ`

A + g εABCA
B
µ`
C , (E.23)

F 0,a
µν = 2∂[µA

0,a
ν] , (E.24)

FAµν = 2∂[µA
A
ν] + g εABCA

B
µA

C
ν . (E.25)

E.3 Uplift of the timelike supersymmetric solutions

Let us close this appendix with the uplift to ten dimensions of the timelike supersymmetric
solutions of the SU(2)-gauged ST[2, 6] model. The general form of the latter is — see
Chapter 2 for further details —

ds2 = f2(dt+ ω)2 − f−1 dσ2 , (E.26)

AI = −
√

3hIf (dt+ ω) + ÂI , (E.27)

φx =
hx
h0

. (E.28)

where dσ2 = hmn dx
mdxn is the metric of the hyper-Kähler base space where the hatted

vector fields ÂI , the 1-form ω and the remaining functions (f , hI and hI) are defined.
Since the model under consideration is symmetric, we have that

hI = 27CIJKhJhK , and CIJK = CIJK . (E.29)

Defining ZI ≡ hI/f and using the cubic constraint (E.15), we find that the metric function
f is given by

f−3 =
27

2
Z0 (Z+Z− − ZAZA) , (E.30)

where

Z± = Z1 ± Z2 . (E.31)

The building blocks (ZI , Â
I , ω) in terms of which the five-dimensional solutions are

constructed satisfy the following differential equations:

F̂ I = ?σF̂
I , (E.32)

D̂ ?σ D̂ZI =
1

3
CIJK F̂

J ∧ F̂K , (E.33)

dω + ?σdω =
√

3ZI F̂
I , (E.34)
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where D̂ is the gauge-covariant derivative associated to the hatted connection ÂI and ?σ
is the Hodge dual associated to the hyper-Kähler metric.

The expressions of the physical scalars eφ, k and `A in terms of the ZI functions are
given by

e2φ =
2Z0

Z−
, k =

(
2Z̃2

+

Z0Z−

)1/4

, `A =
ZA
Z−

, (E.35)

where

Z̃+ = Z+ −
ZAZA
Z−

. (E.36)

Assuming that the asymptotic behaviour of the metric function is f∞ ≡ lim|x|→∞ f = 1,
we find the following relations between the asymptotic values of the ZI functions and those
of the physical scalars:

Z∞0 =
1

3
eφ∞k−2/3

∞ , Z̃∞+ =
1

3
k4/3
∞ , Z∞− =

2

3
e−φ∞k−2/3

∞ , Z∞A =
2

3
e−φ∞k−2/3

∞ `A∞ . (E.37)

Using these expressions and the differential equations satisfied by the building blocks
(E.32)-(E.34), we obtain that the ten-dimensional uplift of the timelike supersymmetric
solutions is the following:

dŝ2 =
2

Z−
Â

(
dt+ ω − Z̃+

2
Â

)
−Z0 dσ

2 − dzαdzα , (E.38)

e2φ̂ = g2
s

Z0

Z−
, (E.39)

ÂÂ = g

(
ÂA +

2
√

3`A∞

k
4/3
∞

ZA
Z−
Â

)
. (E.40)

Ĥ = ?σdZ0 +
k

4/3
∞

2
√

3
Z−1
− (dt+ ω) ∧ F̂+ + Â ∧

[
(dt+ ω) ∧ dZ−1

−

(E.41)

+
?σdω

Z−
− k

4/3
∞

2
√

3

Z̃+

Z−
F̂+ − 1√

3
gsk
−2/3
∞

Z0

Z−
F̂ 0

]
.

where

Â ≡ dz +
k

4/3
∞

2
√

3
Â+ , (E.42)

and

Z0 ≡
Z0

Z∞0
, Z̃+ ≡

Z̃+

Z̃∞+
, Z− ≡

Z−
Z∞−

, ZA ≡
ZA
Z∞A

. (E.43)
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F
Connections and curvatures

F.1 F1-P-S5-KK system

Let us compute the Levi-Civita and torsionful spin connections for the ansatz given in
Section 4.3. The choice for the zehnbein is

e+ =
du

Z−
, e− = dt− 1

2Z+du , em = Z1/2
0 vm , eα = dzα , (F.1)

where vm = vmndx
n is a vierbein of the four-dimensional hyperKähler space defined in

(4.86). The inverse basis is

e+ = Z−(∂u + 1
2Z+∂t) , e− = ∂t , em = Z−1/2

0 ∂m , eα = ∂α , (F.2)

where ∂m ≡ vmn∂n is the inverse basis in the hyperKähler space and any other m,n index
will be a flat index in the hyperKähler space and will be raised and lowered with +δmn.

Using the structure equation dea = ωab ∧ eb we find that the non-vanishing compo-
nents of the spin connection are given by

ω−+m = ω+−m = ωm+− =
1

2Z1/2
0

∂m logZ− , ω++m =
Z−

2Z1/2
0

∂mZ+ ,

ωmnp = Z−1/2
0

[
$mnp + 1

2Mmqnp∂q logZ0

]
,

(F.3)

where $mnp are the components of the spin connection on the hyperKähler space defined
with the convention of (4.54).1 We assume they satisfy the properties (4.47)-(4.51) with
the conventions we use.

In order to compute the components of the torsionful spin connections, we need the
components of the 3-form field strength. We find from (6.3) that in the above zehnbein
basis they are given by

Hm+− = −Z−1/2
0 ∂m logZ− , Hmnp = Z−1/2

0 εmnpq∂q logZ0 . (F.4)

Then, the non-vanishing flat components of the torsionful spin connection Ω(−)abc ≡
ωabc − 1

2Habc are

1These four-dimensional tangent-space indices are raised and lowered with +δmn and there is no differ-
ence between them, beyond an esthetic one.
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Ω(−)+−m = Ω(−)m+− = Z−1/2
0 ∂m logZ− , Ω(−)++m = 1

2Z−Z
−1/2
0 ∂mZ+ ,

Ω(−)mnp = Z−1/2
0

[
$mnp + M−mqnp∂q logZ0

]
,

(F.5)

and those of Ω(+)abc ≡ ωabc + 1
2H3abc are given by

Ω(+)−+m = Z−1/2
0 ∂m logZ− , Ω(+)++m = 1

2Z−Z
−1/2
0 ∂mZ+ ,

Ω(+)mnp = Z−1/2
0

[
$mnp + M+

mqnp∂q logZ0

]
,

(F.6)

where the 4× 4 matrices M±np are defined in (4.40).

The Lorentz-Chern-Simons 3-form ωL
(−) reduces to the Chern-Simons 3-form of the

connection Ω(−)mn

ωL
(−) ≡ dΩ(−)

a
b ∧ Ω(−)

b
a − 2

3Ω(−)
a
b ∧ Ω(−)

b
c ∧ Ω(−)

c
a

= dΩ(−)mn ∧ Ω(−)nm + 2
3Ω(−)mn ∧ Ω(−)np ∧ Ω(−)pm ,

(F.7)

which, in its turn, is just the sum of the Chern-Simons 3-forms of the self-dual and anti-self-
dual pieces of Ω(−)mn, namley the self-dual spin connection of the hyperKähler manifold
$mnp and the anti-self-dual 1-form M−mqnp∂q logZ0. The latter has the form of the ’t Hooft
ansatz (4.53) discussed in Section 4.2 and, therefore, its Chern-Simons term takes the
value computed in (4.69) with K replaced by Z0. The Chern-Simons 3-form of the spin
connection of the hyperKähler manifold has to be computed case by case, except when it
is a Gibbons-Hawking space. In that case, there is a general expression for it, see (4.81),
and for its exterior derivative which are particularly convenient for us because the Bianchi
identity of the 3-form field strength H3 becomes a linear combination of Laplacians on the
Gibbons-Hawking space that can be solved exactly.

Then, in these conditions, we have

ωL
(−) = ?σd

[
(∂ logH)2 + (∂ logZ0)2

]
, (F.8)

and

R(−)
a
b ∧Rb(−)a = dωL

(−) = −∇2
σ

[
(∂ logH)2 + (∂ logZ0)2

]
|v| d4x . (F.9)

Clearly, it would be extremely interesting to find other hyperKähler spaces with
no triholomorphic isometry that still enjoy the same property. The Atiyah-Hitchin hy-
perKähler space [236], which has been considered before in the context of supergravity
solutions in [237, 238], might provide an explicit example. We leave this study for future
work. Interestingly, for arbitrary self-dual SU(2) instanton fields on R4, and not just
for those in the ’t Hooft ansatz, this “Laplacian property” was proven in [374] using the
ADHM construction [375, 376]. Our results suggest that this property could also hold
in hyperKähler backgrounds and, therefore, for the spin connections of the hyperKähler
spaces themselves, as it happens in Gibbons-Hawking spaces.
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F.2 Rotating F1-P system

Let us compute the connections and curvatures associated to the field configuration spec-
ified in Sec. 7.2. We work with the following zehnbein basis

e+ = Z−1
− du , e− = dt− Z+

2
du+ ω , em = dxm , eα = dzα , (F.10)

where m = 1, . . . d− 1 and α = 1, . . . , 9− d.

F.2.1 Levi-Civita spin connection

The non-vanishing components of the Levi-Civita spin connection, defined in our conven-
tions as dea = ωab ∧ eb, are

ω+− =
1

2
∂m logZ− em , (F.11)

ω+m =
1

2
∂m logZ− e− −

1

2
Ωmn e

n +
Z−
2
∂mZ+ e

+ (F.12)

ω−m =
1

2
∂m logZ− e+ (F.13)

ωmn =
1

2
Ωmn e

+ . (F.14)

The curvature 2-form, defined as Rab = dωab − ωac ∧ ωcb, is given by

R+− = e+ ∧ e−
{

(∂Z−)2

4Z2
−

}
+ en ∧ e+

{
−1

4
Ωnp ∂p logZ−

}
, (F.15)

R+m = en ∧ e+

{
Z−
2
∂m∂nZ+ −

1

2
∂(m|Z+∂|n)Z− +

1

4
ΩnpΩpm

}

+en ∧ ep
{
∂pΩmn + Ω(n|p∂|m) logZ−

}
+ e+ ∧ e−

{
1

4
Ωmp

∂pZ−
Z−

}
(F.16)

+en ∧ e−
{

1

2
∂m∂n logZ− −

1

4

∂mZ−∂nZ−
Z2
−

}
,

R−m = en ∧ e+

{
1

2

∂m∂nZ−
Z−

− 3

4
∂m logZ−∂n logZ−

}
, (F.17)

Rmn = ep ∧ e+

{
Z−
2
∂p
(
Z−1
− Ωmn

)
− 1

2
Ω[m|p∂|n] logZ−

}
. (F.18)

The Ricci tensor is
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R++ =
Z−
2
∂2Z+ −

1

2
∂mZ+∂nZ− −

1

4
Ω2 , (F.19)

R+− =
1

2

∂2Z−
Z−

− (∂Z−)2

Z2
−

, (F.20)

R+m =
Z−
2
∂n
(
Z−1
− Ωmn

)
− 1

2
Ωmp ∂p logZ− , (F.21)

Rmn = −∂m∂nZ−
Z−

+
3

2
∂m logZ−∂nZ− . (F.22)

Finally, the Ricci scalar is

R = 2R+− −Rmm = 2
∂2Z−
Z−

− 7

2
(∂ logZ−)2 . (F.23)

F.2.2 Torsionful spin connection Ω(−)ab

The non-vanishing components of the torsionful spin connection are

Ω(−)+− = ∂m logZ− em , (F.24)

Ω(−)+m =
Z−
2
∂mZ+ e

+ , (F.25)

Ω(−)−m = ∂m logZ− e+ , (F.26)

Ω(−)mn = Ωmn e
+ . (F.27)

For the curvature 2-form, we get

R(−)+m = en ∧ e+

{
Z−
2
∂m∂nZ+ −

1

2
∂mZ+∂nZ−

}
, (F.28)

R(−)−m = en ∧ e+

{
∂m∂nZ−
Z−

− ∂mZ−
Z−

∂mZ−
Z−

}
, (F.29)

R(−)mn = ep ∧ e+

{
Z−∂p

(
Ωmn

Z−

)}
. (F.30)
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G
Leading higher-derivative corrections to Kerr

geometry

G.1 Higher-derivative gravity with dynamical couplings

In this appendix, we are going to motivate our choice of effective action (8.5). Since our
goal is to parametrize the leading corrections to vacuum solutions, we will start writing
down an action including all possible curvature invariants containing at most 2n deriva-
tives, and then we will discuss which terms are going to induce corrections. By dimensional
analysis, a term with 2n derivatives will be multiplied by a factor `2n−2, where ` is some
length scale that we will assume to be small as compared with the size of the black hole,
i.e. GNM >> `. It is clear then that the effective action can be always written as

S =
1

16πGN

∫
d4x
√
−gR+

∑
n≥2

`2n−2

16πGN
S(2n) , (G.1)

where in S(2n) we will include the terms with 2n derivatives.

Up to four-derivative terms, we can add the following terms to the Einstein-Hilbert
action

S(4) =

∫
d4x
√
−g
[
α1X4 + α2RµνρσR̃

µνρσ + α3RµνR
µν + α4R

2
]
. (G.2)

It turns out that, if the coefficients αi are constants, none of these terms will modify a
vacuum solution of GR at O

(
`2
)
. The reasons are the following: both X4 and RµνρσR̃

µνρσ

are topological terms and therefore do not contribute to the equations of motion. The
last two terms are quadratic in Ricci curvature, which means that their contributions to
the equations of motion will vanish when evaluated on a GR vacuum solution. In other
words, Ricci flat metrics are also solutions of EG plus four-derivative terms.

However, we can think of adding dynamical couplings, i.e. promoting αi → αifi
(
φA
)
,

where
{
φA
}
A=1,...,N

is a set of N massless scalars.1 To this aim, we have to include also

a kinetic term for them in the action (G.1) so that it becomes

S =
1

16πGN

∫
d4x
√
−g
[
R− 1

2
MAB(φ)∂µφ

A∂µφB
]

+
∑
n≥2

`2n−2

16πGN
S(2n) , (G.3)

1A natural extension would be to include a non-vanishing scalar potential.
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whereMAB(φ) is the (symmetric) matrix that characterizes the non-linear σ-model. How-
ever, as we check a posteriori, the scalars will be excited by the higher-derivative terms at
order `2. Then, we only need to include terms that are at most quadratic in the scalars,
which contribute to the gravitational equations at order `4. Thus, we can expand MAB

in a Taylor series and only the constant term will contribute at leading order. By means
of a redefinition of the scalar fields, this constant term can always be taken to be the
identity matrix: MAB|φA=0 = δAB. On the other hand, the generalized action for the

four-derivative terms, that we denote again by S(4), is

S(4) =

∫
d4x
√
−g
[
α1f1 (φ)X4 + α2f2 (φ)RµνρσR̃

µνρσ + α5f5 (φ)∇2R
]
, (G.4)

where we already neglected the RµνR
µν and R2 terms, that do not induce corrections at

leading order, and we have now added the term α5f5 (φ)∇2R that was neglected in (G.2)
because in the non-dynamical case it is just a total derivative. In the dynamical case,
this term can be written (ignoring total derivatives) as α5∇2f5 (φ) R and, it is possible
to prove that it can always be eliminated, at leading order, by a field redefinition of the
metric, so that we can set α5 = 0.

Indeed it is possible to show that if Kµν is a symmetric tensor and we consider a term
`4KµνR

µν in the action, the contribution to the field equations is trivial since it can always
be eliminated by a field redefinition: gµν → gµν − `4K̂µν , where K̂µν = Kµν − 1

2gµνK
α
α .

To show this, let us compute the contribution of this term to the field equations. Passing
this contribution to the right-hand-side of the equations. it can be written as an effective
energy-momentum tensor

Tµν = `4
[
∇ρ∇(µKν)ρ −

1

2
∇2Kµν −

1

2
g(0)
µν∇ρ∇σKρσ

]
+ . . . , (G.5)

where the dots indicate other possible contributions that vanish when evaluated on the
zeroth-order Ricci-flat metric. Then by comparison with (8.16), it is clear that the cor-

rected Einstein equation is solved by gµν = g
(0)
µν + `4K̂µν + . . . , being K̂µν trace-reversed

with respect to Kµν . Since the equation is integrable, it is equivalent to preforming a
field redefinition, so this kind of terms do not really contain new physics. We can use this
result to demonstrate that other type of terms such as φR or Gµν∇µφ∇νφ, that appear
for instance in Horndeski theories [377], can be also removed by a field redefinition.

Let us now analyze the couplings f1(φ) and f2(φ). The first we can do is to expand
the functions around φi = 0 and neglect O

(
φ2
)

terms, which is equivalent to neglect
O
(
`6
)

corrections in the metric. Thus, fi = ai+biBφ
B +O

(
φ2
)

and, for the same reasons
exposed above, the constant coefficients ai can be neglected. Finally, observe that we
still have the freedom to perform a SO (N) rotation of the scalars that leaves invariant
the kinetic terms. Using this freedom, up to global factors that can be reabsorbed in a
redefinition of α1 and α2, we can always choose

f1 = φ1 , f2 = φ2 cos θm + φ1 sin θm . (G.6)

This implies that the theory contains at most two active scalars. In summary, for our
purposes the action (G.3) reduces to

218



Appendix G. Leading higher-derivative corrections to Kerr geometry

S =
1

16πGN

∫
d4x
√
−g
{
R− 1

2

(
∂φ1

)2 − 1

2

(
∂φ2

)2

+`2
[
α1φ

1X4 + α2

(
φ2 cos θm + φ1 sin θm

)
RµνρσR̃

µνρσ
]}

+
∑
n≥3

`2n−2

16πGN
S(2n) .

(G.7)

Then, corrections to vacuum solutions due to these curvature-squared terms will
be parametrized by three parameters: α1, α2 and θm. These terms will induce O

(
`4
)

corrections in the metric of the solution, since the scalars will be of orderO
(
`2
)
. Therefore,

these corrections are equally important to those coming from the six-derivative terms (with
constant couplings), which will also induce O

(
`4
)

corrections in the metric. Since our
goal is to parametrize the leading corrections to vacuum solutions in the most general way
possible, we shall also include them.

The most general parity-invariant action formed with curvature invariants with six
derivatives is

S(6) =

∫
d4x
√
|g|
{
λ1R

ρ σ
µ ν R

δ γ
ρ σ R

µ ν
δ γ + λ2R

ρσ
µν R δγ

ρσ R µν
δγ + λ3RµνρσR

µνρ
δR

σδ

+λ4RµνρσR
µνρσR+ λ5RµνρσR

µρRνσ + λ6R
ν
µ R

ρ
ν R

µ
ρ

+λ7RµνR
µνR+ λ8R

3 + λ9∇σRµν∇σRµν + λ10∇µR∇µR
}
.

(G.8)

There are other six-derivative terms that could be added, such as ∇α∇βRµανβRµν and
∇αRµνρσ∇αRµνρσ, but these can be reduced to a combination of the terms included in
the action. In addition, not all the terms in the previous action are linearly independent.
In four dimensions we have two constraints that can be expressed as

R µ1µ2

[µ1µ2
R µ3µ4
µ3µ4

R µ5µ6

µ5µ6] = 0 , R µ1µ2

[µ1µ2
R µ3µ4
µ3µ4

R µ5

µ5] = 0 . (G.9)

The first of these constraints actually corresponds to the vanishing of the cubic Lovelock
density, X6 = 0. These relations allow us to express the terms proportional to λ1 and λ3

as a combination of the rest of the terms since (G.9) can be rewritten as

R ρ σ
µ ν R

δ γ
ρ σ R

µ ν
δ γ =

1

2
R ρσ
µν R δγ

ρσ R µν
δγ − 3RµνρσR

µνρ
δR

σδ +
3

8
RµνρσR

µνρσR

(G.10)

+3RµνρσR
µρRνσ + 2R ν

µ R
ρ
ν R

µ
ρ −

3

2
RµνR

µνR+
1

8
R3 ,

RµνρσR
µνρ
δR

σδ = 2
(
RµνρσR

µρRνσ +R ν
µ R

ρ
ν R

µ
ρ −RµνRµνR

)
(G.11)

+
1

4

(
RµνρσR

µνρσR+R3
)
.
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Hence, we can always set λ1 = λ3 = 0. The remaining terms, except those controlled
by λ2 and λ4 are at least quadratic in Ricci curvature and do not induce corrections on
Ricci-flat metrics, so we can ignore them: λ5 = λ6 = λ7 = λ8 = λ9 = λ10 = 0. As
already discussed, the term proportional to λ4 can be eliminated by a field redefinition,
since it is proportional to Ricci curvature. Consequently, we will not take it into account
from now on, so we set λ4 = 0. Therefore, we are left with only one term out of the
initial ten. However, as we did with the four-derivative terms, we can also add parity-
breaking densities by using the dual Riemann tensor. One finds again that there is only
one independent term, and then the action S(6) reads

S(6) =

∫
d4x
√
|g|
{
λevR

ρσ
µν R δγ

ρσ R µν
δγ + λoddR

ρσ
µν R δγ

ρσ R̃ µν
δγ

}
, (G.12)

where we have renamed the parameter λ2 for evident reasons. Finally, we combine (G.7)
and (G.12) to get the action of the effective field theory considered in the main text (8.5)
and that we repeat here for convenience

S =
1

16πG

∫
d4x
√
|g|
{
R− 1

2
(∂φ1)2 − 1

2
(∂φ2)2 + α2 (φ2 cos θm + φ1 sin θm) `2RµνρσR̃

µνρσ

+ α1φ1`
2X4 + λev`

4R ρσ
µν R δγ

ρσ R µν
δγ + λodd`

4R ρσ
µν R δγ

ρσ R̃ µν
δγ

}
+
∑
n≥4

`2n−2

16πGN
S(2n) .

(G.13)

G.2 Compactification and truncation of the heterotic effec-
tive action

Let us consider the effective action of the heterotic superstring, at first-order in the α′

expansion, without gauge fields. The ten-dimensional action is given by2

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g| e−2φ

[
R+ 4 (∂φ)2 − 1

2 · 3!
H2 +

α′

8
RµνρσR

µνρσ

]
+ . . . , (G.14)

where α′ = `2s, being `s the string scale, G
(10)
N is the ten-dimensional Newton’s constant,

and gs is the string coupling constant. The curvature-squared term3 is needed in order
to supersymmetrize the action at first order in α′, which otherwise would not be super-
symmetric due to the presence of the Chern-Simons terms in the definition of the 3-form
field strength H (see [108] for more details). As a consecuence, the Bianchi identity is no
longer dH = 0 but it is corrected by

2With respect to the conventions of [139,193], here we are using mostly plus signature gµν → −gµν and
the definition of the Riemann tensor differs by a minus sign, i.e. Rµνρ

σ → −Rµνρσ.
3The curvature-squared term in the Bergshoeff-de Roo scheme [108] is R(−)µνρσR(−)

µνρσ, where R(−)
a
b

is the curvature of the torsionful spin-connection Ω(−)
a
b = ωab − 1

2
Hµ

a
b dx

µ. For our purposes, however,
R(−)µνρσR(−)

µνρσ = RµνρσR
µνρσ + . . . , where the dots are terms that can be ignored.
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dH =
α′

4
Rab ∧Rba + . . . , (G.15)

where Rab = 1
2!Rµν

a
b dx

µ ∧ dxν is the cuvature 2-form.

Let us now perform the dimensional reduction of (G.14) on a six torus, truncating
all the Kaluza-Klein degrees of freedom. We get exactly the same action but now with
the indices µ, ν running from 0 to 4

S =
1

16πGN

∫
d4x
√
|g| e−2(φ−φ∞)

[
R+ 4 (∂φ)2 − 1

2 · 3!
H2 +

α′

8
RµνρσR

µνρσ

]
+ . . . ,

(G.16)

where GN is the four-dimensional Newton’s constant, related to the ten-dimensional one
by

G
(10)
N = (2π`s)

6 GN , (G.17)

and we have also introduced eφ∞ = gs. Let us show that, ignoring terms whose contribu-
tion to the equations of motion is either zero or trivial, this action can be rewritten in a
form such that it is manifestly a particular case of (8.5). First of all, let us rewrite the
Bianchi identity (G.15) as

1

3!

√
|g|∇µHνρσε

µνρσ = −α
′

8

√
|g|RµνρσR̃µνρσ + . . . . (G.18)

Secondly, we have to dualize the 3-form into a (pseudo)scalar ϕ. Following the usual
procedure, we introduce a Lagrange multiplier into the action (G.16),

S =
1

16πGN

∫
d4x
√
|g|
{
e−2(φ−φ∞)

(
R+ 4 (∂φ)2 − 1

2 · 3!
H2 +

α′

8
RµνρσR

µνρσ

)

+ ϕ

(
1

3!
∇µHνρσε

µνρσ +
α′

8
RµνρσR̃

µνρσ

)}
+ . . . .

(G.19)

The relation between the 3-form field strength and the scalar is found by imposing that
the variation of the action with respect to H vanishes,

δS

δH
= 0 ⇒ Hµνρ = e2(φ−φ∞)εµνρσ∂σϕ . (G.20)

Now, we rewrite (G.19) in terms of ϕ, getting

S =
1

16πGN

∫
d4x
√
|g| e−2(φ−φ∞)

[
R+ 4 (∂φ)2 − e4(φ−φ∞)

2
(∂ϕ)2 +

α′

8
RµνρσR

µνρσ

+
α′e2(φ−φ∞)

8
ϕRµνρσR̃

µνρσ

]
+ . . . .

(G.21)
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Since this action is not written in the Einstein frame, let us rescale the metric gµν →
e−2(φ−φ∞)gµν in order to eliminate the conformal factor. Expanding in (φ − φ∞) and
keeping only the leading terms, we get

S =
1

16πGN

∫
d4x
√
|g|
[
R− 2 (∂φ)2 − 1

2
(∂ϕ)2 +

α′

8
(1− 2φ+ 2φ∞)RµνρσR

µνρσ

+
α′

8
ϕRµνρσR̃

µνρσ

]
+ . . .

(G.22)

where we have dropped some terms that can be removed with a field redefinition. Finally,
defining φ1 = 2φ − 2φ∞ and φ2 = ϕ, and ignoring terms that do not contribute to the
equations of motion at leading order, we can write the action in the following final form

S =
1

16πGN

∫
d4x
√
|g|
[
R− 1

2

(
∂φ1

)2 − 1

2

(
∂φ2

)2 − α′

8
φ1X4 +

α′

8
ϕRµνρσR̃

µνρσ

]
.

(G.23)
We have upgraded the Riemann squared term to the Gauss-Bonnet density X4 since both
give the same contribution at leading order (the Ricci2 and R2 terms do not contribute).
This can also be done by means of a field redefinition. Then, the choice of parameters that
gives us the corrections predicted by the simplest compactification of the effective action
of the heterotic superstring is

α1 = −1

8
, α2 =

1

8
, θm = 0 , λev = λodd = 0 , ` = `s . (G.24)
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G.3 The solution

We show the metric functions Hi and the scalars, φ1 and φ2, up to order O
(
χ3
)
:

H1 = α2
1`

4

{
416M3

11ρ7
+

112M2

165ρ6
+

428M

1155ρ5
− 3202

385ρ4
− 122

385Mρ3
− 1117

1155M2ρ2
+

1117

1155M3ρ

+χ2

[
x2

(
−87008M5

165ρ9
+

3377728M4

35035ρ8
+

903092M3

15015ρ7
+

493638556M2

7882875ρ6
− 22915196M

7882875ρ5

− 169553

160875ρ4
− 7721321

1126125Mρ3

)
− 3635392M4

105105ρ8
− 2245064M3

105105ρ7
− 87538336M2

7882875ρ6
+

995398M

2627625ρ5

+
2988737

1126125ρ4
+

736487

1126125Mρ3
− 787153

450450M2ρ2
+

787153

450450M3ρ

]}
+ α2

2`
4χ2

{
x2

(
342M5

ρ9
− 9279M4

637ρ8
− 19280M3

1001ρ7
− 1094689M2

42042ρ6
+

298393M

84084ρ5
+

80291

24024ρ4

+
80291

24024Mρ3

)
− 20268M4

637ρ8
− 11710M3

637ρ7
− 30707M2

3234ρ6
+

1074M

7007ρ5
− 271

12012ρ4
− 271

12012Mρ3

+
72185

48048M2ρ2
− 72185

48048M3ρ

}
+ α1α2 sin(θm)`4

{
χx

[
21120M4

91ρ8
− 21352M3

1001ρ7
− 43564M2

2145ρ6
− 551776M

15015ρ5
− 5618

15015ρ4

+
89989

30030M2ρ2

]
+ χ3

[
x3

(
−11556352M6

4641ρ10
+

1402164667M5

3828825ρ9
+

12014583319M4

53603550ρ8

+
879521737M3

4873050ρ7
− 895892573M2

76576500ρ6
− 611550767M

153153000ρ5
− 43683743

12252240ρ4

)
+ x

(
−555211M5

49725ρ9

−417419143M4

53603550ρ8
− 278633M3

17867850ρ7
+

2744165393M2

536035500ρ6
+

244492811M

30630600ρ5
+

157764391

306306000ρ4

− 75784931

61261200M2ρ2

)]}
+ λev`

4

{
−48M3

11ρ7
− 8M2

33ρ6
− 40M

231ρ5
− 32

231ρ4
− 32

231Mρ3
− 64

231M2ρ2
+

64

231M3ρ

+χ2

[
x2

(
1728M5

11ρ9
+

1752M4

7007ρ8
− 800M3

1001ρ7
− 8660M2

7007ρ6
− 9518M

7007ρ5
− 1005

1001ρ4
− 2669

1001Mρ3

)
−5952M4

7007ρ8
− 520M3

1617ρ7
− 68M2

1911ρ6
+

830M

7007ρ5
+

587

3003ρ4
+

587

3003Mρ3
− 865

1001M2ρ2
+

865

1001M3ρ

]}
+ λodd`

4

{
χx

[
−3456M4

91ρ8
− 1152M3

1001ρ7
− 96M2

143ρ6
− 384M

1001ρ5
− 192

1001ρ4
+

768

1001M2ρ2

]
+χ3

[
x3

(
745344M6

1547ρ10
− 86140M5

17017ρ9
− 13190M4

2431ρ8
− 515974M3

119119ρ7
− 47015M2

17017ρ6
− 274763M

238238ρ5

− 511811

476476ρ4

)
+ x

(
−596M5

221ρ9
− 8530M4

119119ρ8
+

100326M3

119119ρ7
+

111563M2

119119ρ6
+

153991M

238238ρ5

+
111151

476476ρ4
− 13735

68068M2ρ2

)]}
+O

(
χ4
)
,

(G.25)
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H2 = α2
1 `

4

{
1117

2310
+

208

11ρ6
− 208

165ρ5
− 142

231ρ4
− 5188

1155ρ3
− 337

1155ρ2
− 1117

2310ρ

+χ2

[
787153

900900
− 1817696

105105ρ7
− 3258916

315315ρ6
− 42983383

7882875ρ5
+

93497

5255250ρ4
+

36396163

31531500ρ3

+
2033089

7882875ρ2
− 787153

900900ρ
+ x2

(
−40384

165ρ8
− 4002832

105105ρ7
− 1675328

315315ρ6
+

190462

9625ρ5
+

80274479

15765750ρ4

+
8052437

6306300ρ3
− 988269

350350ρ2

)]}
+ α1α2 sin θm`

4

{
χx

(
10560

91ρ7
+

2570584

45045ρ6
+

5030294

225225ρ5
− 1352913

175175ρ4
− 2310579

350350ρ3
− 2964341

750750ρ2

− 12761

17875ρ

)
+ χ3

[
x

(
− 555211

99450ρ8
− 33606289

4123350ρ7
− 1807455889

321621300ρ6
− 185905529

160810650ρ5
+

5347197771

1667666000ρ4

+
20139019441

15008994000ρ3
+

827344753

1000599600ρ2
− 7696421

25014990ρ

)
+ x3

(
−5239616

4641ρ9
− 2886836873

7657650ρ8

−3454981169

53603550ρ7
+

18272087263

321621300ρ6
+

3088505012

134008875ρ5
+

88918288507

15008994000ρ4
+

24278291273

45026982000ρ3

)]}
+ α2

2 `
4

{
− 27

2ρ5
− 60

7ρ4
− 5

ρ3
+ χ2

[
−72185

96096
− 10134

637ρ7
− 447949

57330ρ6
− 564161

194040ρ5
+

154675

96096ρ4

+
1153277

1345344ρ3
+

457841

3363360ρ2
+

72185

96096ρ
+ x2

(
171

ρ8
+

81219

637ρ7
+

4701743

126126ρ6
− 32689

5544ρ5

− 1852791

224224ρ4
− 3310225

1345344ρ3
+

462029

672672ρ2

)]}
+ λev `

4

{
32

231
− 24

11ρ6
− 4

33ρ5
− 20

231ρ4
− 16

231ρ3
− 16

231ρ2
− 32

231ρ
+ χ2

[
865

2002
− 2976

7007ρ7

− 920

1617ρ6
− 853

1911ρ5
− 7349

28028ρ4
− 15739

168168ρ3
+

1783

84084ρ2
− 865

2002ρ
+ x2

(
840

11ρ8
+

624704

21021ρ7

+
328360

21021ρ6
+

1781

231ρ5
+

276011

84084ρ4
+

156647

168168ρ3
− 78439

84084ρ2

)]}
+ λodd `

4

{
χx

(
−1728

91ρ7
− 6560

1001ρ6
− 4040

1001ρ5
− 17676

7007ρ4
− 11112

7007ρ3
− 948

1001ρ2
− 135

1001ρ

)
+χ3

[
x

(
− 298

221ρ8
− 176734

119119ρ7
− 255071

357357ρ6
− 2333

51051ρ5
+

64221

238238ρ4
+

257645

952952ρ3

+
10575

68068ρ2
− 1185

34034ρ

)
+ x3

(
343296

1547ρ9
+

208174

2431ρ8
+

4665742

119119ρ7
+

5774105

357357ρ6
+

657785

119119ρ5

+
22837

17017ρ4
+

12379

408408ρ3

)]}
+O

(
χ4
)
,

(G.26)
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H3 = α2
1 `

4

{
−1117

1155
− 368

33ρ6
− 1168

165ρ5
− 1102

231ρ4
− 404

1155ρ3
− 19

1155ρ2
+

1117

1155ρ

+χ2

[
−787153

450450
+

210256

105105ρ7
+

358564

105105ρ6
+

29284144

7882875ρ5
+

2871703

1126125ρ4
+

888572

1126125ρ3

+
10139

150150ρ2
+

787153

450450ρ
+ x2

(
23488

165ρ8
+

6074176

105105ρ7
+

1857368

105105ρ6
− 64561864

7882875ρ5
− 124199

25025ρ4

− 329289

125125ρ3
+

43252

20475ρ2

)]}
+ α1α2 sin θm `

4

{
χx

[
−6144

91ρ7
− 34044

1001ρ6
− 31664

2145ρ5
+

16854

5005ρ4
+

16241

5005ρ3
+

89989

30030ρ2

]
+χ3

[
x

(
1399373

232050ρ8
+

76931759

8933925ρ7
+

237697639

35735700ρ6
+

197152489

76576500ρ5
− 142049293

102102000ρ4

− 7454231

5105100ρ3
− 75784931

61261200ρ2

)
+ x3

(
9126080

13923ρ9
+

1870089271

7657650ρ8
+

1696574476

26801775ρ7

− 320470309

15315300ρ6
− 42765071

4504500ρ5
− 29731159

8751600ρ4
+

132059

2356200ρ3

)]}
+ α2

2 `
4

{
χ2

[
72185

48048
+

639

1274ρ7
+

2005

2548ρ6
+

41549

42042ρ5
+

8581

12012ρ4
+

887

1716ρ3
+

270

1001ρ2

− 72185

48048ρ
+ x2

(
−99

ρ8
− 57843

1274ρ7
− 455055

28028ρ6
+

5891

3822ρ5
+

3425

8008ρ4
− 2969

4004ρ3
− 14015

6864ρ2

)]}
+ λev `

4

{
− 64

231
− 392

11ρ6
+

8

33ρ5
+

40

231ρ4
+

32

231ρ3
+

32

231ρ2
+

64

231ρ
+ χ2

[
− 865

1001

+
3664

7007ρ7
+

11380

21021ρ6
+

752

1911ρ5
+

213

1001ρ4
+

139

3003ρ3
− 32

429ρ2
+

865

1001ρ
+ x2

(
7960

11ρ8

− 372584

21021ρ7
− 199660

21021ρ6
− 101648

21021ρ5
− 6455

3003ρ4
− 1921

3003ρ3
+

3043

3003ρ2

)]}
+ λodd `

4

{
χx

(
−19008

91ρ7
+

4320

1001ρ6
+

384

143ρ5
+

1728

1001ρ4
+

1152

1001ρ3
+

768

1001ρ2

)
+χ3

[
x

(
2802

1547ρ8
+

167628

119119ρ7
+

71475

119119ρ6
− 2087

119119ρ5
− 148143

476476ρ4
− 768

2431ρ3
− 13735

68068ρ2

)
+x3

(
2964736

1547ρ9
− 838886

17017ρ8
− 2761840

119119ρ7
− 1189205

119119ρ6
− 3665

1001ρ5
− 486569

476476ρ4
+

601

34034ρ3

)]}
+O

(
χ4
)
,
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H4 = α2
1`

4

{
−1117

1155
− 368

33ρ6
− 1168

165ρ5
− 1102

231ρ4
− 404

1155ρ3
− 19

1155ρ2
+

1117

1155ρ

+χ2

[
−787153

450450
+

1984

33ρ9
+

3232

165ρ8
+

529624

21021ρ7
+

92864

9555ρ6
+

91595428

7882875ρ5
+

489939

125125ρ4

+
5646292

1126125ρ3
+

981961

450450ρ2
+

787153

450450ρ
+ x2

(
−1984

33ρ9
+

6752

55ρ8
+

1212104

35035ρ7
+

1194428

105105ρ6

−126873148

7882875ρ5
− 7126703

1126125ρ4
− 7721321

1126125ρ3

)]}
+ α1α2 sin θm `

4

{
χx

[
−6144

91ρ7
− 34044

1001ρ6
− 31664

2145ρ5
+

16854

5005ρ4
+

16241

5005ρ3
+

89989

30030ρ2

]
+χ3

[
x

(
33408

91ρ10
+

17348416

45045ρ9
+

736024381

2552550ρ8
+

1195689244

8933925ρ7
+

5169579091

107207100ρ6
+

11447047

1392300ρ5

− 124881623

102102000ρ4
− 43008619

30630600ρ3
− 75784931

61261200ρ2

)
+ x3

(
−33408

91ρ10
+

69003776

255255ρ9
− 291804563

7657650ρ8

−1659697979

26801775ρ7
− 957111191

15315300ρ6
− 1159441303

76576500ρ5
− 43683743

12252240ρ4

)]}
+ α2

2 `
4

{
χ2

[
72185

48048
− 54

ρ8
− 27897

637ρ7
− 40995

1274ρ6
− 18587

1617ρ5
− 12993

2002ρ4
− 12241

3432ρ3
− 85145

48048ρ2

− 72185

48048ρ
+ x2

(
−45

ρ8
− 705

637ρ7
+

234445

14014ρ6
+

294806

21021ρ5
+

183353

24024ρ4
+

80291

24024ρ3

)]}
+ λev `

4

{
− 64

231
− 392

11ρ6
+

8

33ρ5
+

40

231ρ4
+

32

231ρ3
+

32

231ρ2
+

64

231ρ

χ2

[
− 865

1001
+

736

11ρ9
+

384

11ρ8
+

393088

21021ρ7
+

5356

539ρ6
+

107504

21021ρ5
+
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3003ρ4
+

2075

1001ρ3
+

2819

3003ρ2

+
865

1001ρ
+ x2

(
− 736

11ρ9
+

7576

11ρ8
− 251560

7007ρ7
− 132388

7007ρ6
− 66960

7007ρ5
− 3975

1001ρ4
− 2669

1001ρ3

)]}
+ λodd `

4

{
χx

(
−19008

91ρ7
+

4320

1001ρ6
+

384

143ρ5
+

1728

1001ρ4
+

1152

1001ρ3
+

768

1001ρ2

)
+χ3

[
x

(
34560

91ρ10
+

175360

1001ρ9
+

1340034

17017ρ8
+

3834240

119119ρ7
+

25469

2431ρ6
+

138241

119119ρ5
− 122901

476476ρ4

− 10151

34034ρ3
− 13735

68068ρ2

)
+ x3

(
−34560

91ρ10
+

29630976

17017ρ9
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17017ρ8
− 6428452

119119ρ7
− 2365711

119119ρ6

− 576463

119119ρ5
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476476ρ4
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+O

(
χ4
)
.
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φ1 = α1`
2

{
8M

3ρ3
+

2

ρ2
+

2

Mρ

+

[
−M

2

5ρ4
− 2M

5ρ3
− 1

2ρ2
− 1

2Mρ
+

(
−96M3

5ρ5
− 42M2

5ρ4
− 14M

5ρ3

)
x2

]
χ2

+

[
−2M3

35ρ5
− M2

7ρ4
− 3M

14ρ3
− 1

4ρ2
− 1

4Mρ
+

(
4M4

7ρ6
+

24M3

35ρ5
+

3M2

7ρ4
+
M

7ρ3

)
x2

+

(
360M5

7ρ7
+

110M4

7ρ6
+

22M3

7ρ5

)
x4

]
χ4

}
+ α2`

2 sin θm

{
x

(
9M2

ρ4
+

5M

ρ3
+

5

2ρ2

)
χ+

[
x3

(
−100M4

3ρ6
− 12M3

ρ5
− 3M2

ρ4

)
+x

(
−2M3

5ρ5
− 3M2

5ρ4
− M

2ρ3
− 1

4ρ2

)]
χ3

}
+O(χ5) ,

(G.29)

φ2 = α2`
2 cos θm

{
x

(
9M2

ρ4
+

5M

ρ3
+

5

2ρ2

)
χ+

[
x3

(
−100M4

3ρ6
− 12M3

ρ5
− 3M2

ρ4

)
+x

(
−2M3

5ρ5
− 3M2

5ρ4
− M

2ρ3
− 1

4ρ2

)]
χ3

}
+O(χ5) .

(G.30)

G.4 Convergence of the χ-expansion

In this section we analyze the convergence of the solution presented in Sec. 8.2.1, and
whose first terms in the χ-expansion are shown in Appendix G.3. In order to study the
convergence, first we must consider the partial sums

Hi,n =

n∑
k=0

H
(k)
i χk , i = 1, 2, 3, 4 . (G.31)

Then, we have to investigate if the sequence of functions Hi,n converges to a function Hi,
this is,

lim
n→∞

Hi,n = Hi , (G.32)

and what is the radius of convergence for a given domain (ρ, x) ∈ Ω. We can study the
convergence of the four functions Hi at the same time by introducing the “norm” ‖H‖n,
as

‖H‖n :=
√
H2

1,n +H2
2,n +H2

3,n +H2
4,n . (G.33)

Thus, every Hi,n converges if and only if ‖H‖n converges. Since we are only interested in
the exterior region of the black hole, it is sufficient to look at the convergence for ρ ≥ ρ+

, −1 < x < 1. Using the terms of the solution up to order n = 14, we observe that the
sequence ‖H‖n converges in the exterior region if the spin is small enough. We wish to
determine the maximum value of χ for which the expansion up to order n = 14 —the one
we use thorough the text— provides an accurate approximation to the full series. This
value of course depends on the point of the spacetime. For instance, far from the black
hole the few first terms in the expansion already provide a very precise result, even for
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Figure G.1: Convergence of the norm of the Hi functions, ‖H‖n. We show the profile of
‖H‖n in the axis x = 1, ρ ≥ ρ+ for the values of n indicated, for spin χ = 0.7, and for
couplings α1 = 0.5, α2 = 0.7, θm = π/4, λev = λodd = 1.

χ ∼ 1. On the contrary, the convergence is worse at the horizon ρ = ρ+, and, specially, at
the axes x = ±1. Thus, we should look at the convergence at those points. It is useful to
define the relative differences,

dn =
‖H‖n+1 − ‖H‖n

‖H‖n
. (G.34)

For instance, when we evaluate this for α1 = 0.5, α2 = 0.7, θm = π/4, λev = λodd = 1 and
χ = 0.7, at the north pole of the horizon, ρ = ρ+, x = 1, we get the following sequence
(starting at n = 0): 1.3, -0.79, 2.7, -0.74, 2.9, -0.61, -0.52, 0.25, 0.72, -0.27, -0.21, 0.14,
0.076, -0.039, . . . We see that the sequence starts converging from n = 8, and the difference
between ‖H‖13 and ‖H‖14 is barely a 4%. Since the difference with the term n = 15 will
be even smaller, we are confident that the series up to n = 14 provides a precision of the
order of 1%, for χ = 0.7 when evaluated at the north pole of the horizon. In the rest
of points, and for smaller values of χ, the accuracy is significantly greater. We illustrate
this in Fig. G.1 , where we show the profile of ‖H‖n, for several values of n, in the line
x = 1, ρ ≥ ρ+. Also, if for the same values of the couplings we set χ = 0.65, we get
d13 = −0.81%, so the series up to order n = 14 is around five times more accurate than
for χ = 0.7.

Finally, one could try to determine what is the maximum value of χ for which the
series will converge all the way up to the horizon. In order to find the radius of convergence,

one can apply for example the root test to the coefficients H
(k)
i in (G.31):

χmax = inf

{
lim
k→∞

∣∣∣H(k)
i

∣∣∣−1/k
∣∣∣∣ i = 1, 2, 3, 4, ρ ≥ ρ+, −1 < x < 1

}
. (G.35)

Using the coefficients up to order n = 14 it is difficult to provide a definitive answer, but
the results seem to be consistent with χmax ∼ 1. So, it could be possible to get close to the
extremal limit adding enough terms in the series expansion, though the number of terms
required to get a good approximation increases quite rapidly as we approach χ = 1.
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G.5 Some formulas

Radius of the ergosphere

∆ρ(1) = χ2(1− x2)
53

120
+ χ4(1− x2)

(
56750791

84084000
− 41115397x2

63063000

)
(G.36)

+ χ6(1− x2)

(
−679368329719x4

912546835200
+

10245671873x2

165917606400
+

336187298257

1825093670400

)
+O(χ8) ,

∆ρ(2) = −χ2(1− x2)
709x2

448
− χ4(1− x2)

(
4433503x2

2690688
+

504467

1345344

)
(G.37)

− χ6(1− x2)

(
915791950769x4

625746401280
+

148163587307x2

312873200640
+

8754619243

18962012160

)
+O(χ8) ,

∆ρ(m) = χ5x(1− x2)

(
401316913x2

22870848000
− 401316913

22870848000

)
(G.38)

+ χ7x(1− x2)

(
1222303361x5

85085952000
+

116649901427x3

12167291136000
− 39651603x

1655413760

)
+O(χ9) ,

∆ρ(ev) = χ2(1− x2)
1

2
+ χ4(1− x2)

(
1245x2

5096
+

3243

10192

)
(G.39)

+ χ6(1− x2)

(
14596973x4

79008384
+

24066599x2

158016768
+

1021961

4051712

)
+O(χ8) ,

∆ρ(odd) = χ5x(1− x2)

(
669

106624
− 669x2

106624

)
(G.40)

+ χ7x(1− x2)

(
−109x4

14896
+

131x2

144704
+

6495

1012928

)
+O(χ9) .

Some Christoffel symbols

Γρtt =
ρ2
± − 2Mρ± +M2χ2

ρ4
±

[
M +

`4

2M4

(
2MH3 + ρ2∂ρH1

)] ∣∣∣∣∣
ρ=ρ±,x=0

, (G.41)

Γρtφ = −
(
ρ2
± − 2Mρ± +M2χ2

)
M2χ

ρ4
±

[
1− `4

M4
(H3 −H2 + ρ∂ρH2)

] ∣∣∣∣∣
ρ=ρ±,x=0

,(G.42)

Γρφφ = −
ρ2
± − 2Mρ± +M2χ2

ρ4
±

[(
ρ3
± −M3χ2

)(
1 +

`4

M4
(H4 −H3)

)
+

`4

2M4

(
ρ4
± + 2M3χ2ρ± +M2χ2ρ2

±
)
∂ρH4

] ∣∣∣∣∣
ρ=ρ±,x=0

. (G.43)
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Photon rings

∆ρ
(1)
ph± = − 11833

280665
∓ 1894454χ

841995
√

3
+

7366829759χ2

3831077250
∓ 63500581373χ3

51719542875
√

3

+
4499912684330179χ4

5613018549138000
∓ 2518625711779631χ5

16839055647414000
√

3
(G.44)

+
39043683908212961χ6

237415044638772000
+O

(
χ7
)
,

∆ρ
(2)
ph± = ± 124χ

81
√

3
− 27237253χ2

27243216
± 7143579103χ3

3677834160
√

3
− 4930918052561χ4

8018597927340
(G.45)

± 941808834424915χ5

538849780717248
√

3
− 105521162301612787χ6

151476660579404160
+O

(
χ7
)
,

∆ρ
(ev)
ph± =

424

6237
∓ 656χ

693
√

3
+

11087308χ2

15324309
∓ 88055819χ3

91945854
√

3
+

18900112949χ4

44547766263
(G.46)

∓ 2387981426735χ5

3207439170936
√

3
+

965001464261χ6

2874198737592
+O

(
χ7
)
.
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