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1 Introduction

2D Young diagrams and symmetric functions are attractive research objects, which were
used to determine irreducible characters of highest weight representations of the classical
groups [1-3]. Recently they appear in mathematical physics, especially in integrable mod-
els. In [4], the group in the Kyoto school uses Schur functions in a remarkable way to
understand the KP and KdV hierarchies. In [5, 6], Tsilevich and Sutkowski, respectively,
give the realization of the phase model in the algebra of Schur functions and build the
relations between the g-boson model and Hall-Littlewood functions. In [7], we build the
relations between the statistical models, such as phase model, and KP hierarchy by using
2D Young diagrams and Schur functions. In [8], the authors show that the states in the
[B-deformed Hurwitz-Kontsevich matrix model can be represented as the Jack polynomials.

3D Young diagrams (plane partitions) are a generalization of 2D Young diagrams,
which arose naturally in crystal melting model [9, 10]. 3D Young diagrams also have many
applications in many fields of mathematics and physics, such as statistical models, number
theory, representations of some algebras (Ding-Iohara-Miki algebras, affine Yangian, etc).
In this paper, we consider 3D Bosons and 3D symmetric functions.

The Schur functions S defined on 2D Young diagrams A can be determined by the
vertex operator and the Jacobi-Trudi formula. Let p = (p1,p2,---). The operators S, (p)
are determined by the vertex operator:

efP2) — E Snp(p)z", with £(p,z) = g p—nz” (1.1)
n
n=0 n=1

and set S,(p) = 0 for n < 0. Note that S,(p) is the complete homogeneous symmetric
function by the Miwa transform, i.e., replacing p; with the power sum }_, :z:}c For 2D



Young diagram A = (A1, Ag, -+, ), the Schur function Sy = S)(p) is a polynomial of
variables p in C[p| defined by the Jacobi-Trudi formula [1, 2]:

Sk(p) = det (SAi—z’-&—j(p))lgi,jgl . (1'2)

The Jacobi-Trudi formula can be replaced by the Pieri formula [1]
SnSx =) C\S,. (1.3)
o

The equivalence between the Jacobi-Trudi formula and the Pieri formula can be proved by
induction: the Jacobi-Trudi formula

Sn Sn+1
S(n,l) = det ( 1 S )

is the same with the Pieri formula S,S51 = Sp11+ S(,,1)- The Jacobi-Trudi formula

Sn Sn
S(n,2) = det (Sl Sj) = SnS2 = Sn4151 = SnS2 — (Snt2 + Sne1,1)

is equivalent to the Pieri formula S,S2 = Sp12+ S(11,1) +S(n,2)- Inductively, The Jacobi-
Trudi formula for S, ,,) is equivalent to the Pieri formula for S5,S,,. The Jacobi-Trudi
formula

Sxi Sx+1 Sx+2
Sy =det [ Sy,—1 Sy, St
o 1 S

= S5 — SaSxt1 + Sa 4251

If Ay > Ao, we have

=SS0 +1 T S22 -1 = =S det1) = Su+100)

and if Ay = Ay, we have

=S Sn+1 TS0 +25%-1 = =Sy +10)-

They show that the Jacobi-Trudi formula for Sy, »,,1) is equivalent to the Pieri formula
for S(x;,2,)51- The Jacobi-Trudi formula

Stanz2) = S92 — S, +1 + Su—1,1)5n+2
= S 20)52 = (Sx;Sag41 = Sxny—15%+2)51 4+ Sy 115011 — SxySxp 42

is equivalent to the Pieri formula for Sy, »,)S2. Inductively, The Jacobi-Trudi formula for
S(A\1,02,03) 18 equivalent to the Pieri formula for Sy, »,)Sx;. For any 2D Young diagrams
A = (A1, A2,-++, ), it can be proved by induction that the Jacobi-Trudi formula for
S e, ) 18 equivalent to the Pieri formula for Sy, x, .. x,_ )5



The equivalence between the Jacobi-Trudi formula and the Pieri formula shows that
the Schur functions defined on 2D Young diagrams can be determined by the vertex oper-
ator (1.1) and the Pieri formula. The 3-Jack polynomials, which are symmetric functions
defined on 3D Young diagrams and the generalization of Schur functions, can also be de-
termined this way. We associate three parameters hi, ho, hy to y,x, z-axis respectively,
where hi, ho, hs are the parameters appeared in affine Yangian of gl(1). 3-Jack polyno-
mials are symmetric about three coordinate axes, which means they are symmetric about
hi, ha, hs. Let (n) be the 2D Young diagrams of n box along y-axis, which is treated as 3D
Young diagram which have one layer in z-axis direction, then 3-Jack polynomials .J,, can
be determined by the vertex operator:

1 -
G = 3 T (P)e" (1.4
e — n(P)z", .
,go (Jn, Jn) b7
with
i P, dp i1
§y(Pz) = - L] ——2", (1.5)
Y ”g_:lj' n+j—1 h]lkl;[lk-thhS
! no i
where
1 if n=j,
dpj = ey (1.6)
j ifn>j.

When P, 1 = p1, Py j>1 = 0, the vertex operator (1.4) becomes (1.1). The 3-Jack polynomi-
als of n boxes along x-axis or z-axis can also expressed this way from the symmetry. In fact,
for 2D Young diagrams A, which are treated as the 3D Young diagrams who have one layer
in z-axis direction, 3-Jack polynomials Jy can also be determined by the vertex operators.
3-Jack polynomials of 3D Young diagrams who have more than one layer can be determined
by the “Pieri formula” JyJ, with 7 being 3D Young diagrams. This Pieri formula can be
determined by the representation of affine Yangian of gl(1) on 3D Young diagrams.

The paper is organized as follows. In section 2, we recall the definition of affine
Yangian of gl(1) and its representation on 3D Young diagrams. In section 3, we consider
3D Bosons and the algebra W. In section 4, we discuss the realizations of 3D Bosons and
the operators in the algebra W by using affine Yangian of gl(1) and its representation on
3D Young diagrams. In section 5, we show the expressions of 3-Jack polynomials by the
vertex operators and the Pieri formulas.

2 Affine Yangian of gl(1)

In this section, we recall the definition of the affine Yangian of gl(1) as in papers [11-14]
first. Then we calculate some properties of affine Yangian which have relations with 3D
Bosons. The affine Yangian Y of gl(1) is an associative algebra with generators e;, f; and



¥;, 7=0,1,... and the following relations [13, 14]

[¥j,¢1] = 0, (2.1)

ej+3,ex] — 3[ej42, expr1] + 3[ejr1, enta) — [€, ex+3]
+o3 [ej11,ex) — o2 [ej, epr1] — o3 {ej,ex} =0, (2.2)

[fi+3, fu]l = 3 [fi2s fen] + 3[fix1, frva] = (£, frors]
+o2 [fi+1, fr] — o2 [fj, fera] + o3 {fj, fu} = 0, (2.3)

[ej: ful = jan,

[Vj+3,ex] = 3[Vj42, ept1] + 3 [Wj41, ersa] — U5, €hrs]
+02 [Yjr1, €] — 02 [, epa] — o3 {j,ex} = 0, (2.5)

[jtss fr] = 3[jt2s fra] + 3[04, foral — [0, frrs]
+02 [Yj+1, fk] — 02 [V), fraa] + o3 {¥y, fi} = 0, (2.6)

together with boundary conditions

[tho, €] =0, [¢1,€5] =0, [1h2, 5] = 2ej,
[1/}07](.]] :07 [wlafj]:(L [¢27f]] :_2f]7
and a generalization of Serre relations
SYI(jy iz i) €)1, [€425 €js+1]] = 0, (2.9)
SYM(j, o ja) [firs fias fisal] = 0, (2.10)

where Sym is the complete symmetrization over all indicated indices which include 6 terms.
In this paper, we set 19 = 1 with no loss of generality.

The notations o9, o3 in the definition of affine Yangian are functions of three complex
numbers hi, ho and hg:

o1 = hi1+ha + hz =0,
o9 = hihs + hi1hs + hohs,
g3 = hlhghg.
This affine Yangian has the representation on 3D Young diagrams or Plane partitions.
A plane partition 7 is a 2D Young diagram in the first quadrant of plane xOy filled with

non-negative integers that form nonincreasing rows and columns [9, 15]. The number in
the position (4, j) is denoted by m; ;

The integers m; ; satisfy

i 2 Tkl Tig 2 Tigit,  limm; = Hm g =0



for all integers 4,7 > 0. Piling m; ; cubes over position (i, j) gives a 3D Young diagram. 3D
Young diagrams arose naturally in the melting crystal model [9, 10]. We always identify
3D Young diagrams with plane partitions as explained above. For example, the 3D Young
diagram [T can also be denoted by the plane partition (1,1).

As in our paper [16], we use the following notations. For a 3D Young diagram =, the
notation (J € 7" means that this box is not in 7 and can be added to m. Here “can be
added” means that when this box is added, it is still a 3D Young diagram. The notation
[0 € 7~ means that this box is in 7 and can be removed from 7. Here “can be removed”
means that when this box is removed, it is still a 3D Young diagram. For a box [, we let

ho = hiyo + hezo + hszo, (2.11)

where (20, yo, 20) is the coordinate of box [ in coordinate system O — xyz. Here we use
the order yo, z0, 20 to match that in paper [13].
Following [13, 14], we introduce the generating functions:

e(w) = Y~
=0

flu) =3 ufil, (2.12)
=0

Y(u) = 1+U3Z%1§}J{1,
iz

where u is a parameter. Introduce

wwozﬁifﬂl (2.13)
and
~ (u+h1)(u+ ho)(u+ h3)
wwy_@—hﬂw—hﬂW—hg' (2.14)
For a 3D Young diagram m, define ¢ (u) by
b (u) = o) [T ¢(u — o). (2.15)

Oer

In the following, we recall the representation of the affine Yangian on 3D Young diagrams
as in paper [13] by making a slight change. The representation of affine Yangian on 3D
Young diagrams is given by

Yl = dr(u)lm), (2.16)
cwin) = 32 22D 1) (217)
Oernt

F(r—»n—0)

e =0) (2.18)



where |7m) means the state characterized by the 3D Young diagram 7 and the coefficients

E(r—r+0) = —F(r+0— 1) = \/01 reSus e, thn (1) (2.19)
3

Equations (2.17) and (2.18) mean generators e;, f; acting on the 3D Young diagram 7 by

ejlm) = > hLE(r — 7+ 0)|r +0), (2.20)
Oernt
filmy =3 hhF(n — 7 — O)|x — O). (2.21)

The triangular decomposition of affine Yangian ) is

where V' is the subalgebra generated by generators e; with relations (2.2) and (2.9), B
is the commutative subalgebra with generators ;, Y~ is the subalgebra generated by
generators f; with relations (2.3) and (2.10).

Define the anti-automorphism a by

alej) = —f; (2.23)
The quadratic form on Y*|0) is defined by
B(z0),9/0)) = (0la(y)z[0) (2.24)

where z,y € Y*. Note that the quadratic form here is different from the Shapovalov form
in [13]. For 3D Young diagrams 7, 7" and let 7 = z|0), 7’ = y|0) for z,y € YT, define the
orthogonality

(', 7) = {0|a(y)z|0). (2.25)

As in paper [13], when n > 0, a1 and a_,; are defined to be

1
a,n’1 = *madfl 1f0’ (226)

1

n—1
(= 1)!ad61 €. (2.27)

A—n1 =

The set
{ad! 'eg,n =1,2,3,---}

is denoted by <. That the operator A commutes with {6 means A commute with every
element in <.

Proposition 2.1. If the operator A commutes with <y, so does [e1, A].

Proof. That A commutes with { means [A,ad?l_leo] =0forn=1,2,3,---. By Jacobi
identity,
[[e1, A],ad eo] = —[[A,ady; teq], e1] — [[adf; teo, e1], A] = 0.
[



Then we get the following result.

Proposition 2.2. If the operator A commutes with {, then we get that adgl_lA forn =
1,2,3,--- commute with <.

By similar calculation, we can get that if the operator B commutes with adg,~ ey and
ad’gl_lA forn=1,2,3,---,s0do ad?l_lB forn=1,2,3,---.

3 3D bosons

Introduce the space of all polynomials

Clp] = Clp1,p2,1,12,2,P3,1, 03,2, 03,3, - |-

Every polynomial is a function of infinitely many variables

b= (Plap2,1,P2,2,P3,17p3,27p3,3, T )7

but each polynomial itself is a finite sum of monomials, so involves only finitely many of

the variables.
(51

l
ni,k1 o 'p;s,ks to be

Define the weight of p, ;. to be n, and the weight of monomial p
lin1 + - - - 4+ lsns, then the 3D Bosonic Fock space is written into

Clp] = é Clpln (3.1)
n=0

where C[p),, is the space of polynomials of weight n, which is a subspace of C[p]. The basis
of C[po is 1, the basis of C[p]; is p1, the basis of C[plz is p?,pa.1, P22, the basis of Clps
is p?,p1p271,p1p2,2,p371,p3,2,p3,3, we can write the basis of every subspace C[p],. By the
results in [17], we know that the elements in the basis of C[p],, is one to one correspondence
with 3D Young diagrams of total box number n. Then we have

S dm(Clpl)g = [ (32)
=)
n=0 n=1

where the notation dim(C|p],,) means the dimension of the vector space C|[p],,.
Define the form (-,-) on C[p] by (pn,j,Pm,i) =0 unless n =m, i =j. When i =j =1,
(Pn,1,Pm.1) equal (Dn, Pm) = Ndp m in the 2D Bosons and Schur functions. Define

j—1
(pjjrpig) = (=177 [T (B2 + K202 + 03) (3.3)
k=1
and
n+j—1
n—j

(Pnj» Pnj) = ( ) (Pjjs i) (3.4)

We give a remark: when j > 1, there is a factor (1+02+03) in (pjj,p; ;). This shows that
when hy = 1,hy = —1, (pj;,p;;) = 01if j > 1. This result matches that P, j~1 become



zero and 3-Jack polynomials become Schur functions when h; = 1,hy = —1 [11]. When
n
-1

Consider operators b, j, where n € Z,n # 0, and k € Z,0 < k < |n|, with the
commutation relations

J =1, equation (3.4) becomes (pn.1,Pn1) = (p1,p1) = n.

[bm,la bn,k] = m5m+n,06l,k’<pl,\m\ 7pl,|m\>' (35)

The operators b, ;, with the relations above are called 3D Bosons, and the algebra generated
by by, 1, with relations (3.5) is called 3D Heisenberg algebra, which is denoted by B. Using
the commutation relations (3.5), we can see that any element in 3D Heisenberg algebra
can be expressed in a unique way as a linear combination of the following elements:

b!

—ma,ly

b0 p s

—mis,ls n1,k1 n,kt

for
(_m17ll) << (_m57l5>7 (nlukl) <o < (nt7kt)7 ai?ﬁi - 1727"' )

where the notation (m,!) < (n,k) means m < n or m =n,l < k.
Define a linear map p : 8 — End(C|[p]) by

P = Prges plbug) = (P Prs)ns o (3.
Pnk

for n > 0, which gives a representation of the Heisenberg algebra B on polynomial space
C|p]. The representation space Clp| is called the 3D Bosonic Fock space. We call the
operators b, ; annihilation operators and b_,, ; creation operators for n > 0. From the
commutation relations (3.5), it is easy to find that all the creation operators commute
among themselves, so do all the annihilation operators. The element 1 € Clp] is called the
vacuum state. Every annihilation operators kill the vacuum state, that is, nﬁi’kl = 0.
The 3D Bosonic Fock space is generated by the vacuum state:

Clp] =B -1:={b-1]b € B}. (3.7)

We give a remark to explain why we use “3D” in the 3D Boson and 3D Heisenberg
algebra. 3D is used to distinguish 3D Boson and ordinary Boson, 3D Heisenberg algebra
and ordinary Heisenberg algebra. Similar to that the ordinary Bosonic Fock space is
isomorphic to the space of 2D Young diagrams, the 3D Bosonic Fock space is isomorphic
to the space of 3D Young diagrams, this is the reason we use the notation 3D.

Since the 3D Bosons b, ;>2 can not be represented by the generators of affine Yangian
of gl(1), instead in the following, we consider the algebra W with the generators a, ,
(n€Z,n#0,and k € Z,0 < k < |n|). Welet an1 =0bp1,(n € Z,n#0) and a_s9 = b_2 9,
other relations of a, ; and b, ; have not been found. We think that the 3D Heisenberg
algebra {b, ;} and the algebra W can be represented by each other, we will discuss these
next if we can obtain the results. In the following of this paper, we discuss the algebra W
instead of the 3D Heisenberg algebra {b, ;}. The commutation relations in W are

[an,la am,l] = n5n+m,001 = 77b071(57LJr7rL,07 (3'8)

[an1,am] =0, when j>1,



and when 7 > 1, k> 1,

k!
[@m,js @n,k] = Z TCJl'kN]l'k(ma n)amtnls (3.10)
0<I<j+k—2
Jj+k—leven

where the coefficients N]l-k(m, n) are

Nji.(m,n) = < Pk ) Omtn,0, (3.11)

jk—1—1 (—1)°
!

l l

X[7+m—1]j45—1-1-s[f —m —

itk—l—1
(20)j+k—1-1 s
Jslk +n = 15[k —n — 1 1p1-1-s,

with cé-k(m7 n) are the functions of o2 and o3, and the structure constants C]l.k are

(= D25 — 1)!

0
, o 12
Cik 4g—1(2j_1)!!(2j—3)!!5]kcj’ o
1 Ll lG4+k—-1-2),-iG+k-1-1)
. y 5 Vi ) J .
Cip = W(ﬂ)jﬂc—l—l X 4 F3 (2 S %_]’7%_ k, %2—|—l )
with
(@), =ala+1)---(a+n-—1), 3.13)
al, = ala—1)-(a—n+1), 3.14)
. 00 (al)k"'(am)kzk
T ) = 30 ek ()i 2 3.15
(bh'" ,bn, ) l;) (b1)k -+ (bn)r k! ( )

We give a remark here to explain the central charges c;. The central charge ¢ of a1 is 1o,
we always take 1y = 1 without loss the symmetry of affine Yangian of gl(1) about three
coordinate axes. The central charge ¢; of a, ; is dependent on j. The first few of them are

co = —2(1+ 0y +03),
c3 = 6(1+ 09 + 03)(8 + 4oy + 73),
(14 09+ 02)(8 + 4o + 02)(27 + 902 + 02)(—1 + 02 + 03)

= —144 .
“ (—17 + 503 + 502
Define
k(n) = —(n + hih2)(n + hihs)(n + hohs) = —(n3 +nloy + 032)),
then
c2 = 2k(1), c3 = 6k(1)k(2),
and

oy = 1447

(Dr(2)K(3)k(=1)
5r(1) + 22



For n > 0, define P, ; be the representation of a_, ; on the vacuum state of the space
of 3D Young diagrams, that is, P, ; = ay;|0), then the 3-Jack polynomials as vectors in
the representation space are functions of P, j. Note that the set {P, ;} are related with
{pn;}. For example, P, 1 = p,1 and P2 = pa2. The central charges c; and c3 match
(P22, Py 2) and (P33, P33) in [11] respectively, and ¢4 matches (Py 4, Py 4) in [18]. Here we
choose Py 4 = E13|0), where E13]0) is defined in [18]:

= 72(20% 4+ 302 —3)
13’0> = 5 P}
144(20% + 305 —3)
503 +509— 17
1203(03 — 1109 —49)
503 +5og — 17

3603(303 + 703 +5)
503 +bog — 17
6 505 + 400203 + 30103 — 2503 + 29509 + 150
5 50%—1—502—17
6(02 — 1109 —49)
503450y — 17

60606060|0> —

60606160’0>

60606260‘0> + 60616160‘0>

epe1ezep|0) — epe26e2¢0|0)

18 505+ 300203 + 7702 + 503 + 2502 + 30 4803(02 + 409+ 8)

- 0 0
5 502450917 ereperepl0) + 5o+ 50y — 17 erepezep|0)
1 03(50% +400203 + 1502 + 3502 — 11109 — 200)

J— 5 61€1€1€0|0>
5 5035 +509 — 17

03 +50203+203 +40% — 09+ 9
5U§ +509—17

18(303 + 702+ 5)

6
+ 50%—1—502—17

€1€1€2€0|0> — €2€0€2€0|0>
6
—50362616260|0> +eze2e2€00),

which is a vector in the 3D Young diagram representation space of affine Yangian of gl(1).
Note that the algebra W is closely related to the Wi, algebra or W, algebra.

4 3D bosons in affine Yangian of gl(1)

We denote [e;, ;] by e; ;. We have the recurrence relation: when j + k = 2n in (2.2),

1 o
Entznil = 5o 3(€2n+3,0 +02 Y (j+ Demsi—j;
j=0
n—1
—o3 ) (1424 -+ (G + 1){en—j, ¢}
=0

_(1 +24 -+ (n —+ 1)0’3€n6n))a

the right hand side is denoted by A, then

7

ent3tin—i = (21 +3)A + (—02) Z(j +1)en1tijn—itj

j=0
1—1

o3> (14+2+ 4 + D) {entizj, en—isj}
j=0

+(1 42+ 4+ (i+ 1)osenen))

~10 -



where i = 0,1,--- ,n—1. When j+ k=2n+1 in (2.2),

1
n+2

n
(e2nta0+02 Y (j+ 1eamiajj
Jj=0

€nt+3n+l =
n
—o3 ) (1+2+ -+ (j + D){ezns1-5, ¢},
j=0
the right hand side is denoted by ¥, then
i
entarin—i = ((+2)V+(=02) Y (j+ Dent2rijn—itj

J=0

7
o3> (1+2+ -+ (G + D) {ens14imjs en—iti}s
=0

where 1 =0,1,--- ,n — 1.
We rewrite the recurrence relation in the matrix form

Proposition 4.1. When j+ k = 2n in (2.2),

€2an+2,1 €2n,1 €2n—1,1
€n+1,2 €n—1,2 €m—22
€2n,3 —1 €m—23 —1 €2n—3,3
" = —oa(A  (Inpr =) |7 tos(Ap) 5 |
€nt3n €nt+2n—1 En4+2,n—2
En42,n+1 En+1,n En+1,n—1
2n+1 €0€2n
2n—1 €1€2n—1
e +o9e —0o3e _ €269,
+ 2n+3,0 22;7;:1—31,0 3€2n,0 - +20'3An_~1_1 2 2n 2 (41)
3 €n—1€n+1
1 %enen
where
2 +1 0136... nmoth
... nnzl)
Al ! 5 e Vo | o o o ey | (4o
=T (136 MDYl g gq... (=2 , (4.2)
1 00O00--- 0

the matriz In+1 = (5i,j)1§i,j§n+1 is the (n + 1) z’dentz’ty matm’x, Jn+1 = ((5,‘4_17]‘)131‘7]‘3”_,_1,
and the notation j1 in the subscript means removing the first column of the matriz, the

notation ji, jn+1 means removing the first column and the (n+ 1)th column of the matriz.

- 11 -



When j+k=2n+1in (2.2),

€2n43,1 €2n,1 €2n—1,1
€2n+42,2 €2n-1,2 €2n—2,2
€2n41,3 _ €2n-2,3 _ €2n—3,3
= —~02(By iy (st — Jut1))5; +o3(Bi);,
€n+4,n €n4+2,n—1 €n4+2,n—2
€n+3,n+1 En+1,n En+1,n—1
n+1 €0€2n+1
n e1eon
e + oge — o3e _ €269, —
| C2nta0 2 Tzln_:22,o 3€2n+1,0 : +203Bni1 22n 1 7
2 €n—1€n+2
1 En€n+1
where
n+1 0136--- n(n2+1)
B—l — _L 3 (1 36--- (n+1)(n+2) ) 4 8 8 (1] :1S (n—2)2(n—1)
’I’L+l - n + 2 2 2 o .. f
1 00O0O0--- 0
Note that
-3 3 -1 0 0 O -0 0 0 O
1 33 —-10 0 -0 0 0 O
0 1 -33 —-120 -0 0 0 O
o o0 1 -33-1---00 0 O
An+1 ==
0O 0 0 0 0 O 1-3 3 —1
0O 0 0 0 0 O -0 1 -3 4
0O 0 0 0 0 O -00 1 3 (n+1)x (n41)
and
-3 3 -10 0O O ---00 O O
1 33 -10 0 ---00 0 O
0O 1 -33 —-10 -0 0 0 O
o 01 -33 —-1---00 0 0
Bn+1 -
0O 0 0 0 0 O -1-3 3 -1
o 0o o o0 0--01-=-33
o 0o 0o o0 0--001 -2 (n+1)x (n41)

We can see that the numbers in every row are the coefficients in the relation (2.2).

- 12 —
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Corollary 4.2. Every vector in the vector space spanned by e;e; fori,j =0,1,2,---, where
e; are the generators of affine Yangian, can be represented as the linear combination of

en0, emen (M < n) (4.7)
form,n=0,1,2,---.

Suppose the vector

Z dnen,O + Z bmnemen

n>0 m<n
with the coefficients d,, bp,, be commutative with Bosons a, 1, we only find the zero
coefficients, that is, d,, = 0 and b,,,=0. But we found the vector

o
[ea, €0] — a3le1,e0] — € =2 a_niz)1an1 (4.8)
n=1

commute with Bosons ay, 1, which is denoted by a_s 2. The communication [a_22,a_p 1] =
0, n > 0 holds since

o0
|: Z a_(m+2)11am71’an71:| = na_(n+2):1'
m=1

The communication [a_22,ap,1] = 0,7 > 0 holds since
[[627 60] - 0-3[61¢ 60], a*n,l] = _Zna(n—2),17

[o¢]
[Z a(m+2),1am717an,1} = TN0(n-2),1-
m=1

For n > 2, define

1

a_(nt1)2 = mad’gl_l ([e2, eo] — o3le1, eg]) — Z Daiag (4.9)
’ i+j=—(n+1)
Similarly, define
1 .
an+1,2 = _madﬁ " ([fa, fol = aslfi, fo]) — Z - @i, 105,15 (4.10)
' i+j=(n+1)

We denote the first term in a, 2 by 2L, and the second term by 2L,,. Then we have that
L, and L, separately satisfy the Virasoro relations, that is,

m3—m

[Lm7 Ln] = (m — n)Lm+n —+ T5m+n70(—02 — O'%), (411)

and 5
— — - m- —m

By calculation, we can prove the following relations hold

Smtn.0- (4.12)
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Proposition 4.3. Forn > 2,

1 _ _
——1€1L-nl0) = L_(n41)[0).
This result means
Proposition 4.4. Forn > 2,
1
anal0) = Paz = (e meyaaal0)

n—2
Note that
P55 = (eaeq — 03e1€0 — €gep)|0),

which equals \/(1 + h1h2)(1 + hlhg)(l + h2h3)P272 in [11], and

1
P35 = eq(ezeq — 03e1e0 — €epep)|0) = 5(62 — 203e1 — 4deg)e1ep|0)

which equals 21/(1 + h1hg)(1 + h1hg)(1 + hohs)Ps 2 in [11].
From (2.7) and (2.8), we have

[V2, an1] = —2napn
for any n. Then we have

Lemma 4.5. For any n # 0,

[61, an,l] = —Nan-1,1-

Proof. When n < 0, it holds clearly. When n > 0, it can be proved by induction.

Proposition 4.6. Forn > 1,

1 _ _

Proof. Since the relation (4.13) hold, we only need to prove
1 _ _

(n—1) le1s (L—n)+] = (L—(n41))+:

where (I}_n)+ include all terms which have annihilation operators in L_,, that is,

(E—n)+ = Z A (n4k)Qk-
E>1

Then

lex, (L)1) = > (ler, a—(nywlan + a_oirle1, ar))
k>1

= (=1 a_guirsnar = (0= D)(L_(nin))+5
k>1

which means the result holds.

— 14 —
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Note that here

Proposition 4.7. Forn > 2,

1 _
a,n,Q = (n — 2)' adgl 2(172’2. (418)

In the representation on 3D Young diagrams,

1
Pro=———ad *Pys. (4.19)
(n—2)!

Similarly to the creation operators, the annihilation operators satisfy the following
relations.

Proposition 4.8.

[f1,an1] = nany11, for n#0, (4.20)
and .
an,2 = ad" a2, (4.21)
(n—2)!
with
azz2 = —|f2, fo] + o3[f1, fo] — —2Za nlnio. (4.22)

Acting on the vacuum state of the dual space of the space spanned by 3D Young
diagrams, the representation of a, 2 is denoted by PnL’Q,

(0|Ps5 = (0lag,2 = (0|(fofo — o2fofi — fifo),
which equals the dual state of P»2|0) = (e2eq — o3e1€0 — €0€p)|0). We have know that [11]

(01 P55 Pa2]0) = (0|(fof2 — o2fofr — fifo)(e2eq — ozereq — egeo)|0)
= —2(1+ 03 +03).

Since
f1P22]0) = 0,

we have

O[(fofe —oafoft — fifo) fi--- fie1---ei(e2eq — o3e1e0 — egep)|0)
n+1 n+1
= (0[(fof2 — o2fof1 — f1fo) f1 - f1 fierer -+ e1(e2eq — o3e1eq — epep)|0)
\W_/
= (0|(fof2 — oafofi — fifo) fi--- fieifier---ei(ezeq — o3e1eq — epen)|0)
H/—/ ——

n

—2(n +2)(0|(fof2 — o2 fof1 — flfo) f1 - fie1---e1(e2eq — o3e1€0 — €0€p)|0)

n

=—(n+4)(n+1)0|(fofe —o2fofi — flfo) fi---fier---ei(ezeq — o3e1e0 — epep)|0).

~15 —



From

(="
0 = 0
(0lan,2 (n—2)] T !a22f1 - f1,
n—2
we have +1
n
(Olan2a—n2|0) = — 2<0|an—1,2a—(n—1),2\0>- (4.23)
Then
1
(0|an2a—pn2|0) = —2 (ZJ_F2> (1+ 02 +03). (4.24)
Since ) .
Ly = —3 ([f2, fol = o3lf1, fol), L—2 = 3 (le2, e0] — o3le1, eo]) ,
we have
(Lo, an1] = —nant2,1, [L-2,an1] = —na,—21.
Then

- 1 s
[L2, L 2] = §[L27 (12_1,1 +2 Z A (n+2),10n,1]
n=1

o0

[u—y

= 5(04,1@—1,1 +a_11a1,1) Z ( n+2)a_p10n1 — (n+2),1an+2,1)
1 _
= —+4Lg.
2 0
Similarly, [Lo, L_»] = % + 4Lg. Therefore,
[a2’2, a_272] = 8@0’2 — 2(1 + o9 + J%), (4.25)

where

oo
ap2 = P2 — Za—jaj-

j=1
This commutation relation (4.25) is the same with that in (3.10). Other relations
[an,2,a_n2] can be calculate this way. By (4.25), we have

(PrE Py = (n+ 1) (=201 + 00 + 03) + 16n) (Pyy, Pil). (4.26)

Then
(Paly, Paly) = H ( +02+U3)+16(J—1)) (4.27)

For n > j, we also have

(g, Paj) = (”Zi] )(P,J,P> (4.28)

This equation can be obtained by the similar calculation to get equation (4.23).
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5 3-Jack polynomials

In this section, we want to obtain the expression of 3-Jack polynomials J, for any 3D
Young diagram . It is known that Schur functions Sy can be determined by

oo

e nln —ZSZ (51)

n>0
Sx = det(Sx—i+j)1<ij<i (5.2)

for A = (A1, A2,---,A2). The formula (5.2) is equivalent to the Pieri formula S,S\ =
> Cﬁ} 1S, where the Pieri formula can be found in [2]. Here we treat 2D Young diagrams
A as the special 3D Young diagrams which have one layer in z-axis direction. For 3-Jack
polynomials, we need to know the formula for Jy similar to (5.1), and the formula Inx
similar to the Pieri formula S,,S.

In [11], we have obtain that

j@: (1 — ( + hahs) P{ + (1 +h2h3)h1P2,1+P2,2), (5.3)
J (1 + h1h3)P? + (1 4 hih3)hy P P A4
‘]@ (hg—hl hg—h3< + hih3) Py + (1 + hihg)ho Poy + 2,2)7 (5.4)
J hihs)P hihy)hs P Pys). 5.5
e (h3—h1 s —Tgy (L MBI PE+ (Lt aho)hsPoy 4 Pra) . (55)

Note that here P59 equals /1 + 03 + 03P, in [11] since in this paper we want
(Pyo, Pap) = —2(1 + 02+ 03).

Similarly, we let P32 here equal 24/1 4 02 + U%Pg}g, since we want P39 = €12, which
means

(P39, P32) = —8(1 + 02+ 03).

We can see that they are symmetric about three coordinate axes, which means that
exchanging (T7 & @ corresponds to exchanging h; <+ ho, others are similar. We asso-
ciate hy to y-axis, hy to z-axis, h3 to z-axis to match the results in [13]. We want this
symmetry holds for all 3-Jack polynomials.

We want that 3-Jack polynomials J; behave the same with 3D Young diagrams 7 in
the representation of affine Yangian of gl(1). For example,

(Jry Jur) = (m,7) (5.6)

In [11], we show that the 3-Jack polynomials become Jack polynomials defined on 2D
Young diagrams when hy = /a, hg = —1/+/a. In [11], 3-Jack polynomials are obtained
under the condition ¥y = 1 which does not lose the generality. In fact, if we calculate
the 3-Jack polynomials for general g, the 3-Jack polynomials will become the symmetric
functions Yy when ¢ = —ﬁ, where Y), are defined by us in [19, 20]. Therefore, 3-Jack
polynomials are the generalization of the symmetric functions Y) to 3D Young diagrams,

17 -



they are also the generalization of Jack polynomials. Different from our previous work, in
this paper, we show that 3-Jack polynomials become Y\ under the following conditions.
We see that when

Pao = —(1+ hiho) (P} + h3Pay), (5.7)
the 3-Jack polynomials of two boxes become

~ 1 9
= (PQ,1 - h2P1) =Y, (5.8)

) 1
T = (P2,1 - hle) =Y, (5.9)

J = 0. (5.10)
7

Generally, we take
Pn72 = —2(1 + hlhg)(Plpn_l,l + hgpn,l), for n > 2. (5.11)
For j = 3, we take

P373 = (1 -+ hlhg)(Q + hlhg)(2P13 =+ 3h3P1P2’1 + th&l), (512)
Po3 = 3(1+ h1ha)(2 4+ h1he)(2PEPy_91 + 3h3Pi P11 + h3P,1), forn > 3.

For general j, let

(1+x)(2+$)"‘(j_1+$):T0+7‘1$+"'+7‘j_1$j71

with the coefficients o = (j — 1)!, 71, -+ ,7p—2,7j—1 = 1, we take
Pj,j = (—1)]_1 H (k‘-i—hth)(ToPlJ +T1h3Pf72P271 +--- —G—Tnflh%ilpj’l), (5.13)

k=1

Jj—1 ) . )
Py = (=1)7"j H(k+h1h2)(7"opf_lpn—j+1,1 +r1haP] PPy jion ik P,
k=1

for n > j.

We require the 3-Jack polynomials become the symmetric functions Y) under these condi-
tions.
For n > j, define

> Py dog’y 1
&(Pz) = T W 2" (5.14)
”;1]" n+j—1\ hl ;= F+hhs
Nl
with

1 if n=j
dnj = nn=d (5.15)

j ifn>j.
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The 3D Young diagram of n boxes along y-axis is denoted by (1,1,---,1). For example,

—_———
when n =2, (1,1) is [TT). The 3-Jack polynomials j(l 1) is determined by
) )
1 .
fy(RZ) — _ _ n
e > < ¥ T, ... 1)(P)2" (5.16)
n=>0 (15""1)’ (1371) I ———

Note that when P, j~1 = 0, the vertex operator above becomes that for the symmetric
functions Y{,y [21]. When P, j>1 = 0 and h; = \/a,ha = —1//a, the vertex operator
above becomes that for the 2D Jack polynomials j(n) [22]. When P, j>1 = 0 and h; =

—1, hg = —1, the vertex operator above becomes that for the Schur functions S, [2, 4].
We list the first few terms of j(l . 1)(P):
b )

Jo =1,
1 ~ 1
— Jem =P,
e e D" b
1 ~ 1
. , Jo = ——— ((14haohg) P2+ (1+hohs)hi Po 1+ Py s,
<J@,J@>h% @ 2(1+h2h3)h% (( 2 3) 1 ( 2 3) 1521 272)
L J, —1P L pp +;PP +ip
Ty Jaan)hi Y~ 6kt o 2h? TR (1 hohg) P By
1 1
— P P.
T haha+ 1) 2 6 (hahy+1) (hahg+2) 13" 5%
1 ~ 1 1 1
_ _ J = —— P4+ PPy +—————P?Pyy+—5PP
(Ja1,1),J,1,0))0h3 (LLh = 24h} o 4h3 2 Ahi(1+hohg) ! 22 3hi H
1 1
— P P. PP
+4h§(h2h3+1) ! 3’2+6(h2h3+1)(h2h3+2)h‘11 1733
1 1 1
—P — P P
+4h1 4’1+10h%(1+h2h3) 4’2+12(h2h3+1)(h2h3+2)h:{) 43
1
24(h2h3+3)(h2h3+2)(h2h3+1)h14 44
1 1
— PP P? —PQ.
+4(1—|—h2h3)hf 2,1 2,2+8h2 91T S(1+ hiahg) 201" 22
Since
. . b (G +1)(F + hohs)
< (17"' 71)7 ( ]];[1 jhl hg (]hl h3)’
n+1 n+1
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we have

%@:H,
~ 1 9
Lhﬁ_mrwmm_%”ﬁ+@@a+u+@@m&yum)
~ 1
J pu—
(L11) (h1 — hg)(hl — h3>(2h1 — h2)<2h1 — hg) ((
+3h1(1 + hghg)(z + hzhg)P1P2,1 + 3(2 + hzhg)Plplg

1
+2h3(1 + hah3)(2 + hohs) P31 + 3hi(1 + §h2h3)P3,2 +Ps33),

14 hoh3)(2 + hah3) P}

which are the same with that in [11].
j _ 1
(L,1,1,1) (hl — hg)(hl — h3)(2h1 — hg)(th — hg)(3h1 — hz)(3h1 — hg)
% (14 hohs) (2 + hohg) (3+ haha) Pl 4611 (1+ hohs) (2 + hohs) (3+ haha) P2 P,y
+6hy <2+ hghg)(3+h2h3)P271P2’2 +6(2+h2h3)(3+h2h3)P12P272
—|—8(]_—|—hghg)(Q—|—h2h3)(3—|—h2h3)h%P1P371 +6(2—|—h2h3)(3+h2h3)h1P1P372
+4(3+hoh3)P1 P33 +6(1+h2h3)(2+h2h3)(3+h2h3)h?P471
12

+342+hymx3+mmghﬁag+2@+Jmh@huﬁﬁ+fg4

3(2+hah3) (34 hahs)
(1+ hahs)

P3y+3(1+hahs) (24 hahs)(3+ hahs)hi P31 ).
This expression is slightly different from that in [18] since here we choose

2
Py,

2
0) = (e2epe2ep + 203€pe1€2€0 — 2092€1€0€2€0|0) — 50361616160 — 2epepeaen

—(2+ Ug)eoeleleo — epgegeaen + Ugeleoeleg + 203€epepe16ep + epepepen)|0),

which equals a2_272|0>.
For n > j, define

w P, doj ' 1
(P z) = Z ) d H —_— 2", (5.17)
gt g (I by oy K+ hihs
! e
00 j—1
P, dp, 1
E(Pz) = ) ; ol | e s (5.18)
e R A WL = R
! noj
1
The 3D Young diagram of n boxes along x-axis and z-axis are denoted by | --- | and (n)
1

1
respectively. For example, when n = 2, ( 1) is @, and (2) is @ The 3-Jack polynomials
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J 1 and j(n) are determined by
1
Ex(Pz) _ _ 1~ - 7 ) (P)Zn (519)
n>0 <J 1 b J 1 >h2
1
1 1
and ]
(P2 = - Jiny(P)2" (5.20)

n>0

(Jny> Jn)) 1

respectively. We can see that they are symmetric about the three coordinate axes.

For 2D Young diagrams A, which are treated as 3D Young diagrams which have one

layer in z-axis direction, we define 3-Jack polynomials Jy in the following. Let

P =
71 hl
then P, ; in (5.13) equal
j—1
P;; = J 1H (k+hihe)(k+hihs) J<sz
k=1 1

1
— (2 + 2y 4

oo

2z, 5.21
oy 2% (5.21)

+r00 +71hihsCl_y+roh3h3C) g+ +rj_ohi 2RO

szl(k+h1h3)

J

o+ CY ) +1oh3h3C2 gt trj_shi L C3

Zziilzl

k.l

+T‘0C§+T‘1h1h3(02_
Tz (k-+hahs)
+T‘00]1C},1 +T1h1h3(0}720},3+

I

k£l

CY_o)+1ah3h3CL_yCL_y+++r;_sh] i CiC]

[T\ (k+hihs)

j—2 11 1
Z Zél Zk2zk3++TOC]C]_1cl

k1,k2,k3

and when n > j,

j—1
P, = (—1)]—1j H(k+h1h2)(]€+h1h3 J(Z
k=1 hi
+Zi;%7’kh’fh'50f_k_1+?“05n—j,1 .
[Tizi (k+hihs) oy
Jj—3 kpko1
_oTkhih3 C C
+Zk70 k j—k—2 Z Zk
H (k+h1h3) ki ka,ks
100t Oy O 3T i
ki, ki

- 21 —

S

k1<"'<kj

k

n—2

ij>7

k
Tk;h h3 ]kl

D

H (k:—i—hlhg Kl

o

ZkQZ]% + -

'ij+1>7



where

Define fyx7j7j and fyz,n,j by

c P, (roC’ +r1h1hsC! 2+r2h2h3C’j stry_ah] 22 0]
YT,5,J

s Zzi_lzl

4 7“00]24-7’1 hi h3(C]2_2+C§)_2)+7"2h%h§c]2_3+"'+Tj_3h{_3h'§_3022

Hj:l(k‘i‘hlhs) k£l

Zzi—Q 2

+r00;01 1 Fr1hihs(Cl_yCl_g+CY_y)+rah3h3C)_yCl_yt+rj_sh] *h>C3CT

[T} (k+hihs)

j—2 1,1 1
Z 2, 2y 2k T AroC O g O Z Zhy Zhy 2y |
k1,ko,k3 k1<"'<k]'

and for n > j,

¢ _ P,J Z Tkhkhi% Gk 12
yx7n7] - y
i I

Zk -0 Tkh%hlgcjszil + Toan—j,l 22_2212
[T/=1 (k + hahs) ey
Zk 0 rkhkhkcl C] 2

zy zk ks + -
H (k‘-l—hlhB) klkzzk3 kl o

1 1 1 n—j+1
+ TOCj*10j72 s Ol Z Zk1 Zkz cee ij+l> .

k1, ki1
Define

yz PZ Zgy sz +Z§yaz,],]+ Z gyxn,]a

j>2 n>j>2

and let

el (P2) — Z Qi g (P20 22 -

11,02, ,20

(5.22)

(5.23)

(5.24)

(5.25)

where z = (21,22,---). We can see that @, j, .. are polynomials of P, ; which can be
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determined by this equation. We list the first few of them:

= — P,
Q1 o

1
2(h1hg +1) (ho hg + 1) bt
+h1h3Py? + hohgPE + h1h3Pas + h1Poq + PE+ P2,2) ;
1
12(1 + h1hg)(1 + hohs)(2 + h1h3)(2 + hohs)h3
+2h3R3h3 P13 4 120 hoh3 Py 1 4 12h3h3h3 Py 1 + 18h3hohi P Pa 1 + 18h3h3h3 P Py
+6h3hah3 PP + 6h1h3h3 PP + 3hihoh3 Py o + 6h3hahi P Py o + 8hih3Ps
+36h3hoh3Ps 1 + 12h3h3P Py + 8h2h3h3Ps 1 + 54h3hah3 Py Py + 4h303 P}
+12h1h3h3 Py Poy + 18h1hoh3 PP + 4h3h3PY + 6h3h5Ps o + 9h3hoh3Ps 2
+12h3h3 Py Pao + 18h1hoh3 PL Py o + 24hihs Py 1 + 24hihohs Py 1 + 2hTh3 P53
+36h3h3 Py Pay + 36h1hoh3Pi Py + 12h1ha PP 4 12hoha PP 4 18h3ha Py o
+6h1hahaPs g + 36h1h3 Py Pag + 12hohsPi Py o + 16h3 P31 + 6hih3 P33
+24h1 Py Py + 8P} + 12hy P3o + 24P Pas + 4Ps 3),

Qs = (h%hgh%PzJ + hihah2P® + B2hsPyy + hihohs Py

(4n1h3R5 P51 + 6h3R3REPL Py

Q3 =

and
1 <(
(h1 hg + 1) (ha hy + 1) h?
1
Q21 = 3
4(1 + h1hs)(1 4 hohs)(2 + h1h3)h1
+6hThoh3Pi Py + 2h1h3h3P1 Py + 6hihoh3 PP + 2h3h3PY + 2hihohiPi Pa s
+4h3h3 Py Pay + 6hihohs Py Pay + 4hihy PP 4 6hohs PP 4 hihohaPs o + 4hihaPi Py o
+6hohgPiPyg + 4hi Py Pag + 4P} + 2h1 Py o + 12P Py + 2P3,3) .

hihg+1) (hahg +1) P2+ Pys)

Qi1 =

(213313 PPy + 2k h3R3 P

Then we can calculate the 3-Jack polynomials Jy from Qiy io,.. When (iq,19,13,--+) =

(n,0,0,---), we have
1 .
W(P)= ——J.\(P). 5.26
Qn(P) T Tt (n)(P) (5.26)

When (i1,1i2,73, ) = (n—1,1,0,---), we have

1 = —nhQ
w11 (P) = o (P)—— 2
1 . 2
= = Jip— P)—— 5.27
+<J(n—1,1)7*](n—1,1)>h?71 (-1 )hl — ho (5.27)

where (n — 1, 1) is the 2D Young diagram from (1,1) by adding n — 2 box in the first row.

For example,
1 B
=——+——J(P),
@ (Ji2), J2))h3 @(F)
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which means

~ 1
Jioy(P) = 1+ hohs)P? + (14 hohs)h1Pay + Pas),
A P) = G oy (1 h2h) PP+ (L holio)ha Poy + Poz)
which is the same with (5.3).
1 = —2ho 1 = 2
Q1=-——-5J(P + — _ Jo ) (P)———
<J(2)’J(2)>h% ® )hl —ha (Jan, oy .l )hl — ha

which means
1
(hg — h1)(h2 — hs3) ((
which is the same with (5.4).
In symmetric functions Y)(P), let p, = hil > 21, we see that Yy(P) = Yy(z) are

Ji1=

14 h1h3) P2 + (1 + hihg)ha Py + P2,2) )

symmetric about zi,z2,---. As in [2], we regard 2D Young diagrams arranged in the
reverse lexicographical order >, so that (n) comes first and 1" comes last. We arrange the
terms in Y)(z) the same as the order of 2D Young diagrams, so that 2z comes first and
Ziy Zig * * * Zi,, comes last. We use the notation CZXZ(QZ) to denote the coefficient of z%12% - - -

in Y)(2). It can be checked that the formulas (5.26) and (5.27) can be written as

1. .
Qu(P) = ————Ji(P)en™" (5.28)
1 T Yn (z)
Qn-11(P) = 7+—=—Ju)(P)c,\”
< (n)aJ(n)> e (n=1.1)
T Yn—, (Z)
AR —11ﬂth"_L”(P)qé—ﬁff ' (5.29)

Actually, this formula holds generally, that is, for Young diagram A, we have

o\P) =Y UlﬂJ#(P)c&f;)w). (5.30)

A\ Jp
For any 2D Young diagrams g, which are treated as the 3D Young diagrams having one
layer in z-axis direction, the 3-Jack polynomials .J ,» can be obtained from the formula (5.30).
Note that we can similarly define Ty (P, 2), Tyz(P, 2), Ton(P, 2), Ty(P,2), Toy(P, z).
From them, the 3-Jack polynomials of 3D Young diagrams having one layer in z-axis
direction or y-axis direction can be obtained. In fact, the 3-Jack polynomials of 3D Young
diagrams having one layer in z-axis direction or y-axis direction can also be obtained from
the 3-Jack polynomials of 3D Young diagrams having one layer in z-axis direction by the

symmetry of 3-Jack polynomials about three coordinate axes.

To get the expressions of 3-Jack polynomials J for all 3D Young diagrams 7, we need

the formula JyJ;. Define .
Inde = I Jr, (5.31)

where Jy are the functions of operators a_p; with n > 0, and the actions of Jy on J, are
the same with that of affine Yangian of gl(1) on 3D Young diagrams. For example, since

wl0) = 59 + 65 + B,
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we have

j[]j[] = €0j|:| = j@ + j@ + j@, (5.32)

then j@ is obtained, which is the same with (5.5). From

JDJ@ = J@JE == ‘](1:171) + J( 1 1) + J(271)h17h3, (533)
hy,ho
j(271)h1’h3 is obtained. Other 3-Jack polynomials of 3D Young diagrams which have more

than one layer in z-axis direction can be obtained this way.

6 Concluding remarks

In this paper, all results are obtained by requiring ¢y = 1. If interested, one can calculate
the results for general 19, which should be similar to that in this paper. For example,

1+ o9 + Ug = (1 + h1h2)(1 + hlhg)(l + h2h3)
in this paper should be

1+ Yoo + Tbgagz, = (1 + wohlhz)(l + 1/J0h1h3)(1 + l/Jthh;g).

for general .

n

N 3 H (7 +1)(j + hahs)
" (jh1 — h2)(jh1 — h3)

J=1
n+1 n+1

- = _ ﬁ (7 +1)(j + hahso)
(jh1 — h2)(jh1 — h3)

n+1 n+1

This holds since there is the scaling symmetries in the affine Yangian of gl(1) [13]. The
scaling symmetries say that changing the value of g is equivalent to rescaling parameters
hj,j = 1,2,3. Next, we will consider the slice of 3-Jack polynomials similar to that the
slices of 3D Young diagrams are 2D Young diagrams.
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