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1 Introduction

2D Young diagrams and symmetric functions are attractive research objects, which were
used to determine irreducible characters of highest weight representations of the classical
groups [1–3]. Recently they appear in mathematical physics, especially in integrable mod-
els. In [4], the group in the Kyoto school uses Schur functions in a remarkable way to
understand the KP and KdV hierarchies. In [5, 6], Tsilevich and Sułkowski, respectively,
give the realization of the phase model in the algebra of Schur functions and build the
relations between the q-boson model and Hall-Littlewood functions. In [7], we build the
relations between the statistical models, such as phase model, and KP hierarchy by using
2D Young diagrams and Schur functions. In [8], the authors show that the states in the
β-deformed Hurwitz-Kontsevich matrix model can be represented as the Jack polynomials.

3D Young diagrams (plane partitions) are a generalization of 2D Young diagrams,
which arose naturally in crystal melting model [9, 10]. 3D Young diagrams also have many
applications in many fields of mathematics and physics, such as statistical models, number
theory, representations of some algebras (Ding-Iohara-Miki algebras, affine Yangian, etc).
In this paper, we consider 3D Bosons and 3D symmetric functions.

The Schur functions Sλ defined on 2D Young diagrams λ can be determined by the
vertex operator and the Jacobi-Trudi formula. Let p = (p1, p2, · · · ). The operators Sn(p)
are determined by the vertex operator:

eξ(p,z) =
∞∑
n=0

Sn(p)zn, with ξ(p, z) =
∞∑
n=1

pn
n
zn (1.1)

and set Sn(p) = 0 for n < 0. Note that Sn(p) is the complete homogeneous symmetric
function by the Miwa transform, i.e., replacing pi with the power sum

∑
k x

i
k. For 2D
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Young diagram λ = (λ1, λ2, · · · , λl), the Schur function Sλ = Sλ(p) is a polynomial of
variables p in C[p] defined by the Jacobi-Trudi formula [1, 2]:

Sλ(p) = det (Sλi−i+j(p))1≤i,j≤l . (1.2)

The Jacobi-Trudi formula can be replaced by the Pieri formula [1]

SnSλ =
∑
µ

Cµn,λSµ. (1.3)

The equivalence between the Jacobi-Trudi formula and the Pieri formula can be proved by
induction: the Jacobi-Trudi formula

S(n,1) = det
(
Sn Sn+1
1 S1

)

is the same with the Pieri formula SnS1 = Sn+1 + S(n,1). The Jacobi-Trudi formula

S(n,2) = det
(
Sn Sn+1
S1 S2

)
= SnS2 − Sn+1S1 = SnS2 − (Sn+2 + S(n+1,1))

is equivalent to the Pieri formula SnS2 = Sn+2 +S(n+1,1) +S(n,2). Inductively, The Jacobi-
Trudi formula for S(n,m) is equivalent to the Pieri formula for SnSm. The Jacobi-Trudi
formula

S(λ1,λ2,1) = det

 Sλ1 Sλ1+1 Sλ1+2
Sλ2−1 Sλ2 Sλ2+1

0 1 S1


= S(λ1,λ2)S1 − Sλ1Sλ2+1 + Sλ1+2Sλ2−1.

If λ1 > λ2, we have

−Sλ1Sλ2+1 + Sλ1+2Sλ2−1 = −S(λ1,λ2+1) − S(λ1+1,λ2),

and if λ1 = λ2, we have

−Sλ1Sλ2+1 + Sλ1+2Sλ2−1 = −S(λ1+1λ1).

They show that the Jacobi-Trudi formula for S(λ1,λ2,1) is equivalent to the Pieri formula
for S(λ1,λ2)S1. The Jacobi-Trudi formula

S(λ1,λ2,2) = S(λ1,λ2)S2 − S(λ1,1)Sλ2+1 + S(λ2−1,1)Sλ1+2

= S(λ1,λ2)S2 − (Sλ1Sλ2+1 − Sλ2−1Sλ1+2)S1 + Sλ1+1Sλ2+1 − Sλ2Sλ1+2

is equivalent to the Pieri formula for S(λ1,λ2)S2. Inductively, The Jacobi-Trudi formula for
S(λ1,λ2,λ3) is equivalent to the Pieri formula for S(λ1,λ2)Sλ3 . For any 2D Young diagrams
λ = (λ1, λ2, · · · , λl), it can be proved by induction that the Jacobi-Trudi formula for
S(λ1,λ2,··· ,λl) is equivalent to the Pieri formula for S(λ1,λ2,··· ,λl−1)Sλl .
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The equivalence between the Jacobi-Trudi formula and the Pieri formula shows that
the Schur functions defined on 2D Young diagrams can be determined by the vertex oper-
ator (1.1) and the Pieri formula. The 3-Jack polynomials, which are symmetric functions
defined on 3D Young diagrams and the generalization of Schur functions, can also be de-
termined this way. We associate three parameters h1, h2, h3 to y, x, z-axis respectively,
where h1, h2, h3 are the parameters appeared in affine Yangian of gl(1). 3-Jack polyno-
mials are symmetric about three coordinate axes, which means they are symmetric about
h1, h2, h3. Let (n) be the 2D Young diagrams of n box along y-axis, which is treated as 3D
Young diagram which have one layer in z-axis direction, then 3-Jack polynomials J̃n can
be determined by the vertex operator:

eξy(P,z) =
∑
n≥0

1
〈J̃n, J̃n〉hn1

J̃n(P )zn, (1.4)

with

ξy(P, z) =
∞∑

n,j=1

Pn,j

j!
(
n+ j − 1
n− j

) dn,j
hj1

j−1∏
k=1

1
k + h2h3

zn, (1.5)

where

dn,j =

1 if n = j,

j if n > j.
(1.6)

When Pn,1 = p1, Pn,j≥1 = 0, the vertex operator (1.4) becomes (1.1). The 3-Jack polynomi-
als of n boxes along x-axis or z-axis can also expressed this way from the symmetry. In fact,
for 2D Young diagrams λ, which are treated as the 3D Young diagrams who have one layer
in z-axis direction, 3-Jack polynomials J̃λ can also be determined by the vertex operators.
3-Jack polynomials of 3D Young diagrams who have more than one layer can be determined
by the “Pieri formula” J̃λJ̃π with π being 3D Young diagrams. This Pieri formula can be
determined by the representation of affine Yangian of gl(1) on 3D Young diagrams.

The paper is organized as follows. In section 2, we recall the definition of affine
Yangian of gl(1) and its representation on 3D Young diagrams. In section 3, we consider
3D Bosons and the algebra W . In section 4, we discuss the realizations of 3D Bosons and
the operators in the algebra W by using affine Yangian of gl(1) and its representation on
3D Young diagrams. In section 5, we show the expressions of 3-Jack polynomials by the
vertex operators and the Pieri formulas.

2 Affine Yangian of gl(1)

In this section, we recall the definition of the affine Yangian of gl(1) as in papers [11–14]
first. Then we calculate some properties of affine Yangian which have relations with 3D
Bosons. The affine Yangian Y of gl(1) is an associative algebra with generators ej , fj and
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ψj , j = 0, 1, . . . and the following relations [13, 14]

[ψj , ψk] = 0, (2.1)
[ej+3, ek]− 3 [ej+2, ek+1] + 3 [ej+1, ek+2]− [ej , ek+3]

+σ2 [ej+1, ek]− σ2 [ej , ek+1]− σ3 {ej , ek} = 0, (2.2)
[fj+3, fk]− 3 [fj+2, fk+1] + 3 [fj+1, fk+2]− [fj , fk+3]

+σ2 [fj+1, fk]− σ2 [fj , fk+1] + σ3 {fj , fk} = 0, (2.3)
[ej , fk] = ψj+k, (2.4)

[ψj+3, ek]− 3 [ψj+2, ek+1] + 3 [ψj+1, ek+2]− [ψj , ek+3]
+σ2 [ψj+1, ek]− σ2 [ψj , ek+1]− σ3 {ψj , ek} = 0, (2.5)

[ψj+3, fk]− 3 [ψj+2, fk+1] + 3 [ψj+1, fk+2]− [ψj , fk+3]
+σ2 [ψj+1, fk]− σ2 [ψj , fk+1] + σ3 {ψj , fk} = 0, (2.6)

together with boundary conditions

[ψ0, ej ] = 0, [ψ1, ej ] = 0, [ψ2, ej ] = 2ej , (2.7)
[ψ0, fj ] = 0, [ψ1, fj ] = 0, [ψ2, fj ] = −2fj , (2.8)

and a generalization of Serre relations

Sym(j1,j2,j3) [ej1 , [ej2 , ej3+1]] = 0, (2.9)
Sym(j1,j2,j3) [fj1 , [fj2 , fj3+1]] = 0, (2.10)

where Sym is the complete symmetrization over all indicated indices which include 6 terms.
In this paper, we set ψ0 = 1 with no loss of generality.

The notations σ2, σ3 in the definition of affine Yangian are functions of three complex
numbers h1, h2 and h3:

σ1 = h1 + h2 + h3 = 0,
σ2 = h1h2 + h1h3 + h2h3,

σ3 = h1h2h3.

This affine Yangian has the representation on 3D Young diagrams or Plane partitions.
A plane partition π is a 2D Young diagram in the first quadrant of plane xOy filled with
non-negative integers that form nonincreasing rows and columns [9, 15]. The number in
the position (i, j) is denoted by πi,j  π1,1 π1,2 · · ·

π2,1 π2,2 · · ·
· · · · · · · · ·

 .
The integers πi,j satisfy

πi,j ≥ πi+1,j , πi,j ≥ πi,j+1, lim
i→∞

πi,j = lim
j→∞

πi,j = 0

– 4 –
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for all integers i, j ≥ 0. Piling πi,j cubes over position (i, j) gives a 3D Young diagram. 3D
Young diagrams arose naturally in the melting crystal model [9, 10]. We always identify
3D Young diagrams with plane partitions as explained above. For example, the 3D Young
diagram can also be denoted by the plane partition (1, 1).

As in our paper [16], we use the following notations. For a 3D Young diagram π, the
notation � ∈ π+ means that this box is not in π and can be added to π. Here “can be
added” means that when this box is added, it is still a 3D Young diagram. The notation
� ∈ π− means that this box is in π and can be removed from π. Here “can be removed”
means that when this box is removed, it is still a 3D Young diagram. For a box �, we let

h� = h1y� + h2x� + h3z�, (2.11)

where (x�, y�, z�) is the coordinate of box � in coordinate system O − xyz. Here we use
the order y�, x�, z� to match that in paper [13].

Following [13, 14], we introduce the generating functions:

e(u) =
∞∑
j=0

ej
uj+1 ,

f(u) =
∞∑
j=0

fj
uj+1 , (2.12)

ψ(u) = 1 + σ3

∞∑
j=0

ψj
uj+1 ,

where u is a parameter. Introduce

ψ0(u) = u+ σ3ψ0
u

(2.13)

and

ϕ(u) = (u+ h1)(u+ h2)(u+ h3)
(u− h1)(u− h2)(u− h3) . (2.14)

For a 3D Young diagram π, define ψπ(u) by

ψπ(u) = ψ0(u)
∏
�∈π

ϕ(u− h�). (2.15)

In the following, we recall the representation of the affine Yangian on 3D Young diagrams
as in paper [13] by making a slight change. The representation of affine Yangian on 3D
Young diagrams is given by

ψ(u)|π〉 = ψπ(u)|π〉, (2.16)

e(u)|π〉 =
∑
�∈π+

E(π → π +�)
u− h�

|π +�〉, (2.17)

f(u)|π〉 =
∑
�∈π−

F (π → π −�)
u− h�

|π −�〉 (2.18)

– 5 –
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where |π〉 means the state characterized by the 3D Young diagram π and the coefficients

E(π → π +�) = −F (π +�→ π) =
√

1
σ3

resu→h� ψπ(u) (2.19)

Equations (2.17) and (2.18) mean generators ej , fj acting on the 3D Young diagram π by

ej |π〉 =
∑
�∈π+

hj�E(π → π +�)|π +�〉, (2.20)

fj |π〉 =
∑

hj�F (π → π −�)|π −�〉. (2.21)

The triangular decomposition of affine Yangian Y is

Y = Y+ ⊕ B ⊕ Y− (2.22)

where Y+ is the subalgebra generated by generators ej with relations (2.2) and (2.9), B
is the commutative subalgebra with generators ψj , Y− is the subalgebra generated by
generators fj with relations (2.3) and (2.10).

Define the anti-automorphism ã by

ã(ej) = −fj (2.23)

The quadratic form on Y+|0〉 is defined by

B̃(x|0〉, y|0〉) = 〈0|ã(y)x|0〉 (2.24)

where x, y ∈ Y+. Note that the quadratic form here is different from the Shapovalov form
in [13]. For 3D Young diagrams π, π′ and let π = x|0〉, π′ = y|0〉 for x, y ∈ Y+, define the
orthogonality

〈π′, π〉 = 〈0|ã(y)x|0〉. (2.25)

As in paper [13], when n > 0, an,1 and a−n,1 are defined to be

an,1 := − 1
(n− 1)!ad

n−1
f1

f0, (2.26)

a−n,1 := 1
(n− 1)!ad

n−1
e1 e0. (2.27)

The set
{adn−1

e1 e0, n = 1, 2, 3, · · · }

is denoted by ♦. That the operator A commutes with ♦ means A commute with every
element in ♦.

Proposition 2.1. If the operator A commutes with ♦, so does [e1, A].

Proof. That A commutes with ♦ means [A, adn−1
e1 e0] = 0 for n = 1, 2, 3, · · · . By Jacobi

identity,
[[e1, A], adn−1

e1 e0] = −[[A, adn−1
e1 e0], e1]− [[adn−1

e1 e0, e1], A] = 0.

– 6 –
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Then we get the following result.

Proposition 2.2. If the operator A commutes with ♦, then we get that adn−1
e1 A for n =

1, 2, 3, · · · commute with ♦.

By similar calculation, we can get that if the operator B commutes with adn−1
e1 e0 and

adn−1
e1 A for n = 1, 2, 3, · · · , so do adn−1

e1 B for n = 1, 2, 3, · · · .

3 3D bosons

Introduce the space of all polynomials

C[p] = C[p1, p2,1, p2,2, p3,1, p3,2, p3,3, · · · ].

Every polynomial is a function of infinitely many variables

p = (p1, p2,1, p2,2, p3,1, p3,2, p3,3, · · · ),

but each polynomial itself is a finite sum of monomials, so involves only finitely many of
the variables.

Define the weight of pn,k to be n, and the weight of monomial pl1n1,k1
· · · plsns,ks to be

l1n1 + · · ·+ lsns, then the 3D Bosonic Fock space is written into

C[p] =
∞⊕
n=0

C[p]n (3.1)

where C[p]n is the space of polynomials of weight n, which is a subspace of C[p]. The basis
of C[p]0 is 1, the basis of C[p]1 is p1, the basis of C[p]2 is p2

1, p2,1, p2,2, the basis of C[p]3
is p3

1, p1p2,1, p1p2,2, p3,1, p3,2, p3,3, we can write the basis of every subspace C[p]n. By the
results in [17], we know that the elements in the basis of C[p]n is one to one correspondence
with 3D Young diagrams of total box number n. Then we have

∞∑
n=0

dim(C[p]n)qn =
∞∏
n=1

1
(1− qn)n (3.2)

where the notation dim(C[p]n) means the dimension of the vector space C[p]n.
Define the form 〈·, ·〉 on C[p] by 〈pn,j , pm,i〉 = 0 unless n = m, i = j. When i = j = 1,

〈pn,1, pm,1〉 equal 〈pn, pm〉 = nδn,m in the 2D Bosons and Schur functions. Define

〈pj,j , pj,j〉 = (−1)j−1j!
j−1∏
k=1

(k3 + k2σ2 + σ2
3) (3.3)

and
〈pn,j , pn,j〉 =

(
n+ j − 1
n− j

)
〈pj,j , pj,j〉. (3.4)

We give a remark: when j > 1, there is a factor (1+σ2 +σ2
3) in 〈pj,j , pj,j〉. This shows that

when h1 = 1, h2 = −1, 〈pj,j , pj,j〉 = 0 if j > 1. This result matches that Pn,j>1 become
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zero and 3-Jack polynomials become Schur functions when h1 = 1, h2 = −1 [11]. When

j = 1, equation (3.4) becomes 〈pn,1, pn,1〉 =
(

n

n− 1

)
〈p1, p1〉 = n.

Consider operators bn,k, where n ∈ Z, n 6= 0, and k ∈ Z, 0 < k ≤ |n|, with the
commutation relations

[bm,l, bn,k] = mδm+n,0δl,k〈pl,|m|, pl,|m|〉. (3.5)

The operators bn,k with the relations above are called 3D Bosons, and the algebra generated
by bn,k with relations (3.5) is called 3D Heisenberg algebra, which is denoted by B. Using
the commutation relations (3.5), we can see that any element in 3D Heisenberg algebra
can be expressed in a unique way as a linear combination of the following elements:

bα1
−m1,l1

· · · bαs−ms,lsb
β1
n1,k1

· · · bβtnt,kt
for

(−m1, l1) < · · · < (−ms, ls), (n1, k1) < · · · < (nt, kt), αi, βi = 1, 2, · · · ,

where the notation (m, l) < (n, k) means m < n or m = n, l < k.
Define a linear map ρ : B→ End(C[p]) by

ρ(b−n,k) = pn,k, ρ(bn,k) = 〈pn,k, pn,k〉n
∂

∂pn,k
, (3.6)

for n > 0, which gives a representation of the Heisenberg algebra B on polynomial space
C[p]. The representation space C[p] is called the 3D Bosonic Fock space. We call the
operators bn,k annihilation operators and b−n,k creation operators for n > 0. From the
commutation relations (3.5), it is easy to find that all the creation operators commute
among themselves, so do all the annihilation operators. The element 1 ∈ C[p] is called the
vacuum state. Every annihilation operators kill the vacuum state, that is, n ∂

∂pn,k
1 = 0.

The 3D Bosonic Fock space is generated by the vacuum state:

C[p] = B · 1 := {b · 1|b ∈ B}. (3.7)

We give a remark to explain why we use “3D” in the 3D Boson and 3D Heisenberg
algebra. 3D is used to distinguish 3D Boson and ordinary Boson, 3D Heisenberg algebra
and ordinary Heisenberg algebra. Similar to that the ordinary Bosonic Fock space is
isomorphic to the space of 2D Young diagrams, the 3D Bosonic Fock space is isomorphic
to the space of 3D Young diagrams, this is the reason we use the notation 3D.

Since the 3D Bosons bn,k≥2 can not be represented by the generators of affine Yangian
of gl(1), instead in the following, we consider the algebra W with the generators an,k,
(n ∈ Z, n 6= 0, and k ∈ Z, 0 < k ≤ |n|). We let an,1 = bn,1, (n ∈ Z, n 6= 0) and a−2,2 = b−2,2,
other relations of an,j and bn,j have not been found. We think that the 3D Heisenberg
algebra {bn,j} and the algebra W can be represented by each other, we will discuss these
next if we can obtain the results. In the following of this paper, we discuss the algebra W
instead of the 3D Heisenberg algebra {bn,j}. The commutation relations in W are

[an,1, am,1] = nδn+m,0c1 = ψ0nδn+m,0, (3.8)
[an,1, am,j ] = 0, when j > 1, (3.9)

– 8 –
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and when j > 1, k > 1,

[am,j , an,k] =
∑

0≤l≤j+k−2
j+k−leven

j!k!
l! C

l
jkN

l
jk(m,n)am+n,l, (3.10)

where the coefficients N l
jk(m,n) are

N0
jk(m,n) =

(
m+ j − 1
j + k − 1

)
δm+n,0, (3.11)

N l
jk(m,n) = cljk(m,n)

j+k−l−1∑
s=0

(−1)s

(j + k − l − 1)!(2l)j+k−l−1

(
j + k − l − 1

s

)
×[j +m− 1]j+k−l−1−s[j −m− 1]s[k + n− 1]s[k − n− 1]j+k−l−1−s,

with cljk(m,n) are the functions of σ2 and σ3, and the structure constants C ljk are

C0
jk = (j − 1)!2(2j − 1)!

4j−1(2j − 1)!!(2j − 3)!!δjkcj , (3.12)

C ljk = 1
2× 4j+k−l−2 (2l)j+k−l−1 × 4F3

(
1
2 ,

1
2 ,−

1
2(j + k − l − 2),−1

2(j + k − l − 1)
3
2 − j,

3
2 − k,

1
2 + l

; 1
)
,

with

(a)n = a(a+ 1) · · · (a+ n− 1), (3.13)
[a]n = a(a− 1) · · · (a− n+ 1), (3.14)

mFn

(
a1, · · · , am
b1, · · · , bn

; z
)

=
∞∑
k=0

(a1)k · · · (am)k
(b1)k · · · (bn)k

zk

k! . (3.15)

We give a remark here to explain the central charges cj . The central charge c1 of an,1 is ψ0,
we always take ψ0 = 1 without loss the symmetry of affine Yangian of gl(1) about three
coordinate axes. The central charge cj of an,j is dependent on j. The first few of them are

c2 = −2(1 + σ2 + σ2
3),

c3 = 6(1 + σ2 + σ2
3)(8 + 4σ2 + σ2

3),

c4 = −144(1 + σ2 + σ2
3)(8 + 4σ2 + σ2

3)(27 + 9σ2 + σ2
3)(−1 + σ2 + σ2

3)
(−17 + 5σ2 + 5σ2

3)
.

Define
κ(n) = −(n+ h1h2)(n+ h1h3)(n+ h2h3) = −(n3 + n2σ2 + σ2

3),

then
c2 = 2κ(1), c3 = 6κ(1)κ(2),

and
c4 = 144κ(1)κ(2)κ(3)κ(−1)

5κ(1) + 22 .

– 9 –
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For n > 0, define Pn,j be the representation of a−n,j on the vacuum state of the space
of 3D Young diagrams, that is, Pn,j = an,j |0〉, then the 3-Jack polynomials as vectors in
the representation space are functions of Pn,j . Note that the set {Pn,j} are related with
{pn,j}. For example, Pn,1 = pn,1 and P2,2 = p2,2. The central charges c2 and c3 match
〈P2,2, P2,2〉 and 〈P3,3, P3,3〉 in [11] respectively, and c4 matches 〈P4,4, P4,4〉 in [18]. Here we
choose P4,4 = −→E 13|0〉, where

−→
E 13|0〉 is defined in [18]:

−→
E 13|0〉=−

72(2σ2
3 +3σ2−3)

5σ2
3 +5σ2−17

e0e0e0e0|0〉−
36σ3(3σ2

3 +7σ2 +5)
5σ2

3 +5σ2−17
e0e0e1e0|0〉

+144(2σ2
3 +3σ2−3)

5σ2
3 +5σ2−17

e0e0e2e0|0〉+
6
5

5σ4
3 +40σ2σ

2
3 +301σ2

3−25σ2
2 +295σ2 +150

5σ2
3 +5σ2−17

e0e1e1e0|0〉

+12σ3(σ2
3−11σ2−49)

5σ2
3 +5σ2−17

e0e1e2e0|0〉−
6(σ2

3−11σ2−49)
5σ2

3 +5σ2−17
e0e2e2e0|0〉

−18
5

5σ4
3 +30σ2σ

2
3 +77σ2

3 +5σ2
2 +25σ2 +30

5σ2
3 +5σ2−17

e1e0e1e0|0〉+
48σ3(σ2

3 +4σ2 +8)
5σ2

3 +5σ2−17
e1e0e2e0|0〉

−1
5
σ3(5σ4

3 +40σ2σ
2
3 +15σ2

3 +35σ2
2−111σ2−200)

5σ2
3 +5σ2−17

e1e1e1e0|0〉

+6σ
4
3 +5σ2σ

2
3 +2σ2

3 +4σ2
2−σ2 +9

5σ2
3 +5σ2−17

e1e1e2e0|0〉−
18(3σ2

3 +7σ2 +5)
5σ2

3 +5σ2−17
e2e0e2e0|0〉

−6
5σ3e2e1e2e0|0〉+e2e2e2e0|0〉,

which is a vector in the 3D Young diagram representation space of affine Yangian of gl(1).
Note that the algebra W is closely related to the W1+∞ algebra or W∞ algebra.

4 3D bosons in affine Yangian of gl(1)

We denote [ei, ej ] by ei,j . We have the recurrence relation: when j + k = 2n in (2.2),

en+2,n+1 = 1
2n+ 3(e2n+3,0 + σ2

n∑
j=0

(j + 1)e2n+1−j,j

−σ3

n−1∑
j=0

(1 + 2 + · · ·+ (j + 1)){e2n−j , ej}

−(1 + 2 + · · ·+ (n+ 1)σ3enen)),

the right hand side is denoted by N, then

en+3+i,n−i = (2i+ 3)N+ (−σ2)
i∑

j=0
(j + 1)en+1+i−j,n−i+j

+σ3

i−1∑
j=0

(1 + 2 + · · ·+ (j + 1)){en+i−j , en−i+j}

+(1 + 2 + · · ·+ (i+ 1)σ3enen))
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where i = 0, 1, · · · , n− 1. When j + k = 2n+ 1 in (2.2),

en+3,n+1 = 1
n+ 2(e2n+4,0 + σ2

n∑
j=0

(j + 1)e2n+2−j,j

−σ3

n∑
j=0

(1 + 2 + · · ·+ (j + 1)){e2n+1−j , ej},

the right hand side is denoted by H, then

en+4+i,n−i = (i+ 2)H+ (−σ2)
i∑

j=0
(j + 1)en+2+i−j,n−i+j

+σ3

i∑
j=0

(1 + 2 + · · ·+ (j + 1)){en+1+i−j , en−i+j},

where i = 0, 1, · · · , n− 1.
We rewrite the recurrence relation in the matrix form

Proposition 4.1. When j + k = 2n in (2.2),

e2n+2,1
e2n+1,2
e2n,3
· · ·

en+3,n
en+2,n+1


= −σ2(A−1

n+1(In+1−Jn+1))
ĵ1



e2n,1
e2n−1,2
e2n−2,3
· · ·

en+2,n−1
en+1,n


+σ3(A−1

n+1) ̂j1,jn+1



e2n−1,1
e2n−2,2
e2n−3,3
· · ·

en+2,n−2
en+1,n−1



+e2n+3,0 +σ2e2n+1,0−σ3e2n,0
2n+3



2n+1
2n−1
· · ·
5
3
1


+2σ3A

−1
n+1



e0e2n
e1e2n−1
e2e2n−2
· · ·

en−1en+1
1
2enen


(4.1)

where

A−1
n+1 = − 1

2n+ 1


2n+ 1
· · ·
5
3
1


(

1 3 6 · · · (n+1)(n+2)
2

)
+



0 1 3 6 · · · n(n+1)
2

0 0 1 3 · · · n(n−1)
2

0 0 0 1 · · · (n−2)(n−1)
2

· · ·
0 0 0 0 · · · 0


, (4.2)

the matrix In+1 = (δi,j)1≤i,j≤n+1 is the (n + 1) identity matrix, Jn+1 = (δi+1,j)1≤i,j≤n+1,
and the notation ĵ1 in the subscript means removing the first column of the matrix, the
notation ̂j1, jn+1 means removing the first column and the (n+ 1)th column of the matrix.
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When j + k = 2n+ 1 in (2.2),

e2n+3,1
e2n+2,2
e2n+1,3
· · ·

en+4,n
en+3,n+1


= −σ2(B−1

n+1(In+1 − Jn+1))
ĵ1



e2n,1
e2n−1,2
e2n−2,3
· · ·

en+2,n−1
en+1,n


+ σ3(B−1

n+1)
ĵ1



e2n−1,1
e2n−2,2
e2n−3,3
· · ·

en+2,n−2
en+1,n−1



+e2n+4,0 + σ2e2n+2,0 − σ3e2n+1,0
n+ 2



n+ 1
n

· · ·
3
2
1


+ 2σ3B

−1
n+1



e0e2n+1
e1e2n
e2e2n−1
· · ·

en−1en+2
enen+1


, (4.3)

where

B−1
n+1 = − 1

n+ 2


n+ 1
· · ·
3
2
1


(

1 3 6 · · · (n+1)(n+2)
2

)
+



0 1 3 6 · · · n(n+1)
2

0 0 1 3 · · · n(n−1)
2

0 0 0 1 · · · (n−2)(n−1)
2

· · ·
0 0 0 0 · · · 0


. (4.4)

Note that

An+1 =



−3 3 −1 0 0 0 · · · 0 0 0 0
1 −3 3 −1 0 0 · · · 0 0 0 0
0 1 −3 3 −1 0 · · · 0 0 0 0
0 0 1 −3 3 −1 · · · 0 0 0 0
· · ·
0 0 0 0 0 0 · · · 1 −3 3 −1
0 0 0 0 0 0 · · · 0 1 −3 4
0 0 0 0 0 0 · · · 0 0 1 3


(n+1)×(n+1)

(4.5)

and

Bn+1 =



−3 3 −1 0 0 0 · · · 0 0 0 0
1 −3 3 −1 0 0 · · · 0 0 0 0
0 1 −3 3 −1 0 · · · 0 0 0 0
0 0 1 −3 3 −1 · · · 0 0 0 0
· · ·
0 0 0 0 0 0 · · · 1 −3 3 −1
0 0 0 0 0 0 · · · 0 1 −3 3
0 0 0 0 0 0 · · · 0 0 1 −2


(n+1)×(n+1)

(4.6)

We can see that the numbers in every row are the coefficients in the relation (2.2).
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Corollary 4.2. Every vector in the vector space spanned by eiej for i, j = 0, 1, 2, · · · , where
ei are the generators of affine Yangian, can be represented as the linear combination of

en,0, emen (m ≤ n) (4.7)

for m,n = 0, 1, 2, · · · .

Suppose the vector ∑
n≥0

dnen,0 +
∑
m≤n

bmnemen

with the coefficients dn, bmn, be commutative with Bosons an,1, we only find the zero
coefficients, that is, dn = 0 and bmn=0. But we found the vector

[e2, e0]− σ3[e1, e0]− e2
0 − 2

∞∑
n=1

a−(n+2),1an,1 (4.8)

commute with Bosons an,1, which is denoted by a−2,2. The communication [a−2,2, a−n,1] =
0, n > 0 holds since

[[e2, e0]− σ3[e1, e0], a−n,1] = 2na−(n+2),1,[ ∞∑
m=1

a−(m+2),1am,1, a−n,1

]
= na−(n+2),1.

The communication [a−2,2, an,1] = 0, n > 0 holds since

[[e2, e0]− σ3[e1, e0], a−n,1] = −2na(n−2),1,[ ∞∑
m=1

a−(m+2),1am,1, an,1

]
= −na(n−2),1.

For n ≥ 2, define

a−(n+1),2 = 1
(n− 1)!ad

n−1
e1 ([e2, e0]− σ3[e1, e0])−

∑
i+j=−(n+1)

: ai,1aj,1 : . (4.9)

Similarly, define

an+1,2 = − 1
(n− 1)!ad

n−1
f1

([f2, f0]− σ3[f1, f0])−
∑

i+j=(n+1)
: ai,1aj,1 : . (4.10)

We denote the first term in an,2 by 2Ln, and the second term by 2L̄n. Then we have that
Ln and L̄n separately satisfy the Virasoro relations, that is,

[Lm, Ln] = (m− n)Lm+n + m3 −m
12 δm+n,0(−σ2 − σ2

3), (4.11)

and
[L̄m, L̄n] = (m− n)L̄m+n + m3 −m

12 δm+n,0. (4.12)

By calculation, we can prove the following relations hold
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Proposition 4.3. For n ≥ 2,

1
n− 1e1L̄−n|0〉 = L̄−(n+1)|0〉. (4.13)

This result means

Proposition 4.4. For n ≥ 2,

a−n,2|0〉 = Pn,2 = 1
(n− 2)! e1 · · · e1︸ ︷︷ ︸

n−2

a−2,2|0〉. (4.14)

Note that
P2,2 = (e2e0 − σ3e1e0 − e0e0)|0〉,

which equals
√

(1 + h1h2)(1 + h1h3)(1 + h2h3)P2,2 in [11], and

P3,2 = e1(e2e0 − σ3e1e0 − e0e0)|0〉 = 1
2(e2 − 2σ3e1 − 4e0)e1e0|0〉

which equals 2
√

(1 + h1h2)(1 + h1h3)(1 + h2h3)P3,2 in [11].
From (2.7) and (2.8), we have

[ψ2, an,1] = −2nan,1 (4.15)

for any n. Then we have

Lemma 4.5. For any n 6= 0,
[e1, an,1] = −nan−1,1. (4.16)

Proof. When n < 0, it holds clearly. When n > 0, it can be proved by induction.

Proposition 4.6. For n ≥ 1,

1
(n− 1) [e1, L̄−n] = L̄−(n+1). (4.17)

Proof. Since the relation (4.13) hold, we only need to prove

1
(n− 1) [e1, (L̄−n)+] = (L̄−(n+1))+,

where (L̄−n)+ include all terms which have annihilation operators in L̄−n, that is,

(L̄−n)+ =
∑
k≥1

a−(n+k)ak.

Then

[e1, (L̄−n)+] =
∑
k≥1

([e1, a−(n+k)]ak + a−(n+k)[e1, ak])

= (n− 1)
∑
k≥1

a−(n+k+1)ak = (n− 1)(L̄−(n+1))+,

which means the result holds.
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Note that here
e1 = L−1 6= L̄−1.

Proposition 4.7. For n ≥ 2,

a−n,2 = 1
(n− 2)!ad

n−2
e1 a−2,2. (4.18)

In the representation on 3D Young diagrams,

Pn,2 = 1
(n− 2)!ad

n−2
e1 P2,2. (4.19)

Similarly to the creation operators, the annihilation operators satisfy the following
relations.

Proposition 4.8.
[f1, an,1] = nan+1,1, for n 6= 0, (4.20)

and
an,2 = 1

(n− 2)!ad
n−2
f1

a2,2, (4.21)

with
a2,2 = −[f2, f0] + σ3[f1, f0]− f2

0 − 2
∞∑
n=1

a−nan+2. (4.22)

Acting on the vacuum state of the dual space of the space spanned by 3D Young
diagrams, the representation of an,2 is denoted by P⊥n,2,

〈0|P⊥2,2 = 〈0|a2,2 = 〈0|(f0f2 − σ2f0f1 − f1f0),

which equals the dual state of P2,2|0〉 = (e2e0 − σ3e1e0 − e0e0)|0〉. We have know that [11]

〈0|P⊥2,2P2,2|0〉 = 〈0|(f0f2 − σ2f0f1 − f1f0)(e2e0 − σ3e1e0 − e0e0)|0〉
= −2(1 + σ2 + σ2

3).

Since
f1P2,2|0〉 = 0,

we have

〈0|(f0f2 − σ2f0f1 − f1f0) f1 · · · f1︸ ︷︷ ︸
n+1

e1 · · · e1︸ ︷︷ ︸
n+1

(e2e0 − σ3e1e0 − e0e0)|0〉

= 〈0|(f0f2 − σ2f0f1 − f1f0) f1 · · · f1︸ ︷︷ ︸
n

f1e1 e1 · · · e1︸ ︷︷ ︸
n

(e2e0 − σ3e1e0 − e0e0)|0〉

= 〈0|(f0f2 − σ2f0f1 − f1f0) f1 · · · f1︸ ︷︷ ︸
n

e1f1 e1 · · · e1︸ ︷︷ ︸
n

(e2e0 − σ3e1e0 − e0e0)|0〉

−2(n+ 2)〈0|(f0f2 − σ2f0f1 − f1f0) f1 · · · f1︸ ︷︷ ︸
n

e1 · · · e1︸ ︷︷ ︸
n

(e2e0 − σ3e1e0 − e0e0)|0〉

= −(n+ 4)(n+ 1)〈0|(f0f2 − σ2f0f1 − f1f0) f1 · · · f1︸ ︷︷ ︸
n

e1 · · · e1︸ ︷︷ ︸
n

(e2e0 − σ3e1e0 − e0e0)|0〉.
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From
〈0|an,2 = (−1)n

(n− 2)!〈0|a2,2 f1 · · · f1︸ ︷︷ ︸
n−2

,

we have
〈0|an,2a−n,2|0〉 = n+ 1

n− 2〈0|an−1,2a−(n−1),2|0〉. (4.23)

Then

〈0|an,2a−n,2|0〉 = −2
(
n+ 1
n− 2

)
(1 + σ2 + σ2

3). (4.24)

Since
L2 = −1

2 ([f2, f0]− σ3[f1, f0]) , L−2 = 1
2 ([e2, e0]− σ3[e1, e0]) ,

we have
[L2, an,1] = −nan+2,1, [L−2, an,1] = −nan−2,1.

Then

[L2, L̄−2] = 1
2[L2, a

2
−1,1 + 2

∞∑
n=1

a−(n+2),1an,1]

= 1
2(a1,1a−1,1 + a−1,1a1,1) +

∞∑
n=1

(
(n+ 2)a−n,1an,1 − na−(n+2),1an+2,1

)
= 1

2 + 4L̄0.

Similarly, [L̄2, L−2] = 1
2 + 4L̄0. Therefore,

[a2,2, a−2,2] = 8a0,2 − 2(1 + σ2 + σ2
3), (4.25)

where

a0,2 = ψ2 −
∞∑
j=1

a−jaj .

This commutation relation (4.25) is the same with that in (3.10). Other relations
[an,2, a−n,2] can be calculate this way. By (4.25), we have

〈Pn+1
2,2 , Pn+1

2,2 〉 = (n+ 1)
(
−2(1 + σ2 + σ2

3) + 16n
)
〈Pn2,2, Pn2,2〉. (4.26)

Then

〈Pn2,2, Pn2,2〉 = n!
n∏
j=1

(
−2(1 + σ2 + σ2

3) + 16(j − 1)
)
. (4.27)

For n ≥ j, we also have

〈Pn,j , Pn,j〉 =
(
n+ j − 1
n− j

)
〈Pj,j , Pj,j〉. (4.28)

This equation can be obtained by the similar calculation to get equation (4.23).
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5 3-Jack polynomials

In this section, we want to obtain the expression of 3-Jack polynomials J̃π for any 3D
Young diagram π. It is known that Schur functions Sλ can be determined by

e
∑∞

n=1
pn
n
zn =

∑
n≥0

Snz
n, (5.1)

Sλ = det(Sλi−i+j)1≤i,j≤l (5.2)

for λ = (λ1, λ2, · · · , λ2). The formula (5.2) is equivalent to the Pieri formula SnSλ =∑
µC

µ
n,λSµ, where the Pieri formula can be found in [2]. Here we treat 2D Young diagrams

λ as the special 3D Young diagrams which have one layer in z-axis direction. For 3-Jack
polynomials, we need to know the formula for J̃λ similar to (5.1), and the formula J̃λJ̃π
similar to the Pieri formula SnSλ.

In [11], we have obtain that

J̃ = 1
(h1 − h2)(h1 − h3)

(
(1 + h2h3)P 2

1 + (1 + h2h3)h1P2,1 + P2,2
)
, (5.3)

J̃ = 1
(h2 − h1)(h2 − h3)

(
(1 + h1h3)P 2

1 + (1 + h1h3)h2P2,1 + P2,2
)
, (5.4)

J̃ = 1
(h3 − h1)(h3 − h2)

(
(1 + h1h2)P 2

1 + (1 + h1h2)h3P2,1 + P2,2
)
. (5.5)

Note that here P2,2 equals
√

1 + σ2 + σ2
3P2,2 in [11] since in this paper we want

〈P2,2, P2,2〉 = −2(1 + σ2 + σ2
3).

Similarly, we let P3,2 here equal 2
√

1 + σ2 + σ2
3P3,2, since we want P3,2 = e1P2,2, which

means
〈P3,2, P3,2〉 = −8(1 + σ2 + σ2

3).

We can see that they are symmetric about three coordinate axes, which means that
exchanging ↔ corresponds to exchanging h1 ↔ h2, others are similar. We asso-
ciate h1 to y-axis, h2 to x-axis, h3 to z-axis to match the results in [13]. We want this
symmetry holds for all 3-Jack polynomials.

We want that 3-Jack polynomials J̃π behave the same with 3D Young diagrams π in
the representation of affine Yangian of gl(1). For example,

〈J̃π, J̃π′〉 = 〈π, π′〉 (5.6)

In [11], we show that the 3-Jack polynomials become Jack polynomials defined on 2D
Young diagrams when h1 =

√
α, h2 = −1/

√
α. In [11], 3-Jack polynomials are obtained

under the condition ψ0 = 1 which does not lose the generality. In fact, if we calculate
the 3-Jack polynomials for general ψ0, the 3-Jack polynomials will become the symmetric
functions Yλ when ψ0 = − 1

h1h2
, where Yλ are defined by us in [19, 20]. Therefore, 3-Jack

polynomials are the generalization of the symmetric functions Yλ to 3D Young diagrams,
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they are also the generalization of Jack polynomials. Different from our previous work, in
this paper, we show that 3-Jack polynomials become Yλ under the following conditions.
We see that when

P2,2 = −(1 + h1h2)(P 2
1 + h3P2,1), (5.7)

the 3-Jack polynomials of two boxes become

J̃ = 1
h1 − h2

(
P2,1 − h2P

2
1

)
= Y , (5.8)

J̃ = 1
h2 − h1

(
P2,1 − h1P

2
1

)
= Y , (5.9)

J̃ = 0. (5.10)

Generally, we take

Pn,2 = −2(1 + h1h2)(P1Pn−1,1 + h3Pn,1), for n > 2. (5.11)

For j = 3, we take

P3,3 = (1 + h1h2)(2 + h1h2)(2P 3
1 + 3h3P1P2,1 + h2

3P3,1), (5.12)
Pn,3 = 3(1 + h1h2)(2 + h1h2)(2P 2

1Pn−2,1 + 3h3P1Pn−1,1 + h2
3Pn,1), for n > 3.

For general j, let

(1 + x)(2 + x) · · · (j − 1 + x) = r0 + r1x+ · · ·+ rj−1x
j−1

with the coefficients r0 = (j − 1)!, r1, · · · , rn−2, rj−1 = 1, we take

Pj,j = (−1)j−1
j−1∏
k=1

(k+h1h2)(r0P
j
1 +r1h3P

j−2
1 P2,1 + · · ·+rn−1h

j−1
3 Pj,1), (5.13)

Pn,j = (−1)j−1j
j−1∏
k=1

(k+h1h2)(r0P
j−1
1 Pn−j+1,1 +r1h3P

j−2
1 Pn−j+2,1 + · · ·+rj−1h

j−1
3 Pn,1),

for n > j.

We require the 3-Jack polynomials become the symmetric functions Yλ under these condi-
tions.

For n ≥ j, define

ξy(P, z) =
∞∑

n,j=1

Pn,j

j!
(
n+ j − 1
n− j

) dn,j
hj1

j−1∏
k=1

1
k + h2h3

zn, (5.14)

with

dn,j =

1 if n = j,

j if n > j.
(5.15)
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The 3D Young diagram of n boxes along y-axis is denoted by (1, 1, · · · , 1)︸ ︷︷ ︸
n

. For example,

when n = 2, (1, 1) is . The 3-Jack polynomials J̃(1, · · · , 1)︸ ︷︷ ︸
n

is determined by

eξy(P,z) =
∑
n≥0

1
〈J̃(1, · · · , 1)︸ ︷︷ ︸

n

, J̃(1, · · · , 1)︸ ︷︷ ︸
n

〉hn1
J̃(1, · · · , 1)︸ ︷︷ ︸

n

(P )zn. (5.16)

Note that when Pn,j>1 = 0, the vertex operator above becomes that for the symmetric
functions Y(n) [21]. When Pn,j>1 = 0 and h1 =

√
α, h2 = −1/

√
α, the vertex operator

above becomes that for the 2D Jack polynomials J̃(n) [22]. When Pn,j>1 = 0 and h1 =
−1, h2 = −1, the vertex operator above becomes that for the Schur functions S(n) [2, 4].

We list the first few terms of J̃(1, · · · , 1)︸ ︷︷ ︸
n

(P ):

J̃0 = 1,
1

〈J̃ , J̃ 〉h1
J̃ = 1

h1
P1,

1
〈J̃ , J̃ 〉h2

1
J̃ = 1

2(1+h2h3)h2
1

(
(1+h2h3)P 2

1 +(1+h2h3)h1P2,1 +P2,2
)
,

1
〈J̃(1,1,1), J̃(1,1,1)〉h3

1
J̃(1,1,1) = 1

6h3
1
P 3

1 + 1
2h2

1
P1P2,1 + 1

2h3
1(1+h2h3)

P1P2,2 + 1
3h1

P3,1

+ 1
4h2

1 (h2h3 +1)
P3,2 + 1

6(h2h3 +1)(h2h3 +2)h3
1
P3,3,

1
〈J̃(1,1,1,1), J̃(1,1,1,1)〉h3

1
J̃(1,1,1,1) = 1

24h4
1
P 4

1 + 1
4h3

1
P 2

1P2,1 + 1
4h4

1(1+h2h3)
P 2

1P2,2 + 1
3h2

1
P1P3,1

+ 1
4h3

1 (h2h3 +1)
P1P3,2 + 1

6(h2h3 +1)(h2h3 +2)h4
1
P1P3,3

+ 1
4h1

P4,1 + 1
10h2

1(1+h2h3)
P4,2 + 1

12(h2h3 +1)(h2h3 +2)h3
1
P4,3

+ 1
24(h2h3 +3)(h2h3 +2)(h2h3 +1)h1

4P4,4

+ 1
4(1+h2h3)h3

1
P2,1P2,2 + 1

8h2
1
P 2

2,1 + 1
8(1+h2h3)2h4

1
P 2

2,2.

Since

〈J̃(1, · · · , 1)︸ ︷︷ ︸
n+1

, J̃(1, · · · , 1)︸ ︷︷ ︸
n+1

〉 =
n∏
j=1

(j + 1)(j + h2h3)
(jh1 − h2)(jh1 − h3) ,
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we have

J̃ = P1,

J̃ = 1
(h1 − h2)(h1 − h3)

(
(1 + h2h3)P 2

1 + (1 + h2h3)h1P2,1 + P2,2
)
,

J̃(1,1,1) = 1
(h1 − h2)(h1 − h3)(2h1 − h2)(2h1 − h3)

(
(1 + h2h3)(2 + h2h3)P 3

1

+3h1(1 + h2h3)(2 + h2h3)P1P2,1 + 3(2 + h2h3)P1P2,2

+2h2
1(1 + h2h3)(2 + h2h3)P3,1 + 3h1(1 + 1

2h2h3)P3,2 +P3,3) ,

which are the same with that in [11].

J̃(1,1,1,1) = 1
(h1−h2)(h1−h3)(2h1−h2)(2h1−h3)(3h1−h2)(3h1−h3)
×
(
(1+h2h3)(2+h2h3)(3+h2h3)P 4

1 +6h1(1+h2h3)(2+h2h3)(3+h2h3)P 2
1P2,1

+6h1(2+h2h3)(3+h2h3)P2,1P2,2 +6(2+h2h3)(3+h2h3)P 2
1P2,2

+8(1+h2h3)(2+h2h3)(3+h2h3)h2
1P1P3,1 +6(2+h2h3)(3+h2h3)h1P1P3,2

+4(3+h2h3)P1P3,3 +6(1+h2h3)(2+h2h3)(3+h2h3)h3
1P4,1

+12
5 (2+h2h3)(3+h2h3)h2

1P4,2 +2(3+h2h3)h1P4,3 +P4,4

+3(2+h2h3)(3+h2h3)
(1+h2h3) P 2

2,2 +3(1+h2h3)(2+h2h3)(3+h2h3)h2
1P

2
2,1 ) .

This expression is slightly different from that in [18] since here we choose

P 2
2,2|0〉 = (e2e0e2e0 + 2σ3e0e1e2e0 − 2σ2e1e0e2e0|0〉 −

2
3σ3e1e1e1e0 − 2e0e0e2e0

−(2 + σ2
3)e0e1e1e0 − e0e2e2e0 + σ2

3e1e0e1e0 + 2σ3e0e0e1e0 + e0e0e0e0)|0〉,

which equals a2
−2,2|0〉.

For n ≥ j, define

ξx(P, z) =
∞∑

n,j=1

Pn,j

j!
(
n+ j − 1
n− j

) dn,j
hj2

j−1∏
k=1

1
k + h1h3

zn, (5.17)

ξz(P, z) =
∞∑

n,j=1

Pn,j

j!
(
n+ j − 1
n− j

) dn,j
hj3

j−1∏
k=1

1
k + h1h2

zn. (5.18)

The 3D Young diagram of n boxes along x-axis and z-axis are denoted by

 1
· · ·
1

 and (n)

respectively. For example, when n = 2,
(

1
1

)
is , and (2) is . The 3-Jack polynomials
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J̃ 1
· · ·
1


and J̃(n) are determined by

eξx(P,z) =
∑
n≥0

1
〈J̃ 1
· · ·
1


, J̃ 1
· · ·
1


〉hn2

J̃ 1
· · ·
1


(P )zn (5.19)

and
eξz(P,z) =

∑
n≥0

1
〈J̃(n), J̃(n)〉hn3

J̃(n)(P )zn (5.20)

respectively. We can see that they are symmetric about the three coordinate axes.
For 2D Young diagrams λ, which are treated as 3D Young diagrams which have one

layer in z-axis direction, we define 3-Jack polynomials J̃λ in the following. Let

Pn,1 = 1
h1

(zn1 + zn2 + · · · ) = 1
h1

∞∑
k=1

znk , (5.21)

then Pn,j in (5.13) equal

Pj,j = (−1)j−1
j−1∏
k=1

(k+h1h2)(k+h1h3) 1
hj1

(∑
k

zjk

+
r0C

1
j +r1h1h3C

1
j−2+r2h

2
1h

2
3C

1
j−3+···+rj−2h

j−2
1 hj−2

3 C1
1∏j−1

k=1(k+h1h3)

∑
k,l

zj−1
k zl

+
r0C

2
j +r1h1h3(C2

j−2+C0
j−2)+r2h

2
1h

2
3C

2
j−3+···+rj−3h

j−3
1 hj−3

3 C2
2∏j−1

k=1(k+h1h3)

∑
k 6=l

zj−2
k z2

l

+
r0C

1
jC

1
j−1+r1h1h3(C1

j−2C
1
j−3+C0

j−2)+r2h
2
1h

2
3C

1
j−3C

1
j−4+···+rj−3h

j−3
1 hj−3

3 C1
2C

1
1∏j−1

k=1(k+h1h3)

·
∑

k1,k2,k3

zj−2
k1

zk2zk3 +···+r0C
1
jC

1
j−1 ···C1

1
∑

k1<···<kj

zk1zk2 ···zkj

)
,

and when n > j,

Pn,j = (−1)j−1j
j−1∏
k=1

(k+h1h2)(k+h1h3) 1
hj1

(∑
k

znk +
∑j−2
k=0 rkh

k
1h

k
3C

1
j−k−1∏j−1

k=1(k+h1h3)

∑
k,l

zn−1
k zl

+
∑j−3
k=0 rkh

k
1h

k
3C

2
j−k−1 +r0δn−j,1∏j−1

k=1(k+h1h3)

∑
k 6=l

zn−2
k z2

l

+
∑j−3
k=0 rkh

k
1h

k
3C

1
j−k−1C

1
j−k−2∏j−1

k=1(k+h1h3)

∑
k1,k2,k3

zn−2
k1

zk2zk3 + · · ·

+r0C
1
j−1C

1
j−2 · · ·C1

1
∑

k1,··· ,kj+1

zn−j+1
k1

zk2 · · ·zkj+1

)
,
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where

Ckj =
(
j

k

)
= j!
k!(j − k)! .

Define ξyx,j,j and ξyx,n,j by

ξyx,j,j = Pj,j

j!hj1

r0C
1
j+r1h1h3C

1
j−2+r2h

2
1h

2
3C

1
j−3+···+rj−2h

j−2
1 hj−2

3 C1
1∏j−1

k=1(k+h1h3)

∑
k,l

zj−1
k zl

+
r0C

2
j+r1h1h3(C2

j−2+C0
j−2)+r2h

2
1h

2
3C

2
j−3+···+rj−3h

j−3
1 hj−3

3 C2
2∏j−1

k=1(k+h1h3)

∑
k 6=l
zj−2
k z2

l

+
r0C

1
jC

1
j−1+r1h1h3(C1

j−2C
1
j−3+C0

j−2)+r2h
2
1h

2
3C

1
j−3C

1
j−4+···+rj−3h

j−3
1 hj−3

3 C1
2C

1
1∏j−1

k=1(k+h1h3)

·
∑

k1,k2,k3

zj−2
k1

zk2zk3+···+r0C
1
jC

1
j−1···C1

1
∑

k1<···<kj

zk1zk2 ···zkj

, (5.22)

and for n > j,

ξyx,n,j = Pn,j

j!Cn−jn+j−1h
j
1

∑j−2
k=0 rkh

k
1h

k
3C

1
j−k−1∏j−1

k=1(k + h1h3)

∑
k,l

zn−1
k zl

+
∑j−3
k=0 rkh

k
1h

k
3C

2
j−k−1 + r0δn−j,1∏j−1

k=1(k + h1h3)

∑
k 6=l

zn−2
k z2

l

+
∑j−3
k=0 rkh

k
1h

k
3C

1
j−k−1C

1
j−k−2∏j−1

k=1(k + h1h3)

∑
k1,k2,k3

zn−2
k1

zk2zk3 + · · ·

+ r0C
1
j−1C

1
j−2 · · ·C1

1
∑

k1,··· ,kj+1

zn−j+1
k1

zk2 · · · zkj+1

 . (5.23)

Define

Tyx(P, z) =
∞∑
k=1

ξy(P, zk) +
∑
j≥2

ξyx,j,j +
∑

n>j≥2
ξyx,n,j , (5.24)

and let

eTyx(P,z) =
∑

i1,i2,··· ,≥0
Qi1,i2,···(P )zi11 z

i2
2 · · · , (5.25)

where z = (z1, z2, · · · ). We can see that Qi1,i2,··· are polynomials of Pn,j which can be
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determined by this equation. We list the first few of them:

Q1 = 1
h1
P1,

Q2 = 1
2 (h1 h3 + 1) (h2 h3 + 1)h2

1

(
h2

1h2h
2
3P2,1 + h1h2h

2
3P1

2 + h2
1h3P2,1 + h1h2h3P2,1

+h1h3P1
2 + h2h3P

2
1 + h1h3P2,2 + h1P2,1 + P 2

1 + P2,2
)
,

Q3 = 1
12(1 + h1h3)(1 + h2h3)(2 + h1h3)(2 + h2h3)h3

1

(
4h4

1h
2
2h

4
3P3,1 + 6h3

1h
2
2h

4
3P1P2,1

+2h2
1h

2
2h

4
3P1

3 + 12h4
1h2h

3
3P3,1 + 12h3

1h
2
2h

3
3P3,1 + 18h3

1h2h
3
3P1P2,1 + 18h2

1h
2
2h

3
3P1P2,1

+6h2
1h2h

3
3P

3
1 + 6h1h

2
2h

3
3P

3
1 + 3h3

1h2h
3
3P3,2 + 6h2

1h2h
3
3P1P2,2 + 8h4

1h
2
3P3,1

+36h3
1h2h

2
3P3,1 + 12h3

1h
2
3P1P2,1 + 8h2

1h
2
2h

2
3P3,1 + 54h2

1h2h
2
3P1P2,1 + 4h2

1h
2
3P

3
1

+12h1h
2
2h

2
3P1P2,1 + 18h1h2h

2
3P

3
1 + 4h2

2h
2
3P

3
1 + 6h3

1h
2
3P3,2 + 9h2

1h2h
2
3P3,2

+12h2
1h

2
3P1P2,2 + 18h1h2h

2
3P1P2,2 + 24h3

1h3P3,1 + 24h2
1h2h3P3,1 + 2h2

1h
2
3P3,3

+36h2
1h3P1P2,1 + 36h1h2h3P1P2,1 + 12h1h3P

3
1 + 12h2h3P

3
1 + 18h2

1h3P3,2

+6h1h2h3P3,2 + 36h1h3P1P2,2 + 12h2h3P1P2,2 + 16h2
1P3,1 + 6h1h3P3,3

+24h1P1P2,1 + 8P 3
1 + 12h1P3,2 + 24P1P2,2 + 4P3,3) ,

and

Q1,1 = 1
(h1 h3 + 1) (h2 h3 + 1)h2

1

(
(h1 h3 + 1) (h2 h3 + 1)P 2

1 + P2,2
)
,

Q2,1 = 1
4(1 + h1h3)(1 + h2h3)(2 + h1h3)h3

1

(
2h2

1h
2
2h

3
3P1P2,1 + 2h1h

2
2h

3
3P

3
1

+6h2
1h2h

2
3P1P2,1 + 2h1h

2
2h

2
3P1P2,1 + 6h1h2h

2
3P

3
1 + 2h2

2h
2
3P

3
1 + 2h1h2h

2
3P1P2,2

+4h2
1h3P1P2,1 + 6h1h2h3P1P2,1 + 4h1h3P

3
1 + 6h2h3P

3
1 + h1h2h3P3,2 + 4h1h3P1P2,2

+6h2h3P1P2,2 + 4h1P1P2,1 + 4P 3
1 + 2h1P3,2 + 12P1P2,2 + 2P3,3

)
.

Then we can calculate the 3-Jack polynomials J̃λ from Qi1,i2,···. When (i1, i2, i3, · · · ) =
(n, 0, 0, · · · ), we have

Qn(P ) = 1
〈J̃(n), J̃(n)〉hn1

J̃(n)(P ). (5.26)

When (i1, i2, i3, · · · ) = (n− 1, 1, 0, · · · ), we have

Qn−1,1(P ) = 1
〈J̃(n), J̃(n)〉hn1

J̃(n)(P ) −nh2
(n− 1)h1 − h2

+ 1
〈J̃(n−1,1), J̃(n−1,1)〉hn−1

1
J̃(n−1,1)(P ) 2

h1 − h2
, (5.27)

where (n− 1, 1) is the 2D Young diagram from (1, 1) by adding n− 2 box in the first row.
For example,

Q2 = 1
〈J̃(2), J̃(2)〉h2

1
J̃(2)(P ),
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which means

J̃(2)(P ) = 1
(h1 − h2)(h1 − h3)

(
(1 + h2h3)P 2

1 + (1 + h2h3)h1P2,1 + P2,2
)
,

which is the same with (5.3).

Q1,1 = 1
〈J̃(2), J̃(2)〉h2

1
J̃(2)(P ) −2h2

h1 − h2
+ 1
〈J̃(1,1), J̃(1,1)〉h1

J̃(1,1)(P ) 2
h1 − h2

,

which means

J̃1,1 = 1
(h2 − h1)(h2 − h3)

(
(1 + h1h3)P 2

1 + (1 + h1h3)h2P2,1 + P2,2
)
,

which is the same with (5.4).
In symmetric functions Yλ(P ), let pn = 1

h1

∑
k z

n
k , we see that Yλ(P ) = Yλ(z) are

symmetric about z1, z2, · · · . As in [2], we regard 2D Young diagrams arranged in the
reverse lexicographical order �, so that (n) comes first and 1n comes last. We arrange the
terms in Yλ(z) the same as the order of 2D Young diagrams, so that zni comes first and
zi1zi2 · · · zin comes last. We use the notation cYλ(z)

i1,i2,··· to denote the coefficient of zi11 z
i2
2 · · ·

in Yλ(z). It can be checked that the formulas (5.26) and (5.27) can be written as

Qn(P ) = 1
〈J̃(n), J̃(n)〉

J̃(n)(P )cY(n)(z)
n , (5.28)

Qn−1,1(P ) = 1
〈J̃(n), J̃(n)〉

J̃(n)(P )cY(n)(z)
(n−1,1)

+ 1
〈J̃(n−1,1), J̃(n−1,1)〉

J̃(n−1,1)(P )cY(n−1,1)(z)
(n−1,1) . (5.29)

Actually, this formula holds generally, that is, for Young diagram λ, we have

Qλ(P ) =
∑
µ�λ

1
〈J̃µ, J̃µ〉

J̃µ(P )cYµ(z)
(λ1,λ2,··· ). (5.30)

For any 2D Young diagrams µ, which are treated as the 3D Young diagrams having one
layer in z-axis direction, the 3-Jack polynomials J̃µ can be obtained from the formula (5.30).

Note that we can similarly define Txy(P, z), Txz(P, z), Tzx(P, z), Tyz(P, z), Tzy(P, z).
From them, the 3-Jack polynomials of 3D Young diagrams having one layer in x-axis
direction or y-axis direction can be obtained. In fact, the 3-Jack polynomials of 3D Young
diagrams having one layer in x-axis direction or y-axis direction can also be obtained from
the 3-Jack polynomials of 3D Young diagrams having one layer in z-axis direction by the
symmetry of 3-Jack polynomials about three coordinate axes.

To get the expressions of 3-Jack polynomials J̃π for all 3D Young diagrams π, we need
the formula J̃λJ̃π. Define

J̃λJ̃π = ˆ̃Jλ · J̃π, (5.31)

where ˆ̃Jλ are the functions of operators a−n,j with n > 0, and the actions of ˆ̃Jλ on J̃π are
the same with that of affine Yangian of gl(1) on 3D Young diagrams. For example, since

e0|�〉 = | 〉+ | 〉+ | 〉,
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we have
J̃�J̃� = e0J̃� = J̃ + J̃ + J̃ , (5.32)

then J̃ is obtained, which is the same with (5.5). From

J̃�J̃ = J̃ J̃� = J̃(1,1,1) + J̃( 1 1
1

)
h1,h2

+ J̃(2,1)h1,h3
, (5.33)

J̃(2,1)h1,h3
is obtained. Other 3-Jack polynomials of 3D Young diagrams which have more

than one layer in z-axis direction can be obtained this way.

6 Concluding remarks

In this paper, all results are obtained by requiring ψ0 = 1. If interested, one can calculate
the results for general ψ0, which should be similar to that in this paper. For example,

1 + σ2 + σ2
3 = (1 + h1h2)(1 + h1h3)(1 + h2h3)

in this paper should be

1 + ψ0σ2 + ψ3
0σ

2
3 = (1 + ψ0h1h2)(1 + ψ0h1h3)(1 + ψ0h2h3).

for general ψ0.

〈J̃(1, · · · , 1)︸ ︷︷ ︸
n+1

, J̃(1, · · · , 1)︸ ︷︷ ︸
n+1

〉 =
n∏
j=1

(j + 1)(j + h2h3)
(jh1 − h2)(jh1 − h3)

in this paper should be

〈J̃(1, · · · , 1)︸ ︷︷ ︸
n+1

, J̃(1, · · · , 1)︸ ︷︷ ︸
n+1

〉 = ψ0

n∏
j=1

(j + 1)(j + h2h3ψ0)
(jh1 − h2)(jh1 − h3) .

This holds since there is the scaling symmetries in the affine Yangian of gl(1) [13]. The
scaling symmetries say that changing the value of ψ0 is equivalent to rescaling parameters
hj , j = 1, 2, 3. Next, we will consider the slice of 3-Jack polynomials similar to that the
slices of 3D Young diagrams are 2D Young diagrams.
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