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Heavy Neutral Leptons at FCC-ee

Abstract

In place of traditional cut-and-count analysis, machine learning (ML) techniques

offer powerful methods to optimise our searches for new physics. At the FCC-ee,

we will probe the highest intensities and energies ever seen at a lepton collider,

opening the possibility for the direct discovery of massive right-handed neutrino

states. In this work, existing searches for heavy neutral leptons (HNLs) at the

FCC-ee are optimised using a Boosted Decision Tree (BDT) and a Deep Neural

Network (DNN) for a mass range of 10 GeV ≤ mN ≤ 80 GeV with mixing angles

10−4 ≤ |UeN |2 ≤ 10−10. We find that both ML approaches are capable of outper-

forming cut-and-count methods by orders of magnitude in the sensitivity to HNL

couplings. Specifically, in the 95% confidence level (CL) limit, the BDT models

achieve sensitivity beyond |UeN |2 = 10−9 for the electron dijet final state at 150

ab−1. Furthermore, we demonstrate the value of ML methods in distinguishing

between prompt and long-lived HNL signals in our parameter space by training

BDT models based on the transverse impact parameter significance.
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Heavy Neutral Leptons at FCC-ee

1 Introduction

When CERN announced the discovery of the Higgs Boson in July 2012 [1, 2], many

reported the Standard Model (SM) as being complete [3]. This discovery honored the

prediction made by Robert Brout, François Englert, and Peter Higgs in 1964, validating

the massive nature of the SM bosons through the spontaneous breaking of the electroweak

symmetry. However, describing the SM as complete suggests that the story is finished.

Far from it, several vital questions remain unanswered by the SM, including the issues of

neutrino mass, dark matter, and the dominance of matter over antimatter in the universe.

The Large Hadron Collider (LHC) at CERN is actively searching for new physics (NP)

beyond the SM (BSM). However, there is currently no indication of supersymmetry or

any other exotic solutions to BSM phenomena. The High-Luminosity LHC (HL-LHC)

will begin taking data at the earliest in 2029 [4], and only time will tell if the significantly

increased data volume will reveal signs of new physics. For now, we must look ahead to

the future landscape of particle physics in Europe.

The electron-positron future circular collider (FCC-ee) is a proposed initiative at CERN,

set to become the highest energy lepton collider ever built. As the largest and highest-

intensity collider of its kind, it will function both as a machine for precision measurements

and as a discovery tool for NP. During the Z-pole run of the FCC-ee, approximately 1012

Z bosons will be produced in a clean, pileup-free environment, serving as an electroweak

factory operating with unprecedented precision.

One interesting possibility of the FCC-ee is its potential to discover a new type of par-

ticle that addresses existing Standard Model tensions: heavy neutral leptons (HNLs).

The discovery of non-zero neutrino masses has exposed a significant problem in our un-

derstanding of neutrinos as massless objects. By introducing a sister particle to the

neutrino, we propose a sterile right-handed object heavy enough to generate tiny SM

neutrino masses via a low scale Type I seesaw mechanism.

In this thesis, we explore the discovery potential of such a particle in the electron di-jet

final state during the Z run of the FCC-ee. Chapter 2 introduces the SM and explores

the mechanism through which HNLs can be integrated into our current particle physics

theories. Chapter 3 examines the phenomenology of these objects within one proposed

FCC-ee detector design, IDEA. Chapter 4 provides a review of the simulation details.

Chapter 5 constructs a comprehensive overview of the analysis, including a summary of

existing cut-and-count methods and an extension into the use of machine learning (ML)

techniques such as boosted decision trees (BDTs) and deep neural networks (DNNs).

Chapter 6 presents an overview of the results in the context of existing and future expec-

tations for HNL reach by collider experiments.

Université de Genève 4
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2 Heavy Neutral Leptons

... this experience made a deep and lasting impression upon me. Something

deeply hidden had to be behind things.

– Albert Einstein

The Standard Model is the most complete theory of fundamental physics ever devised,

exemplified by numerous experimental confirmations, such as that of the anomalous mag-

netic moment of the electron [5], and crowned by the discovery of the Higgs Boson. Yet,

in spite of this, successive experimental blows have shown us definitively that SM is not

capable of describing nature fully. The observation of neutrino masses demonstrated by

baseline neutrino oscillation measurements [6, 7, 8, 9] show us decisively that neutrinos

are massive, which is not predicted by the SM. Something deeply hidden must be at work,

and it will be the aim of experimental physicists over the next decades to discover it.

Interactions of the SM neutrinos with a unseen massive counterpart, a heavy neutral

lepton (HNL), is one proposed method for explaining the origin and scale of neutrino

masses. In this section, we will explore the SM, neutrino oscillation experiments and the

Seesaw Mechanism with sights to setup our search for HNLs.

2.1 The Standard Model

Figure 1: The Standard Model of Particle Physics (Image: Available at Ref. [10]).

Université de Genève 5



Heavy Neutral Leptons at FCC-ee 2.1 The Standard Model

The Standard Model of Particle Physics represents the combination of two pillars of

twentieth century physics: special relativity and quantum mechanics. It seeks to explain

how objects on the smallest scale move when at speeds approaching the universal speed

limit. The SM encodes our current understanding of the physical universe, providing a

picture of all elementary particles, and indeed of the forces governing their interactions,

themselves explained via particle exchange. All matter is composed of fermions, and all

forces exchanged via bosons. A complete picture of the SM is given in Figure 1.

Fermions are distinguished as being quarks or leptons. The quarks make up atomic

matter, such as protons and neutrons, and do not exist as isolated particles, but instead

always form hadrons, distinguished as mesons with two quarks and baryons with three.

The leptons, however, exist freely in nature and do not hadronise, such as the electrons,

orbiting the nucleus in atomic structures.

The bosons, commonly referred to simply as the force-carriers, mediate the interactions

between particles in the field theories, which give rise to the mathematics of the SM. They

are denoted as gauge bosons or scalar bosons depending on their spin properties. The

only observed scalar boson is the Higgs Boson, which is coincidentally the most recent

experimental addition to the SM.

The SM is governed by three main field theories: Quantum Electrodynamics (QED),

Quantum Chromodynamics (QCD), and the weak interaction. QED describes the elec-

tromagnetic interactions mediated by photons. QCD explains the interactions between

quarks, which are governed by gluons. The weak interaction, responsible for processes

involving nuclear decay, is mediated by the W and Z bosons. Indeed, the neutrinos

are known to only interact via the weak force. QED has been unified with the weak

interaction to form the Electroweak Theory (EWT) [11].

The Higgs boson plays a crucial role in the Standard Model (SM). Without the Higgs

mechanism, the masses of fermions and bosons would violate the local gauge symmetry,

causing the SM to break down. Simply put, the Higgs mechanism allows us to preserve

symmetry by treating SM particles as massless. The interaction strength with which

particles couple to the Higgs, known as their Yukawa coupling, can be conceptualized as

the ’drag’ they experience through the Higgs field, which manifests as mass.

2.1.1 The Dirac Equation and Chirality

The dyanamics of spin-half, massive, relativistic particles are described by the covariant

Dirac Equation given in Equation 1, where γµ = (γ0, γ1, γ2, γ3), ∂µ is the covariant

derivative given by (∂0, ∂1, ∂2, ∂3) ≡
(

∂
∂t
, ∂
∂x
, ∂
∂y
, ∂
∂z

)
, and ψ is the wave-function solution

to the equation, describing particles or antiparticles with mass m. The γ matrices come

Université de Genève 6



Heavy Neutral Leptons at FCC-ee 2.1 The Standard Model

directly from the covariant formulation of the Dirac Equation in Equation 1, and their

derivations are found in Appendix A.1.

(iγµ∂µ −m)ψ = 0. (1)

The plane-wave solutions, ψ(x, t), of Equation 1 are given by ψ(x, t) = u(E,p)ei(p·x−Et),

where u(E,p) is known as the Dirac spinor with four components describing particles

and antiparticles with spin ±1/2. The antiparticles are those with E < 0 solutions, as

per the Feynman-Stückelberg interpretation1, and are often denoted with ν1 and ν2 as

opposed to the particle states u1 and u2; in this regime, the plane-wave solutions are

written as ψi = uie
+i(p·x−Et) for particles, and ψi = νie

−i(p·x−Et) for antiparticle states.

Particles within the SM are imbued with certain properties, many of which are familiar

to every day life, such as electrical charge. One such property is known as chirality.

Unlike the similar concept of helicity, which can be thought of as simply the projection

of spin onto the direction of the particle momentum, chirality is much more subtle.

Helicity, though an important concept, is not Lorentz invariant. This means that for

massive particles, it is always possible to Lorentz boost to a frame in which the helicity

is inverted. Chirality, on the other hand, is Lorentz invariant and is best understood

abstractly as the eigenstates2 of the γ5 matrix, defined in Equation 2.

γ5 ≡ iγ0γ1γ2γ3 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 =

(
0 I

I 0

)
(2)

The eigenstates of the γ5-matrix are defined as left- and right-handed chiral states such

that we may write: γ5uR = +uR and γ5uL = −uL, γ5vR = −vR and γ5vL = +vL. In the

relativistic limit, E ≫ m, these eigenstates correspond to solutions of the Dirac equation.

In general, all Dirac Spinors can be decomposed into right- or left-handed chiral states

using the operators PR and PL shown in Equation 3. Certain combinations of chiral

operators dictate the nature of a given interaction.

PR =
1

2
(1 + γ5), PL =

1

2
(1− γ5). (3)

1The Feynman-Stückelberg interpretation elicits that the negative energy solutions to the Dirac equa-
tion are physical and correspond to positive energy solutions moving backwards through time.

2Eigenstates are special states of a quantum system that satisfy the equation Ôψ = λψ, where Ô is
an operator (in this case, the γ5 matrix) and λ is a scalar known as an eigenvalue and ψ is the eigenstate.

Université de Genève 7



Heavy Neutral Leptons at FCC-ee 2.1 The Standard Model

These operators obey the relations PR+PL = 1, PR ·PR = PR, PL ·PL = PL, PL ·PR = 0.

PR projects out right-handed chiral particle states and left-handed chiral antiparticle

states, whilst PL serves to do the inverse. This can be summarised by the relations:

PRuR = uR, PRuL = 0, PRνR = 0, PRνL = νL for the right-handed operator, and

PLuR = 0, PLuL = uL, PLνR = νR, PLνL = 0 for the left-handed operator.

In QED, the nature of interactions between charged fermions and photons is given by

the form: ψ̄γµϕ where ψ and ϕ are Dirac spinors, with ψ̄ representing an antiparticle

spinor. The 4-vector current can be decomposed into left and right chiral states using the

operators in Equation 3, generating terms such as ūL(p)γ
µuR(p

′). We saw earlier that the

right-handed chiral operator leaves a right-handed spinor unchanged, uR(p
′) = uR(p

′)PR

and for the antiparticle state it can be shown using the the relations of the gamma

matrices that ūL(p) = ūL(p)PR.

Considering again the term ūL(p)γ
µuR(p

′), with no change to our original expression we

can write ūL(p)γ
µuR (p′) = ūL(p)PRγ

µPRuR (p′). The gamma matrices are such that

γ5γµ = −γ5γµ and hence: PRγ
µ = 1

2
(1 + γ5) γµ = γµ 1

2
(1− γ5) = γµPL. Thus, finally,

we see that ūL(p)γ
µuR (p′) = ūL(p)PRPLuR (p′) = 0. That is to say: only specific combi-

nations of chiral eigenstates give non-zero interactions. For QED, these are interactions

involving same chiral signs, i.e. two left-handed states (LL) or two right-handed states

(RR), but never a mix of the two.

This is the case for QED, which has a vector like interaction ψ̄γµϕ. For the weak interac-

tion, the vertex is a combination of vector and axial-vector (V-A), which we understand

since the weak interaction is known to violate parity conservation3. Hence, the inter-

action vertex has the form u(p′)1
2
γµ(1 − γ5)u(p). We recognise this as containing the

left-handed chiral operator, PL = 1
2
(1 − γ5). As a consequence, under the same treat-

ment of the vertex as we did for QED, the only non-zero surviving terms now exclusively

involve left-handed chiral particles and right-handed antiparticles.

Due to the V-A nature of the weak interaction, no right-handed (left-handed) particle

(antiparticle) states interact via the weak force. In the case of the neutrinos, which

only interact via the weak force, this means that any postulated right handed neutrino

must be completely sterile. In this context, sterile is meant to mean that this object

would only interact via the Higgs and gravity, and would have no coupling to the weak,

strong or electromagnetic forces. The result of this is that the SM does not currently

admit the existence of right-handed neutrinos, since we cannot probe them in known SM

3Parity refers to the symmetry of physical laws under spatial inversion (i.e., flipping the sign of spatial
coordinates). Parity violation in weak interactions, discovered in the 1950s, showed that nature does not
treat left-handed and right-handed particles the same way. This was a groundbreaking discovery because
it demonstrated that the weak force does not conserve parity, unlike other fundamental forces such as
electromagnetism.

Université de Genève 8



Heavy Neutral Leptons at FCC-ee 2.1 The Standard Model

interactions.

2.1.2 The Higgs Mechanism

The dynamics and properties of all objects within the Standard Model are encoded into its

Lagrangian. The Lagrangian is a compact representation of the underlying dynamics of

the SM. At its simplest level, a classical Lagrangian is given by L = T - U, as the difference

between the kinetic and potential energies. Using the principle of least action allows us

to find the Euler-Lagrange equations to elegantly describe the mechanics. For the SM

Lagrangian, we actually refer to the Lagrangian density, which is such that we integrate

the Lagrangian over a differential volume element, L =
∫
Ld3x. This formulation is

much more useful in quantum mechanical systems, where the number of players in a

given interaction is not fixed.

The Standard Model Lagrangian is given below in Equation 4 where h.c. denotes the

hermitian conjugate term, e.g. for antiparticles as opposed to particle objects:

LSM = −1
4
FµνF

µν︸ ︷︷ ︸
(a)GaugeFields

+ iψ̄γµDµψ︸ ︷︷ ︸
(b) FermionKinetic

− yψ̄LϕψR + h.c.︸ ︷︷ ︸
(c)Yukawa Interactions

+ |Dµϕ|2 − V (ϕ)︸ ︷︷ ︸
(d)HiggsPotential

.
(4)

It is beyond the scope of this thesis to describe the Higgs Mechanism in full detail4, but for

the purposes of understanding the neutrino masses presented in Section 2.2, it is necessary

to understand the principle of how the other SM fermions derive their mass. Figure 2

below shows once again a depiction of the players within the SM with an emphasis on

the role of the electroweak symmetry breaking (EWSB) and the Higgs non-zero vacuum

expectation on the generation of the masses within the SM.

The SM is constructed on the principles of Lorentz invariance and local gauge sym-

metries. Lorentz invariance ensures that the laws of physics remain the same under

rotations and boosts in spacetime, while local gauge symmetries guarantee the consis-

tency of interactions at every point in space and time. The SM is based on the gauge

group SU(3)C × SU(2)L × U(1)Y , which describes the interactions of particles through

the strong, weak, and electromagnetic forces, respectively.

The masses of massive SM particles are generated via the EWSB of the Higgs mecha-

nism. The SM Lagrangian is built upon steadfast principles of Lorentz invariance and

local gauge symmetries. For the vector bosons, mass is introduced via the spontaneous

4Full derivations can be found in e.g. Griffiths, David J. Introduction to Elementary Particles. John
Wiley & Sons, 2008. or Halzen, Francis, and Alan D. Martin. Quarks and Leptons: An Introductory
Course in Modern Particle Physics. John Wiley & Sons, 1984.

Université de Genève 9



Heavy Neutral Leptons at FCC-ee 2.1 The Standard Model

symmetry breaking of the U(1)Y × SU(2)L group. After this breaking, the W and Z

bosons become massive, while the gluons and photons remain massless. This mechanism

is crucial for maintaining the consistency and predictive power of the SM.

Figure 2: Diagram of the Standard Model with emphasis on the role of the Higgs Mech-
anism and EWSB (Image: L. Boyle, 2014).

The fermions similarly derive their masses from the Higgs Mechanism, necessarily since

the fermion mass term in the Dirac Lagrangian: −mψ̄ψ = −m
(
ψ̄RψL + ψ̄LψR

)
, does not

respect the U(1)Y ×SU(2)L gauge symmetry. The crux of the mechanism is that after the

EWSB, there exists a coupling of left-handed and right-handed massless fermions though

the interaction with the non-zero expectation value of the Higgs field. Since, however,

the non-zero VEV of the Higgs only occurs for the lower component of the Higgs doublet

- such a mechanism can only generate masses for the fermion in the lower component of

an SU(2)L doublet, e.g. the charged leptons (i.e. not the neutrinos) and the down-type

quarks.

For the up-type quarks and the neutrinos, a subtlety arises: it is necessary to con-

struct a conjugate doublet ϕc to ensure that the corresponding mass terms respect gauge

symmetry. A conjugate doublet is formed by applying charge conjugation to the Higgs

field, effectively flipping the sign of its hypercharge. Thus, for all Dirac fermions, gauge-

Université de Genève 10



Heavy Neutral Leptons at FCC-ee 2.2 Beyond the Standard Model

invariant mass terms can be constructed as shown in Equation 5, where gf represents the

fermion Yukawa coupling to the Higgs, L and R respectively denote chiral left and right

spinors, and ϕ represents the Higgs field.

L = −gf
[
L̄ϕR + (L̄ϕR)†

]
or L = −gf

[
L̄ϕcR + (L̄ϕcR)

†] (5)

After the EWSB, the Yukawa couplings of the fermions, gf are given by the relationship

between the mass of the fermion, mf and the Higgs VEV, ν = 246 GeV. This is shown

below in Equation 6. There is no a priori way to motivate the value of the Yukawa

couplings, and they are free-parameters of the Standard Model, ascertained via measure-

ments of the fermion masses in particle experiments. Indeed, the large number of free

parameters entering the SM serve to undermine its place as a final theory for elementary

physics. For the top quark, it is somewhat interesting that the Yukawa coupling is almost

exactly unity, whilst the smallest coupling comes from the electron with O(10−6).

gf =
√
2
mf

ν
(6)

We saw in the previous section that the nature of the weak interaction dictates that

there are no right-handed (left-handed) neutrinos (anti-neutrinos) that can participate in

the weak interaction. Since both a left and right-handed state are required to generate

the mass terms per Equation 5, we cannot introduce a Dirac mass for the SM neutrinos

without the admission of a presently undetected right-handed state.

As it stands, the SM does not admit this and hence neutrinos are assumed to be massless

in direct conflict with the observation of neutrino oscillations. For further discussion, we

must explore mechanisms currently beyond the SM.

2.2 Beyond the Standard Model

2.2.1 Neutrino Oscillations

When we study a beam of just one neutrino flavour, over a sufficient distance we are

able to observe that the beam is no longer pure, but is instead a combination of several

different flavour states. This is explained via neutrino oscillations [12, 13, 14].

In particle physics, themass eigenstates are the stationary states that obey the Schrödinger

equation, and can be thought of as the mathematically fundamental object arising from

the predictions of the SM. They are labelled ν1, ν2 and ν3.

There is no a priori reason one should believe that these mathematical objects correspond

Université de Genève 11



Heavy Neutral Leptons at FCC-ee 2.2 Beyond the Standard Model

to the observed neutrino states, coined as weak eigenstates. These weak eigenstates are

those we observe with the corresponding flavour of lepton. They are denoted as νe, νµ

and ντ .

Introducing this subtle but critical difference affords us the freedom to say that we do not

know which of the mass eigenstates couples to the corresponding lepton in the weak inter-

action. As is known in quantum mechanics, we therefore consider the weak eigenstate to

be a linear, coherent combination of the mass eigenstates. The neutrino state that obeys

the mechanics of the Schrödinger equation thus propagates as this superposition until the

wavefunction collapses into an observed weak eigenstate. We can express the relationship

between the two eigenstates via Equation 7, where the elements Uij, i = e, µ, τ , j = 1, 2, 3

convey the values of the unitary matrix elements describing the relationship. The uni-

tary matrix entering Equation 7 is referred to as the Pontecorvo–Maki–Nakagawa–Sakata

(PMNS) matrix.

νeνµ
ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


ν1ν2
ν3

 (7)

In this way, we might decompose the weak eigenstate νe into the combination of the mass

eigenstates as in Equation 8, where |νi⟩ is the weak eigenstate for a given lepton flavour

i=e, µ, τ and U∗
ij represents the complex conjugate of the elements entering Equation 7:

|νi⟩ = U∗
i1|ν1⟩+ U∗

i2|ν2⟩+ U∗
i3|ν3⟩. (8)

If the mass of all three of these mass eigenstates were equal, there would be no phase

difference between ν1, ν2 and ν3. A phase difference arises due to the different masses

and energies of the neutrino mass eigenstates, which cause them to evolve differently

over time. This evolution can be described by a phase factor exp(−iEjt) for each mass

eigenstate |νj⟩, where Ej is the energy of the eigenstate and t is time. The result of this is

that, if the three masses were equal, a given flavour eigenstate would remain unchanged as

it propagates through time. If this were the case, we would not observe neutrino flavour

beams to oscillate. The PMNS matrix is known to be of the form in Equation 9, where

θij are the mixing angles between different neutrino flavours,sij = sin(θij) , cij = cos(θij)

and δ is a complex phase responsible for CP violation5.

5CP violation refers to the violation of the combined symmetry of charge conjugation (C) and parity
(P). It is a phenomenon that allows the distinction between matter and antimatter.
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 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (9)

The PMNS matrix is a special type of matrix in that it is unitary, meaning that U−1 =

U † ≡ (U∗)T . This is a key requirement in quantum mechanics since the probabilities must

add to 1, forcing our matrix to take a unitary form such that e.g. |Ue1|2+|Ue2|2+|Ue3|2 = 1.

In light of the unitary nature of the PMNS matrix, we can place nine constraints on the

parameters entering, since U †U = I. To get the time evolution of the state |νi⟩ entering
Equation 8, we take the time evolution of the mass eigenstates. From here, we can use

our unitary constraints to show that6 the survival probability of an electron neutrino

state is given by Equation 10.

P (ve → ve) = 1− 4 |Ue1|2 |Ue2|2 sin2∆21

− 4 |Ue1|2 |Ue3|2 sin2∆31 − 4 |Ue2|2 |Ue3|2 sin2∆32.
(10)

In Equation 10, ∆ji =
(m2

j−m2
i )L

4Ev
, where L is the distance traversed by the propagating

state. Hence, the survival probability of electron neutrinos is dependent upon three

differences of squared masses: ∆m2
21 = m2

2−m2
1, ∆m

2
31 = m2

3−m2
1, and ∆m2

32 = m2
3−m2

2.

Among these differences, only two are independent, since ∆m2
31 = ∆m2

32 + ∆m2
21. The

neutrino oscillation probability is known to be of the form given in Equation 38.

P (ve → vµ) = sin2(2θij) sin
2

(
1.27

∆m2
ij

[
eV2
]
L[km]

Ev[GeV]

)
(11)

The result of the long baseline neutrino experiments have placed upper bounds on the

relative scale of the neutrino masses, but can make no comment on the hierarchy of the

masses beyond the absolute square of the mass difference between two states. This is

shown in Figure 3.

6A full derivation is found in Appendix A.2.
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Normal Ordering Inverted Ordering
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solar

solar

atmospheric

atmospheric

Figure 3: Neutrino mass square differences found from solar and atmospheric neutrino
oscillations shown for normal ordering and inverted hierarchy (Image: adpated from [15]).

From cosmological observations of the large-scale structure of the universe [16] it can be

determined that
∑3

i=1mvi ≲ 1eV. Which implies exceptionally small neutrino masses

relative to all other standard model leptons, the smallest of which is the electron with

me = 0.511 MeV, some O(106) greater than the neutrino mass upper bound.

Neutrino oscillations are direct evidence of BSM physics, and the longstanding assumption

of massless neutrinos must be replaced with a mechanism to explain the origin and scale

of the tiny neutrino mass.

2.2.2 Neutrino Masses

The discovery of neutrino oscillations indicates categorically that neutrino masses are

non-degenerate, in contradiction with the SM assumption that the neutrinos are massless.

We must modify the SM in order to account for this in the Lagrangian of the theory. One

might expect that it would be easiest to add a Dirac mass term, in the same way as we

did for other fermions by using the Higgs doublet. Analogously to the up-type quarks,

after spontaneous symmetry breaking, one finds:

LD = −mDν̄ν = −mD(ν̄LνR + ν̄RνL) (12)

Where mD in Equation 12 refers to the Dirac mass term. The inclusion of the Dirac Mass

term introduces sterile (with a weak hypercharge of 0, they do not interact even via the

weak force) right-handed neutrinos νR which only enter the Langrangian through the mass

term. If neutrinos acquire their masses in this way, we admit the existence of right-handed
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massive neutrinos, and remain bemused at the smallness of the Yukawa coupling of the

neutrinos relative to all other fermions, at O(10−12), aggravating the SM flavour puzzle

[17]. Instead, we might use this is a hint that there is more complexity to the mass

generation. Indeed, because right-handed neutrinos and left-handed antineutrinos are

singlets under SM gauge transformations, without imposition of any additional symmetry

one is permitted to write the most general form of the lagrangrian by including aMajorana

term for the RH neutrino.

Being electrically neutral, neutrinos do not immediately impose themselves on the same

footing as any other fermions. Since we cannot differentiate antineutrinos from neutrinos

without assuming lepton-number conservation, it is possible that, as with the photons,

the neutrinos are eigenstates of the charge conjugation operator and are hence Majorana

type particles, being that they are their own antiparticles. This would allow for lepton

number violation, permitting processes such as neutrinoless double beta decay7. Since

we have lost two degrees of freedom compared with the Dirac spinors, we have to rely on

only one chiral state in order to generate the Majorana neutrino mass term, LM .

LM = −1

2
M(ν̄Rν

c
R + ν̄cRνR) ∆L = ±2 (13)

In Equation 13, M is the RH neutrino mass. By generating a mass term with only two

degrees of freedom, one must admit the possibility of lepton number violation by two

units (denoted by ∆L = ±2 in our Equation), since we allow for direct coupling between

a particle and its corresponding antiparticle.

2.3 The Seesaw Mechanism

2.3.1 The Vanilla seesaw

The most general renormalisable8 Lagrangian for neutrino masses includes both Dirac

and Majorana terms, shown in Equation 14 and illustrated in Figure 4, where mD is

the Dirac mass, and M is the Majorana mass. The same Lagrangian is given again in

Equation 15.

7Majorana neutrinos, being their own antiparticles, allow for the exchange of virtual neutrinos, leading
to the emission of two electrons without the corresponding neutrinos. This process is significant for
understanding the absolute neutrino mass scale and the nature of neutrino mass [18].

8A theory is renormalisable if its predictions remain finite and well-defined at all energy scales after
the infinities that arise in quantum field theory calculations are systematically removed. This involves
adjusting the values of a finite number of parameters in the theory. Renormalisability is crucial for a
theory to make consistent and accurate physical predictions.
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Figure 4: Feynman depiction of Dirac (left) and Majorana (right) mass terms [19]. On
the left, the mixing of the left and right-handed neutrino states generates a mass term,
mD, via the Yukawa coupling to the Higgs field. On the right, a Majorana mass term,
M , is introduced via the coupling of a neutrino to its own antiparticle, resulting in lepton
number violation.

LDM = −1

2
[mD(ν̄LνR + ν̄cRν

c
L) +M(ν̄cRνR)] + h.c. (14)

LDM = −1

2

[
νL νcR

] [ 0 mD

mD M

]
︸ ︷︷ ︸

mass matrix

[
νcL

νR

]
+ h.c. (15)

The Dirac term alone, seen in Equation 12, admits the possibility for mass generation via

the EWSB of the Higgs mechanism. Adding the Majorana term in, through Equation

14, is automatically gauge invariant and respects the symmetries of the SM, hence it

is permitted given the fact that neutrinos are electrically neutral objects. Specifically,

for the candidate Lagrangian to be viable, it must obey the gauge symmetries of the

SM, SU(3)C × SU(2)L × U(1)Y . Neutrinos are electrically neutral making them singlets

under the U(1)Y hypercharge gauge group, which means that a Majorana mass term

can be introduced, allowing for same lepton sign self-coupling without violating charge

conservation.

The physical states of this system are found via the eigenvalues of the mass matrix shown

in Equation 15. In two regimes one finds:

m± ≈ 1

2
M ± 1

2

(
M +

2m2
D

M

)
M ≫ mD (16)

|mν | ≈
m2

D

M
M ≈ mD (17)

This proposed generation of the neutrino masses is known as the seesaw mechanism, first

proposed in [20, 21, 22, 23]. It is so called rather intuitively, since it is the heaviness of

the right-handed neutrino which is permitted to give the SM neutrinos their very small
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masses due to the inverse relationships shown in Equations 16 and 17. The new right-

handed neutrino species is coined as a heavy neutral lepton, often known as sterile since

they have no charge or weak isospin, and have only their Yukawa couplings to the Higgs

boson and leptons.

The seesaw model can be thought of as Type I [24] Type II [25] or Type III [26, 27]. Type

I is the mechanism we have up to now been describing. Type II introduces a heavy scalar

triplet which leads to small SM neutrino masses via the coupling of the lepton doublets

to the Higgs field. The Type III seesaw mechanism similarly adds a heavy fermion triplet

in order to achieve the same means. These mechanisms are shown at tree level in Figure

5.

Figure 5: Mathematical schematic of Type I, II and II seesaw mechanisms [28].

2.3.2 Inverse Seesaw - Dirac HNLs

If we wish to protect lepton number conservation, by trying to find a seesaw mechanism

that permits Dirac type HNLs (possibly degenerate with equal masses), we must do so

through an inverse seesaw mechanism.

In this instance, we consider at least two HNLs, and we can call them N and S. Setting

once again both Majorana and Dirac masses we can write the mass matrix, M, in the

basis of (νL SL N
c
L).

M =

 0 mD 0

mD µN mR

0 mR µS

 (18)

In Equation 18, mD corresponds to the Dirac mass terms involving v and N , representing

the direct coupling between the neutrino field N and the Higgs field v. On the other

hand, mR corresponds to Dirac mass terms of a different form, mR((N
c)†Sc + (Sc)†N c),

which involve a scalar singlet field S and the conjugates of the right-handed neutrino field

N c. The Majorana mass terms for N and S are µN and µS respectively.

We assume a mass hierarchy where µN , µS ≪ mD ≪ mR. Furthermore, the contribution
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from µN to the masses of ν is minimal and is hence set to 0. With these assumptions,

the mass matrix can be diagonalised as:

mν 0 0

0 mN 0

0 0 mS

 (19)

Where mν ≈ µS

m2
D

m2
D

m2
D+m2

R
, and mN , mS ≈

√
m2

D+m2
R

2
∓ µS

2

m2
R

m2
D+m2

R
. Unlike in the previous

regime, here it is the smallness of the surviving Majorana mass term, µS, which gives the

SM neutrinos their low mass. The mixing angle between the active neutrinos and the

heavy sterile states is given by: |U | ≈ mD

mR
. This mixing angle quantifies the contribution

of the heavy sterile component to the light neutrino state.

In searches, these particles are often called Dirac type HNLs, and through this thesis we

will refer to them as such, where we are working with a single heavy Dirac HNL in the

limit µS → 0. In reality, we might more accurately refer to them as pseudo-Dirac HNLs.

This is because, if we set the Majorana mass equal to zero, admitting that mN and mS

are degenerate, we also have set the mass of the SM neutrino equal to zero, which is the

same problem we were initially trying to negate. Fortunately, this distinction does not

significantly impact our experimental simulations.

Indeed, choosing that the SM neutrino has a Yukawa coupling of O(1) is somewhat

arbitrary, since we recall that the electron has a Yukawa coupling of O(10−6). If we were

to search for HNLs in the regime with Yukawa coupling of O(1), then we predict the mass

of the HNL to be in the O(1014 − 1015) GeV. If, however, we take it to be of the same

order as the electron, we can reasonably search for Dirac HNLs of O(10− 100) GeV. The

latter of these cases would be referred to as the low scale inverse-seesaw mechanism and

produces precisely the type of object we will search for in this study.

2.4 Solutions to Problems Beyond the Standard Model

Physics beyond the SM is not just alluded to with the existence of non-zero neutrino

masses. Direct cosmological observations give evidence for the existence of so-called

dark matter and the prevalence of matter over antimatter in the universe, known as the

baryon asymmetry of the universe (BAU) demands a mechanism through which it can be

understood. Interestingly, our extension of right-handed neutrinos may provide solutions

to both of these outstanding problems within the SM.
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Figure 6: Possible scenarios for HNL explainations of dark matter and the BAU (Image:
taken from [29]).

By introducing three generations of RH heavy neutrinos, N1,2,3, the two heavier particles,

N2,3, generate the masses of active neutrinos via the Type I Seesaw mechanism discussed

in Section 2.3. The same two right-handed neutrinos are also responsible for generating

the BAU provided that their masses are close to each other, via low-scale leptogenesis.

In leptogenesis, the decay of these heavy neutrinos in the early universe creates an asym-

metry between leptons and anti-leptons due to CP-violating processes. Specifically, if

the masses of N2 and N3 are sufficiently close to each other, this can enhance the CP-

violation effects and the resulting lepton asymmetry due to the resonant enhancement, a

phenomenon known as resonant leptogenesis.

The lightest sterile neutrino N1 is the DM candidate. A viable DM candidate must

be electrically neutral, cosmologically stable, and interact weakly with ordinary matter.

The requirement to be a viable DM candidate forces the Yukawa couplings of N1 to

be very small, leaving the lightest active neutrino almost massless [28]. It must be

minimal to avoid current direct detection while still ensuring N1 was produced in the

right abundance in the early universe, a balance achieved via mechanisms like “freeze-in”

or “freeze-out”. The lifetime of N1 must also exceed the age of the universe, which is a

convenient byproduct of the tiny Yukawa coupling [30].

The mass of N1 is constrained to be in a range that makes it cold or warm DM, typically

on the keV scale, to match the observed structure formation in the universe. Cold DM

refers to particles that were non-relativistic at the time of galaxy formation, leading

to the large-scale structure we observe today, while warm DM can slightly erase small-

scale structures, providing a potential solution to discrepancies like the missing satellite
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problem [31]. The signature for the DM candidate in this picture is the decay N1 → νγ,

which may have already been seen [32, 33].

2.5 Present Searches for HNLs

As a foundation for the research in this thesis, we will explore present and future searches

for HNL models, by looking at the existing and projected constraints on the possible HNL

parameter space. HNLs are being searched for actively in experiments such as ATLAS

at CERN, and will be pushed further by future experiments such as SHiP and the FCC.

Understanding these limits in the context of the results set out in Section 6 will be critical

for underscoring the need for the FCC machine. A summary of the limits in the HNL

parameter space with respect to the electron mixing angle is given in Figure 7.

Figure 7: Existing and projected constraints on heavy neutrino mixing at 90% C.L., as a
function of the HNL mass, MN and electron neutrino mixing angle |UeN |2. The bounds
set by the different experiments are displayed separately, but we only show those more
relevant in each mass window. Single flavour dominance is assumed, with the limits on
|UeN |2 shown [34].

The mass range considered in this thesis will be between 10-80 GeV, with mixing angles

squared between 10−4 and 10−10. To this end, we will focus on the best existing constraint

in this range published by CMS in April of 2024, shown in Figure 8.
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Figure 8: The 95% CL limits on |VeN |2 for Dirac HNLs. The area above the solid (dashed)
black curve indicates the observed (expected) exclusion region. Previous results from the
DELPHI Collaboration [35] are shown for reference. Previous CMS results “3ℓ displaced”
[36] and “2ℓ displaced” [37] are shown to highlight the complementarity to other search
strategies [38].

mN (GeV)

Figure 9: 90% CL exclusion limits for a HNL mixed with the electron neutrino, as
presented in the European Strategy for Particle Physics Briefing Book [39]. The FCC-
ee curves are in (overlined) dark purple—for FCC-ee, this is equivalent to a plot as a
function of the sum of matrix elements squared |UN |2. The curve below the Z boson mass
corresponds to the combined LLP and prompt analysis performed with 1012 Z bosons in
[40]. The horizontal limit at high masses results from the effect of light-heavy neutrino
mixing on the EW precision observables and remains valid up to O(1000)TeV [41].
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On the left-side of the mass range considered in Figure 8, we see the existing limit within

our mass range, with a reach on the mixing angle of approximately O(10−5). By contrast,

the projected limit for HNLs at the FCC-ee is shown overlayed in Figure 9. This limit

is obtained via simulation of the physics as well as detector reconstruction using a fast-

simulation of one proposed detector design, IDEA.

Figure 9 shows a projected reach across all HNL final states of approximately O(10−11)

in |UeN |2 in the mass range considered in this analysis. This is a consequence of the

advantages of lepton colliders and their very “clean” detector environments compared

to proton-proton collisions as is the case with the CMS result of Figure 8. In the next

chapter, we introduce the FCC and explore further the topology of our considered HNL

model in the detector.
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3 The Future Circular Collider

The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle

accelerator ever constructed. It is located 100 meters underground at the Swiss-French

border, with a circumference of 27 kilometers. The LHC achieves center-of-mass (CM)

energies of up to 13.8 TeV in proton-proton collisions. Since its first collisions in 2008, the

LHC has been a cornerstone of modern particle physics, leading to the discovery of the

Higgs boson and providing record precision measurements of Standard Model parameters

such as the masses of the W and Z bosons, as well as testing principles like lepton

universality and many others.

As we look forward, the planned high luminosity upgrade of the LHC (HL-LHC) is

projected to begin data taking at the earliest in 2029 [4]. Increasing instantaneous lumi-

nosities by a factor of 5 to 7.5 relative to the LHC nominal value, we will gain enormous

statistics with which to battle the current tensions of the SM, and test our theories with

hitherto unseen precision.

The Future Circular Collider (FCC) initiative is formulating plans for the future of CERN

beyond the high luminosity upgrade. The FCC will enhance current capabilities in do-

mains of both energy and intensity, targeting collision energies up to 100 TeV with the

final stage of FCC-hh. It is expected that the FCC will serve both as a precision machine,

and with higher CM energies available, also serve as a machine for outright NP discovery.

Just as LEP set the stage for the LHC, the FCC-ee will be the first stage of operational

collisions in the new collider, and will lay the groundwork for future electron-hadron (eh)

collisions, and further still until hadron-hadron (hh) collisions. The projected schema of

the LHC and FCC are overlaid in Figure 10.
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Figure 10: Projected schematic for possible placement and size of the FCC relative to
the LHC (Image: CERN).

Figure 10 illustrates the magnitude of the FCC, highlighting the enormous feasibility

challenge due to features of the terrain as well as the size of the machine. One natural

question may be to wonder why a collider with a much bigger radius will allow us to reach

such higher energies in the final hh collision stage. This is primarily due to synchrotron

radiation losses, which are proportional to the fourth power of the particle energy and

inversely proportional to the radius of the collider. In the FCC, the curvature of the

particle trajectory is “gentler”, resulting in significantly reduced synchrotron radiation

losses. Consequently, particles can be accelerated to higher energies before the energy loss

due to radiation becomes a limiting factor. This is one of the key reasons why the FCC,

with its much larger radius compared to the LHC, can achieve higher collision energies

for the same colliding particles.

In the following section, we will discuss the unfolding stages of the FCC, with a primary

focus on the FCC-ee before discussing the proposed detector designs and the phenomenol-

ogy of the HNL decays.
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3.1 FCC-ee

The projected timeline of the FCC operations and their alignment with CERN operations

is shown in Figure 11. The FCC is targeted to begin operations in circa 2048, and will

take data for an estimated 15 years.

2021 - 25 ~2028 2033
~2041

20742048

Feasibility study

Project approved by CERN council

Construction begins

High Lumi ends

FCC-ee operation begins (~15 yrs)

FCC-hh operation begins (~20 yrs)

Figure 11: Projected timeline of the FCC project (Image: adapted from [42]).

The FCC-ee is set to unfold in phases, functioning sequentially as an electroweak, flavour,

Higgs, and top factory. It will cover an energy spectrum starting from the Z pole and

beyond to the WW threshold, extending through the peak Higgs production rate, and

reaching beyond the tt̄ threshold. The high luminosity available at the Z pole paves the

way for exciting opportunities in the search for new particles. The stages of the FCC-ee

runs, complete with their CM energies, luminosities and statistics are compiled in Table

1, and depicted further in Figure 12 [43].

Process
√
s (GeV) L (1034 cm−2 s−1)

∫
L dt (ab−1) Statistics

Z 91.2 230 150 3× 1012 Z decays (visible)

WW 160 28 12 108 W+W− events

ZH 240 8.5 5 106 ZH events

tt̄ 350, 365 1.8, 1.55 0.2, 1.5 106 tt̄ events

Table 1: Event statistics at various runs of the FCC-ee [44].
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Figure 12: Projected FCC-ee runs ordered by energies (Image: FCC Collaboration).

The interaction environment in lepton-lepton collisions such as those at the FCC-ee are

very ‘clean’9 compared to those of hadron colliders, even relative to linear e+e− colliders.

The FCC-ee provides an excellent opportunity to probe new particles with masses between

1 and 100 GeV and their electroweak couplings, such as the benchmark heavy neutral

lepton models we will discuss in Chapter 3 [45].

3.1.1 The IDEA Detector

There are two key detector designs described in the FCC-ee conceptual design report [46]:

the CLIC-Like Detector (CLD) [47] and the Innovative Detector for Electron-positron

Accelerators (IDEA) [48]. A third proposal is made for the Lepton coLlider Experiment

with Granular calorimetry Read-Out (ALLEGRO), featuring a highly granular noble-

liquid electromagnetic calorimeter [49].

For the purposes of this study, we will focus on the IDEA detector which can be seen

below in Figure 13.

9In this context, ‘clean’ refers to the lower background noise in the collision environment, making it
easier to analyse the results. Lepton-lepton collisions produce fewer secondary particles and have more
straightforward initial states than hadron collisions, which involve complex interactions between quarks
and gluons.
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Figure 13: Schematic design of the proposed IDEA detector concept [50].

The detector requirements at the FCC-ee are stringent. With a heavyweight physics

programme targeting immense luminosities, we must have detectors capable of matching

systematics such that precision measurements and the discovery of weakly interacting

particles are able to be correctly handled in the detector sub-systems.

In the IDEA detector, the silicon pixel vertex detector (VTX) sits at the centre, adjacent

to the particle collision beam, for reconstruction of charged particle trajectories. Posi-

tioned near the beam, the VTX is essential for pinpointing the decay vertices of promptly

decaying particles. Progressing outward, a short-drift wire chamber (DCH) sets out a

large volume to ensure tracking of all charged particles. This arrangement facilitates

the grouping of particles originating from a common decay, thereby aiding in the recon-

struction of entire decay processes. The DCH employs an electric field generated by a

superconducting solenoid coil to curve the paths of charged particles, enabling momen-

tum measurements. Encasing the DCH is a layer of silicon micro-strip detectors, which

contribute to refined track reconstruction.

For detailed energy measurements and particle identification, the IDEA detector includes

a pre-shower detector preceding a dual-readout calorimeter. The pre-shower detector clas-

sifies particles based on the shower patterns observed in the tracking detectors, while the

calorimeter stops almost all particles with dense material to measure energy deposition.

The hadronic calorimeter is tasked with detecting hadrons that interact strongly, such as

protons and neutrons, while the electromagnetic calorimeter is designated for electrons

and photons. Decay products of the heavy tau lepton are recorded within the detector.

Unlike tau leptons, muons are not halted by the electromagnetic calorimeter due to their

comparatively long lifetime, but are instead measured using a magnetic yoke positioned
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as the outermost sub-detector. Due to the clean environment of lepton-lepton collisions,

the total collision momentum is completely known, unlike in hadron-hadron collisions

where the linear momentum is unknown as a result of the underlying quark-quark in-

teraction. Hence, neutrinos are inferred through the total missing energy in the event

reconstruction, rather than the missing transverse momentum as at the LHC.

3.2 HNLs at the FCC-ee: Experimental Outlook

The Phenomenology of HNL production is discussed extensively in [29, 51, 52, 53, 54].

The search for HNLs in the Z resonance run of the FCC-ee demands the production of

an SM neutrino with a heavy right handed counter part, as seen through the Feynman

diagrams in Figures 14 and 15. In all cases considered, the HNL decays via an off-shell10

W boson.

N N

Figure 14: Feynman diagrams for the e+e− → Z → Nν̄e → e+qq̄ and e+e− → Z →
Nνe → e−qq̄. These are the lepton number violating processes corresponding only to a
Majorana-type HNL, which has the ability violate letpon number conservation.

10An ”off-shell” particle does not satisfy the usual energy-momentum relation for a real (on-shell)
particle. In other words, it is a virtual particle that exists temporarily during the interaction and does
not have a well-defined mass. This allows for different decay channels and intermediate states in particle
interactions.
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N N

Figure 15: Feynman diagrams for the e+e− → Z → Nνe → e+qq̄ and e+e− → Z →
Nν̄e → e−qq̄. These are the lepton number conserving processes corresponding to a
Dirac-type HNL, but are also allowed in the case of Majorana-type.

Figure 15 shows the electron dijet final state of the HNL decay via a virtual W boson

following from its lepton number conserving production. The quarks produced in the

fundemental interaction, are observed as jets, which are collimated sprays of hadrons

resulting from the hadronisation of quarks. Figure 14 shows, on the other hand, a final

state resulting from a lepton number violating HNL, one consistent with a Majorana type

particle, in which neutrinoless double beta decay would also be possible.

HNLs produced via the Z resonance from e+e− collisions have been studied since the days

of LEP with the DELPHI experiment [55]. The branching ratio for a the production of a

neutrino anti-neutrino pair via a Z boson is known to be BR (Z → νlν̄l) ≈ 0.063 for any

lepton flavour of l = e, µ, τ . The branching ratio for a Z boson decaying to a anti-neutrino

HNL pair is given by Equation 20, where UlN is the mixing between the standard model

neutrino and the HNL. This branching ratio is equal to the branching ratio of Z → N̄ν.

BR (Z → Nν̄) = BR (Z → νν̄) |UlN |2
(
1− m2

N

mZ
2

)2(
1 +

1

2

m2
N

mZ
2

)
(20)

Within the framework of the minimal Type I seesaw model, we consider the decay of a

HNL via a virtual Z or W boson, shown in Equation 21. In our analysis, we focus on the

electron dijet system in the final state, and hence are interested in the W ∗ decays of the

HNL.

N → νZ∗ −→ νν̄, ℓℓ̄, qq

N → ℓ′W∗ −→ νℓ̄, qq′
(21)

There are four distinct decay topologies (ℓ+ℓ−ν, ℓ±νqq̄′, ℓνqq̄, and νqq̄ with l = e, µ, τ ,
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q = u, d, s, c, b and qq̄ = ud̄, cs̄) whose branching ratios are largely insensitive to the

mass of the HNL. For masses below 50 GeV, the contribution from charged currents is

about 75%, which increases to 80% for masses near 75 GeV. The branching ratios remain

relatively stable across this mass range. The branching ratios are considered at length in

[56], and Figure 16 summarises the behaviour of the branching ratio over the considered

mass range for relevant final states.

Figure 16: HNL branching ratios as a function of the HNL mass for fixed |U |2 = 10−3.
It is helpful to note that the branching raito is independent of the mixing angle (Image:
T. Sharma).

An interesting property of HNLs are the lifetimes and decay lengths. The decay length

is proportional to the mixing angle, U−2
lN and HNL mass, M−5, meaning that for HNLs

with M < 30 GeV with a mixing angle U2
lN < 10−6 we have long-lived particles (LLPs)

against a prompt background, creating a distinct and easily accessible signature for the

HNL decay. The decay length for a given HNL is shown in Equation 22, and its lifetime

in Equation 23.

L ≈ 2.5×
(
10−6

UlN

)2

×
(
100GeV

mN

)5

[cm] (22)

τN = 5× 1026 ×
( mN

1keV

)−5
(
U2
lN

10−8

)−1

[s] (23)

Thanks to the consequential lifetime of some of the HNL models considered, the displaced
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topology of the HNL decay from the interaction point displays a clear signature in the

fiducial volume of a lepton collider such as the one proposed at the FCC-ee. The final

state of the decays demonstrated in Figures 14 and 15 are shown topologically through

the schematic of the FCC-ee event display shown in Figure 17. For some of the signal

points in range, specifically those with small mass and small couplings, the secondary

vertex can be some order of 1 m away from the interaction point, which would be a clear

indication of a signal event. With a displaced vertex, substantial mass with no pileup

in an e+e− machine, one would perhaps rightly expect a clear signature with promising

discovery potential for the HNL model proposed.

Figure 17: Representation of an event display at an FCC-ee detector of a HNL decay into
an electron and a virtual W decaying hadronically (Image: FCC Collaboration).

The main background one might consider from such a machine when looking for our

HNL signals is given by the limitation of the irreducible four-body decay of the Z boson,

Z → W ∗W → lνqq which mimics the same final state as those considered in the case

of the HNL. The Feynman diagram for one example of such a process is given below in

Figure 18.
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Heavy Neutral Leptons at FCC-ee 3.2 HNLs at the FCC-ee: Experimental Outlook

Figure 18: One example of the Feynman diagram resulting in a four body final state for
e+e− → Z → τ τ̄ → lνqq̄′. This process represents an irreducible background for our
signal topology.

Further considered background would come from the standard decay of the Z boson into

pairs of charm quarks or bottom quarks, Z → cc̄ and Z → bb̄. These signatures would

give considerably different topology to that of our signal, but we nevertheless consider

them for the purposes of our analyses. Example Feynman diagrams for the Z → bb̄ and

Z → cc̄ decays are given below in Figure 19.

Figure 19: Possible Feynman diagrams for the e+e− → Z → bb̄ (left) and e+e− → Z → cc̄
(right) background processes.

In the next chapter, we discuss details of the FCC Software and the simulation details

relevant for the analysis which will be discussed in Chapter 5.
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4 Simulation

For the purposes of studying our benchmark HNLs, we worked within the FCCAnalyses

framework. In this chapter, a summary of the methodology is composed.

4.1 Software setup

Figure 20: Flowchart of the FCCAnalyses framework complete with the event generation
and detector simulation.

The Monte Carlo (MC) events are generated by parsing the event process card to MadGraph.

For this analysis, the latest feature release of MadGraph5 aMC@NLO [57] at the time of ac-

cess, v3.5.3, was used. For the HNL signals, the HeavyN model [58, 59] in the Universal

FeynRules Object [60, 61, 62] is used to model the Dirac HNLs used for this study.

The IDEA detector card can be found in the repository linked in Reference [63]. The de-

velopment of a comprehensive full detector simulation is a complex and resource-intensive

task. Prior to its completion, a Delphes parametric fast simulation approach is adopted

to approximate the interactions of particles with the detector. This method significantly

streamlines the simulation process by applying predefined efficiency factors and smearing

algorithms to the true momentum, energy, and time measurements of particles. These ap-

proximations are designed to mimic the expected performance of the detector, including

its tracking efficiency, energy resolution in calorimeters, and timing resolution, without

the need to simulate every interaction of particles with detector materials. The simula-

tion of jet reconstruction, flavor tagging, and missing energy calculations are similarly

treated, relying on smeared particle properties rather than detailed physical processes.

While this approach does not capture the full complexity of particle interactions within
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the detector, it provides a valuable tool for early physics analysis and strategy devel-

opment. Significant progress is being made for a full detector simulation for the IDEA

detector concept by the FCC collaboration [64].

The analysis framework used throughout this thesis is routed in the Key4HEP software,

EDM4HEP, which is illustrated below in Figure 21.

Figure 21: Graphic to illustrate the flow of objects within the key4HEP framework from
Monte Carlo Level to detector reconstruction, including raw rata processing and digiti-
zation (Image: CERN [65]).

The Delphes IDEA card simulates the detector response and applies efficiency corrections

to the raw MC events, effectively replicating the detector’s performance. For example,

if the final state decay products are highly collimated along the beamline, they do not

interact with the detector, and hence remain undetected. Further, if a particle, for

example a charged lepton, does not have sufficient enough energy (in the case of Delphes

IDEA card, this is E < 2 GeV) then it will not be reconstructed. After pre-selection, the

distributions are smeared to reflect inefficiencies in the detector subsystems.

The FCCAnalyses Framework [66] is the centralised analysis software used to perform

data analysis for FCC studies, using RDataFrame [67, 68] in ROOT [69] to create flat

n-tuples from reconstructed particle objects produced via Delphes. In stage 1 of the

analysis, pre-selection is applied and various cuts are be made on the distribution. In

the final stage of analysis, histograms are produced allowing for visual analysis of the

distributions for variables such as electron PT , which forms the basis for our sensitivity

studies.
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4.2 Jet algorithms

In this study, jet reconstruction was primarily conducted using the FastJet software,

rather than the initial event generation phase with Pythia. This approach was chosen

for the enhanced control and adaptability it provides when working directly with particle

data from the EDMHEP files. The Durham jet algorithm [70] was used for the clustering

jets.

Vertex

Jet

Vertex

Collimated objects with high yij

Objects with varied yij

Figure 22: Illustration of jet clustering for highly collimated objects originating from a
common vertex, where yij is the quantified measure of ‘closeness’ used by the clustering
algorithm to find jets.

The essence of a clustering algorithm is to gather spatially proximate particles into a single

object, known as a jet. Jets arise in the detector due to hadronisation processes from

quarks produced in interactions immediately forming hadrons due to confinement. The

criteria for proximity and the quantification of inter-particle distance, however, can vary

across different algorithms. For the Durham algorithm used in this thesis, ‘closeness’ is

quantified by comparing the squared invariant mass of a particle pair to the total squared

invariant mass of the entire event. In Figure 22, closeness is defined with the metric

yij = 2min
(
E2

i , E
2
j

)
(1− cos θij) /E

2
vis, where Ei and Ej are the energies of particles i

and j, θij is the angle between the momentum three vectors of the two particles, and

Evis is the total momentum of the constituents in the event. This metric is calculated

for all particle pairs, and those with the minimum distance are combined to form a jet.

The process continues iteratively, with distance recalculations and further merging, until

a predefined condition is satisfied. For the particular analysis detailed in this thesis, the

algorithm was configured to generate exactly two jets per event to align with the expected

electron and dijet final state of the investigated process.

Analysis level jet reconstruction was decided over Pythia stage jet construction to exclude

electrons or positrons from the particle groups considered for jet formation. Hence, the

Université de Genève 35



Heavy Neutral Leptons at FCC-ee 4.3 Sample Generation

final jet constructs do not incorporate the lepton identified in the event.

4.3 Sample Generation

4.3.1 Background Samples

In this thesis, we consider two instances of the centrally produced background, the Z →
bb̄, and the Z → cc̄. The samples used correspond to those centrally generated in the

Winter2023 campaign by the FCC collaboration [71]. A third background considered

is the 4-body final state discussed in Section 3.2, which we locally generate using the

MG5 Process Card found in Appendix B.2. The 4-body final state is expected to be

the hardest to differentiate from our signal. It is generated in place of heavier jet final

states, such as those originating from Z → τ τ̄ , so that we only consider background

with relevant topology relative to our signal process. Statistics from the backgrounds,

including cross-section, non-normalised MC events11 and production luminosity are given

in Table 2.

Process σ(pb) Monte-Carlo events Production L (fb−1)

Z → bb̄ 6.65× 103 4.39× 108 6.60× 101

Z → cc̄ 5.22× 103 4.98× 108 1.15× 102

Z → 4body 1.40× 10−2 1.00× 105 7.14× 103

Table 2: Summary table to show the cross section, raw-events, and production luminosity
for each of the background processes considered for this analysis.

For the analysis considered here, we will scale our events to a luminosity of 10 fb−1, for

which we have sufficient background statistics. In Chapter 6, results will be scaled to the

expected luminosity of the FCC-ee at L = 150 ab−1, though it is critical to note that

very small production luminosity in the central background processes impose a significant

statistical challenge for making commentary on the discovery potential of HNLs at the

true FCC-ee luminosity.

4.3.2 Signal Sample Generation

Signal samples, as described in the previous section, are generated using the HeavyNmodel

in UFO and generated in Madgraph. We locally generate 56 samples with masses in the

range: 10 ≤ mN ≤ 80 GeV with mixing angles squared between: 10−4 ≤ |UeN |2 ≤ 10−10.

An example of the MG5 Process Card for the mass point withmN = 10 GeV, |UeN |2 = 10−8

11Elsewhere, we use the term raw to mean the Monte-Carlo events which not normalised to any specific
luminosity.
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can be found in Appendix B.1. After several campaigns, it was possible to generate almost

all of the parameter points in our range. Unfortunately, at very low cross sections, the

production of the n-tuples12 becomes highly susceptible to crashes, and for the signal

point at mN = 30 GeV, |UeN |2 = 10−10 we were unable to produce a stage 1 flat n-tuple.

This ultimately does not affect our analysis at 10 fb−1 where there is no such extension

into this order of couplings for the 90% CL exclusion limit. For the scaling of results to

150 ab−1, this point is estimated from the surrounding points, as leaving it without a

value would skew the interpolated delimitation line. At this scale, statistical uncertainty

arising from the luminosity is anyhow much larger than the uncertainty in interpolation

of the considered point.

Information regarding the cross-section, raw events and the production luminosity for a

50 GeV HNL at a range of mixing angles is given in Table 3. A full tabulation featuring

the cross sections of each signal point is found in Appendix C.1.

Process (mN = 50 GeV) σ(pb) Monte-Carlo Events Production L (fb−1)

|U2| = 10−4 2.27× 10−1 1.00× 105 4.41× 105

|U2| = 10−5 2.27× 10−2 1.00× 105 4.41× 106

|U2| = 10−6 2.27× 10−3 1.00× 105 4.41× 107

|U2| = 10−7 2.27× 10−4 1.00× 105 4.41× 108

|U2| = 10−8 2.27× 10−5 1.00× 105 4.41× 109

|U2| = 10−9 2.27× 10−6 1.00× 105 4.41× 1010

|U2| = 10−10 2.27× 10−7 1.00× 105 4.41× 1011

Table 3: Summary table showing the cross section, raw-events, and production luminosity
for the range of mixing angles considered at a fixed mass of 50 GeV.

4.3.3 Reconstructed Events

Within the FCCAnalyses framework, events can be distinguished as “truth” or “recon-

tructed”. Truth data corresponds to the events generated using the physics processes

in the process cards, whilst the reconstruction requires parsing the truth events through

the Delphes IDEA card. For a small sample of the central Z → bb̄ background process,

Figures 23, 24, 25 and 26 compare the distribution of truth and reconstructed events

for both electron energy and electron η. These variables are chosen since these are the

variables for which cuts are made on the truth-level. In Figures 24 and 26, a cut is made

on the truth level events according to E ≥ 2.0 GeV, pT ≥ 0.1 GeVand |η| ≤ 2.56, as

12A flat n-tuple is used to store event information in a tabular format, where each row corresponds to
an event and each column corresponds to a variable or feature of the event. In the case of this analysis,
the n-tuples are stored as ROOT files.
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described in the Delphes IDEA card.
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Figure 23: Distribution of an sample of Z
→ bb̄ for the lead electron energy at the
level of truth and reconstruction, with no
cut applied on the truth. We identify a
clear 2 GeV cut on the reconstructed en-
ergy.
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Figure 24: Distribution of an sample of Z
→ bb̄ for the lead electron energy at truth
level and reconstructed level, with selection
cuts: E ≥ 2.0 GeV, pT ≥ 0.1 GeVand |η| ≤
2.56.
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Figure 25: Distribution of an sample of Z
→ bb̄ for the lead electron η at the level
of truth and reconstruction, with no cut
applied on the truth. We identify a clear
cut on reconstruction at η = 2.56.
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Figure 26: Distribution of an sample of Z
→ bb̄ for the lead electron η at truth level
and reconstructed level, with selection cuts
on truth matching E ≥ 2.0 GeV, pT ≥
0.1 GeVand |η| ≤ 2.56.

After applying the pre-selection posited by the IDEA card, we see that the distributions of

the truth and reconstructed samples indeed closely match. The small differences present

after the cuts is due to the “smearing” which is applied when reconstructing the detector

conditions to reflect the finite resolution of the sub-detector systems. These plots serve

to give some idea of the action of the detector reconstruction on the samples generated

both centrally and locally.
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5 Analysis

Three analyses strategies were used to optimise the sensitivity in the electron dijet channel

to our benchmark HNL models. In Section 5.4, a cut and count study was done to

replicate the work found in [72]. This work mostly focuses on finding variable cuts

satisfying criteria on three main mass points: 20 GeV, 50 GeV and 70 GeV for a fixed

mixing angle of |U2| = 10−6. In Section 5.5, an extension of this work is composed by

using boosted decision trees (BDTs) to optimise the sensitivity by training a model for

each signal point. Finally, a deep neural network (DNN) is trained on each of the signal

points to compare different machine learning techniques and their capacity to optimise

the sensitivity of HNL searches at the FCC-ee.

5.1 Normalisation

The flat n-tuples produced through the FCCAnalyses framework are categorised as being

central samples (i.e. centrally produced by the FCC collaboration), such as Z → bb̄ or

Z → cc̄, or locally generated, such as our 4-body background and HNLs. In any case,

there are a given number of raw MC events in each n-tuple. This number of events is

irrespective of target luminosities and hence we must apply a normalising factor in order

to properly make an assessment of the FCC-ee conditions.

The number of events for a given integrated luminosity is given by the relation below in

Equation 24, where σ is the event cross section and L is the integrated luminosity. The

luminosity L is a measure of the number of particles passing through a unit of area per

second, and hence the integrated luminosity, L =
∫
L dt, is a measure of the number of

events expected per unit of cross section.

n = σ × L (24)

The number of events produced for the background n-tuples is tabulated below, alongside

three of the HNL signals, in Table 4. This table is similar in nature to Tables 2 and 3,

but this time with a focus on the expected number of events at two luminosities, at 10

fb−1 and 150 ab−1.
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Process σ (pb) Monte-Carlo events
Events at L =

10 fb−1 150 ab−1

Z → bb̄ 6.65× 103 4.39 ×108 6.65× 107 9.98× 1011

Z → cc̄ 5.22× 103 4.98 ×108 5.22× 107 7.82× 1011

Z → 4body 1.40× 10−2 1.00× 105 1.40 × 102 2.10× 106

20 GeV, |U2| = 10−6 3.77× 10−3 1.00× 105 3.80× 101 5.66× 105

50 GeV, |U2| = 10−6 2.27× 10−3 1.00× 105 2.30× 101 3.40× 105

70 GeV, |U2| = 10−6 9.06× 10−4 1.00× 105 9.00× 100 1.36× 105

Table 4: Processes used for this analyses alongside the cross section information, the
produced number of events, and the expected number of events at 10 fb−1 and 150 ab−1.
Event numbers are given to the nearest integer.

Table 4 alludes to a key problem for studies such as these in the early stages. Such an

enormous luminosity for the FCC-ee Z run leads to immense pressure on the Monte-Carlo

statistics generation to match those expected at the collider. At this stage, we simply do

not possess adequate statistics to make realistic commentary on the discovery potential

of our HNLs at the true FCC-ee integrated luminosity since our central samples do not

contain a sufficiently high number of events. Therefore, in this study, we normalise to a

luminosity of 10 fb−1, for which we have realistic simulated samples.

In order to normalise our MC events, we use the simple formula below in Equation 25,

where N is the normalising factor.

N =
Ltarget

Lsample

=
Ltarget × σ

nsample

(25)

This equation, however, must also be robust enough to account for selection efficiencies.

For example, if we do not observe the full number of events in the sample, nMC , but

instead apply pre-selection to the events, resulting in only a fraction surviving, nsel, we

must adjust accordingly. We can write the normalizing factor for events surviving a given

selection in terms of the selection efficiency, ξ = nsel

nMC
, as shown in Equation 26 below.

N =
Ltarget × σ

nsample

× ξ (26)

5.2 Sensitivity

Statistical significance quantifies the probability (p-value) of observing a given excess to

the expected background. In particle physics, the ‘gold standard’ for claiming discovery
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is Z = 5σ. The probability that the background-only hypothesis can describe an observed

excess of events in a given region corresponding to this value is 3 × 10−7, meaning this

would only occur as a random fluctuation around 1 in every 3.5 million cases [73].

Z = 2σ on the other hand represents a probability of 0.05, which is not robust enough

to claim discovery but is a good indication of a statistically significant observation, often

called the 95% confidence level (CL) limit. For our sensitivity plot, we will use Z = 2σ

to and attempt to increase the parameter space covered by the 95% CL limit.

To quantify the significance of observing n total events with an expected number of

background events, b, we use the definition given in the ATLAS note found in Reference

[74], written in Equation 27 below. In Equation 27, σ denotes the uncertainty on the

background events, not to be confused for where it is otherwise used for the cross section

or standard deviation. For the purposes of this study, we employ a 10% uncertainty,

σ = 0.1.

Z =

√
2

(
n · ln

[
n (b+ σ2)

b2 + nσ2

]
− b2

σ2
ln

[
1 +

σ2(n− b)

b (b+ σ2)

])
(27)

To visualise the distribution of each discriminating variable, we produce a histogram

divided into a given number of bins. For each bin, the number of background and signal

events are counted, wherein significance is then calculated by comparing the quantity of

background to the total number of events.

In order to quantify the sensitivity of a given region of interest, we cumulatively count

the significance of how ever many bins fall within this region. This can be done from

either the left to the right (LR) or the right to the left (RL).

In a LR regime, we start counting from the right most bin, and accumulate the significance

all the way to the left. We then make a cut to the optimal threshold, and keep the events

to the right of the cut. In the RL, we count from the first bin to the last, and take events

to the left of the cut. The difference between these two regimes in shown more concretely

in Figures 27 and 28.
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Figure 27: Calculation of the significance
in a LR regime, making a cut on the distri-
bution by keeping everything to the right
of the cut made, e.g. E > 35 GeV.
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Figure 28: Calculation of the significance
in a RL regime, making a cut on the dis-
tribution by keeping everything to the left
of the cut made, e.g. ∆R < 1.5.

In Figures 27 and 28, the dashed line represents the position where a possible cut might

be made, and the arrow orthogonal to it represents the region kept after making this

cut, reinforced by the illustrative scissors and magnifying class. One region is kept for

analysis and the significance is counted, whilst the other is cut away. This is the essence

of a cut and count analysis.

Of course, whilst maximising significance is important, the optimal cut is not completely

clear from these distributions alone since it is also necessary to account for the yield of

a cut, i.e. how much of the absolute signal and background remains. Additionally, some

cuts become a little more difficult to find when we consider the entire signal parameter

space, since for many variables, the signal behaves differently depending on its properties.

For instance, a signal point with a low mass and a very small mixing angle would be

considered long lived, and if we plot the decay length of that signal, it would be difficult

to make a global cut across all points without losing discrimination unnecessarily in some

regions of the parameter space. We will return to the distributions and optimising the

cut and count analysis later in this chapter.

5.3 Discriminating Variables

The essence of any sensitivity study is to identify kinematic differences between signal

and background regions for a given variable. To this end, we will set out the variables of

interest and show their distributions for our three background processes and additionally

for three chosen signal points at 20 GeV, 50 GeV and 70 GeV for a mixing angle of
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|U2| = 10−6 in all cases, since this forms the basis of the cut and count study. Then,

optimisation will be performed using techniques involving boosted decision trees and deep

neural networks. The findings of this analysis will be explored throughout Section 5, and

summarised in Section 6.

5.3.1 Angular Variables

Many of the variables of interest are related to the angle at which objects enter the

sub-detector systems, typically the tracker. Different particles will enter the detector at

different angles relative to the interaction point, for each specific interaction. The main

discriminating variables of this class that we will discuss include the pseudorapidity, (η),

the angles ϕ and θ, the 3D angle Ψ and a composite quantity, ∆R formed from η and ϕ.

The definitions of these angles can by understood by the schematic in Figure 29.

Figure 29: Definitions of angular variables
η, ϕ and θ relative to the z-axis beamline
(Image: taken from [75]).

Figure 30: Relationship between angle rel-
ative to the Z axis, θ and the pseudorapid-
ity η.

The relationship between η and θ is shown in Figure 30, and formalised in Equation 28.

Both angles describe the position in the yz plane, but η is Lorentz invariant, and is hence

chosen typically instead of θ.

η = − ln

(
tan

(
θ

2

))
(28)

The azimuthal angle in the xy plane is bound between 0 and 2π radians, and we expect a

flat distribution since the collision occurs along the z axis and hence the initial transverse

momentum is zero. The result is this is that there is spherically symmetric choice of final

position for decay products to interact with the detector volume, with no motivation for

any one azimuthal angle over another. Indeed, the ϕ distribution is shown for our HNL
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signals and our background processes in Figure 31.
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Figure 31: Distribution of the azimuthal angle, ϕ, for three benchmark HNL mass points
and the three background processes at an integrated luminosity of 10 fb−1.

When trying to maximise the discrimination between the signal and background, we must

consider variables which exhibit distinct behavioural differences between our HNLs and

the SM background. Angular distance is indeed a promising candidate for a category of

variable, since the background processes Z → bb̄ and Z → cc̄ will produce many back to

back jets with a high angular separation, whereas the signal will produce more collimated

jets since it decays via an off-shell W boson.

The angular distance between objects in the detector is taken to be Lorentz invariant

along the longitudinal plane by using the azimuthal angle ϕ, and the pseudorapidity, η.

This distance is characterised as in Equation 29. In the case of our study, we use two

instances of ∆R, once between the two jets in the di-jet final state, and again between

the dijet system and the lead electron. These will later be denoted as the electron dijet

∆R, or ∆Rejj, and the dijet ∆R, or ∆Rjj. For a small ∆R, two objects are said to be

collimated. Conversely, for large ∆R, two objects are isolated from one another. The

distributions for ∆Rejj and ∆Rjj are given in Figures 32 and 33 respectively.

∆R =
√
∆ϕ2 +∆η2 (29)
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Figure 32: Distribution of the dijet ∆R for three benchmark HNL mass points and the
three background processes at an integrated luminosity of 10 fb−1.
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Figure 33: Distribution of the electron dijet ∆R for three benchmark HNL mass points
and the three background processes at an integrated luminosity of 10 fb−1.

Another metric composed to study the angular separation of the jets is the 3D angle
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Heavy Neutral Leptons at FCC-ee 5.3 Discriminating Variables

between the jet four vectors, j1 and j2. The definition of Ψ is given in Equation 30, and

in practice differs only slightly from the ∆Rjj, encoding much of the same information.

Small kinematic differences between these two variables exist, and can be seen by com-

paring the two plots, which leads to differences in their discriminating power as seen in

the lower panel of both Figure 32 and 34; hence, both are kept for the cut and count

consideration.

Ψ = cos−1

(
j1 · j2
|j1| |j2|

)
(30)
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Figure 34: Distribution of the dijet 3D angle, Ψ, for three benchmark HNL mass points
and the three background processes at an integrated luminosity of 10 fb−1.

The final angular variable we consider throughout this analysis is given by the θ of the

missing energy. Unlike in a hadron collider, lepton collisions involve point-like interactions

where the total energy is known beforehand. In hadron-hadron collisions, we are subjected

to the probability distribution functions within the sea of quarks and gluons, and can

only infer neutrinos through missing transverse momentum. The result of this difference

is that we can infer neutrinos in our final state through total missing energy at the FCC-

ee, and the direction of this can be expressed through θ. We expect a somewhat flat

distribution since the neutrino is a product arising from the secondary decay and there

is no a priori reason this should happen in any one place of the detector relative to the

interaction point. The distribution is shown in Figure 35.
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Figure 35: Distribution of the missing energy θ for three benchmark HNL mass points
and the three background processes at an integrated luminosity of 10 fb−1.

Though Figure 35 does not initially appear to show good discrimination, we cannot dis-

count its value, as its discriminating power may become evident when used in conjunction

with other variables. Such non-linear combinations of cuts are a key reason why machine

learning techniques may be more suitable for high-dimensional data compared to typical

cut-and-count approaches.

5.3.2 Energy Variables

The second class of variables important for our consideration is those concerning the

energy of the decay products. In the Z run of the FCC-ee, the centre of mass energy

is equal to 91 GeV, meaning the invariant mass of the decay products will sum to this

energy. This puts constraints on the relative energies of the decay products, and hence

we should see quite distinct properties of the decay products for high mass compared to

low mass HNLs in terms of their allowed energies. This could offer a clear ground for

further discrimination.

The first of these variables is the lead electron energy produced from the secondary vertex

in the decay of the HNL, or indeed originating from the background through one of b or

c jets. In the case of the HNL, the electron will have a higher mean energy until we begin

to approach the mass of Z boson, where the electron energy will be constained by the

conservation of energy since the HNL will be produced with low momentum. The plot of
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the lead electron energy is shown in Figure 36.
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Figure 36: Distribution of the lead electron energy for three benchmark HNL mass points
and the three background processes at an integrated luminosity of 10 fb−1.

In Figure 36 we indeed see the earlier described Delphes cut at E > 2 GeV, meaning

that any later cut we make on the lead electron energy will have a higher yield than

other possible cuts, since we already have some form of selection efficiency present with

this “hidden” truth cut. We see good discrimination in the higher energies between ap-

proximately 35 and 45 GeV, where the background drops of against a relatively constant

signal.

The second consideration is made for the energy of the neutrino produced alongside the

HNL in the Z decay, characterised by the total missing energy. The distribution of the

missing energies is given in Figure 37.

Université de Genève 48



Heavy Neutral Leptons at FCC-ee 5.3 Discriminating Variables

0 5 10 15 20 25 30 35 40 45 50

Reco Total Missing Energy [GeV]

3−10

2−10

1−10

1

10

210

310

410

510

610

710

Lo
g 

N
or

m
al

is
ed

 E
nt

rie
s

20GeV HNL
50GeV HNL
70GeV HNL

 cc→Z 
 bb→Z 

 qqν e →Z 

 Simulation (DELPHES)FCCee
No Selection

-1 L dt = 10 fb∫ = 91 GeV , s

0 5 10 15 20 25 30 35 40 45 50

Reco missing energy [GeV]

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

 =
 1

0%
)

σ
Z(

Cumulative SignificanceCumulative Significance

Figure 37: Distribution of the missing energy for three benchmark HNL mass points and
the three background processes at an integrated luminosity of 10 fb−1.

Here we see good discrimination for the low mass point, which is produced alongside

a high momentum neutrino. Conversely, the higher mass signal points have a lower

discrimination. Once again this is since we approach the Z mass and constrain strongly

the energy with which we can produce the neutrino.

5.3.3 Vertex Variables

The last class of variables considered, mostly for the machine learning optimisation, is

the vertex based variables. For different signals and backgrounds, we would see a varied

vertex topology. We first consider the tracks by assessing the total number of tracks,

the number of primary tracks, and the χ2 of the primary vertex. In this context, the

total number of tracks counts all tracks originating from both the primary vertex, and

any secondary or tertiary interaction vertices. Primary tracks aim to include only those

originating from the initial interaction. The χ2 of the primary vertex is a measure of

how well the reconstructed vertex fits the tracks associated with it, with lower values

indicating a better fit [76]. The distribution for the number of total tracks is shown in

Figure 38, and is shown for the primary tracks in Figure 39.
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Figure 38: Distribution of the total number of tracks for three benchmark HNL mass
points and the three background processes at an integrated luminosity of 10 fb−1
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Figure 39: Distribution of the number of primary tracks for three benchmark HNL mass
points and the three background processes at an integrated luminosity of 10 fb−1

The distribution for the χ2 of the primary vertex is shown in Figure 40 below. We see

a clear peak for most signal and background for a χ2 of 1, which implies good track

reconstruction. For the bb̄ final state, we see less events for low values of χ2. We could
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speculate that this behaviour is expected since the b-jets are less promptly decaying than

for the cc̄, and have high track multiplicity. As a result, reconstruction of the primary

vertex becomes very challenging since they are defined via the secondary vertex, and

hence there is a larger associated χ2 value [77].
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Figure 40: Distribution of the primary vertex χ2 for three benchmark HNL mass points
and the three background processes at an integrated luminosity of 10 fb−1

We consider displaced signatures by searching for any discrimination in the lifetime of

the particle, mostly through investigating the transverse impact parameter, d0. The

transverse impact parameter is an indirect measurement of the lifetime, and is a projection

in the xz plane of the displacement between the primary and secondary vertex. This is

shown in Figure 41.
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Figure 41: Characteristics of an electron di-jet system initiated by a displaced HNL decay:
secondary vertex (SV), as well as a longitudinal (z0) and transverse impact parameter
(d0) of individual tracks from their point of closest approach to the primary vertex (PV).

The distribution of the absolute d0 for our three signal points against the three SM

background processses is shown in Figure 42 below.
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Figure 42: Distribution of the transverse impact parameter for three benchmark HNL
mass points and the three background processes at an integrated luminosity of 10 fb−1
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The significance of the transverse impact parameter is an additionally useful measure,

shown in Figure 43. This variable represents the ratio between the track impact parameter

and its uncertainty [78]. Comparing this distribution to the absolute d0 shown in Figure

42, we see a clearer separation of the signal points, and as such, for future consideration

of the lifetime for separating the study into prompt and displaced signals, we use the d0

significance as the relevant parameter.
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Figure 43: Distribution of the transverse impact parameter significance for three bench-
mark HNL mass points and the three background processes at an integrated luminosity
of 10 fb−1

5.4 Cut and Count

In order to use the variables set out in the previous section to conduct a cut and count

study, regions with maximised sensitivity were taken as the optimal kinematic cuts. To

perform the analysis, three mass points were considered and a series of sequential cuts

were applied to the signal points. For the full cut and count study, it is beneficial to refer

to [72]. Here we will summarise our replication of the main results as a foundation for

the BDT and DNN optimisation. A summary of the selections applied is found in Table

5.
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Variable Selection

Missing energy > 12GeV

Leading electron energy > 35GeV

3D di-jet Angle < 2.4 rad

Di-jet – Electron ∆R < 3

Table 5: Summary of the selections chosen for the cut and count study

Each cut is made sequentially, and the number of events surviving each selection is

tabulated in the cut-flow shown in Table 6.

Selection 20 GeV 50 GeV 70 GeV 4-body Z → cc̄ Z → bb̄

No selection 105 105 105 105 4.9× 108 4.4× 108

Emiss > 12 9.9× 104 9.9× 104 9.9× 104 7.8× 104 3.3× 107 5.6× 107

Emiss > 12 ∧ Ee− > 35 8079 8090 8541 5206 101 817

Emiss > 12 ∧ Ee− > 35 ∧ ψ < 2.4 7780 7290 8333 4853 60 46

Emiss > 12 ∧ Ee− > 35 ∧ ψ < 2.4 ∧∆R < 3 7478 5035 3017 3184 2 1

Table 6: Summary of the cut-flow for the three mass points considered as well as the
standard model background processes.

It is worth noting that the selections made are especially powerful on the bb̄ and cc̄

background processes, which we expected as a consequence of our ‘clean’ HNL signatures.

We see just one and two events survive respectively, with the lead electron energy selection

having the largest impact of the selections, partly since this removes events already hidden

from the lead electron energy spectrum below the Delphes cut. One issue with such an

impressive cut at this level is that scaling to the full luminosity becomes an even greater

challenge, illustrated below in Table 7.

Events Selection 20 GeV 50 GeV 70 GeV 4-body Z → cc̄ Z → bb̄

MC events All cuts 7478 5035 3017 3184 2 1

10 fb−1 events All cuts 2.991 1.007 0.302 4.204 0.213 0.151

150 ab−1 events All cuts 44,868 15,105 4,525 63,055 3,191 2,265

Table 7: Raw MC cutflow compared to normalised cut flow at 10 fb−1 and 150 ab−1

In Table 7, we see that we are, in effect, attempting to model a distribution of O(103)

events in the case of bb̄ and cc̄ with just 1 and 2 MC events respectively. In Figure

44, which shows the background and signal distribution combined after all cuts, we see
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the effects of this especially for our high mass signal point will lower yield under these

selections, where to either side of the signal peak we see erroneous peaks from background

noise.
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Figure 44: Distributions of the three signal points after all cuts made.

Performing our selections globally across all signal mass points, we can calculate the

significance of the signal to form a 2σ limit plot based on these selections. This is shown

in Figure 45.
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Figure 45: Sensitivity plot after cut and count analysis for HNL masses between 10 and
80 GeV for mixing angles between |U |2 = 10−4 and 10−10. This plot is normalised to an
integrated luminosity of L = 10 fb−1. The red dashed line delimits the extrapolation of
2σ significance.

Figure 45 illustrates the 2σ delimitation of the discovery potential for our HNL models

using the global cuts identified in the cut and count study. Employing global selections

in this manner leaves significant room for optimization, as more suitable selections can be

identified for each model, especially as the topology changes between LLPs and prompt

decays. A suitable approach for this optimization is to use machine learning (ML) tech-

niques. To this end, we explore the optimization of the results shown in Figure 45 using

BDTs and DNNs.

5.5 Boosted Decision Trees

Boosted Decision Trees (BDTs) are a family of supervised13 machine learning techniques

which are commonly used for complex classification problems. Though they have been

used for some decades, BDTs have become increasingly popular in HEP applications

for both classification and regression, since they are very easy to use ‘out of the box’,

and are well-equipped to handle features of physics data with little fine-tuning, such as

class imbalance and missing values. Decision-tree based algorithms have long-standing

13Supervised techniques are those which involve training on labelled data, meaning the model learns
based on an expected outcome, rather than finding arbitrary trends in data distributions.
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influence in computing and data-analysis, but a single decision tree algorithm is itself

referred to as a weak learner. Boosting refers to producing a multivariate algorithm by

creating an ensemble of weak learners. The main idea of boosting is to add new models

to the ensemble sequentially. At each iteration, a new weak, base-learner model is trained

with respect to the error of the whole ensemble learnt so far; where previously a weak

learner might have misclassified a signal or background event, the weights of the model

are adjusted and used in the next weak learner. Boosting algorithms construct new base

learners (trees) maximally inversely correlated with the gradient of the loss function of

the entire ensemble of learners [79]. A schematic for the tree structure of a BDT model

is given in Figure 46.

Figure 46: A graphical interpretation of BDT arcitechtures, with data x and associated
labels y. The model uses input features fn and combines weak learning trees to form a
boosted ensemble for classification or regression problems (Image: [80]).

XGBoost [81] is amongst the most popular of the ensemble boosted decision tree algo-

rithms available. For this analysis, as the first extension of the cut and count study, we

trained an XGBoost model to classify our MC produced samples of the background and

signal, where the truth labels were set to 0 for background, and 1 for signal.

The architecture of the model, such as the maximum depth and the number of estimators

is found via cross-validation techniques using GridSearchCV imported into Python from

the Skikit-Learn package [82]. The training is performed on raw data based on the

training-testing split defined in the data preparation. The raw MC events used for testing

are classified by the model, then weighted to a chosen luminosity using Equation 26,

wherein significance is calculated and an optimal threshold in the BDT output is chosen

to preserve a region with a favourable signal to background ratio.

Université de Genève 57
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5.5.1 Data Preparation

Careful data preparation is required in order to best understand and optimise ML frame-

works. The flat n-tuples produced via the FCCAnalyses Framework are used to store

our raw events data for both signal and background. Using RDataFrame, the events are

processed into dataframe objects and filtered according to a chosen criteria. The aim

of this filter is to select a signal rich region of interest in order to reduce computational

time spend by the model in regions of the parameter space with very little signal and

high levels of background. The lead electron energy shown in Figure 36 was used as the

criteria for filtering due to its powerful efficiency in the cut and count procedure. A cut

of 15 GeV on the lead electron energy was chosen for this analysis, as it was very efficient

at cutting the main background volume of bb̄ and cc̄, whilst maintaining good efficiency

on the signal region and sufficient enough background statistics for training. Table 8

summarises the efficiencies of the cut on the background processes and three benchmark

signal points. A full tabulation of the cut efficiencies is appended to Appendix C.2.

Process No Filter Lead Electron Energy > 15 GeV Efficiency (%)

Background

Z → bb̄ 438,538,637 13,074,288 2.98

Z → cc̄ 498,091,935 3,875,708 0.78

Z → 4body 100,000 17,127 17.13

Signal

20 GeV, |U2| = 10−6 100,000 52,508 52.51

50 GeV, |U2| = 10−6 100,000 59,982 59.98

70 GeV, |U2| = 10−6 100,000 64,387 64.39

Table 8: BDT filter efficiencies for background and signal processes as part of the data
pre-processing, where the filter conditions require the lead electron energy > 15 GeV,
additionally, the number of final state reconstructed electrons is required to be exactly
one.

Table 8 has two interesting features; the first of which was already clear from the cut

and count study, which is that the four body final state of the Z decay remains the most

irreducible of the three SM background processes, with ≈ 17% efficiency after the filter,

whereas the bb̄ and cc̄ backgrounds are very effectively mitigated by such a cut on the

electron energy. The second interesting feature is that the signal efficiency reduces as

the mass of the HNL decreases; this is because lower mass HNLs produce a final state

electron with lower energy, hence a E > 15 GeV cut is more strict on these mass points.
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Of course, once we begin to approach the Z mass, the efficiency begins to drop again for

the 80 GeV HNLs, since there is less available energy with which to produce the final

state electron.

The features input to the BDT correspond to those found in Table 9. These features

were chosen after investigations into the number of events and with feature engineering

in the prepossessing stage to assess which variables were correlated and uncorrelated.

Object Variables

Leading electron E, ϕ, d0, σd0 ,∆Rejj

Neutrino Emiss, θ

Di-jet system ∆Rjj, ϕ

Vertex and tracks ntracks, nprimary tracks, χ
2
vertex

Table 9: Variables used as input features for the XGBoost model, where ∆Rjj represents
the dijet ∆R and ∆Rejj represents the electron-dijet ∆R.

In order to understand which features are appropriate for training, a correlation matrix

is plotted between pairs of features to parameterise the strength and direction of the

relationship between variables. To do this, the Pearson correlation coefficient is calculated

and plotted; the diagonal entries are all unity since we are comparing variables with

themselves, and the figures are mirrored along the diagonal. A score of 1 indicates

perfect correlation, -1 implies perfect anti-correlation, and a score of 0 means there is no

measurable correlation between two variables. All features with a correlation score of ±
0.9 relative to any other feature were investigated as possible candidates for removal for

training, and the performance was noted with and without these variables. Ultimately,

for the BDT, it was found generally that higher feature dimentionality gave better results,

even with high correlation scorses such a those between the dijet ψ and the ∆Rjj. The

feature correlation matrix for a given signal point is shown in Figure 47.
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Figure 47: BDT feature correlation matrix for signal point at 70 GeV, |U |2 = 10−6.

Overall, we see good independence between variables through Figure 47. Though, beyond

just this signal point, it is noted that as the mass of the HNL becomes smaller the

correlation between the electron-dijet ∆R and the diijet ∆R become more correlated.

This is understood as low energy electrons produced by low mass HNLs being collimated

along the axis of the dijet system, meaning as the dijet system and the electrons are

produced with lower energy ∆Rejj → ∆Rjj and the correlation score increases.

5.5.2 Training and Testing

A unique BDT is trained for each of the 56 signal points. Each model is trained on a

subset of the data surviving the electron energy filter, with a predefined split between

training and testing such that once the training of the model is complete, we can assess

its generalising power on an unseen set of the data. Each model was trained on 1/2 of the

signal sample and 1/3 of the background sample surviving the filter. These values were

chosen to maintain a good amount of background in the training relative to the signal

since the filter was much more efficient on the background. The raw MC events used for

training are booked in Table 10 below.
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Process Training Events Testing Events

Total Background 5,655,708 11,311,415

20 GeV, |U2| = 10−6 26,254 26,254

50 GeV, |U2| = 10−6 29,991 29,991

70 GeV, |U2| = 10−6 32,194 32,193

Table 10: Distribution of training and testing events for different processes used for the
BDT models.

To mitigate the imbalance between the majority (background) and the minority (signal)

class, weights were applied to each signal point for each training relative to the imbalance

between the classes. This weight is roughly similar to oversampling the minority class,

but instead simply tells the BDT to place much more care in misclassifying the signal,

and the loss function14 is penalised more intensely for false-negatives15.

As mentioned, the specific architecture of the BDT was found using a grid search of the

optimal parameters for the maximum depth of the trees and the number of estimators.

The maximum depth of the trees refers to the maximum number of levels in each decision

tree. A deeper tree can model more complex patterns but might lead to overfitting if

too deep. Conversely, a shallower tree might be too simplistic and underfit. The number

of estimators refers to the total number of trees in the forest. Increasing the number

of estimators can improve the model’s accuracy up to a certain point, beyond which

improvements may plateau while computational costs continue to rise. Additionally,

going beyond plateau, it is possible the model loses generalising power and will yield

worse performance on unseen data. A visual representation of overfitting and underfitting

is shown in Figure 48.

14The loss function is used in machine learning to measure the difference between the predicted values
and the actual values. It quantifies how well a model’s predictions match the true outcomes, with the
goal of minimising this difference during the training process.

15False-negatives occur when a signal sample is falsely labelled as a background event, within a defined
threshold. Usually, this means the signal with a truth label of 1 was given a BDT score < 0.5.
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Figure 48: A dataset with two classes shown. Underfitting, on the left, is where the model
fails to identify complex trends in data. Overfitting, on the right, is where the model
finds highly nuanced patterns in the data and will generalise poorly to new problems.
The middle plot is a good attempt at properly fitting the data without capturing too
much noise (Image: [83]).

Assessing the importance of each feature input to the model is a good means of assessing

how well the model has learnt, i.e. using our knowledge of each signals kinematics, we

can understand if the model is sensibly using each feature. It is also useful to see if we

can simplify the model any further by removing unused variables, possibly reducing the

chance of overfitting and computational load of training the model. To visualise feature

importance, an inbuilt method of XGBoost was used to plot the features of the BDT

against their use by the model. This can naively be interpreted simply as how often the

decision trees are split via a criteria using a given feature, or indeed how significant a

given feature is to the output of the model [84].
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Emiss

FCCee Simulation (DELPHES) mN = 20 GeV, |U|2 = 10-6

(a) BDT feature importance for mass point 20 GeV, |U |2 = 10−6

mN = 50 GeV, |U|2 = 10-6FCCee Simulation (DELPHES)

Emiss

(b) BDT feature importance for mass point 50 GeV, |U |2 = 10−6
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Emiss

FCCee Simulation (DELPHES) mN = 70 GeV, |U|2 = 10-6

(c) BDT feature importance for mass point 70 GeV, |U |2 = 10−6

Figure 49: Feature importance for three different mass points from the signal points
trained where F score is a measure of how ‘useful’ a variable is to the model for (a) 20
GeV, |U |2 = 10−6, (b) 50 GeV, |U |2 = 10−6, (c) 70 GeV, |U |2 = 10−6.

These plots show that the BDT model, in each case, is using all of the input variables for

the three mass points we are discussing here. Of course, for easier to identify mass point

such as 10 GeV, |U |2 = 10−3, the model may be much simpler and require many less of

the variables to have the same performance. A summary of the most important feature

for each model trained in the signal parameter space is given in Figure 50.
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Figure 50: Grid summarising the feature with the highest ‘F Score’ for each signal point
BDT.

In general, as seen in Figure 50, the most important feature for a BDT model trained

was the reconstructed missing energy. We see in the region as we approach very prompt

signatures, towards low mass and high mixing angle (since the decay length ∝ U−2M−5)

the transverse impact parameter becomes most important. This validates that the model

is indeed utilising the most sensible variable for each mass point and naturally separating

long lived decays from prompt signals.

The region in which the θ of missing energy becomes most dominant is interesting, since

it is somewhat unexpected based upon the distribution of Figure 35. One possible ex-

planation is simply that in conjunction with the other variables, the BDT is able to

use variables which initially do not show much discriminating power and find patterns

which we cannot trivially find via cut and count or a simple check of the distribution.

For complex signal points such as those at high mass and small mixing angle, the model

becomes sufficiently large in size that many of the variables are used very frequently. In
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the case of the region with emphasis on θ of missing energy, the missing energy, Emiss,

was consistently the second most leading variable by a very small margin of difference.

We might infer a more clear understanding of the region which demonstrates a reliance

on the electron-dijet ∆R, since we can directly interpret the distribution of Figure 33.

For the low mass HNLs, the distribution peak sits at relatively low ∆Rejj, offering better

discrimination compared to the high mass points for which the peak is around ∆Rejj = π,

in the same place as for the three backgrounds. Hence, for the lower mass points, it is

very encouraging that the BDT models use this variable to identify a difference in the

kinematics between the signal and background.

After training, the model is saved as a ROOT file using TMVA [85], and applied to the unseen

test data set aside during data preparation. The BDT model makes predictions of the

label of each event between 0 and 1, where 0 indicates the model is certain that this is

background event, and 1 indicates certainty in the event being signal. After normalising

the MC events in the BDT output response to a chosen luminosity, we compute the

significance and select a cut on the BDT output to preserve some region with a favourable

signal to background ratio. This part of the procedure is rather similar to the essence of

a cut and count study, but instead of making individual variable cuts, the result is some

‘super cut’ on the BDT response. An example of a decision tree is given in Figure 51

for the 10 GeV, |U |2 = 10−4 mass point. This point was chosen since we get very good

discrimination for this point and it produces comparatively “simple” tree diagrams.

Missing energy 

vΨ

Ψ

Missing energy 

Number of tracks

Electron dijet ∆𝑅

Electron dijet ∆𝑅

Figure 51: Example of the BDT structure coming from the training of mN = 10 GeV,
|U |2 = 10−4. The leaf outputs represent estimates from the base-learners, and in the case
of binary classifcation are converted to probabilities using the sigmoid function [86].

The tree shown in Figure 51 gives some feel for the basic structure of decision trees.

Indeed, the final model is built upon an ensemble of many of these trees, where each is

built with efforts to reduce the errors (residuals) of the previous trees. In this context,

residuals refer to the difference between the actual target values and the predictions made
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by the model at each stage of training.

During the training process, XGBoost minimises a loss function by optimizing the leaf

scores16. For classification tasks, this typically involves calculating the gradient and

hessian of the loss function with respect to the current prediction. The optimal leaf score

for each leaf node j is given by Equation 31.

wj = −
∑

i∈Ij gi∑
i∈Ij hi + λ

(31)

where:

• Ij is the set of instances in leaf j, i.e. how many elements of the training set fall on

a given leaf.

• gi is the gradient of the loss function for instance i, which can be crudely thought

of us the difference between the model prediction and the truth.

• hi is the hessian of the loss function for instance i, and essentially measures the

rate of the change of the gradient of the loss function.

• λ is the regularization term to prevent overfitting, by penalising overly complex

models which learn the training set too well.

For binary classification, the leaf scores from all trees are summed to obtain the final

prediction score. This score is then transformed into a probability using the logistic

(sigmoid) function in Equation 32.

p =
1

1 + e−y
(32)

In Equation 32, y is the sum of the leaf scores from all trees for a given instance. This

transformation ensures that the output is a probability value between 0 and 1, represent-

ing the likelihood of the positive class. For example, the leaf with the score ≈ 0.3609 in

Figure 51 can be input to Equation 32 to yield a probability ≈ 0.5893.

In the following section, we will explore the results of our best BDT models and param-

eterise the output of the model in terms of sensitivity such that a 2σ delimitation can be

drawn as a comparison to typical cut and count methods.

16For a comprehensive overview of the mathematics of boosted decision trees, References [87, 88] can
be used.
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5.5.3 Results

After the model is trained for each signal point on the training set, it is loaded from TMVA

and applied to an unseen test set. The model assigns probabilities to each of the elements

in the test set, and through taking a cut in the signal region on the BDT output, we can

keep a high amount of signal events whilst discounting much of the background. This is

principally similar to the essence of a cut and count study, but for each signal we must

only make one cut rather than a sequence of ‘crude’ cuts on given variables.

After the events in the test set are classified, with their assigned scores between 0 and

1, we can compare to the truth label and see a trend of how the model predicts the

events as a benchmark for its performance. The raw performance of the BDT classifier

is shown at |U |2 = 10−6 for the 20, 50 and 70 GeV signal points in Figures 52a, 53a

and 54a respectively. It is very important to note that this information is simply an

insight into the performance of the model on each of the test set points, and has not yet

been normalised to any integrated luminosity, and hence cannot be used to infer much

information regarding the ultimate sensitivity.

The BDT scores in Figures 52a, 53a and 54a all exhibit “healthy” behaviour for a classifier

in the sense that we see a spike of the background at the truth label for these events of

0, and similarly for the signal events at 1. By re-binning the histograms in the signal

region (taken between 0.9 and 1.0, containing most of the signal events), we can choose an

optimal cut on the BDT output, and calculate the cumulative significance. Importantly,

the significance at this stage is always calculated in the LR regime, since we always expect

with the performance of our model that we yield a signal peak at 1. The BDT output,

normalised to L = 10 fb−1 is shown in the signal region for three mass points in Figures

52b, 53b and 54b below.

(a)

E > 15 GeV

(b)

Figure 52: BDT scores for mass point 20 GeV, |U |2 = 10−6: (a) Raw BDT classification,
(b) Scaled BDT classification to L = 10 fb−1. For this signal, a BDT threshold of 0.999
is chosen, with 23.6 signal events, and 0.485 background events.
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(a)

E > 15 GeV

(b)

Figure 53: BDT scores for mass point 50 GeV, |U |2 = 10−6: (a) Raw BDT classification,
(b) Scaled BDT classification to L = 10 fb−1. For this signal, a BDT threshold of 0.999
is chosen, with 13.5 signal events and 1.12 background events.

(a)

E > 15 GeV

(b)

Figure 54: BDT scores for mass point 70 GeV, |U |2 = 10−6: (a) Raw BDT classification,
(b) Scaled BDT classification to L = 10 fb−1. For this signal, a BDT threshold of 0.999
is chosen, with 3.29 signal events, and 0.627 background events.

Performing this analysis for each of the mass points, we can make a 2D contour plot as

we did for the cut and count method. One point of consideration is that for the cut on

the BDT output made, there is no requirement for the minimum yield, this means that

we may yield non-integer number of events in our background events which can be seen

in the Figures above. This is, of course, nonphysical and susceptible to high statistical

uncertainty. Since we are normalising to a very small fraction of the expected luminosity

of the FCC-ee, we continue with this approach to highlight the power of ML methods as

compared to traditional methods and expect that with sufficient MC events to simulate

the true luminosity, any requirements we place on the number of surviving events would

not hugely effect our result. The delimiting contour plot for each of the BDT models is

compared to the cut and count in Figure 55 below.
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Figure 55: Sensitivity plot after BDT analysis for HNL masses between 10 and 80 GeV
for mixing angles between |U |2 = 10−4 and 10−10, normalised to an integrated luminosity
of L = 10 fb−1. The magenta line delimits the 2σ contour for the BDT analysis, whilst
the red does so for the cut and count study.

Figure 55 shows a clear improvement exceeding an order of magnitude in the couplings

in the 95% CL limit compared to the cut and count study. This result is once again

normalised to L = 10 fb−1 to match the available MC statistics in the background, and

scaling to the full luminosity will be done when comparison is drawn to the expected

reach of the FCC-ee.

It has so far been shown that BDTs offer a powerful alternative to typical cut and

count analysis techniques. In the following section, we will explore the use of deep neural

networks in this domain and draw comparison between the three techniques in an attempt

to maximise our sensitivity.

5.6 Deep Neural Network

Deep Neural Networks (DNNs) are a type of ML algorithm characterised by their layered

architecture of interconnected neurons. These networks are capable of learning patterns

within data, making them powerful tools for both supervised and unsupervised learning
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tasks. Each layer in a DNN transforms the input data through weighted connections and

activation functions, allowing the network to capture hierarchical features. Training a

DNN involves optimising the weights using back-propagation17 and gradient-based opti-

misation algorithms, such as stochastic gradient descent (SGD) or Adam, to minimise

the loss function. Compared to BDTs, which are easier to interpret and robust with

smaller datasets, DNNs function well with large datasets and can automatically extract

features, but have many more fine tuning possibilities and can hence be very sensitive to

small changes in data preparation and model architecture. A schematic of a simple DNN

architecture is shown in Figure 56.

Figure 56: DNN schematic showing the model architecture used periodically throughout
this analysis for testing data splits. The final model was found using RandomSearch to
optimise the hyperparameters.

5.6.1 Data Preparation

As with the BDT, and perhaps even more so, precise data preparation is a key aspect

of good DNN performance; it requires careful feature engineering, a sensible training /

testing split and normalisation of the input features. The features used for the DNN are

the same as those described in Table 9, with the exception of the 3D dijet angle, ψ, which

was removed due to its high correlation score. Conversely to the BDT, it was found that

17Back-propagation is a method used in artificial neural networks to calculate the gradient of the loss
function with respect to each weight by the chain rule, working backward from the output to the input
[89].
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removing highly correlated features improved performance. One example of a correlation

matrix for the input DNN features is shown below in Figure 57.
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Figure 57: Correlation matrix for DNN input features for mass point 70 GeV, |U |2 =
10−6

Experimenting with different filters on the lead electron energy, as we did with the BDT,

revealed that the performance of the model was better with a more favourable ratio of the

signal and background, since the DNN was incredibly sensitive to the under-represented

minority class. As a result, despite wanting to maintain a good amount of total events

since this is known to generally improve DNN performance [90], we take a lead electron

energy filter of 20 GeV to increase the ratio between signal and background. The efficiency

of this filter is found for the three background processes and the benchmark signals in

Table 11.
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Process No Filter Lead Electron Energy > 20 GeV Efficiency (%)

Background

Z → bb̄ 438,538,637 4,680,898 1.07

Z → cc̄ 498,091,935 889,924 0.18

Z → 4body 100,000 13,376 13.38

Signal

20 GeV, |U2| = 10−6 100,000 39,201 39.20

50 GeV, |U2| = 10−6 100,000 42,942 42.94

70 GeV, |U2| = 10−6 100,000 47,902 47.90

Table 11: BDT filter efficiencies for background and signal processes as part of the data
pre-processing, where the filter conditions require the lead electron energy > 20 GeV,
additionally, the number of final state reconstructed electrons is required to be exactly
one.

After the filter, surviving events are concatenated into a two separate NumPy [91] dataframe

objects, for training and testing. The chosen split between the training and testing com-

manded a significant amount of the total time spent working on optimising the DNN. It

was found that even with oversampling techniques and class weights, the DNN structure

used was incredibly sensitive to the balance of signal and background in the training and

test sets.

Ultimately, investigations into the typical 80/20 split, as well as other splits such as

training on exactly the same number of events as we expect in the 10 fb−1 conditions,

lead to the conclusion that the best split was an exact 50% split between training and

testing, whilst ensuring that each of the three sub background processes were split in a

representative way. The statistics for the training and testing events are tabulated in

Table 12.

Process Training Events Testing Events

Total Background 2,792,099 2,792,099

20 GeV, |U2| = 10−6 19,601 19,600

50 GeV, |U2| = 10−6 21,471 21,471

70 GeV, |U2| = 10−6 23,951 23,951

Table 12: Distribution of training and testing events for different processes used in the
analysis.
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5.6.2 Training and validation

The data saved during pre-processing is then parsed to the model, which is implemented

using Keras in TensorFlow. In the training of a deep neural network, the parameters of

interest, usually referred to as hyperparameters, can take many forms. For our model, we

use RandomSearch from KerasTuner to attempt combinations of hyperparameters over

20 trials for 100 epochs, optimising for the parameters shown in Table 13. As opposed

to the grid search approach used with the BDT, we perform a random search here since

there are many parameters and values they may take, and a comprehensive grid search

was beyond the computational constraints of this study.

Hyperparameter Range Step

Units in Input Layer 32 to 512 32

Number of Hidden Layers 1 to 5 1

Units in Hidden Layers 32 to 512 32

Learning Rate 1× 10−5 to 1× 10−2 Log scale

Dropout Rate 0.2 Fixed

Activation Function ReLU Fixed

Output Activation Function Sigmoid Fixed

Optimizer Adam Fixed

Loss Function Binary Crossentropy Fixed

Metrics Accuracy, Precision, Recall, AUC Fixed

Table 13: DNN hyperparameters and their values searched during random search.

The use of dropout inside of the model is designed to prevent overfitting, as described

previously by Figure 48. By randomly dropping units (and their connections) during

training, dropout helps to ensure that the model does not become overly reliant on any

particular set of neurons. This process forces the network to learn more robust features

that are useful in conjunction with many different random subsets of the other neurons.

As a result, the model generalizes better to unseen data. A schematic of dropout is shown

in Figure 58 below.
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Figure 58: Schematic representation of Dropout used to avoid overfitting in neural net-
works.

For the training of the DNN, the validation loss was monitored to further avoid overfitting.

The validation set was composed of a 20% subset of the training data, meaning that at

each epoch, the model could test the weights it had learnt to an unseen slice of data, and

monitoring the performance on the validation set provides a less biased indication during

training of how the model is truly performing. The metrics used to measure this, as seen

in Table 13, include the Accuracy, Precision and Recall, which are defined in Equations

33, 34 and 35 respectively. In these equations, TP represents true positive cases, TN

represents true negative, FP are false positives and FN are false negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(33)

Precision =
TP

TP + FP
(34)

Recall =
TP

TP + FN
(35)

As discussed, the ratio of signal to background for a classification task of this kind is highly

important, since our minority class (in this case, the signal) is by construction necessarily

underrepresented since we are searching for very low cross section signal events in many

of the cases. The problem with under-representing one of the classes in a task such as

this with a DNN is that the model is very likely to become biased to the majority class.

On the test set, the result of this is very low recall, since the model puts high emphasis on

assuming that ambiguous events are likely to fall within the majority class, as background

events. Hence, the rate of FN is very high, and the rate of FP is very low so we see high
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precision and accuracy and low recall. In essence, the model is not able to understand

how the signal looks.

Conversely, attempts to over-sample the minority class using class weights or techniques

such as SMOTE [92], lead to the very high recall, and correct identification of almost all

signal events, but very poor precision, since the FP rate increases dramatically, with many

background cases being predicted as signal. In both cases, good significance is hard to

achieve with a signal region either low in signal, or high in background. Ultimately, we

found that the best technique was to apply class weights to the training set that matched

the cross-section weights that we normalise to in the final luminosity.

To visualize feature importance, SHAP [93] was used to plot the features of the DNN

against their use by the model. Here, importance is measured as the permutation im-

portance, which indicates how much the model’s predictive power relies on each feature

by observing the change in performance when the feature’s values are randomly shuf-

fled. This method provides an intuitive understanding of feature relevance by directly

measuring the impact of each feature on the model’s performance. Unlike the F-score

for the BDT, which measures how often a feature is used to split the data, permutation

importance evaluates the actual decrease in model accuracy, making a direct comparison

between the two challenging. In both cases, however, we are making some measure of

how important a feature is to the model in question.

E mi
ss

mN = 20 GeV, |U|2 = 10-6

(a) DNN feature importance for mass point 20 GeV, |U |2 = 10−6
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Heavy Neutral Leptons at FCC-ee 5.6 Deep Neural Network

E mi
ss

mN = 50 GeV, |U|2 = 10-6

(b) DNN feature importance for mass point 50 GeV, |U |2 = 10−6

E mi
ss

mN = 70 GeV, |U|2 = 10-6

(c) DNN feature importance for mass point 70 GeV, |U |2 = 10−6

Figure 59: DNN permutation feature importance for three different mass points from the
signal points trained where F score is a measure of how ‘useful’ a variable is to the model
for (a) 20 GeV, |U |2 = 10−6, (b) 50 GeV, |U |2 = 10−6, (c) 70 GeV, |U |2 = 10−6

In all three cases shown in Figure 59, the missing energy Emiss is found to be the most

important feature. Unlike the BDT however, there is very rarely any compensation from

other features such as the ∆Rejj, which could be an indication that the final model used is

not as optimised as the BDT. For the lower mass points, D0 is the second most important

variable, which is a clear indication that the performance of the model is sensible, even

in the case where it is not fully optimised. The variable with the highest permutation

feature score for each signal point is shown in Figure 60 below.
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Figure 60: Matrix of the most important feature for each DNN model trained.

The interesting difference here between the BDT feature importance grid shown in Figure

50 and the DNN features in Figure 60 is the bottom right importance of the number of

primary tracks, and the overall greater dominance of the missing energy. We see from

our benchmark HNLs that Emiss is much more dominant than for the BDT feature

importance, and indeed it is then expected that for the mass points on the BDT where

the lead electron energy or the ∆Rejj dominated slightly above the missing energy, these

points are now almost all governed by the missing energy in the DNN models. We do

however, still see a clear region where the prompt nature of the decay allows D0 to take

importance, which is once again a nice indication that the model uses input features

accurately. Additionally, the two mass points shown where ∆Rejj is most important is

interesting as it coincides with the region of the BDT parameter space where this is also

true. The reason, perhaps, that this trend is not as dominant as for the BDT is that for

some mass points, as a result of the random search performed rather than a grid search,

the model is not as optimised. For permutation feature scores, it is known that “features

Université de Genève 78



Heavy Neutral Leptons at FCC-ee 5.6 Deep Neural Network

that are deemed of low importance for a bad model (low cross-validation score) could be

very important for a good model.” [94]. The importance of the number of tracks for the

two smallest mixing angles at 80 GeV could have a physical basis, suggesting that the

number of tracks increases as the available energy of the produced jets increases. This is

particularly plausible because, although these are primary tracks, this mass for the signal

points exhibits the most prompt decays. Consequently, reconstructing the primary tracks

from the total number of tracks becomes challenging due to the lack of an identifiable

secondary vertex.

5.6.3 Results

After training, the results are obtained via applying the model to an unseen test set.

Once again, the significance is calculated by making predictions on raw MC events and

normalising these events relative to the number of events we expect at 10 fb−1. Both the

raw DNN classification, and the normalised signal region are shown in Figures 61, 62 and

63, for the 20, 50 and 70 GeV mass points at |U |2 = 10−6.

(a)

E > 20 GeV

(b)

Figure 61: DNN scores for mass point 20 GeV, |U |2 = 10−6: (a) Raw DNN classification,
(b) Scaled DNN classification to L = 10 fb−1. For this signal, a DNN threshold of 0.957
is chosen, with 4.07 signal events, and 0.0014 background events.
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(a)

E > 20 GeV

(b)

Figure 62: DNN scores for mass point 50 GeV, |U |2 = 10−6: (a) Raw DNN classification,
(b) Scaled DNN classification to L = 10 fb−1. For this signal, a DNN threshold of 0.986
is chosen, with 3.11 signal events and 0.129 background events.

(a)

20

(b)

Figure 63: DNN scores for mass point 70 GeV, |U |2 = 10−6: (a) Raw DNN classification,
(b) Scaled DNN classification to L = 10 fb−1. For this signal, a DNN threshold of 0.989
is chosen, with 1.27 signal events, and 0.423 background events.

The results in Figures 61, 62 and 63 allow us to draw a direct comparison between the

BDT and DNN for each mass point. One trend is clear, that in the case of the 50

and 70 GeV raw classification, the background rejection in the signal region is fairly

comparable, and even better in the case of the 70 GeV HNL, hence in some cases we see

greater precision with the DNN. However, unanimously we see a worse recall around the

threshold where we would wish to make the cut on the predicted scores. For example, in

the case of all three benchmark signals for the BDT, we see a very identifiable peak at

a BDT score of 1, meaning we can make a very rigid cut and allow for high sensitivity.

On the other hand, even with good raw classification, the DNN systematically fails to

group sufficiently many of the signal events into a unifed peak, meaning that we must

take looser cuts and hence accept a higher amount of background than for the BDT,
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yielding lower overall significance.

Indeed, since we are using the cross section weights to train the model, this could be an

indication that for the heavier mass points, where the cross section is lower, the precision is

increasing and the recall is decreasing. This is because, for small cross section signals, we

are essentially instructing the loss function to be much more penalised for misclassifying

the background than the signal. Rather, this performance is inverted for the 20 GeV

mass point seen in Figure 61, since it has the highest of the three cross sections in the

figures shown, and the background is misclassified more intensely whilst a less smeared

spike exists at an output of 1 for the signal.

Summarising the sensitivity across all signal points in the parameter space, we can in-

terpolate the 2σ delimitation and overlay it with the highest performing classifier scores,

in this case the BDT. This allows us to see the three distinct lines: the cut and count

(red), the BDTs (magenta) and the DNNs (blue) and make direct comparison between

the three channels. This can be seen in Figure 64 below.

Figure 64: Sensitivity plot after BDT analysis for HNL masses between 10 and 80 GeV
for mixing angles between |U |2 = 10−4 and 10−10, normalised to an integrated luminosity
of L = 10 fb−1. The magenta line delimits the 2σ contour for the BDT analysis, whilst
the red does so for the cut and count study. The line in blue shows the final result for
the DNN.
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In Figure 64 we see an improvement of the DNN when compared to the cut and count,

but see that the BDT yields overall a better performance than the DNN by almost an

order of magnitude in the couplings at the points of greatest difference.

Importantly, we have shown that in both cases, ML is more effective than cut and count

methods for maximising the sensitivity in an analysis such as this. As to exploring the

difference between the BDT and DNN performance, we must do so with a fair amount

of speculation since many would characterise the DNN to be something of a “black box”,

and where we can easily understand the tree structure of the BDT, the process of the

DNN learning is much more abstract. One potential reason for the BDT outperforming

the DNN in this specific task could be the nature of the dataset. BDTs tend to handle

imbalanced datasets more effectively than DNNs, particularly in cases where the signal-

to-background ratio is extremely low, as is the case here, shown in Table 4.

BDTs are inherently robust to class imbalance due to their iterative boosting process,

which places more emphasis on correctly classifying the minority class after each iteration.

This allows BDTs to focus on hard-to-classify instances in the minority class, potentially

leading to better performance in scenarios with a low signal yield [95, 96, 97]. On the

other hand, DNNs often require extensive tuning of hyperparameters, data augmentation,

and sophisticated balancing techniques to achieve similar performance in such imbalanced

settings.

It is reported elsewhere [98, 99] that for tabular data, such as the data used in this

study, decision trees can vastly outperform neural networks. In [98], the empirical study

conducted stipulates that a key reason is related to the irregular nature of tabular data,

and a decision tree’s robustness in ignoring uninformative features compared to a neural

network. The conclusion the authors draw may be applied here, where we found that

the emphasis on DNN optimisation was heavily lead by experimenting with different

data preparation and feature engineering techniques, as opposed to simply the model

architecture.

5.7 Long Lived vs Prompt HNLs

The last section of analysis conducted as part of this thesis research was done to exploit

the topological differences in long lived and prompt signatures to try to maximise the

sensitivity. The lifetime of the particles, in this case parameterised by D0 or any such

variant of D0, such as the D0 significance. In our parameter space, there is a wide range

of values that the decay length can take, as we can see below in Figure 65, which shows

the mean values of the D0 [mm], and highlights the relationship between the mass, the

coupling and the particle lifetime.
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Figure 65: A grid of the mean value ofD0 [mm] for each HNL signal point in the parameter
space considered.

Using our most effective classifier, the BDT, we included the D0 significance parameter,

σD0 , inside the pre-process filter, in order to try to produce trainings specifically for long

lived or for prompt decays. The σD0 was chosen for the filter as opposed to simply D0

since the distributions posited a higher discriminating power. Both were tried, and it

was found that σD0 was easier to find a threshold for the filter and ultimately therefore

yielded a better result. The mean value of σD0 for each signal point in the parameter

space can be found in Figure 66 below.
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237.3

382.9

Figure 66: A grid of the mean value of σD0 for each HNL signal point in the parameter
space considered.

The idea behind this was such that, although a unique BDT is trained for each mass

point, by feeding the model a region richer in signal relative to the background, we may

help the BDT to better optimise the classification between signal and background.

As a result a combined filter of lead electron energy > 15 GeV and σd0 < 5 was used

for promptly decaying HNLs, and σd0 > 5 was used LLP signatures. This filter was such

that, in both cases, specifically in the case of LLP signatures, many of the signal points

had a yield of zero. This means that the filter for LLPs allowed us to only train models

in the region with larger σd0 , and vice versa for the prompt decay filter.

A summary of the results using the BDT model described in Section 5.5 is found in

Figure 67. In this plot, the blue contour represents long lived particles at low mass and

low mixing angles
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Figure 67: Sensitivity plot after BDT analysis for HNL masses between 10 and 80 GeV
for mixing angles between |U |2 = 10−4 and 10−10. This plot is normalised to an inte-
grated luminosity of L = 10 fb−1. The magenta, blue and cyan dashed lines show the
extrapolation of 2σ significance respectively for: the BDT with filter stipulating lead
electron energy > 15 GeV, the long lived particles with lead electron energy > 15 GeV
and σd0 > 5, and the prompt decay with lead electron energy > 15 GeV and σd0 < 5.

In Figure 67, we see when using the filter requiring σd0 > 5 to isolate the LLPs (blue),

we have a slight increase in the performance of the BDT with just the lead electron

energy (magenta), though this improvement is very limited. We might use this result in

conjunction with the feature importance grid in Figure 50 to see that, at the bottom of

this contour is the region where D0 already becomes the most important parameter to the

model, an indication that the model is naturally able to identify the strength in using this

parameter to separate the long lived HNL from the background. In addition, the prompt

decay contour (cyan) also yields a similar shape in the prompt region to that of the BDT

without the D0 filter. While this investigation is valuable and could be expanded further,

it appears that when employing machine learning methods and training a unique model

for each signal point, the distinction between LLPs and prompt decaying signatures is

inherently addressed, provided the model has sufficiently good predictive power.
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6 Results and Discussion

6.1 Sensitivity study

The aim of this thesis was to improve upon the existing 95% CL limit in the HNL

parameter space for masses 10 GeV ≤ mN ≤ 80 GeV with mixing angles 10−4 ≤ |VeN |2 ≤
10−10. An overall improvement on the parameter space for the electron dijet final state

has been found to exceed 2 orders of magnitude in the coupling relative to the cut and

count study.

To contextualise our findings, the 95% CL limit in the HNL parameter space is plotted

in Figure 68 for the latest result published for the CMS Experiment at CERN [38], as

well as the expected reach of the FCC-ee to all HNL decay modes [41]. The theoretical

limit of the Type I seesaw model [100] is also included in the figure.
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Figure 68: Observed 95% CL Limits compared for this thesis and for the latest HNL
search at CMS, the full reach of the FCC-ee to HNLs and the Type I seesaw model limit.

Figure 68 summarises our results scaled to the full expected luminosity of 150 ab−1,

and contextualises them with existing work in this region of the HNL parameter space.

Whilst this figure works well to show the power of the ML techniques used, specifically

with the BDTs, care should be taken to interpret them when quoted without statistical
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uncertainties. Indeed, as previously mentioned, when scaling to the full luminosity, the

scale factors involved as a result of insufficient MC statistics make accurate commentary

very difficult, and this should simply be used as an indication of the approximate region

of the parameter space probed.

6.2 Outlook

This thesis demonstrates an example of using ML techniques in low signal yield scenarios

to identify new physics in future particle physics experiments. We have shown its relative

power compared to typical cut and count studies, and drawn comparison between BDT

and DNN techniques for this genre of classification task.

Whilst the ML models defined here are powerful, optimisation of these models could

yield even stronger results, given adequate time to continue fine tuning of the hyper-

parameters. Further, a key issue for this study is found in gaining reliable insight into

the full luminosity of the FCC-ee machine due to the lack of statistics available for the

main background processes. It is imperative to continue this line of work by investigating

filters at the truth level which allow us to have more background statistics in the signal

region. Additionally, further work could be done on the research laid out in this thesis to

properly assess and parameterise the systematic and statistical uncertainties to be able

to truly understand the final result at 150 ab−1.

One point of consideration for further study may also include the use of similar style BDT

and DNN models to look for kinematic differences between Dirac and Majorana HNLs.

Work on this type of discrimination can be found in [72], and ML techniques may prove

to yield even stronger results.

Lastly, combining the limits of the various HNL final states to find an improved limit for

the total sensitivity of the FCC-ee to all HNL final states is now highly important as we

move closer to the feasibility study submission for the FCC, in order to continue building

upon an increasingly convincing physics case for the machine to be built. Work in the

other HNL final states can be found: in the eeν final state [75], in the µjj final state

[101] and in the µµν channel [102].
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7 Conclusion

In this thesis, we have investigated ML-based techniques to increase the projected sen-

sitivity of HNL discovery in the electron dijet final state at the FCC-ee. We have

demonstrated the power of these methods over conventional cut-and-count procedures

by reproducing our own cut-and-count analysis in alignment with existing studies in this

HNL final state, and optimizing this result with BDTs and DNNs. Further attempts to

optimize were trialed by separating signatures into prompt and long-lived HNL decays.

It has been shown that a BDT trained for each signal mass point is capable of outper-

forming a DNN. However, any conclusion to this end is unlikely to be robust, as there

are vastly many ways one could further optimize the DNN models presented here. We

speculate that the observed performance discrepancy could be due to the nature of the

BDT’s ability to handle the highly imbalanced datasets typical in HNL searches, where

the signal is exceedingly rare compared to the background. BDTs, with their ensemble

learning approach, might be better suited to picking out the rare signal events from a

large background.

Future work should explore advanced techniques such as hyperparameter optimization

as well as careful feature engineering to fully exploit the potential of DNN use in this

domain. Additionally, increasing statistics in the background processes, especially in

signal-rich regions, is vital to make robust claims on the discovery potential of HNLs at

the FCC-ee’s true luminosity. A full detector simulation is also required to ensure careful

consideration of the efficiencies and resolutions of the IDEA design as it becomes more

concrete.

We make the case in this thesis that, beyond its self-evident claim of being a precision

machine, the FCC-ee presents a unique opportunity to hugely improve our limits in the

parameter space of the HNLs, with many orders of magnitude better delimitation in the

HNL couplings than limits set by studies at CMS or beyond. It will be of immense

interest to look forward over the next few decades to the completion of HL-LHC, the

submission of the feasibility study of the FCC machine, and the landscape of particle

physics in general. It is a deeply exciting time to be involved with the community, and

it is my hope that this thesis serves the purpose of encouraging further studies of this

nature by exploring the boundaries of existing limits in this space.

Université de Genève 88



Heavy Neutral Leptons at FCC-ee REFERENCES

References

[1] A. Collaboration, “Observation of a new particle in the search for the standard

model higgs boson with the atlas detector at the lhc,” Physics Letters B, vol.

716, pp. 1–29, 2012. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S037026931200857X

[2] C. Collaboration, “Observation of a new boson at a mass of 125 gev with the cms

experiment at the lhc,” Physics Letters B, vol. 716, pp. 30–61, 2012. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0370269312008581

[3] “The higgs at last,” SA Special Editions, vol. 22, no. 2s, p. 4, May 2013.

[4] B. Bockelman, P. Elmer, and G. Watts, “Iris-hep strategic plan for the next phase

of software upgrades for hl-lhc physics,” 2023.

[5] D. Hanneke, S. Fogwell, and G. Gabrielse, “New measurement of the

electron magnetic moment and the fine structure constant,” Physical Review

Letters, vol. 100, no. 12, p. 120801, 2008. [Online]. Available: https:

//journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.120801

[6] Y. F. et al. (Super-Kamiokande Collaboration), “Evidence for oscillation of atmo-

spheric neutrinos,” Physical Review Letters, vol. 81, no. 8, pp. 1562–1567, 1998.

[7] Q. A. et al. (SNO Collaboration), “Measurement of the rate of νe + d→ p+ p+ e−

interactions produced by 8b solar neutrinos at the sudbury neutrino observatory,”

Physical Review Letters, vol. 87, no. 7, p. 071301, 2001.

[8] K. E. et al. (KamLAND Collaboration), “First results from kamland: Evidence

for reactor antineutrino disappearance,” Physical Review Letters, vol. 90, no. 2, p.

021802, 2003.

[9] P. A. Z. et al. (Particle Data Group), “Status and perspectives of neutrino physics,”

Progress of Theoretical and Experimental Physics, vol. 2020, no. 8, p. 083C01, 2020.

[10] MissMJ, “Standard model of elementary particles,” 2019, licensed under

Creative Commons Attribution 3.0 Unported license. [Online]. Available: https:

//commons.wikimedia.org/wiki/File:Standard Model of Elementary Particles.svg

[11] C. Quigg, “The electroweak theory,” 2002.

[12] Y. Fukuda and others (Super-Kamiokande Collaboration), “Evidence for oscillation

of atmospheric neutrinos,” Phys. Rev. Lett., vol. 81, pp. 1562–1567, 1998.

[13] Q. R. Ahmad and others (SNO Collaboration), “Measurement of the rate of νe + d
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A Additional Theory

A.1 Gamma Matrices of the Dirac Equation

To unify special relativity with quantum mechanics, the Schrödinger equation must be

reformulated such that rather than the classical energy momentum relation, E = p2/2m,

it can be described using the relativistic Einstein relation, E2 = p2+m2. The result of this

is the Klein-Gordon equation, which is second order in time and space and unfortunately

predicts rather unphysical situations, such as negative probability densities. Hence, Dirac

searched for a form of equation to satisfy Einstein’s equation that was first order in space

and time. It must then have the basic form of Equation 36, where α is a 3-vector

coefficient and β is a constant.

Êψ = (α · p̂+ βm)ψ, (36)

The coefficients α and β are constrained tightly by the fact that a solution to the Dirac

equation must also satisfy the Klein Gordon Equation. The choices for α and β are

somewhat arbitrary; in the Dirac–Pauli representation we write them in terms of the

Identity matrix and the Pauli spin-matrices:

β =

(
I 0

0 −I

)
and αi =

(
0 σi

σi 0

)
,

with

I =

(
1 0

0 1

)
, σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0

0 −1

)
.

Such that the Dirac equation is manifestly covariant (i.e. Lorentz invariant), we must

write it in terms of Lorentz 4-vectors so that it has the appropriate properties under

selected spacetime transformations. To this end, the gamma matrices are introduced,

with γµ = (γ0, γ1, γ2, γ3) allowing the Dirac equation to be covariantly written in the

form of (iγµ∂µ − m)ψ = 0. In this way, the gamma matrices can be defined as in

Equation 37, where the index k = 1,2,3.

γ0 = β =

(
I 0

0 −I

)
and γk = βαk =

(
0 σk

−σk 0

)
, (37)
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A.2 Neutrino Oscillation Survival Probability

Starting with the PMNS matrix and the nine imposed unitarity constraints (since U †U =

I), we can consider the linear superposition of the mass eigenstates which form the weak

eigenstate, as seen in Figure 69 below.

Figure 69: The Feynman diagram for β+ decay broken down into the contributions from
the different mass eigenstates (Image: M. Thompson [19]).

The time evolution of the wave function, ψ is given by the time evolution of the mass

eigenstates dictated by the complex phase −iϕ, where ϕ = pi · xi = (Eit− pi · x).

|ψ(x, t)⟩ = U∗
e1 |v1⟩ e−iϕ1 + U∗

e2 |v2⟩ e−iϕ2 + U∗
e3 |v3⟩ e−iϕ3 (38)

Equation 38 can be reformulated by writing the composition of each mass eigenstate in

terms of the weak eigenstates and as a result we find the result given in Equation 39.

|ψ(x, t)⟩ =U∗
e1 (Ue1 |ve⟩+ Uµ1 |vµ⟩+ Uτ1 |vτ ⟩) e−iϕ1

+ U∗
e2 (Ue2 |ve⟩+ Uµ2 |vµ⟩+ Uτ2 |vτ ⟩) e−iϕ2

+ U∗
e3 (Ue3 |ve⟩+ Uµ3 |vµ⟩+ Uτ3 |vτ ⟩) e−iϕ3

(39)

We can further break down Equation 39 by gathering up the terms for each weak eigen-

state and find Equation 40.

|ψ(x, t)⟩ =
(
U∗
e1Ue1e

−iϕ1 + U∗
e2Ue2e

−iϕ2 + U∗
e3Ue3e

−iϕ3
)
|ve⟩(

U∗
e1Uµ1e

−iϕ1 + U∗
e2Uµ2e

−iϕ2 + U∗
e3Uµ3e

−iϕ3
)
|vµ⟩(

U∗
e1Uτ1e

−iϕ1 + U∗
e2Uτ2e

−iϕ2 + U∗
e3Uτ3e

−iϕ3
)
|vτ ⟩

(40)

The unitarity constraints take the form e.g. Ue1U
∗
e1 + Ue2U

∗
e2 + Ue3U

∗
e3 = 1, Ue1U

∗
µ1 +

Ue2U
∗
µ2 + Ue3U

∗
µ3 = 0. The survival probability for an electron neutrino can be written

as P (νe → νe) = |⟨νe|ψ(x, t)⟩|2. By writing Equation 40 in the form |ψ(x, t)⟩ = ce|νe⟩ +
cµ|νµ⟩+ cτ |ντ ⟩, we can say thatP (νe → νe) = |U∗

e1Ue1e
−iϕ1 + U∗

e2Ue2e
−iϕ2 + U∗

e3Ue3e
−iϕ3|2.

The complex number identity |z1+z2+z3|2 ≡ |z1|2+ |z2|2+ |z3|2+2ℜ{z1z∗2 +z1z∗3 +z2z∗3}
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can then be used to simplify our expression in conjunction with the unitarity condition

to show: P (νe → νe) = 1 + 2|Ue1|2|Ue2|2ℜ{ei(ϕ2−ϕ1) − 1}+ 2|Ue1|2|Ue3|2ℜ{ei(ϕ3−ϕ1) − 1}+
2|Ue2|2|Ue3|2ℜ{ei(ϕ3−ϕ2) − 1}.

By noting that ℜ{ei(ϕj−ϕi)− 1} = cos(ϕj −ϕi)− 1 = −2 sin2
(

ϕj−ϕi

2

)
= −2 sin2∆j, where

∆ji =
ϕj−ϕi

2
=

(m2
j−m2

i )L

4Eν
we find that the survival probability is indeed given by Equation

10 as stated in Section 2.2.1.
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B Process Cards

B.1 MG5 Process Card for Dirac HNLs

1 set default unset_couplings 99

2 set group_subprocesses Auto

3 set ignore_six_quark_processes False

4 set loop_optimized_output True

5 set loop_color_flows False

6 set gauge unitary

7 set complex_mass_scheme False

8 set max_npoint_for_channel 0

9 import model sm

10 define p = g u c d s b t u~ c~ d~ s~ b~ t~

11 define j = g u c d s b t u~ c~ d~ s~ b~ t~

12 define l+ = e+ mu+

13 define l- = e- mu-

14 define vl = ve vm vt

15 define vl~ = ve~ vm~ vt~

16 import model SM_HeavyN_Dirac_CKM_Masses_LO

17 define e = e+ e-

18 define nue = ve ve~

19 generate e+ e- > n1~ ve , (n1~ > e+ jj)

20 add process e+ e- > n1 ve~ , (n1 > e- jj)

21 output HNL_Dirac_ejj_10GeV_1e -4Ve

22 launch HNL_Dirac_ejj_10GeV_1e -4Ve

23 done

24 # set to electron beams (0 for ele , 1 for proton)

25 set lpp1 0

26 set lpp2 0

27 set ebeam1 45.594

28 set ebeam2 45.594

29 set no_parton_cut

30 # Here set mass of the electron HNL

31 set mn1 10

32 # set mass of muon HNL , made heavy here

33 set mn2 10000

34 # set mass of tau HNL , made heavy here

35 set mn3 10000

36 # set electron mixing angle

37 set ven1 1e-4

38 set WN1 auto

39 set time_of_flight 0

40 set nevents 100000

41 done

Listing 1: MG5 Process Card for Dirac HNLs
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B.2 MG5 Process Card for 4-body background

1 set default unset_couplings 99

2 set group_subprocesses Auto

3 set ignore_six_quark_processes False

4 set loop_optimized_output True

5 set loop_color_flows False

6 set gauge unitary

7 set complex_mass_scheme False

8 set max_npoint_for_channel 0

9 import model sm

10 define p = g u c d s u~ c~ d~ s~ b b~

11 define j = g u c d s u~ c~ d~ s~ b b~

12 define l+ = e+ mu+

13 define l- = e- mu-

14 define vl = ve vm vt

15 define vl~ = ve~ vm~ vt~

16 define vlpm = vl vl~

17 define e = e+ e-

18 generate e+ e- > e vlpm jj

19 output enuqq

20 launch enuqq

21 done

22 set nevents 100000

23 set ptj 0

24 set ptl 0

25 set etal 5

26 set mmjj 5

27 set drjj 0

28 set drjl 0

29 set maxjetflavor 5

30 set lpp1 0

31 set lpp2 0

32 set ebeam1 45.8

33 set ebeam2 45.8

34 set time_of_flight 1

35 done

Listing 2: MG5 Process Card for 4-body background
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C Additional Event Statistics

C.1 Signal Sample Cross Sections

Table 14: Summary table showing the cross section, raw-events, and production lumi-
nosity for each of the signal points considered in this analysis.

Process σ(pb) Monte-Carlo Events Production L (fb−1)

10 GeV, |U2| = 10−4 4.06× 10−1 1.00× 105 2.46× 105

10 GeV, |U2| = 10−5 4.06× 10−2 1.00× 105 2.46× 106

10 GeV, |U2| = 10−6 4.06× 10−3 1.00× 105 2.46× 107

10 GeV, |U2| = 10−7 4.06× 10−4 1.00× 105 2.46× 108

10 GeV, |U2| = 10−8 4.06× 10−5 1.00× 105 2.46× 109

10 GeV, |U2| = 10−9 4.06× 10−6 1.00× 105 2.46× 1010

10 GeV, |U2| = 10−10 4.06× 10−7 1.00× 105 2.46× 1011

20 GeV, |U2| = 10−4 3.77× 10−1 1.00× 105 2.65× 105

20 GeV, |U2| = 10−5 3.77× 10−2 1.00× 105 2.65× 106

20 GeV, |U2| = 10−6 3.77× 10−3 1.00× 105 2.65× 107

20 GeV, |U2| = 10−7 3.77× 10−4 1.00× 105 2.65× 108

20 GeV, |U2| = 10−8 3.77× 10−5 1.00× 105 2.65× 109

20 GeV, |U2| = 10−9 3.77× 10−6 1.00× 105 2.65× 1010

20 GeV, |U2| = 10−10 3.77× 10−7 1.00× 105 2.65× 1011

30 GeV, |U2| = 10−4 3.36× 10−1 1.00× 105 2.97× 105

30 GeV, |U2| = 10−5 3.36× 10−2 1.00× 105 2.97× 106

30 GeV, |U2| = 10−6 3.36× 10−3 1.00× 105 2.97× 107

30 GeV, |U2| = 10−7 3.36× 10−4 1.00× 105 2.97× 108

30 GeV, |U2| = 10−8 3.36× 10−5 1.00× 105 2.97× 109

30 GeV, |U2| = 10−9 3.36× 10−6 1.00× 105 2.97× 1010

30 GeV, |U2| = 10−10 3.36× 10−7 1.00× 105 2.97× 1011

40 GeV, |U2| = 10−4 2.87× 10−1 1.00× 105 3.49× 105

40 GeV, |U2| = 10−5 2.87× 10−2 1.00× 105 3.49× 106

40 GeV, |U2| = 10−6 2.87× 10−3 1.00× 105 3.49× 107

40 GeV, |U2| = 10−7 2.87× 10−4 1.00× 105 3.49× 108

40 GeV, |U2| = 10−8 2.87× 10−5 1.00× 105 3.49× 109

40 GeV, |U2| = 10−9 2.87× 10−6 1.00× 105 3.49× 1010

40 GeV, |U2| = 10−10 2.87× 10−7 1.00× 105 3.49× 1011

50 GeV, |U2| = 10−4 2.27× 10−1 1.00× 105 4.41× 105

50 GeV, |U2| = 10−5 2.27× 10−2 1.00× 105 4.41× 106

Continued on next page
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Table 14 continued from previous page

Process σ(pb) Monte-Carlo Events Production L (fb−1)

50 GeV, |U2| = 10−6 2.27× 10−3 1.00× 105 4.41× 107

50 GeV, |U2| = 10−7 2.27× 10−4 1.00× 105 4.41× 108

50 GeV, |U2| = 10−8 2.27× 10−5 1.00× 105 4.41× 109

50 GeV, |U2| = 10−9 2.27× 10−6 1.00× 105 4.41× 1010

50 GeV, |U2| = 10−10 2.27× 10−7 1.00× 105 4.41× 1011

60 GeV, |U2| = 10−4 1.59× 10−1 1.00× 105 6.29× 105

60 GeV, |U2| = 10−5 1.59× 10−2 1.00× 105 6.29× 106

60 GeV, |U2| = 10−6 1.59× 10−3 1.00× 105 6.29× 107

60 GeV, |U2| = 10−7 1.59× 10−4 1.00× 105 6.29× 108

60 GeV, |U2| = 10−8 1.59× 10−5 1.00× 105 6.29× 109

60 GeV, |U2| = 10−9 1.59× 10−6 1.00× 105 6.29× 1010

60 GeV, |U2| = 10−10 1.59× 10−7 1.00× 105 6.29× 1011

70 GeV, |U2| = 10−4 9.06× 10−2 1.00× 105 1.10× 106

70 GeV, |U2| = 10−5 9.06× 10−3 1.00× 105 1.10× 107

70 GeV, |U2| = 10−6 9.06× 10−4 1.00× 105 1.10× 108

70 GeV, |U2| = 10−7 9.06× 10−5 1.00× 105 1.10× 109

70 GeV, |U2| = 10−8 9.06× 10−6 1.00× 105 1.10× 1010

70 GeV, |U2| = 10−9 9.06× 10−7 1.00× 105 1.10× 1011

70 GeV, |U2| = 10−10 9.06× 10−8 1.00× 105 1.10× 1012

80 GeV, |U2| = 10−4 1.85× 10−1 1.00× 105 5.41× 105

80 GeV, |U2| = 10−5 1.85× 10−2 1.00× 105 5.41× 106

80 GeV, |U2| = 10−6 1.85× 10−3 1.00× 105 5.41× 107

80 GeV, |U2| = 10−7 1.85× 10−4 1.00× 105 5.41× 108

80 GeV, |U2| = 10−8 1.85× 10−5 1.00× 105 5.41× 109

80 GeV, |U2| = 10−9 1.85× 10−6 1.00× 105 5.41× 1010

80 GeV, |U2| = 10−10 1.85× 10−7 1.00× 105 5.41× 1011
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C.2 Filter Efficiencies

Table 15: BDT filter efficiencies for background and signal processes with the filter con-
dition requiring the lead electron energy > 15 GeV. Additionally, the number of final
state reconstructed electrons is required to be exactly one.

Process No Filter Lead Electron Energy > 15 GeV Efficiency (%)

Background

Z → bb 438,538,637 13,074,288 2.98

Z → cc 498,091,935 3,875,708 0.78

Z → 4body 100,000 17,127 17.13

Signals

10 GeV, |U2| = 10−4 100,000 50,270 50.27

10 GeV, |U2| = 10−5 100,000 50,198 50.20

10 GeV, |U2| = 10−6 100,000 50,266 50.27

10 GeV, |U2| = 10−7 38,667 19,319 49.96

10 GeV, |U2| = 10−8 100,000 23,017 23.02

10 GeV, |U2| = 10−9 100,000 3,050 3.05

10 GeV, |U2| = 10−10 100,000 308 0.31

20 GeV, |U2| = 10−4 100,000 52,269 52.27

20 GeV, |U2| = 10−5 100,000 52,586 52.59

20 GeV, |U2| = 10−6 100,000 52,508 52.51

20 GeV, |U2| = 10−7 100,000 52,391 52.39

20 GeV, |U2| = 10−8 76,400 39,971 52.32

20 GeV, |U2| = 10−9 9,707 4,947 50.96

20 GeV, |U2| = 10−10 45,948 8,888 19.34

30 GeV, |U2| = 10−4 100,000 54,236 54.24

30 GeV, |U2| = 10−5 100,000 54,278 54.28

30 GeV, |U2| = 10−6 100,000 54,230 54.23

30 GeV, |U2| = 10−7 100,000 54,316 54.32

30 GeV, |U2| = 10−8 100,000 54,334 54.33

30 GeV, |U2| = 10−9 100,000 54,192 54.19

40 GeV, |U2| = 10−4 100,000 56,398 56.40

40 GeV, |U2| = 10−5 100,000 56,397 56.40

40 GeV, |U2| = 10−6 100,000 56,391 56.39

40 GeV, |U2| = 10−7 100,000 56,361 56.36

40 GeV, |U2| = 10−8 100,000 56,391 56.39

Continued on next page
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Table 15 continued from previous page

Process No Filter Lead Electron Energy > 15 GeV Efficiency (%)

40 GeV, |U2| = 10−9 100,000 56,366 56.37

40 GeV, |U2| = 10−10 7,196 4,031 56.02

50 GeV, |U2| = 10−4 100,000 59,958 59.96

50 GeV, |U2| = 10−5 100,000 60,106 60.11

50 GeV, |U2| = 10−6 100,000 59,982 59.98

50 GeV, |U2| = 10−7 100,000 59,991 59.99

50 GeV, |U2| = 10−8 100,000 60,126 60.13

50 GeV, |U2| = 10−9 100,000 59,949 59.95

50 GeV, |U2| = 10−10 100,000 59,941 59.94

60 GeV, |U2| = 10−4 100,000 64,604 64.60

60 GeV, |U2| = 10−5 100,000 64,604 64.60

60 GeV, |U2| = 10−6 100,000 64,598 64.60

60 GeV, |U2| = 10−7 100,000 64,587 64.59

60 GeV, |U2| = 10−8 100,000 64,534 64.53

60 GeV, |U2| = 10−9 100,000 64,604 64.60

60 GeV, |U2| = 10−10 100,000 64,600 64.60

70 GeV, |U2| = 10−4 100,000 64,387 64.39

70 GeV, |U2| = 10−5 100,000 64,388 64.39

70 GeV, |U2| = 10−6 100,000 64,387 64.39

70 GeV, |U2| = 10−7 100,000 64,387 64.39

70 GeV, |U2| = 10−8 100,000 64,400 64.40

70 GeV, |U2| = 10−9 100,000 64,393 64.39

70 GeV, |U2| = 10−10 100,000 64,399 64.40

80 GeV, |U2| = 10−4 100,000 48,708 48.71

80 GeV, |U2| = 10−5 100,000 48,709 48.71

80 GeV, |U2| = 10−6 100,000 48,708 48.71

80 GeV, |U2| = 10−7 100,000 48,706 48.71

80 GeV, |U2| = 10−8 100,000 48,715 48.72

80 GeV, |U2| = 10−9 100,000 48,725 48.73

80 GeV, |U2| = 10−10 100,000 48,701 48.70
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Table 16: BDT filter efficiencies for background and signal processes as part of the data
pre-processing, where the filter conditions require the lead electron energy > 20 GeV,
additionally, the number of final state reconstructed electrons is required to be exactly
one.

Process Initial Events Final Events Efficiency (%)

Background

Z → bb 438,538,637 4,692,700 1.07

Z → cc 498,091,935 890,278 0.179

Z → 4body 100,000 13,375 13.375

Signals

10 GeV, |U2| = 10−4 100,000 37,037 37.037

10 GeV, |U2| = 10−5 100,000 37,000 37.000

10 GeV, |U2| = 10−6 100,000 16,944 16.944

10 GeV, |U2| = 10−7 100,000 2,250 2.250

10 GeV, |U2| = 10−10 100,000 228 0.228

20 GeV, |U2| = 10−4 100,000 39,079 39.079

20 GeV, |U2| = 10−5 100,000 39,234 39.234

20 GeV, |U2| = 10−6 76,400 29,755 38.946

20 GeV, |U2| = 10−7 9,707 3,677 37.880

20 GeV, |U2| = 10−10 45,948 6,580 14.321

30 GeV, |U2| = 10−4 100,000 40,102 40.102

30 GeV, |U2| = 10−5 100,000 40,144 40.144

30 GeV, |U2| = 10−6 100,000 40,237 40.237

30 GeV, |U2| = 10−7 100,000 40,201 40.201

30 GeV, |U2| = 10−10 100,000 N/A N/A

40 GeV, |U2| = 10−4 100,000 41,295 41.295

40 GeV, |U2| = 10−5 100,000 41,293 41.293

40 GeV, |U2| = 10−6 100,000 41,299 41.299

40 GeV, |U2| = 10−7 100,000 41,291 41.291

40 GeV, |U2| = 10−10 7,196 2,925 40.648

50 GeV, |U2| = 10−4 100,000 42,874 42.874

50 GeV, |U2| = 10−5 100,000 43,063 43.063

50 GeV, |U2| = 10−6 100,000 43,076 43.076

50 GeV, |U2| = 10−7 100,000 42,941 42.941

50 GeV, |U2| = 10−10 100,000 42,896 42.896

Continued on next page
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Table 16 continued from previous page

Process Initial Events Final Events Efficiency (%)

60 GeV, |U2| = 10−4 100,000 46,242 46.242

60 GeV, |U2| = 10−5 100,000 46,242 46.242

60 GeV, |U2| = 10−6 100,000 46,219 46.219

60 GeV, |U2| = 10−7 100,000 46,271 46.271

60 GeV, |U2| = 10−10 100,000 46,266 46.266

70 GeV, |U2| = 10−4 100,000 47,901 47.901

70 GeV, |U2| = 10−5 100,000 47,902 47.902

70 GeV, |U2| = 10−6 100,000 47,912 47.912

70 GeV, |U2| = 10−7 100,000 47,910 47.910

70 GeV, |U2| = 10−10 100,000 47,934 47.934

80 GeV, |U2| = 10−4 100,000 35,831 35.831

80 GeV, |U2| = 10−5 100,000 35,831 35.831

80 GeV, |U2| = 10−6 100,000 35,825 35.825

80 GeV, |U2| = 10−7 100,000 35,837 35.837

80 GeV, |U2| = 10−10 100,000 35,792 35.792
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