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1 Introduction

Recent years have witnessed a resurgence of activity in studying holographic correlation
functions using the AdS/CFT correspondence. An abundance of interesting new results has
been obtained by leveraging modern techniques, thanks to an inflow of ideas and technolo-
gies from the conformal bootstrap and the scattering amplitude program. The progress is
especially evident in the paradigmatic example of 4d A/ = 4 Super Yang-Mills theory, which
is dual to IIB string theory on AdSs x S°. At the level of two-derivative supergravity, all



the four-point functions of one-half BPS operators have been obtained at subleading order
in 1/N by solving an algebraic bootstrap problem in Mellin space [1, 2].! The complete
set of tree-level four-point correlators contains a wealth of physical information. However,
extracting the data is still highly nontrivial since the double-trace operators in the oper-
ator product expansion have degenerate contributions. One therefore needs to solve the
associated mixing problem by exploiting the knowledge of all four-point functions. In [6-8]
machinery for performing a systematic analysis was developed, and the complete anoma-
lous dimension spectrum of double-trace operators has been obtained [9]. The tree-level
data in turn allows one to further obtain one-loop results, by using “AdS unitarity meth-
ods” [6-8, 10-12]. More precisely, this is achieved by feeding the anomalous dimensions and
OPE coefficients into the crossing equation, and focusing on the double-discontinuity [13].
The one-loop four-point functions are rather cumbersome in position space. However, the
corresponding Mellin amplitudes look remarkably simple [14], suggesting that the Mellin
representation remains a natural language beyond tree level. Furthermore, four-point func-
tions receive higher-derivative corrections from AdS string theory, which are suppressed by
inverse powers of the 't Hooft coupling. These stringy effects have recently been studied
in [15, 16] at both tree level and at one loop,? showing an interesting interplay between
Mellin amplitudes and flat space scattering amplitudes. These results shed new light on
quantum gravity from the CFT perspective, and constitute new precision tests of the
AdS/CFT correspondence. While the AdSs x S background has attracted most attention,
many interesting results have been obtained for other string theory /M-theory backgrounds
as well. See [18-29] for some recent developments.

In this paper we will initiate a systematic study of five-point functions from tree-level
IIB supergravity on AdSs x S°, as a first step towards extending the above program to
arbitrary m-point functions. There are several motivations for considering higher-point
correlators. First of all, a very practical reason to study holographic correlators is to
extract CFT data at strong coupling. Considering higher-point correlation functions of
one-half BPS operators allows us to access new unprotected data not contained in their
four-point functions. This becomes especially clear when we look at OPE limits. For
example, by taking the OPE limit for one pair of operators in the five-point function,
we can obtain four-point functions with one unprotected double-trace operator. These
four-point functions encode infinitely many new unprotected three-point functions, which
can be extracted after taking another OPE limit. Secondly, previous studies of four-point
functions suggested an intricate relation between holographic correlators and scattering
amplitudes in flat space. Many aspects of holographic correlators appear to be analogous
to the ones in flat space. We would like to further explore these connections and sharpen
the analogies, by studying five-point functions. In particular, we will demonstrate how
factorization, an important tool for flat space amplitudes, can be used to understand the
structure of correlation functions from AdS supergravity. Finally, the study of correlators
at strong coupling is motivated by the possibility of discovering unexpected structures.

1See [3-5] for several highly nontrivial checks of this result by explicit supergravity calculations.
2See also [17] for earlier discussion at the tree level.



Recently, it was observed that tree-level one-half BPS four-point functions from AdSs x S°
exhibit a hidden ten dimensional conformal symmetry [30].> In terms of this symmetry,
four-point functions of different conformal dimensions can all be related to each other. It
is interesting to see if such a symmetry also exists in higher-point correlation functions.
This may shed some light on its mysterious origin.

Results of five-point functions at strong coupling are scarce. To classify them, it is
useful to grade the correlators by ascending extremality F, which is defined by 2F =
Z?Zl k; — k5. Here k; are the scaling dimensions of the operators and we have assumed ks
is the largest. R-symmetry selection rules require F to take integer values. For F = 0 and
FE =1, the five-point functions are called extremal and next-to-extremal. In these cases, it
is known that the five-point functions are protected by non-renormalization theorems [31—-
35] and therefore can be obtained from the free theory. If we further increase E by one,
the five-point functions are no longer protected and start to become nontrivial. It was
argued in [36] that such five-point functions should have factorized structures and can be
expressed in terms of lower-point correlators. These near-extremal correlators (E = 0, 1, 2)
however are very special, and the derivation of these results (from the bulk side) rely heavily
on the fact that extremal couplings vanish.* When the extremality is further increased,
i.e., > 3, one encounters the generic case and no such simplification exists. One would
imagine that examples of generic five-point functions may have been computed using the
traditional algorithm of Witten diagram expansion. However the traditional algorithm is
too complicated to be a practical recipe. Implementing this method requires inputting
all the precise vertices, which can be in principle obtained from expanding the effective
supergravity Lagrangian to the quintic order. Such an expansion is devilishly complicated
and has never been attempted in the literature.

In this paper, we will develop new techniques for computing five-point correlators with
arbitrary extremality. Since a brute force approach is not viable, our strategy is to avoid
the details of the effective Lagrangian as much as possible. We accomplish this by using
superconformal symmetry and self-consistency conditions, in the same spirit of [1, 2]. Let
us sketch the methods and state our main results. For simplicity and concreteness, we will
focus on the five-point function of the 20’ operator, which is the bottom component of the
stress tensor multiplet.® Although the methods will be phrased in this particular context,
it will be clear that they can be applied to general five-point correlators after some obvious
modifications. The starting point of our method is an ansatz which splits into a singular
part and a regular part. The singular part includes all possible exchange Witten diagrams,
and the regular part contains all possible contact Witten diagrams. The coefficient of
each diagram could be computed if the vertices were known, but we will leave them as
undetermined coefficients. To solve this ansatz, we use superconformal symmetry and self-

3See also [28] for an analogous story in AdS3 x S* where a hidden six dimensional conformal symmetry
emerges in the tree-level supergravity four-point correlators.

“The vanishing of extremal couplings is a self-consistency condition. This is because extremal contact
Witten diagrams are divergent but the effective action should be finite.

5The five-point function (O20:O20: O20: O20: O20/) has extremality E = 3, and therefore belongs to the
generic case.



consistency conditions. The singular part can be uniquely fixed by using factorization in
AdS space. Roughly stated, the factorization condition means that the “residue” of the
five-point function at an internal bulk-to-bulk propagator is a “product” of three-point
functions and four-point functions. This can be stated more precisely in Mellin space [37].
To fix the regular part, we use the chiral algebra twist [38], which predicts that the twisted
five-point function is the same as in the free theory. This fixes all but one coefficient in the
ansatz, which multiplies a structure insensitive to the chiral algebra constraint. The last
coefficient can be determined by further using an independent topological twist [39] which
involves the entire SO(6) R-symmetry group. This gives the complete answer to the 20
five-point function from AdS supergravity, and is one of the main results of this paper. We
will also discuss a variation of this method which starts with an ansatz in Mellin space.
The alternative method avoids certain position space calculations and is more suitable
for generalizing to higher-weight five-point functions. The final result is expressed as a
Mellin amplitude in (5.6), and takes a very compact form. As a technical development,
we have also set up systematic methods to compute five-point conformal blocks in series
expansions. This allows us to perform a conformal block decomposition for the 20’ five-
point function and extract new data. For simplicity, we looked at the Euclidean OPE and
restricted our attention to the singular and leading regular terms. By taking a single OPE
limit, we obtain a new four-point function with three 20’ one-half BPS operators and one
unprotected double-trace operator. The result can be compactly written as a combination
of D-functions, which is presented in (6.23). By taking a double OPE limit, we extract
various three-point functions. The protected three-point functions we found are in perfect
agreement with their free theory values, which constitute nontrivial consistency checks of
our result. We also extract a new unprotected three-point function (6.20) involving one
20’ one-half BPS operator and two operators from semi-short multiplets. The unprotected
three- and four-point functions give new predictions of N' = 4 SYM at strong coupling.
We hope these results can one day be compared with the integrability program.

The rest of the paper is organized as follows. In section 2 we discuss the superconformal
kinematics of the five-point function. In section 3 we review the Mellin representation and
the factorization of Mellin amplitudes. After these preparations, we introduce our position
space method in section 4 and compute the five-point function of the 20’ operator. In
section 5 we point out an alternative approach using Mellin space, which simplifies some
calculations in position space. The result for the five-point function is analyzed in section 6,
where we perform consistency checks and extract new CFT data. Various technical details
are relegated to the appendices.

2 Superconformal kinematics

The 20’ operator O}, = tr(®1 ®/}) has protected conformal dimension A = 2 and trans-
forms in the rank-2 symmetric traceless representation of SO(6)g. It is the superconformal
primary of the 1/2-BPS multiplet which also contains the R-symmetry current j,y‘ﬂ and
the stress tensor 7,,. Our primary object of study is the five-point correlation function of



20’ operators
(ORT (21) 02 (20) OLT (3) 024 (2.4) OF T (5)) . (2.1)

It is convenient to absorb the R-symmetry indices by contracting with null R-symmetry
vectors t!
Oaq(z,t) = O 1ttt =0. (2.2)

The contraction automatically projects the operator into the symmetric traceless represen-
tation and turns the five-point correlator into a scalar function which depends not only on
the spacetime coordinates but also the R-symmetry coordinates

Gs(zi, ti) = (O20 (21, t1)O20r (22, t2) O20/ (3, t3) O20/ (24, t4) O20r (5, t5)) - (2.3)

It is easy to see that the null vectors can only appear in Gs(z;,t;) as polynomials of
tij = t;-t;. Moreover, Gs(x;, t;) is subject to the homogeneity condition that under ¢; — A;t;

G5 (1'1', ti) — )\%/\%)\%)\i)\%Gf,(xz, tz‘) (2.4)

where the \; are independent. A basis of R-symmetry structures for G5 is then given by
all the monomials of #;; satisfying the homogeneity condition. There are 22 such terms,
which can be dividided according to the lengths of their cycles, as explained in figure 1

Atijitm) = tigtixtritimtmi ,
Agijyam) = tijtiiteitin - (2.5)

The basis vectors are in one-to-one correspondence with the inequivalent Wick contractions
of the ®! fields in the free theory limit. We can parameterize the five-point function such
that each R-symmetry structure is multiplied with a function of the spacetime coordinates.
However, the full correlator is invariant under permutations of the five external operators.
As we can easily check, crossing symmetry permutes separately the R-symmetry structures
{A¢jkim)y} and {Agjk)@m)}- Therefore the various functions multiplying the different R-
symmetry monomials in the same group are interrelated under crossing, and in the end
there are only two independent functions of spacetime coordinates in the five-point func-
tion. We can further exploit the conformal covariance to extract a kinematic factor from
the correlator )

(;5 = 47(445?1§§447§—§}5(L§;ti). (2.6)

T12%35%14734

The kinematic factor takes care of the covariance under conformal transformations, and
the five-point correlator becomes a function of the five conformal cross ratios®

2,2 2 .2 2 .2 2,2 2,2
_ T1aT34 _ T14%23 _ T14%35 _ T15T34 _ T12T35
Vi==5—7%, Voe=—7F75", WB=—7575, Vui=—5—72, V=57 (2.8)
Liql Lial Lial T1al Lial
13724 13724 1345 13745 1325

5Similarly, the correlator depends also on five R-symmetry cross ratios, which can be chosen as

_ tostsa _ taitas _ taatis _ tiatss _ tiatos
- ) 2 = ) 3 = 5 4 = 3 5 = . (27)
toatss t3stia tiatas tostis t13taa
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Figure 1. Each line between points ¢ and j corresponds to a factor of ¢;;. We can then see
that there are two types of structures, Ajxim) and Agijx)im), with one and two closed cycles
respectively. Note that each cycle is invariant under cyclic permutations and reflection, so the
number of independent structures is given by the number of ways to distribute the points into the
cycles, modulo those symmetries.

So far we have exploited only the bosonic part of the superconformal group PSU(2, 2[4).
The fermionic charges impose further constraints on the correlator. One such constraint
comes from the special properties of 1/2-BPS correlation functions under twisting a sub-
algebra su(1,1]2) C psu(2,2[4), known as the chiral algebra twist [38]. In order to perform
the twist, we restrict all five operators to a two-dimensional plane inside R*. This allows
us to parameterize the positions of these operators in terms of the holomorphic and anti-
holomorphic coordinates z;, Z;. The t° and t% components of the six-dimensional null vector
t! are set to zero, reducing the null vector into a four-dimensional one denoted as t*. The
vector t* can be further written as the product of a pair of spinors

th =gl 0. (2.9)

Rescaling v and v amounts to multiplying ¢ with a number, which does not change the null
vector since it is defined modulo rescaling. Both v® and ©* therefore have only one degree
of freedom, and can be written as

’Uz':(l), @i:<_1)- (2.10)
Yi Yi

When the R-symmetry orientations of the operators are correlated with the positions on
the plane
Ui = z; (211)

the construction of [38] dictates that the twisted five-point function becomes a holomorphic
function of the z; only

Gs(2i, Zis ¥i, Ui = Zi) = 9(2i3 Vi) - (2.12)
Moreover, the twisted correlator is independent of the marginal coupling, and therefore
equal to its free field value

9(2i3Yi) = Gtree(2i; Yi) - (2.13)



The holomorphic requirement of the twisted correlator imposes nontrivial constraints on
the structure of the correlation function G5. A similar twist applies to the holomorphic
variables.

Another important constraint comes from performing an independent topological twist
which probes the full SO(6) R-symmetry group [39]. Unlike in the chiral algebra twist,
operators are inserted at generic points z; € R?*, with position-dependent polarizations

t = (2ix!, 2ix?, 2023, 2ix (1 — (2)?),1 + (z#)?). (2.14)

Such twisted n-point correlation functions preserve two common supercharges.” Moreover,
the twisted translations and the exactly marginal deformation are exact with respect to
the preserved the supercharges. The SO(6) twisted correlators are therefore topological
and protected. All in all, the topological twist imposes the constraint that

_20V2 | 48V2
N N3

G5(CL‘Z', tij = .’E2-)

z (2.15)

where the two-point function of Oy¢ is unit normalized, and the twisted five-point function
is computed in the free theory.

A small comment is in order. For correlation functions of two, three and four 1/2-BPS
operators, it is possible to show that the constraints derived from the chiral algebra twist
have exhausted the full constraining power of superconformal symmetry. In particular, the
requirement of the twisted four-point function being a holomorphic function is equivalent to
the superconformal Ward identity [40, 41]. On the other hand, the chiral algebra twist leads
only to a subset of the full superconformal constraints for correlation functions with five
points or more. The SO(6) twist of [39] imposes extra constraints which are not captured by
the chiral algebra twist. It is an interesting question for the future to explore the full con-
sequence of superconformal symmetry on five-point and higher-point correlation functions.

3 Mellin representation and factorization

The goal of this section is to give a brief review on the Mellin representation formal-
ism [42-44] and the factorization properties of Mellin amplitudes [37, 45]. Mellin ampli-
tudes for scalar operators are defined as an integral transform of the correlation function

(01...0,) = /[dﬂM(%j) H F(%’j)(l'z?j)_%j ) (3.1)

1<i<j<n

where the integration variables satisfy the constraint ), v;; = 0, with ~;; = —A,, ensuring
the correct scaling of the external operators.

Correlation functions for operators with spin are more easily expressed using the em-
bedding space formalism for CFTs, see, e.g., [46] for a detailed account. In this formalism,
each point in R? is mapped to a null ray through the origin in R%%! and the action of
the conformal group is linearized as the Lorentz rotations in the embedding space R*t11,

"When there are n < 5 points there is more supersymmetry preserved.



A primary operator with dimension A and spin J in R¢ is mapped to a field in R4+11
depending on both null rays P and Z and satisfying

O\P,aZ) =A"2a’O(P,2), Z-P=0, (3.2)
and
O(P,Z + BP) = O(P, Z). (3.3)

These properties guarantee that the operator is symmetric, traceless and transverse. Now
we can define the Mellin amplitude for one operator with spin J and n scalar operators as

<O<P7 Z)OI(PI) s On(Pn)>

n n

J
a ' (7ij) L(v; +{a};)
= > (Hz.Pak> /d7 [ tad H 2P’YP)%j ZHI (72];_P),Yi+{a}i (3.4)

ai,...,ay=1

z<]

where {a} stands for the set of indices a; ...ay, and {a}; counts the number of times that
the index i appears in the set aq,...a;

{a}izéil—kw'—i—ééJ. (3.5)

Moreover, we impose

n n
_Z'Yij’ Vi = —A, Z'Yij:J_A’ (3.6)
j=1 ij=1
such that the correlator has the correct scalings.
The transverse property (3.3) is not automatically satisfied by the Mellin amplitude
M1} instead it implies that
n

> (ay + 052 + 88 + 4 07 ) MO = 0, (3.7)

a;=1
In the case where the spinning operator is conserved, i.e., A = d — 2 + J, the Mellin
amplitude has to satisfy one further constraint

27 37 MO = (7 1) 3 M, (38)
a,b=1 a,b=1
with
[M ()] = M (yij + 675) + 6367). (3.9)

The operator product expansion is one of the most important properties of a conformal
field theory as it allows to write a product of k local operators at different positions in terms
of an infinite sum of local operators

01(1'1) Ok .%'k ZC(l k,p a:l,...,xk,y,ay)(’)gl"'”(y) (3.10)



where the position y is arbitrary as long as it stays within a sphere that encircles all k local
operators. This expansion can be used inside a correlation function, effectively rewriting
an n-point correlation function as a sum of products of (k + 1)- and (n — k + 1)-point
functions.

This property implies that the Mellin amplitude is an analytic function of the Mellin
variables 7;; with at most simple poles

k n
QJ
M =~ m , m=0,1,2,..., yigr = Yai s 3.11
Yor — (A —J +2m) ;zzk—:l—l " 1

where the residue Q,Jn depends on the product of lower-point Mellin amplitudes. Each
pole is associated with the contribution of an exchanged primary operator (m = 0), or a
descendant (m > 0) with twist 7 = (A — J) + m. For instance, for an exchanged scalar
operator it is given by

Q) = —2T'(A) M1 (vap) MR (vi) (3.12)

where we only spelled out the m = 0 since it will be enough for this work. The Mellin
amplitudes M and Mg are defined as

©i(R)..omom) = [wimow) T 02 T 0
a0

1<a<b<k “ab 1<a<k

OB 00 = [inte) T[22 [ "0 )

k+1<i<j<n ~ i  k+1<i<n = 0

(3.13)

where

k k
Ao = — Z )‘aba Aaa = *Aa Z )\ab =-A (315)
b=1

a,b=1
and analogously for p. We also use the notation where a, b label the first k operators while
1,7 label the remaining n — k operators.
The residue Q;’n associated with the exchange of an operator with spin depends on
mixed Mellin variables where both types of indices appear. For the exchange of a vector
operator the residue is given by

k n
Q= yu M} M, (3.16)

a=1i=k+1
while for the exchange of a spin 2 operator it is given by

k n
A+ 1A -1 T
3= IR S S~ ity + o) g 0 (3.17)
ab=14j=k+1

The residues for any m and up to spin 2 as well as any spin and m = 0 have been obtained
in [37] but they are not needed for this work.



supergravity fields | dimension A | spin ¢ | SU(4)r representation
scalar: s’ 2 0 [0,2,0]
graviphoton: V¢ 3 1 [1,0,1]
graviton: ¢, 4 2 [0,0,0]

Table 1. The relevant supergravity fields and their quantum numbers.

4 20’ five-point function from supergravity

4.1 Outline of strategy

Using the holographic dictionary, correlators of the boundary theory can be computed from
IIB supergravity on AdSs x S® by performing a sum over all the possible Witten diagrams.
This is the traditional algorithm of computing holographic correlators. The connected
component of the five-point correlator receives leading contribution from the tree-level
Witten diagrams at the order O(1/N?) (figures 2, 3, 4).> When the external operators are
the 20 operators, the only relevant bulk fields are a scalar field s’, the graviphoton Vi
and the graviton ¢, thanks to the AdS selection rules (see section 2 of [2] for a detailed
account), while all massive KK modes decouple. Equivalently, the tree-level correlator
of 20’ operators can be computed from the 5d N' = 8 gauged supergravity, which is a
consistent truncation of the KK-reduced IIB supergravity theory. These fields have the
quantum numbers displayed in table 1, and are respectively dual to the 20" scalar Oaq,
the R-symmetry current J, and the stress tensor 7,, of the boundary theory. The tree-
level Witten diagrams are classified according to the number of internal lines and consist
of double-exchange diagrams (figure 2), single-exchange diagrams (figure 3) and contact
diagrams (figure 4).

The major difficulty of following this recipe is in obtaining the precise interaction ver-
tices. To compute the five-point functions one needs to expand the supergravity effective
action to the quintic order. This is extremely tedious and nonetheless unnecessary as we
will see. Instead our plan is to use an “on-shell” approach which works directly with the
five-point correlator. By working with the correlator, we can shortcut through the inter-
mediate complexities that one encounters starting from the off-shell effective Lagrangian.
Moreover, correlators are constrained by superconformal symmetry, and satisfy nontrivial
self-consistency conditions. Among them is factorization, which relates higher-point cor-
relation functions to the lower-point ones. By exploiting symmetries and self-consistency
conditions we bootstrap the supergravity correlator and eschew the details of the effective
Lagrangian altogether.

Our concrete line of attack comes in three steps. We outline the procedure below.

8There is also a disconnected part of order O(1/N), which consists of products of two-point functions
with three-point functions. The disconnected component is trivial to compute, since it coincides with the
free field value thanks to the non-renormalization theorems of 1/2-BPS two and three-point functions.

~10 -
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Figure 2. The four types of double-exchange Witten diagrams allowed by R-symmetry selection
rules. The straight, curly and double curly lines correspondingly represent the scalar, graviphoton
and graviton field.

1 1 1
2 5 2 5 2 5
4 4 4
3 3 3
(a) (b) (c)

Figure 3. The three types of single-exchange Witten diagrams allowed by R-symmetry selection
rules. Here we have suppressed the derivative information in the quartic vertices.

Step 1: computing the singular part of the correlator using factorization. We
divide the five-point function into two parts according to their behaviors in the OPE limits

Gs = Gi" + G&2. (4.1)

The singular part G;ing consists of all the double and single-exchange diagrams, and the
regular part G;® contains only the contact Witten diagrams.

- 11 -



3

Figure 4. A contact Witten diagram. The information of derivatives in the quintic vertex is also
suppressed in the diagram.

The various contributing Witten diagrams can be evaluated by generalizing the method
of [47], however the coefficient of each diagram is not fixed. To fix these coefficients, the key
ingredient of our method is the factorization of the supergravity five-point correlator. For
example, we can collect all the exchange Witten diagrams with a scalar exchange in the 12
channel. The Mellin amplitude of this collection of diagrams has a simple pole at 15 = 1.
Factorization then dictates that the residue of the Mellin amplitude at y12 = 1 equals to the
product of the Mellin amplitudes of the three-point function (Osg/(21)O20/(22)O2¢/(x6))
and the four-point function (Oaqy (26)O20/ (73)O20/(74)O20/(x5)). Similarly, the factoriza-
tion of all the graviphoton exchange diagrams in the 12 channel relates the Mellin amplitude
residue to the three- and four-point Mellin amplitudes of (Og¢/(x1)O20/(22) T, (z6)) and
(T u(26)O20/ (23)O20 (24) O2¢/ (25)); the factorization of all the graviton exchange diagrams
in the 12 channel expresses the Mellin amplitude residue in terms of the Mellin ampli-
tudes of (O2¢/(21)O20/ (22) T (w6)) and (T, (x6)O20r (23)O20/ (24)O20/ (x5)). The spinning
three-point functions are non-renormalized and take the free theory values. Their Mellin
amplitudes therefore can be easily obtained. On the other hand, the spinning four-point
correlators are coupling-dependent but are related to the scalar four-point function via
superconformal Ward identities [48]. It requires some work to extract their Mellin ampli-
tudes and we will discuss its details in appendix C. It turns out that factorization uniquely
fixes the singular part of the correlator G;ing which contains all the double-exchange and
single-exchange diagrams.

Step 2: computing the regular part of the correlator by taking the chiral alge-
bra twist. Factorization is agnostic about the regular part of the correlator G5® since
the regular part does not contribute to factorization. To fix it, we first write down the
most general ansatz for G5°® which contains contact Witten diagrams with all R-symmetry
structures and up to two derivatives. The upper bound on the number of derivatives comes
from the fact that 5d AN/ = 8 gauged supergravity is a two-derivative theory. We then take
the chiral algebra twist of the total correlator G;ing—l—Ggeg. The requirement that the ansatz
should reduce to the same holomorphic function as obtained from the free theory imposes
nontrivial constraints on the unknown coefficients in Ggeg. After the dust settles, we find
that G5 ® is fixed up to a single undetermined coefficient, which multiplies the following

- 12 —



zero-derivative contact term

Ac
T2 N3 (Z Alighim) — Z A(ijk)(lm)) D22223 . (4.2)

The R-symmetry factor vanishes identically under the chiral algebra twist, and therefore

the coefficient A, remains unfixed at this stage.

Step 3: fixing the remaining coefficient by taking the SO(6) twist. To fix the
remaining coefficient, we exploit the SO(6) twist which sets

tiy = a, (4.3)

with generic insertion points x; € R*. The analysis of [39] dictates that the twisted five-
point function is topological and protected. Note that the combination (4.2), which vanishes
under the chiral algebra twist, does not vanish under the SO(6) twist. This implies A, can
be fixed by comparing with the free theory.

Our final results for GE™ and GL° are given respectively by (4.36) and (4.49).9 In the
following subsections we spell out the details of the above procedure.

4.2 Singular part of the correlator

It is not difficult to see that the diagrams in figures 2 and 3, under permutations of the
external labels, exhaust all the possibilities of exchange diagrams allowed by R-symmetry
selection rules. Double-exchange diagrams involving one graviton and one graviphoton or
two gravitons, for example, are not allowed.'” The allowed exchange diagrams constitute
the singular part of the correlator. In this subsection, we fix the coefficients of these
exchange diagrams by using the factorization properties of the five-point function.

4.2.1 Factorization on an internal graviton line

We start from the factorization of the correlator on an internal graviton line. Without
loss of generality, we choose the exchanged graviton field to be in the 12 channel. This
isolates the diagrams of type 2d and 3c (see figure 5). Because there is a unique solution
to the R-symmetry Casimir equation for exchanging the singlet representation in the 12
channel, all the exchange Witten diagrams have the same R-symmetry polynomial. We can
therefore forget about the R-symmetry polynomial in intermediate steps and only multiply
it back in the end.

Let us denote the double-exchange diagram 2d as W¥021-*84. The other two double-
exchange diagrams can be obtained by permuting the external labels 3, 4, 5, and are denoted
as W¥n2p36sl and W¥n2-54sl. In W¥02-%84 | the graviton field is minimally coupled to the

scalar field, i.e., the cubic vertex has the form

/ o T (4.4)

9A Mathematica notebook with the full position space five-point function is also included in the online
version of the paper.
1°[0,2,0] @ [0,0,0] = [0,2,0].
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= + + perms

3 3 3

Figure 5. Factorization on an internal graviton line. Here “perms” denotes the other inequivalent
diagrams obtained by permuting the external legs 3, 4 and 5. Upon factorizing the five-point
function on the internal graviton line, we obtain a three-point function (Oz9:O2¢/7,.,) and a four-
pOiIlt function <72w020’ 020/ 020/>.

where T}, is the energy-stress tensor
1
T = V'sTvvs! — §g“V(V”sIVpsI +m?2stsT), (4.5)

with m? = A4(As —4) = —4. By using the AdS Feynman rules, the diagram W 112534
takes the following form

graviton

5 15 105
W P24 :/dzdydu}T(12)(xl’I2;2)Guu;pa (2, )T (w55 y, w) o)

x G552 (w; 3) G55 (w; 24)

where T;E,I,Q) (z1,22; 2), Tgi) (x5;y, w) are obtained from T},, by replacing the scalar field with
the scalar bulk-to-bulk and bulk-to-boundary propagators as prescribed by the diagram

_ _ 1 _ _
T (21, 203 2) = VG52 (2 21) VY G552 (23 22) — 59"”V”G§52(Z;:131)VpG§52(Z;:vz)

l,I/V
1 _ _
— 59"”77126%52(2; xl)G%gQ(z; x2), (4.7)
_ A 1 . _
T3 w51y, w) = VUGET2 (g 25) VY GRE2 (v, w) — 50" VPG (v3.25) V, G5’ (v w)
1, _ _
— 50" MG (y; w5) GRE% (ys w) (4.8)

The evaluation of this diagram has an important subtlety: the source

dw®

Lo (i, w) O™ (ws s G55 (w; 1) (4.9)

I0) (y; 23, 24, 75) Z/

coupled to one end of the graviton bulk-to-bulk propagator is not gauge invariant. In fact,
by using the equation of motion identity of the bulk-to-bulk propagator

(~0+m)G5E" (v, w) = 6O (y,w) (4.10)

we find that the source Ié“z) has a nonzero divergence

1 _ — -
VO IO (s, w4, w5) = —5 V0 G55 (43 05) G35 (03 23) G55 (ys 1) (4.11)

— 14 —



This seems to create problems because gauge fields can only couple to conserved sources,
and also renders the method of [47] inapplicable. However we should notice that gauge
invariance is not necessarily achieved by an individual diagram, but only the sum of
diagrams.!!

To fix this problem, we must also include the single-exchange diagrams 3c. The sum

of all double-exchange diagrams introduces a source with divergence
1 _ _ _
VOIS + VOIS + VT = —5 Vo (GBa (i 25) GRy” (v28) G35 (yiwa)) - (4.12)

The minimal choice to cancel this divergence is to introduce a single-exchange diagram
which is derived from a quartic coupling of the form

/ @WQWSISISKCUK. (4.13)
AdSs

Here crji is an R-symmetry invariant tensor that makes the vertex a singlet. Denoting
the single-exchange diagram as W¥12l, we have

dz° dy® 1 po A=2 A=2 A=2
wenz = 78?8T,£u)(1‘1,162;Z)Gg:a{eiton(z,y)gpa(y)GBa (y;23)GBa " (y;24)GBy (Y3 25) -

(4.14)
It is easy to verify that the sum of diagrams

vit 0,0),(1,1 7 7 7 1
th;ta Oy )\ap R§2‘3)4( ) <W90[12] S[34) + T/ P112]>535] + TV Pl12]»5[45] + 2W<P[12]> , (4.15)

(0,0),(1,1)
12|34
and A, is an overall coefficient.

is gauge invariant. The R is the overall R-symmetry factor defined in appendix B

The double-exchange diagrams and the single-exchange diagram can be evaluated using
the method of [47], pretending the coupling to the graviton is conserved in each diagram.
This prescription can be justified since the total coupling in (4.15) is conserved and the
extra contributions from each non-vanishing divergence cancel in the end. Details of the
evaluation are discussed in appendix A and the corresponding results of the exchange
diagrams are given by (A.18) and (A.19).

Having obtained the gauge invariant combination (4.15), it is straightforward to go to
Mellin space and check that Mellin factorization on the internal graviton line is satisfied.
We find the residue of the Mellin amplitude at vyi2 = 1 is correctly related to the Mellin
amplitudes of (Og¢/(21)O(22) 20 T (z6)) and (T, (26)O20r (23) O20/ (€4) O20/ (25)). A more
careful analysis of the normalizations could also fix Ay, but we will leave it undetermined
for the moment and fix it when we consider the factorization on an internal scalar line. We
therefore have fixed all the exchange diagrams involving a graviton internal line up to an
overall normalization.

"\More precisely, these are the diagrams with a graviton exchange in the 12 channel. We can require
gauge invariance of this collection of diagrams because the factorization on the internal graviton line gives
a physical three-point function and a physical four-point function, which are gauge invariant.
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4.2.2 Factorization on an internal graviphoton line

Let us now proceed to the factorization on an internal graviphoton line. We first focus on
the double-exchange diagrams, which turn out to consist of only two types.

One type of double-exchange diagrams is 2¢ which involves two internal graviphotons.
The graviphoton couples to the scalars via the minimal coupling

/ Verg, (4.16)
AdSs

where a = [I, J] and
Jop = —51V 87 . (4.17)

The graviphoton-graviphoton-scalar coupling is given by

/ s"Fy, FO*dp g (4.18)
AdSs

where F, is the field strength of the graviphoton field and dy 4 is a tensor that makes the
vertex a singlet. Denoting 2c as WV"120Vi34 | we have

dz® dy® dwd .
WV[IQ]’V[M] = / 5 75‘];(}2) (5517 x2; Z)VZGgégtor(zv y)go)\ (y)gpﬁ (y)

. y—g ol (4.19)
X TH G (y0) I (@3, 240) G35 (3 05)
where
T ez 2) = VapG0” (230) G30” (2302) = G50 (50) VG0 (B02) o

T3 (23, 2450) = Vo uGB 2 (w; 73) G552 (wy 24) — G~ (W; 73) Ve n G5~ (w5 74) -

It is not difficult to check that this diagram is already gauge invariant by itself. The diagram
is evaluated in appendix A, and the explicit expression is given by (A.16). Moreover,
this diagram comes with an R-symmetry factor R%’lgﬁ(l’o), defined in appendix B. The
symmetric combination

graviphoton12 = (1’0)’(170) V12 7V‘4 (170)7(170) Vi P) ,Vg (1,0),(1,0) Vi 9 7‘/4
Whot,1 =Ava (RIQ‘M W24 4 Ry o P2 4 Ry Y 2 e
(4.21)

can be obtained from the first term via permuting the external labels.
The other type of double-exchange Witten diagram is 2b. We denote 2b as W V1215034
The diagram reads

W V2884 — E@J(U)(x T .z)GH;V (Z )I(34;5)( Sra.x x) (422)
- 28 yg iz 1,42, vector\%» Y “w Y;23,T4,T5 .

where the source is
. dw® _ _ _ _
I (y; w3, 24, 25) = / 5 G55° (4 25) Yy (GB° (45 w) G35 (w; 23) G B3 (w; 2a)
0

— Vyu (G352 (y; 25)) G5 (v w)GE5 2 (w; 23) G55 2 (w; 24) -
(4.23)
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= + + perms

3 3 3

Figure 6. Factorization on an internal graviphoton line. Here “perms” denotes the other inequiv-
alent diagrams obtained by permuting the external legs 3, 4 and 5. Upon factorizing the five-point
function on the internal graviphotonline, we obtain a three-point function (O20'O2¢-J,) and a
four-point function (7,020 O20' O20')-

It is easy to check that the source is not conserved
VT (s w3, w4, w5) = —GE5” (v 03)GB5” (v 1) BB (v 25) (4.24)

therefore the diagram is not gauge invariant. However when we multiply the diagram with
(1,0),(1,1)

19/34 and sum over all the permutations of 3, 4, 5, the

the R-symmetry polynomial R
combination

WgraViphOton12 — )\V,Q (R(lvo)v(lvl)w‘/[lg],S[gm] + R(lvo)ﬂ(lvl)W‘/'[lz],S[gg)] + R(170)7(171)WW12],S[45]>

tot,2 12|34 12|35 1245
(4.25)
is gauge invariant, since
(170)7(171) 34,5 (1»0)7(171) 35,4 (170)a(1>1) 45,3 _
VZ (R12|34 I;(A )+ R12|35 I;(L )+ R12\45 IP(L )> =0. (4.26)

The diagram is easy to evaluate and the result is given by (A.17).
We can check if these two gauge invariant combinations of diagrams can already re-
produce the factorization. It turns out that

graviphoton, graviphoton;, graviphotonj,
Wtot - Wtot,l + Wtot,? ) (427)
with N .
V1

gives the correct answer. The overall normalization could also be determined from factor-
ization but we will defer it until later. From the factorization analysis, we can conclude that
no graviphoton single-exchange diagrams of 3b appear. The factorization of the five-point
function on an internal graviphoton line is illustrated in figure 6.

4.2.3 Factorization on an internal scalar line

Finally let us look at the factorization on an internal scalar line. The relevant double-
exchange diagrams are W*n2:®sa 175020 Visal | 75025641 and their permutations of 3, 4,
5. The diagrams W*n2:¥s4 and W*n2Vis4 have already been discussed in the previous
subsections, and are simply related to W #2154 and W"112%84 by exchanging 12 with 34.
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The double-exchange diagram W?*021:%34] is constructed from the cubic vertex sts?s¥er i,

and is given by the integral

dz° dy dw® A=2 A=2
Won254] = G z;x1)GB5 % (z;22)GEE" (2 y
o RG5O ) o

X Gy (v 25) G5 (v w) G (w; ) G (w; wa)
This diagram can be easily evaluated using the method of appendix A and the result reads

Di1112

Wz s = 2
1625234

(4.30)

(1,1),(1,1)

19[34 , which can be

The diagram W?®n2°B4 is associated with an R-symmetry factor R
found in appendix B.

There are also scalar single-exchange diagrams 3a, which can have zero or two deriva-
tives in the quartic coupling. There cannot be more than two derivatives because the 5d
N = 8 supergravity contains only two derivatives. The zero-derivative single-exchange

diagram is denoted by Wg_[clli]r and evaluates to

(4.31)

For the two-derivative type, we have a basis of diagrams where the pair of derivatives are on
5 4
{3,4}, {3,5} and {4,5}. These diagrams are denoted respectively by W;_[éi]r’( ), W;_[éi]r’( ),

W;_[Cllz]r’@), and are related to each other by permuting the external labels 3, 4, 5. The

]7(5)

. s
diagram I/V2_[C112er reads

(5 1
Wzs.[éil( = — (D11222 — 203, D11332) - (4.32)
at
The scalar single-exchange diagrams can have 6 independent R-symmetry structures (which
can be seen by solving the 12 channel R-symmetry Casimir equation alone). We can pick

a basis of solutions as (see appendix B for the definition of A;, D;, &;, H and T)

r =¢&, Ty =&, r3=1,
At A W DDy M A A K
2 6’ 2 6’ 2 6 ’
Let us now collect all the exchange diagrams containing a scalar internal line in the 12
channel (figure 7). We have the following ansatz

ngilarlg =\ <R(1 1),(1, )WS (12]>S[34] | R(1 1,1, 1)I/VS[H] S[35) 4 R(

1),(1,1) 5[12],5[45
12|34 12|35 Wenapos)

12145

+ )\V2 <R§12|?4(1 O)WS [12],V]34] |+ R(2:|?5( )WS[12 [35] 4 R%‘Z)é(l,())ws[m]’v[%])

+ )\(p (R(l 1) (0 0) Ws[lg],tp 34] + R(l 1) (0 O)WS 12]>¥[35] R(l 1) (0 O)WS 12]> )

12|34 12|35 12\45
6
2—der,(5 S[12] ,(5) 2-der,( 2-der,( 8[12] (3)
+Z)\z 2 2der +2)\ 2der +Z)\ 2der
T Z A 0 dor (4.34)
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+ + + perms
1 1
2 2
Figure 7. Factorization on an internal scalar line. Here “perms” denotes the other inequivalent
diagrams obtained by permuting the external legs 3, 4 and 5. The scalar single-exchange diagram
represents both the zero-derivative diagram and the two-derivative diagram. Upon factorizing the

five-point function on the internal scalar, we obtain a three-point function (Oa¢'O20:O20/) and a
four-point function (O2¢ O2¢'O20'O20/).

where A\, and Ay,2 showed up previously in (4.15) and (4.27). We also require permutation
symmetry among the external legs 3, 4 and 5. The Mellin amplitude of ng:lar” contains
a simple pole at 19 = 1. Factorization of the five-point correlator requires that the
residue at the simple pole should give the product of the Mellin amplitudes of the three-
point function (O20'O20'O2¢/) and the four-point function (O29'O20'O20:O2¢/). Together
with permutation symmetry, this gives rise to a set of linear equations for the unknown

coefficients. Solving these constraints, we have!?

64v/2 \ 16v/2 N

MEayee AT TN NS TN
8v2 322
O-der __ yO-der __ yO-der _ O-der _ yO-der __ yO-der _
)\1 er _ )\2 er _ )\3 er _ N )\4 er _ A5 er _ )‘6 er _ _71_2N3 7 (435)
\2der,(8) _ y2-der (1) _ \2-der,(5) _ 42
6 - M4 - %5 - T2N3’

and all the other coefficients are zero.

We have now computed the singular part of the five-point correlation function G;ing.

The result is the following

. vi 1 vi A
G5 = sym [ WG |+ Ssym [ W2 | sy (WP (4.36)
1 .
b Loym [WEstar] 4 sym [wisghrs]

12The linear equations do not fix all coefficients, meaning that there exists homogenous solutions to
factorization. These homogenous solutions always appear with a multiplicative factor which can be written
as the five-point zero-derivative contact diagram Dag2222. Their existence just reflects the ambiguity in
separating G into GE™ and G5, and their contribution can be combined into the ansatz for the latter.
We have set these free parameters to zero without loss of generality.



where

scalar 1,1),(1,1 s 1,1),(1,1 s 1,1),(1,1 s
I/thl1 12 = )\, <R§2‘3)4( )W 12]5 34]+R§ ‘3)5( )W 12]5 35]+R§2‘4)5( )W 12]5 45]) (4‘37)
+(5) (4) 3)

scalarjg __ 4 2-der,(5) 2], 2-der,(4) S[12] 2-der,(3) 8[12]
Wtot 2 )\ T5W2 der +)\ T4W2—der +)‘ 76 W2—der

oer, (4.38)
+Z>\ 0 der

. raviton raviphoton raviphoton . .
The expressions for W 12 I/VgOt P 12 VVgOt o 12 were respectively given

n (4.15), (4.21) and (4.25). We can evaluate them in terms of D-functions, and explicit
expressions can be found in appendix A. The various coefficients are given by (4.35). The
operation sym means to symmetrize with respect to the external labels, i.e.,

sym[A] =A + Al13245 + Al14325 + Al15342 + Al23145

(4.39)
+ Al2azis + Al2szar + Alzar2s + Alzsra2 + Alasziz

where A|a,a5a3a.05 Means to map the labels 1, 2, 3, 4, 5 to a1, a2, as, a4, as. The factors
% appear because the double exchange diagrams W"12Visa | 17750121534 have an extra Zs
symmetry under exchanging 12 with 34. The symmetrizatlon is such that all the diagrams
have strength 1.

4.3 Regular part of the correlator

We now solve the regular part of the ansatz. The regular part G5 ® consists only of contact
Witten diagrams with zero and two derivatives

22 22
G = (Z )\?’2}’(2)141 79 D33229 + perm8> + Z )\go)AID22222 : (4.40)
I=1 I=1

Here A; with I = 1,...,22 are the 22 R-symmetry structures defined in (2.5), and
/\y’j }’(2), )\go) are undetermined coefficients. We require the ansatz Ggeg to be invariant
under crossing.

To fix the coefficients, we first use the chiral algebra twist as was reviewed in section 2.
The five operators are now restricted on a plane, parameterized by the 2d coordinates z;,
Z;. The R-symmetry polarizations are restricted to rotate under only an SO(4) subgroup
of SO(6) g, and the null vectors are parameterized as ¢! = o/ v20% with v; = (1,v;), v; =
(1,9;). The chiral algebra twist amounts to setting ¢; = z;, and the non-renormalization

of chiral algebra requires that

i f
(G;mg + Ggeg) ‘gizgi — G5ree —_— (441)
where the Ggree is the correlator computed in the free theory and is given by
e _ Z Aty V2 5~ Agiiy(im) (4.42)
> x2x2m x? N3 v2.02 22t '
Jkkl imT mz 1J ik ki lm
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Note that the r.h.s. is a simple rational function of the holomorphic coordinates. On the
other hand, the l.h.s. comes from a complicated sum of D-functions where each D-function
has transcendental degree 2 and is far from being a rational function. This means that
the unknown coefficients in the 1.h.s. must be fine-tuned to reproduce a rational function,
therefore imposing strong constraints on the unknown coefficients.

The condition (4.41) is not yet in a form that is ready for use. Extracting the con-
straints on the coefficients from (4.41) still requires some nontrivial work. Our strategy
is to find a basis to decompose the L.h.s.. Using the differential recursion relations in
appendix D, all these D-functions can be related to the basic D-function Djj112 (and its
permutations) by taking derivatives. The function D11112 can be evaluated in closed form
in terms of one-loop scalar box diagrams [49, 50]

5 7 (i)
47‘(2 ‘5[
Di1112 = — Lk N

(4.43)
x14x§5$35 i=1 N5

Here 7;5, N5 are rational functions of the conformal cross ratios, and I f) are one-loop

box diagrams (also denoted as ® in appendix D) where the i** point is omitted. When

the insertion points x; are generic, i.e., not lying on a two-dimensional plane, the five box

) 2
ijs

obtain D-functions of higher weights. Since the box diagrams obey differential recursion

diagrams I f ,t=1,...,5 are independent. Taking derivatives with respect to x;., one can
relations (D.13), one finds that all the D-functions can be uniquely decomposed into a
basis spanned by I ii), logarithms and 1, with rational coefficient functions. Apparently,
the ansatz G?ng + Ggeg also admits such a unique decomposition under this basis with
rational coefficient functions. However, to use the chiral algebra twist condition (4.41), we
need to further restrict the five insertions on a plane. This gives rise to subtleties which
require some extra care. The problem is that some elements of the basis develop relations.

For example, the five one-loop box diagrams are now linearly dependent'?

5
> sk, e =0, (4.44)
=1

which follows from the identity [51]

zZw z w
Liog| ———— | =Lis | —— |+ Lis | —— | —Li —Li —log(1—2)log(1—w).
02 ((1—2)(1—w)> 02 <1—w>+ 02 <1—z) i2(z) — Liz(w)—log(1—2z)log(1—w)
(4.45)
After properly taking care of the relations among the basis vectors, we find the following

basis of independent functions

_ l—s 1—3
®(z2,2), @ (w,w), (p(E’E)’ <I>< i Z), Inzz, Inww, (4.46)

Twi o
In(l1-2)(1-2), In(l-w)(1—-w), In(w-z2)(w-2), 1,

BHowever the denominator N5 also becomes zero at the same rate so D11112 remains finite (and nonzero)
when all the points are put on plane.
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where z and w are the complex coordinates of the two insertion points not fixed by con-
formal symmetry, with Z, @ being their complex conjugates. They are related to the cross
ratios V; defined in (2.8) via

Vi =2z, Vo=(1-2)(1-2),
2Z(1 —w)(1 — w) ' (4.47)

Va=1-w)(l—-w), Vy=ww, Vs = (w—2)(w—7)

Decomposing the supergravity ansatz into this basis gives coefficient functions which are
rational in the cross ratios. Equating the coefficients in (4.41) gives a set of linear equations
for the unknown coefficients.
The constraints turn out to be remarkably constraining. We find that all the two-
derivative vertices vanish
AfIRR) — (4.48)

Moreover, all but one of the zero-derivative coefficients is fixed, yielding

o 1 11v2
Gy® = N3 <3 Z Ak im) T Ac (Z Alijkim) — Z A(ijk:)(lm))) Dazzos . (4.49)

Chiral algebra is incapable of fixing A. because the multiplied R-symmetry polynomial

vanishes automatically under twisting.
To determine the remaining coefficient, we use the SO(6) twist as we reviewed in
section 2. This uniquely fixes the coefficient to be

Ae = 6V/2. (4.50)

Before we end this section, let us make a comment about the contact Witten diagrams
which contribute to Ggeg. These five-point contact interactions in fact are mot intrinsic
in the sense that they can be absorbed into G;ing by redefining certain vertices of the
exchange Witten diagrams. We have already noticed such an ambiguity in footnote 12.
More precisely, we can rewrite G5® in such a way that it can be absorbed in the scalar
single-exchange Witten diagrams ngi};rl? (and all other diagrams by permutations) while
keeping the quartic vertices in 3a symmetric and with no more than two derivatives. To
see this, let us define the scalar single-exchange Witten diagrams N;_[éi]r’(l) for which the
two derivatives act on the external leg ¢ = 3,4,5, and the internal leg I. By using the

equation of motion identities of the propagators and integration by parts, one can show

s[12],(%) spap(8) | 1
Wolier " = Wolge + 5 D22222 (4.51)

These identities can be used to make the two ways of distributing the derivatives, i.e.,
(3,4), (4,5), (3,5) and (3,1), (4,1), (5,1), appear symmetrically in the solution at the cost
of generating some new Dy29095. The total collection of Daygoos with different R-symmetry
structures can then be reinterpreted as scalar single-exchange Witten diagrams with deriva-
tives on the same leg. Let us note that when the derivatives are on the same external leg,
the diagram is simply

— 4l (4.52)

der ’
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by the equation of motion. When both derivatives act on the internal leg, there is an extra
delta function in the equation of motion and therefore equals to

— 4W0 der — D99999 . (4.53)

The latter term allows us to absorb all the Dggg99 into Gsmg

5 An alternative approach using Mellin space

An alternative approach to the previous section is to start from an ansatz in Mellin space
and then solve it by imposing constraints. The construction of the ansatz is facilitated in
Mellin space, thanks to the simple analytic structure of Mellin amplitudes. As reviewed in
section 3, the poles of the Mellin amplitude are determined by the twists of the exchanged
operators. In the tree level supergravity limit, only single-trace one-half BPS operators
and multi-trace operators constructed from them are present. The polar information of
the latter is already captured by the Gamma function factors, and the former is manifested
as the simple poles in the Mellin amplitude. In the case of 20’ five-point functions, the
exchanged single-trace operators are the 20’ operator, the R-symmetry current and the
stress tensor. They give rise to leading simple poles at «;; = 1. On the other hand, by
using a similar 1/N argument as in section 3.2 of [2], we can conclude that there are no
satellite poles associated with the exchange of the single-trace operators. It is instructive
to look at the factorization of the Mellin amplitude. For example, in the 12 channel, the
Mellin amplitude is expected to have the following structure

2 5 a st
Yai ’ij + 61; 6])M 47’ ’YazMg jM4j
M=3 > ZZ
a,b=11,7=3 T2~ 1 T2~ 1
M;s.0,, Mo,
+ 3,050 0] +Mreg,12 (51)
m2 — 1

where Mgf’T, Mff -+ are respectively the three and four-point Mellin amplitudes of Og¢/ with
one stress tensor, and M3 7, Mj ; are the Mellin amplitudes with one R-symmetry current.
The term Mg 12 is regular with respect to y12. However it must contain singularities in
other independent ~;; such that the five-point Mellin amplitude M is crossing symmetric.
Note that there can be at most two simultaneous poles in the Mellin amplitude, which
correspond to the double-exchange Witten diagrams. The simultaneous poles involving
Y12 can be explicitly seen from the above formula where the other pole is supplied by the
four-point Mellin amplitudes.

This motivates us to write down the following ansatz for the five-point Mellin amplitude

N P;jﬂ'lj/ ('le) /Pij ('le)
Mansatz(’)/z]) = . );/ ) (’Yij — 1)(’)/1"]‘/ — 1) + Z - + PO(erl) ) (52)
i) # (i ]

which has the structure of a sum of simultaneous poles, single poles and a regular piece.
The residues Py"* 7, P}’ and P, are polynomials in the Mandelstam variables 7,,;. They are

~ 93 -



also polynomials in ¢;;, but we will suppress the R-symmetry dependence for the moment

ij,i' 5"

and focus on the Yml dependence We will assume that Py are degree 2 polynomials

of Vi, while both P! and Py are of degree 1. The degrees of these polynomials can be

447" the degree simply follows from the counting

justified as follows. For the residues Py
of the total number of derivatives in the cubic vertices. Just as in flat space, the residue
has degree L if the vertices contain in total 2L derivatives. For the double-exchange
diagrams involving one stress tensor, it follows from R-symmetry selection rule that the
other exchange field can only be the scalar field. Such diagrams have only four derivatives in
all vertices. In the vector-vector double-exchange diagrams, the total number of derivatives
is also four. For the vector-scalar and scalar-scalar double-exchange diagrams the total

numbers of derivatives are two and zero.'* This leads us to conclude that 77” A7’

are degree
2 polynomials of v,,,;. It is tempting to apply the same argument on the single pole residues
Pij . However the counting holds only for the vector and scalar single-exchange diagrams
where at most two derivatives are present. For the graviton single-exchange diagrams,
the residue appears to have degree 2 since there could be in total four derivatives. The
leading degree 2 terms would correspond to a constant piece in the term MZT of the
factorization formula (5.1).1> However, a closer look at MZT reveals that the contribution
of the constant term to (5.1) vanishes after the summation. Therefore, the single pole
residues Pfj are degree 1 polynomials. Finally, Py receives contribution from the five-point
contact vertices. Since the gauged supergravity contains at most two derivatives, it follows
that the degree of Py is at most 1.

Let us now be more explicit about the R-symmetry dependence. We write the
residues as

ij,1' 5’ _ 13,15 Ip,I}
Py ()= Z Z Cijir bt B iy Ymd Y1
(mi),(m/l")#(i5),(¢'5") I2,15=207,15,1
I27Ié IQ’I 121 127
+ Z Z Cij,i’j’\mlej\z ]/'le"i' Z zg i'j RZ]|Z ’500 (53)
(ml)#£(ij),(¢'5") 12715220’ 15,1 I2,Ié:20’ 15,1
Z Z Zdz]\mla 1] a7m1+ Z Z ij,a z]a? (5'4)
(ml)#(ij) 1=20'151 a =20/,151 a
)= 3 ¥l Tl o9
ml ]0 ]()

where various coefficients ¢, d, e parameterize the degrees of freedom in the ansatz. The R-

symmetry polynomials R 2|’I,2, are the solutions to the double R-symmetry Casimir equation

where the representatlon I, Il are exchanged in the channels (i, j) and (¢, j') respectively.

The polynomials R’! are solutions to the single R-symmetry Casimir equation in the (i,7)

ij,a
channel where the exchanged representation is /7. The index a labels the different solutions

4Note the derivatives in the scalar cubic coupling have been removed by nonlinear redefinition of the
scalar fields [52].

15The Mellin amplitude /\/lff + contains simple poles with constant residues which are due to the exchange
of scalar fields. There is also an additional constant piece which is due to the quartic interactions. As is
shown in appendix C, this constant term is completely determined by the singular terms via transversality.
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LI
ijli'j
is any other compatible channel and I] is over all possible R-symmetry representations.

to the single Casimir equation, of which a basis can be obtained from R_., where (i, ;")
Note that the sums over the representations I, I’ in the simultaneous pole residues are
restricted to 20’, 15 and 1, in correspondence to the R-symmetry representations of the
exchanged single-trace fields. Similarly, the sums over I; in the single pole residues are also
restricted to 20’, 15 and 1, which correspond to the single-exchange Witten diagrams. On
the other hand, in the regular part we sum over all 22 R-symmetry structures A% defined
in (2.5), since all of them can appear.

The Mellin amplitude ansatz Mansatz is further constrained by three other consistency
conditions. First, the ansatz Mapsat, should be crossing symmetric. In implementing
this constraint, it is important to take into account the linear constraints satisfied by
7i; which leaves only five independent variables. Second, the correlator needs to satisfy
the chiral algebra condition (4.41). Unfortunately this condition is not straightforward
to implement in Mellin space. This is essentially because the independent Mandelstam
variables 7;; are dual to the independent conformal cross ratios for generic configurations.
To perform the chiral algebra twist, one needs to restrict the five insertion points on a
two-dimensional plane. This reduces the number of independent cross ratios to four, while
the Mellin representation is oblivious to it. Therefore our strategy is to rewrite the Mellin
amplitude ansatz as a sum of D-functions and then implement the chiral algebra twist
in position space. However we should note that the rewriting is not unique. Different
expressions in terms of D-functions with the same Mellin amplitude may differ in position
space by a rational function or a logarithmic term.'® On the other hand, the part with
transcendental degree 2 does not suffer from such ambiguities. Therefore, we only use the
chiral algebra constraints from the coefficient functions of the box diagrams.'” Finally, the
correlator satisfies the condition (2.15) imposed by the SO(6) twist. We also implement
this condition in position space and focus on the pieces with transcendental degree 2.

Solving the above constraints fixes the ansatz up to an overall normalization. The
leftover degree of freedom is expected because the twisted five-point functions in (4.41)
and (2.15) are rational, and do not contribute to the box diagram coefficients. The condi-
tions from the chiral algebra twist and the SO(6) twist are therefore homogenous and do not
allow us to determine the overall coefficient. We can fix the remaining coefficient by, for ex-
ample, looking at the factorization of the five-point Mellin amplitude on a scalar exchange.

The final result for the Mellin amplitude takes the following form

M = Msim + Msing + Mreg ) (5'6)

where Mg, are the simultaneous poles

22

Msim =
(y12 = 1)(y3a — 1

) <A(125)(34)745735 + A(345)(12)715725 - 2A(12543)715735
(5.7)

— 2A(12345)725735 — 2A(12534) V15745 — 214(12435)’725745) + perm,,

These ambiguities correspond to different choices of the integration contours.

7One might wonder if the chiral algebra conditions are now much weaker. In the position space method,
we observed that the conditions from the coefficients of the logarithms do not lead to new constraints in
addition to the ones from the box diagram coefficients.
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Miing are the single poles
1
8v2(12-1)

+ (A(345)(12) = 2A(12543) — 2A(12345) ) 135+ (A(345) (12) — 24 (12354) — 2A(12453))734> +perm
(5.8)

Meing = <(A(345)(12) —2A(12534) — 2A(12435) ) 45

and Mg is the regular piece

3(8A(14325) — 5A(345)(12))
10v/2

The R-symmetry structures A;jxim), Agijk)m) Were defined in (2.5). Note that Meg does

Mieg = + perm. (5.9)

not contain terms linear in the Mandelstam variables. Moreover, one can show M,e, can
be absorbed into Mging. This corresponds to our observation in position space that there
are no intrinsic contact interactions.

6 OPE analysis

In this section we analyze the short-distance behavior of the supergravity five-point function
and use the Euclidean OPE to extract new CFT data of strongly coupled N/ = 4 SYM.
To simplify the analysis, we restrict our attention to only the singular and the leading
non-singular behavior of the correlator. A complete analysis of the supergravity five-point
function is left to the future.

In section 6.1 we discuss the kinematics of the Euclidean OPE. We discuss the decom-
position of five-point functions in conformal blocks, and also explain how to take a single
OPE to obtain four-point functions. This part can be read independently, and applies to
generic CFTs with and without supersymmetry. In section 6.2 we introduce all the oper-
ators up to dimension four that contribute to the OPE of two 20’ operators. The reader
interested solely in the results of the OPE analysis might skip directly to section 6.3, where
we present the new data obtained.

6.1 FEuclidean OPE limit

The information of the CF'T is encoded in five-point functions according to the principle of
operator product expansion. By leveraging this expansion in different ways, we can extract
various information from the five-point functions.

To extract the CFT data, it is most straightforward to use OPE in two different
channels. The five-point function essentially becomes a sum of products of three-point
functions, analogous to the case of four-point functions. More precisely, we send the points
x1, 3 and x4 to 0, 1 and oo respectively, by using the global conformal symmetry. The
Euclidean double coincidence limit (in the 12, 35 channel) is then obtained by taking both
x12 and x35 to approach zero, in which case (2.6) becomes

lim z}Gs = %gg,(v;;ti). (6.1)

L4300 T19%35
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In Euclidean kinematics we have two small parameters, s; and so, and three angle variables
&1, &2 and &3 defined by

_ _ T2 %13 _ Ti2- T35 — 2T12 - T13 T13 * T35
s1= |z12], §1=——— =cosby, §3 = ,
|z12] |z12]|235|
T13 - T35
sy = |wgs], o= —— =cosbs. (6.2)
|z35]
In these variables, the cross ratios defined in (2.8) become!®
Vlzsf, V2:1+8%—281fl, V:O,:S%, V4:1+8%+282§2,
Vs = sis5(1+ 8T + 55 — 25181 + 25080 — 2s182(E3 4+ 2616)) 7" (6.4)

Operator product expansion dictates that the five-point function can be expanded in terms
of conformal blocks

g5(‘/;’ ti) - Z Z Cozo’ozofok Cozolozofok’ ngo,okok, Gi,k:’(si’ 51) ' (6'5)
(Ag,J),(Apr,J') P

The five-point conformal block GZ,C,(Si, &) encodes all the contribution of the exchanged
primaries O, Oy, as well as their conformal descendants. The label p is associated with
the different structures of a three-point function with two spinning operators. We will
refrain from giving here the explicit expressions for the conformal blocks. They will be
given in appendix E, where we discuss how to compute them as series expansions in both
s1 and so.

Similarly, we can apply a single OPE and obtain information about the full four-point
functions. To achieve this let us consider the OPE of two external scalar operators

Chok

A +Ag—Ap+J

Ol (.%'1)02(.%’2) = Z 5 [F(12k) (3712; am ) Dz)ok,J(xh Z)] ) (6'6)

ko (212)

where the function F(12k) (x,0y, D) and the derivative D, are defined in appendix E. The
exact coefficients in this expansion can be fixed by imposing the consistency of the OPE
with the conformal structure of the three-point function. Applying F(“*) on the spinning
four-point function gives its contribution to the single OPE of the five-point function

F12k(219.0,,, D,
@12:900-D2) 103, (1, 2)Os(5)Oa24)Os 3 (6.7)

(33%2) 2

To proceed, we show how we can distinguish operators with different spins. Four-point
functions with an external leg of spin J have J+1 conformal structures, where the coefficient

8Note that if all the five points are restricted to the plane then only four of the five cross ratios are
independent, as £3 = — cos(61 + 62), and V5 simplifies to
5153

Vs = - - - —— . 6.3
> 7 (1= 5161 + 52€02)(1 — s1e~ 01 + spe—102) (6.3)
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of each structure is a function of the cross ratios

J . J—p
lim $4 (O, g(x1,2)O03(23)O4(24)Os5(x5)) Z (Z 513) <z jl5> .

Ta—r00 s T3 Ti5

(6.8)
For simplicity we set 233 = 1 and rewrote the cross ratios defined in (2.8) with complex
variables
Vs=(1—-w)(l—w), Vi =ww. (6.9)
The derivatives from the OPE expansion (6.7) act not only on the conformal structures,
but also on its coefficients al(p ) (w,w). This effect is important for the subleading terms
in the expansion of s;. The leading spin one and spin two contributions to the five-point
function are therefore given by

Oap1 = s14% (wgwago) + §1a§1)> , (6.10)
Gay2 = 818 (Waéo) + 86&810#04(21) + 45%4_104§2)> , (6.11)

where we introduce the new angle variable
- LIZ;;EIE (6.12)

The dependence on £ allows us to disentangle the different spinning four-point tensor
structures in the single OPE of the scalar five-point function, just like £3 parametrizes the
contribution of different three-point tensor structures in the double OPE limit. Finally,
when glueing the three- and four-point spinning correlators of 4d N' = 4 SYM into five-
point function contributions, we also need to perform the contractions of the R-symmetry
structures. The details of this procedure can be found in appendix B.

6.2 Low-lying operators

From the representation theory of the 4d N’ = 4 superconformal algebra, we know that the
tensor product of two stress tensor multiplets takes the following schematic form [41, 53]

1
2
4

4B

11 11
BE@ % Bi!i :
0,

[0,2,0],(0,0) [0,2,0],(0,0

13 B
)—>1+B 0](0,0) 202](00 +ZC[000](M

[0,2,0],(0,0)

o0

11
+ZC[%:22,0] (.5) +ZC§611] (.d) +ZAooo] Gg) - (6.13)

Here we use the notation X[Z‘h’ 4 d,ds] () to denote the supermultiplets, where [dy, d2, d3] is the
R-symmetry Dykin label of the super primary and (3, j) are the Lorentz spins. We will also
use J = 2§ when j = j, as the spin of the superconformal primary. The multiplets B and C
are short (semi-short) multiplets satisfying (b, b) and (c, €) type shortening conditions, while
A are generic long multiplets which do not satisfy any shortening condition. We refer the

reader to [54] for details of the classification of superconformal multiplets. The multiplets
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1,1
0,0,01,(5,9)
CFT. Moreover, the restriction to the singular and leading regular part of the Euclidean

contain higher-spin currents and therefore should not appear in an interacting

OPE leaves us with only a handful of contributing operators. Below we list the operators
which appear in the OPE at the supergravity limit, and enumerate their properties.
The operators responsible for the singular contributions are:

11

e The operator Oy¢ from the 1/2-BPS multiplet B[%go] (0,0)° It has A =2, J =0 and
R =10,2,0]
0L () = Tr(@ e (). (6.14)

11
e The R-symmetry current operator J,, from the 1/2-BPS multiplet 82’57 It has

[O 0],(0,0)'
A=3,J=1and R=1[1,0,1].

Notice the identity operator contribution is singular as well, but it does not appear in
the connected component of the five-point function. For the leading regular contribution,
we have

1
2

1
2
[0 2,

e The stress tensor operator 7, from the 1/2-BPS multiplet B
J=2and R =0,0,0].

’ It has A =4,

0],(0,0)"

e The bottom component of the 1/2-BPS multiplet B[%)j,o},(o,o)' IthasA=4J=0
and R = [0,4, 0], and its OPE coefficients with operators of short multiplets are also
protected. In the free theory, the 1/2-BPS operator can either be realized as a single-
trace operator, or as a double-trace operator of the 20’ operators projected to the
[0,4,0] representation. Requiring that the operators should have orthonormal two-
point functions enforces the single-trace operator to appear in a linear combination
with the double-trace operator, and the latter is suppressed by an O(1/N) coefficient.
In the bulk supergravity description, this state is dual to a scalar field which sits at
the next level of the KK tower and, by construction, it has a vanishing coupling with
two 20’ scalar fields. Therefore the dimension-4 1/2-BPS operator which appears in

the OPE of the five-point function corresponds to the double-trace operator

(ORE)EL = of o - . (6.15)

11
e The bottom component of the 1/4-BPS multiplet Bé:§72]7(070). This operator has
A =4, J=0and R = [2,0,2]. It is realized as a double-trace operator plus a
single-trace operator with a coefficient of order O(1/N) [55, 56]. For simplicity we

write down the operator with a specific choice of the polarization

Q = Tr(Z*)Tr(X?) — Tr(ZX)Tr(ZX) + %Tr([ZX} [ZX]), (6.16)

where Z and X are two complex scalar fields defined as Z = ®! +i®2, X = &3 4 id4.
Note that Wick contraction of the two scalar fields vanishes, so that the operator Q
is completely traceless. The OPE coefficients of 1/4-BPS and 1/2-BPS operators are
also protected [57].
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11

e The bottom component of the multiplet C[%go} 0,0)° IthasA=4,J=0,R=]0,2,0],

and is also realized as a double-trace operator (see, e.g., [58])
1
cll = 0I5 ok . —65” : OKLOKE . (6.17)

A
[0,0,0],(0,0)"

J=0and R =10,0,0]. It is realized as a double-trace operator.

e The bottom component of the long multiplet A This operator has A = 4,

11
474
[1,0,1],(0,0)
has R = [1,0,1]. The total parity of R-symmetry and spacetime spins of this operator is

therefore odd, which forbids it to appear in the OPE.

Note that the bottom component of C is also a scalar operator with A = 4, but it

6.3 Extracting CFT data

We can already make some qualitative predictions about the result after taking the FEu-
clidean OPE. For example, the only unprotected operator appearing in the OPE is the
super primary of the long multiplet, which is an R-symmetry singlet. Therefore none of
the other representations should contribute to the logarithmic singularities which are asso-
ciated with anomalous dimensions. Even without decomposing into conformal blocks, an
R-symmetry projection of the correlator expanded to order (’)(s‘fs%) confirms this to be a
feature of our supergravity five-point function.

Let us now consider the double OPE limit in more detail. In the following we always
write the OPE coeflicients for normalized operators, and we strip off the R-symmetry
structures which are defined explicitly in appendix B. This notation follows naturally from
the decomposition of the five-point function into the R-symmetry polynomials defined
in (B.20).' To begin, let us first project the five-point function into the channel in the 20’
representation and with A = 2. This simply corresponds to the intermediate operator being
the operator Oz¢. We obtain several OPE coefficients with two chiral primaries, which
were known previously from the analysis of the 20" supergravity four-point function [59]

1 19 2v2 3
C’(/)20'020'%\ = V10 <1 + 15N2> ) 0(920/020/9 = W <1 - 2]\72> )
1 V6 1
0020/020/(91%7; = \/§ (1 + ]VQ> > 0020/020/0 = % (1 + 6]\72> . (618)

Note that our results have different normalizations as we use the tensor structures defined

in appendix B. Except for Co, 0,4, the three-point functions above are protected, and

so they coincide with their free field theory values.?"

9By contrast if we want to directly compute the normalized OPE coefficients in the free theory, we need
to evaluate both two- and three-point functions where the former set the normalizations.

20T hree-point functions of half-BPS operators are known to be independent of the coupling, thanks to
the non-renormalization theorems [52, 60—67], while three-point functions mixing half- and quarter-BPS
operators were shown to be protected in [57]. Meanwhile, the non-renormalization of C@20,(920,c was
observed in [59], and proved in [68] using superspace techniques.

— 30 —



Focusing now on intermediate operators of dimension 4 in both channels, we are able
to extract three-point functions which could not be obtained from the four-point function
of single-trace operators. In particular, we find the following OPE coefficients

44/2 5 4v/2
0020/0(9{)07; - V15N (1 T 6]\72) ’ 0020’0907;01%7; - N
2v/10 < 1 5 >

8v/2

N (6.19)

Co,yco = — Co,y00 =

3N 3N?

which match exactly with their free theory values. The three-point functions C’Ow ORI ODT
Co,, 00 and 0020/ cobr are known to be protected. We reproduced these three-point func-
tions from supergravity calculations, which gives nontrivial checks of our results. More-
over, the precise match of Co, ,co with the free theory value also strongly indicates that
the three-point function is protected, supporting the claim from [68] using superspace
arguments.

We also extract the OPE coefficient of one Osg with two C operators at strong coupling,

9v2 10
Co,ycc = (1 + > : (6.20)

which reads

5N 81N?2
We find that this OPE coefficient does not match the free field theory computation, in-
dicating that this type of three-point function is unprotected.?! Further support for our
claim can be obtained from perturbation theory. In [69] the authors obtained the five-
point function at one loop, and a decomposition in conformal blocks reveals that the OPE

coefficient receives a one-loop correction®?

pert _ 9V2 <1 N 20(1 — 15>\)> '

Ogq/CC 5N 27N2 (621)

Finally, we consider the singlet and 20" R-symmetry channels, from which we derive a new
OPE coefficient involving the unprotected operator A and a semi-short operator C

o _2V2 L 521
OQO/AC_ \/gN 90N2 .

While the machinery developed in appendix E makes it convenient to directly extract

(6.22)

the CFT data, there is still much to gain by performing just one single OPE. It allows us
to obtain the complete four-point functions from the five-point function. To start with, we
reproduce the known four-point functions of single-trace operators. We found that the pro-
jection of the singular part of the correlator on the [0, 2, 0] channel is exacly reproduced by

2L At first sight our result seems to contradict the protected nature of the chiral algebra. However,
unlike the B-type multiplets where the Schur operators are the super primary, Schur operators in the C-
type are superconformal descendants. We strongly suspect that the three-point functions for one B-type
multiplet and two C-type multiplets have more than one superstructure in superspace. The protected
chiral algebra three-point function and (O2¢/CC) are in different superstructures which are unrelated by the
action of supercharges. The non-renormalization theorem applies only to the former case. We thank Carlo
Meneghelli for discussions on this point.

22The weak coupling analysis is more subtle, as there could be more operators appearing in the OPE.
Fortunately, at one loop there is no new scalar operator with dimension 4 and in the [0, 2, 0] representation,
as we can see in the conformal block decomposition of the one-loop four-point function of Ozqr.
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the scalar four-point function (Oag O O2¢9'Oa¢r). The projection of the singular part into
the [0, 1,0] channel is matched by the four-point function (C.27) of three chiral primaries
and one R-symmetry current. Moreover, the [0,0,0] spin two component of the regular
part is matched by the four-point function (C.29) of three O¢/ and one 7,,. Once we have
removed the contribution of the stress-tensor, we can use the single OPE to extract the
correlator of the unprotected double-trace operator with three chiral primaries, which is a
new result for strongly coupled planar N’ = 4 SYM

tostost u+v+uv 1 = A
(AO20 020 O2¢) = 223 424 24 2 N +ﬁ (44 D2224+36 (1+u+v) Daas
Vhadywisat, a3, uv
u4+v+uv /139 _ _ 28 ~
+— (7—8172112—811172121) ——Dun (6.23)
uUv 15 3

Much new information is encoded in this correlator, with the OPE coefficient of (6.22)
being just an example of the type of data that can be extracted. Also note that there are
many possible rewritings of the correlator (6.23) in terms of D-functions, and we have only
presented the simplest expression. It is also possible to write an expression which requires
only D-functions of total conformal dimension 10.

7 Discussion and outlook

In this paper, we developed new systematic methods to compute five-point functions from
AdS5 x S° 1IB supergravity. We also obtained five-point conformal blocks in series expan-
sions, which allowed us to perform conformal block decompositions for five-point correla-
tors. As a concrete example, we computed the five-point function of the 20" operator. We
performed a number of consistency checks on the 20’ five-point function and extracted new
CFT data at strong coupling.

There are many directions which one can pursue in the future.

e First of all, an immediate interesting extension is to apply our methods to more
general five-point functions. As the complexity of the correlators grows with the
extremality, the best starting point is correlators with the same extremality as the
20’ five-point function. These correlators should have very similar structures, which
is particularly manifest in Mellin space. Work in this direction is in progress and we
hope to report the results in the near future.

e Second, we would like to better understand the general structure of the five-point cor-
relation functions dictated by superconformal symmetry. For four-point functions,
superconformal constraints boil down to the partial non-renormalization theorem
of [40]. This theorem reduces the correlators to a free part and a “quantum correc-
tion” part, which has a much simpler form than the full correlator. For five-point
functions the pressing issue is to find and solve the full set of constraints from super-
conformal symmetry, and the solution will constitute the five-point analogue of the
“partial non-renormalization theorem”. Such a solution will give us a more compact
way to write the five-point function.
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e Relatedly, it has recently been observed that the correction part in four-point func-
tions exhibits a hidden ten dimensional conformal symmetry [30]. Using this hid-
den symmetry, one can lift the lowest-weight four-point function into a generating
function. Establishing the five-point “partial non-renormalization theorem” will be
extremely useful for identifying the action of the hidden symmetry at the level of five-
point functions. It should then also be possible to write down a generating function
which gives five-point functions of arbitrary conformal dimensions.

e From our analysis, it is clear that there are close analogies between holographic cor-
relators and flat space scattering amplitudes. For example, factorization in Mellin
space played a crucial role in our position space approach of computing the five-point
function. We also showed that the 20’ five-point function has no intrinsic five-point
contact interaction. This seems to suggest certain “constructibility” of the holo-
graphic correlators. It would be extremely interesting to develop such constructive
approaches further and extend them to higher points, perhaps in the form of Mellin
recursion relations similar to the famous BCFW relation [70].

e One aspect which we have not considered in detail is the flat space limit. We
would like to examine this limit more carefully in the future. The flat space limit
will also be important when we consider higher-derivative (stringy) corrections to
the five-point functions, as has been emphasized in the four-point function case by,
e.g., [14-17, 23, 25].

e Finally, the technology developed in this paper can be readily applied to eleven di-
mensional supergravity on AdS7 x S*. The chiral algebra in six dimensions [71] places
strong constrains on the five-point functions. However, it is not clear if a twist similar
to the SO(6) twist of [39] exists for the (2,0) theories. It may be necessary to resort
to the flat space limit, which gives extra constraints on contact interactions. It would
be interesting to compute five-point correlators for this background, and extract new
information about the (2,0) theory in six dimensions.
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A Integrating out an internal line

In this appendix we extend the method of [47] to higher-point Witten diagrams with more
than one internal line, and evaluate the various diagrams that appear in section 4. The key
point is that integrating out an internal line replaces the integrated cubic vertex by a sum
of contact vertices. When the quantum numbers are fine-tuned to satisfy certain conditions
(such as in N'=4 SYM and the 6d (2,0) theory), the sum in the contact vertices truncates
to finitely many terms. Repeated use of the vertex identities then allows us to write an
exchange Witten diagram in terms of a finite sum of contact diagrams.

A.1 Vertex identities

In [47] the consequence of integrating out a bulk-to-bulk propagator for a four-point ex-
change Witten diagram was worked out. The upshot is that the exchange Witten diagram
can be expressed in terms of a sum of four-point contact diagrams. For our purpose, we
want to extract from their result the vertex identities that relate an integrated cubic vertex
to a sum of contact vertices.

A.1.1 Scalar exchange

Let us start with the scalar internal line. The integrated cubic interaction is

dd-i-l
Iscatar :/ a1 GBa(Z Jfl)Ggé(Z,J?z)G%B(Zay) . (Al)
20

Using the result in [47], we can express this integral as

kmax

Iscalar = Z ak(x%)k AQGIH_Al Q(yvxl) G%a(y,l‘g) (A2)
k:kmin

where

kmin:(A_A1+A2)/2 kmax:AQ_la

ap—1 = (k_ %+ - A2)(k_%+%+ Algm)ak
- (k—1)(k—1— A1+ Ay) ’ (A.3)
1

AA1=1)(Ag = 1)

Apy—1 =
with A1 + Ay — A being a positive even integer.

A.1.2 Graviphoton exchange

We now consider the integral involving the exchange of a vector field of general dimension
A. When A = d — 1, the vector field is a massless gauge field and couples to a conserved
current. Denoting A; = Ay = Agyt, we will consider the coupling of the vector field to a
conserved current

12 dd+1 Aext Aext A,l,p,u
Ivector = d+1 (G (z xl)vl/G (27'7;2)) C;BB (Z,y) s (A4)
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where Gg’é’“ “(z,y) is the vector bulk-to-bulk propagator. This integral can be evaluated
as a sum of contact vertices

k’max

Qg _ v s
Lector = — Z %(95%2) Bextthgh () (G%a(% 21) V., Gy, 132)) (A.5)
k=kmin
where

d—2 1
ka:—Z—+1¢W—2y+qA_qu—d+n,
kmax = Aext -1 )

2k2k+2—-d)— (A-1)(A—-d+1) (A.6)
ap—1 = ag ,

4(k — 1)k
1

a’Acxt*l - 2(Aext _ 1) .

The truncation requires that kpax —Fmin is @ non-negative integer. Notice that in evaluating
the cubic integral, vanishing divergence of the source is not required. Therefore this result

holds even when the source coupled to I, is not conserved.

ector

A.1.3 Graviton exchange

Finally we consider the cubic integral involving a graviton field. Let A1 = As = Ay, the
cubic integral is

Az A—d2.0-2 A A
Igrl;viton:/ LA+ Gpp P (2, y) X VoGggt (2,21) VoG5t (2, 22)
0 (A7)

1
— 59””(2)(V”G§5’“ (z, xl)v,{Gggﬂ (z, x2)+m2G§gX° (z, xl)Gég‘t (z, zg))> .

Using the result of [47], we find that this integral reduces to the following sum of contact

vertices
" kmax 9 _A +k g;Ll/(y) & .
Igraviton = Z ak(le) ext (CHGBa(y7$1)GBa(y7$2)
k=FEmin (AS)
1 y ,
where
Fmin é -1,
2
kmax == Acxt -1 s
_kt1-9 (A.9)
ak—1 r—1 ag ,

aAext_l - _Q(Aext _ 1) *
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For the above expression to be valid, I*"” must be coupled to a conserved current.

graviton

This is because in the derivation of [47] total derivative terms in I

graviton A€ assumed to

drop out, which is consistent only when coupled to divergence-less sources. On the other
hand, when I%”

graviton

from the total derivative terms in [ gramon The contribution of these terms cannot be

determined using the techniques of [47].

is coupled to a non-conserved source, there is a nonzero contribution

A.2 Five-point exchange Witten diagrams

Using the vertex identities, we can evaluate the exchange diagrams that we encountered in

section 4. We record here their explicit expressions.

A.2.1 W S[12]55[34]

The double-exchange Witten diagram W*121-*B4] is defined by (4.29). It evaluates to

TWSh2lS34] — ﬂ (A.10)
161’%2:@4

A.2.2 WBa

The scalar single-exchange diagram with a zero-derivative quartic vertex is defined by

dz5 duyP _ _ _ _ _
Wyl = / Y G 2(2,21)G B (2,22)GB52(%:y)GBa  (1;23) G55 > (1;24) G55 (v; 25) -

(A.11)
It has the value
D
Ws_[lz]r — 11222 ' (A12)
0-de 41,%2
s112]5(5)
A.23 W, 2

The scalar single-exchange diagram with a two-derivative quartic vertex in which the two
derivatives are on the external legs 3 and 4 is defined by

s dz’ dy _ _ _
Ww. n2,(%) _ G zw G52 Z GAZ? z; G52 [T
2-der 28 yo ( 1)GBy " (2;22)GEE™ (2 9) B (y;w5) (A.13)

x vy,uG%BZQ(y§ $3)V5G§32(y; T4).

Using the identity

VIGRIVLGRS = M, (GRHGES - 2hGRaR ), (A.14)
we find
5 1
Wy, clli]r( ) —5 (D11222 — 223, D11332) - (A.15)
12
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A.2.4 WVi2Visg

The double-exchange diagram W"'12'Vi34l i defined by (4.19). Using the vertex identities,
we have

1
Wz Vs = 52\ — 234 D12122 + 733 D12912 + 214 D21122 — 273 D21212
227,75,
(A.16)
+ 2(z]375, — 95%417%3)1722222) -
A.2.5 WVi2sea
The double-exchange diagram W '112*i34 is defined in (4.22) and it evaluates to
1

W Va1 sea = YW ( — 202 D19113 + 23, D19192 + 233D 12919 + 2235 Do1113

8115734 (A.17)

2 2
— x14D21122 — $13D21212> .

A.2.6 W®¥napds4

The definition of the double-exchange diagram W¥021%34] is given by (4.6). As we com-
mented before, the vertex identity in section A.1.3 does not hold because the source (4.9)
is not conserved. A naive application of the identities leads to a wrong answer since the
dropped total derivative terms have nonzero contributions. On the other hand, the total
coupling to the graviton field is conserved when we sum up all the diagrams, and the extra
contributions due to the ignored total derivative terms will vanish in the sum. Therefore it
does not matter that we use the vertex identities of section A.1.3 to evaluate the diagrams
so long as all the diagrams are added up correctly at the end of the day. With this caveat,
we find that

1
. 2 2
WonsB = — (2D11112 — 3(x74D21122 + 213 D21212)

2 (A.18)

2 2 2
+ 6275(D21113 — 274 D31123 — $13D31213)>

where we used = to remind us that this expression only makes sense in the sum of all
diagrams.

A.2.7 W®na

The single-exchange diagram W¥012! is defined by (4.14). The coupling to the graviton is
also non-conserved, but we will evaluate it with the same caveat for W¥21*41, Using the

vertex identities we have

. 2
= ———5 D122 (A.19)
3z3,

W ¥l12]
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B R-symmetry polynomials

An R-symmetry basis can be obtained by solving the two-particle Casimir equations in two
compatible channels. In terms of the null vectors, the SO(6)z generators take the form

i 0 0
)t

2,2 B.1
Tor] T ol (B.1)

The two-particle Casimir operator, say for 1 and 2, is constructed from Lglj) and L%)

e = (L§ )+ L)) (L7 4 @) (B.2)

When acting on the five-point correlator, which is a polynomial of ¢;; = t; - t;, the two-
particle Casimir C(1?) can be written as

c1.2) — _ Z (DtliDtu) —(dr—2) Z Dy,

1,j=3,4,5 1=3,4,5
- . Z (DtQiDtQj) (dr — Z Dy, (B.3)
1,j=3,4,5 i=3,4,5
0o 0
2 tioti; — tiita)) s
+ 4 Z ( 12445 1z 2‘7)8751]' at%
4,j=3,4,5

where dr = 6 for SO(6) and D, = x%. Other two-particle Casimir operators C(»7) are
similarly defined and can be obtained from C(12) by permuting the labels.
We now consider the solution to the following Casimir equations

clab) o Rgglgl@ D) = _2(p(p+dr —3) +qlq + 1))Rf£@3f 7 (B.4)
ced) o REDED) = _o(p/(f + dp — 3) + (¢ + 1)) RGD T (B.5)

where a, b, ¢, d are different points. When the quantum numbers {p,p’,q,¢'} are such
that the solution is nontrivial, there exists a process where the [0, 2, 0] representations at
points a and b merge into the representation [p — ¢, 2q, p — ¢|, while the tensor product of
points ¢ and d produces the representatlon [p'—q,2q',p'—q']. This process is illustrated by
figure 8. The solution REIMCZI( ) is the R-symmetry structure associated with the process.
R-symmetry selection rules at the vertices with a, b and ¢, d require 0 < ¢ < p < 2
and 0 < ¢’ < p’ < 2, and the solutions are further restricted by the selection rule at the
vertex with the remaining external point e. There are in total 22 solutions to the equations,
which are in correspondence with the 22 R-symmetry structures and form a complete basis.
Notice that when the two intermediate representations are [1,2, 1] there are two solutions
to the Casimir equations. This is because [1,2, 1] appears twice in the tensor product of
[1,2,1] with [0,2,0].

The OPE coefficients are meaningfully defined only when we set the conventions for

the three-point SU(4) tensor structures. In the context of a double OPE analysis it is

(p.9):(p",q")
abled

the product of three such structures. In order to do so, let us first introduce the tensors

useful to fix the normalization of the polynomials R such that they correspond to
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110,2,0]

2 [0,2,0]
5 [0,2,0]

[P —4q.29,p —q]

[P! _ q.‘,zqr,Pr _ q!]

4[0,2,0]

310,2,0]

Figure 8. An R-symmetry channel of the 20" five-point function where the representation [p —
q,2q,p — q| is exchanged in 12 and the representation [p’ — ¢’,2¢’,p’ — ¢'] is exchanged in 34.

associated with each of the representations [p — ¢,2¢,p — ¢]. For p = 2 we encode the
representations by traceless orthonormal tensors of rank 4, denoted by

(Cg);']jkl ) (B'6)

where i, j, k,l are SO(6) vector indices, and J parametrizes the degrees of freedom of the
representation. C3 is completely symmetric, C? is symmetric in both i <+ j and k « [
but antisymmetric in the exchange (ij) « (kl), while C2 is antisymmetric in both i <> k
= 0.
Similarly, for p = 1 we encode representations by traceless orthonormal tensors of rank 2,

and j < [, symmetric in the exchange (ik) <> (jl) and also obeys e¥*mn(C2)J =

which we write as

(e (B.7)

Z] ’
where C} is symmetric and C} is antisymmetric.

We can now set our definitions for the tensor structures arising in all relevant three-
point functions. When two of the representations are the 20’, all possible tensor contrac-
tions can be related to the following three-point structures

ThlI = (C)HCHE(CH (B.8)
TR = (ehieh ey, (B.9)
T = (ChHiChE = . (B.10)

If only one of the representations is the 20’, then the independent three-point structures
can be chosen as

Ty . = (Ciam (D (CF) fhtm (B.11)
Té,lf(),(z,n,z = (C%)ﬁzm(cll){j(cf)ﬁkm7 (B.12)
Tty = (Co)i(CD(C)ik (B.13)
T({{({i(m) = (C(%);]k(cll){](c(%)ﬁc (B.14)
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Note that when both (p,q) and (p',q¢’) are equal to (2,1) there are two possible tensor
structures, which reflects the fact that there are two independent singlets in the tensor
product [1,2,1] x [1,2,1] x [0,2,0].

It is natural to write the basis of four-point structures in the (ab) channel as the
product of three-point structures introduced above

Ialp|lcly oDy qalelyqd
T(p,q) - T(pvq) T(M) ’ (B.15)
which can be written as polynomials in ¢;; by performing the following contraction
Toly|lc], WIa 4i14] 14\/, i44]
R = T (O oy ety . (ODf it (B.16)

For example, the basis suitable for the OPE in the 12 channel of the four-point function

would be
Rﬁgﬁl = 19134,
R§127‘%)4 = %t12t34(t137524 — tates) ,
R%\?x; = %t12t34(t13t24 + tiates) — étf2t§4 :
R%\g)zl = i< Taths + tiaths) — §t13t14t23t24 - g(t1zt14t23t34 + t1ot13toatss) + Zot%2t§4 7
R%\?z; = 5(15%37534 — 134t33) + 1(7512t14t23t34 — tiatistoatsa)
R%\?z; = é(t%3t§4 + t14t33) + §t13t14t23t24 - B<t12t14t23t34 + tiot1gtoatss) + %t%t%él ,

(B.17)

Analogously, the natural basis of five-point tensor structures in the double OPE analysis in
(ab) and (cd) channels is then given by the following product of three three-point structures

IolplIclglle  mladyd pnJIK I IgK
), ,¢)t — T (pa) T ()@, (pd) (B.18)
With these definitions, the normalization of the polynomials R(zgq),(p ") is fixed by requiring
ablcd
that
P9),(",d") _ plalpllclalle [ ~INT, iy 4j e Lisigs
Ropjeas ™ = Tipgy rgya( Clifptata - (Cr)iggtete’ (B.19)

Performing the contractions on the right-hand side we obtain the following basis suitable
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for a double OPE in the 12 and 34 channels

(0,0),(1,1) _
312\34 =M,

R(LOLL0) _ A A A3+ Ay
1234 = 1 ,
RLOLLL) _ A — Ay + A3 — Ay
1234 = 1 ,
R _ Al + A+ A3+ Ay H T
12|34 - 4 6 6
RLOL21) _ Ai—Ay— A3+ Ay D1 —Dy
12|34 - 16 9 ’
RLD.20) _ _.A1 +As + As + Ay B D1+Dy  E14& n ﬂ n £
1234 16 4 4 8 40’
R _ Ai+ A - A3 - Ay & &
12|34 - ] B 9 )
R(LD.22) _ _./41 + A+ As+ Ay D1 +Dy & +& _ ﬂ £
1234 15 3 6 15 60’
R(Z’O)’(Q’O) . _3./41 + Ay + Az + Ay B Bi+By+Bs+By Ci+Co+C3+Cy
1234 128 16 16
- Di+Dy, & +E FAtFR g1+gz+ﬂ+£
32 32 32 32 64 64’
peo.ey _ _ArtAs—As— Ay BitB—Bs—Bs G +C—C—C n &1 —&
124 32 8 8 16
en,el) At A A3+ A  C1=C—-C3+C  Di—-Dy Fi—F
R12\34,1 =3 64 + 1 + 3 3
RED21) _ 5A1 — A A3+ Ay Bi-By—B3+Bs Di—-Dy Fi-—F
12342 128 4 16 6
RD22) _ A+ A A3 - Ay Bi+ By — B3 — By N C1+Co—C3—Cy n G1 — G2
1234 30 6 12 30
R(22,22) _ AL+ A+ A3+ Ay L By + Ba + Bs + By n Ci+Ca+C3+Cy
1234 50 6 12
Di+Dy &E+E F+F Gi+G H 1
T3 T30 15 30 wmtn (B-20)

where we introduced the following short-hand notation for the monomials

Ay = tiatastsatastsy ,
By = tistsataatastsi
C1 = tistsstsitsy
Dy = tiatastsstsatar ,
F1 = taataitistsates,
H = taatastsstis

Ag = tartistsatastss

By = tastsitiatsstse,
Cy = tagtsslsatly,

Dy = t1atostastssts

Fa = taataotostsitis,
T = tiatastsits, .

As = tiataalastssts ,
B3 = t1ataotastssts
Cs = tiatastsitss,
& = tigtostatis,

G1 = taatatiatis

Ay = tortiatastsstse

By = toatartistsstse,

Cy = tastastsotls,

& = tiatoatartss

G = taataatostis ,
(B.21)

When performing the single OPE, it is useful to know how the structures of the four-
point function contract with the three-point structure, so that we can recognize their
contribution to the five-point function. We will now see that we can do this easily with the
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knowledge of four-point R-symmetry polynomials from (B.17). If the intermediate operator
is in the 15 or the 20’, then the tensor contraction is of the form

Tl = (O (OO (Colmp X (CHCHRCDEH(CE - (B:22)

np
It is useful to rewrite this tensor in terms of the variables ¢;, which we do as follows

R(lvq) = Ol pivgn e yisggs plalpllclale

ablcde t1j17a "a - i5J5 € "€

= tapteatae tyth (C1) 0, (CtitL . (B.23)

It is possible to recognize part of the definition for the four-point polynomials in this
expression, from which we obtain

(Lg) _ ledlde p(19)
Rab\cde_ tee Rab|ce‘ (B24)

C Spinning correlators

In order to use factorization we must obtain the Mellin representation for correlators of
the chiral operator O/ with a single insertion of the R-current 7, or the stress-tensor
T, whose AdS duals are the graviphoton V), and graviton ¢, respectively. Three-
point functions of these fields are protected, and their Mellin transform is a constant, but
factorization requires also the knowledge of the Mellin representation for the following
four-point functions

(J1020: 020/ O2q) (C.1)
(T O20 O20: O2¢) . (C.2)

It is useful to think of these spinning operators as different components of the superfield

T (@, 06, 05) (C.3)

a’’a

which depends only on four chiral and four antichiral Grassmann variables, due to a short-
ening condition. Therefore, the four-point function

Gy = (T(1)...T(4) (C.4)

depends on 16 chiral and 16 antichiral variables, which exactly matches the number of
supercharges in N' =4 SYM. In [48] the superconformal symmetry was used to relate all
elements of (C.4) to the lowest component, i.e., the four-point function of chiral primaries.
The chiral primary four-point function can be split into a free part and an “anomalous”
part which depends on the coupling

D(u,v
(Oa0(w1,11) .. Oy (04,40)) = Gl gy = G (aisti) + Blaist) 20 (C5)
o 13724
where u and v are the four-point conformal cross ratios
_ 1573 v — 14735 (C.6)

2 .2 2 .2 >
L13L24 L1394
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and the prefactor of the anomalous correlator is defined as

2 2 2 2 2
R(z;,t;) = d 2d343312$34 + d},d3 31’145323 + dy3ds 453133724
2
+ diodi3dasdss (2703, + aTs25, — a3,033)
2 2 2 9 2 2
+ d12d14da3d34 (01573, + 274753 — TI3754)

+ di3diadaadas (21323, + 274255 — 21023,) (C.7)

with the propagator d;; = t;;/ mfj By superconformal symmetry, the four-point functions
(J10200 020 O2y) and (T,,,O2¢'O2¢:O2¢r) have similar structures, namely, they can also
be expressed as the sum of a free piece and an anomalous piece.

Using the results of [48], the anomalous component of the correlators (C.1) and (C.2)
can be written in terms of the function ®(u,v) in the following way

9y, )2 (X124, X134]
(Jad,aaO201 --.) = % <(y§3y§4Y124 —uy33y5, Y134 _Uy§4y§4)/123)adf2(aﬁ)q>(uyv) )
L93L24T34

(8“1)2(8”71)5 33125’314 y23y24y34
(T,55020 -- >=f [ X124, X134] (03[ X124, X134)y5) —3 5 5 P(w,v)),
Loy 33235”243734
(C.8)
where the tensor structures are defined as
(i) aa (k)P (Thi) g
(Xijk)og = 0 (Yijk)as = Wig)aa (k)™ (Uki) i - (C.9)

L35k

By contracting (Xijk),s with %(U“)Ba we recognize it as the building block of correlators
with a spinning operator

7 H

noo_ zk: %]
Xt =Tk 0 (C.10)

T, Lij

Note however that a four-point function depends only on two such structures, due to the
identity
Xy — Xiog + X135 = 0. (C.11)

Similarly, we can rewrite equations (C.8) with vector indices by contracting with Pauli
matrices and performing the traces. In position space the expressions are quite lenghty, so
here we present the results only schematically

1
(JuO20 020/ O2¢/) = 73}‘1*335‘214 (04(2) (u,v) X5, + a® (u,v)X{‘M) , (C.12)
1 1% 1%
(T O20:O20' O20/) = 4 4 (5(2’2)(U7U)X{LQ4X124+5(3’3)(Uav)Xf34X134
T13Loy

v "'E v
+BC9 (u,0) X X1 ) + T S, 0)5,(013)
13724

where the functions a® (u,v), 87 (u,v) and v(u, v) are linear combinations of ®(u, v) and
its derivatives, with coefficients given by Laurent polynomials of the cross ratios. It is not
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manifest in (C.8) that the result can be expressed in terms of X5, and X1, alone, so the
fact that (C.12) and (C.13) have this form provides a good consistency check of the result.
Furthermore, «y(u,v) is such that the expression for the stress-tensor is traceless, and we
observe also that, as expected, both correlators satisfy the equations for conserved currents

0 0
(JuO20 020/ O2¢/) = i
ol oz

The expressions for the spinning four-point functions simplify greatly when we use the

TW,O2010201020/> =0. (C.14)

spinning Mellin formalism [37]. Here we can ignore the free piece because they are rational
functions which do not contribute to the Mellin amplitude [2]. The Mellin amplitudes
therefore come exclusively from the anomalous piece computed above. By inverting (3.4),
we can extract the Mellin amplitudes by performing the following Mellin transforms
1 s t
M®(s,t) = / du/ dvou'™2 1_§ﬁ(a’b)(u,v),
H4 (’YZ + 611 + 5b 1<J ’Ylj
1

du/ dvul=5pl=3 ()u,v , C.15

where ~; are fixed in (3.6) and we define the remaining Mellin variables as

t s+t S
723:2—57 5 -2, 734:2—5- (C.16)

Since the functions o (u,v) and S7)(u,v) are linear combinations of ®(u,v) and its

M(s,t) =

V24 =

derivatives, it is useful to consider the relation

s—2m-+42p—2 t—2n+42q—2

= (—m—l)p(;—n—l)q /Ooodudvu 2 vo 2 b (u,v), (C.17)

and
32I(2 — £)’T(2 — L) (554)?

(s=2)(t—2)2—-s—1)
Putting equations (C.15), (C.17) and (C.18) together, we obtain the following Mellin rep-
resentation for the R-current correlator (C.1)

2(t—4)%y34y3. Y123 | 2(t+5—4)"y3395. Y124 2(5—4)(2t+5—8)y53154 Vi34

(C.18)

/ dudv u*%v*%q)(u7 v) =
0

M= (s—2)(s+t—6) (s—2)(t—2) (t—2)(s+t—06) ’
_2(t—4)%y5,y5,. Y123 | 2(s—t)(s+t—4)y3sy3, Ve 2(s—4)*y33y3, Y134
M= (8—2)(82175%6) * (s—2)(t—;§ - B (t_Q)(Szj_tQ_AL(;) ’ (C.19)
while for (C.2) we get
M?? = géz : ;1;8 ;l;g i i — g 2/%33/%41/32,4 )
4t —4)((s—4)(s+t—4)+6(t—2))
M23 - 3(8 _ 2)(t 2)(8 +t— 6) y%3y34y?2)4 )
M = D gk c20
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We also obtained the other Mellin components, M4 and M, and verified that they satisfy
transversality

Z'YQM(I =0,
a

> (Ya+6)M® =0. (C.21)

a

As a side comment, we observe that the transversality condition (C.21) imposes non-
trivial constraints on the Mellin amplitudes. For example, the Mellin amplitudes with one
external stress tensor can be cast in the following form

M®(s,t) = ;“_b; + tc‘fz + - j“t”?’_ o Caba: (C.22)
Imposing transversality fixes all the coefficients c,p; in terms of just one, say c221.

It is now instructive to go back to position space once again. This is a subtle procedure,
but when performed correctly we are able to recover both the anomalous and free pieces of
the correlator. From the definition of the spinning Mellin amplitude (3.4), the integration
variables must sit in the domain

{(s0, t0)| 2(s) < 4,9(t) < 4,R(s) + R(t) > 4} . (C.23)

In order to translate our Mellin amplitudes (C.19) and (C.20) into D-functions, we use the
definition

2]‘—‘( 2'71]
DAl.A.A 1—[ F d7 HF %j s (0.24)
1<j

with

Z:Yij = Ay, (C.25)
J#i

whose contour integral is defined for Mellin variables in the domain
{(s0,t0)| 75 (R(s), R(¢)) > 0} . (C.26)

In order to have a faithful position space representation, all integration domains for the
D-functions must overalap with the fundamental domain (C.23). Having this in mind we
obtain the following R-current correlator

2y2,y2,(Y123) ac _ _
(Jh. O30/ 020 O20/) = yMj;i(xfg)aa (= (Da13a+uD2224) X154+ (Daz2a+uDasia) X1,)
13%24
L+ 203534 (Y124) aa (- (

T Dorag+uDazaz) X4y + (Dazss—uDagsz) X1i5,)
UT 13T

2uy2.y2, (Y S = _ _ _
+ y23y424(4 134)as ((Da2s23 — Dass2) X419, — (Das1s+Dasza) X1s,) -
L13%94
(C.27)
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The contributions with the ladder integral and logarithms are exactly the same as in (C.12),
and so we are able to extract the free correlator

yiree _ _ Y3334 (Y124)aa X154 +ut35y5s (Yi34)aa X {34 + 0934934 (Y123) a0 X {53

m
(J!. 0201020 Oy T

(C.28)
Meanwhile, for the stress-tensor we obtain

Y3333 g ~ g ~
(T O/ O20/ Oapy) = —22224234 (u? (Duygi2 + vDagor + vDaar1 + vDaazo) X1o, X{o4
vy
+ 2u (Dag22 — 20D4931 — 20Dy321 + vDy332) X£54X1V§4

+ (D132 + vDazs1 4+ vDara1 + vDazaz) X154 X1s4)
(C.29)

which differs from (C.13) by

43/%39349%4 ((1 + U)X524X1V24 + (u+ U)X534Xf34 - 2UX£54X5?24)

1.
3uvrisTyy

(TH O/ Q20 O20/) " =
(C.30)
D Properties of D-functions

In this appendix, we summarize some basic properties of the D-functions which we encoun-
tered in this paper. A general D-function with n-external points is defined as an integral

in Ade+1
dzod?z 20 Ai
DA VAV / <_,_, . D.1
Tyeees Zg+1 g zg + (Z —l'i)Z ( )
After some standard manipulations, the D-function can be written as a Feynman integral
7120(s — Dr(z) (Lo asi
2 [ dass (1= 30 ) it (D.2)
2H1F(Ai) 0 ;5 7 (ZK]' aiajxij)

where ¥ = % > Ay One should notice that the d-dependence only appears in the overall
factor I'(X — %), and therefore D-functions defined in all AdS4y; are essentially the same.
From the Feynman representation, we can derive a useful relation

dj2—% o
D ) . =1 D.3
Aty At L AL A AA; o2 Aty An s (D.3)

which relates D-functions of higher weights.

Let us now focus on the special case with n=>5 and (A1, A9, A3, Ay, As)=(1,1,1,1,2).
This seed function D11112 and its permutations generate all other D-functions in this paper
via the differential recursion relations (D.3). To explicitly evaluate Dj1112, we need to
compute the following integral

1 5
as
dajd |1 - a; . (D.4)
/ojl;‘[1 ! ; S aiajxi?j)3

1<j
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In fact (D.4) is a special case of a more general class of integrals

LP(a)] =T —2) [ TTdass [ 1 : P{ai}) (D.5

n[P({a:})] =T(n—2) ) H aj - Zaj T 5)
j=1 j 1<) 7717

where P({a;}) is a polynomial of a;. These integrals can be evaluated in terms of the scalar

one-loop box integral I4[1] [49, 50]. The result is

5 ~(i
D 4r® nisls?
11112 = ~5 5 5 .
T14%35%25 S Ns

(D.6)

Here N5 and n;5 are defined via a matrix p
p= Ny t, N, =2""1detp, (D.7)

where
0Vy1 1 V3
Ve 0 V51 1
p=11V5 0 V3 1 (D.8)
1 1V 0 Wy
Vo3 1 1 V5 0

with

2,2 2 .2 2 .2 2 .2 2 .2
Lo5L34 L3125 L24%715 L1o235 L1423
Vi= , Vo= , Va=—+5—=5>, Va=—=">23>, Vs= . (D.9)
L14To5 To5T13

2 2 2 2 2 2
24735 L35%14 T13%24
The function I f) is the scalar one-loop box diagram where the point ¢ is omitted from the
set of five. For example,

I = o114, v5) (D.10)
with
1 1—
O(ViVy, V5) = P <2Li2(z) —2Lis(Z) + log(22) log T Z) , (D.11)
and
x2,22 x2 23
ViVy="22731 — oz Ve =028 (1)1 -2). (D.12)
R %513,

The one-loop box diagrams satisfy the following differential recursion relations [40]

@ log(1 —2)(1 —2) log(22)
=t oy T GoDe-3)
o @ log(1—2)(1 —2) log(22)
=2t e TEoDE-o (D-13)
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Figure 9. A five-point function can be written in terms of sum of four-point function where one
of the operators appears in the OPE of (12) or in terms of a sum of three-point function where now
one of the operator appears in OPE of (12) and the other in the OPE of (35).

E Five-point conformal blocks

A CFT correlator contains information about lower-point functions, which can be accessed
through the OPE. For example, a five-point function can be either written in terms of a sum
of four-point functions or a double sum of three-point functions, as illustrated in figure 9

C
(O1(21) ... Os(@5)) = Y —— 020k (O, (1) O3(w3) O4(2.4) s (w5)) (E.1)
k (33%2) 2
C0,0,0,Co5050,,
- Z A1+A2_1A;+Jk : zsf%—%/w' (Ok,s(21)Op .y (23)Oa(4)) ,
k (x%Q) 2 x§5 2

where the sum is over both primary and descendant operators.?? The conformal algebra
fixes the contribution of the descendants in terms of the primary operators, in what is
usually called the conformal block. In the following we will be interested in obtaining this
kinematical contribution to the double OPE channel (12)(35) of the five-point function.
This can also be viewed by inserting a complete basis of states labeled by their dimension
and spin

(0]0105030405(0) = >~ 555 (01| 03| E)(E|O4|E')(E'| 05 O3) (E.2)

E,E'

where s1 = e~ (2=74) and S9 = e~ (T4=75) are two cross ratios and we have used the cylinder
picture of figure 10, which is obtained with a Weyl transformation that maps R to Rx S¢1.
The goal of this appendix is to lay out the strategy to obtain the conformal blocks for five-
point functions in the double OPE?* in the channels (12) and (35) as an expansion in
terms of powers of s; and so. The method used here is an adaptation of the one already
implemented for four-point functions in [74, 75].

23We chose to perform the OPE in the (12) and (35) channels.
24Conformal blocks for n-point function have been recently obtained in [72] for d = 1,2. See also [73] for
recent results on higher-point conformal blocks.
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Figure 10. The five-point correlation function in the plane R? can be mapped through a Weyl
transformation to the cylinder R x S4~1.

The double OPE in the cylinder picture (E.2) will not be explicitly used in the deriva-
tion of the conformal blocks but its schematic form and simplicity makes it very appealing
to explain the key points in the derivation. First notice that there are three three-point
functions in this decomposition with two of them of the form scalar-scalar-spin while the
third has two spinning operators and one scalar

<01|02|E,ILL1...MJ>, <E/,I/1...VJ/|O5|O3>, <E,,U,1...,LLJ|O4‘E/,I/1...VJ/>(m). (ES)

The spinning operators must transform in a symmetric traceless representation since they
appear in the OPE of two scalar operators. A three-point function scalar—scalar—spin has
only one structure, but on the other hand a three-point function with scalar — spin — spin
has two fundamental structures [46] and the upper index m is used to label this property.
The spinning operators carry with them Lorentz indices that should be contracted among
each of the three-point functions. The most efficient way to do this contraction of indices
is to introduce null polarization vectors z; and z3 that are contracted with the indices of
the J — J' — scalar three-point function and use the differential operator

d J\ 0 1 ok
D,=(--1 | = = =2 E.4
<2 T 8z> 9z 27 9202 (E4)

in order to recover the tensor structures. The final formula for the contraction is given by

(see [46] for more details)

J J’ m —-m '—m
(212 Dz)" (w35 Dzy)” (21-232%5 — 221 w1323 213)"™ (21-231) 7™ (23-213)” =Hyrm(&)
TR = 1)5(h = 1) (23,)2 (235) 7 -

(E.5)

where h = d/2, and z3-x13,21 213 and 21-Z3.%'%3 — 221 -x1323 - r13 are related with the
fundamental structures V; ;. and H;; of spinning three-point functions
9 Z5 " %ngk — Z x,ka:lzj
Hij = 2 %jx} + 2 - @352 Tij, Vige = = ) (E.6)
J

In the formula above we used conformal symmetry to put the point x4 to infinity and 33%3 =1
to simplify the computation. The right-hand side of (E.5) depends only on the angles

2
T12 - T13 T13 - T35 T12 * T35X73 — 2T12 - L1313 * T35

G=—"—7, £=——7, &= 132 T, 1 : (E.7)
(z1y713)? (235713)2 (219)2 (35)2

— 49 —



Figure 11. A five-point scattering amplitude can also be decomposed by inserting a complete
basis of states labeled by the mass of the intermediate particles and their spin.

This is equivalent to the contraction of unit vectors in the cylinder picture. The steps to

obtain the explicit form of H s j (&) are lengthy but follow by straightfoward application

of the derivatives in (E.5). We omit the details and present only the final result?®

51 lg) m J—n / J2knJ’2knnJ2k /
1)J+k +h—n1 €] 1¢] 2602 JI(KD)
Hgm(€1,62,63) = Z > C )

2 2 2 TR (1T a2k

y (h_1)J7k(h_1)J’—k’(2k_J)n1 (=m)n, C}k_/ng_m (&1)
(k—m+n1)!(h—1)J(h—1)J: ’

[N
m‘%

(E.8)

As a side remark notice that this angular function H; j (&1, &2,£3) should also appear
in the double partial decomposition of a five-point scattering amplitude, see figure 11. It
would be interesting to make this relation more precise and try to apply it in the context
of the S-matrix bootstrap.

The index contraction in (E.2) is already taken into account by Hj j/ ,,, (&) even if the
operator in the three-point function is a descendant. In fact we can say more, the dimension
of each descendant differs from the corresponding primary operator by an integer n and
n’, with their spins j and j’ in the range [75]

j=J+n,J+n—-2,..., max(J —n,J +n mod 2). (E.9)
This analysis shows that the conformal block can be written in terms of a double expansion
in s1 and so

min(j,j")

A A +n’
Gag,Ap, 00 m(81,82,&) = Z ST anmggramest sy g (€1, €2, E3).

n=n'=0 7,7/ m’'=0
(E.10)

2 .2 2 .2
Tiod Tarl
12-V34 S% 35+14 (E 1 1)

2
81:

2,2 2 2
T13To4 T13%y5

ZWe also include this formula in the supplementary material attached to this paper.
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The coefficients ay, , j js.m/ are fixed by conformal symmetry alone and they could be ob-
tained by working out precisely how the contribution of a primary operator is related
with the corresponding descendant in (E.2). However we find it easier to use the property
that the conformal block G satisfies two eigenvalue equations coming from applying the
quadratic Casimir of the conformal group

A
1 2 1,AB | 12,AB 1 3 ©
I:Q (LAB +LAB) (L ' + L* ) a CAI“’J ( 2 ,.2 )A(’) 2 2 g’ (E.12)
14234

1 1 22, \2°
~ (Lp + Lhg) (LPAP + LP4P) — Cy, J,} < = ) g, (E13)
[2 (Lan 2 ) g (z1pa35) 00 \ 27,23,

where LiA p are generators of the conformal group acting on the operator at position ¢ and
Ca,; =A(A —d)+ J(J +d—2) is the Casimir eigenvalue.

This differential equation can be written in terms of the cross ratios by acting on the
conformal block Ga, A,.7.07.m(51,52,&1,§2,&3) with

(D)) + DYy — Ca,a]G =0, (E.14)

where

DY) = 5202 +(E2—1)02 +2(E163+2)De, Oe, + (62— 1)92, — (2h—1) 5105, — €105, — €30,
(E.16)

DYy = —d\y) 5205, +d\3) (515005, —5101) +d3 51+ 8161 (5202 485105, (5205, — (A1 —1)))
(E.17)
dSY) = (£162+63)0e, — 3(E163+62) 0, +2(1—€3)0g, , ') = (E361+E2) 0y — (1-ED) D,
dy) =2(6163—2(h—1)62) 0, + (€2 4+2(h—1))8g, +(1—E3 — 16362 —£3)De, O,
+261 (65 —1)0F, — &1 (E34+£162) 08, O, +3(61€3+€2) €106, O, +61(6 - 1)0Z, . (E.18)

The differential equation for D§5) and DY can be obtained with the replacement & < &s.
Notice that the differential operators ij , 35 keep the degree of the cross ratios s; and
s9, while the other differential operators raise the degree of cross ratios by one.

The angular function H (&) plays an analogous role in the conformal block as the
Gegenbauer polynomial for the case of four-point functions [75]. In particular it has to
satisfy two eigenvalue equations coming from the leading order limit of (E.14)

[(1-€0)02 +(1—&3)9Z, — (2h—1)(£10¢, +£30g,) —2(E183+62)0e, O, +Cy | H =0 (E.19)
[(1-€3)82,+(1—€3) 02, — (2h—1)(£20¢, +£30e,) —2(€2€3+61) D, gy +Crr | H =0

with Cy = J(J + 2h — 2). The solution, H s j’ (&), is a polynomial of degree J, J" and m
in &1, & and &3 respectively. It is natural to consider an expansion of H in powers of &3

Mg m(&) = Z & frr (€1, 62). (E-20)

m/=0
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The action of the differential operators (E.19) will transform (E.20) into a differential
recurrence relation. For example the first line in (E.20) becomes

& [(1—2h —2m)&10¢, fo — (&8 — 1) 2, fo + (J —m)(2h + J + m — 2) fo]
+ fgn*l [51(3 —2h — 2m)8§1f1 — 2m§23§1 fo— (5% — 1) aglfl
+(J—m+1)2h+J+m—=3)fi]+... (E.21)

where the ... represent subleading terms in &3 and there is also a similar equation coming
from the other channel (35). The leading order differential equation can be recognized as
the equation for the Gegenbauer polynomial in one variable & with spin J —m

Cho ™ (&) (E.22)

The solution from the equation of the channel (35) is of the same form with the replacement
&1 — &, J — J'. Obviously the differential equation does not fix the normalization of the
solution. Comparison with (E.8) imposes the normalization to be

fol€1,62) = (=17 (S —m)!(J = m)! et

= ST (T )y (=T o (GG (&) (823)

The leading order solution fy will enter as a non-homogeneous term in the differential
equation for the subleading order. The homogeneous solution to the differential equation
in the subleading order is solved by the Gegenbauer polynomial

chtm (&), (E.24)

while the non-homogeneous part is also solved by a Gegenbauer polymial but with other
indices. This indicates that the generic solution is of the form

m m’
Higm(&) =D 7™ Y rapmChima (E)CH 0 &), (E.25)
m/=0 a,b=0

We did not try to find the coefficients 7,5,/ in full generality since we have an alternative
representation for H given by (E.8). However it would be interesting to pursue this further
and also try to apply the same ideas to the angular functions relevant to higher-point
functions.

Now we notice that all the differential operators dgg) depend only on the angles (E.7)
and moreover their action on the function H is simple

(m = J)(J +m+2h — 3)

4(h+J—2)(h+J—1)
m(m +h — 2)

EH g m(&) = —Hiv1,0m(&i) +

Hi-1,0m(&)

P D et (E.26)
1
dgzz)HJ,J/,m(fi) = Z cgfl)nzmHHnLJ/Jrn%ernB (&), (E.27)

ni,nz,n3=—1
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i .
where the non-zero cgl)mn?) are given by

c%)o =(2J—J"+2m),
Q) _ (J=m)(1248h*+2J%+J' —J(10+J' —4m) —4m+3J 'm—4m® +4h(=5+2J+m))
€-100 = A(ht T —1)(h+J—2) ’

(1) _ m(6h+4J4+J —2m—6)(h+m—2) ® _ (J=m)m=J)(1-J+m)
€-10-17 2(h+J—1)(h+J—2) L (0 T Ay T Ay ) B
1 2 2 2h+J —2)(J —m)(2h+J +m—3
050)1 =(J'=m), Cgo)o: —J, C(—%O(): ( 4(h3r(J_$()lg+J_2)m )v
2 m(h+m—2)(2h+J—2) 3 3
(—io 1= ((h+n;_1;((h+,]—2) ) 0(10)0 =J(J' =J—2m), Cgo)l =J(m=J'),
3)  _ (2h+J—2)(J —m)(J—m)(1—J+m)
€-101 = A(h+J—1)(h+J—2) ’
3 (2h+J—2)(4h+3J+J —2m—4)m(h+m—2)

C-l0-17 7 2(h+J—1)(h+J—2) ’ (E.28)
(3)  _ (2h+J—2)(m—J)(6—10h+4h*>—5J+4hJ+J*>+J —JJ —2m~+2hm+3Jm+3J'm—4m?)
€_100 = 4(h+J—1)(h+J—2) i

(E.29)

Obviously there are similar relations for the differential operators dég These are obtained
by replacing J — J'.

These properties of the H function make the action of the Casimir differential equation
on the ansatz (E.10) particularly simple

n A +n/
0= Z 12 + D12 Cay,J }an n’,j,j' m’31AkJr B Hijjrm (€152, €3)
=" an syt TSN [261d5 H — 2(A + n)sidYH — 251(A) — A —n')d)H+
— (Cang —Ca)H + 26 (A +n)sPTH A = Ay + A+ n+n)H] (E.30)

Now one can use that H functions with different indices jj'm’ are orthogonal to each other
to write a recurrence relation between the unknown coefficients ay, ,,7 j jo ./ in (E.10).
We verified that this method gives the same result as the one where we use the formal

expression for the OPE twice on the five-point function?%

C
O1(21)Os(w2) m ) | — a7 [P (212,00, D2, ) O g (21, 21)], - (B.32)
k (4312) 2
0o l

F(12k) (33125 8117DZ1) — Z Z an,m,q(x . D)l—Q($28y . D)q(l' . ay)n(x28§)m

n,m=0 q=0

with a0,0,0 = l'(h - 1)1.

26The coefficients an,m,q associated with a given primary in this expression for the OPE can be obtained
by solving the equation

F(12k)($127 Oy, Dzy)

(x%Q) A1+A227A1.+J

(O1(21)O2(22) Ok (33, 23)) =

<Ok(x1,21)0k(563723)>. (E.31)
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