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ABSTRACT

In this paper, the equivaent medium of Schwarzschild metric is discussed. The corresponding ray-tracing equations are
integrated for the equivalent medium of the Schwarzschild geometry, which describes the curved space around a
spherically symmetric, irrotationa, and uncharged blackhole. We make comparison to the well-known expression by
Einstein. While Einstein's estimate is reasonably good for large closest distances of approach to the star, it disregards the
optical anisotropy of space. Instead, Virbhadra's estimate which takes the effects of anisotropy of Schwarzschild metric
is shown to be more consistent with numerical ssimulations. Hence, a true physical anisotropy in the velocity of light
under gravitational field does exist. We argue that the existence of such an optical anisotropy could be revealed exactly
in the same way that the optical interferometry is expected to detect gravitationa waves. Therefore, if no optical
anisotropy under gravitational fields could be observed, then the possibility of interferometric detection of gravitational
waves is automatically ruled out, and vice versa.
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1. INTRODUCTION

It has been known [1,2] that the propagation of electromagnetic waves in curved space, can be described by a
mathematically equivalent anisotropic medium in flat geometry. Recently, full theoretical analysis of the propagation in
the curved space and in particular for the well-known Schwarzschild metric has been published by the author [12].

Here, the optical anisotropy of curved space is demonstrated by means of a rigorous algebraic analysis. We derive the
eigenmodes of propagation and conclude that vacuum exhibits a property very much similar to pseudo-isotropic media
[3], but with broken symmetry with respect to the waves travelling forward and backward in time. A simple pseudo-
isotropic medium has different refractive indices along all propagation directions, but exhibits no birefringence when
standard congtitutive relations are used [3,4].

For this purpose, we start by inserting the constitutive relations into the Maxwell wave equations and obtain the
governing equation for eigenpolarizations. This is shown to result in a modified norma surface equation for the
refractive index eigenvalue. Simplification for the pseudo-isotropic behavior givesrise to two different refractive indices
with opposite signs, which are equd in magnitude for a non-rotating spacetime. We are thus led to the conclusion that,
the speed of light is dependent on the local geometry of the spacetime, but at the same time, the curved space of a
rotating metric is differently seen by photons and anti-photons, which propagate in opposite directions aong the time
coordinate at velocities dightly below and above ¢,. The differenceis easily seen to be removed for non-rotating metrics.
In otherwords, thetime-reversal symmetry of Maxwell's equations breaks down under rotation.
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As examples of applicability of our proposed formulation, we consider Newtonian and Schwarzschild metrics, and
derive exact closed formsfor refractive index in both cases. It is discussed that the refractive index of the Schwarzschild
metric gives a dependence to the radial coordinate as well as the direction of propagation and is explained by a non-
homogeneous pseudo-isotropic model. We make a comparison to Eingein's results in 1911 and 1955 and show that the
latter isyet subject to an important correction term, which makes the space locally anisotropic.

Ray-tracing equations for Schwarzschild geometry have been recently found [12], and are hereby integrated to verify the
bending of light near a massive object. We show quantative agreement with our numerical estimates and the well-known
expressions of general rdativity. Virbhadras formula for the deflection of light, which includes the effect of optical
anisotropy of Schwarzschild metric, is shown to be a better estimate than that of Einstein's, which disregards the
anisotropy. Hence, atrue physical anisotropy in the velocity of light as predicted in [12] is found, and therefore, alocal
optical interferometry experiment could be used as atest for the theory of general relativity.

We furthermore argue that the expected anisotropy resulting from static gravitational fields can be detected by an optical
interferometric experiment such as Laser Interferomer Gravitational wave Observatory (LIGO) [13], if and only if,
gravitational waves could be detected, too. Thisis due to the fact that the detection of gravitational waves depends solely
on the tempora anisotropy of the metric due to the passing gravitational wave.

2. FORMULATION
An empty curved spacetime may be seen as an equivalent flat spacetime with a nonhomogenous and anisotropic
hypothetical dielectric filled everywhere [1], the constitutive relations of which between eectric E and magnetic H fields
in Sl unitstakethe form [1,5]

D:€0[€]E—|—lWXH (13
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Here, the symmetric dimensionless tensors of relative permittivity [£] and permeability [1] are given by
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and the gyration vector w is defined as w = gy, ' {g,, } » Where g’ and g; are respectively the contravariant and

covariant e ements of the metric tensor of space, with g being its determinant. Obviously, most non-rotating metrics have
0o =0 for i=1,2,3 so that the gyration vector w vanishes [12]. We have previoudy shown that the e ectromagnetic curved
vacuum behaves as a birefringent pseudo-isotropic medium [12], with the exact refractive indices given by
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Here, [¢]=][pn]/|u|=]/lel, and dso h=k/|k| is the unit vector along the propagation vector. Hence, n=|k|/k; is the
index of refraction of vacuum,; clearly, we have k=nksh. Furthermore, we have

A=h-[¢-h (4)
B=h[{w (4b)
C=1-w-[¢ w (4c)

If deviation in metric from the flat Minkowskian geometry is not too strong, then the terms being second order in w can
be dropped and (3) can be approximated as

() - (Sa)
ny ~ —(h-[€] m)? — }111 [é]] X (50)

Note that (3) take on the fairly simple forms when there is no rotation termsin the metric w=0, and thus we get the exact
expressions

ny=+(h-[¢]-h)”’ (69)

: (65)

This shows that birefringence identically vanishes for non-rotating metrics and time-reversal symmetry holds. More
discussion on this concept can be found in [12].

For rotating systems we may note that h is a unit vector, and thus (5) can be still simplified further in the weak

gravitational fidd limit as

n, ~+1+1+An (7a)
~—14+3+An (7b)

corresponding respectively to photons and anti-photons; here, we define An = —2h - [S] - W . Firgtly, it can be seen

that the curved vacuum exhibits alocal time-reversal asymmetry given by |An| = |n1 — n2| , which isroughly alinear

function of gravitational potential (as shown below). Secondly, photons travel at a speed dightly below (above) the
speed of light in flat vacuum c,, while anti-photons travel at a speed dightly above (below) ¢, if the direction of
propagation is anti-parallel (along) to the rotation of the universe, where An > 0 (An < 0).

Now as it is shown beow for Newtonian and Schwarzschild metrics, the equations (6) turn out to be in complete
agreement to the predictions made by Einstein for weak gravitational fields [8,9].
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3. CURVED GEOMETRIES

In this section we consider two important cases, which both correspond to spherically symmetric non-rotating universes.
Newtonian and Schwarzschild metrics. Rotation can be exactly implemented through (3), however, the resulting
expressions are too complicated and hence are not discussed for the sake of convenience.

3.1. Newtonian Metric
The spherically symmetric Newtonian metric is given by the line e ement

ds? = —02(1— 2r—sj dt? + (da® + dy® + dz?) (8
r

where 1, = 2GM / ¢? is the Schwarzschild radius of the star with M and G respectively being its mass and

gravitational congtant, and dI* = dx? + dy2 +dz? is the spacelike path element. This metric is an approximate

solution of Einstein field equations, but to high precision most stars are static and spherica [10, p. 446], so that (8) is
applicable. The solution (6) can be then used and we readily obtain

B ©
Ny = :I:[l— zri]

8

Denoting @ = —r, /7, we get
n, ==(1+20)" (10

This expression blows up to infinity for » — 7; as (7“ - rs)_l, but approaches in magnitude to unity as » — oo . In
the limit of small normalized gravitational potential v >> 7;, however, we get

‘nm‘ ~1—-o (11)
which is actually the Eingein’s 1911 result [8]. Later Einstein showed [9] that the correct answer was ‘”1 2‘ ~1—2d.
But asit isdiscussed below, this correction factor of 2 was till inaccurate.

3.2. Schwar zschild Metric

Schwarzschild metric is known by Birkhoff’s 1932 theorem [10, p.843], to be the most generd solution of Eingein fied
equations under spherical symmetry and no rotation, given by [10, p. 607]

2
ds? = —¢? (1— 1) a2 + -2 112 (467 + sin? 0dg?) (12)
r 1- o
r

where (r, 9, (,/)) congtitute the standard spherica polar coordinates. The difficulty in working with this metric arises

from the fact that the spacelike path dement di? = dr? + r2dQ? where dQ® = d6” + sin® Bdg” , does not appear
explicitly in the metric.
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Schwarzschild metric is non-rotating so that (6) are exact. Since h is a unit vector it can be described by the spherical
polar angles (¢, X) in the original non-rotated reference frame. But, spherical symmetry makes the absol ute choice of

the angles (¢, X) irrdlevant, in the sense that we may set the z-axis along the position coordinate r and choose
¢ = 6 = 0. Hence, we get the exact expression [12]

[T
s @] = e
[T - 1] T sin?y

T, T,

8 8

2

(13)

where the azimuthal angle of propagation v is measured with respect to the position vector r. Again for 7 — 7. the

refractive index blows up respectively as (r — 1;)7% and (r — 7;)72, if =42 and ¢ = +Z. However, it

approaches in magnitude to unity as » — oo, since the metric relaxes to that of the Minkowskian in the limit of infinite
radius. We can now rewrite (13) in the limit of small ® (weak gravitational field) as

3 in’
‘nm (r)‘ ~1— +82—m¢<1) (14)

The correction factor to the Eingtein’s 1955 result hence actually varies between 3/2 and 2 depending on the angle of

propagation. If thelight is passing tangent to the star’ s equatorid plane, then sin” 1) =1 holdsonly at the nearest point

to the center of the star in the light trajectory, while at farther points away from the center of the star, we approach
)

sin“ v = 0.

Another conclusion is that this anisotropy is expected to be present everywhere around a massive object, so that the
change in refractive index by changing the direction of propagation from i = % to v» = 0, could reach as high as
|®|/2 = (GM/CZ)/T. Hence, a local interferometry experiment could reveal the existence of Schwarzschild

metric. Based on the estimates given in [10, p. 459, this figure should be of the order of 107° for an experiment done at

Earth's distance from Sun, while it would be only about 6 x 107'? at the surface of Earth when the gravity of Sun is
neglected.

4. RAY-TRACING
In therecent paper of the author [12], it has been shown that the ray-tracing equations of Schwarzschild geometry are

dr

— ~AN2 ~ ~ 15
EN[H(}M) ®|h— (h-7)®F (15)
&k @ 3. . X
PR ﬂ2—§(h~r) r+(h~r)h}

which are correct to O (®) . Here, 7 = r/r is the unit radial vector. These sets of equations may be easily integrated
to investigate the effects of Schwarzschild geometry on the propagation of light. It can be easily verified that the ray,
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despite deflection, sticks to the plane constructed by the location vector and wavevectors I' and K . Hence the problem
can be greatly simplified by solving the system of equations (15) on this plane. According to Einstein [9], the angle of
deflection for alight ray approaching a massive object is given by

2
o~ 20 (16)

where 7; isthe closest distance of approach and ¢ ismeasured in radians. More accurate result by Virbhadra[11] is

2r,

)

17
=

1+ 0.972 [Q]

7o

In order to perform the integration of (15), it is possible to take the initia conditions r(O) = —dgj for the position

vector and k(0) = kZ for the wavevector. Clearly, the closest distance of approach is d = 7. Obviously,
meaningful integration of (15) is possible only if the closest distance of approach exceeds the Schwarzschild radius, that
isT, < d.Thismeansthat the accuracy of (16) is limited to deflection angles roughly less than 114°.

Table 1 summarizes the results of numerical integration of (15) versus the expressions by Einstein (16) and Virbhadra
(17). Asit can be seen, very good agreement is found. Here, the total number of integration steps was 4x10*, wavelength
was set to one-tenth of the Schwarzschild radius. Asit can be seen, Virbhadra's expression (17) which takes the effect of
Schwarzschild anisotropy provides much better agreement to the numerica calculations, than that of Einstein's (16).
Large deviation for small closest distances of approach can be attributed to the approximate nature of (15), which is
correct within the first order of the gravitational potential < . But in general, Virbhadra's expression (17), which takes
the effect of anisotropy of Schwarzschild metric provides much better agreement to the numerical simulations. This
justifies the existence of a true physical optical anisotropy in the curved space, as predicted in the recent work of the
author [12].

Finally, traces of light rays passing nearby a massive object areillugtrated in Fig. 1. Here, light rays are found by direct
integration of (15).

5. LASER INTERFEROMETRY

In order to establish the connection between the gravity-induced optical anisotropy and gravitational waves, we take a
look at the metric representing a gravitational wave [14-17]

ds® = (9@- + yij>dxidx" (19)

where 9y isthe metric of the unperturbed geometry and Vi is the perturbation metric due to the gravitational wave. For
a plane gravitational wave moving along = direction we have [14-17]

0O 0 0 O (20)
0 0 0 0

Y| =

[ ]] 0 0 7Y 7o
00 v 7

where 7,y = —755 and Vo3 = Vs, -
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The two orthogonal polarizations are here given by 7,, = 0,7,; = 0 and 7,, = 0,7,; = 0. Now, for the sake of
simplicity we take on the first polarization with y,, = 6 ,7,, = 0, to get [14-17]

ds’ = —dt’ + do* +[1+ §sin(Kz — Qt)|dy* +[1 — §sin(Kz — Qt )] d2* (21)

Here, £ istheangular frequency of the gravitational wave, K isits wavenumber, and 6 isitsamplitude. Themetricin
(21) is evidently anisotropic, to which (6) may apply to obtain

o

n=(h-[¢]-h+h-[p] h) (22)

in which [¢] represents the Minkowskian metric with h- []-h =1, and [p] is due to the gravitational wave. If the
amplitude of thewave is small, then binomia expansion may be applied to (22) and we arrive at

n~1l—+h-[p]-h (23)

Examining the apparent refractive index along 4 and z coordinates, respectively with h = ¢ and h = z, reveals
that we have

&

Poy = 1 —F8sin(Kz — Q) (243)

n
Y
n Pay = 1+ $0sin(Kz — Q1) (24b)

&

1-3
1-3
At . = 0, thiswould be equivalent to an anisotropy An = n,—n, of

An = §sin(Ot) (25)

which is expected to be on the order of 107%* [14-17]; thisisyet to be observed in LIGO.

Asit can be seen, the origin of operation of LIGO relies on the optical anisotropy induced in the background geometry
due to the passing gravitationd field. Since Schwarzschild metric also causes such anisotropy, optical interferometry
should be equally applicable to investigate the presence of static gravitational fields. As stated above, the expected order
of anisotropy resulting from the gravity of Sun is quite appreciable, being on the order of 107 [10, p. 459], which is at
least 16 orders of magnitude stronger than the anisotropy caused by gravitational waves. Thisfigureislarge enough to be
easily detectable on a tabletop interferometric setup. If it would, then most normal optical setups had problems working
on the Earth, due to interference with the gravity of Sun, Earth, and other massive objects nearby. Thisis clearly not the
case, and as the matter of fact, nobody however has noticed such a large deviation and error in interferometric
experiments.

On the other hand, if optical interferometry fails to reveal the existence of Schwarzschild metric (which is the apparent
case), then one could expect the gravitational waves not to be detectable via ssimple interferometry. This explainswhy the
LIGO experiment, despite its extremely high accuracy, has been unsuccessful in the search of gravitational waves.
This conclusion brings up two possibilities:
(@ A uniform compression or stretch in the metric actually does not cause additiona phase shifts dong the path of
propagation, which in turn rules out the possibility of any successful interferometric experiment for detection of

plane gravitational wave effects.
(b) The general theory of reativity needs a complete restructuring and revision.
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6. CONCLUSIONS

In summary, we have discussed the optical anisotropy of vacuum subject to a gravitationa field. It has been shown that
asaresult of gravity, a strong local anisotropy is predicted to exist, which possibly could be verified by relatively smple
interferometry experiments. According to the principle of equivalence [9], this effect could be thought of anisotropy of
velocity of light for accelerated (non-inertial) frames [12]. We furthermore solved the ray-tracing equations for
Schwarzschild geometry and found quantitative agreement to earlier predictions of Einstein. Numerical simulations and
comparison to the improved expression of Virbhadra reveals the existence of a true optical anisotropy in the curved
space. We made comparison to the theory behind the operation of Laser Interferometer Gravitational wave Observatory
(LIGO) at Cdifornia Ingtitute of Technology, and discussed that interferometry might have been the inappropriate choice
for detection of gravitational waves at all. We argued that if gravitational waves had been observed in LIGO, then static
gravitational fields of Sun and Earth could have been equally detected, much easier, viaa simple tabletop interferometric
setup.
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Table 1. Cdculation of the angle of deflection.

dirg o from integration of (15) o from Eingein's (16) o from Virbhadra's (17)
[12] [9,10] [11]
100 1.12529 © 1.14592 °© 1.1571°
90 1.25925° 1.27324° 1.2870°
80 1.42652 ° 1.43239° 1.4498°
70 1.64159 ° 1.63702 ° 1.6598 °
60 1.92882° 1.90986 ° 1.9408 °
50 2.33259°° 2.29183° 2.3364°
40 2.94306 ° 2.86479° 2.9344°
30 3.9758° 3.81972° 3.9435°
20 6.10583 ° 5.72958 ° 6.0080 °
10 13.0802 ° 11.4592 ° 12.5730°
9 14.7615 ° 12.7324 ° 14.1075°
8 16.9367 © 14.3239° 16.0643 °
7 19.861° 16.3702 ° 18.6433°
6 24.0012° 19.0986 ° 221926 °
5 30.3171° 22.9183° 27.3736°
4 41.1634 ° 28.6479° 35.6093 °
3 64.59%4 ° 38.1972° 50.5731°
2 315.8827 ° 57.2958 © 85.1415°
__ 107
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Figure 1. Ray-tracing of light beams moving near a black hole from integration of (15).

Proc. of SPIE Vol. 7597 75971Y-9

Downloaded from SPIE Digital Library on 25 Feb 2010 to 130.207.50.192. Terms of Use: http://spiedl.org/terms



