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ABSTRACT

Topological quantum states of matter are a central focus in modern condensed
matter physics and quantum information science. The study of topological order in
quantum spin systems is closely linked to the concept of gauge symmetries. In this
dissertation, we conduct detailed studies of two quantum spin systems with local
gauge symmetries. Specifically, we numerically investigate a recently proposed theo-
retical model that realizes local Z, gauge symmetry with only two-body interactions.
We confirm the existence of topological order and explore other physical properties
within the model in depth. In the study of the U(1) toric code, we enhance the
conventional Kitaev’s toric code by introducing global U(1) symmetry. The study
emphasizes the interplay between local Z; gauge symmetry and constraints arising
from global U(1) symmetry. This examination uncovers the presence of topological
degeneracy and reveals an unconventional UV /IR mixing phenomenon within the sys-
tem. We explore possible implementations of the U(1) toric code in superconducting

wires and discuss potential future research directions based on the insights gained
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from our investigations of these two models.
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(a) The square lattice that defines the toric code. The blue crosses
represent the star operator A,, defined as the product of o, operators
along the dashed-arrow closed-loop surrounding a ’star’, while the red
boxes represent the plaquette operator B, defined as the product of 4
o, operators on the edges of the box. (b) When putting on a torus, 4
additional operators W, , defined as product of o, along the line and
V,,y defined as product of o, are also conserved. . . . ... ... ...
(a) An example illustrating the conversion of a non-contractible op-
erator W, to W, by taking the product with a series of local star
operators. (b) The action of the non-contractible loop operator V
along the x-direction, as indicated by the red arrow. This operator
passes an even number of spins for elementary star operators, inter-
secting one spin of the non-contractible loop W,,, thus causing a flip in
the quantum number. . . . . . . .. ..o
(a)The excitation generated by acting a ¢, operator that creates two
m excitation (visons) on the dual lattice, which represented as flipping
two nearest-neighbor plaquette operators.(b)The excitation generated
by acting a o, operator that creates two e excitation (spinons) on the
lattice site, which represented as flipping two nearest-neighbor star

Operators. . . . . . ..o e e e e e
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3-2

The toric code on a ladder has its star term, A?, defined as the product
of o” for four spins on a site, depicted as a red star. The plaquette term
B is a symmetry operator, defined as the product of two o* acting on
plaquette p. . . . . . L
The quantum number of B divides the local Hilbert space into two
parts: (a) With B> = +1, the local space is spanned by [11),[]{). (b)
With B> = —1, the local space is spanned by [11),[J1). . . . . .. ..
The mapping to the transverse field Ising model in the sector with two
visons (indicated by B? = —1 at the locations shown in light orange)
transforms the red star operator into the nearest neighbor ferromag-
netic interaction 7;7;,,. Furthermore, the operator 2p is mapped to

7, only at locations where By = +1. . .. ... ... ... .....

(a) The arrangement of two species of Ising spins on a square lattice.
Gauge spins (green squares) reside on the links and four matter spins
(orange dots) occupy each site of the square lattice. (b) The vertex unit
and the interactions between spins. The interactions between gauge-
matter spins within a single unit are defined by the Hadamard matrix
W in Eq. (3.3). For clarity, the couplings are depicted on a deformed
cell in panel (c), where the ferromagnetic and antiferromagnetic cou-
plings are shown as thin blue lines and bold red lines, respectively. . .
Connection between the model in our studies to the Z, gauge theory.
The red star in (a) represents the expanded 4-body interacting term
that is equivalent to the star term [[o® of the Z; gauge model in
(b). The blue plaquette in (a) represents the local combinatorial gauge
generator G, by analogy with the local gauge generator B, of the Z,

gauge model defined as [[ o® of the 4 spins around a plaquette in (b).
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3-6

(a) Definitions of M independent gauge operators in the conventional
Z5 model for a system of size 2 x 2. (b) The corresponding operators
define on the lattice of combinatorial Z, model. Here, G, and G, are
the gauge operators defined on non-contractible loops along x and y
direction respectively. . . . . . . ..o
The second-order process generates the effective plaquette term in
model-XX. The A-sublattice is marked in light yellow while the B-
sublattice is indicated in white. (a) The processes that couple two
stars in the A (top part) or B (bottom part) sublattice with an ef-
fective ferromagnetic interaction. (b) The arrangement of XX bonds

(dashed lines) resulting in an effective TFIM on A and B sublattices.

Different colors indicate bonds coupling sites in the A and B sublattices. 26

All allowed vertices for model-X. (a) FM and AFM vertices associate
with the operators U;—3. (b) Single-site constant vertices associate with
Ui—1. (c) Single-site spin flip vertices associate with the off-diagonal
operators Ky—q and Ky—o. . . . . . . . . .
All possible vertices for model-XX. (a) FM and AFM vertices asso-
ciate with U;—4. (b) Single-site constant vertices associate with U_;.
(c) Single-site spin flip vertices associate with K;_;. Vertices that rep-
resent the two-site operators of type t = 2 are represented by the red
dashed lines, with diagonal constant (d) U;—, and off-diagonal term (e)
Ky—5. Vertices corresponding to two-site operator of type t = 3 are
represented by the blue-dotted line, with diagonal constant (f) Uj_3
and off-diagonal (g) K—3. (h) Illustration of the possible vertex pro-
cesses for both type-2 and type-3 operators in the cluster update for
model-XX. (i) An example of an update of the kind Uj—y — K;—s.
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(a) Phase diagram of model-X. The red curve is the perturbative large-
I',, phase boundary, Eq. (3.39), between Zs quantum spin liquid and
the confined (paramagnetic) phase, resulting from the mapping to the
Zy lattice gauge model. Blue crosses are the boundary points from
the location of maximum fidelity susceptibility calculated with ED, as
shown in (b). The two open circles represent the L — oo transition
point extrapolated from the QMC data simulated at fixed I'j = 0.2
and 1.0, where the extrapolated transition points are at I'),, ~ 2.27,

and I',,, = 1.0, respectively. The Fidelity susceptibilities y’# in (b) and

X7 in (c) were calculated using Lanczos ED with N =2 x 2 x 6 spins.

SSE results for the size-normalized fidelity susceptibilities x%/N (a)
and x%/N (b) for systems with different number of spins N = Lx L x6.
All data points for a given L were obtained in the same simulation with
quantum parallel tempering at fixed I'; = 0.2 and inverse temperature
B = 4L. The insets show log-log plots of the peak value of the fidelity
susceptibility versus L, along with solid lines drawn through pairs of
data points with L and L + 2 to analyze power-law behaviors xz/N ~
L. The extracted size-dependent exponents in (a) are by ~ 3.0 from
the L = 4,6 points and bg ~ 3.5 from L = 6,8. In (b) the L = 4,6
points give by =~ 2.7 and L = 6, 8 give bg = 3.2. The dotted lines in the
insets of (a) and (b) have a slope b = 2(d 4+ 1) — d = 4 corresponding

to a first-order transition and are shown as a reference. . . . . . . ..
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39

Wilson-loop correlation function obtained in SSE simulations. (a) Re-
sults for the CGS model-X with I'j = 0.2. Data for different system
sizes show convergence to a finite value for I',,, = 2.3, with the expected
value C,(L/2) = 1 in the I';;, — 0 limit. The inset illustrates the def-
inition Eq. (3.44) of the correlation function in terms of two parallel
non-contractible Wilson loops in the x direction of a periodic lattice of
size L = 4. (b) Results for square-lattice TFIM for several system sizes
at inverse temperature 3 = 2L. The inset shows the finite-size scaling
of the location h¥ (L) for which the value of the correlator is 1/2, as
indicated by the horizontal dashed line. A power-law fit y = a + bL~¢
for the L > 12 data gives a = —0.02(1), b = 3.15(2) and ¢ = 0.472(7),
indicating a vanishing value of the correlator at any transverse field in

the thermodynamic limit. . . . . . ... . ... ... .. ... ....
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Results for the model-X at I'y = 0.2. (a) The Binder ratio B de-
fined with both components of the Wilson loop order parameter P? =
P? + Py2 in Eq. (3.46). The peaks adjacent to the phase transition for
system sizes L > 6 (barely discernible for L = 6) are signatures of a
first-order transition. (b) The numerical derivative of B with respect
to ', [computed using the linear approximation between the succes-
sive points in (a)]. The inset shows a power-law fit y oc L’ to the
maximum value of the derivative, with only the largest three system
sizes included. The exponent is b &~ 3.0, which is consistent with ex-
pected value b = d + 1 = 3 for a first-order transition. (c) Scaling
with the inverse system size of the I'), values of the finite-size maxima
dB/dTl,,, XF/N and x%/N, with T', = 0.2. Both dB/dI';, and x% /N
have been fitted with a single power-law correction and give the L — oo
extrapolated values IS, = 2.31(3) and 'Y, = 2.27(4), respectively. The
apparent large subleading corrections to x2* location forbid us to get a
reasonable extrapolation based on the available data, though the L = 6
and L = 8 pints show full consistency with the other estimates.

Distribution p(P,, P,) of the Wilson loop order parameter accumulated
in SSE simulation at I'; = 0.2 and three different values of the matter
field; (a) I', = 2.3952 (in the Z5 QSL phase), (b) I, = 2.4343 (close
to the transition point), and (c¢) I';;, = 2.4563 (in the confined phase).
Near the transition point, in (b), five peaks are clearly observed, re-

flecting phase coexistence at a first-order transition. . . . ... . ..
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3-14

(a) Energy density computed in SSE simulations with I'; = 0.2. (b)
The corresponding derivatives are taken numerically based on the avail-
able data in (a). Features indicating a discontinuity developing with
increasing L. demonstrate a first-order transition. We have fitted lines
to the L = 8 data away from the sharp features and observe the pres-
ence of a jump when these forms are extrapolated to the location of the
sharp peak (the vertical dashed line, which can be taken as a finite-size
definition of the transition point). . . . . . . ... ... ...
(a) Phase diagram of the model with XX interactions. The red curve is
the approximate phase boundary obtained from the asymptotic I',,, —
oo mapping to the TFIM. This boundary separates the Z; topological
quantum spin liquid and the ferromagnetic phases. The blue crosses
are points on the boundary estimated from the maximum of the fidelity
susceptibility in (b), calculated using ED on an L = 2 system. The
green open circle indicates the L — oo extrapolated transition point
Jr &~ 0.706 from QMC simulations at I';, = 1.0. (c) Fidelity suscepti-
bility of model-XX at I',,, = 1.0 for different system sizes L calculated
using SSE simulation at inverse temperature § = 4L. The inset shows
power-law fits y oc L' to the maximum values for system sizes L and
L + 2. The exponents are by =~ 4.9 and by ~ 3.9. The slope of dotted
line corresponds to the predicted exponent b, = 2(d +1) —d = 4
expected for a first-order transition. . . . . .. ... ... ... ...
QMC results for model-XX at I',,, = 1.0 for the Wilson loop correlation
function, Eq. (3.44). . . . . ..o
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3-15 Results for model-XX at I';, = 1.0. (a) The Binder ratio of the Wil-
son loop order parameter defined with both components in Eq. (3.45);
P? = P? + Py2. The divergent peak next to the step indicates phase
coexistence at a first-order transition. Accordingly, in (b) the deriva-
tive of the Binder ratio shows divergent positive and negative peaks.
(c) Energy per spin of model-XX obtained in the same simulations as
the other quantities at T',, = 1.0 and temperature 7' = (4L)~!. (d)
The derivatives are evaluated using the linear approximation using the
data in (¢). The dotted lines are fits to the L = 4 results away from the
peak and demonstrate a jump in the energy derivative at the transi-
tion (here represented by the peak location as indicated by the vertical

dashed line). . . . . . . . ..
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3-16

3-17

ED level spectrum at Iy = 0.2 for a system of size L = 2 (N =
2 X 2 x 6 spins). In (a) the two lowest energy gaps relative to the
ground state (marked Gnd in the legends) are graphed versus the mat-
ter field strength for each of the 32 blocks with quantum numbers
q = (£,+,+,+,4+). Many blocks are degenerate because of lattice
symmetries; thus the number of different curves is much less than 64.
The four states that become degenerate topological ground states in
the Z; phase are marked by blue crosses (the finite-size ground state),
red stars, and green triangles (two degenerate sectors); these states all
have the local quantum numbers G; = +1. The blue dots represent all
other lowest block levels; these are states with visons (two or a larger
even number) of the topological phase (marked by v in the inset illus-
tration). The orange curves represent the second-lowest states in each
block; they correspond to the spinon excitations (particles indicated
in the inset by s) of the topological phase and they all become degen-
erate for I';, — 0. In (b), the lowest block states are graphed on a
magnified scale. The eight-fold degenerate level that is the lowest exci-
tation in the paramagnetic phase was calculated with both ED (yellow
dots) and extracted from imaginary-time correlations from QMC sim-
ulations (violet circles), to demonstrate the correctness of the latter for
L = 2. QMC results for both L = 2 and L = 4 (calculated at inverse
temperature 5 = 24L) are shown in the inset. . . . . ... ... ...
The on-site o, operator creates a pair of visons when acting on the
ground state with quantum number q = (+, +, +, +, +). The quantum

number corresponding to the operators GG; and G3 is then changed,

leading to an excited state with quantum number q' = (+, +, —, +, —).
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3-18

3-19

4-1

The low-energy levels previously shown in Fig. 3-19, now marked by the
eigenvalues +1 of the spin-inversion operator, Eq. (3.62), in model-XX
at Iy, = 1. The gaps to the symmetric and antisymmetric states are
marked with blue and red symbols, respectively. Out of all 64 states
shown here, all the vison excitation states as well as the ground state
are symmetric. The spinon excitations are all antisymmetric, except
for the highest one, where a level crossing causes a change in symmetry
at J, = 0.7 .
Level spectrum relative to the ground state for the L = 2 system
with XX interactions, calculated with Lanczos ED. The organization of
panels (a) and (b) is as in the corresponding Fig. 3-16 for the model-X.
We refer to the same for further explanation of the visualization of the
spectrum. The lowest spinon excitation, shown as orange circles with a
dashed line, is the first excited state from the same block as the ground
state (which has q = + + + 4+ +). This state is antisymmetric with
respect to spin inversion and forms the two-fold degenerate multiplet

together with the corresponding symmetric state in the ferromagnetic

The dual mapping of the U(1) toric code ladder results in disconnected
chains with XY and Ising interactions, depending on the sign of the
plaquette B;. In the upper graph, B; = —1is indicated by light orange
ovals, and B; = +1 is indicated by light yellow ovals. The mapping
transforms the U(1) star operator into segments of an FM Ising chain
where B = —1 consecutively, while consecutive By = +1 maps to

segments of an XY chain. . . . . ... ... oL
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4-3
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(a) 6 allowed off-diagonal vertices from the Hamiltonian. Black (white)
dots denote spin-up (spin-down). The four dots below (above) the line
denote the classical configuration of the four spins on a star before
(after) the application of a Hamiltonian term. (b) 16 additional allowed
diagonal vertices after adding a constant to the Hamiltonian. The 12
vertices marked by green frames are the flippable stars. . . . . . . ..
(a) Example of a cluster. It starts as 4 defect lines coming out of a
flippable star. The defect lines propagate upward along the “imagi-
nary time” direction, modifying the vertices they encounter according
to specified rules. After a vertex, the number of defect lines might po-
tentially increase/decrease. Finally, the cluster terminates at another
flippable star. (b) Examples of vertex updates. If a new configuration
of the bottom four spins is not flippable, there is a unique way to prop-
agate the defect lines, such that the new vertex remains allowed. (c)
Examples of vertex updates. If less than 4 defect lines hit a vertex and
update the bottom four spins to a flippable configuration, there are two
possible ways to propagate the defect lines. We choose one of them
with probability 1/2. Processes marked by the orange frame are the
updates from a non-flippable vertex to a flippable vertex, for which the
reverse process does not have probability 1/2. Blue arrows denote the
defect lines propagating along the “imaginary time” direction (from
bottom to top). . . . . ...
Ground state energy in four topological sectors of a system of size
4 x 4 stars. (dots) obtained from the SSE QMC with the generalized
sweeping cluster update algorithm; (dashed lines) obtained from the

ED calculation. . . . . . ...,
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(a) Two states from the same symmetry sector, but from different frag-
ments: an inert state with no flippable stars (top), and a state where
every star is flippable (bottom) (b) Basis states of a 7-dimensional
Krylov subsector. Black dots denote spin-downs, white dots (or the
absence of a dot) denote spin-ups. . . . . . ... ...
Exact enumeration study of the fragmentation fraction is defined as
Diax/ D, where Dy is the size of the largest fragment, and D is the
size of the sector. The corresponding topological sectors are marked
at the lower-left side of each figure. . . . . . . ... ... ... ... .
An example of a lattice with compactification a = 1,b = 2 and linear
size L = 2. Any vector 7 is identified with vectors 7+ El and 7+ Eg.
The whole lattice is shown in bright colors, while the shaded region
denotes repeating parts of the lattice due to the periodic boundary
condition. Two non-contractible loops 7, and -, shown as purple and
yellow dotted lines respectively along two compactification vectors L

and Eg. ..................................
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tors as a function of system size L. (a) For 0°-tilt compactification.
Ew, w, w: Wy labels the energy difference between sectors (W,, W) and
(W,, W,). For all system sizes, the sector (—, —) has the lowest energy.
The inset shows that the finite size gap AE,, __ — 0 as L — oo. The
results indicate that the system has a two-fold TGSD. (b) For 45°-tilt
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fore |——) does not belong to the ground state manifold. In the 0°-tilt

case, assuming the same orientation of the tunneling operators with

respect to the microscopic details of the lattice, both 7" and T,

take state |[++) to |——), and hence states |+—), |—+) remain out of

the ground state manifold. . . . . .. .. ... 000 96
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Chapter 1

Introduction

Understanding the behavior of quantum spin systems has been a key research area
in condensed matter physics for several decades. Quantum spin systems exhibit a
rich variety of phases, and the study of their emergent properties has led to profound
insights into the fundamental principles of quantum mechanics. One of the most
intriguing aspects of quantum spin systems is the emergence of topological order, a
phenomenon that has attracted significant attention in recent years [1].

The concept of topological order is not only of fundamental importance but also
holds promise for applications in quantum computing and quantum information the-
ory. These special quantum phases exhibit exotic properties such as their topological
ground state degeneracy (TGSD) and the excitation content that cannot be captured
by conventional Ginzburg-Landau theory. A significant challenge we face today is that
qubits, the fundamental units of quantum computers, are subject to noise and have
short coherence times. This places us in the era of Noisy Intermediate-Scale Quan-
tum (NISQ) computing, where quantum devices have a limited ”lifetime” before they
decohere, rendering them unsuitable for meaningful calculations. One promising av-
enue toward achieving fault-tolerant quantum devices is through systems exhibiting
topological phases.

The reason is that topological phases are robust against local perturbations |1,
2, 3, 4, 5]. Since most of the noise sources are local, the properties of topological

Y Y

phases are thus essential for achieving fault-tolerant quantum computation. There-



fore, understanding the underlying mechanisms that give rise to topological order is
crucial for advancing both our theoretical understanding and practical applications
in quantum information science. The study of topological order in quantum spin
systems is closely linked to the concept of gauge symmetries. Gauge symmetries play
a pivotal role in modern theoretical physics, ranging from the Standard Model of
particle physics to condensed matter systems.

In this dissertation, we aim to focus on the study of quantum spin systems with
local gauge symmetries. In particular, the systems we consider cannot be exactly
solved but are sign-problem free, enabling large-scale numerical studies using unbi-
ased methods such as quantum Monte Carlo (QMC). In Chapter 2, we first provide an
overview of local gauge symmetry and topological phase to establish essential knowl-
edge for the following explorations. We then delve into the detailed investigations
of two specific quantum spin systems with local 75 gauge symmetries in search of
topological orders and other properties of interest in the systems.

With local gauge symmetry in mind, Kitaev constructed one of the most influ-
ential quantum spin systems, dubbed Kitaev’s toric code. The model is simple and
exactly solvable, but it requires the inclusion of four-body interactions, which are
not commonly found in nature. Recent theoretical proposals have come up with a
solution. By combining combinatorial symmetry with auxiliary spins, local gauge
symmetry can be constructed with only two-body interactions, and the existence of
topological order phases has been theoretically predicted. In Chapter 3, we give an
overview of this idea, introduce the concept of combinatorial gauge symmetries, and
then focus on an in-depth study of the proposed theoretical model using numerical
methods. Our primary goal is to verify the theoretical prediction of the existence
of topological order. We also explore other properties of the system, such as phase

diagrams, properties of phase transitions, as well as the low-energy excitations of the



system.

In Chapter 4, we focus on another quantum spin system with local Z; gauge
symmetry, where we generalize the well-known Kitaev’s toric code by enriching the
system with global U(1) symmetry. By introducing global U(1) symmetry, the model
is no longer exactly solvable. We study the system by developing a new kind of
update algorithm in the context of quantum Monte Carlo simulation. Through these
explorations, we aim to advance our understanding of the fascinating phenomena that
arise in this system, such as Hilbert space fragmentation, topological order, and the
discovery of an unconventional type of ultraviolet /infrared (UV/IR) mixing, where the
property of topological phase, such as ground state degeneracy (GSD), depends on the
lattice compactification. In the end of this chapter, we also discuss the realization
of this model via CGS construction, which can be implemented experimentally in
superconducting quantum wires.

Finally, in Chapter 5, we summarize our discoveries in studying these two systems
and provide insights into possible future research directions. This includes potential
extensions of our work, exploration of related systems, and open questions in the field.
We anticipate that our research will stimulate further investigations in the exciting

intersection of local gauge symmetry and topological order.



Chapter 2

Overview of Topological Phases and

Symmetries

2.1 7, Local Gauge Symmetry in Spin systems

To provide an introduction to the realization of Z, local gauge symmetry in a spin
system, particularly in the context of a spin-1/2 system, we begin by examining
Kitaev’s toric code [6]. In this model, the Hamiltonian is expressed as the sum of
commuting projectors, making it exactly solvable. This allows for analytical insights
into ground state properties, excitations, and the presence of topological order.
Subsequently, we extend our exploration to a slight modification of this model
known as the Z, lattice gauge model, where one of the terms is replaced by a uni-
form transverse field. This model is highly relevant and serves as the foundation for
understanding more complex models in the following chapters. Although this mod-
ified model is no longer exactly solvable, it exhibits a transition between a phase
with topological order and another trivial paramagnetic phase as the strength of the

transverse field is tuned.

2.1.1 Toric code

To start, Consider a square lattice with Ising degree of freedom sitting on each leg
with periodic boundary conditions. The Hamiltonian of the toric code comprises two
types of terms: “star” operators and “plaquette” operators.

The star term is defined as the product of 4 Pauli-Z operators acting on legs [
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Figure 2-1: (a) The square lattice that defines the toric code. The
blue crosses represent the star operator Ag, defined as the product of
o, operators along the dashed-arrow closed-loop surrounding a ’star’,
while the red boxes represent the plaquette operator B, defined as the
product of 4 o, operators on the edges of the box. (b) When putting
on a torus, 4 additional operators W, , defined as product of o, along
the line and V,,, defined as product of o, are also conserved.

belonging to a lattice site s, denoted as A, = [],., of, while the plaquette term is
defined as the product of 4 Pauli-X operators acting on legs [ belonging to a plaquette
p (dual lattice site), denoted as B, = [[,, 07, as shown in 2-1(a). It’s worth
noting that here, we choose the star operator to be a product of Pauli-Z operators,
and the plaquette operator as a product of Pauli-X operators. In general, these
two definitions are interchangeable without affecting the underlying physics. In the
context of quantum information, these star and plaquette operators are sometimes
referred to as stabilizers, as they play a role in “stabilizing” the topological ground
states.

The toric code Hamiltonian is defined as the sum of star and plaquette terms,

H=-X> A=Az ) B, (2.1)
s D

One can easily check that all the operators A, and B, commute with each other. In

other words, [As, By] = 0, for all s and p since nearby star and plaquette always



overlap with even number of sites. With periodic boundary condition (PBC), 4
additional loop-operators, W, , and V, ,, defined along the shortest non-contractible
loops that wind around the torus in the x and y directions are also conserved as shown
in Fig. 2-1(b). It is important to notice that [W, ,, V] # 0, since they intersect with
each other on a single site, and at the intersection [o,,0,] # 0.

For any local closed loop v composed of a sequence of connected links, the loop
operator

Viv) =110t (2.2)

tey

commutes with the Hamiltonian, [H, V()] = 0, and can be represented as a product
of plaquette operators B, enclosed by . Similarly, closed loop defined as product of
0. on the dual lattice &

w&) =110 (23)

ey

also commutes,[H, W (%)] = 0, which can be represented as a product of star operators
As enclosed by 7. Despite the possibility of finding many more different commuting
operators in the system, only M = 2+ 2(L,L, — 1) such operators are independent.
This count includes 2(L,L, — 1) for both stars and plaquettes, with the subtraction
of one accounting for the fact that the product of all stars/plaquettes is equivalent to
the identity. The additional count of 2 arises from the non-contractable loops W, (or
Vi.y), where one can only choose either one set of them due to the non-commutativity
of Wiy, Viyl # 0.

One has the freedom to choose which M operators will characterize the symmetry
sectors. For simplicity, we consider the operators A, B,, W,, W, as our independent
symmetry operators that simultaneously commute with the Hamiltonian. Notice that

M=2+2(L,L,—1)=2L,L,, which is the same as the total number of spins in the



system. These operators have eigenvalues (quantum numbers) = £1, thus enabling
us to block diagonalize the Hilbert space into 2 symmetry sectors. An interesting
and important property is that the number of symmetry sectors is the same as the
dimension of the Hilbert space, meaning that each symmetry sector has only one

unique state.

Eigenstates and Topological Ground State Degeneracy

After introducing the conserved quantities, we are now ready to construct the ex-
plicit eigenstates of the toric code. We will begin with a single operator A,. Since
A% = ], the eigenstates |g,) of operator A, can be constructed starting from a classical

representative state |rep) via the expression:

|4s) = (1 + qsAs) [rep) | (2.4)

where g, = £1 is the eigenvalue of operator A,. It can be verified that Ay |gs) = ¢s|¢s),
which confirms that |gs) is indeed the eigenstate.
We can extend the construction by considering all the M symmetry operators

mentioned above. In this case, the eigenstate of the toric code can be written as:

@) = 1+ wWo) (L +w,Wy) [T +4,8,) [ [+ a4, [rep). (2.5)

P s
Here, ¢ = (w,, wy,{q,},{qs}) is the set of binary quantum numbers associated with
each symmetry operator. As mentioned previously, since there is only one state asso-
ciated with each quantum number set, one can start with any classical configuration
that compatible with corresponding quantum number set ¢ as a representative state.
By following this construction, all the eigenstates in the system can be acquired.
Now let’s examine the ground state of the toric code Hamiltonian Eq. 2.1. It is

evident that the ground state should satisfy A; = ¢; = +1 and B, = ¢, = +1 to



Figure 2-2: (a) An example illustrating the conversion of a non-
contractible operator W, to W,, by taking the product with a series
of local star operators. (b) The action of the non-contractible loop op-
erator V, along the x-direction, as indicated by the red arrow. This
operator passes an even number of spins for elementary star operators,
intersecting one spin of the non-contractible loop W, thus causing a
flip in the quantum number.

minimize the energy. In this case, the ground state is given by:

|y, wy) = (1+w,We) (1 +w,W,) [T+ By) [T(1 + A) [rep) | - (2.6)

P s
This results in 4 degenerate states characterized by two non-contractible loop op-
erators W, and W,. Therefore, the ground state exhibits a 4-fold degeneracy with
w, = 1 and w, = £1. We will refer to these as topological operators and topological
quantum numbers in the following.

These topological states exhibit interesting properties. First, all the non-contractible
loops W (%) have the same quantum number. This can be observed from the fact that
any non-contractible loop along the x- or y-direction can be constructed by combining
local A operators with W, , operators. As illustrated in Fig. 2-2(a), by combining
with all the local A operators, one can transform W, into W,,. Since A; = +1 for the
ground state, the quantum numbers w, and w,, are equal. Secondly, it is impossible
to transition between these topological ground states using local operations. To go

from one ground state to another, one must utilize the conjugate operator V,, ,,, which



flips the sign of the topological operators while leaving the local stars invariant. As
demonstrated in Fig. 2:2(b), the action of V, (indicated by the red arrow) flips the
quantum number of W,,. It is noteworthy that V, always overlaps two sites on the

stars A, it traverses, and therefore, the quantum number of A, remains unchanged.

Fractional Excitations

Next, let’s examine the excitations in the Zs ordered phase. There are two distinct
types of excitations in this phase. The first type involves acting on a single site with
a o, operator, creating a pair of m anyons, sometimes referred to as visons. These
anyons are represented by the flipping of two plaquette operators B, (denoted by the
red squares) as shown in Fig.2-3(a). The second type of excitation occurs when we
act on a single site with a o, operator, creating a pair of e anyons, also known as
spinons. These anyons are represented by the flipping of two local star operators A,
as shown in Fig.2-3(b).

It’s worth noting that the creation of spinon excitations does not alter the quan-
tum numbers associated with B, since o, commutes with the plaquette operators.
However, it’s essential to emphasize that o, does not commute with the Hamilto-
nian (H). Similarly, the creation of vison excitations does not affect the quantum
numbers of A;. Furthermore, in systems with periodic boundary conditions (PBC),
visons and spinons must be created in pairs. Creating a pair of spinons results in two
violations of star operators, with an associated energy gap of A, = 4\4. Creating a
pair of visons gives rise to an energy gap of A,, = 4\g. Due to the model’s simplicity,
both spinon and vison excitations exhibit a flat band in momentum space, indicating
their degeneracy. This degeneracy implies that these excitations are localized and

immobile.



Figure 2-3: (a)The excitation generated by acting a o, operator that
creates two m excitation (visons) on the dual lattice, which repre-
sented as flipping two nearest-neighbor plaquette operators.(b)The ex-
citation generated by acting a o, operator that creates two e excitation
(spinons) on the lattice site, which represented as flipping two nearest-
neighbor star operators.

2.1.2 7, lattice gauge model

In the case of the toric code, we observe that both star and plaquette operators
are conserved. Now, let’s consider a simple generalization of the model where the
plaquette terms are replaced with terms that commute with the plaquette operators
(thereby preserving the local Z, gauge symmetry), but these terms no longer commute
with the star operators.

The simplest modification involves introducing a uniform transverse field, defining

the Hamiltonian as follows:

H=-X)» A;—g)» of. (2.7)

This Hamiltonian corresponds to the quantum Z, gauge theory [2, 7]. In this context,
we can consider B, as the gauge operators. Notably, the transverse field commutes
with the plaquette terms B, but does not commute with the star operators.

It is shown by Wegner [2] that this model exhibits two gapped phases separated
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by a phase transition at g.. In the regime where g > A4, all spins are aligned in the
z-direction, representing a trivial paramagnetic phase. In this configuration, consider
a closed loop defined as the product of Pauli-Z operators, denoted as W (~y) = Hl67 o7.
Since all spins are polarized in the x-direction, this loop configuration is energetically
disfavored. This phase is referred to as the ‘confined’ phase. In contrast, when
Aa > g, the loops can fluctuate, leading to the ‘deconfined’ phase.

Importantly, it’s worth noting that this model is dual to the square lattice Ising
model. To demonstrate this duality, consider mapping the star term A, — p* as a
new Ising degree of freedom. The action of the transverse field effectively flips two
neighboring stars, behaving as an effective XX coupling. Under this mapping, the

model can be expressed as:
H=-Xs> pi—hy piul, (2.8)
s ,J

which is the Hamiltonian of the transverse field Ising model on a square lattice.
Consequently, the phase characterized by dual Ising order corresponds to the confined

phase, while the phase with Ising disorder corresponds to the deconfined phase.

2.1.3 Toric code on a ladder

We now turn to consider the implementation of the toric code in a ladder geometry;,

as shown in Figure 2-4. The Hamiltonian is defined as follows:

H=-JY Al-Xz> B (2.9)
s p

Where A7 = [],.,0f represents the star term, and B} =

ics O here, o

;,topo-;,bottom;
denotes the Pauli operators. The lattice geometry is illustrated in Figure 3-1. Note
that in this context, we redefine the star term as a product of X, and the plaquette

term in a ladder system is simplified to a product of two Zs on a plaquette p. To
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eliminate ambiguity in the definition of the star term, we consistently adopt the
definition that an excitation on the plaquette, denoted as a vison (with B} = —1),

and an excitation on the site, referred to as a spinon (with A? = —1).

’
X /

i AX ;: (0}

\‘Q’l

\
s

B

Figure 2-4: The toric code on a ladder has its star term, A?, defined
as the product of o for four spins on a site, depicted as a red star. The
plaquette term B is a symmetry operator, defined as the product of
two o acting on plaquette p.

Again, we observe that all operators commute with each other, allowing the system
to be block-diagonalized. The ground state resides in the sector with A? = +1 and
BZ = +1. Ref. [8] demonstrates that introducing dynamics with a uniform —I'}, of
field imparts dynamics to the spinons. This mapping reveals that spinon excitations
can be mapped to a free fermion model. The vison excitation effectively ’cuts’ the
chain due to destructive interference arising from the mutual statistics of spinons and
visons.

Here, we propose a different approach to interpret this property. We begin by
categorizing the system’s Hilbert space based on the symmetry operators B. For
each By at plaquette p, the local basis can be divided into two groups: B = +1.
It’s important to note that on a ladder, the plaquette term consists of a product
of two Zs. Thus, one can also define another operator as a product of Pauli-X,

BT =

T T 3 - z
. ptopTpbottom» Which also commutes with B;. In fact, the star term can be

expressed as a product of two neighboring X-plaquettes By, such that A = B B¢, ;.
With B> = +1, the local space is spanned by 1) ,[]{). Conversely, if B = —1, the

local space is spanned by [1]),[}1), as illustrated in Fig. 2-5.
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Figure 2-5: The quantum number of B; divides the local Hilbert
space into two parts: (a) With B? = +1, the local space is spanned by
111, [44). (b) With BZ = —1, the local space is spanned by [1]), [|1).

Consider first the Hamiltonian with only the star terms, which is also referred to

as the classical toric code:

H=-J]) AL (2.10)

As indicated previously, since B} are good quantum numbers, we can block-diagonalize
the Hamiltonian into symmetry sectors with the quantum number set ¢ = B;. The
star operator AY effectively flips [11) <> [{]) (or [T) < [}1) if the instance B} = —1

at p). Thus, considering the mapping for B} = +1:

1) — 10)

) = 1) (2.11)
and for By = —1,

[T4) = 10)

1) = 1) (2.12)

Since the star term can be written as a product of By BY |, if we define a new Ising
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degree of freedom as 77 = B?, then the Hamiltonian can be rewritten as

Heg = _JZT;UT;:JFP (213)

from which we can see that the classical toric code is dual to the classical ferromag-
netic (FM) Ising model (in the x-basis). It is noteworthy that the above mapping
works for all the symmetry sectors characterized by the {B; } quantum number set.
In other words, this effective model is applicable to sectors with any number of vison
excitations. Adding the plaquette terms to the Hamiltonian simply shifts each sym-
metry sector by a constant (where the energy shift depends on the number of visons
in a given symmetry sector). A single o* operation, which flips 77 — —77, can excite
a pair of spinons. In the dual model, this spin flip creates domain walls. Therefore,
the spinon excitation can be interpreted as a domain wall in the dual model.

Next, we consider adding dynamics to the system by examining the Hamiltonian

with a uniform field (which corresponds to the Z, lattice gauge model on a ladder):

H=-JY AI-TY o (2.14)
s l

While the uniform field no longer commutes with the star terms, the plaquette oper-
ators By still commute with H as good quantum numbers. We can slightly rewrite

the Hamiltonian by defining an operator Zp = 0} top T Op bottom!
H=-J Z Ag -I Z (U;,top + U;,bottom) (215)
s P

=-JY AT-TY Z, (2.16)
s p

To attempt the dual mapping, we observe that {Zp, By = I‘f} = 0, indicating that

they anti-commute with B. More importantly, we notice that Zp annihilates the
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&—6—¢ *—o
Figure 2-6: The mapping to the transverse field Ising model in the
sector with two visons (indicated by B> = —1 at the locations shown in
light orange) transforms the red star operator into the nearest neigh-

bor ferromagnetic interaction 7,77, ;. Furthermore, the operator Zp is
mapped to 7; only at locations where By = +1.

basis state when By = —1,

Zy 1) = (2.17)
Zy |11) = 0; (2.18)
and when B; = +1
Zy111) = 2|11) (2.19)
Zy|W) = =2 |40). (2.20)

This implies that we can map Zp = 27, as a transverse field at the plaquette with
B} = +1, where the effective Hamiltonian resembles the Transverse Field Ising Model

(TFIM) with the field only acting on sites where B = +1:

H=-JY 7, —20 >y 7, (2.21)
p

pEBE=+1



as illustrated in Fig. 2-6.

16
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Chapter 3

Z> Topological Order and First-Order

Quantum Phase Transitions

Topological quantum states of matter are of central focus in modern condensed mat-
ter physics. One of the main features of strongly-interacting systems with gapped
topological order is that they can present degenerate ground states. This degeneracy
cannot be lifted by the action of local perturbations, and hence this property makes
such systems perfect candidates for building stable (topological) qubits. Several the-
oretical models have been proposed to realize gapped topologically ordered states.
For instance, the toric code [6] and dimer models on non-bipartite lattices [9, 10] host
quantum spin liquid (QSL) phases that possess Z, topological order. In both these
examples, the Hamiltonians contain multi-body interactions, making it a challenge to
encounter materials realizing these phases or to realize them in artificial structures.
Attempts have been made to construct models with simpler interactions that
can host gapped QSLs. A rare successful example is the cluster charging model
of bosons on the kagome lattice [11, 12, 13], which has been shown theoretically
and numerically to host a Z, quantum spin liquid, in a system with only two-body
interactions. However, these two-body interactions are of the X X Z type, which are
not easily implementable in, say, programmable quantum devices. Moreover, the
Zy gauge symmetry in this model is only emerging, i.e., it exists in the effective
model derived in perturbation theory, but it is not an exact symmetry of the original

Hamiltonian.
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Recently, a construction for which the Z, gauge symmetry is exact was proposed
on a variant of the transverse field Ising model (TFIM), utilizing only simple two-
body ferromagnetic and antiferromagnetic ZZ interactions [14]. Monomial (matrix)
transformations that correspond to combinations of spin flips and permutations play a
central role in the construction, thus dubbed combinatorial gauge symmetry. Because
the construction utilizes only ZZ interactions (of both signs) and a transverse field,
the model can be easily implemented, for example, with current Noisy Intermediate-
Scale Quantum (NISQ) technology using flux-based superconducting qubits, or other
types of quantum computer architectures that provide similar interactions on qubits.
The model has already been successfully implemented on a D-wave quantum device
in a recent experiment [15].

In this chapter, we present a quantitative and detailed study of the combinatorial
Zs gauge model originally proposed in Ref. [14]. We first give a brief introduction to
the model with combinatorial 75 gauge symmetry. The model realizes the Z5 gauge
symmetry through monomial transformations and effectively realizes the 4-body in-
teraction term as the star term in the classical version of the toric code. Two different
types of quantum fluctuations are introduced while preserving the gauge symmetry:
a transverse field acting on the gauge spins and a X X ferromagnetic interaction be-
tween the gauge spins, respectively. We provide numerical results on both models
obtained from quantum Monte-Carlo (QMC) simulations with the Stochastic Series
Expansion (SSE) method as well as exact diagonalization (ED). In both cases, we
find that the system exhibits a Z5 topologically ordered phase separated by a first-
order transition from either a paramagnetic phase (model-X) or a ferromagnetic phase

(model-XX).
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(a) '13 [{] (b) (c)

Figure 3-1: (a) The arrangement of two species of Ising spins on a
square lattice. Gauge spins (green squares) reside on the links and
four matter spins (orange dots) occupy each site of the square lattice.
(b) The vertex unit and the interactions between spins. The interac-
tions between gauge-matter spins within a single unit are defined by
the Hadamard matrix W in Eq. (3.3). For clarity, the couplings are
depicted on a deformed cell in panel (¢), where the ferromagnetic and
antiferromagnetic couplings are shown as thin blue lines and bold red
lines, respectively.

3.1 Local Z;, Gauge Symmetry with Two-body terms

3.1.1 7, Combinatorial Gauge Symmetries

We start with a model featuring S = 1/2 spins residing on both the sites and the links
of a square lattice, and we illustrate how combinatorial gauge symmetry is realized. In
order to achieve local Z, gauge symmetry with only two-body interactions, we arrange
the spins with both ferromagnetic and antiferromagnetic couplings in a pattern as
shown in Fig. 3-1(a). For each star (or vertex) s of the lattice, we place four "matter”
spins 4 (the orange dots inside the circles representing the lattice sites) and four
”gauge” spins o (green squares) on the links of the star. One such star with its total
of eight spins is depicted in Fig. 3-1(b) along with a labeling scheme. The Hamiltonian

of the system is written as

H=> H,+H, . (3.1)
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where HY. is the kinetic term involving only the 0% component of the gauge spins

(on all links), and at each star s we define a local Hamiltonian on its eight spins [14]

Ho=1J) (Z Wajai«) e =T Y pil (3.2)

acs JEs acs

Here the sums with j and a indices include the four matter spins o7 and the four
gauge spins 7, respectively. Notice that H, contains a transverse field only on the
matter spins. The ZZ couplings between the gauge and matter spins have magnitude

J and signs controlled by the Hadamard matrix W,

+1 -1 -1 -1

T
W=l o104 4| (3.3)
11 -1 41

Fig. 3-1(c) depicts these signs; the interaction between a gauge spin and its nearest
matter spin is antiferromagnetic (bold red line) while its interaction with the other 3
matter spins are ferromagnetic (thin blue line).

The Hamiltonian in Eq. (3.1) possesses combinatorial Z, gauge symmetry if the
H, terms are of the above form, and if only the ¢* component of the gauge spins

enters in HY; . The transformations
O'Z-Z — Z Rij 0'; (34&)
J
= Y i Ly (3.4b)

leave the spin commutation relations invariant if L and R are monomial matrices,
i.e., generalized permutation matrices with a £1 entry in each line or column in the
case of the group Z5. The transformations correspond to combinations of rotations
by 0 (41 entry) or 7 (-1 entry) around the z-axis, followed by a permutation of the

indices.



— -0 o—-@— _ l 1! o—
ql ¢ dl 0 @ ®

— 0= 8- = -0— o o — O—
= 0 P [ 0 o P D

S SN ) RN (. o o = 8—

|
b
:
:
T
I

Figure 3-2: Connection between the model in our studies to the Z
gauge theory. The red star in (a) represents the expanded 4-body in-
teracting term that is equivalent to the star term [[ o of the Z, gauge
model in (b). The blue plaquette in (a) represents the local combinato-
rial gauge generator G, by analogy with the local gauge generator B), of
the Zy gauge model defined as [] o® of the 4 spins around a plaquette
in (b).

A local gauge symmetry is generated by flipping gauge spins on closed loops around
the elementary plaquettes, together with accompanying transformations on matter
spins. Flipping the gauge spins around the loop corresponds to choosing R matrices
for each s traversed, with an even number of —1 entries associated with the links vis-
ited. For each such R, there is a corresponding monomial matrix L = WR W [14].
These pairs of monomial R and L matrices are such that W = L=! W R, and thus
the transformation in Eq. (3.4) leaves the ZZ part of the Hamiltonian invariant.
Moreover, since in Hy the transverse field on the p* is the same on all a € s, the
permutation action of the monomial L also leaves these terms unchanged. Hence, H,
is invariant under the monomial transformation with L and R. Finally, since R is
diagonal and only o” enters in HY; , this kinetic term is also invariant. For each such
loop, we have a Z; symmetry of the Hamiltonian in Eq. (3.1). This local Z, gauge
symmetry is ezact for any value of the parameters in the Hamiltonian Eq. (3.1). We

can obtain further intuition by connecting to the more familiar formulation of the Z5
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gauge theory [2, 7] as introduced in Chapter 2 in certain limits.

Consider the effective Hamiltonian for the H, terms when their energy scales are
larger than those in HY ; in this regime, one can diagonalize H, by fixing the o7
around the star and treating the problem as that of a paramagnet for the matter
spins .. The result is an effective Hamiltonian for the lowest states that take the

form of a four-spin interaction among the gauge spins [14]:

H = —y — ) Haf , (3.5a)

€S

where the parameters v and A are given by

1

7= 5 (VI 167 + 30, + 4T3, +47) (3.5b)
|

=3 (w/rgl 162 4 30, — 4y/T2 + 4J2> . (3.5¢)

Notice that the effective HST is, up to a constant shift, the same as the star term
AZ =[], 07 that appears in the toric code [6] and the Z, lattice gauge model [2, 7]
as introduced previously in Chapter 2. We depict in Fig. 3-2(a) the star term in our
model, juxtaposed to the star term represented in the toric and Z, gauge models
in Fig. 3-2(b) as the product of four spins on the red cross. The manifold of other
states in our model, those beyond the effective term, are separated by a scale I',,.
Thus, in the limit I',, — oo, higher energy sectors are projected out, and the system
Hamiltonian asymptotically becomes the exact star term of the toric code. (We
remark that the limit I',, — oo here simply serves the purpose of sending selected
excited state sectors to infinitely high energies; the effective Hamiltonian (3.5a) is a

non-perturbative description of the states that do not float to infinity in the I',, — oo

limit, and the states in this manifold are not affected by the limit.)
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In Chapter 2, we introduced the Z; lattice gauge theory,

Hy, =JY Ai—hy Yy ol (3.6)

where A7 is the star operator defined as A7 = olo2030? acting on 4 spins emanating
from a single site as shown in Fig. 3-2(b). The local gauge generator B, = [] o, is de-
fined as a product of o, operators around an elementary plaquette [shown as the blue
cross in Fig. 3-2(b)], which is a conserved quantity of the system, i.e. B, |E,) = q¢|E,)
where |E,) is an energy eigenstate. Thus we can use these operators to characterize
the quantum number sectors.

In a system with Hamiltonian as in Eq. (3.1), which possesses combinatorial Z,
gauge symmetry, the exact local gauge transformation on a plaquette p includes
additional transformations corresponding to the action of an operator £/ on the

matter spins of star s as [14]

L (L) = e (L a s (3.7)
b

which implements the flips and permutations associated to the monomial matrix L.

The plaquette term generating the combinatorial Z; gauge symmetry is then defined

as [14]

Gy=1]c:]]er (3.8)

SEp 1Ep

All the formulations that characterize the symmetry and quantum numbers in the
standard Z; lattice gauge theory can also be applied to our model with combinatorial
Zy gauge symmetry.

Similar to the Z; lattice gauge theory introduced in Chapter 2, in a system with

linear size L (total spins N = L x L x 6) and periodic boundary condition, one
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Figure 3-3: (a) Definitions of M independent gauge operators in the
conventional Z model for a system of size 2 x 2. (b) The corresponding
operators define on the lattice of combinatorial Z; model. Here, G, and
G, are the gauge operators defined on non-contractible loops along x
and y direction respectively.

can find M = 2+ (L* — 1) independent gauge operators G, that commute with
the Hamiltonian Eq. (3.1). Within the M operators, two of them, G, and G,, are
defined along non-contractible loops in the two spatial directions, and their quantum
numbers uniquely characterize the the 4-fold topological degeneracies of the ground
state in the thermodynamic limit. As shown in Figure. 3-3(b), G, is defined along a
non-contractible loop in the y-direction, and G, is defined in the z-direction. Other
operators are local, defined as a product of o, around an elementary plaquette of
4 spins. Using the fact that G commutes with the Hamiltonian, we can construct
eigenstates of the G operators: G |q) = q|q) where ¢ = £1. It is straightforward
to see that for each G operator, the eigenstate can be constructed by starting from
a classical configuration (which we refer to as the “representative” state [10]) via
lg) = (1 4 ¢G) |rep). Since the Hamiltonian commutes simultaneously with all M
operators, the state should be constructed with a product of 1+ ¢;G; for all G;. As

an example, consider a 2 X 2 system as shown in Fig. 3-3, we have

3
1
i) = - 1+ 6.Go) (1 +4,Gy ) 1]+ ¢;G;) Irepy) (3.9)
j=1
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where q indicates the quantum number set q = (¢4, ¢y, ¢1, G2, ¢3) = (£, £, £, %, %), Z
is the normalization factor and subscript 7 indicates the i-th state within the block.

There are in total 2" symmetry blocks in the system.

3.1.2 Adding kinetic terms

The discussion thus far is rather general, and, in particular, the combinatorial gauge
symmetry is exact, provided that the kinetic term H}; involves only the ¢® compo-

nent. Next, we shall discuss two different choices of H; .

Model-X: Transverse Field on The Gauge Spins

A simple choice of kinetic term is to apply a transverse field on the gauge spins,

Hg, = =T, ) o7, (3.10)

or, equivalently, the case with full Hamiltonian

H=7) (Zwaja;) po=Twm Y i =Ty > of. (3.11)

aEs JEs acs i

In the regime where I'y < J, I';,,, we can replace the first two terms by the star
equivalent Eq. (3.5a). Therefore, Hamiltonian Eq. (3.11), which obeys the exact local
combinatorial Z; gauge symmetry, has the usual Z, lattice gauge model as its low

energy description:

HZ2:—)\ZHUZ»Z—QZU§”, (3.12)

s 1Es 7
with g = I'y and A given by Eq. (3.5¢). The Z, lattice gauge model has been well stud-
ied and shown to host Z5 topological order for g < g., and undergo a deconfinement—
confinement transition at g = g. that leads to a paramagnetic phase for g > g.. The

critical point is g. ~ 0.3285\ from the exact mapping to the dual 2D Ising model
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Figure 3-4: The second-order process generates the effective plaquette
term in model-XX. The A-sublattice is marked in light yellow while the
B-sublattice is indicated in white. (a) The processes that couple two
stars in the A (top part) or B (bottom part) sublattice with an effective
ferromagnetic interaction. (b) The arrangement of XX bonds (dashed
lines) resulting in an effective TFIM on A and B sublattices. Different
colors indicate bonds coupling sites in the A and B sublattices.

[17, 18, 19, 20].
Model-XX: Ferromagnetic XX-interaction On The Gauge Spins

Another simple choice of kinetic term is to add two-spin X X interactions between

nearest-neighbor gauge spins,
Hy, = —J. Y ofof (3.13)

so that the full Hamiltonian is

H=J) (Z Waja;) po =T Y gt —Jo Y ofor . (3.14)

acs \ jEs a€s (k)

Notice that HY. satisfies the general conditions presented above to retain the com-
binatorial gauge symmetry. (Hf is written in terms of ¢® only, and thus commute

with the local operators G,,.)



27

To gain intuition about the model with Hamiltonian Eq. (3.14), we again consider
the limit J, < J, I',, and further taking I',, — oo, so that the first two terms
can be replaced by their equivalent star term Eq. (3.5a). Defining the four-spin star
operator A7 = [[.., 07, the effective Hamiltonian, without the kinetic term, reads
HT = -\~ A% The ground states of HT have A% = 1 (parity +1) on all stars or
vertices. Similarly to the dual mapping of the conventional Z, lattice gauge model,
we can introduce a conjugate star operator A? that flips the eigenvalue of AZ, in
terms of which we write the gauge spin between two nearest-neighbor stars s and s’
as of = ATAY,.

The X X kinetic term Eq. (3.13) perturbatively generates four-spin plaquette in-
teractions (i.e., products of four ¢* around the small loop around a plaquette). To
this end, the bond operators in the kinetic term can be arranged, e.g., in the way
illustrated in Fig. 3-4. Starting from the ground state of HS, where all vertices have
parity A? = +1, acting with a term of the form ofo] on two sites £ and [ within a
vertex s generates a pair of defects on either the A or the B sublattice, depending on
the bond chosen. Adding another bond operator within the same plaquette, parallel
to the first bond, generates a plaquette term at second order in J,/\. The effective

perturbative Hamiltonian in terms of the A** operators then takes the form
HT = —\Y A7 —27,) ATAL (3.15)
s (ss')

where (ss’) indicates nearest-neighbor stars within the same sublattice, and A is the
aforementioned effective strength of the star-term, Eq. (3.5¢). In this regime, our
model thus effectively reduces to two independent TFIMs; one on each sublattice. The
particular arrangement of the X X terms imposes an additional even-odd conservation
law in the system. The parity of negative AZ vertices within a sublattice is conserved,

which can be easily seen from Fig. 3-4(a), where the X X operators can only create
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defects in pairs within each one of the sublattices.

3.2 Stochastic Series Expansion for CGS Models

The QMC simulations presented in this paper were performed with the standard
SSE method, generalizing the TFIM version of this method [21] to the present more
complicated model. Consider a system with partition function Z = Tr [exp{(—FH)}|
where H is the Hamiltonian and [ is the inverse temperature. In the SSE algorithm,

we express the partition function by expanding in the o, (u,) basis |A) with

exp (~BH) = 3 OL(~H)" (3.16)

p

where the generic Hamiltonian (up to a constant)

—H =) U,i+> Ky (3.17)
ti ti

can be written as the summation over local diagonal terms U;; and the off-diagonal
parts K, ;. If needed, constants are added to the diagonal parts U, ; in order to remove
the diagonal sign problem. Here, the index ¢ indicates the type of the operator (which
in the present case can be single-site or two-site operators) and ¢ corresponds to the
lattice location of the operator.

To construct an efficient sampling scheme, following the standard SSE construc-
tion, the operator product (—H)" is expanded into “strings” of the elementary U,
and K, operators of the Hamiltonian. To avoid explicitly summing over the expan-
sion orders n with variable-length strings, one can further introduce an automatically
determined cutoff M (large enough for the power series to be fully convergent in
practice) and distribute M — n unit operators I at random among the n operators
drawn from the Hamiltonian. By summing over all the locations of the unit operators,

compensating for the number of equivalent terms (number of ways of distributing the
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identity operators) by a factor in the weight function, the partition function can be

written as

Z =Y W(Ay,Su), (3.18)

Ao,Sm

with configurations specified by a state |Ag) and an operator string Sy, of fixed length

M. The weight of the configuration is given by
B"(M —n)! 1
W(Ao, Su) = ——F 57— [T (41" 1Ap)) - (3.19)
p=1

All the spin states in the path-integral-like construct can be accessed by acting
on |Ap) with partial operator strings S, = Q(p) --- Q(2)Q(1), where p indicates the
position (“slice”, p = 1,..., M) and with Q(p) the operator acting at slice p. The
index n indicates the total number of operators drawn from the Hamiltonian and Sy,
is the full operator string (which contains also the randomly distributed unit opera-
tors) by which |Ag) must be propagated back to itself for periodic time boundaries
corresponding to the trace.

The Monte Carlo sampling procedures are essentially performed in the configura-
tion space of strings Sy, but changes in the string also implies spin changes, including
changes in Ay. For both model-X and model-XX, we follow similar sampling proce-
dures as those previously established for the TFIM. We here mainly point out the
extensions relative to the standard TFIM and refer to Ref. [21] for motivations and
further details not covered here.

To efficiently sample the partition function, each Monte Carlo step comprises two
types of updates—the diagonal (local) update and the non-local cluster update.

The diagonal update entails operators swaps of the kind

" & UP,. (3.20)
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For each slice p, the substitution I — U is proposed as follows. First, a diagonal
operator U;—. of type ¢ is chosen according to the following probability:

UcN.

Po= =
Zt U Ny

(3.21)

where NV, is the total number of locations (number of sites or number of bonds, for
example) associated with the type t. Then one of the locations i € N; is chosen
uniformly at random to replace the current unit operator /. This substitution is

accepted according to the probability
P(I = U,;) = _p > UN,, (3.22)
(M —n) <

while the reverse substitution U,; — I is accepted with probability

M—-—n+1
P(Un; — 1) = %E—U;Vt), (3.23)
to satify detailed balance.
To be more specific, for model-X we have the following Hamiltonian
=Y Wi~ W,
ajEs

— T ) (1 + 1) =Ty > (o7 + 1), (3.24)

acs 7

where we have slightly re-written the Hamiltonian in Eq. (3.11) by including a con-
stant shift in the diagonal terms to ensure that all matrix elements are positive. In

this case, we have three types of diagonal terms

Ut:l,a = Fm(Lz)y (325)
Ui, = T'y(1,), (3.26)

U=z ja = —JIWaj05 ps + [IWo;l, (3.27)
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as well as two types of off-diagonal terms

Kt:l,a = Fm,uga (328>

Ki—g; =Tyo7. (3.29)

Following the vertex notation introduced in Ref. [21], the possible vertices are shown

in Fig. 3-5

@) (b)

(c)
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Figure 3-5: All allowed vertices for model-X. (a) FM and AFM ver-
tices associate with the operators U;—3. (b) Single-site constant vertices
associate with Uy—;. (c) Single-site spin flip vertices associate with the
off-diagonal operators K;—; and K;—s.

For model-XX, we have

H=" JWyoip: — [IWaj| = T > (12 + 1)

a,j€s acs

—Jz Z(a,ja;“ +o, 0, + 1)
(k,l)

— .Y (ofor +opo) + 1) (3.30)
(k)

Here, we have separated the 0,0, term into two parts, 6o + h.c. and oo~ + h.c.,

such that the X X terms can be integrated into the cluster update procedure. In this
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case, we have four types of diagonal operators

Ui=1,a = I'm(1a), (3.31)
Ui=o 1 = Jo(1n1), (3.32)
Ui=s u1 = Jo(1x), (3.33)
Uictay = —IWayo il + [ W), (3.34)

and three corresponding off-diagonal operators of types t = 1,2, 3:

Kioyo =gl (3.35)
Ko = Jo(o) 0 +0,07), (3.36)
Kigu = Jo(of o] + 05 07). (3.37)

All the possible vertices are shown using the standard graphical vertex notation in
Fig. 3-6.
Following the diagonal update, the cluster update procedure are performed for

which the main goal is to swap diagonal and off-diagonal operators of the same type:
U;fi > Kf,i' (3.38)

The clusters can involve a large number of vertices and also correspond to flips of a
large number of spins in space-time. The clusters are constructed using the operator
string via intermediate local vertex processes that are very similar to those described
in Ref. [21], to which we refer for further details.

For model-X, the cluster update procedure is exactly the same as described in
Ref. [21] for the TFIM. However, in the case of model-XX, the additional off-diagonal
terms not present in the standard TFIM require a simple extension of the scheme,

which we illustrate here in Fig. 3-6. Vertex processes for type-2 and type-3 operators
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Figure 3-6: All possible vertices for model-XX. (a) FM and AFM
vertices associate with U;—y. (b) Single-site constant vertices associate
with U;—;. (c) Single-site spin flip vertices associate with K;_;. Vertices
that represent the two-site operators of type ¢ = 2 are represented by
the red dashed lines, with diagonal constant (d) U;—s and off-diagonal
term (e) K;—5. Vertices corresponding to two-site operator of type
t = 3 are represented by the blue-dotted line, with diagonal constant
(f) U3 and off-diagonal (g) K;—3. (h) Illustration of the possible vertex
processes for both type-2 and type-3 operators in the cluster update for
model-XX. (i) An example of an update of the kind U;—y — K.

are illustrated in Fig. 3-6(h), where the in-coming and out-going legs must be on
the same side in order for new allowed vertices to be produced. An example of an

Uj—s — K;—5 move is shown in Fig. 3-6(i).

3.3 Results of Model-X: Transverse Field on The Gauge Spins

In this section, we present our numerical studies of the model-X. Our results support
the theoretical conjecture that the model has a topological and a paramagnetic phase
with no other phases. The nature of the quantum phase transitions between these
two states is revealed. In the following, we fix J = 1 and impose periodic boundary

conditions in all our numerical simulations.
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3.3.1 Fidelity Susceptibility and Phase Boundary

To confirm that the model does have phases predicted by the effective Zy gauge
theory, we start by identifying signatures of the phase transition.

As discussed previously, In the model-X, further taking the limit I, — oo sends
the higher energy sectors to infinity, and hence Eq. (3.12) becomes the exact low
energy effective Hamiltonian in this limit. The limit I",, > J therefore allows us to
estimate the phase boundary of our model Eq (3.11) perturbatively by relating the
parameters I',,, I'y, and J to the couplings g and X of the Z, lattice gauge model
using Eq. (3.5a)) and Eq. (3.12) as

g Fg FgF?n
~ = . 3.39
A 12J4/F§n 1274 ( )

Setting g = g. ~ 0.3285\ results in the leading-order phase boundary in the (I'y,I',,)
plane, as shown in Fig. 3-7(a).

The mapping to the simpler lattice gauge model is only exact in the limit of
I',, — oo. In the regime where I',, ~ J, one can no longer exactly project out the
higher energy sectors as I'; varies. However, since the gauge symmetry is exact in
the full Hamiltonian (3.11), one still expects that the possible phases that Hamilto-
nian (3.11) can sustain are the Z, topological phase and the paramagnetic phase, both
of which respect the gauge symmetry. The precise location of the phase boundary
and the nature of the transition, on the other hand, may be altered by the existence
of additional degrees of freedom (higher energy sectors) in Hamiltonian (3.11).

To detect possible phase transitions in the system, we consider the fidelity sus-
ceptibility, which can probe the existence of a phase transition without requiring
knowledge of any order parameter [22]. The fidelity susceptibility captures the dra-

matic change in the wavefunction across two sides of a phase transition. It is defined
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Figure 3-7: (a) Phase diagram of model-X. The red curve is the per-
turbative large-I',;, phase boundary, Eq. (3.39), between Zy quantum
spin liquid and the confined (paramagnetic) phase, resulting from the
mapping to the Z lattice gauge model. Blue crosses are the bound-
ary points from the location of maximum fidelity susceptibility calcu-
lated with ED, as shown in (b). The two open circles represent the
L — oo transition point extrapolated from the QMC data simulated
at fixed I'y = 0.2 and 1.0, where the extrapolated transition points are
at I',, = 2.27, and I';, = 1.0, respectively. The Fidelity susceptibili-
ties X% in (b) and x% in (c) were calculated using Lanczos ED with
N =2 x 2 x 6 spins.

as

?*InF,
=——"15 o, 3.40
XF 962 |5,=0 ( )
where F, = | (¢(x)|t)(x + d,)) | is the infinitesimal fidelity in the direction defined by
x, which essentially measures the similarity between two quantum states when the
tuning parameter x is varied slightly. In our model with transverse fields, two types of
fidelity susceptibilities can be formally defined with variations along the two different

transverse fields; x =1, or x =T

I
m 0?In Fy,,
XE(Cm,Tg) = 5" |51, 0. (3.41a)
D62
82 In FF
X#(Tm Ty) = — 5o, =0 (3.41b)
a6% o

At the phase transition, the fidelity susceptibility diverges in the L — oo limit. In a
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finite-sized system, the divergence is replaced by a maximum at the transition, which
becomes sharper and larger upon increasing the system size L. The maximum scales
with L with a known exponent, which we will discuss below [23].

We first calculate the fidelity susceptibilities using exact diagonalization with the
Lanczos method [23, 24] on a small system with 2 x 2 unit cells, i.e., N = 24 spins
in total. Due to the rapid growth of the Hilbert space, this is currently the largest
accessible system size with our computational resources. Fig. 3-7(b) shows x as
a function of I, for several different values of I'y. A single peak is present in all
cases, which implies the possibility of a phase transition in the thermodynamic limit.
Furthermore, we have not observed any cases of multiple maxima in any of our cal-
culations, suggesting only two different phases. Similar behaviors are also observed
for x% as shown in Fig. 3-7(c). From the location of the maximum of x% shown in
Fig. 3-7(a), we find that the data fall close to the perturbative (large-I",,) topological—
paramagnetic phase boundary even though the value of T, is not extremely large (and
I’y not extremely small).

It may seem surprising that the phase boundary is given accurately by a system
with only four unit cells. To confirm that the observed maximum of the fidelity
susceptibility grows with the system size and truly indicates a phase transition, we
next turn to QMC simulations to reach larger system sizes. We use the SSE QMC
method [16, 25], for which a convenient way to compute the fidelity susceptibility was
devised recently [20].

In our simulation, we set the inverse temperature as § = 4L. Because of the
small vison gaps in the topological phase, this scaling of # does not allow us to
reach the finite-size ground state deep inside the topological phase. However, with
the T" — 0 limit approached with 8 o« L we can still address the nature of the

quantum phase transition from the gapped paramagnetic phase. In our model, the
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Figure 3-8: SSE results for the size-normalized fidelity susceptibilities
XE/N (a) and x%/N (b) for systems with different number of spins
N = L x L x 6. All data points for a given L were obtained in the
same simulation with quantum parallel tempering at fixed I'; = 0.2 and
inverse temperature 5 = 4L. The insets show log-log plots of the peak
value of the fidelity susceptibility versus L, along with solid lines drawn
through pairs of data points with L and L 4+ 2 to analyze power-law
behaviors xp/N ~ L2, The extracted size-dependent exponents in (a)
are by ~ 3.0 from the L = 4,6 points and bg ~ 3.5 from L = 6,8. In
(b) the L = 4,6 points give by ~ 2.7 and L = 6,8 give bg ~ 3.2. The
dotted lines in the insets of (a) and (b) have a slope b = 2(d+1)—d =4
corresponding to a first-order transition and are shown as a reference.

[sing interactions are highly frustrated, and to mitigate the associated effects of slow
dynamic of the QMC updates in the topological phase and at the phase transition,
we have implemented quantum replica exchange [27, 28, 29]. Simulations are thus
carried out in parallel for a large number of replicas with different values of I',,, on
both sides of the transition, with swap attempts carried out for neighboring values of
the parameter after several conventional SSE updates. Even with replica exchange,
it is still difficult to equilibrate systems for large L, and we have limited the present
study to L < 8. As we will see, these moderate system sizes are already sufficient for
drawing definite conclusions.

Fig. 3-8(a) shows the results of the fidelity susceptibility x7% at I'; = 0.2 as a
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function of I';,. We indeed find that the peak identified in the ED calculations diverges
upon increasing the system size, providing solid evidence of a phase transition. The

other fidelity susceptibility x% shows a similar behavior, as shown in Fig. 3-8(b).

3.3.2 Topological Order

Next, we turn to the properties of the underlying phases. Based on the mapping to
the Z lattice gauge model, we expect the phase with small I';,, to be a Z; topological
quantum spin liquid. Note that Elitzur’s theorem forbids any spontaneous symmetry
breaking of local gauge symmetries; thus one cannot define any local order parameter
to characterize such topological order [30, 31, 7]. To detect the topological order, we
investigate the global, non-contractible Wilson loop operator, defined as the product

of gauge spin ¢* operators along a non-contractible loop in the a-direction

Pan = H Uiza (OS {‘1'7 y}> (342)
{i}a,n

for the set of sites {i},, belonging to the n-th row or column. For a Z, spin liquid,
the quantum numbers p, , = £1, p,,, = £1 characterize the four degenerate (in the
thermodynamic limit) topological ground states regardless of which row or column
n is chosen. We can take advantage of this property to define a correlation function
detecting the topological order using the product of two parallel non-contractible

loops on rows or columns labeled by m and n:

& (rmm) = Pampan) = | [ o | | TI o7 (3.43)

{i}a,m {i}a,n

which we also illustrate in the inset of Fig. 3-9(a). Instead of investigating this
correlation as a function of the distance r,,, between the two loops, we here take the
longest distance for a given lattice size, r,,, = L/2, and analyze the L dependence

of C,(L/2) defined as a summation over all translations (to reduce the statistical
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Figure 3-9: Wilson-loop correlation function obtained in SSE simu-
lations. (a) Results for the CGS model-X with I'j = 0.2. Data for
different system sizes show convergence to a finite value for I',,, ~ 2.3,
with the expected value C,(L/2) = 1 in the I';, — 0 limit. The inset
illustrates the definition Eq. (3.44) of the correlation function in terms
of two parallel non-contractible Wilson loops in the x direction of a
periodic lattice of size L = 4. (b) Results for square-lattice TFIM for
several system sizes at inverse temperature § = 2L. The inset shows
the finite-size scaling of the location h¥(L~') for which the value of the
correlator is 1/2, as indicated by the horizontal dashed line. A power-
law fit y = a+bL~¢ for the L > 12 data gives a = —0.02(1), b = 3.15(2)
and ¢ = 0.472(7), indicating a vanishing value of the correlator at any
transverse field in the thermodynamic limit.

fluctuations) of the two Wilson loops oriented in the o € {x, y} lattice direction:

L
C,(L/2) = Z (rjjir/2); (3.44)

h |

which can be averaged over the two directions. In the topologically ordered phase we
expect C,(L/2) # 0 when L — oo, while in the paramagnetic phase C,(L/2) — 0.
Note that this quantity has been used in a previous study of topological order in
classical Ising gauge models at zero and non-zero temperatures [32].

In Fig. 3-9(a), we show SSE results at I'j = 0.2 as a function of I',,. We see that

C,(L/2) indeed vanishes with increasing L for large I',,,, while it converges to a finite
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value for I',, in a range consistent with the transition point found above for the same
value of I'y. Below we will discuss the size-extrapolated phase boundary.

We stress here that the Wilson loop order parameter does not detect any phases
with only local order parameters. For example, consider long range ferromagnetic
phase in the transverse field Ising model (TFIM) on L x L square lattices with periodic
boundary conditions at inverse temperature 5 = 2L. In Fig. 3-9(b), we show the same
Wilson loop correlator measured from the QMC simulation. We draw the horizontal
line at Cp = 1/2 and extract the corresponding value h%(L) of the transverse field.
In the inset of Fig. 3-9(b), we demonstrate finite-size scaling of the value h as a
function of 1/L with a power-law fit of the form y = a +bL~¢. Including data for the
four largest system sizes, L > 12, we find the best fit with a = —0.02(1), b = 3.15(2)
and ¢ = 0.472(7), confirming the expectation Wilson loop correlator vanishes for a
conventional FM phase in the thermodynamic limit at any finite transverse field. Our
results therefore demonstrate conclusively a Z, topological phase of finite extent as

the field I',,, is turned on.

3.3.3 First Order Phase transition

In order to understand the nature of the phase transition, We further measure other
physical quantities. We also perform careful finite-size scaling to our QMC simulation

results.

Peaks of Fidelity Susceptibility

Based on the similarity of the model to the Z; lattice gauge model, in which the tran-
sition is in the (2+1)D Ising universality class, one might naively expect a continuous
transition at which the maximum should scale with system size as [23] xp/L? ~ L*v~4
with d = 2 the spatial dimensionality and v =~ 0.63. However, we do not observe a

scaling of the above form. Instead, we analyze the data using a generic scaling form



41

xr/L% ~ L with an adjustable exponent b. To further take into account finite-size
corrections, we consider a size dependent exponent b; extracted from two system
sizes, L and L + 2; graphically this exponent corresponds to the slope of the line
drawn between two data points on a log-log scale as shown in the insets of Fig. 3-8.

In the case of x in Fig. 3-8(a) we find by = 3.0 (i.e., the line drawn between data
points for L = 4 and L = 6) and bs ~ 3.5 (from L = 6,8). In the case of x% we find
by =~ 2.7 and bg =~ 3.2. These exponents are significantly larger than the expected
value 2/v—d ~ 2/0.63—2 ~ 1.175 of the (2+1)D Ising universality class, and for both
susceptibilities the deviation becomes larger for the larger system sizes. It therefore
appears more likely that the transition is first-order. Generally, at classical first-order
transitions the same scaling forms hold as for continuous transitions, but with the
exponent 1/v replaced by the dimensionality d [33, 34]. In a quantum system, the
replacement should be 1/v — d + z, where the appropriate value of the dynamical
exponent z reflects the nature of the low-energy excitations in the two coexisting
phases [35, 36]. Our results in Fig. 3-8 suggest a first-order behavior with z = 1, in
which case b = 2/v —d — 2(d + 1) —d = 4. We show this type of divergence for
reference with the dotted lines in the insets of Figs. 3-8(a) and 3-8(b); this asymptotic

behavior seems very plausible based on the available data.

Binder Ratio and Derivative

We further provide evidence of a first-order phase transition by a finite-size scaling
analysis of the corresponding Binder ratio. To this end, we define the topological
order parameter on the entire system as the sum of Wilson loops with P? = P? + Py2

where

L
1
Pa = E E Pa,n, (345)
n=1
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with a € {z,y}, and the Binder ratio

(r)

T

(3.46)

In a perfect Z, ordered topological phase, P, = 1 and P, = +1, forming a Z, X Z,
symmetric order parameter distribution, while P, = P, = 0 in the paramagnetic
phase. With increasing system sizes, the Binder ratio is expected to form a step
function at the transition point in the case of a continuous transition, while the
distribution of the order parameter in the coexistence state at a first-order transition
typically is also associated with a divergent peak adjacent to the step [37, 38]. In
Fig. 3-10(a) the Binder ratio indeed evolves into a step function with a side peak,
though the latter is only seen clearly for the largest system sizes, L = 8, and for L = 6
there is a very weak maximum as well. Looking at the derivative of B, in Fig. 3-10(b)
we observe a divergent positive main peak, and for L = 8 a prominent negative peak
reflects the presence of the first-order side peak in Fig. 3-10(a). Thus, we have strong
evidence of phase coexistence at a first-order quantum phase transition caused by an
avoided level crossing. The maximum of the Binder ratio derivative diverges with the
system size as the step function develops.

The derivative of the Binder ratio can be evaluated directly in SSE simulations,
using the estimator derived as following. Consider the Hamiltonian H = JH, +
dHs, where 0 is the tuning parameter and [Hy, Hs] # 0. For any arbitrary diagonal

observable O, the expectation can be express in the SSE representation as [16]

1
(0) = " F(B,1) O HO - 120
{ai}
1
= > F(B,1)Ougap " N5 D R [H, (3.47)
{ai}
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where

5*(M — n)!

(3.48)

and we have used the short-hand notation H*% = (a;|H|a;) and Ogga, = (a0|O]ap).
Further, Z is the partition function, M is the operator string length and n is the num-
ber of non-identity operators in the current string. The quantity denoted R [H,, p,]
stands for the product of local Hamiltonian operators, [[, Ha,, where H,, = H{ or
H.

The derivative of the observable with respect to the tuning parameter o can be

calculated from

9(0)  (Ony) (ns)
o5 56 _<O>Té
(On;) —(O) (ns)

- 5 : (3.49)

where ng is the number of the § operators in the string. We are interested in the
Binder ratio of the Wilson loop order parameter, defined as in Eq. (3.46). Using the

above expressions we obtain

OB 05 (P*)  2(P*)(P*) 85 (P?)
% = <P2>2 - <P2>4
_ 1 [(P'ng) + (P*) (ng) _ 2(P*) (Pns)] (3.50)

5 (P2)? (P2)°

Here P? = p? + P defined as Eq. (3.45) is an equal-time quantity evaluated at a
given “time slice” in the SSE configuration.

With the replacement 1/v — d + z in the scaling form dB/dl',, ~ L' and
expecting z = 1 here, the peaks should diverge as L3. Indeed, in Fig. 3-10(b) the peak
values for the three largest system sizes can be fitted to a power-law L’ with b ~ 3.0,

thus supporting a first-order transition. So far, we have discussed the divergence
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properties of the peaks in the Binder ratio and the fidelity susceptibility. We also
need to extrapolate the peak locations in order to obtain the transition point in the
thermodynamic limit. Fig. 3-10(c) shows the dependence of the peak locations on
1/L along with extrapolations assuming power-law corrections. All quantities show
mutually consistent behaviors for the largest system sizes, but x% has much larger
scaling corrections than the other quantities. Extrapolations with error analysis give
the critical value of the matter field I';, ~ 2.27 for the gauge field I'j = 0.2 considered
here. In the phase diagram in Fig. 3-7(a) we have marked this transition point with
a circle, and we also show the result obtained using the same methods for I'; = 1.
These QMC points are very close to the boundary estimated from the ED results for
a very small system with L = 2.

Here we should note that the ED results are calculated exactly at 7" = 0, while
there are still some temperature effects left in the QMC results obtained with our
choice of temperature scaling, T' = (4L)~!. In the case of L = 2, the QMC results for
I'¢ (L) are actually quite far from the 7' = 0 ED results because of the temperature
effects. However, since T' — 0 as L increases, the L — oo extrapolated QMC results
are not affected by finite temperature (beside unimportant constant factors in the
peaks of the physical quantities). In this regard, it can also be noted that effects
of inappropriate temperature scaling with L could potentially ruin a quantum phase
transition that does not extend to 7' > 0 (as is the case with topological order in two
spatial dimensions), while there is no reason to expect a transition detected when

T o 1/L to vanish if T approaches zero more rapidly.

Wilson Loop Order Parameter Distribution

We further show the full distribution of the two-component Wilson loop order pa-
rameter p(P,, P,). The two components of the order parameter are defined as in

Eq. (3.45). Fig. 3-11 shows color-coded plots of the distribution as the phase tran-
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sition is traversed. Near the transition point, in Fig. 3-11(b), we observe a five-peak
structure, indicating phase coexistence at a first-order transition. In (a) and (c) we
observe distributions expected in systems with and without topological order, respec-
tively. Note that the four peaks at the corners in Fig. 3-11(a) and Fig. 3-11(b) should
mathematically be of equal size, but they differ here because of the slow migration of
the simulation between these peaks, which are separated by tunneling barriers in the
SSE configuration space.

The results clearly show a phase coexistence as characteristic of a first-order tran-

sition.
Energy Derivative

Finally, we show another signature of the first-order phase transition from the ground
state energy density. In practice, the T — 0 internal energy is obtained with QMC
calculations at T'= (4L)~!. The type of first-order transition indicated by the results
above, where finite-size scaling with the exponent replacement 1/v — d + z holds,
should be associated with an avoided level crossing. Thus we expect a change in the
slope of the energy at the transition with increasing L. In Fig. 3-12(a) we plot the
energy per site as a function of I',, for the same gauge-field strength as considered
above, I'y = 0.2. At first sight, the data exhibit a smooth behavior without any
visible kink. However, by taking the numerical derivative of the energy, as shown
in Fig. 3-12(b), we find a clear signature of non-analytic behavior, such that the
derivative becomes discontinuous at the transition in the thermodynamic limit.
Along with the other results, this demonstration of a discontinuous energy deriva-
tive provides definite proof of a first-order quantum phase transition between the

topological and paramagnetic states.
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3.4 Results of Model-XX: Ferromagnetic XX-interaction On
The Gauge Spins

In this section, we present numerical results for the system with ferromagnetic XX-
interaction as kinetic term, the model-XX defined previously in Eq. (3.14). Similar as
the study of Model-X, we perform lanczos ED calculations for L = 2 systems, as well
as QMC results for larger systems up to L = 6 with quantum replica exchange. We
fixed I',, = 1.0 and simulated several replicas at different values of J, across the two
phases. The values are chosen such that the acceptance rate of swapping neighboring
replicas is in the range 0.4 ~ 0.6. Our findings and arguments are very similar to
those for model-X, with the exception of issues pertaining to the ferromagnetic phase,

and we therefore keep the discussion brief in this section.

3.4.1 Phase Boundary

In the limit J, > A, since all gauge spins interact ferromagnetically, an z-direction
ferromagnetic phase arises; thus we expect a quantum phase transition between the
topological phase and a ferromagnetic phase, replacing the topological-paramagnetic
transition of the model-X. Similarly to the model with transverse field on the gauge
spins, where the phase boundary between the topological and paramagnetic phases
is given perturbatively by Eq. (3.39) through the mapping to the TFIM, here this
mapping gives the following relation between the field strength in the TFIM and the
field A in Eq. (3.5¢);

A6t
2J, I38.J,°

(3.51)

Thus, the topological-ferromagnetic phase boundary can be obtained to leading order
by setting the ratio above to the critical point 3.04497(18) of the 2D quantum Ising

model [19, 18].
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As in the previous study of model-X, we first discuss Lanczos ED results for the
fidelity susceptibility x7. defined as in Eq. (3.41b) with the substitution I'y — J,. In
Fig. 3-13(b), we show x7. versus J, for several values of I',,. In all cases, we observe
a peak indicative of a phase transition. The locations of the maxima are shown
along with the perturbative phase boundary in Fig. 3-13(a). In Fig. 3-13(c) we plot
QMC results for larger systems. As expected we find a maximum that diverges with

increasing system size, showing a true phase boundary and only two phases.

3.4.2 Topological Order

The same Wilson loop order parameters P, and P, defined in Eq. (3.45) are used
to confirm the extent of the topological phase. To detect the topological order, we
again consider the correlation function C,(L/2) between two parallel non-contractible
Wilson loops, defined previously in Eq. (3.44). Fig. 3-14 shows results at I, =
1.0. Here a discontinuity reflecting the first-order transition develops more clearly
as compared to the results for model-X in Fig. 3-9, thus suggesting a more strongly
first-order transition in this case. Note, however, that the parameter values chosen
for the two models in these figures, I'; = 0.2 and I';;, = 1, are not directly comparable.

In both cases, the strength of the discontinuity will vary with the model parameters.

3.4.3 First Order Phase Transition

Peaks of Fidelity susceptibility

To extract information about the phase transition, we perform a finite-size scaling
analysis of the fidelity susceptibility peaks obtained from QMC simulations, as shown
in Fig. 3-14(c). Using the effective exponent by, defined with system sizes L and L+ 2,
we find by ~ 4.8 and by ~ 3.9. These exponents are again significantly larger than

the 2/v —d ~ 2/0.63 — 2 ~ 1.175 for the (2+1)D Ising universality class, but close to
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b=2(d+ z) —d =4 for a first-order transition when z = 1. We note one difference
with respect to the previous model-X, as seen in Fig. 3-8, in that case the exponent

by, increases with L, while in the present case it decreases.

Binder Ratio and The Derivative

We provide QMC results of the Binder ratio B as defined in Eq. (3.46) with both
components taken into account. The results, shown in Fig. 3-15(a) exhibit develop-
ing step functions with associated peaks indicative of a first-order transition. The
derivatives in Fig. 3-15(b) exhibit the expected divergent peaks. Because of the lim-
ited system sizes, we refrain from analyzing the peaks further. We have used the
peaks to extrapolate the transition point to infinite size and show the result with the
green circle in the phase diagram in Fig. 3-13(a) at I';, = 1. As in the model-X with
transverse field on the gauge spins, we find only a small difference between the QMC

result and the L = 2 ED result in this case.

Energy Derivative

We present further evidence of a first-order phase transition from the energy density.
As shown in Fig. 3-15(c), in this case we observe a clear kink behavior for the larger
system sizes, L > 4, and the derivative in Fig. 3-15(d) accordingly shows a strong

discontinuity developing as direct evidence of phase coexistence.

3.5 Low-Energy Excitations in the Topological Phase

Having used QMC simulations to establish the existence of an extended Z, topological
phase and its quantum phase transition into the paramagnetic phase, we now again
turn to Lanczos ED calculations in order to investigate the energy level spectrum of

the system.
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We use the combinatorial Z; symmetry to block-diagonalize the Hamiltonian into
M = 2+ L? — 1 blocks in the basis of Z, gauge generators, as discussed in detail
previously. The blocks are categorized by a set q = (&, +, {+}) of quantum num-
bers, where the first two elements correspond to the two non-contractible loops with
associated quantum numbers G, and G, and {+} denotes the set of L?—1 local quan-
tum numbers G;. In the thermodynamic limit, the topological ground state should
be four-fold degenerate, corresponding to the lowest energy states from sectors with

G, = =%, Gy, = £ and G; = + for all other i € M — 2 local operators.

3.5.1 Level Spectroscopy for Model-X

The transverse field does not commute with the Hamiltonian; thus, there are always
finite-size gaps between the four topological states in a finite system.

Our ED calculations here are again restricted to L = 2 (and we present some
QMC results also for L = 4), but even for this very small system many of the salient
signatures of spinon and vison excitations can be observed, as well as signatures of
the first-order quantum phase transition.

In Fig. 3-16(a), we graph low-energy gaps Ag relative to the ground state versus
the matter field I',, at fixed I'y = 0.2. For each of the 32 topological symmetry blocks
pf the L = 2 system, the two smallest gaps are shown, but because of degeneracies due
to lattice symmetries there are only 11 distinct curves. The unique finite-size ground
state has q = (+,+,+,+,+), i.e., G, =+, G, =+ and G; = + for i = 1,2,3. The
four levels that become degenerate in the thermodynamic limit in the topological
phase are highlighted with different symbols. As for the remaining low-energy levels,
we note that in the Z, topological phase two types of quasi-particle excitations should
be expected; spinons (s) and visons (v), which are created in pairs by acting on the
ground state with o* and o* respectively on the gauge spins, as indicated in the insets

of Fig. 3-16(a).
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In the I';, — 0 limit, the spinon excitations are gapped with A ~ 4.J for I'y = 0.2
(the gap value is exactly 4J if 'y = 0), as seen clearly in Fig. 3-16(a), where these
levels are shown with orange symbols. The vison gap opens when increasing I',,, as

can be seen from the fact that the effective model takes the form

Hyperv =Y H,—g» G, (3.52)
s D

to lowest order in perturbation theory. Here G, is the local gauge generator that

appears at 12th order, where the coupling is
goc (T5,1,) /JM. (3.53)

We can identify the vison excited states simply by considering the quantum number
blocks that couple to the ground state through the on-site 0* operators (which do
not commute with the local gauge operators). In Fig. 3-16(b), we plot ED results for
the same parameters as in Fig. 3-16(a), but with a change in scale to focus on the
vison states. These states are gapped for all I',, > 0, but the gaps are much smaller
in the topological phase than in the paramagnetic phase. The lowest vison state,
which contains two visons, is eight-fold degenerate on the small system considered
here. The other levels in Fig. 3-16(b) correspond to states with (an even number)
more than two visons.

We can extract the lowest vison gap from QMC simulation by analyzing the

imaginary-time autocorrelation function of ., , defined as

G(r,8) = 1/N, Y (a1 (0)ak(r)e ") (3.54)

i1€g
where o, is the Pauli-z operator acting on the gauge spin, 7 is the imaginary time

and f = 1/T is the inverse temperature. The estimator is averaged over all the

N, = L x L x 2 gauge spins. The operator o, acting on the ground state creates
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a pair of visons, thus, at a sufficiently low temperature, the extracted gap from the
exponential fitting of Green’s function gives the estimation of the vison gap.

In order to obtain the gap correctly, it is essential that the temperature is suffi-
ciently low in the simulation. To elaborate on this point, consider a finite temperature

Green’s function in the basis of energy eigenstates

G(r, By = 5 { ;<o>a;‘<7>e—ﬁff>
—Z sl ) (bl ote P o

=_ Z | (a e PBre=T(EamEy), (3.55)

For the few leading terms in a system at a sufficient low temperature we have

e—BEo

G(r.p) ~ — Zla [P
e BEL
7 S leiPe
IO_ |2 —TA10+Z|O_ |2 —TAao

Yt

where Ay, = E, — E} is the energy difference between the two states a and b, and we

al

e_B 0

6 BEI

~Ta1 (3.56)

)

ignore all the terms with @ = b since the diagonal matrix element ¢2** vanishes. We

further separate the dominant terms by rewriting the above expression as

Gt = Sy |14 3 L e
a=2
€ —PE 22,412 _TA10 22,412 —TAq1
+ log | 7e™ 2 + |O’ e : (3.57)
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Considering only the leading three terms related to the gap Ay we are interested in,

and with the fact that |02 = |07 [?, we have

—BEy zzz
G(7.B) m ——lojy e 50 1+Z T
a=2
—BE
+ € AEL zzz|2 TA10
7
zzz2 7/BE0
X
— o35 P
—7A10

+ e~ (Bmmdwy (3.58)

zz z
f‘rAal
L+ 2 : zzz

Furthermore, notice that the o, operator does not commute with the gauge op-

erator G,,. In fact, if we operate on the site with spin o! with the gauge operator

o4, the o, operator changes the quantum number corresponding to G,

o.G, = —Gol. (3.59)

z

As illustrated in Fig. 3-17, acting with a o, operator on the ground state with quantum
number set q = (+,+,+,+,+) creates a pair of visons and thereby changes the
quantum numbers associated with G; and Gj, leading to a new quantum number set
q = (+,+,—,+,—). This means that the ground state will have non-zero matrix
elements only to the states with the right quantum number set. Thus, we can safely
assume the matrix elements |023|? = 0 for low levels. If we ignore these term in the

summation we have
G(1,B) ~ {eT™80 4 e~ (FnA0Y (3.60)

In our simulations, we evaluate this non-equal time correlator at various values of 7

and extract the gap Ajg by fitting the results to Eq. (3.60).
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In Fig. 3-16(b) we compare the lowest gap extracted from the QMC data for the
L = 2 system at inverse temperature § = 48 with the ED result. We observe good
agreement between the two calculations. Note that the eight-fold degenerate levels
with two vison excitations undergo a true (not avoided) level crossing with a state
with G, = G, = + and all local quantum numbers G; = —. This level-crossing is a
finite-size effect, and we do not expect such behavior to persist for larger system sizes.
The G; = — state contains four visons, i.e., it can be reached from the ground state
with two different o} operations. It therefore does not contaminate the correlation
function G(7) corresponding to the two-vison level of interest. For this small system
the four-vison state falls under the lowest 2-vison state below I'),, & 3, i.e., close to
the phase transition into the topological state.

Note again that the quantum numbers G; are conserved (i.e. commute with the
Hamiltonian) in both the topological phase and the paramagnetic phase of the model.
However, visons with G; = — are deconfined only in the topological phase. In the
paramagnetic phase, the lowest energy vison excitations must form bound states resid-
ing on two adjacent plaquettes, while states with more visons and larger separations
between the visons have larger energy costs, as shown in Fig. 3-16(b).

In the inset of Fig. 3-16(b), we show the vison gap based on QMC calculations for
both L = 2 and L = 4 at I'; = 0.2, using inverse temperature 8 = 24L. While the
L = 2 gap exhibits only a rather smooth variation with I',,, at L = 4 a sharp feature
has developed close to the phase transition. The sharp behavior of the gap here is
consistent with the scenario of a first-order transition through an avoided ground
state level crossing, and this mechanism should be associated also with avoided level
crossings of the low-lying excitations.

Although the model possess Z; topological order and can be directly implemented

on existing quantum devices [15], it will be difficult to reach the true ground state,
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or even a thermal state with a low density of visons, due to the very small vison gap.
These difficulties are clear from the effective model obtained perturbatively, Eq. (3.52)
with the 12th-order effective coupling in Eq. (3.53). Nonetheless, there may still be
signatures of the mutual statistics of the spinons and visons that could be observed
in the regime where temperature is larger than the vison gap but still much smaller
than the spinon gap, as discussed in Ref. [39]. In this regime the visons randomly
appear within plaquettes because their energy of formation is much smaller than the
temperature. In the presence of kinetic terms (such as a transverse field), the spinons
acquire dynamics at a scale much faster than that of the visons, so effectively they
quantum diffuse in a background of randomly placed visons. Because of the mutual
statistical phase of m between the two types of particles, the random visons serve as
sources of 7 fluxes, which lead to quantum interference corrections to the diffusion of

the spinons.

3.5.2 Level Spectroscopy for Model-XX

We now turn to analyzing energy levels for model-XX. We have again used Lanczos
ED to find low-lying states for each block of quantum numbers characterizing the
combinatorial Zy symmetries in the L = 2 system. In Fig. 3-19, we present the two
smallest gaps versus the XX coupling J, at I';, = 1.0. The lowest states in the
sectors G, = £+, G, = + and G; = + again are those that will eventually become
degenerate as L — oo in the topological phase, and these states are highlighted with
different symbols. The lowest energy excitations in the topological phase, states with
visons, form levels very similar to what we saw in the model-X. However, the spinon
spectrum looks very different. Due to the XX ferromagnetic interaction, spinons
created in pairs within one of the sublattices has lower energy comparing to the
one created in neighboring pairs (created by a single o, operation) as illustrated in

Fig. 3-19(a).
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At J, — 0, only spinon excitations exist, with a gap size of order O(J), as can
be seen in Fig. 3-19(a) where these levels are marked in orange. The vison gap opens
with increasing J,., as the effective model from the lowest order in perturbation takes

the form

Hyerv = Y Hy—g) G, (3.61)
s D

Here G, is the local gauge generator (plaquette term) that appears at 10th order, with
g ~ T8 J2/J° which should be compared to the 12th order perturbative Hamiltonian
in the case of model-X.

In the case of the XX interaction used here, there is an additional gauge spin
inversion symmetry in z-basis that is not present in the model-X. Define the inversion

operator
V= H of (3.62)

as the product of all 0% gauge-spins. This operator clearly commute with Hamiltonian
and its quantum numbers v = 4 correspond to symmetric or antisymmetric states.
We find that all the lowest energy levels of the 32 gauge blocks (blue) are symmetric
and the second state (orange) is always anti-symmetric except for the highest energy
level shown in Fig. 3-19(a), which exhibits an actual level crossing. In Fig. 3-18 we
show the same energy levels of the model-XX at I',,, = 1.0 as previously in Fig. 3-19.
Here different colors indicate symmetry or antisymmetry with respect to V. In the
FM phase at large J, the gauge spins order along spin-z direction, and the first
excited state and the ground state are both from the block with topological quantum
number set q = (+ + + + +). In Fig. 3-19 we can observe how the symmetric and
antisymmetric V' states become degenerate (strictly in the thermodynamic limit) to

allow spontaneous symmetry breaking in the FM phase.
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Among all the spinon excitations, the lowest one belongs to the same sector as
the ground state, with q = + + + + 4. This excitation, which is marked with a
dashed line in Fig. 3-19(a), becomes degenerate with the ground state for large J,,
reflecting the ferromagnetic Ising order with spontaneously broken Z; symmetry in
the thermodynamic limit.

For the vison excitations, since o* operators do not commute with local gauge
operators, we can identify the vison excited states simply by considering the quantum
number blocks that couple to the ground state through the on-site ¢* operators. In
Fig. 3-19(b), we plot ED results for the same parameters as in Fig. 3-19(a), but with
a change in scale to focus on the vison states. These states are gapped for all J, > 0,
but the gaps are much smaller in the topological phase than in the FM phase. The
lowest vison state, which is marked by yellow symbols in Fig. 3-19(b), contains two
m particles, and is eight-fold degenerate on the small system considered here. The
other levels marked by blue in Fig. 3-19(a) correspond to states with more than two

(an even number of) visons.
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Figure 3-10: Results for the model-X at I'y = 0.2. (a) The Binder
ratio B defined with both components of the Wilson loop order pa-
rameter P? = P? + Py2 in Eq. (3.46). The peaks adjacent to the phase
transition for system sizes L > 6 (barely discernible for L = 6) are
signatures of a first-order transition. (b) The numerical derivative of B
with respect to I';,, [computed using the linear approximation between
the successive points in (a)]. The inset shows a power-law fit y o< L® to
the maximum value of the derivative, with only the largest three sys-
tem sizes included. The exponent is b ~ 3.0, which is consistent with
expected value b = d + 1 = 3 for a first-order transition. (c) Scaling
with the inverse system size of the I',, values of the finite-size maxima
dB/dl,,, x#/N and x%/N, with 'y, = 0.2. Both dB/dl}, and x% /N
have been fitted with a single power-law correction and give the L — oo
extrapolated values I'C, = 2.31(3) and I'¢, = 2.27(4), respectively. The
apparent large subleading corrections to x7* location forbid us to get a
reasonable extrapolation based on the available data, though the L = 6
and L = 8 pints show full consistency with the other estimates.
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Figure 3-11: Distribution p(P,, P,) of the Wilson loop order param-
eter accumulated in SSE simulation at I'j = 0.2 and three different
values of the matter field; (a) I',, = 2.3952 (in the Z, QSL phase), (b)
[, = 2.4343 (close to the transition point), and (c¢) I';, = 2.4563 (in
the confined phase). Near the transition point, in (b), five peaks are
clearly observed, reflecting phase coexistence at a first-order transition.
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Figure 3:12: (a) Energy density computed in SSE simulations with
'y = 0.2. (b) The corresponding derivatives are taken numerically
based on the available data in (a). Features indicating a discontinuity
developing with increasing L demonstrate a first-order transition. We
have fitted lines to the L = 8 data away from the sharp features and
observe the presence of a jump when these forms are extrapolated to
the location of the sharp peak (the vertical dashed line, which can be
taken as a finite-size definition of the transition point).
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Figure 3-13: (a) Phase diagram of the model with XX interactions.
The red curve is the approximate phase boundary obtained from the
asymptotic [',, — oo mapping to the TFIM. This boundary separates
the Z, topological quantum spin liquid and the ferromagnetic phases.
The blue crosses are points on the boundary estimated from the max-
imum of the fidelity susceptibility in (b), calculated using ED on an
L = 2 system. The green open circle indicates the L — oo extrapo-
lated transition point J, ~ 0.706 from QMC simulations at ', = 1.0.
(c) Fidelity susceptibility of model-XX at I';, = 1.0 for different sys-
tem sizes L calculated using SSE simulation at inverse temperature
B = 4L. The inset shows power-law fits y oc L. to the maximum
values for system sizes L and L + 2. The exponents are by ~ 4.9 and
by = 3.9. The slope of dotted line corresponds to the predicted expo-
nent by, = 2(d + 1) — d = 4 expected for a first-order transition.
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Figure 3-14: QMC results for model-XX at I',,, = 1.0 for the Wilson
loop correlation function, Eq. (3.44).
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Figure 3-15: Results for model-XX at I';;, = 1.0. (a) The Binder ratio
of the Wilson loop order parameter defined with both components in
Eq. (3.45); P? = P2 + P;. The divergent peak next to the step indi-
cates phase coexistence at a first-order transition. Accordingly, in (b)
the derivative of the Binder ratio shows divergent positive and negative
peaks. (c) Energy per spin of model-XX obtained in the same simula-
tions as the other quantities at ', = 1.0 and temperature 7' = (4L)~'.
(d) The derivatives are evaluated using the linear approximation using
the data in (c). The dotted lines are fits to the L = 4 results away
from the peak and demonstrate a jump in the energy derivative at the
transition (here represented by the peak location as indicated by the
vertical dashed line).
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Figure 3-16: ED level spectrum at I'; = 0.2 for a system of size L = 2
(N =2 x 2 x 6 spins). In (a) the two lowest energy gaps relative to
the ground state (marked Gnd in the legends) are graphed versus the
matter field strength for each of the 32 blocks with quantum numbers
q = (+,4,4,4+,£). Many blocks are degenerate because of lattice
symmetries; thus the number of different curves is much less than 64.
The four states that become degenerate topological ground states in the
Zs phase are marked by blue crosses (the finite-size ground state), red
stars, and green triangles (two degenerate sectors); these states all have
the local quantum numbers G; = +1. The blue dots represent all other
lowest block levels; these are states with visons (two or a larger even
number) of the topological phase (marked by v in the inset illustration).
The orange curves represent the second-lowest states in each block;
they correspond to the spinon excitations (particles indicated in the
inset by s) of the topological phase and they all become degenerate for
[, — 0. In (b), the lowest block states are graphed on a magnified
scale. The eight-fold degenerate level that is the lowest excitation in
the paramagnetic phase was calculated with both ED (yellow dots)
and extracted from imaginary-time correlations from QMC simulations
(violet circles), to demonstrate the correctness of the latter for L =
2. QMC results for both L = 2 and L = 4 (calculated at inverse
temperature 5 = 24L) are shown in the inset.
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Figure 3-17: The on-site o, operator creates a pair of visons when
acting on the ground state with quantum number q = (+, +, +, +, +).
The quantum number corresponding to the operators G; and Gy is
then changed, leading to an excited state with quantum number q' =
(+,+,— +,—).
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Figure 3-18: The low-energy levels previously shown in Fig. 3-19, now
marked by the eigenvalues £1 of the spin-inversion operator, Eq. (3.62),
in model-XX at I';,, = 1. The gaps to the symmetric and antisymmetric
states are marked with blue and red symbols, respectively. Out of all 64
states shown here, all the vison excitation states as well as the ground
state are symmetric. The spinon excitations are all antisymmetric,
except for the highest one, where a level crossing causes a change in
symmetry at J, ~ 0.7.
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Figure 3-19: Level spectrum relative to the ground state for the L = 2
system with XX interactions, calculated with Lanczos ED. The orga-
nization of panels (a) and (b) is as in the corresponding Fig. 3-16 for
the model-X. We refer to the same for further explanation of the vi-
sualization of the spectrum. The lowest spinon excitation, shown as
orange circles with a dashed line, is the first excited state from the
same block as the ground state (which has q = ++ + + +). This state
is antisymmetric with respect to spin inversion and forms the two-fold
degenerate multiplet together with the corresponding symmetric state
in the ferromagnetic phase.



64

Chapter 4

U(1) Symmetry-Enriched Toric Code

Topological order in two spatial dimensions has been extensively studied in various
different realizations such as: quantum spin liquids [40, 41, 42, 43 44, 9, 45, 11,
6, 46, 47, 48], fractional quantum Hall states [49, 50, 51, 52], superconductors [53],
topological quantum field theories [54, 55], etc.

More recently, a notion of fracton topological order has been introduced [56, 57,
58, 59, 60, 61, 62, 63]. Fractonic phases of matter exhibit fractionalized excitations
(fractons) that cannot be created in pairs. Unlike an anyon, which is created at the
end points of a string-like operator (Wilson line) and can freely move across space,
a single fracton is immobile, since fractons are created at the corners of membrane-
or fractal-like operators. Another difference with the usual topological order is that
in fractonic systems the ground state degeneracy (GSD) depends not only on the
topology of the manifold, but also on the microscopic properties of the model, such
as the system size and the lattice geometry. This is a manifestation of UV/IR mixing
in quantum field theory [64, 65].

Additional classification of topological phases of matter arise from an interplay
between symmetry and topological order. Even in the absence of intrinsic topological
order, a system invariant under a symmetry can exhibit several distinct phases that
cannot be adiabatically connected to each other, unless one violates the symmetry
or closes the energy gap. These phases do not break the considered symmetry and

are known as symmetry-protected topological (SPT) phases, with notable examples
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including free-fermionic topological insulators in 2D [66, 67, 68] and 3D [69, 70, 71, 72],
topological superconductors [73], as well as interacting bosonic SPTs [74, 75, 76, 77].
Furthermore, the distinct phases protected by a symmetry need not lack intrinsic
topological order. In fact, the presence of symmetry can give rise to adiabatically
disconnected phases with distinct topological orders, so called symmetry-enriched
topological (SET) phases, where anyons transform non-trivially under the symmetry
[78, 79, 80, 81, 82, 83, 84, 85, 86].

Despite numerous attempts [16, 87, 79, 77, 80, 82, 88, 89, 84, 85, 90, 806], to-date
there is no unifying theory for all topological orders. In the case of SETSs, many
classification attempts rely on constructing representative exactly solvable models
that serve as fixed points for each phases. In addition, the majority of the work has
been done on finite symmetry groups and only recently has there been an attempt to
classify U(1)-symmetric SETs [806].

One of the motivations to study the model is its relation to the so called WXY
model [91], which consists of two-body interaction terms between “matter” and
“gauge” spins, located at the vertices and edges of a square lattice, respectively. It
possesses combinatorial Zy gauge symmetry [14, 91,92, 93, 94] in addition to a global
U(1) symmetry. The U(1) toric code is believed to emerge after one integrates out
the matter spins in the WXY model. However, unlike the former, the WXY model is
difficult to study numerically since the unit cell is too large for exact diagonalization
and the sign problem prevents us from employing Quantum Monte Carlo.

In the following, we pose the question of what happens as one tries to enrich the
usual Z, toric code with a global U(1) symmetry. Although topological order has
been previously enriched with U(1) symmetry through the addition of extra degrees
of freedom [95, 86], here we take a different approach and restrict the usual toric

code Hamiltonian to only interactions that are U(1) symmetric. The presence of the
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extra symmetry imposes additional constraints on the ground state loop dynamics,
compared to the conventional Z, toric code. We refer to the lattice model as the “U(1)
symmetry-enriched toric code” — or “U(1) toric code” for short. Its Hamiltonian is
not a sum of commuting projectors, and hence not exactly solvable in any obvious
way. However, the model does not have a sign problem, which allows us to study the

model via large scale Quantum Monte Carlo (QMC) simulation.

4.1 Kitaev’s Z; Toric Code with U(1) symmetry

To begin, let’s elucidate our model’s construction based on Kitaev’s Z5 toric code,
as introduced in Chapter 1. We consider a square lattice composed of sites, each
denoted as s with coordinates (i, j), where ¢ and j represent the respective z- and
y-coordinates. Additionally, we have elementary lattice vectors: & = 2¢é, = (1,0)
(twice the unit vector in the z-direction) and y = 2¢é, = (0, 1) (twice the unit vector
in the y-direction). Now, on each link ¢ of this lattice, we place an Ising degree of
freedom. A link ¢ is associated with a site s if £ happens to be one of the four links
adjacent to that site s, specifically, if £ corresponds to s £ €, or s £ ¢é,,.

We introduce Pauli operators with an angle parameter 6 for these links. These
operators, denoted as ¢, are constructed as a linear combination of the usual Pauli
spin operators 0%, ¢V, and o*: of = cos(f), o + sin(f),o!. Similar to how the toric
code defines a star operator as the product of four Pauli-X operators, here we define
a star operator denoted as A4(6) for each site s. This star operator is the product of
four Pauli operators, each corresponding to a link adjacent to site s:

A,0) =[] o7 (4.1)

les

Importantly, the generalized star operator Ag(f), for any angle @, remains invari-

ant under a Z, local transformation. This local transformation is generated by the
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product of 0% operators on the links forming a given plaquette p:

B, =[] oi (4.2)

2€dp
One can easily check that [A4(f), B,] = 0 holds for all combinations of s, p, and 6.
This is due to the fact that a given plaquette operator either has no overlap with a
star operator or overlaps with two sites of a star in the system. Further more for any
local closed loop v composed of a sequence of connected links, the loop operator

W) =10 (4.3)

lery

commutes with the Hamiltonian, [H, W (v)] = 0, and can be represented as a product
of plaquette operators B, enclosed by <. As also introduced in Chapter 1, when
putting the system on a torus, two additional loop-operators, W, and W,, defined
along the shortest non-contractible loops that wind around the torus in the x and y
directions are also conserved.

To introduce the global U(1) symmetry, we average A,(f) over all angles:

2

1
&_%/wm@ (4.4)

When we simplify the terms within this integral, we find that this star operator can

be expressed in terms of spin raising and lowering operators as follows:

_ -t + — -
AS - Us—&—ézo—s—l-éyas—éxo—s—éy

+ 0 0000, o) (4.5)

s+éy Os—é, s—éy

+ - -+
+ 05, 051e,05-6,05¢, + h.c.,

S—€x ~ S—€

with 07 = (0% +4i0Y) /2, and h.c. stands for hermitian conjugate. Notice that the

total magnetization in the z-direction, defines as M, = ), 07, is conserved. This can
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be easily observed from Eq. (4.5), since, in the ¢ basis, every term flips exactly two
spins up and two spins down. The conservation of magnetization are originated from
the global U(1) symmetry as introduced in Chapter 1. The stars Ay in Eq. (4.4) are
invariant under a global z-axis rotation,

2

1
U. A, Ul = 7 df A0+ a) = A, (4.6)

T

0
where
«Q

= i . 4.7
U, exp( 22MZ> (4.7)

4.1.1 U(1) toric code on a ladder

We first consider the system defined on a ladder, similar to the normal toric code on

a ladder but with U(1) invariant stars:
Hygy = —J ) _ A, (4.8)

where A, = 0 0 05 0, + perm consists of 6 terms with all permutations of two Pauli
raising and two lowering operators, as shown in Eq. (4.5).In the U(1) toric code, the
neighboring stars no longer commute with each other (in contrast to the original toric
code, where stars do commute, as discussed in Chapter 2). However, the plaquettes
B still commute with the Hamiltonian as good quantum numbers. Notice that the
U(1) invariant star term favors configurations with two spins-up and two spins-down
on a star. Based on this, we expect the ground state to emerge from the sector with
all By = —1. Indeed, our numerical results from exact diagonalization confirm the
ground state with all By = —1.

Next, let’s discuss the dual mapping. In the sector with all By = —1, as previously

observed in Chapter 2, the original toric code on a ladder can be interpreted as the
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sector with fully populated and confined visons. The effective model in this case is
the classical FM (Ferromagnetic) Ising model. It is worth mentioning that since a
uniform field maps to a null operator in the sector with B; = —1, the effective model
remains the classical FM Ising model, irrespective of the presence of a uniform field
(i.e., this sector does not ‘feel’ the presence of a uniform field). We find that in the
manifold of this sector, the effect of the original star term A? is equivalent to that
of the U(1) star A, since all the local basis states 1) on each plaquette render the
star always flippable. Therefore, in the sector of B; = —1, the model is dual to the

classical FM Ising model, as in the original toric code
{Bpl=—1 _

For the sector with all By = +1, this sector can be interpreted as having no visons
in the original toric code. Recall that with By = 41, the local space is spanned by
the basis states [11) and |]]). Considering the same mapping as in Eq. (2.11), the
U(1) star will only have non-zero values on states where the nearest neighbors are

opposite. This results in the effective model:

{Bz}=+1
Hepf _JZ T T ) (4.10)

which corresponds to the 1D quantum XY model.
From the above observations, we see that the U(1) star can be dual to either a
classical FM interaction or a quantum XY interaction, depending on the signs of B

and By, that it acts upon. We summarize as follows: If B} = B}, | = +1, the star

term is dual to a quantum XY interaction. For B) = B, = —1, it is dual to a
classical Ising interaction. In cases where B = —B;, the star term maps to a null

operator and therefore disconnects (cuts) the chain, as illustrated in Fig. 4-1.
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Figure 4-1: The dual mapping of the U(1) toric code ladder results in
disconnected chains with XY and Ising interactions, depending on the
sign of the plaquette B;. In the upper graph, B; = —1 is indicated by
light orange ovals, and B = +1 is indicated by light yellow ovals. The
mapping transforms the U(1) star operator into segments of an FM
Ising chain where B; = —1 consecutively, while consecutive By = +1
maps to segments of an XY chain.

4.1.2 U(1) toric code on 2D lattice

After studying the U(1) toric code on a ladder, we are now ready to define the U(1)
symmetry-enriched toric code on a 2D lattice. The Hamiltonian is defined as the sum

over all possible star and plaquette operators,
H=- Y A= Y B, (4.11)
s P

Note that, in contrast to the conventional toric code, our model is not a sum of
commuting projectors: neighboring stars do not commute with each other, i.e.,

[As, Ay] # 0 if s is adjacent to s
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In our study we consider the system on a torus (with periodic boundary con-
dition). Based on the above discussion, we find that the system has two kinds of
conserved quantities: the total magnetization M, from the global U(1) symmetry,
as well as all the plaquettes {B,} and non-contractable loops W, W, from the local
Zy gauge symmetry. Therefore, the U(1) toric code can be block-diagonalized in the
common eigenbasis of these operators, so that each sector is characterized by a set of
independent conserved quantities {M,, W,, W,,{B,}}.

We are particularly interested in the four sectors categorized by W, = £1, W, =
+1, as they underscore the topological features. In the following, we refer to these
four sectors as topological sectors, with respective quantum numbers (W,, W,) =

(+,4+), (+,—), (=, +) and (—, —).

4.2 Quantum Monte Carlo with Generalized Sweeping Clus-
ter Update

One of the important observations from Eq. (4.11) is that our Hamiltonian is sign
problem-free. This means that we can study the system with unbiased Monte Carlo
methods to reach larger system sizes and also allows us to systematically study the
finite-size effects.

To investigate the system, we employ the standard SSE QMC method [96, 97, 16].
In SSE simulations, the partition function is expanded as a series of powers of the
Hamiltonian H, with terms from this series sampled as classical configurations. In
these configurations, slices of ”imaginary time” contain ”vertices” that transition from
one local classical configuration to another based on the terms in the Hamiltonian.

In the case of U(1) toric code, there are only 6 allowed off-diagonal vertices with
equal weight, as shown in Fig. 4-2(a). In order to perform the simulation, all diagonal

terms have to be non-zero. To achieve this, we add a constant to the Hamiltonian,
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which then allows additional 16 diagonal vertices as shown in Fig. 4-2(b). The con-

stant is chosen such that all the vertices have equal weight. Vertices with 2-up-2-down

configurations are called “flippable stars”, as marked by green frames in Fig. 4-2. In

the following, we set the weight of all vertices to 1.
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Figure 4-2: (a) 6 allowed off-diagonal vertices from the Hamiltonian.
Black (white) dots denote spin-up (spin-down). The four dots below
(above) the line denote the classical configuration of the four spins
on a star before (after) the application of a Hamiltonian term. (b)
16 additional allowed diagonal vertices after adding a constant to the
Hamiltonian. The 12 vertices marked by green frames are the flippable
stars.

We follow the standard SSE procedure, which consists of two parts in each Monte

Carlo step. Firstly, we perform the standard local (diagonal) update. If an ”imaginary

time” slice is empty, a diagonal operator on a random star may be inserted. If an

“imaginary time” already contains a diagonal operator, it might be removed. The

probabilities for these two processes are given by:

Pinsert =

P, remove —

BN,
(M —n)’
(M —n+1)
BN,

(4.12)

Here, § = 1/T represents the inverse temperature, Ny = L, x L, denotes the total
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number of stars, M is the total length of the operator-string (i.e., the number of
”imaginary time” slices), and n is the total number of non-identity operators present
in the current operator-string. Off-diagonal operators remain unaffected during this
step.

he process is then followed by an off-diagonal (sometimes also called non-local) up-
date. Naively, one might consider the cluster update method, similar to the transverse
field Ising model [21], where the cluster is built starting from the off-diagonal term,
and whenever a diagonal term is encountered, all the sites in the vertex are flipped.
However, this update method is highly insufficient. As the system size increases and
the temperature decreases, most of the time, the cluster constructed will be just the
whole system, and the update is trapped in flipping back and forth between two con-
figurations. We note that a similar issue arises in the simulation of dimer quantum
models. To overcome this issue, a sweeping cluster update is proposed as a more
efficient alternative for non-local updates [98].

To apply the sweeping cluster update for our U(1) toric code model, a modification
is necessary. The construction of a cluster starts with the random choice of a flippable
star, either diagonal or off-diagonal. This action creates four defect lines, which
propagate upward along the ”imaginary time” direction, initiating the growth of the
cluster. We then sweep over the "imaginary time” slices, keeping track of the defect
lines. If a vertex is encountered by one or more defect lines, we update the vertex
according to specific rules and continue the propagation of the defect lines. The
number of defect lines exiting a vertex might differ from the number entering it.
Eventually, the cluster will converge, and the defect lines will terminate at another
flippable star. The pictorial representation of a cluster is shown in Fig. 4-3(a). It’s
worth noting that cases in which a vertex has a different number of entering and

exiting lines have been explored in Ref. [99] using a different approach. Our model
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Figure 4-3: (a) Example of a cluster. It starts as 4 defect lines com-
ing out of a flippable star. The defect lines propagate upward along
the “imaginary time” direction, modifying the vertices they encounter
according to specified rules. After a vertex, the number of defect lines
might potentially increase/decrease. Finally, the cluster terminates at
another flippable star. (b) Examples of vertex updates. If a new config-
uration of the bottom four spins is not flippable, there is a unique way
to propagate the defect lines, such that the new vertex remains allowed.
(c) Examples of vertex updates. If less than 4 defect lines hit a vertex
and update the bottom four spins to a flippable configuration, there
are two possible ways to propagate the defect lines. We choose one of
them with probability 1/2. Processes marked by the orange frame are
the updates from a non-flippable vertex to a flippable vertex, for which
the reverse process does not have probability 1/2. Blue arrows denote
the defect lines propagating along the “imaginary time” direction (from
bottom to top).

(as well as the dimer model) has a special property that allows the cluster to build
clusters in one direction.

To determine the rules for vertex updates, we proceed as follows: Consider a
vertex that is intersected by a certain number of defect lines from below. We flip
the corresponding spins and obtain an intermediate vertex configuration, as shown in

Fig. 4-3(b) and Fig. 4-3(c). At this point, four possibilities arise:

1. If the configuration of the bottom four spins of an intermediate vertex is non-

flippable, then there is only one way to propagate the defect lines through the
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vertex. Some examples are shown in Fig. 4-3(b).

2. If the defect lines flip the bottom four spins into a flippable configuration, and
there are less than 4 lines hitting the vertex, then there are two possible ways
to propagate the defect lines. The resulting vertex can be either diagonal or

off-diagonal, with probability 1/2 each. Examples are shown in Fig. 4-3(c).

3. If 4 defect lines hit a flippable vertex and the total number of defect lines is

more than 4, then we propagate all the lines and flip the entire vertex.

4. If 4 defect lines hit a flippable vertex and the total number of defect lines is

exactly 4, then we terminate the cluster.

Note that the transition from a non-flippable vertex to a flippable one occurs with
a probability of 1/2; while the reverse process does not share this probability. To
maintain detailed balance, we need to keep track of the occurrences of these processes.
Consider an operator-string A transitioning into an operator-string B through the
flipping of a cluster as outlined in the aforementioned procedure. Throughout this
update, we enumerate the count of non-flippable vertices transitioning to flippable
ones as IV, and the count of flippable vertices transitioning to non-flippable ones
as Ny,. To satisfy detailed balance, the acceptance probability for the process
A — B (via cluster flipping) should be evaluated as follows:

P(A— B) = xgg; (%) e (4.13)

where N, is the number of flippable vertices present in the corresponding operator-
string.

It is important to keep in mind that the update procedure we have described con-
serves all quantum numbers, specifically M, W,, W,, B,,. This is useful for extracting

the energy gap between different topological sectors, as we will see in the following
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Figure 4-4: Ground state energy in four topological sectors of a sys-
tem of size 4 x 4 stars. (dots) obtained from the SSE QMC with the
generalized sweeping cluster update algorithm; (dashed lines) obtained
from the ED calculation.

section. Furthermore, this update procedure cannot transition the system out of a
specific Hilbert space fragment (Krylov subsector). Consequently, by selecting an
appropriate initial state, we can effectively target a Hilbert space fragment that is
dynamically connected to that initial state if necessary. Finally, we benchmark our
QMC results by comparing them to the results obtained from an ED calculation of a

small system size. The results are presented in Fig. 4-4.

4.3 Hilbert Space Fragmentation

In systems with symmetries, as previously mentioned, the Hamiltonian is block-
diagonalized into sectors associated with the conserved quantities or charges of the
symmetries. For example, consider a symmetry operator O that commutes with the
Hamiltonian; it block-diagonalizes the Hamiltonian into symmetry sectors associated
with quantum numbers, i.e., eigenvalues of 0.

In some models, even after accounting for all symmetries of the model, a given
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symmetry block is further divided into smaller disconnected parts that are not related
to the symmetry of the system but arise from the constraints imposed by the quantum
terms in the Hamiltonian. This phenomenon is called Hilbert space fragmentation,
and the corresponding dynamically disconnected quantum blocks are referred to as
Hilbert space fragments or Krylov subsectors [100, 101, 102]. This means that if we
start with a state in one fragment, the Hamiltonian dynamics cannot transition the
state into another fragment, even if they are in the same symmetry sector.

Hilbert space fragmentation typically arises in models with local kinetic con-
straints. In the context of our U(1) toric code model, the constraint on the quantum
dynamics, where the star can only flip the local configuration with two-up and two-
down spins, leads to fragmentation in the model. As a simple example, consider the
two states in Fig. 4-5(a), which belong to the same block with quantum numbers:
M, =0, W, =W, =+1, B, = +1 for every plaquette p (with PBC).

One can easily observe that for the state at the top, all the stars have an odd
number of up-spins. Therefore, the U(1) star operator in our model cannot transition
the state to another state, making it inert. The state is dynamically disconnected and
belong to different fragments from the state below. In fact, the inert state comprises
its own 1-dimensional fragment. Another example of a 7-dimensional fragment is
shown in Fig. 4-5(b). If we translate this pattern of spins in space, we will obtain a
different Krylov subsector with the same quantum numbers.

Technically, fragments exhibit block structure, meaning that there must be some
conserved quantity associated with each fragment. In conventional symmetries, these
conserved quantities are the generators of the symmetry. However, in the thermo-
dynamic limit, the number of fragments resulting from Hilbert space fragmentation
scales much faster than the number of symmetry sectors from any type of symmetry

(unless it is a local gauge symmetry) [102]. Therefore, the corresponding conserved
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Figure 4-5: (a) Two states from the same symmetry sector, but from
different fragments: an inert state with no flippable stars (top), and
a state where every star is flippable (bottom) (b) Basis states of a 7-
dimensional Krylov subsector. Black dots denote spin-downs, white
dots (or the absence of a dot) denote spin-ups.

operators (which can be constructed, e.g., by writing down a projector on the observed
block in the Hamiltonian) are highly non-local and non-trivial.

Another important factor to consider when discussing Hilbert space fragmentation
is the size of fragments in a given symmetry sector. Consider a specific symmetry sec-
tor with dimension D. Let’s define D, as the dimensionality of the largest fragment.
We are particularly interested in the ratio of Dy,.c/D. If this ratio approaches one
in the thermodynamic limit, then the symmetry sector is dominated by one largest
block. In this case, it is called weak fragmentation. Essentially, a larger block implies
more kinetic energy. In the case of weak fragmentation, the physics will be dominated
by the largest fragment, and most likely, the lowest energy state in a given symmetry
sector will be found in the dominant fragment.

To investigate Hilbert space fragmentation, we first categorize states into differ-
ent U(1) symmetry as well as local gauge symmetry sectors. Then, for each sector

of interest, we explicitly enumerate states and further categorize the states into frag-
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Figure 4-6: Exact enumeration study of the fragmentation fraction is
defined as Dyax/D, where D,y is the size of the largest fragment, and
D is the size of the sector. The corresponding topological sectors are
marked at the lower-left side of each figure.

ments based on the flipping of stars from the Hamiltonian. We study Hilbert space
fragmentation in systems of sizes N =4 x4 x 2,6 x4 x 2, and 8 x 4 x 2 (the first two
numbers represent the numbers of stars in the x- and y-directions, and the last factor
of 2 corresponds to the two spins in a unit cell). We focus on the symmetry sector
with all B, = +1 and calculate the ratio of Dy,/D for different magnetization and
topological symmetry sectors. The results are presented in Fig. 4-6.

One can observe that the system exhibits weak fragmentation in the vicinity of
zero magnetization, where the largest fragment completely dominates the Hilbert
space of its symmetry sector. We conjecture that this behavior carries over to the
thermodynamic limit. Additionally, through a simple combinatorial argument, it
becomes apparent that the largest symmetry sectors have M, = 0. Since larger

random matrices exhibit a broader spread of eigenvalues compared to smaller random

matrices, we can safely assume that the ground state of each of the four topological
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symmetry sectors belongs to its largest fragment in the M, = 0 sector. This conjecture
is supported by work done in a related study [103], although their results specifically
apply to our (+,+) topological sector.

It’s worth noting that Hilbert space fragmentation in the topological (4, +) sector
with all B, = + of the U(1) toric code can be mapped to an equivalent model that has
been explored in other contexts [104, 103], where the dynamics of domain walls in the
same setting have been investigated [105, 106]. Our results also confirm observations
made by [103], where the same ”dynamical freezing transition,” characterized by a
sharp drop in the Dy, /D value at intermediate magnetization values [except for the

(—, —) sector, although this may be a finite size effect], has been noted.

4.4 Topological Degeneracy and UV /IR Mixing

In the scope of this study, we focus on the even parity sector where all B, = +1,
which corresponds to the ground states of the Hamiltonian (4.11) with sufficiently
large A\p (we set A4 = 1 henceforth). Within the even parity sector, we then study
all four topological sectors that are characterized by W, = £1 and W, = £1.
We introduce two orthogonal compactification vectors El and Eg, parameterized

by two non-negative integers a and b, as

L, = L(ag + by)

B (4.14)

Ly = L(—b% + ay),
where L (a positive integer) is the linear system size. We choose the vector (a, b) to be
the shortest integer vector in its direction, i.e., a and b are coprimes. Vectors El, Ez
define the compactification scheme in the sense that any spatial vector 7 is identified
with vectors -+ [_:1 and 7 + EQ. An example of a small lattice with a non-trivial

compactification scheme is shown in Fig. 4-7.
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Figure 4-7: An example of a lattice with compactification a = 1,b = 2
and linear size L = 2. Any vector 7 is identified with vectors 7+ L
and 7+ L,. The whole lattice is shown in bright colors, while the
shaded region denotes repeating parts of the lattice due to the periodic
boundary condition. Two non-contractible loops ~, and 7, shown as
purple and yellow dotted lines respectively along two compactification
vectors El and EQ.

Below we explore in detail two lattice compactifications on a torus. The first one
is 0°-tilt compactification, corresponding to a = 1, b = 0 — the usual compactification
along the vertical and horizontal lines of the square lattice. The other is 45°-tilt
compactification, with a = 1, b = 1. We focus on the systematically cases with L
even, systematically study using quantum Monte Carlo method with sweeping cluster
update as mentioned above. Specifically, the algorithm is designed such that the
lowest energy of symmetry sector of interest can be directly accessed, specified by an
initial basis state from the symmetry sector. We observe that the ground states have
magnetization M, = 0 in all of the topological sectors. Cases with L odd are also
explored with large enough selected system size, and compactifications with other tilt

angles are also studied using exact diagonalization (ED).
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Figure 4-8: Energy gaps between the ground states in different topo-
logical sectors as a function of system size L. (a) For 0°-tilt com-
pactification. Eyw, w, w Wy labels the energy difference between sectors
(We, Wy) and (W, W;). For all system sizes, the sector (—, —) has the
lowest energy. The inset shows that the finite size gap AE,, __ — 0
as L — o0o. The results indicate that the system has a two-fold TGSD.
(b) For 45°-tilt compactification. The state in the (—,—) sector has

Y

higher energy, and is separated from the states in the other three sec-
tors (+,+), (+, —), and (—, +), which are degenerate. [Note that (4, —)
and (—, +) sectors have identical energy spectra due to the Cy rotation
symmetry of the lattice.]

4.4.1 Lowest Energy in Topological Sectors

We are interested in the lowest energy states from these four topological sectors.
In particular whether their energy are degenerate or not, as this degeneracy might

indicate the existence of topological order in the system.

0°-tilt compactification

In the case of 0°-tilt compactification, we observe a finite energy gap of order O(1)
between sectors (W,,W,) = (+,—) and (—,—) for all system sizes L considered.
The sectors (+, —) and (—, +) have identical energy spectra due to the Cy rotation
symmetry of the lattice. On the other hand, the energy difference between sectors

(4, +) and (—, —) vanishes as L increases, with the lowest energy state in the sector
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Figure 4-9: QMC results of energies in 4 topological sectors for (a)
0°-tilt with system size L = 13 where only the sectors (+,-) and (-,+)
are compatible with zero magnetization. (b) 45°-tilt with system size
L = 5, where the TGSD remains three as the even size system, but
the degenerate sectors are (+,-) (-,+) and (-,-). N, denotes the total
number of stars on the lattice.

(—, —) in all cases as shown in Fig. 4-8(a). We find that this energy difference becomes
essentially zero within error bars beyond system sizes as small as L = 6. We conclude
that the system has a two-fold degeneracy associated to sectors (+,+) and (—, —),
to which we henceforth refer as a topological degeneracy (TGSD) distinguished by
quantum numbers associated to operators (W, W) defined on non-contractible loops.

In the case of odd system size L, we find that sectors (+,+) and (—, —) are not
compatible with even magnetization as shown in Fig. 4-9(a). Therefore, the lowest
energy levels in these sectors has M, = £1, not M, = 0. These states can be split
by a local longitudinal field perturbation term in the Hamiltonian. On the other
hand, sectors with (+,—) and (—,+) are compatible with even magnetization, and
the lowest energy states have M, = (0. Based on the above observation, we believe
that in case the topological order is present in the system, the TGSD has to come

from the (+, —) and (—, +) sectors.
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45°-tilt compactification

We repeat the studies above for the 45°-tilted lattice. The essential observation here is
that the state in the (—, —) sector has higher energy than the states in the other three
sectors (+,4+),(+,—), and (—,+), which are degenerate, thus yielding a three-fold
TGSD for even system size L. The results are shown in Fig. 4-8(b).

In the case of odd system size, all four topological sectors are compatible with even
magnetization and the lowest energy states have M, = 0. As shown in Fig. 4-9(b),
we find that states from (4, —), (—, +) and (—, —) become degenerate at low temper-
atures (§ = 1/T), indicating a three-fold TGSD. Compared to the even L case, the

TGSD stays the same, but instead of the (+,+) sector, the reference sector is now
(_7 _)'
Other compactifications

For other compactification schemes, we study the ground state energy in different
topological sectors using ED (see Fig.4-10). The total number of stars is N; =
(a* 4+ v?)L?, and the total number of spins is N = 2N,. Here, we show the results
only for zero magnetization, as we find that the states with M, = 0 have lower energy
than other states non-zero magnetization states.

Due to size limitations to the computations, it is only possible to study compacti-
fication schemes with small values of a and b. Here we show results for three different
cases: a) a =2,b=1and L =2 (Ny =20); b)a=3,b=1and L =1 (N, = 10);
and ¢) a = 3,b = 2 and L = 1 (Ny; = 13). In case (a), we find energy features
similar to the 0°-tilt case with an even system size L. The lowest energy states of
sectors (+,4) and (—, —) are well separated from the lowest energy states of (+, —)
and (—, +) sectors, and are, possibly, the two topologically degenerate ground states,

with the small energy difference between them being a finite size effect. Likewise,
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Figure 4:10: ED results for the energy of the lowest states in each
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for (b), we find that the energies behave similarly to the 45°-tilt case. The (4, —),
(—,+) and (—, —) sectors contain the 3 topologically degenerate ground states, again,
separated by a small finite size gap and well separated from the (4, +) sector. In case
(c), sectors (+,4) and (—, —) are incompatible with even magnetization, and states
from the (4, —), (—, +) sectors are degenerate, similarly to the 0°-tilt case with odd
system size L.

Based on the above observations, we find that the TGSD is always either 2 or 3,
depending on the compactification scheme. The results can be summarized in the
following way: if (a? + b?) is even, TGSD = 3; if (a® + ¥?) is odd, TGSD = 2. In the

case of TGSD = 3, if L is even, the ground states belong to the (+,+), (+, =), (—, +)
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sectors, while if L is odd, they belong to the (—, —), (4, —), (—, +) sectors. In the case
of TGSD = 2, for even L, the ground states lie in the (+, +) and (—, —) sectors, while
for odd L, the (+,+) and (—, —) sectors are not compatible with zero magnetization

and the ground states lie in sectors (4, —), (—, +).

4.4.2 Discussion on Topolgoical order and UV /IR mixing

The results above establish numerically that the TGSD depends on the tilt angle of the
compactification of the lattice. For the 0°-tilt, we find a TGSD of two (sectors (+, +)
and (—, —)), while for the 45°-tilt we find a TGSD of three (sectors (+, +), (+, —), and
(—,+)). This result is peculiar for two reasons. First, a change of the TGSD upon
changing the compactification of the lattice is a clear manifestation of UV /IR mixing,
a feature quite common in gapped fractonic phases. In fractonic systems the TGSD
typically depends on the system size and on the relative dimensions of the lattice
[56, 57, 58, 59, 60, 61, 62], while here it depends on the choice of compactification
directions (vectors) defining a torus.

Second, the three-fold topological degeneracy in the 45°-tilt poses a puzzle. The
U(1) toric code Hamiltonian Eq. (4.11) is time-reversal symmetric. The observed
three-fold topological degeneracy is quite unusual when coming from a time-reversal
(T') invariant Zs gauge theory. Typically, topological quantum field theories with 7'-
symmetry are characterized by Hilbert space dimensions that are either the square of
an integer or numbers that decompose into Pythagorean prime ones [107]. Neither is
consistent with a degeneracy of three. One logical possibility is that the T-symmetry
is spontaneously broken. If this is the case, it is not manifest through long-range
magnetic order, since we find that the ground states have zero magnetization and
that the spin-spin correlation functions decay exponentially.

Since we do not have an analytical solution with which to compare the numerical

features that we observe, we follow a phenomenological approach to see what features
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the theory must have in order to be consistent with our numerical results. Let us
posit the existence of non-local tunneling operators 7T, ,, which are not necessarily
unitary, that flip the eigenvalues of the non-local winding loop operators W, ,. As
opposed to the usual toric code, one cannot explicitly write down these operators (or
at least we do not know of a way, yet).

Consider first the case of 45°-tilt compactification, and operators T°° and Tf’o,
depicted as a red solid-arrow and a black dashed-arrow in Fig. 4-11; these operators
change the eigenvalues of W, and W, respectively. The three ground states can be

indexed as

H4) S =) ~ T |4) =) ~ T |+ (4.15)

To be consistent with the numerical result, that the fourth state |——), is an excited
state and not yet another ground state, the application of the product 75" T1>" to the
reference state |[4++) must be orthogonal to the ground state manifold, or equivalently,

i.e., it must annihilate the reference state in the ground state manifold,
TS5 T |++) ~0. (4.16)

This scenario parallels that of SU(2), topological order (hosting Ising anyons), where
one can insert fluxes (corresponding to the tunneling operators, 74" or T, ;50) through
one or the other hole of the torus and switch ground states, but not insert flux through
both (see, for example, Ref. [108]). The net effect is to make the fourth ground state
inaccessible as in Eq. (4.16). (Refs. [109, 110] give examples of systems with SU(2),
topological order where the tunneling operators 7, can be constructed and their
algebra is studied.)

These tunneling operators also allow us to propose an heuristic argument that

connects the topological ground state degeneracy in the two compactification schemes.
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For the case of 0°-tilt compactification, the two tunneling operators 7,°" and T,
(again depicted as a red solid-arrow and a black dashed-arrow in Fig. 4-11) wind
across the torus along the +45° and —45° directions. Along both directions, the
tunneling operators flip both winding loop eigenvalues W, and W,, and we write the

two ground states as

4 =) T ) ~ T ) (4.17)

Because both 7,°" and T, have the same action on |[++), they provide us with only
one additional state, |——), and thus a topological ground state degeneracy of two in
the 0°-tilt compactification.

Again, the argument for the exclusion of the fourth sector, |——), from the ground
state manifold in the case of 45°-tilt compactification parallels that in the case of Ising
anyons. These arguments suggest a logical possibility that the U(1) toric code may
realize non-Abelian topological order. A thorough investigation of this possibility is

left for future work.

4.5 Other Properties

In addition to lowest energies in different topological sectors, we also examine the
dependence of the ground state properties of the lattice on a torus with various

compactifications.

4.5.1 Correlation Functions

The observation of an O(1) energy separation between topological sectors suggests
that the system is gapped. However, this observation alone does not rule out the
possibility that the system is gapless within each of the (4+,+) and (—,—) ground

state sectors.
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To support the claim that the system is gapped within each of these sectors, we
compute the spin-spin correlation functions along the x-direction, C(r), and along

the 45° diagonal direction, Cy(r), defined as

1 z z
Cr) = T E:U(éx-i-aﬁ)a(éx—kaé)-i-ri? (4.18a)
1 z 4
where €, = €, + &y, €z = —€, + é,.

0°-tilt compactification

In the case of 0°-tilt compactification, we observe that both correlation functions
decay rapidly to zero within a short distance on the order of two lattice sites. The
QMC results for spin-spin correlations obtained in topological sectors (—, —), (+, +)
and (+,—) are shown in Fig. 4-12. Note that the results for the sectors (+,—)
and (—,+) are identical due to symmetry; therefore, only the results for (+, —) are
presented. This rapid decay is consistent with the absence of long-range magnetic

order and provides evidence that the system is gapped within each topological sector.

45°-tilt compactification

In Fig. 4-13, we present the spin-spin correlation functions for 45°-tilt compactifica-
tion, for all topological sectors. We again observe rapidly decaying spatial correla-

tions, consistent with the absence of long range magnetic order.

Vanishing of certain correlators

It is a known result that a non-vanishing gap in a system with short-range inter-

actions implies exponential decay of the two-point connected correlation functions,
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C(7) = (0(0)0(7)) — (0(0)) (O(F)), for any local operator O [111]. However, the
converse statement, that exponentially decaying two-point correlation functions im-
ply the existence of a finite gap, is not necessarily true. The decay of the correlator
largely depends on the excitation content captured by the chosen correlator. For
example, one could have a gapless system with both gapped and gapless modes in
which the chosen correlator only couples to the gapped degree of freedom, leading
to an exponential decay of the correlation function. It is nonetheless common to use
the exponential decay of a correlation function as a common diagnostic tool to pro-
vide numerical evidence that hints towards the existence of a non-vanishing gap. A
justification is that, with exception of special cases, a simple typical operator should
couple to all excitations of the system, and thus the correlator decay is dominated
by the slowest decay, so its correlations would typically be power law for a gapless
system. If such power law decay is not observed, it is more likely than not that the
system is gapped.

Further evidence that the system we consider is a spin liquid is that a large class
of operators has zero expectation value, including o”c®, o%0Y and any Pauli string
with an odd number of 0*’s or ¢®’s (where 0¥ counts as both ¢ and ¢?). This
fact, together with numerical evidence of the exponential decay of the (o%(0)o?(r))
correlator presented in the main text, is strong evidence (although not a strict proof)
for the presence of a gap.

We now derive the class of Pauli strings, ]5, for which the expectation value is
exactly zero in the ground state manifold (consequently, any operator that is a linear
combination of these Pauli strings will also have zero expectation value). We express
Pasa product of only ¢*’s and ¢*’s, by replacing o¥ with ic*c®. Next, let us use the
fact that any ground state has all B, = +1. This implies that unless all *’s in the

Pauli string form closed loops on the dual lattice, P anticommutes with some B, and
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therefore (P) = 0. As an simple example, consider the expectation value of P = o7

at site ¢, and ground state |g). Using the fact that B, |g) = |g) we have the following

(o7]07) = (9] o7 |g) (4.19)
= (9| B, 07 By lg) (4.20)
= <9| B, (_Bp UZC) ’9) (4'21)
— — (o%|o%). (4.22)
Therefore we have (o¥|o?) = — (6F]c¥) = 0.

This implies that a necessary condition for the non-vanishing expectation value
is that there is an even number of ¢”’s in the Pauli string. Further, note that in the
ground state manifold the Hamiltonian commutes with the operator F'* = [[, o7 (a
global spin flip), since M, = 0. Therefore, a Pauli string with an odd number of ¢*’s
(and an even number of ¢*) would anticommute with F'* and have zero expectation
value. To sum up, the only Pauli strings that potentially might have a non-zero
expectation value are the ones with an even number of ¢*’s and where all ¢*’s form

closed loops (where ¢* and ¢® can potentially be applied to the same site to form o¥).

4.5.2 Symmetry Breaking

For both 0°-tilt and 45°-tilt compactifications, we further measures the star-star cor-
relator (As Ay).

Interestingly, In 0°-tilt case, we observe a spatial checkerboard pattern in the
measurements as shown in Fig. 4-14(a). This pattern suggests that the ground states
spontaneously break translation symmetry. This staggered pattern appears in both
degenerate topological sectors (—, —) and (4, +), indicating the coexistence of spon-
taneous symmetry breaking with topological degeneracy, i.e., the total ground state

degeneracy is 4, the product of the two-fold TGSD by a factor of 2 originating from
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the symmetry breaking. Note that this additional degeneracy is not topological and
can be lifted by local perturbations.

In the 45°-tilt compactification scheme we also observe that the star-star correla-
tors (A Ay ) present a staggered pattern, similar to what we observed for the 0°-tilt
case and showed in Fig. 4-14(b). This provides evidence that within each topological
sector we have a two-fold degeneracy associated to spontaneous translation symmetry
breaking. Accounting for this additional factor of 2, the total ground state space is

6-fold degenerate.

4.6 Proposal for Experimental Realization

Here we illustrate how the four-spin interaction term A, in our Hamiltonian in
Eq. (4.5) appears naturally in a physical set-up proposed in Ref. [91] using arrays
of superconducting quantum wires coupled via Josephson junctions. Consider, for
each star s, a 4 X 4 array of vertical and horizontal wires intersecting at 16 crossings,
as depicted in Fig. 4-15. Each of the four vertical wires n = 1,...,4 is coupled to
each of the four horizontal wires i = 1,...,4 by a Josephson junction. The sign of
each coupling is encapsulated by a matrix W with diagonal elements W,_; = —1
(corresponding to a m-junction) and off-diagonal elements W), ,; = +1 (corresponding
to a regular junction).

The Hamiltonian at a given site s for such a system is given by
H:HJ+HK (423&)
with

Hy=-JY Wy cos(¢, — 0;) (4.23D)
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and

1 1
Hyey = —— 24— 2 4.23
K 2Cm ; qn + 2Cg ; Qz ) ( C)

where (Y, and Cy are the self-capacitances. ¢, and ¢; are the superconducting phases
in each wire and ¢, and (); are their conjugate charges, respectively. On the lattice,
we refer to the ¢ as “matter” phases and they are not connected to wires on any other
site. On the other hand, we refer to the 6 as “gauge” phases and they are shared by
neighboring sites. (Here we focus on a single star; on a lattice, gauge wires are shared
between neighboring stars.)

The form of the W-matrix guarantees that this Hamiltonian has local Z5 symme-
try, per combinatorial gauge symmetry (CGS). At the same time, this Hamiltonian
also has global U(1) symmetry, hence it is a natural starting point for the U(1) toric
code.

There are two types of limits that one usually considers in Josephson junction
Hamiltonians — phase and charge. The former is dominated by large J where the
flux is typically treated classically and then one considers the quantum fluctuations
perturbatively. We are interested in the opposite charging limit, where both capaci-
tances are small and we are in the quantum regime at the outset. To treat this case
we will proceed in two steps: first take the limit of small C}, and then small C,.

Small C,, limit: first, we add a bias voltage ¢ to each matter wire so that the

kinetic term becomes

1

E (Qn - 67)2 : (4'24)

If the bias is close to § = N + 1/2 (N is an integer) such that two quantized states
¢, = N and ¢, = N + 1 are close in energy, then the matter wires become two-level

systems, because the small capacitance penalizes all other charge states. For our
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purposes we consider a gate bias very close to the half integer point. At this point
the operators e™¢n increase or decrease the charge value and we can replace them
by ordinary spin raising/lowering operators e*'%" — u where pt = pX 4. [112].

The Hamiltonian (4.23b) in this limit becomes
Hy=—=JY Wy (i e +p, e7%) . (4.25)

The p spins can be integrated out exactly by diagonalizing, for each n, a 2 x 2 spin-1/2
Hamiltonian (treating the 6,’s as slow fields). Keeping only the lowest energy terms,
the result is an effective potential as a function of #;’s only:

1/2

HS = =73 > WaiW,cos(0; — 0;)| (4.26)

n @]
Notice that this Hamiltonian still has the global U(1) symmetry as well as the discrete

Zy symmetry, which we can write as:
0 0+ S(1 = %), of =1, if of ohoh0f = +1. (4.27)

Small Cy limit: now we will follow a similar procedure with the gauge wires and
add a bias Q = M +1/2 (M is an integer) to all Q;. This restricts the charge on each
gauge wire to two values.

Mathematically, however, we take a different approach. Rather than replacing
the flux operators by Pauli matrices immediately, we will first expand Eq. (4.26) in

a Fourier series, keeping only the terms e**?

i, i.e., those that change the charge from
one to zero or vice versa on each wire. It is straightforward to check that the only
terms that appear in the Fourier expansion have the form of A, in Eq. (4.5) but with
each spin operator Uii standing for e®%.

We note that this procedure realizes the star term A,, but we do not generate
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the plaquette term B,. It remains a problem for future work to systematically study
different sectors with given eigenvalues of B, to determine whether the ground states
of Hamiltonian Eq. (4.11) with Az = 0 remain those in the sector with B, = +1 for
all p, which were justified in our quantum Monte Carlo studies by the presence of the

sufficiently large Ag coupling in the Hamiltonian.
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Figure 4-11: Mapping between topological sectors in 0°-tilt (right
side) and 45°-tilt (left side) compactifications. The ground state man-
ifold is depicted with the red frames, while topological sectors with
excited lowest energy states are depicted with gray dashed frames. We
assume existence of non-local and non-unitary tunneling operators, 7%
(red arrows) and T,)*" (dashed black arrows), that in the 45°-tilt case
take the state |[++) to states |—+) and |[+—), respectively. Simulta-
neous application of both tunneling operators to |[++) annihilates the
state, and therefore |——) does not belong to the ground state mani-
fold. In the 0°-tilt case, assuming the same orientation of the tunneling
operators with respect to the microscopic details of the lattice, both
T and T,> take state [++) to |——), and hence states |[+—), [—+)
remain out of the ground state manifold.
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Figure 4-12: Spin-spin correlation functions in the x- and 45°-
directions (C'(r) and Cy(r), respectively) are shown for different system
sizes, L. The results are presented from left to right for the (—,—),
(+,4), and (4, —) topological sectors. The correlation functions decay
to zero rapidly, indicating that the system is gapped for all topological

sectors.
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(+,4), (+,—)/(—,+) and (—, —) for the 45°-tilt setup. All the results
shows a fast decaying within the order of two lattice sites for all system
sizes L.
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Figure 4-15: A proposed physical realization of the star term A, in
the U(1) toric code lattice Hamiltonian. The center “waffle” is high-
lighted as an example. It is composed of intersecting superconducting
wires coupled by Josephson junctions. The junctions in the diagonal
(red) denote 7 couplings. Vertical wires (blue) are “matter” degrees
of freedom labeled by phase ¢,. Horizontal wires (gold) are “gauge”
degrees of freedom with phases 6;. Only the gauge degrees of freedom

(black) couple to other, neighboring, waffles.



101

Chapter 5

Conclusion and Future Directions

In this dissertation, we focus on the study of two quantum spin-1/2 lattice models
with local Z; gauge symmetry using unbiased numerical methods.

In the Z, CGS models, we have presented a numerical study of spin models with
only one- and two-spin interactions that realize a combinatorial Z, gauge symmetry.
We considered two models that only differ by the kinetic terms given to the gauge
spins: model-X (containing a transverse field) and model-XX (containing X X inter-
actions). We found conclusive evidence for an extended Z5 topological quantum spin
liquid phase in both models.

In the case of model-X, we identified two phases; a topological phase and a para-
magnetic phase. We demonstrated a first-order quantum phase transition between
these phases, in contrast to the well known continuous transition of the conventional
Zy lattice gauge model. In model-XX we identified a topological phase and a compet-
ing ferromagnetic state. Our data also support a first-order transition between these
two phases in model-XX. Perturbatively, the X X interaction of model-XX generates
a plaquette operator G, at a lower order in perturbation theory as compared to the
transverse field of model-X, and therefore the size of the vison gap increases, as we
also observe.

The presence of the first-order transition between the topological and the com-
peting state, in both models, raises the following interesting question: As we have

discussed in the paper, in the limit of a large transverse field I',, on the matter
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spins, the models map to the usual Ising gauge model, which has a continuous tran-
sition. An important question is then whether the continuous transition persists for
some finite range of values of I',,, or whether it turns first-order immediately. This
question can in principle be answered by considering the corrections to the usual 75
gauge model in Eq. (3.12), which will appear when carrying out a perturbative ex-
pansion to higher order in I'_!. The question is then whether these corrections are
renormalization-group relevant or irrelevant at the critical point. While we have not
carried out this expansion and duality mapping, it appears likely that the additional
interactions generated in the Ising model will involve products of more than two spins,
and most likely these interactions will be irrelevant at the Ising critical point. Thus,
we suspect that there will be indeed a tricritical point separating continuous Ising
transitions and first-order transitions for large values of I, in Figs. 3-7 and 3-13. We
leave tests of this hypothesis open for future work.

In the case of U(1) toric code, the model is invariant under both a global U(1) sym-
metry and local Z5 gauge transformations. We presented evidence that the system is
gapped and the U(1) global symmetry is not spontaneously broken. The exponential
decay of spin-spin correlators support the claim that the system is a gapped spin
liquid. We found topologically degenerate ground states, labeled by non-contractible
string operators.

The model displays quite distinct topological degeneracies that depend on the tilt
of the lattice that is wrapped around the torus, a form of UV/IR mixing unlike those
encountered, for example, in fractonic models. The number of degenerate ground
states is also puzzling. It is difficult to explain the three-fold topological degeneracy
for the 45°-tilt compactification as coming from Abelian topological order if the U(1)
toric code is described by a doubled theory (for example, the usual toric code which

is described by a doubled Chern-Simons theory).
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One logical possibility is that the enrichment of the Z, toric code by the global
U(1) symmetry may turn the topological order non-Abelian. We presented an heuris-
tic argument aimed at relating the three-fold topological degeneracy for the 45°-tilt
compactification to the two-fold topological degeneracy for the 0°-tilt compactifica-
tion based on a mapping of posited logical operators that switch between topological
ground states in both geometries.

Finally, we presented a physical realization of the U(1)-symmetric star terms in
the Hamiltonian in a system of superconducting quantum wires coupled by Josephson
junctions at their crossings. We believe that the possibility that the model may
be realizable with physical Hamiltonians should further motivate future theoretical

studies of the unusual topological properties of the U(1) toric code.
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