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Abstract

This thesis explores the expansive world of General Relativity, and its role

to play in modern cosmology and quantum field theory. We begin with a

pedagogical approach to relativity, in particular, highlighting upon the am-

biguity that arises with the conventions used in different textbooks. A brief

introduction to tensor calculus has also been provided in the appendix. The

preliminary chapters are also complimented with examples of numerical rel-

ativity via simulation. We then move on to discuss examples of non-linear

systems, and their exact solutions. Such systems will be analogous to those

we shall encounter later, upon considering scalar field theories as a means of

modelling dark energy. We shall introduce the ‘axion’ as our highly motivated

dark matter candidate, since this will ultimately determine the behaviour of

the scalar field. Coupled to a scaling factor across the spatial domain, it

is found that this scalar field will ultimately determine the evolution of our

universe. The key result of this thesis has been the possibility to screen both

the cosmological constant, and flatness of the universe, to within observable

parameters. These results will be explicitly derived from first principles. Also

included is a tentative approach to holographic theory, in which strongly cor-

related systems may be modelled within the asymptotic domain of Anti-de

Sitter (AdS) space. Ultimately, our aspirations are to bridge the gap with

condensed matter theory, in particular with the publications included within
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the latter appendices. These publications discuss graphene as a revolution-

ary new material, for inclusion in both transistor-based and optoelectronic

devices

Keywords: Relativity, Cosmology, Axions, AdS/CFT, Graphene, Optoelec-

tronic.



From The Author

. . . “theoretical physicists - what do we have in common with a supermodel?

We hardly spend our lives before mirrors using chemical foundation to beau-

tify our looks, appearing in top magazines with the latest ‘goss’, with the

shear want and desire to be idolised by the general public. No, our lives play

out before whiteboards, the scene upon which we use mathematical founda-

tion to beautify our minds! Our aim? to appear in highly acclaimed scientific

journals with the latest ground-breaking new study, forever being ‘immor-

talised’ by our peers, spearheading the intrigue of individuals who will one

day take our place. Maybe we’re not so dissimilar after all!”

The Student Mindset of Today. . .

Results mean everything, to such a degree they can either empower or erad-

icate an individual’s drive and enthusiasm. Although someone may possess

a concise understanding and all the confidence at their disposal, just one

bad examination mark can to mislead them to believe they were never actu-

ally that good. We often learn material without necessarily understanding

how it will benefit us. Countless times have I encountered young students

who say “what is the point of algebra? when am I ever gonna use that?”

iv
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Throughout my childhood, I was simply told that I needed it “to pass the

exam”. Nonetheless, despite essentially being force-fed this knowledge, we

continually find ourselves open to more and more advanced material. The

question is, when exactly does this chain of intellectual development cease?

One possibility may be the limitations of our own minds, a view I personally

do not support. I find it disturbing to believe that a mind can ever cease in

its development - of course it can be hindered, but far more importantly, it

can be nurtured.

The key principle to facilitate learning is to ask questions first, thereby

supplying the immediate motivation for success. Why is the sky dark at

night? How big is the universe? These are all questions one would ask as

a child, but if the answers were put to us without the prompt of our own

curiosity, we would not care less. The youth of today would be more con-

cerned with the latest iTech gadgets and games consoles (certainly something

Euclid circa 300 BC did not have to contend with). Fortunately, there are

instances when a certain subject or individual can rekindle a sense of purpose

and direction. Such instances leave you asking many intuitive questions, and

allow your imagination to subsume an entire escapade of its own.

I have prepared this thesis as a continuation of my original MPhys dis-

sertation, throughout which I lay the foundations for an introductory course

in General Relativity (GR). For the benefit of the reader, I reiterate some of

my original ideas, and elaborate upon them to a move advanced level. At the

time, the Department of Physics had no such course in GR. I therefore extend

my utmost gratitude to Dr. C. A. Hoenselaers for his supervision, his advice

and direction, which allowed my final year as an undergraduate to be one

of the most intellectual endeavours I had ever embarked upon. Nowadays, I

can proudly say that Loughborough University offers fully fledged modules in
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Relativity and Cosmology, a move which was pioneered by my co-supervisor,

Dr. D. R. Gulevich. For the duration of my Ph.D, Dima has invested much

faith in myself to supervise multiple taught and practical modules (including

those 1am sessions at our observatory!). For this, and the confidence I have

gained, I am eternally grateful.

Of course, I must also pay tribute my co-author and friend, Dr. Alan Wu,

for our work in graphene-based electronics, and his contribution to our joint

study of holographic superconductors. Alan is the most innocent person I

know, and to quote his Ph.D examiner, Prof. Mikko Saarela, “incredibly

stubborn”. Thanks Alan!

Undoubtedly, my greatest thanks lie with my supervisor, Prof. F. V.

Kusmartsev. Feo has the capability to listen to any crazy idea I may have,

and somehow make it a workable reality (including time-travel to the past!).

As a supervisor, he knows me better than I know myself! Since 2006, he

has become like a father figure, understanding exactly what I am capable of,

knowing my limits, and if my work is the best it could be. At times during my

Ph.D, the word ‘supervisor’ has even become synonymous with ‘counsellor’ -

whether this be my sister in hospital, or recently, the loss of my grandfather,

Feo has always been there to guide me through such troubling times. Finally,

I am (of course) grateful for the conferences Feo has allowed me to attend.

Aside from the work aspect, they provided a welcome opportunity to meet

new friends and have a personal life!

To any students who may read this thesis in the nearby future, I shall

make the following point. The avid reader will no doubt have already

skimmed through the main bulk of this text. After seeing just how ‘ab-

stract’ the mathematics can be in places, some of you may now feel uneasy,
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unsure whether you wish to continue reading on. This is typical of us as

human beings; mankind has always feared that what it does not understand.

It is no different from someone who has difficulty reading; claiming the words

either appear blurred or jumbled. This more than often stems from a lack

of experience, an unfamiliarity within the context being dealt with. This

was certainly the way I felt upon first tackling my MPhys dissertation. The

notation within literature seemed almost alienating, unlike anything seen be-

fore. A classic example of this is the Standard Model Lagrangian of Particle

Physics (cf. Page viii). This more than often is met by a sense of bewil-

derment, but why should it be? Of course to say it is long winded would

be a grotesque understatement. However, upon closer inspection, we find

some fundamental constants, partial derivatives, gauge bosons, and parti-

cles/antiparticles; things we are very familiar with. It is only by studying

the entity as a whole that we begin to lose touch. In the same manner, I dis-

courage any student from attempting to understand an equation in this text

(at first) as a whole. Instead, one should look for components which appear

familiar, and to each of them assign a physical meaning. Just remember, it

does not matter if you cannot understand an equation; after all, an equa-

tion is simply a means of describing a physical process in the language of

mathematics.
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)X0+ Ȳ ∂2Y + igcwW+
µ (∂µX̄0X−−∂µX̄+X0)+ igswW+
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. . . so why are we here?

Indeed this a question asked by mankind for generations! In our quest for

the truth, we traverse our entire intellectual progress as human beings. As

the first amino-acids multiplied in the primordial soup, did they possess our

same curiosity, or were their minds simply too primitive? Are the bacteria

of petri-dishes aware of themselves being studied, and that some almighty

entity influences their existence? Mankind has kowtowed to this principle for

millennia. The so called ‘acts of god’, the idea of ‘fate’ that everything in

the universe is pre-determined (incidentally, a concept refuted by the EPR

experiment). Certain individuals refuse to take these ideas at face value,

and seek a more concise and practical means of explaining everyday obser-

vation. From the first works of geometry by Euclid, to Galileo, Newton and

Einstein; they have all sought the truth as to why certain things behave

in certain ways. But supposing such inspirational minds never existed, or

like Galileo, were all convicted of heresy for their beliefs. Where exactly

would this place our society today? As a consequence of their efforts, have

emerged evermore intriguing, and somewhat radical theories of gravitation

and quantum mechanics which are at the forefront of modern-day physics.

A personal favorite is the Copenhagen interpretation of quantum mechan-

ics, concerning probabilities and the acts of measurement. We recall how

Schrodinger’s cat was hypothetically in a superposition of being both dead

and alive. By opening the box, the state-vector was collapsed, thus rendering

the result of the experiment. But is the same necessarily true vice-versa on

the grand cosmological scale? If we were placed in an indestructible box,

such that no information could be extracted from outside (not even gravita-
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tional influence), would the universe be in a superposition of both existent

and non-existent? Yet more controversially, would the universe even exist if

you yourself were not around to collapse the state-vector and observe it?

Messier 42 - The Great Orion Nebula as captured by myself at our depart-

mental observatory (December 2010).
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A Short Recap of General

Relativity
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Chapter 1

Why is General Relativity

Needed?

1.1 Introduction

Published in 1915, Einstein’s General Theory of Relativity was quite simply

a theory of gravitation; an extension of his original work [1] to include non-

inertial frames of reference. This was necessary, since the special theory broke

down for an observer who either deviated from a straight path, changed

speed, or approached a significantly large mass. Recall the famous twin

paradox, in which one twin remains on Earth while the other makes the

return trip to a nearby star and back. Why does one twin appear to age

more than the other if the two viewpoints are physically equivalent? The

answer is simple; the travelling twin must turn at some point which invokes

an acceleration, and as such, would momentarily occupy a non-inertial frame

of reference.

2
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“the happiest thought of my life” - A. Einstein

Einstein’s motivation initially arose in 1907. His argument was clear, namely

that a universe abiding by Newtonian gravity would not coincide with the

laws of Special Relativity. This was evident, since Newton’s law of gravity

makes no reference to time. Thus, a mass m1 would instantaneously feel a

change in gravitational force if mass m2 were to be displaced (since grav-

itational force is inversely proportional to the square of separation). This

physical effect, seemingly capable of being mediated at a speed greater than

that of light, was of course inconsistent with the laws of Special Relativity.

His answer to this dilemma was simple, eliminate gravity and Special Rela-

tivity will work! My belief is the following; Einstein found he could eliminate

gravity if he were to simply prevent the iconic apple from hitting Sir Isaac’s

head in the first place. From Galileo, we recall that (neglecting air resistance)

objects released simultaneously will fall at the same rate, irrespective of their

mass or physical nature.

As an example, let us consider placing Newton and the apple tree in a

stationary elevator, which upon release will hurtle towards the ground at a

steady 9.81ms−2. Supposing the act of release dislodges an apple from one

of its branches, Newton will remain completely oblivious to the fact that

an apple is now ‘floating’ directly above his head. It is only when Newton

stands up, that he realises something is not quite right. He finds himself

moving towards not only a floating apple, but the roof of the elevator. It

was almost as if the magical force keeping him on the floor had completely

disappeared! Einstein likened this to an astronaut in outer space, in a region

free from gravitational influence (a necessary requirement for Special Rela-

tivity to work). Einstein considered this to be “the happiest thought of his

life” - more specifically, that for an observer falling freely from the roof of
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a house, no gravitational field would locally exist. Thus, in the immediate

surroundings of an event, space-time appears locally flat! Conversely, one

may look at this from a different perspective; the Earth has a curved surface,

yet as we zoom in closer and closer, the geometry indeed appears locally flat.

1.1.1 The Principle of Equivalence

Einstein’s insight would come to be known as the Principle of Equivalence, of

which many versions exist. The Weak Equivalence Principle (WEP) merely

states that an accelerated system is equivalent to a system which is subject to

gravitational influence. Let us again consider the apple falling on Newton’s

head, this time whilst he rests on terra firma. The apple experiences a

gravitational force F which accelerates it towards him at 9.81ms−2,

F =
GMmg

r2
= mgg . (1.1)

HereM corresponds to the mass of the Earth, mg is the gravitational mass of

the apple, and g is the acceleration due to gravity. Observe that g is indepen-

dent of mg. This is nothing more than a derivative restatement of Galileo’s

work - objects fall at the same rate, irrespective of their mass. Now imag-

ine Newton being seated in a vessel in outer space, free from gravitational

influence, and coincidentally travelling upwards from his point of view with

an acceleration a = 9.81ms−2 (i.e., mimicking gravity). Supposing he looks

up, he would observe an apple being accelerated towards him, mediated by

a force governed by his second law of motion. In fact, it is the apple which

remains stationary. . . a classic example of relativity!

F = mia = mig , (1.2)
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where mi is the inertial mass of the apple. Since the two scenarios are

physically equivalent, from Eqs.(1.1,1.2), we may conclude that gravitational

and inertial mass are equivalent (i.e., mg = mi). Hitherto, this is something

which has been experimentally proven to an incredibly high accuracy (cf.

for details Eötvös [2]). However, in the presence of colossal gravitational

fields (e.g., a black hole), the condition of locality becomes evermore difficult

to satisfy, and the weak equivalence principle begins to break down. This

is a consequence of phenomena known as ‘tidal forces’, which we shall now

discuss.

1.1.2 Tidal Forces

Let us begin with the following question - what shape is the Earth? Of

course, one does not expect the reader to roll ‘oblate spheroid’ straight off

the tongue. This deformed sphere is caused not only by the fact that the

Earth is rotating, but because there is a large mass orbiting us which dictates

the advancing and receding tides of our oceans. Suppose now we take this

argument further via a reversed example. If the moon has a measurable effect

on the Earth, surely the Earth would impose a much more considerable effect

upon anything in orbit. Suppose then we place a spherical, uniform distri-

bution of particles above the Earth’s atmosphere (cf. Figure 1.1). Assuming

negligible air resistance, what would then follow is that the arrangement of

particles becomes ‘pear’ shaped. This is because particles which are closer

to the Earth’s surface are subject to a more powerful gravitational influence,

and thus accelerate more quickly. Additionally, the particles follow paths

called geodesics (straight lines on a curved geometry), which are directed to-

wards Earth’s core. Particles at the same initial height will therefore become

closer with time.
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Figure 1.1: A spherical, uniform distribution of particles which are subject

to a nearby gravitational field. The particles follow gravitational field lines

that are directed towards the Earth’s core, and thus converge with time.

When considering a more localised distribution, the effect of tidal forces

becomes almost negligible.

1.2 Non-Inertial Clocks

Those familiar with Special Relativity will no doubt have met the light clock;

a clock which ticks every time a light ray strikes the emitter or receiver. The

thought experiment shows how moving clocks ‘run slower’, since the light

has a greater distance to travel. We shall now extend the premise to a

situation involving non-inertial reference frames (cf. Figure 1.2). At point 1

in this figure, a light ray is emitted and reaches the receiver in the inertial

reference frame at point 2. In the non-inertial reference frame, the receiver is

moving in the direction of the light ray with an ever increasing speed. As a

consequence, the light ray travels a greater distance, meeting the receiver a

finite time later at point 3. Since the speed of light is an invariant quantity,

the most logical argument is that time had slowed down in the non-inertial
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Figure 1.2: A light ray is emitted in both inertial, and non-inertial reference

frames. Since the light ray has further to travel in the non-inertial reference

frame, and the speed of light is an invariant quantity, one must conclude that

the rate of passage of time has decreased.

reference frame - an effect commonly referred to as time dilation. Via the

equivalence principle (cf. Section 1.1.1), this implies that the same can be

assumed of a clock residing within Earth’s gravitational field. Observational

evidence has confirmed that clocks on Earth’s surface do indeed tick slower

than those in outer space, where acceleration due to gravity is weaker [3].

Although such discrepancies account for merely a few microseconds per day,

this remains outside the tolerance of precision-oriented devices such as GPS

systems.

Returning to the twin paradox (cf. Section 1.1), how may we distinguish

between who really occupies the non-inertial reference frame? Suppose that

a light ray travels perpendicular to the direction of motion (cf. Figure 1.3).

For an observer occupying a ‘stationary’ inertial reference frame, the light

ray will travel from left to right without deviation. However, the observer in

the non-inertial reference frame views something completely different. Sup-

pose the moving observer were to travel with uniform velocity. The light ray
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Figure 1.3: A light ray travelling perpendicular to the direction of motion

as viewed in both the inertial, and non-inertial reference frames. Inside the

non-inertial reference frame, the observer will see the light bend towards the

bottom of the clock.

would appear slanted, but nonetheless, follow a straight trajectory. However,

since the system is accelerating, the light ray appears to bend. Thus we con-

clude that light in non-inertial reference frames does not conform to straight

lines. Once again, the principle of equivalence implies that light entering a

gravitational field will bend as a direct result.

1.2.1 Gravitational Red-Shift

Finally, suppose that in Figure 1.3, our observer in the non-inertial frame is

fixed at the receiving end. As a consequence of the Doppler effect, he would

observe the light continuously red-shifting in wavelength at an increasing

rate. The same can be said of an observer positioned at the receiver in

Figure 1.2. The light is red-shifted because it takes longer to reach this

point. Recall that time period is inversely proportional to frequency, and

frequency is inversely proportional to wavelength. So, as time dilates (i.e.,

increases), wavelength increases. Via the equivalence principle, the same can
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be applied to a yellow submarine entering a black hole. As it accelerates,

the light we observe from its hull is red-shifting at an increasing rate, before

finally turning infra-red. This observed effect is termed Gravitational Red-

Shift.



Chapter 2

Introducing the Mathematics

The basic idea of General Relativity, is that the laws of physics should be

independent of our choice of coordinate system (e.g., Cartesian or polar). To

accomplish this, we require tensors (objects which transform in a certain way

under coordinate transformations). A brief overview of tensor calculus has

been included in Appendix A of this thesis.

2.1 Riemannian Geometry

From Special Relativity, recall that space-time is a four dimensional pseudo-

Riemannian manifold (three dimensions of space, one dimension of time);

otherwise known as Minkowski space-time or R3,1. The prefix ‘Riemannian’

simply means that a ‘metric’ is involved - a Rank-2 covariant tensor that

tells us everything concerning the geometry of our manifold. The prefix

‘pseudo’ refers to a minus sign, thus distinguishing Lorentzian from Euclidean

geometries. Normally, a metric would subscribe to three axioms - those of

positivity, symmetry, and the triangle inequality. Here, positivity is the

exception. Any metric must also satisfy the properties of invertability (i.e.,

10



CHAPTER 2. INTRODUCING THE MATHEMATICS 11

non-vanishing determinant), and must be diagonalisable with eigenvalues (-

,+,+,+).

Any point lying on this manifold is called an event, specified by four

coordinates. Any vectors which then exist in space-time (i.e., four-vectors)

are always fixed to a particular event. It is also known that the distance ds

between two events is an invariant quantity (i.e., independent of our choice of

coordinate system). For a four dimensional space-time, the invariant interval

is given as follows,

ds2 = −c2dt2 + dx2 + dy2 + dz2

= −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

ct = x0 x = x1 y = x2 z = x3

For the remainder of this text, we shall take the speed of light c to be nor-

malised to one.

It is far more convenient to adopt tensors for writing these kind of formu-

lae. The term xµ (a set of four numbers, with index µ running from zero to

three) specifies the location of an event in space-time. It is a widely accepted

convention to use Greek indices for space-time coordinates. Latin indices are

used only if spatial coordinates are being dealt with. Displacing the event

then gives us a set of basis vectors dxµ to work with. Similarly, one could la-

bel an event as xν (again with ν = 0 . . . 3), giving another set of basis vectors

dxν . Half way there, we now require a means of summing these vectors and

giving them the necessary coefficients. To do this, we utilise the Minkowski

metric ηµν .
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ηµν =











−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1











ds2 = ηµνdx
µdxν = η00dx

0dx0 + η11dx
1dx1 + η22dx

2dx2 + η33dx
3dx3

= −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 (2.1)

This equation employs the use of the Einstein Summation Convention (cf.

Appendix A.3).

2.2 Telling the Time

In the previous chapter, we discovered that clocks which occupy non-inertial

frames of reference, tick at a slower rate. How exactly does one calculate

the difference? How does one calculate the time elapsed inside an acceler-

ating spaceship (i.e., the proper time τ)? To answer this, we first require

a space-time diagram (cf. Figure 2.1). The first thing to notice is how the

vessel is constrained to travel at less than the speed of light (the worldline

must always reside within a light cone). A worldline is represented as xµ(λ),

where each component is a function of an affine parameter λ. The change

of interval ‘s’ with respect to parameter λ, is the absolute magnitude (or

two-norm) of the velocity (i.e., tangent) vector vµ. This is an example of a

contravariant vector (possessing a single upper index).
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Figure 2.1: A space-time diagram, throughout which a spaceship’s course is

plotted. The worldline xµ(λ) is parametrised by an affine parameter λ, and

always constrained to be time-like (i.e., residing within the local light cone).

Points along the worldline, for example xµ(λ2), are referred to as ‘events’.

Suppose then we have the following worldline,

xµ(λ) =
{
x0(λ), x1(λ), x2(λ), x3(λ)

}
.

The tangent vector vµ is given as the worldline xµ(λ) differentiated with

respect to the parameter λ,

vµ =

{
dx0

dλ
,
dx1

dλ
,
dx2

dλ
,
dx3

dλ

}

.

Its absolute magnitude (i.e., the two-norm) |vµ| is then,

|vµ| =
((

dx0

dλ

)2

+

(
dx1

dλ

)2

+

(
dx2

dλ

)2

+

(
dx3

dλ

)2
) 1

2

=
ds

dλ
. (2.2)

Eqs.(2.1,2.2) do not look too dissimilar - however, the coefficient of dx0
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in Eq.(2.1) is negative. This is because space-time is not Euclidean, but

Lorentzian in nature. Let us now give Eq.(2.2) the minus sign it requires.

To do this we divide Eq.(2.1) by dλ2,

ds2

dλ2
= ηµν

dxµ

dλ

dxν

dλ
= −

(
dx0

dλ

)2

+

(
dx1

dλ

)2

+

(
dx2

dλ

)2

+

(
dx3

dλ

)2

.

We also recall from Special Relativity, that if an observer is seated in the

moving spaceship (i.e., the change in spatial components are zero), then the

observer will record the proper time τ ,

ds2

dλ2
= ηµν

dxµ

dλ

dxν

dλ
= −

(
dτ

dλ

)2

.

Re-arranging a little and integrating gives,

τ =

∫ λ2

λ1

√

−ηµν
dxµ

dλ

dxν

dλ
dλ ,

which is the proper time τ as recorded inside the moving spaceship. Under

initial inspection, it may seem as though we are taking the root of a negative

quantity. However, bare in mind that ds2 < 0 for a time-like worldline; the

minus sign makes the entity being square rooted, positive.

2.2.1 Numerical Relativity

So as to emphasise the effect of a non-inertial frame of reference, we shall now

consider a few numerical examples. Figure 2.2 traces out several worldlines

(i.e., trajectories), with our aim being to calculate the proper time for each

observer. For simplicity, we shall first consider the Minkowski space-time,
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and all intermediary calculations can be referred to in Appendix B.1. Rela-

tively speaking, it is clear that observer 2 ages by the least amount. This is

because in addition to the velocity x-component vx =
√
0.4999, there is (at

times) a velocity y-component of equal magnitude. When added together,

these two components imply that observer 2 is travelling very close to the

speed of light.

To fully realise the effects of time dilation, it is more convenient to express

in terms of the average gamma factor γ. This can be determined by the ratio

of the observed and proper times γ = to/τ

γ2 = 2.188 γ3 = 1.414 γ4 = 1.273.

Gamma Factors for Figure 2.2

Staying with Minkowski space-time, we shall now consider the relativistic

effects of circular motion (cf. Figure 2.3). Again, we plot several trajectories,

and calculate the respective proper times elapsed. The gamma factors are

given by (γ2, γ3) in the next paragraph. Irrespective of your orbital radius,

the gamma factor remains the same (provided tangential velocity remains

fixed).

We now consider a more ‘exotic’ arena within which to perform these

calculations. The Schwarzschild metric describes the global geometry in the

presence of a massive gravitational object (e.g., a star or a black hole). Again,

we present several worldlines and calculate the proper time and gamma factor

for each scenario (cf. Figure 2.3),

γ2 = 1.033 γ3 = 1.033 γ4 = 1.512

γ5 = 1.287 γ6 = 1.252.

Gamma Factors for Figure 2.3
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Whereas in Minkowski space-time the orbital radius has no effect upon the

gamma factor, when orbiting a black hole, this is not necessarily true. Ob-

server 4 has a smaller orbit than observer 5, and its effect can be seen in

the difference between γ4 and γ5. It is important to note that all observed

times (t4, t5, t6) are recorded by an observer positioned very far away from

the gravitational well, so as not to affect any measurements.
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Figure 2.2: Here, we consider several trajectories within the Minkowski

space-time. For simplicity, we choose temporal coordinate t = λ for all cal-

culations throughout (cf. for further details Appendix B.1.1). The most

furtherleft trajectory (i.e., the single point) is that of a stationary observer.

This observer notes the elapsed time for other observers to travel from start

to finish. Comparing the observed times (t2, t3) to the proper times (τ2, τ3),

we can see that despite arriving at the same time (i.e., t2 = t3), observer 2

ages by a lesser amount (τ2 < τ3). This is because observer 2 is continually

accelerating. Finally, we consider an observer 4 accelerating from rest. Cal-

culating the gamma factors for each observer can provide an apt realisation

of time dilation effects (cf. main body of text).
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Figure 2.3: This figure outlines the effects of time dilation for circular or-

bits in both Minkowski and Schwarzschild space-times. By comparing proper

times (τ2, τ3) to (τ4, τ5) respectively, we clearly see that a massive gravita-

tional object can impose a substantial effect. For the Schwarzschild space-

time, we assume a Schwarzschild radius rs = 1. All trajectories must reside

outside this value in order to avoid being sucked into the black hole. We also

position a stationary observer very far away from the object (so as to not

be affected), who will again record the elapsed times for the other observers.

Finally, we consider an observer who simply passes by the large object.



Chapter 3

Gravitation and Space-Time

Curvature

From Figure 1.3, we discussed that light entering the vicinity of a gravita-

tional field will bend as a result. The same would be true if, for example, we

replace the light ray with a ball. Suppose now we have an asteroid, which

is about to enter the vicinity of a black hole’s gravitational field. The aster-

oid accelerates, but this is not a property unique to the asteroid. The same

would be observed for a comet, or even a yellow submarine. Galileo himself

proved that all objects, regardless of their mass or physical nature, all fall

at the same rate and follow the same path (neglecting air resistance). Thus,

we conclude that the acceleration imposed is a property of the space itself.

Consequently this implies that gravity not only affects time, but also space

- both of which constitute the single entity of space-time. This leads us very

nicely to a well known adage in Relativity,

“. . . space-time grips mass, telling it how to move; and mass grips space-

time, telling it how to curve” - John A. Wheeler.

19
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We have deduced then, that gravitational fields modify space in some

way. To prove this, we consider another thought experiment. Suppose we

have two discs of equal size, one of which rotates and the other remains sta-

tionary. Around the circumference of each disc, we attach a large quantity of

minuscule yardsticks, the total number of which will tell us the circumference

of each disc. However, for the rotating disc, the length of these yardsticks

contracts as a consequence of Special Relativity. Therefore we can place more

yardsticks into the circumference of the rotating disc. However, this would

imply a circumference greater than 2πr because the rotating disc has more

yardsticks than the non-rotating equivalent. It follows then that we have two

discs of equal size, and yet differ in circumference. Here is the solution; it is

the radius which changes, but not in the way one would expect.

Imagine a farmer who is measuring the circumference of a crop circle

using its radius. From his point of view, it seems perfectly viable he will

gain the correct answer. But suppose the crop circle is now the equator,

and that its apparent centre is the north pole. Will the circle still have a

circumference of 2πr?. . . yes, but only if the radius is measured directly from

the Earth’s centre. However, the farmer will measure an actual circumference

of 4r! This is smaller than the value he actually predicts, since he inhabits a

spherical geometry (cf. Figure 3.1). Conversely, supposing he were to occupy

a hyperbolic geometry, he would measure the circumference to be larger than

2πr. This is analogous to the trouble we faced with the discs. Two discs, two

differing values of circumference, imply two differing radii. Since the rotating

disc yields a value for circumference greater than 2πr, it follows that this disc

occupies a non-Euclidean, hyperbolic geometry. However, recall that the

rotating disc carries yardsticks which are constantly changing velocity, and
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thus imply an acceleration. This is an acceleration which is directed towards

the centre of the disc, and modifies the geometry of space accordingly. Via

the equivalence principle, we may assume that gravity (an accelerative field

in its own right) will have the same effect.

Of course, there are other means of visualising why gravity is the same as

curvature. Perhaps the most convincing is the following scenario. Consider

two boats in the Atlantic Ocean, both positioned at the equator and three

miles apart. They agree to set a course, due north, at a specified time

with equal speed. For a short time interval, it would appear as if the two

boats travel parallel to one another. However, due to the Earth’s spherical

geometry, they decrease their initial separation. This is analogous to the

effect of gravitation, in that as time passes by, the separation between two

massive objects will decrease.

However, if one wishes to approach curvature from a purely mathematical

treatise, we must re-introduce the machinery of manifolds and tensor calcu-

lus. A manifold is simply an n-dimensional space, which may be curved,

but locally appears flat. This is the same as defining a manifold as smooth,

continuous and differentiable, and must have the same dimensionality every-

where. For example, you cannot glue the end of some string to a plane and

call this a ‘manifold’.
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Figure 3.1: Here, we present several geometries and their properties. The

three geometries which are commonplace in modern cosmology are those of

spherical, hyperbolic and flat. These correspond to a global curvature of

k = (1,−1, 0) respectively. Measurements of tiny fluctuations in the cosmic

microwave background have indicated that our observable universe is flat to

within an error of one percent [4]. In addition, we may also consider hybrid

and derivative geometries. The torus is an example possessing both positive

and negative curvature - specifically, negative on the inside. Furthermore,

the cone is a derivative structure of the standard flat geometry. A geometry

is considered to be flat, if it can be formed using a simple piece of paper.



Part II

Non-Linear Systems and

Modern Cosmology
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Chapter 4

The Simple Pendulum

4.1 Laying the Cosmological Foundations

The bulk of this text has been structured in such a way as to allow the reader

to re-ignite their intuition. Most research in physics is, after all, modelled

around much simpler systems of which a lot may already be understood.

This text constitutes no exception. In reality we begin with the equations

specific to our research, and then refer, via analogy, to systems which behave

in a similar manner. After a few tweaks, we return to our original starting

point with a more concise understanding. In this section, the intellectual

ammunition will be supplied before traversing the cosmological battlefield.

As a starting point, we assume a simple pendulum of massm, fixed radius

r, and subject to gravitational constant g. Via transformation of Cartesian

to polar coordinates, we derive an expression for velocity v of the bob, acting

tangential to its path. It is assumed variables x, y and ϕ are all time-

dependent,

24
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x = r sinϕ ⇒ ẋ = rϕ̇ cosϕ ,

y = −r cosϕ ⇒ ẏ = rϕ̇ sinϕ ,

v2 = ẋ2 + ẏ2 = r2ϕ̇2 .

We now consider the Lagrangian L = T − V , where T and V represent the

total kinetic and potential energies respectively. Distinction is drawn here

between Lagrangian L and Lagrangian density L, since we are not referring

to mass densities within infinitesimal spatial cuts. The mass under consid-

eration is concentrated at a distance r from the point of suspension. Upon

considering scalar fields, the general consensus within literature subscribes to

Lagrangian density. The key reason for this being that we are not concerned

with total energy, but how that energy is distributed throughout spatial do-

mains.

Returning to the pendulum, we proceed with the derivation of the in-

herent equation of motion. This is achieved via use of the Euler-Lagrange

equation (cf. Eq.(4.1)).

L =
1

2
mv2 − V (ϕ) ,

=
1

2
mr2ϕ̇2 −mg(r cosϕ0 − r cosϕ) ,

where potential energy V (ϕ) is proportional to dy; the change in height of

the bob (cf. Figure 4.1). It is here where the non-linearity will arise. As

the cosine term is expanded out in Taylor series, the system will become

increasingly difficult to solve for the higher order terms of ϕ.



CHAPTER 4. THE SIMPLE PENDULUM 26

Figure 4.1: Schematic for a pendulum of length r, mass m and subject to

gravitational field strength g. Location of the bob is specified for all times

via the transformation of Cartesian to polar coordinates.
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∂L

∂ϕ
− d

dt

∂L

∂ϕ̇
− d

dx

∂L

∂ϕx

= 0 , (4.1)

∂L

∂ϕ
= −mgr sinϕ ,

∂L

∂ϕ̇
= mr2ϕ̇ ⇒ d

dt

∂L

∂ϕ̇
= mr2ϕ̈ ,

−mgr sinϕ−mr2ϕ̈ = 0 .

ϕ̈ = −g
r
sinϕ (4.2)

It is at this point one can solve for angle ϕ(t). To provide intuition for how

the system will behave, we first constrain the system to small amplitudes of

ϕ (i.e., ϕ0 ≈ 0). Thus after Taylor expansion, the higher order terms of sinϕ

can be disregarded. The corresponding equation of motion is then read as,

ϕ̈ = −g
r
ϕ ,

for which the following solution exists,

ϕ(t) = A cos

(√
g

r
t

)

+ B sin

(√
g

r
t

)

. (4.3)

Constants A and B are proportional to the initial angle of release ϕ0, and

angular velocity term ϕ̇0 respectively. This behaviour is characteristic of

simple harmonic motion (SHM).

However, as previously mentioned, the solution is valid only for small

amplitudes of ϕ. This is evident via the following scenario. Supposing at

time t = 0, we have constant A = ϕ0 = π, with constant B set to zero. The
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pendulum is at its separatrix point (i.e., pointing directly upwards), and will

continue to rest at this point unless otherwise acted upon by an external

force. Thus angle ϕ = π; in direct contradiction to (4.3) which continues to

imply an oscillating system (cf. Figure 4.2).

Figure 4.2: The angle subtended by a pendulum as a function of time.

Both the exact solution, and that given by the small-angle approximation

are plotted for comparison. Initial angle ϕ0 = π. Note how that even when

subject to no external stimulus, the small-angle approximation continues to

exhibit simple harmonic motion.

Additionally, the solution (4.3) is only valid for small values of ϕ̇0. For exam-

ple, supposing constant A = ϕ0 = 0, with constant B being sufficiently large

as to exceed the separatrix value. We would expect the pendulum to complete

at least one full revolution. Hence, if at any instant ϕ(t) = B sin
(√

g
r
t
)
> π,

then ϕ(t) must surpass the point ϕ(t) = 2π also. To do so otherwise would

imply a defiance of gravity (cf. Figure 4.3).
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Figure 4.3: The angle subtended by a pendulum as a function of time.

Both the exact solution, and that given by the small-angle approximation

are plotted for comparison. Initial angle ϕ0 = 0. Initial value of ϕ̇0 = 4 (i.e.,

sufficiently large to surpass the separatrix).

Fortunately, an exact solution of Eq.(4.2) does exist which takes into consid-

eration all aforementioned drawbacks.

First multiply the equation of motion by ϕ̇,

ϕ̈ = − g

r
sinϕ =⇒ ϕ̇ϕ̈ = − g

r
ϕ̇ sinϕ ,

and express as a time-derivative,

1

2

d

dt

(
ϕ̇2 + α

)
= − g

r

d

dt
(β − cosϕ) ,
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where α and β are constants of integration. Constant α represents an initial

angular-velocity term, while constant β serves as an initial angular term (or

at least some function thereof). Now integrate with respect to time,

1

2

(
ϕ̇2 + α

)
= − g

r
(β − cosϕ) .

To understand the form of constants α and β, we solve for initial conditions.

At t = 0, we have ϕ = ϕ0 and ϕ̇ = ϕ̇0. Thus after substituting α = −ϕ̇2
0 , we

find that constant β = cosϕ = cosϕ0. This gives,

1

2

(
ϕ̇2 − ϕ̇2

0

)
= − g

r
(cosϕ0 − cosϕ) . (4.4)

For simplicity, we shall first consider the case for ϕ̇0 = 0. After re-arranging

for ϕ̇, we then express as its reciprocal,

dt

dϕ
=

1√
2

√
r

g

1√
cosϕ− cosϕ0

.

Here, the ± notation of the square roots has been omitted. It should be noted

that, depending upon the choice of sign, each will give different solutions. For

the purposes of this text, only positive solutions will be considered. Following

integration, we then have,

t =
1√
2

√
r

g

∫ ϕ

0

dϕ√
cosϕ− cosϕ0

.

Making use of the trigonometric identities;
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cosϕ = 1− 2 sin2 ϕ

2
=⇒ sin

ϕ

2
=

√

1− cosϕ

2
,

t =
1√
2

√
r

g

∫ ϕ

0

dϕ
√

1− 2 sin2 ϕ
2
− cosϕ0

,

=
1√
2

√
r

g

∫ ϕ

0

dϕ
√
1− cosϕ0

√

1− 2 sin2 ϕ

2

1−cosϕ0

,

=
1√
2

√
r

g

∫ ϕ

0

dϕ

√
2 sin ϕ0

2

√

1− sin2 ϕ

2

sin2
ϕ0
2

,

=
1

2
csc

ϕ0

2

√
r

g

∫ ϕ

0

dϕ
√

1− csc2 ϕ0

2
sin2 ϕ

2

.

Making the substitution ϕ = 2θ, and hence dϕ = 2dθ gives,

t = csc
ϕ0

2

√
r

g

∫ ϕ
2

0

dθ
√

1− csc2 ϕ0

2
sin2 θ

.

Use the Jacobi elliptic function F (ϕ | m) as defined,

u = F (ϕ | m) =

∫ ϕ

0

dθ
√

1−m sin2 θ
,

⇒ t = csc
ϕ0

2

√
r

g
F
(ϕ

2
| csc2 ϕ0

2

)

.

We then re-arrange for the incomplete integral F, and attribute this with the

following relation,

ϕ = am (u | m) ,
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⇒ ϕ(t)

2
= am

(√
g

r
t sin

ϕ0

2
| csc2 ϕ0

2

)

.

A plot of this solution can be found in Figure 4.4, for differing values of ϕ0.

Numerical Analysis

It is at this point worthwhile to introduce numerical analysis as a potential

tool for future study. A system may not necessarily possess an exact solution

which can be found via analytical means alone. Numerical analysis provides

a safeguard should such complications arise. By specifying the equation of

motion and initial/boundary conditions, mathematical software is capable of

running a simulated version of events. For comparison, a numerical simula-

tion of the pendulum is included in Figure 4.5, for differing values of ϕ0 with

ϕ̇0 set to zero.
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Figure 4.4: The analytic solution for angle ϕ subtended by a pendulum

as a function of time. Various choices of initial angle ϕ0 are plotted for

comparison.

Figure 4.5: Numerical simulations for angle ϕ subtended by a pendulum

as a function of time. Various choices of initial angle ϕ0 are plotted for

comparison.



Chapter 5

Developments in Modern

Cosmology

5.1 Introduction

Ever since 1929 when universal expansion was first observed, physicists have

wrestled to develop an explanation as to precisely why. From steady-state

universe, to big-bang and inflationary scenarios; with evermore enticing ob-

servational evidence at our disposal, we are beginning to converge upon its

precise nature.

Today’s state of cosmology is epitomised by the accelerative expansion of

the universe, with the so called dark energy being responsible for this elusive

driving force. Numerous experiments, of which include the WMAP [4] and

COBE [5] satellite projects, and further via detailed analyses of Type Ia

supernovae [6, 7], have proven to exhibit conclusive evidence that our universe

is subject to accelerated growth. In particular, both COBE and WMAP

have provided detailed maps of the cosmic microwave background (CMB)

within the universe. Such patterns are characteristic of the energy density

34
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structure at the instant of matter–radiation decoupling. The conclusion of

both studies, was that the principal constituents of the universe take the form

of dark matter and dark energy, of which there is believed to be a constant

battle between the two [8, 9]. One pushes the universe to expand, while the

other - to collapse. More objective observations present a universe whereby

billions of stars are self-organised into spiralling galaxies, which group into

larger, more stable galactic clusters. These structures extend further into

enormous superclusters that thread throughout the universe, all of which are

moving apart. These observed structures which are entirely compatible with

inflation theory and big-bang, show that an understanding of dark energy and

its role to play structure formation, is one the most fundamental problems

in modern cosmology.

More recently, the Planck satellite sought to map the CMB in greater

detail than ever before. The mission which was carried out by the European

Space Agency (ESA), certainly held true to its word, and after four years of

gathering data, Planck delivered its spectacular results [10]. A key feature

which has further motivated this thesis, is an apparent lensing of CMB pho-

tons due to all intermediary matter. Furthermore, the patterns of localised

distortions show no random characteristic, with hot or cold spots moving

coherently in a single direction [11]. This implies that structure formation in

the universe has been influenced by a well-defined external influence. This

thesis will seek to explain how one may obtain such a scenario.

Einstein’s remarkable theory of general relativity (cf. Part I), tells us

that matter and energy distort space-time. On a cosmic scale, the net mat-

ter/energy density of the universe determines its overall space-time curva-

ture. This, in turn, determines the geometry of the universe (i.e., either

open, closed or flat). For further details, one may refer to Figure 3.1. Most



CHAPTER 5. DEVELOPMENTS IN MODERN COSMOLOGY 36

believe that the answers reside within the CMB; the primordial light from

some half a million years after the big-bang. The geometry of space affects

the observed size of hot and cold spots within the CMB. Measurements of

these variations have indicated that our observable universe is flat to within

an error of one percent [4].

As mentioned by Steinhardt [12], today’s universe is part of an endless

cycle of big-bangs and big-crunches, with each cycle lasting the order of a

trillion years. Despite the amount of matter and radiation in the universe

being reset after each cycle, the cosmological constant Λ is not. Instead, this

constant gradually diminishes over many cycles to the small value observed

today [6, 7, 13, 14]. Indeed, the proposed cyclic universe can incorporate a

dynamical mechanism which automatically relaxes the value of the cosmo-

logical constant, via a series of quantum phase transitions. This implies that

quantum phenomena are essential to our universe. Conversely, it is unclear

how the role of other fields or particles (created via quantum fluctuations,

as predicted by QCD) must then also exist, and consequently providing the

large value for the vacuum energy [15, 16, 17].

Overall, this motivates us to consider two possible contributions within

an effective cosmological constant Λeff - one originating from a quintessence

scalar field, while the other being some constant Λ, chosen to describe the

vacuum energy associated with quantum fluctuations. Within this thesis,

the scalar field is considered (likewise to [12, 18]) to be driven by an axion

sine-Gordon potential, which shall be elaborated upon in Section 5.3.2. Ulti-

mately, we would like to show that these two contributions may compensate

or screen one another entirely.
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5.2 Higher/Lower Dimensional Gravity

In 1997, one scientist made a surprising revelation that would come to both

haunt and astound the scientific community. In short, his proposal managed

to show that Type IIB string theory in 10 dimensional space-time (AdS5×S5),

describes the same physics as that of the maximally supersymmetric SU(N)

Yang-Mills theory living on some distant boundary. The theory (formally

known as the AdS/CFT correspondence), implies we may be nothing more

than a 3D projection, determined by a series of quantum processes over which

we have no control. As such, the idea is more commonly referred to as the

‘holographic principle’.

Aside from higher-dimensional theories, the late 1980s played host to an

intensive investigation of non-trivial solutions which were targeted specifi-

cally at lower-dimensional systems [19, 20, 21, 22, 23, 24, 25]. In particular,

[26] presents an in-depth discussion of cosmology within a (1+1) dimensional

framework, emphasising the dynamically rich content that can be extracted.

Presented are numerous analogues that can be attributed to a (3+1) di-

mensional counterpart (e.g., gravitational waves, cyclic expansion etc.). Fur-

thermore, the mathematical basis offers a proving ground for establishing

connections between classical and quantum gravity [27].

In the thesis presented, we wish to re-ignite the possibility of such lower-

dimensional space-time metrics, with the inclusion of the dynamical scalar

field ϕ. When restricting expansion of the universe to that of a (1+1) dimen-

sional framework, this allows the curvature k associated with the Friedmann-

Robertson-Walker (FRW) metric to be eliminated via a change of variable -

for example, dx̃2/(1− kx̃2) → dx2 [27]. Thus, the three cosmological models

corresponding to k = 0,±1 are physically equivalent to one another. An

example of obtaining such a lower-dimensional metric will be demonstrated
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in Section 5.4.

5.3 An Approach to Unifying Dark Matter

and Dark Energy

5.3.1 Dark Matter

Particle physicists have postulated WIMPs (Weakly Interacting Massive Par-

ticles) such as axions, dilatons or neutralinos as dark matter candidates

[28, 29], while the nature of dark energy is somewhat more elusive. Het-

erotic string theory even provides as the candidate, a very light universal

axion, convenient to describe the nearly massless pseudoscalar field theory

[30].

There is common belief that dark matter and dark energy have nothing

to do with each other. However, it has been shown that both may arise from

some kind of scalar field [31, 32]. Both may account, on different scales, for

inflation [33, 34], dark matter halos of galaxies [35, 36], or even dark matter

condensations (the so-called boson stars) [37, 38] as candidates for Massive

Compact Halo Objects (MACHOs). Independently, the views of superstring

theory [39] suggest an importance of the scalar field with as small a mass as

∼ 10−23 eV.

In this paper, we follow an approach similar to those of [12, 18, 40], where

axion-like scalar models with periodic self-interaction have been studied. Ad-

ditionally, the authors of [41] show that an axion Bose-Einstein condensate

can provide a substantial contribution to the observed rotation curves of

galaxies [41], and has probably been observed via gravitational lensing in

merging clusters. Recent images captured by the Hubble Space Telescope
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(HST) reveal a mysterious clump of dark matter, thought to be the rem-

nants of a massive galactic collision [42]. It seems that the soliton-type dark

matter bullets described in [41] provide a natural explanation as to the for-

mation of these dark matter clumps.

5.3.2 Dark Energy

Cosmological Constant: At first glance of the Friedmann equations, such

a phenomenon can be described by the cosmological constant, for which many

sub-candidates have been proposed (cf. [31, 32] and references within). This

was first introduced by Albert Einstein, in order to obtain static, stable

solutions to the gravitational field equations. In effect, dark energy was used

to prevent the gravitational collapse of the universe. Little was it known

at the time, that should spatial inhomogeneities be present post-inflation,

these could lead to an unstoppable expansion of the universe. Furthermore,

the major crux here is an apparent screening of this parameter; the value

predicted by experimental observation [6, 7, 13, 14] remaining inconsistent

with the energy scale predictions from particle physics [15, 16, 17]. The

observed value of 7 × 10−30g/cm3 (or in natural units ≈ 10−35s−2), is more

than 120 orders of magnitude smaller than the Planck density (≈ 1093g/cm3)

at the instant of the big-bang [12]. The value itself is merely representative

of an overall averaging of the quantum vacuum fluctuations (the so-called

quantum foam), and thus the characteristic energy-density associated with

empty space [15].

Scalar Fields and Higher Order Curvature Lagrangians: A scalar

field, minimally coupled to Einstein’s general relativity is equivalent [31, 32,

43, 44] to a modified gravity in the relativistic framework of higher-order
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curvature Lagrangians. Such effective Lagrangians may also arise from the

low-energy limit of superstrings (cf. for example [45]), which use a non-linear

higher-order curvature Lagrangian to explain the present cosmic accelerated

expansion. Our choice of Lagrangian will be outlined in Section 5.4.

Scalar fields are something we are very much familiar with. They assign

numerical value to all points within the domain for which they exist, the

temperature of a room being a prime example. Of all the proposed candidates

for dark energy, perhaps the most elegant is the quintessence scalar field ϕ.

The theory posits that some dynamic function (the scalar field), driven by

an inherent universal potential V (|ϕ|), constitutes the underlying mechanism

for the observed expansion of the universe.

Axions: The existence of scalar fields is also predicted by the standard model

of particle physics and quantum chromodynamics (QCD). However, QCD

is afflicted with the issue of strong-CP symmetry breaking. Peccei-Quinn

theory seeks to remedy this by adding a CP-violating term (the so-called ϕ

parameter) [40, 18] to the Yang-Mills Lagrangian. Not only does the theory

predict that ϕ is representative of some dynamical field rather than some

constant numerical value, but because quantum fields produce particles, the

theory predicts the existence of a new particle also - the axion. This particle,

as previously mentioned, is regarded by many as one of the best motivated

candidates for cold dark matter (CDM) [46].

Although the cosmological constant will be able to describe the effects of

dark energy, we are curious to consider the contribution of axions - investi-

gating how an induced dynamical scalar field potential may relax this value

to within observable parameters. An effective potential V (|ϕ|), arising from

the chiral anomaly after integration of the gluon field, is given as follows
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[18, 47],

V (|ϕ|) = m4

λ

[

1− cos

(√
λ

m
ϕ

)]

. (5.1)

Each of the minima within this potential are associated with different vacuum

states, each possessing the same energy. The curvature of the potential at

each minimum is related to the axion mass m.

Due to the nature of the potential under consideration, a perfectly apt

analogy can be associated with that of a pendulum with a time-dependent

radius. Since the attached mass is subject to a gravitational potential energy,

a consequent effect will be observed upon the radius when transformed into

a kinetic equivalent. As such, the precise motivation of this study has been

to investigate how a driven scalar field will influence the cosmological radius

(i.e., scale-factor) of the universe.

5.4 Hybrid Quintessence

Into our cosmological recipe, we wish to include all we have touched upon

in the previous sections. This includes everything from lower-dimensional

metrics, to scalar fields, non-linear potentials, higher-order curvature La-

grangians (with a dash of Kaluza-Klein) and even the possibility of some

holographic conjecture, useful for describing equivalent physics in two sepa-

rate mathematical domains.

We begin first with lower-dimensional metrics. Since, the metric outlines

the geometry of the space-time domain which we shall be working in, this

needs to be carefully defined. An ideal starting point is the FRW metric

for an expanding universe. Since, as previously mentioned, the universe is



CHAPTER 5. DEVELOPMENTS IN MODERN COSMOLOGY 42

flat to within an error of one percent [4], we shall assume the curvature k of

the universe to be equal to zero. In the familiar (3+1) dimensional universe,

the metric in Cartesian coordinates (denoted by xµ = {t, x, y, z}) is given as

follows,

gµν = diag[ −1 , a(t)2 , a(t)2 , a(t)2 ] , (5.2)

where diag[. . .] denotes a diagonal matrix. Here we subscribe to the sign

convention ( − , + , + , + ) of Misner-Thorne-Wheeler (MTW) [48]. The

standard kinetic term of any Lagrangian density is of the form gµν∂µϕ∂νϕ,

where ∂µϕ = ∂ϕ/dxµ = ϕ,µ. Note that because ϕ is a scalar quantity, there

is no requirement to use the covariant derivative ∇µϕ. Due to the Einstein

summation convention, this gives,

L = −ϕ̇2 + a(t)−2
(
ϕ2
,x + ϕ2

,y + ϕ2
,z

)
. (5.3)

Assuming a new coordinate r =
√

x2 + y2 + z2, we can use the chain rule of

differentiation to modify the spatial derivatives of (5.3) as follows,

∂ϕ

∂x
=
∂ϕ

∂r

∂r

∂x
=
x

r
ϕ,r .

Performing the same transformation for both ϕ,y and ϕ,z gives Eq.(5.3) as

L = −ϕ̇2 + a(t)−2ϕ2
,r . (5.4)

Thus, our metric can be compactified to a diagonal matrix with only two

elements, applicable to a new coordinate system xµ = {t, r}.



CHAPTER 5. DEVELOPMENTS IN MODERN COSMOLOGY 43

Continuing our surgery of the FRW metric, we now seek to add some

motivation for including electromagnetic fields. For this, we shall adopt the

Kaluza-Klein method, whereby an extra dimension is included. In principle,

this alternate dimension (of which we have no experience) may be compacti-

fied via a periodic boundary condition to such small size, that it evades even

the most powerful particle accelerators. On the other hand, the holographic

principle (which requires a holographic dimension), may pay claim to fill-

ing this void. To introduce electromagnetic fields, the vector potential Aµ

becomes an integral part of the metric [49, 50]. Modifying accordingly the

metric implied by Eq.(5.4) gives,

g̃µν =








−1 + ξA0A0 ξA0A1 ξA0

ξA1A0 a(t, r)2 + ξA1A1 ξA1

ξA0 ξA1 ξ








(5.5)

where ξ is a constant. This ultimately presents a (2 + 1) dimensional metric

for a new coordinate system xµ = {t, r, χ}, where χ is an unseen extra dimen-

sion. A tilde is chosen to denote a variable in the Kaluza-Klein framework.

However, these can be expressed in terms of the original metric (without

vector potential Aµ included). The new metric has three overall effects.

Firstly, the determinant of the metric transforms as g̃ = det |g̃µν | → ξg.

Secondly, the Ricci scalar curvature R̃ → R + 1
4
ξFµνF

µν . Finally, the ki-

netic term gµν∂µϕ∂νϕ becomes gauge invariant, transforming into |Dϕ|2 =

(∂µϕ−i
√
ξAµϕ)g

µν(∂νϕ
∗+i

√
ξAνϕ

∗). Here ϕ∗ denotes the complex conjugate

of the scalar field.

Generally speaking, no parameters should depend upon the coordinate χ.

Furthermore, it is not often that cosmologists consider a spatially-dependent
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scale-factor within the universe. We have chosen to include this, in order to

model large-scale spatial perturbations. The premise is analogous to that of

Einstein standing on a trampoline (the trampoline representing space-time).

The presence of Einstein’s mass, stretches the material to a larger degree in

the immediate vicinity. Towards the edges of the trampoline, little stretching

occurs.

All ingredients have now been thrown into our cosmological soup. All

that remains, is to formulate the required Lagrangian density L. For an

action S =
∫
L
√
−ξg d3x, this gives,

S =

∫

d3x

√
−ξg
2κ

(

R+ 2Λ +
1

4
ξFµνF

µν + κ
[
|Dϕ|2 − 2V (|ϕ|)

]
)

(5.6)

where gravitational coupling constant κ = 8πG, Λ is the cosmological con-

stant, Fµν = ∂µAν − ∂νAµ is the electromagnetic (field strength) tensor,

Dµ = ∂µ− i
√
ξAµ is the gauge covariant derivative, and V (|ϕ|) is the driving

potential (to be chosen in parallel with Eq.(5.1)). The definition of Fµν would

appear to oblige the use of a covariant derivative (e.g., ∇µAν = ∂µϕ−Γσ
µνAσ),

since we are working with a non-scalar quantity. However, because the in-

dices of Fµν are anti-symmetric, and the bottom two indices of the Christof-

fel symbol Γσ
µν are symmetric, this therefore reduces to the standard partial

derivative.

Overall, we have a surprisingly beautiful result. Via explicit inclusion of

the electromagnetic vector potential Aµ within our metric, we have inadver-

tently reproduced the Lagrangian term that governs axion electrodynamics

∆L = (θe2/4π2)trFµνF̃µν (cf. for details [51, 52, 53, 54]). Here, the parame-

ter θ denotes a specific vacuum of the potential V (ϕ).
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5.5 Screening the Cosmological Constant

Ultimately, we wish to screen the value of the cosmological constant, to an

effective value Λeff which is more consistent with experimental observation.

To achieve this, we begin with the original Einstein-Hilbert action given as,

S =

∫

d3x

√−g
κ

(Reff + 2Λeff) .

Comparing with (5.6) yields an effective cosmological constant,

Λeff =
√

ξ Λ +
1

8
ξ3/2 FµνF

µν + κ
√

ξ

[
1

2
|Dϕ|2 − V (|ϕ|)

]

, (5.7)

and an effective scalar curvature,

Reff =
√

ξR .

Provided the value of ξ is very small, this may provide a means of screening

both values.

Upon variation of the action (5.6) with respect to the background metric

gµν , emerge the Einstein-Maxwell field equations. An extended derivation of

these equations can be found in Appendix A.9.

Rµν −
gµν
2

R− gµνΛ = −ξ
2
FµαF

α
ν +

ξ

8
gµνFσαg

αβFβρg
ρσ

−κ
2
[(∂µϕ− iqAµϕ)(∂νϕ

∗ + iqAνϕ
∗) + µ↔ ν]

+κgµν

[
1

2
|Dϕ|2 − V (|ϕ|)

]

= −κ Tµν , (5.8)

where we have performed a final symmetrisation process upon the gauge

covariant derivative term (cf. Appendix A.5 for details).
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Holographic Methods

6.1 What is Holographic Theory?

Otherwise known as the AdS/CFT correspondence, the theory posits that

(under certain semi-classical approximations) a strongly coupled field-theory

in D-dimensional Minkowski space-time, can be entirely dual to a theory of

quantum gravity living in D+1-dimensional Anti-de Sitter (AdS) space-time.

Recall that D = d+ 1, where d is the number of non-holographic spatial di-

mensions. One approaches the asymptotically flat boundary of AdS space

as the holographic dimension χ → 0, and our boundary theory of quantum

gravity reduces to D-dimensionality. It is this holographic dimension χ which

will determine our energy scale. We shall also discover that upon consider-

ation of a negative cosmological constant (parametrised by the AdS radius

L, or length scale (1/L)), one retrieves the AdS Schwarzschild black hole

solution. As such, we shall encounter a singularity as χ → χ0 - the scaling

of the holographic dimension thus becoming divergent. For a more in-depth

discussion as to precisely why an AdS ansatz is considered, one may refer to

[55].

46
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6.2 Applications to Condensed Matter

In may seem counter-intuitive for one to consider energy scales that reside

well below those at the instant of the big bang. However, there likewise exist

many strongly coupled systems in condensed matter physics, which present

an inherent computational nightmare. The corresponding theoretical models

can only be established upon considering weak approximations and various

assumptions, and thus may fail to capture the full spectrum of phenomena at

hand. Fortunately, one may employ the AdS/CFT correspondence to study

these systems in full detail [56]. We shall discover later that upon consid-

ering holographic superconductors, one may encounter a new class of black

hole solutions that carry charged scalar hair. The two energy regimes (su-

perconductor/black hole) are entirely interchangeable, and constitute a dual

theory. Condensed matter systems may thus offer a laboratory environment

upon which to study many facets of high-energy phenomena.

6.2.1 Holographic Superconductors

The BCS theory encapsulates a wide range of phenomena exhibited by con-

ventional superconductors [57]. Typically, a Cooper pair will condense at low

temperatures due to a strong phonon interaction between fermionic quasi-

particles. However, there do exist cases (e.g., the high-TC cuprates) which

are known to digress from BCS theory. Possible explanations may include

additional interactions (e.g., paramagnons), or systems which can no longer

be explained from a quasiparticle standpoint. Such instances when the latter

may occur, are upon consideration of a phase transition that is very close to

some quantum critical point (i.e., at absolute zero temperature). This criti-

cal point then has a cascading effect upon high temperatures. For example,
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given an energy band-gap less than some critical value Eg < Egc, second

order phase transitions (e.g. the onset of superconductivity) may occur at

higher temperatures. Such phenomena may all be realised by, for example,

varying hole doping concentration, pressure, or an external magnetic field at

a given fixed temperature.

6.3 Mathematical Framework

We shall now consider a simple example, demonstrating how one may com-

pute various quantities residing within a boundary field theory. Once again,

all simulation code can be referred to in Appendix B.2. We begin by consid-

ering a two-component action S as follows,

S = −
∫

dD+1x

√

|g|
2κ

(

R+
D(D − 1)

L2

)

︸ ︷︷ ︸

BULK

+ . . .

∫

dχ
∫

dDx

√
η̃

2κ

(

R̃+
D(D − 1)

L2
+

1

4
FµνF

µν + κ
[

|Dψ|2 − 2V (|ψ|)
])

︸ ︷︷ ︸

BOUNDARY

(6.1)

For our example, we shall consider the caseD+1 = 4 - wherebyD = 3 consti-

tutes the space-time dimensions xµ = {t, x, y} (i.e., the boundary). For con-

venience, we shall temporarily switch to the sign convention ( + , − , − , − ).

Upon consideration of a scale-invariant, asymptotically AdS space-time given

by,

ds2 =
L2

χ2

(

f(χ) dt2 − 1

f(χ)
dχ2 − dx2 − dy2

)

, (6.2)

the volume element
√

|g| = L4/χ4 in the bulk part of the action goes to
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infinity as one approaches the holographic boundary χ → 0. Subsequent

calculations are then incredibly difficult to solve. However, suppose we con-

sider the contents of the bulk action to be zero (i.e., empty space) - this can

then be disregarded. Using the metric components outlined by Eq.(6.2) and

setting R = −12/L2, one can solve the respective differential equation for

f(χ),

f(χ) = 1 + C1χ
3 + C2χ

4 ,

where C1 and C2 are constants. To obtain the asymptotically flat AdS

Schwarzschild black hole solution, one may choose the constants C1 = −1/χ3
0

and C2 = 0 giving,

f(χ) = 1− χ3

χ3
0

. (6.3)

One must take care to remain dimensionally consistent throughout this pro-

cess. Note that since our metric (6.2) is scale invariant (i.e., gµν = Ω(χ) η̃µν),

one can manipulate the term Ω(χ) = L2/χ2 in such a way to make the sys-

tem computationally tractable. This process is achieved by absorbing Ω(χ)

into our original function and coordinate system. By making the following

transformations,

t→ χ2

L2
t , χ→ χ ,

x→ χ

L
x , y → χ

L
y , f(χ) =

L2

χ2
g(χ) .

Eq.(6.2) becomes,
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ds2 = g(χ) dt2 − 1

g(χ)
dχ2 − dx2 − dy2 ,

and rather importantly, we are presented with a non-divergent volume ele-

ment
√

|η̃| = 1. Furthermore, we obtain a new function,

g(χ) =
χ2

L2

(

1− χ3

χ3
0

)

.

The conformal metric η̃µν shall be used throughout the boundary part of the

action (6.1).

The next step is to gain some insight as to the nature of our solutions.

The functions we shall be working with, are the scalar field ψ(χ), and vector

potential Aµ = { g(χ)φ(χ) , 0 , 0 , 0 } where φ(χ) is the scalar potential.

Written explicitly, the action (6.1) takes the following form,

S =

∫

dχ

∫

dDx
1

2κ
(−g′′(χ) + 12

L2
− 1

2
(φ(χ) g′(χ) + φ′(χ) g(χ))

2
. . .

. . . + κ
[
g(χ) (q2φ(χ)2ψ(χ)ψ∗(χ)− ψ′(χ)ψ∗′(χ))− 2m2ψ(χ)ψ∗(χ)

]
) . (6.4)

The next step is to derive the two equations of motion by performing a

variation of Eq.(6.1) with both ψ∗(χ) and φ(χ) respectively. The key point

here is that our boundary terms are required to vanish,

δS = − [g(χ0)ψ
′(χ0)δψ(χ0)− g(0)ψ′(0)δψ(0)] . . .

. . . +

∫

dχ

∫

dDx O(δψ) .
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Since we have g(χ0) = 0 and g(0) = 0, one may conclude that ψ′(0) itself

does not necessarily vanish. However, previous studies [55, 58] with ‘inverse’

coordinate systems show that the conditions ψ′(0) = 0 and ψ′′(0) should be

satisfied (i.e., our scalar field falls off asymptotically to a constant value as

χ→ 0).

δS = − 1

2κ

[
g(χ0)

2φ′(χ0)δφ(χ0)− g(0)2φ′(0)δφ(0)
]
. . .

. . .− 1

2κ
[g(χ0)g

′(χ0)φ(χ0)δφ(χ0)− g(0)g′(0)φ(0)δφ(0)]+

∫

dχ

∫

dDxO(δφ) .

Again, it is not necessarily clear that one must impose the condition φ′(0) = 0

(i.e., scalar potential falls off asymptotically to a constant value). However,

the work of [58] once again verifies this criterion. The full equations of motion

in all their glory are as follows,

δS/δψ∗ = 0 ⇒ gψ′′ + g′ψ′ + (gq2φ2 − 2m2)ψ = 0 , (6.5)

δS/δφ = 0 ⇒ gφ′′ + 2g′φ′ + (2κq2ψψ∗ + g′′)φ = 0 . (6.6)

Upon first inspection, we note a slight discrepancy of dimensionality. We can

remedy this by re-parametrising the scalar field mass m =M/L, and charge

q = Q/L. Since the AdS radius L is fixed, these parameters thus remain

constant throughout our system. These equations now allow us to determine

the precise boundary conditions at χ = 0. Firstly, let us bear in mind what we

already know: g(0) = 1, g′(0) = 0, g′′(0) = 2, ψ′(0) = 0, φ′(0) = 0, ψ′′(0) = 0

and φ′′(0) = 0. Since we prefer not to have vanishing scalar potential (i.e.,

φ(0) 6= 0), we may conclude from Eq.(6.6) that ψ(0) = ± i/q
√
κ. For a
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massless scalar field (i.e., m = 0), solutions can be approximated as the

following,

ψ(χ) =
1

q
√
κ

(

i+ ψ3
χ3

L3

)

, ψ∗(χ) =
1

q
√
κ

(

−i+ ψ3
χ3

L3

)

, (6.7)

φ(χ) = φ0 + φ3
χ3

L3
. (6.8)

Note that since we require both ψ′′(0) = 0 and φ′′(0) = 0, the polynomials

of both functions should be of order greater than three. Given a change

in horizon distance χ0, we shall now investigate the precise behaviour of

constants ψ3 and φ3. To achieve this, we first substitute Eqs.(6.7,6.8) into

the action (6.4), and integrate over the holographic dimension between the

limits χ = 0 and χ = χ0. We then set ∂S/∂ψ3 = 0 and ∂S/∂φ3 = 0, and

solve for both parameters.

We note that the solution investigated is merely an approximation. Of

course, one may include higher-order terms (e.g., the scalar field contribu-

tions ψ4, ψ5) if they so desire. Regardless, from Figure 6.1, we clearly note

the disappearance of the ψ3 contribution for a specific value of horizon ra-

dius χ0. Since the size of a black hole is related to its temperature, most

applications of holographic methods focus upon a phase transition that oc-

curs at some critical temperature. For example, the contribution ψ3 could

be related to the order parameter 〈O〉 of superconductivity. However, our

ultimate objective would be to use this holographic framework within the

context of cosmology and inflationary models.
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Figure 6.1: Here, we plot the parameter ψ3 as a function of horizon ra-

dius χ0. The lines (from left to right) correspond to the values Q =

2.5 , 2 , 1.5 , 1 , 0.5. For each value of charge Q, a critical point occurs at

which the scalar field ψ3 vanishes.



Chapter 7

Inflationary Cosmology

7.1 Locally Flat Space-Time

We first consider the simplest case of a locally flat space-time, subject to the

Minkowski metric ηµν = diag(−1, 1). For this, we shall adopt the Hamil-

tonian formalism, rather than the Lagrangian equivalent. The Hamiltonian

density of the system will then be chosen, as necessary, to be proportional

to the cosmological constant Λ. From Eq.(5.6), we find that this this should

be equal to Λ/κ. The potential chosen to drive the scalar field is the axion

potential (5.1). For simplicity, we shall assume no electromagnetic interac-

tion Aµ = 0, and a real scalar field ϕ = ϕ∗ which does not depend upon our

holographic dimension χ.

The Hamiltonian density is now read as,

H =
ϕ̇2

2
+ V (ϕ, ϕr) ,

54
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=⇒ Λ

κ
=
ϕ̇2

2
+
ϕ2
r

2
+
m4

λ

(

1− cos

(√
λ

m
ϕ

))

. (7.1)

As a side remark; for a homogeneous scalar field, Eq.(7.1) reduces to the

Hamiltonian density for a pendulum. Indeed, the temporal derivative of

Eq.(7.1) (with ϕr = 0), yields the equation of motion for a pendulum. Since

much is already known of the simple pendulum as a classical system, we shall

not discuss the solutions in detail. However, for an inhomogeneous scalar field

ϕ(t, r), Eq.(7.1) has the exact solution in terms of the Jacobi amplitude,

ϕ(t, r) =
2m

λ
am

[√

Λλ

2κm2(1 + v2)
(r + vt) | 2κm

4

Λλ

]

. (7.2)

Here we subscribe to the notation adopted by Abramowitz and Stegun -

ϕ = am(u|M) where M = k2. Plots of this solution can be found in Figure

7.1 for various choice of Λ. For convenience, the constants λ, m, κ and v

are normalised to 1. The constant v refers to the velocity of the wave, as a

fraction of the speed of light (since the speed of light c = 1).

Figure 7.1(A) is merely analogous to a pendulum swinging back and

forth, whilst travelling through the r-domain with speed v. As we begin to

surpass a separatrix value of Λ ≈ 2, the scalar field gains enough angular-

momentum to ‘roll’ into the next vacuum state (i.e., minima) of the potential

V (ϕ) (cf. Figure 7.2). Furthermore, as Λ → 3, the system becomes analogous

to an orbiting body performing circular motion.

However, as previously mentioned, the system is partly analogous to that

of a swinging pendulum. It was therefore natural to investigate how a pen-

dulum would behave when given an extra degree of freedom (e.g., a time-

dependent radius). Rather co-incidentally, the subsequent equations of mo-
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Figure 7.1: Space-time plots of scalar field ϕ(t, r) for various values of

cosmological constant Λ. Constants v, λ, m, and κ are all set equal to one.

(A) Λ = 1 Here, the system is analogous to a pendulum oscillating back

and forth, whilst travelling through the spatial domain with speed v. (B)

Λ = 1.99 Similar to the previous case, a pendulum continues to oscillate but

with much larger amplitude and time period. (C) Λ = 2.01 Here, the scalar

field now has enough energy to roll into the next vacuum state, and continues

to increase in value. (D) Λ = 3 The system is now analogous to that of an

orbiting body performing circular motion.
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tion are identical in nature to those for a quintessence scalar field ϕ, coupled

to a scaling factor a across the spatial component of the metric.

Figure 7.2: Plotted is the axion potential V (ϕ) = m4

λ

[

1− cos
(√

λ
m
ϕ
)]

.

Additionally emphasised is the effect of the cosmological constant Λ. For

small values of Λ, the scalar field will roll inside one of the vacuum states

(cf. Figure 7.1(A)). These vacuum states are centered about the positions

ϕ = 2πnm/
√
λ, for integer values of n. Conversely, for large values of Λ, the

scalar field has the capability to roll from one vacuum state and into another

(cf. Figures 7.1(C-D)).

7.2 Maximal Spatial Homogeneity: ϕ(t), a(t)

We now consider the maximally homogeneous scenario, with a scalar field

ϕ(t) coupled to a scale-factor a(t) across the spatial domain. This scal-

ing factor constitutes the g11 component of the flat FRW metric to give

gµν = diag(−1, a2(t)). The function is squared to ensure that adjacent points

remain a positive distance apart.

All of the necessary parameters are then evaluated, and substituted into



CHAPTER 7. INFLATIONARY COSMOLOGY 58

the Lagrangian density L specified within (5.6). This is then substituted into

the gauge covariant Euler-Lagrange equation [59],

∂ (
√−gL)
∂ϕ

− ∂µ

(
∂ (

√−gL)
∂ (∂µϕ)

)

= 0 , (7.3)

subsequently giving the following two equations of motion:

ϕ̈+
ȧ

a
ϕ̇− m3

√
λ

[

1− cos

(√
λ

m
ϕ

)]

= 0 , (7.4)

Λ

κ
=
ϕ̇2

2
+
m4

λ

[

1− cos

(√
λ

m
ϕ

)]

. (7.5)

Eq.(7.5) has the following exact solution,

ϕ(t) =
2m

λ
am

[√

Λλ

2κm2
t | 2κm

4

Λλ

]

. (7.6)

The solution for ϕ(t) given above, is now substituted into Eq.(7.4). The

subsequent differential equation is then solved for the scale-factor a(t) to

give the following Jacobi relation,

a(t) =
C1

dn
[√

Λλ
2κm2 t |2m4κ

Λλ

]2 .

The constant C1 merely influences the amplitude of a(t). For simplicity, this

has been normalised to one. Plots of this solution can be found in Figures

7.3(A-D) for various choice of Λ.

As previously mentioned, for small values of Λ, the scalar field does not

have the capability to roll from one vacuum state to another (cf. Figure 7.2).
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Figure 7.3: Plots of scalar field (blue) and scale-factor (green) for various

choice of Λ. Constants v, λ, m, and κ are all set equal to one. (A) Λ = 1,

(B) Λ = 1.99, (C) Λ = 2.01, (D) Λ = 3. For values of Λ > 2, the scalar field

continues to increase. As the kinetic ϕ̇ contribution diminishes, this energy

is transformed into an elastic potential energy, manifesting itself as growth

of the scale-factor.

This implies the scalar field will eventually have a ϕ̇ (i.e., kinetic) component

equal to zero. However, for a pendulum, as ϕ̇ approaches zero, this kinetic

energy would transform into an elastic potential energy, and thus an expan-

sion of its radius (i.e., our spatial domain). As the constant Λ is increased,

so does the overall ϕ̇ contribution, and the relative change in scale-factor

is found to be much smaller (cf. Figure 7.3(D)). Therefore, the constant

Λ can be considered to be analogous to a spring-constant, determining the

elasticity of the spatial domain. As previously mentioned, if Λ is sufficiently

large, the system will exhibit circular motion, and thus the pendulum length

(i.e., scale-factor of the universe) will be constant.
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7.3 Partial Homogeneity: ϕ(t), a(t, r)

In this section, we consider an inhomogeneous scale-factor a(t, r), as this

possesses a surprisingly simple result. From this point on, we disregard the

values of Λ which result in an infinite expansion (cf. Figures 7.3(A-B)).

After performing all the necessary steps, the obtained equations of motion

are found to be identical to those for the maximally homogeneous scenario.

However, after substituting the solution (7.6) for ϕ(t) into Eq.(7.4), we in-

stead solve the differential equation for a scale-factor a(t, r). The solution is

given as the following Jacobi relation,

a(t, r) =
C1(r)

dn
[√

Λλ
2κm2 t |2m4κ

Λλ

]2 .

This is just the same as before, with the exception that amplitude C1 now has

an added spatial dependence. This allows one to specify the initial perturba-

tion that is present in the scale-factor. Plots are shown in Figure 7.4 for var-

ious choice of C1(r). Within Figures 7.4(C-D), we have C1(r) = 2− cos(r).

The boundaries of the spatial domain are specified accordingly, so as to sat-

isfy the topological identification P1 = P2 ↔ r(P1) = r(P2) + 2πRn where

n ∈ Z. It is evident from the gridlines, that certain regions are subject to

a faster rate of expansion. For Figure 7.4(E), five distinct regions across

the spatial domain now undergo an accelerated expansion, with the topo-

logical identification remaining in-situ. Figure 7.4(F) on the other hand,

has the effect of modelling an infinite universe (via the scale-factor) within a

finite-sized domain. No topological identifications are specified here.

Physical representations of Figures 7.4(C)(E) are shown in Figures 7.5(A-

B) respectively. Regions of large scale-factor have an observable effect upon
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Figure 7.4: (A-B) Space-Time plots of a homogeneous scalar field ϕ for

two differing choices of Λ. (C-D) Space-Time plots of an inhomogeneous

scale-factor with C1(r) = 2 − cos(r). (E) Space-Time plot of an inhomo-

geneous scale-factor with C1(r) = 2 − cos(5r). (F) Space-Time plot of an

inhomogeneous scale-factor with C1(r) = sec(r).
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the r-coordinate grid axis. An observer positioned at r = 0 would observe

adjacent r-coordinate lines receding at a rate which is proportional to their

distance away. This has the desired effect of modelling Hubble’s law.

Figure 7.5: (A) A periodic one-dimensional universe with C1(r) = 2 −
cos(r). The dashed lines indicate the r-coordinate grid axis. The arrow in-

dicates a region with large scale-factor a(t, r). Adjacent points accelerate

away from one another with a velocity proportional to their separation; thus

mimicking the effect of Hubble’s law. (B) A periodic one-dimensional uni-

verse with C1(r) = 2 − cos(5r). The arrows indicate five distinct regions of

accelerated expansion.

7.4 Maximum Inhomogeneity ϕ(t, r), a(t, r)

For this scenario, the derived equations of motion are as follows;

a3ϕ̈− aϕrr + a2 ȧϕ̇+ arϕr − a3
m3

√
λ
sin

(√
λ

m
ϕ

)

= 0 , (7.7)

Λ

κ
=
ϕ̇2

2
+
ϕ2
r

2a2
+
m4

λ

[

1− cos

(√
λ

m
ϕ

)]

. (7.8)



CHAPTER 7. INFLATIONARY COSMOLOGY 63

By specifying initial conditions at t = t0 that we have ϕ = ϕ0, ϕ̇ = ϕ̇0,

ϕr = ϕ0r, and a0 = 1, Eq.(7.8) can once again be solved analytically;

ϕ(t = t0, r) =
2m

λ
am

[√

Λλ

2κm2(1 + v2)
(r + vt0) |

2κm4

Λλ

]

. (7.9)

Furthermore, one may also re-arrange Eq.(7.8) for the scale factor a(t, r),

and substitute this into Eq.(7.7). This then gives an equation of motion that

requires solving only in the scalar field ϕ(t, r).

a(t, r) =

√
√
√
√

κλϕ2
r

2λΛ− 2m4κ
[

1− cos
(√

λ
m
ϕ
)]

− κλϕ̇2
. (7.10)

This can then solved numerically by specifying (7.9) and its temporal deriva-

tive as the initial conditions. Following the computation of ϕ(t, r), ϕ̇(t, r)

and ϕr(t, r) (cf. Figures 7.6 (left) - 7.7 (left/right) respectively), subject to

a certain choice of parameters (Λ = 3, λ = 1, m = 1, κ = 1, v = 0.9), one

may then use Eq.(7.10) to retrieve the scale-factor a(t, r). A plot of this can

be found in Figure 7.6 (right). In these figures, the vertical axis corresponds

to the time component, and the horizontal axis - the spatial component.

As in previous sections, the constant Λ must be made sufficiently large,

so as to prevent an infinite expansion. We also note how Figure 7.6 initially

bares some resemblance to Figure 7.4(D). Except here, the scale-factor is

propagating through the spatial domain, distorting the geometry of space in

the process. Thus at this point, questions arise as to whether dark-energy

could be the consequence of an oscillating gravitational wave. These are

physical phenomena (although, as of yet, not been detected directly), which
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due to their localised energy-density, distort the space-time domain. This

energy-density associated with the scalar field can be obtained via the effec-

tive cosmological constant of Eq.(5.7) (cf. Figures 7.8-7.9).

7.5 A Deflationary Mechanism?

The model which we study here, sheds light upon the various scenarios of in-

flation within the primordial universe [60]. These are generally characterised

by the choice of initial potential V0(ϕ) which simulates a temporarily non-

vanishing cosmological term [61]. Furthermore, the classification of allowed

inflationary potentials and scenarios, has been explored in [61] via the use of

the catastrophe theory (cf. for details [62]).

Inflation was first proposed more than 30 years ago now [63], and sug-

gested that our universe may have undergone a period of rapid expansion in

its early stages. Three major problems exist in modern cosmology; these are

dubbed the horizon, flatness, and monopole problems. The two which we

are most concerned with are the flatness and horizon problems. Specifically,

why does the universe appear so flat, and almost homogeneous everywhere?

Of course, as the universe expands, any initial perturbations in space will be

flattened out. Still, how is it that our universe can appear so homogeneous

over such vast cosmological scales? For two regions of space that are not

in causal contact with each other, how could such an equilibrium between

the two be attained? The answer resides within inflation theory, proposing

that our universe was once much smaller, with all regions residing within the

causal sphere. Inflation would then expand the universe beyond all propor-

tion, to the grandest of scales, and in a mere fraction of a second.

Throughout Figures 7.6-7.9, it is evident our toy model is undergoing
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Figure 7.6: The vertical and horizontal axes represent the temporal and

spatial dimensions respectively. The scalar field ϕ (left) is plotted across

the range 1.6 < ϕ < 96.0 (60 contours), with darker colours representing a

smaller value. The scale-factor a (right) is plotted across the range 0.657 <

a < 2.774 (30 contours), although higher values are omitted.



CHAPTER 7. INFLATIONARY COSMOLOGY 66

Figure 7.7: The vertical and horizontal axes represent the temporal and

spatial dimensions respectively. The time derivative of scalar field ϕ̇ (left)

is plotted across the range 0.531 < ϕ̇ < 2.242 (30 contours), with darker

colours representing a smaller value. The spatial gradient of the scalar field

ϕr (right) is plotted across the range 0.5 < ϕr < 3.4 (30 contours).
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Figure 7.8: The vertical and horizontal axes represent the temporal and

spatial dimensions respectively. The effective cosmological constant Λeff is

plotted (left) for times t ∈ [0, 50] across the range 0.25 < Λeff < 7.50 (30 con-

tours), with darker colours representing a smaller value. The effective cos-

mological constant has also been plotted (right) for later times t ∈ [100, 150]

across the range 2.88 < Λeff < 8.10 (30 contours).
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Figure 7.9: The vertical and horizontal axes represent the temporal and

spatial dimensions respectively. The effective cosmological constant Λeff is

plotted (left) for times t ∈ [1000, 1050] across the range 3.57 < Λeff < 8.16

(10 contours), with darker colours representing a smaller value. The ef-

fective cosmological constant has then been plotted (right) for later times

t ∈ [10000, 10050] across the range 3.76 < Λeff < 7.52 (5 contours). The

key result to note is that the range of Λeff is becoming smaller. In this

present epoch, one may therefore not expect huge spatial variations within

the observed cosmological constant.
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Figure 7.10: Space-time plot of the scale-factor a(t, r). Constants are cho-

sen as Λ = 3, λ = 1, m = 1 and κ = 1, subject to initial condition a0 = 1. A

highly localised spatial distortion can be seen moving from left to right. This

is due to an interaction of the scalar field with the boundary, and propagating

back along the system.

different phases of its evolution. At t = 0, the scale-factor was specified as

homogeneous. However, as t progresses, some regions appear to undergo a

cyclic expansion; the amplitude of which becoming successively larger with

each oscillation. These peaks correspond to the scalar field ϕ(t, r) traversing

various vacuum states of the potential V (ϕ). Supposing the cosmological

constant Λ were smaller in value; the scalar field would not traverse as many

of these states, thus leading to less oscillations. A value similar to that used

in Figure 7.4(A), would present a means of a modelling a single period of

expansion.

As t progresses further, the ϕ̇ contribution begins to dominate. We also
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note the presence of a a highly localised spatial distortion commencing at

coordinates (32,0), and ending at (46,9). This distortion is plotted within

Figure 7.10 as a three-dimensional space-time plot. This shows a propagating

singularity; the consequent effect of which, is a warping of the spatial domain.

However, the process (lasting a fraction of a second) is more likened to a

deflationary process - regions of space undergo momentary collapse, and then

re-expanding. This phenomena propagates throughout the spatial domain

with speed v, identical to that of the incident wave. Furthermore, the process

is not global, and does not permit all regions of space to be in causal contact

with one another. For such a scenario to occur, the scale-factor must be zero

at all points in space at a given value of time t. Luckily, there is another

possibility which we shall discuss momentarily.

So how does one explain Figure 7.7 after such a process? There is a

negligible ϕ̇ contribution, yet the scale-factor a(t, r) has not undergone a

substantial increase. As we have noted in the previous section; when ϕ̇

approaches zero, the scale-factor increases to a large value (cf. Figure 7.3).

To explain this, we must first consider the mechanics of the system in all their

gory detail. One has a travelling wave solution, which propagates with speed

v. When the wave solution reaches the boundary of our system, it then seeks

to propagate back along the spatial axis with speed −v. The secondary wave

carries form of a soliton, and disrupts all further incoming waves, nullifying

the ϕ̇ contribution. As such, there are instances when ϕr either grows rapidly,

or becomes zero. From Eq.(7.10), this has clear consequences for the scale-

factor. Furthermore, we note that the scalar field ϕ as given by Eq.(7.9), is

not bound by the speed of light (i.e., the speed v could, in principle, be greater

than 1). This implies that the reflected wave from the boundary would also

travel with a speed greater than light, and communicate information over
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vast distances. This may offer possible reprieve from the horizon problem we

highlighted upon earlier.

One must also consider the conservation of energy. With a negligible ϕ̇

contribution, the transformed energy can only manifest itself as the scalar

gradient ϕr, which competes with both the scale-factor a and axion potential

V (ϕ) until equilibrium is reached. As an aside, a physical representation of

the scalar field is shown in Figure 7.11. This shows the scalar field increasing

by a factor of 2π each time as r increases. As time t progresses, this assembly

will typically perform a ‘screwing’ motion throughout the spatial domain.

Figure 7.11: A physical representation of the scalar field ϕ(t, r). As time t

progresses, the assembly performs a ‘screwing’ motion throughout the spatial

domain and travels with speed v. However, it is viable that the scalar gradient

ϕr may compete with both the scale-factor a(t, r) and axion potential V (ϕ),

such that no screwing motion occurs. Here, the scale-factor is representative

of the length for each individual pendulum. This instance first occurs at

the end of the chain - the final pendulum performs a revolution, and then

propagates back with speed −v, thus affecting all further incoming waves.



CHAPTER 7. INFLATIONARY COSMOLOGY 72

7.6 Discussion

We have studied all possible scenarios for modelling dark-energy via the

quintessence scalar field ϕ. Upon considering FRW models, the cosmolog-

ical constant Λ was found to be analogous to a spring-constant, and thus

determining the elasticity of the spatial domain. As the scalar field’s kinetic

energy (given by the ϕ̇ contribution) diminishes, this energy was found to

transform into an elastic potential energy. This presented a desirable mech-

anism for expansion of the spatial domain. The consideration of an added

spatial dependence within the scale-factor also lead to a means of modelling

Hubble’s law. It has been found that irrespective of one’s position in the

universe, the more distant r-axis grid-lines recede at a faster rate.

When investigating the fully inhomogeneous scenario, solutions for the

scale-factor were representative of a wave-like structure, initially propagating

through the spatial domain with an oscillatory amplitude. This wave had the

overall effect of distorting the geometry as it travelled. For late times, the

effective cosmological constant Λeff is found to be almost homogeneous (cf.

Figures 7.8 – 7.9). The variations present are characteristic of the observed

microwave background, tiny fluctuations that can ultimately lead to large-

scale structure formation of both filaments and voids.

A key result was also the relaxation of both the effective cosmological

constant Λeff , and the effective Ricci scalar Reff , to be consistent with the

small values that are observed today. From Eq.(5.7), it was found that both

quantities depend upon some parameter ξ which determines the scaling of

some unseen extra dimension. Supposing this extra dimension χ were to be

2π periodic, the parameter ξ would then determine the radius of this extra

dimension. For an observed cosmological constant Λeff ∼ 10−35, this truly

puts into perspective the energies required to access such small dimensions,
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well beyond that of any particle accelerator. For convenience, simulation

results for Figures 7.8 – 7.9 use a value ξ = 2κ = 2. However, this value of ξ

merely affects the amplitude of the result, and can be scaled as necessary.

At this stage, the cosmological constant looks improbable as an overall

contribution to Λeff (cf. Eq.(5.7)). As mentioned previously, theoretical pre-

dictions for the energy-density Λ at the instant of the big-bang [12] are of the

order ∼ 1093g/cm3. Using Eq.(5.7), to relax this parameter to its present day

value of ≈ 7 × 10−30g/cm3, one would require an extra dimension of radius

∼ 10−246m. Ideally then, this energy-density Λ should be screened completely

by the scalar field. What remains, is the tiny contribution from electromag-

netism. Electromagnetic phenomena are seldom considered in gravitational

physics and cosmology. However, this stark conclusion implies that their

effects could be fundamental to understanding why indeed the cosmological

constant is so small!



Appendix A

Tensor Calculus

I have condensed the material in this section into as much a concise and sim-

ple form as possible for the reader’s benefit, whilst maintaining an integrity

of the mathematical formulae being dealt with. There are certain aspects

one should remain aware of - namely, that different authors adhere to their

own conventions and definitions, which may not explicitly be outlined. In

particular, one convention which requires clarification is when to use Greek

or Latin indices. Throughout this text, Latin indices (e.g., a,b,c,d etc) are

used to denote the spatial coordinates. Greek indices (e.g., α, β, γ, δ etc) are

used to denote the components of space-time (i.e., spatial coordinates and

one time coordinate).

A.1 Coordinate Transformation

Supposing we have an n-dimensional space - one then requires n independent

coordinates xi = {x1, x2, . . . , xn} to specify the location of a single point. It

is important for the reader not to confuse upper indices throughout this text

with those of powers. If powers are being dealt with, the convention shall be

74
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to position them outside the bracket - for example, (. . .)n. We are most famil-

iar with the world of three spatial dimensions (i.e., xi = {x1, x2, x3}). If these
coordinate axes are then altered in some manner, for example via transla-

tion or rotation, the components will differ from previous entries. Since the

newly formed coordinates xi
′
are related to the previous set xi via some

transformation f , the coordinates xi
′
are functions of xi. Conversely, the

coordinates xi can be expressed as functions of the xi
′
via a corresponding

inverse transformation g.

xi
′
= f(x1, x2, . . . , xn) or f : xi −→ xi

′
, (A.1)

xi = g(x1
′
, x2

′
, . . . , xn

′
) or g : xi

′ −→ xi . (A.2)

A.2 Kronecker Delta

We first recall the chain rule of differentiation for functions of multiple vari-

ables. Applying this to Eq.(A.2) gives the following:

∂xi

∂x1
=

∂xi

∂x1′
∂x1

′

∂x1
+
∂xi

∂x2′
∂x2

′

∂x1
+ . . .+

∂xi

∂xn′

∂xn
′

∂x1
,

∂xi

∂x2
=

∂xi

∂x1′
∂x1

′

∂x2
+
∂xi

∂x2′
∂x2

′

∂x2
+ . . .+

∂xi

∂xn′

∂xn
′

∂x2
, (A.3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

∂xi

∂xj
=

∂xi

∂x1′
∂x1

′

∂xj
+
∂xi

∂x2′
∂x2

′

∂xj
+ . . .+

∂xi

∂xn′

∂xn
′

∂xj
.

This is more conveniently expressed as,
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∂xi

∂xj
=

n∑

k=1

∂xi

∂xk′
∂xk

′

∂xj
. (A.4)

Since our coordinates are independent of one another, the left hand side of

Eq.(A.4) is zero unless i = j, in which case it is unity. Thus the following

statement holds,

n∑

k=1

∂xi

∂xk′
∂xk

′

∂xj
= δij , (A.5)

where δij is the Kronecker delta.

A.3 Summation Convention

If an index appears in the RHS of an equation exactly twice (a so called

dummy index), then it is assumed that this index is summed for all values 1

to n. This is the basis of the Einstein summation convention. Thus Eq.(A.5)

becomes,

∂xi

∂xk′
∂xk

′

∂xj
= δij (k = 1 . . . n) .

Due to interchangeability of coordinates xi and xi
′
, the following is also valid,

∂xi
′

∂xk
∂xk

∂xj′
= δi

′

j′ (k = 1 . . . n) .

A.3.1 Indexing: A Quickfire Method

To ensure that an equation is consistent, we analyse the indexing of our

coordinate system. Incidentally, it should be mentioned that a superscript in
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the denominator of a fraction is treated as a subscript, and that a subscript

in the denominator is treated as a superscript. Indices within the numerator

retain their usual meaning. In general, the following criteria must be met:

• If unprimed indices i, j, k appear as superscripts on the LHS of an

equation, they must appear as superscripts on the RHS of the equation.

• If unprimed indices i, j, k appear as subscripts on the LHS of an equa-

tion, they must appear as subscripts on the RHS of the equation.

• If primed indices i′, j′, k′ appear as superscripts on the LHS of an equa-

tion, they must appear as superscripts on the RHS of the equation.

• If primed indices i′, j′, k′ appear as subscripts on the LHS of an equa-

tion, they must appear as subscripts on the RHS of the equation.

• If an index appears as both superscript and subscript on the RHS of an

equation, then it is not necessary for that index to appear on the LHS.

This is a process known as the contraction of indices (cf. Appendix

A.3: Summation Convention).

As a brief example, let us check for consistency within the Riemannian cur-

vature tensor,

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (λ = 1 . . . n) .

Each of the terms has ρ as a superscript, and µνσ as subscripts. The λs in

the final two terms contract with one another, thus λ does not appear on

the LHS of the equation. Both of these terms are summed over for values of

λ = 1 . . . n. As another example, consider the following,

a
r′
1
,r′

2
,...,r′m

p′
1
,p′

2
,...,p′q

= as1,s2,...,smt1,t2,...,tq

(
∂xr

′
1

∂xs1
∂xr

′
2

∂xs2
. . . . . .

∂xr
′
m

∂xsm

)(
∂xt1

∂xp
′
1

∂xt2

∂xp
′
2

. . . . . .
∂xtq

∂xp
′
q

)
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The sets of primed indices {r′1, r′2, . . . r′m} and
{
p′1, p

′
2, . . . p

′
q

}
are present on

both sides - the set {r′1, r′2, . . . r′m} appearing as the superscript, and the set
{
p′1, p

′
2, . . . p

′
q

}
as the subscript. The sets of unprimed indices {s1, s2, . . . sm}

and {t1, t2, . . . tq} both occur twice on the RHS. These indices thus contract

with one another, and do not appear on the LHS of the equation. Each

contracted variable, s1, s2 . . ., t1, t2 . . . etc is summed for all values 1 to n;

returning (n)m+q different terms; thus the convenience of tensor analysis.

By applying these simple conditions laid out to forthcoming equations, the

reader will become more familiar with indexing of variables.

A.4 Contravariants, Covariants and Invariants

A.4.1 Contravariant Vectors

Any direction in an n-dimensional space can be represented by the basis

vectors dxi and dxj
′
, within the coordinate systems xi and xj

′
respectively.

One of the simplest coordinate transformations is achieved by applying the

rotation matrix to some vector λi. Here the xi coordinate system is rotated

through an angle θ. This transformation will alter the individual components

of the vector, although its magnitude will remain unchanged (cf. Figure A.1).

λj
′
= ROT (λi) =




cos θ − sin θ

sin θ cos θ








λ1

λ2



 =





∂x1
′

∂x1

∂x1
′

∂x2

∂x2
′

∂x1

∂x2
′

∂x2








λ1

λ2



 .

This yields the following two equations,

λ1
′
=
∂x1

′

∂x1
λ1 +

∂x1
′

∂x2
λ2 (j = 1) , (A.6)
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Figure A.1: Applying the rotation matrix to a vector leaves its magnitude

unchanged

λ2
′
=
∂x2

′

∂x1
λ1 +

∂x2
′

∂x2
λ2 (j = 2) . (A.7)

or more generally speaking,

λj
′
= λi

∂xj
′

∂xi
(i = 1 . . . n) . (A.8)

Note that in general, the Jacobian matrix ∂xj
′
/∂xi may not necessarily be

a rotation matrix; its use here was unique to the problem at hand. In the

event of such a relation as with Eq.(A.8), the two entities λi and λj
′
in their

respective coordinate systems are said to transform as contravariant vectors.

Multiplying Eq.(A.8) by ∂xk/∂xj
′
gives,

∂xk

∂xj′
λj

′
= λi

∂xj
′

∂xi
∂xk

∂xj′
= λiδki = λk . (A.9)
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We note that the components of a contravariant vector are denoted via a

single upper index. Thus a contravariant vector is defined as a contravariant

tensor of first order or rank-1.

Covariant Vectors

The gradient of a function f with respect to coordinates xj
′
, gives a co-

variant vector λj′ . Conversely, the gradient of a function f with respect to

coordinates xi yields a covariant vector λi. Recall that a superscript in a

denominator is treated as a subscript - hence the components of a covariant

vector are denoted via a single lower index. More formally, a covariant vector

is defined as a covariant tensor of first order or rank-1,

∂f

∂xj′
= λj′ =

∂f

∂xi
∂xi

∂xj′
= λi

∂xi

∂xj′
. (A.10)

A.4.2 Invariants

Finally we discuss an invariant; a scalar which remains unchanged under

coordinate transformation. Multiplying Eq.(A.8) by Eq.(A.10) gives,

λj
′
λj′ = λi

∂xj
′

∂xi
λi

∂xi

∂xj′
= λiλi = λjλj . (A.11)

In other words, if the same index appears once as both subscript and super-

script (e.g. λi
′
µi′), and no other indices appear, then we are dealing with an

invariant. The same is true for unprimed indices (e.g., λiµi), but not when

a prime is mixed with an unprimed index such as λi
′
µi.
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A.4.3 Transforming Tensors

Suppose for a primed coordinate system xi
′
, we let λi

′
and µj′ represent

the components of two contravariant vectors, and λi′ and µj′ represent the

components of two covariant vectors. One can then formulate second order

(i.e., rank-2) tensors via multiplication of these entities,

ai
′j′ = λi

′
µj′ , ai′j′ = λi′µj′ , ai

′

j′ = λi
′
µj′ , (A.12)

where ai
′j′ is a contravariant tensor, ai′j′ is a covariant tensor, and a

i′
j′ a mixed

tensor, each of rank-2. Using the relations already shown in Eqs.(A.8,A.10),

ai
′j′ = λk

∂xi
′

∂xk
µl ∂x

j′

∂xl
= akl

∂xi
′

∂xk
∂xj

′

∂xl
,

ai′j′ = λk
∂xk

∂xi′
µl

∂xl

∂xj′
= akl

∂xk

∂xi′
∂xl

∂xj′
, (A.13)

ai
′

j′ = λk
∂xi

′

∂xk
µl

∂xl

∂xj′
= akl

∂xi
′

∂xk
∂xl

∂xj′
.

One can even transform tensors of higher order as follows:

A contravariant tensor of rank m

ar
′
1
,r′

2
,...r′m = as1,s2,...sm

(
∂xr

′
1

∂xs1
∂xr

′
2

∂xs2
. . . . . .

∂xr
′
m

∂xsm

)

. (A.14)

A covariant tensor of rank m,

ar′
1
,r′

2
,...r′m = as1,s2,...sm

(
∂xs1

∂xr
′
1

∂xs2

∂xr
′
2

. . . . . .
∂xsm

∂xr′m

)

. (A.15)

A mixed tensor of rank m+q , contravariant of the mth order and covari-

ant of the qth order,

a
r′
1
,r′

2
,...r′m

p′
1
,p′

2
,...p′q

= as1,s2,...smt1,t2,...tq

(
∂xr

′
1

∂xs1
∂xr

′
2

∂xs2
. . . . . .

∂xr
′
m

∂xsm

)(
∂xt1

∂xp
′
1

∂xt2

∂xp
′
2

. . . . . .
∂xtq

∂xp
′
q

)

.
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A.5 Symmetry

Any rank-2 tensor of indices ‘ij’ is simply a matrix, where rows and columns

are denoted by the ‘i’ and ‘j’ components respectively.

Symmetric: If a tensor remains unaffected upon interchange of two in-

dices, then the tensor is considered symmetric with respect to those indices.

If this applies to all indices present, the tensor itself is symmetric.

aij =








1 2 3

2 4 5

3 5 6








= aji = (aij)
T =








1 2 3

2 4 5

3 5 6








Symmetric Tensor with n(n+ 1)/2 different entries.

Skew-Symmetric: If a change in sign appears upon interchange of any

two indices, then the tensor is considered skew-symmetric (anti-symmetric)

with respect to those indices. If this applies to all indices, the tensor itself

is skew-symmetric. Note that two consecutive permutations of indices would

reproduce the original sign.

aij =








0 1 2

−1 0 3

−2 −3 0








= -aji = −(aij)
T = −








0 −1 −2

1 0 −3

2 3 0








Skew-Symmetric Tensor with n(n− 1)/2 different entries.

Asymmetric: If upon interchange of two indices there is a complete change

in result, then the tensor is considered to be asymmetric with respect to
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those indices. If this applies to all indices, the tensor itself is asymmetric.

aij =








1 2 3

4 5 6

7 8 9








6= aji = (aij)
T =








1 4 7

2 5 8

3 6 9








Asymmetric Tensor with n2 different entries.

One may of course make a tensor aijk either symmetric or skew-symmetric via

the processes of symmetrisation and skew-symmetrisation respectively. To

make a tensor symmetric, round brackets ( ) enclose all indices. If a tensor

is symmetric with respect to a portion of its indices, round brackets enclose

only the indices concerned. The following equation shows how to make any

rank-2 tensor symmetric,

a(ij) =
1

p!
(aij + aji) (p = 2) . (A.16)

Here, p is the number of indices that are being made symmetric. As a quick

example, take the asymmetric tensor aij we dealt with previously.

a(ij) =
1

2!





















1 2 3

4 5 6

7 8 9








+








1 4 7

2 5 8

3 6 9





















=








1 3 5

3 5 7

5 7 9








(p = 2)

We can even extend the method to any tensor of higher order,
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a(ijk) =
1

p!
(aijk + aikj + ajik + akji + ajki + akij) (p = 3) .

In almost the same manner, one can make a tensor skew-symmetric. Skew-

symmetrisation is represented by square brackets [ ], and such that an inter-

change of any two indices gives a change in sign,

a[ij] =
1

p!
(aij − aji) (p = 2) ,

a[ijk] =
1

p!
(aijk − aikj − ajik − akji + ajki + akij) (p = 3) . (A.17)

Finally, consider skew-symmetrising the tensor aijk for indices ij only (i.e.,

a[ij]k), or indices ik only (i.e., a[i|j|k]). Note the vertical bars (guards) which

protect index j from the process, and that p = 2 for both cases. The same

applies for the symmetrisation process, albeit with round brackets ( ) instead.

A.6 The Christoffel Symbol

The Christoffel symbols of the first and second kinds are defined as follows,

[ij, k] =
1

2

(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)

, (A.18)

Γl
ij = glk [ij, k] =

1

2
glk
(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)

. (A.19)

Supposing the tensor gij is symmetric - interchanging the indices i and j
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within Eq.(A.18) clearly has no effect upon the outcome. Thus, the Christof-

fel symbols are symmetric within indices i and j.

Checking the consistency of indexing, it also follows that the indices

of [ij, k] are considered as subscripts. Furthermore, we note that within

Eq.(A.19), the index k is summed over for all values 1 . . . n. A derivation of

Eq.(A.18) will be given later when discussing covariant derivatives.

A.7 Covariant Derivatives

The covariant derivative ∇i gets its name from the fact that it possesses

a single lower index, much like the partial derivative ∂i. However, there is

a slight difference. Whilst ∇i g
r1...rm
s1...sp

does transform as a tensor (giving a

mixed tensor of rank m + p + 1), its partial equivalent ∂i g
r1...rm
s1...sp

does not -

except for the limiting case of a function (i.e., scalar quantity) which gives a

covariant tensor of rank-1. Partial derivatives can be thought of generating a

flat tangent space upon any curved surface, whereas covariant derivatives are

slightly more difficult to envisage. It is convenient therefore to demonstrate

covariant differentiation via means of a few examples:

∇i f = ∂i f For a function / scalar (A.20)

∇i λ
l = ∂i λ

l + Γl
ij λ

j For a (1, 0) tensor (A.21)

∇i λl = ∂i λl − Γj
il λj For a (0, 1) tensor (A.22)

∇i g
lm = ∂i g

lm + Γl
ij g

jm + Γm
ij g

lj For a (2, 0) tensor (A.23)

∇i glm = ∂i glm − Γj
im glj − Γj

il gjm For a (0, 2) tensor (A.24)

∇i g
l
m = ∂i g

l
m + Γl

ij g
j
m − Γj

im g
l
j For a (1, 1) tensor (A.25)
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Let us begin by considering the first term on the RHS of Eq.(A.20). It

possesses the same indices as the LHS (as it should), the only difference being

a partial derivative. Look through the rest of the equations, and observe that

this statement holds true.

The next thing to observe is the number of Christoffel symbols which

appear explicitly in each equation; for Rank-1 there is only one, for Rank-2

there are two and so forth. It is important to note that each Christoffel

symbol is summed over, since a contraction is present.

Now observe in Eq.(A.21) that since a Christoffel symbol appears (which

has three indices), one of these indices is required to contract with another

(since there are only two indices on the LHS). The contraction is not within

the Christoffel symbol itself, so the index of our tensor being acted upon

must change. The new index in the tensor contracts with a lower index of

the Christoffel symbol. The original index of the tensor becomes the upper

index of the Christoffel symbol. Note also that within Eqs.(A.23-A.25), one

index of the original rank-2 tensor is remains fixed; hence two Christoffel

symbols.

The final observation (most evident from Eq.(A.25)), is that changing a

contravariant index means a plus sign precedes the Christoffel symbol. Con-

versely, changing a covariant index means a minus sign precedes the Christof-

fel symbol.

Thus, one may draw up a quickfire guide to covariant differentiation:

• Step 1: The first term on the RHS will be the same as the LHS, just

replace nabla ∇ with partial ∂ and use the same indices.

• Step 2: For the second term on the RHS, simply write the same tensor
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you are trying to differentiate, but change one of the indices to another

character. If you change an upper index in the original tensor, a plus

sign will precede the new tensor. Conversely, use a minus sign if you

change a lower index. Repeat this step until all indices have been

changed. Note that only one index for each new tensor on the RHS

should be different to the tensor on the LHS - all other indices remain

unaffected.

• Step 3: Christoffel symbols are now required to precede to newly formed

tensors on the RHS, and it is easy to know which indices the Christoffel

symbols will possess. Each entity on the RHS must have the same

indices as the LHS, and thus a contraction of indices will be present.

A.7.1 Metric Compatibility

A metric (a rank-2 covariant tensor) is said to be compatible if its covariant

derivative is equal to zero; e.g. ∇k gij = 0. One may then use this relation

to derive the Christoffel Symbol of Eq.(A.18).

1) ∇k gij = ∂k gij − Γl
ik glj − Γl

jk gil = 0 ,

2) ∇j gik = ∂j gik − Γl
ij glk − Γl

jk gil = 0 ,

3) ∇i gjk = ∂i gjk − Γl
ij glk − Γl

ik gjl = 0 ,

2) + 3) − 1) = ∂j gik + ∂i gjk − ∂k gij − 2Γl
ij glk = 0 .

Here, we have used the fact that Christoffel symbols and metrics are sym-

metric in their lower two indices (e.g., Γl
ik glj = Γl

ik gjl). Thus, we have the

following relation,
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Γl
ij glk =

1

2
(∂j gik + ∂i gjk − ∂k gij) = [ij, k] .

A.8 Derivation of the Riemann Tensor

Firstly, one must apply the commutator of two covariant derivatives [∇µ,∇ν ]

to a contravariant vector V ρ. This yields the following,

[∇µ,∇ν ]V
ρ = (∇µ∇ν −∇ν∇µ)V

ρ = ∇µ∇νV
ρ

︸ ︷︷ ︸

(1)

−∇ν∇µV
ρ

︸ ︷︷ ︸

(2)

1) ∇µ (∇νV
ρ) = ∂µ (∇νV

ρ)
︸ ︷︷ ︸

a

−Γλ
µν ∇λV

ρ

︸ ︷︷ ︸

b

+Γρ
µσ ∇νV

σ

︸ ︷︷ ︸

c

= ∂µ (∂νV
ρ + Γρ

νσV
σ)

︸ ︷︷ ︸

a

−Γλ
µν (∂λV

ρ + Γρ
λσV

σ)
︸ ︷︷ ︸

b

+Γρ
µσ

(
∂νV

σ + Γσ
νλV

λ
)

︸ ︷︷ ︸

c

2) ∇ν (∇µV
ρ) = ∂ν∇µV

ρ − Γλ
νµ∇λV

ρ + Γρ
νσ∇µV

σ

= ∂ν
(
∂µV

ρ + Γρ
µσV

σ
)
− Γλ

νµ (∂λV
ρ + Γρ

λσV
σ) + Γρ

νσ

(
∂µV

σ + Γσ
µλV

λ
)

Subtracting 2) from 1) gives [∇µ,∇ν ]V
ρ =

∂µ∂νV
ρ

︸ ︷︷ ︸

d

+(∂µΓ
ρ
νσ)V

σ+Γρ
νσ (∂µV

σ)
︸ ︷︷ ︸

e

−Γλ
µν (∂λV

ρ)−Γλ
µνΓ

ρ
λσV

σ

︸ ︷︷ ︸

∗

+Γρ
µσ (∂νV

σ)
︸ ︷︷ ︸

f

+Γρ
µσΓ

σ
νλV

λ

︸ ︷︷ ︸

∗

−

∂ν∂µV
ρ

︸ ︷︷ ︸

d

−
(
∂νΓ

ρ
µσ

)
V σ −Γρ

µσ (∂νV
σ)

︸ ︷︷ ︸

f

+Γλ
νµ (∂λV

ρ) +Γλ
νµΓ

ρ
λσV

σ

︸ ︷︷ ︸

∗

−Γρ
νσ (∂µV

σ)
︸ ︷︷ ︸

e

−Γρ
νσΓ

σ
µλV

λ

︸ ︷︷ ︸

∗

The terms labelled d, e, f all cancel with one another. For terms labelled
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with an asterix*, we interchange the indices λ and σ. This is a perfectly

reasonable step since they are dummy indices, and how we label them is

unimportant. We now have the following,

[∇µ,∇ν ]V
ρ = (∂µΓ

ρ
νσ)V

σ − Γλ
µν (∂λV

ρ)− Γσ
µνΓ

ρ
σλV

λ + Γρ
µλΓ

λ
νσV

σ

. . . −
(
∂νΓ

ρ
µσ

)
V σ + Γλ

νµ (∂λV
ρ) + Γσ

νµΓ
ρ
σλV

λ − Γρ
νλΓ

λ
µσV

σ

=
(

∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

)

V σ−
(
Γλ
µν∂λ − Γλ

νµ∂λ
)
V ρ−

(
Γσ
µνΓ

ρ
σλ − Γσ

νµΓ
ρ
σλ

)
V λ

=
(
∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

)
V σ − 2Γλ

[µν]∇λV
ρ

and thus, [∇µ,∇ν ]V
ρ = Rρ

σµνV
σ − 2Γλ

[µν]∇λV
ρ

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (A.26)

where Rρ
σµν is the Riemannian Curvature Tensor. The final term 2Γλ

[µν]∇λV
ρ

is called the Torsion tensor, and incorporates the anti-symmetrisation of a

Christoffel Symbol. However, since the Christoffel symbols are symmetric,

this is therefore equal to zero.

It is imperative to note that there are two definitions of the Riemann ten-

sor, and whichever one decides to use will determine subsequent formulae.

All textbooks have their own conventions and definitions, and some fail to

mention the distinction altogether. The issue arises later when one considers

the Ricci tensor Rσµ. This rank-2 covariant tensor arises due to a contraction

of two indices within the Riemann tensor - but which exactly? This depends

entirely upon how one defines the Riemann tensor! As a brief summary,

both definitions of the Riemann tensor are given below, and the contractions
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required to obtain the valid Ricci tensor.

Convention #1 (adopted throughout this thesis):

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

Rσµ = Rρ
σµρ = ∂µΓ

ρ
ρσ − ∂ρΓ

ρ
µσ + Γρ

µλΓ
λ
ρσ − Γρ

ρλΓ
λ
µσ

Convention #2:

R̃ρ
σµν = ∂νΓ

ρ
σµ − ∂µΓ

ρ
σν + Γρ

νλΓ
λ
σµ − Γρ

µλΓ
λ
νσ

R̃σν = R̃ρ
σρν = ∂νΓ

ρ
σρ − ∂ρΓ

ρ
σν + Γρ

νλΓ
λ
σρ − Γρ

ρλΓ
λ
νσ

Note that for the second convention, one instead contracts with the middle

index of the Riemann tensor.

A.9 Einstein Field Equations

In this final section, I wish to conclude with a derivation of the Einstein field

equations. Numerous textbooks each have their own explicit form of these

equations, commonly differing by a minus sign. However, seldom do they

include a derivation, or any motivation for this rogue change of sign. As a

starting point, we consider the Einstein-Hilbert action, with both matter and

electromagnetic fields for a D-dimensional space-time,

S =

∫

dDx

√

|g|
2κ

[

R+ 2Λ +
1

4
FαβF

αβ + κ [gµν∂µϕ∂νϕ− 2V (|ϕ|)]
]

.
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Here, we have Ricci scalar R = Rσµ g
σµ, metric determinant g = det(gσµ),

cosmological constant Λ, EM fields given by Fµν = ∂µAν − ∂νAµ where Aµ

is the usual vector potential, gravitational coupling constant κ = 8πG and a

scalar field ϕ. Expanding out this action gives,

=

∫

dDx

(√

|g|
2κ

gµνRµν +

√

|g|
κ

Λ−
√

|g|
8κ

FβαF
αβ +

√

|g|
2

gµν∂µϕ∂νϕ−
√

|g|V (|ϕ|)
)

Note that we have flipped the indices of Fαβ = −Fβα, for later convenience.

We shall also rewrite the contravariant term as F αβ = gαγFγδg
δβ.

δS =

∫

dDx (
R δ
√

|g|
2κ

+

√

|g|
2κ

Rµν δg
µν +

Λ δ
√

|g|
κ

− δ
√

|g|
8κ

Fβαg
αγFγδg

δβ

. . . −
√

|g|
8κ

Fβαδg
αγFγδg

δβ −
√

|g|
8κ

Fβαg
αγFγδδg

δβ +
δ
√

|g|
2

gµν∂µϕ∂νϕ

. . . +

√

|g|
2

∂µϕ∂νϕ δg
µν − δ

√

|g|V (|ϕ|) )

Now we use the following relation,

δ(g−1) =
1

g
gµν δg

µν

δ(
√
g) = δ((g−1)−1/2) = − 1

2
(g−1)−3/2 δ(g−1)

= − 1

2

√
g gµν δg

µν

This now gives us the following,

δS =

∫

dDx ( − R
4κ

√

|g| gµν δgµν +
√

|g|
2κ

Rµν δg
µν − Λ

2κ

√

|g| gµν δgµν . . .
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. . . −
√

|g|
16κ

gµνδg
µνFβαg

αγFγδg
δβ−

√

|g|
8κ

Fβµδg
µνFνδg

δβ−
√

|g|
8κ

Fναg
αγFγµδg

µν

. . . −
√

|g|
4

(gαβ∂αϕ∂βϕ) gµν δg
µν+

√

|g|
2

∂µϕ∂νϕ δg
µν+

√

|g|
2

gµν δg
µν V (|ϕ|) )

where we have performed several changes of index to avoid confusion. The

labelling of indices which contract with one another is unimportant - we

merely carry out this process to simplify the equations further.

δS =

∫

dDx (

√

|g|
2κ

[Rµν −
1

2
R gµν − Λgµν

. . . − 1

8
gµνFβαg

αγFγδg
δβ − 1

4
FβµFνδg

δβ − 1

4
Fναg

αγFγµ

. . . + κ ∂µϕ∂νϕ− κ

2
gµνg

αβ ∂αϕ∂βϕ+ κ gµν V (|ϕ|)] δgµν )

remembering to take careful note of the positions of round ( ) and square

[ ] brackets. We again flip the indices of Fβµ = −Fµβ, and represent the

covariant term in mixed form as Fνδg
δβ = F β

ν . Likewise, Fναg
αγ = F γ

ν . We

then have,

δS =

∫

dDx (

√

|g|
2κ

[Rµν −
1

2
R gµν − Λgµν −

1

8
gµνFβαg

αγFγδg
δβ

. . . +
1

2
FµβF

β
ν + κ (∂µϕ∂νϕ− gµν (

1

2
gαβ∂αϕ∂βϕ− V (|ϕ|)))] δgµν )

Now we simply take δS / δgµν = 0, thus giving,

Rµν −
1

2
gµν R− Λ gµν = −κ [ 1

2κ
FµβF

β
ν − 1

8κ
gµνFβαg

αγFγδg
δβ . . .
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. . . + ∂µϕ∂νϕ− gµν (
1

2
gµν∂µϕ∂νϕ− V (|ϕ|))] .

One clearly notes the existence of a minus sign on the RHS of this equation.

Most textbooks choose to omit this, although this depends entirely upon how

one defines their action S. One may further simplify the equation as,

Gµν − Λ gµν = −κTµν ,

where Gµν and Tµν are the Einstein and energy-momentum tensors respec-

tively.

Gµν = Rµν −
1

2
gµν R

Tµν =
1

2κ
FµβF

β
ν −

1

8κ
gµνFβαg

αγFγδg
δβ+∂µϕ∂νϕ−gµν

(
1

2
gµν∂µϕ∂νϕ− V (|ϕ|)

)



Appendix B

Mathematica Code

In this section, I have included code required for intermediary calculations.

Individual subsections will be referenced in the main body of the text.

B.1 Section 2.2.1

B.1.1 Figure 2.2

We first begin with the simplest case of observer 3, who travels with uniform

motion at a velocity vx =
√
0.4999c. For all calculations, one normalises the

speed of light ‘c’ to unity. We may thus write a simple code as follows,

In[1]:=vx=Sqrt[0.4999];

In[2]:=NIntegrate[Sqrt[1-(vx^2)],{t,0,8*Pi}]

Out[2]=17.7733

This gives the proper time for τ3, as recorded by observer 3. The time t3 as

recorded by observer 1 is merely the integration range of our affine parameter

λ (i.e., 8π = 25.1327).

94
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We next calculate the proper time τ2 for observer 2. The code is again

given as follows,

In[1]:=vx=Sqrt[0.4999];

In[2]:=NIntegrate[Sqrt[1-(vx^2)*(1+Cos[vx*t]^2)],{t,0,8*Pi}]

Out[2]=11.4844

For observer 4, the integration limits are different to those of the previous

two observers. This is because observer 1 measures a longer period from

an outside perspective. To calculate this period, one must use the simple

formula s = at2/2 and re-arrange for time t. The acceleration a is given by

differentiating the velocity component vx with respect to the affine parameter

λ. The distance x travelled is calculated from the previous two observers as

x =
√
0.4999∗8π. Thus, one obtains and integration period of t = 16π/

√
2 =

35.5431, which is the time t4 as recorded by observer 1. The code is then as

follows,

In[1]:=vx=Sqrt[0.4999];

In[2]:=NIntegrate[Sqrt[1-(vx*t/(8*Pi))^2],{t,0,16*Pi/Sqrt[2]}]

Out[2]=27.9182

B.1.2 Figure 2.3

We now consider circular motion in both the Minkowski and Schwarzschild

space-times. Observer 2 is positioned at a radius R = 2 from the centre of

orbit. For simplicity, we choose polar coordinates for intermediary calcula-

tions. The integration limits are the elapsed time as recorded by observer 1.

This is given as the orbital circumference, divided by the tangential speed.

A simple code is then given as follows,
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In[1]:="define orbital radius";

In[2]:=R=2;

In[3]:="define angular velocity (e.g., with tangential component

equal to a quarter the speed of light)";

In[4]:=vang=0.25/R;

In[5]:=NIntegrate[Sqrt[1-(vang^2)*(R^2)],{t,0,16*Pi}]

Out[5]=48.6693

The R2 term inside the integration arises due to theta-theta metric compo-

nent. We perform exactly the same calculation for R = 3 (note the change

of integration limits).

In[1]:=R=3;

In[2]:=vang=0.25/R;

In[3]:=NIntegrate[Sqrt[1-(vang^2)*(R^2)],{t,0,24*Pi}]

Out[3]=73.0040

We now carry out the same calculations in Schwarzschild space-time.

In[1]:="define the Schwarzschild radius rs";

In[2]:=rs=1;

In[3]:="define the time-time metric component f(R)";

In[4]:=f[R_]=1-rs/R;

In[5]:=R=2;

In[6]:=vang=0.25/R;

In[7]:=NIntegrate[Sqrt[f[R]-(vang^2)*(R^2)],{t,0,16*Pi}]

Out[7]=33.2475

We then perform the same calculation for R = 3,
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In[1]:=rs=1;

In[2]:=f[R_]=1-rs/R;

In[3]:=R=3;

In[4]:=vang=0.25/R;

In[5]:=NIntegrate[Sqrt[f[R]-(vang^2)*(R^2)],{t,0,24*Pi}]

Out[5]=58.6057

The final calculation for an observer passing by a large gravitational object,

is particularly difficult. For convenience, we transfer to the pseudo-Cartesian

coordinate system. We shall integrate between the limits −3 ≤ y ≤ 3, and

thus −3/ vy ≤ t ≤ 3/ vy. For vy = 0.25, an observer positioned at infinity

would thus measure an elapsed time of t = 6/ vy = 24.0000.

In[1]:=rs=1;

In[2]:=x=3;

In[3]:=z=0;

In[4]:=vy=0.25;

In[5]:=y=vy*t;

In[6]:=R=Sqrt[(x^2)+(y^2)+(z^2)];

In[7]:=f[R_]=1-rs/R;

In[8]:=NIntegrate[Sqrt[f[R]-((vy^2)/(R^2))*((x^2)+((y^2)/f[R])

+(z^2))],{t,-3/vy,3/vy}]

Out[8]=19.1762

B.2 Section 6.3

In this section, all intermediary calculations concerning holographic methods

are provided. We first begin by considering the full gravitational model in

D + 1 dimensions. Since I cannot use Greek symbols inside the verbatim



APPENDIX B. MATHEMATICA CODE 98

environment, I shall make the following adjustments: holographic dimension

χ = z, scalar potential φ(χ) = At(z), and scalar field ψ(χ) = P (z).

In[1]:=Clear[All]

In[2]:="specify the number of dimensions";

In[3]:=n=4;

In[4]:="specify the coordinate system";

In[5]:=coord={t,z,x,y};

In[6]:="specify the components of the vector potential";

In[7]:=A={f(z)*((L^2)/(z^2))*At(z),0,0,0};

In[8]:="specify the ansatz for the metric (i.e., asymptotically AdS)";

In[9]:=metric={{f(z)*(L^2)/(z^2),0,0,0},{0,-(1/f(z))*((L^2)/(z^2)),0,0},

{0,0,-(L^2)/(z^2),0},{0,0,0,-(L^2)/(z^2)}};

In[10]:=inversemetric=Simplify[Inverse[metric]];

In[11]:="our first key result is finding the determinant of the metric";

In[12]:=Det[metric]

Out[12]=-(L^8)/(z^8)

In[13]:="now calculate the Christoffel symbols";

In[14]:=affine:=affine=Simplify[Table[(1/2)*Sum[(inversemetric[[i,s]])

*(D[metric[[s,j]],coord[[k]]]+D[metric[[s,k]],coord[[j]]]

-D[metric[[j,k]],coord[[s]]]),{s,1,n}],{i,1,n},{j,1,n},{k,1,n}]]

In[15]:=listaffine:=Table[If[UnsameQ[affine[[i,j,k]],0],{ToString[

Gamma[i,j,k]],affine[[i,j,k]]}],{i,1,n},{j,1,n},{k,1,n}]

In[16]:=TableForm[Partition[DeleteCases[Flatten[listaffine],Null],2],

TableSpacing->{2,2}]

In[17]:="now calculate the Riemann tensor";

In[18]:=riemann:=riemann=Simplify[Table[D[affine[[i,j,k]],coord[[l]]]

-D[affine[[i,j,l]],coord[[k]]]+Sum[affine[[s,j,k]]



APPENDIX B. MATHEMATICA CODE 99

*affine[[i,s,l]]-affine[[s,j,l]]*affine[[i,s,k]],{s,1,n}],

{i,1,n},{j,1,n},{k,1,n},{l,1,n}]]

In[19]:=listriemann:=Table[If[UnsameQ[riemann[[i,j,k,l]],0],{ToString[

R[i,j,k,l]],riemann[[i,j,k,l]]}],{i,1,n},{j,1,n},{k,1,n},

{l,1,n}]

In[20]:=TableForm[Partition[DeleteCases[Flatten[listriemann],Null],2],

TableSpacing->{2,2}]

In[21]:="now calculate the Ricci tensor and scalar";

In[22]:=ricci:=ricci=Simplify[Table[Sum[riemann[[i,j,i,l]],{i,1,n}],

{j,1,n},{l,1,n}]]

In[23]:=listricci:=Table[If[UnsameQ[ricci[[j,l]],0],{ToString[R[j,l]],

ricci[[j,l]]}],{j,1,n},{l,1,n}]

In[24]:=TableForm[Partition[DeleteCases[Flatten[listricci],Null],2],

TableSpacing->{2,2}]

In[25]:=scalar=Simplify[Sum[inversemetric[[i,j]]*ricci[[i,j]],{i,1,n}

,{j,1,n}]]

In[26]:="in order to have empty space, we require scalar=-12/(L^2)";

In[27]:=DSolve[scalar==-12/(L^2),f(z),z]

Out[27]={{f(z)->1+(z^3)C[1]+(z^4)C[2]}}

In[28]:="for the case of the AdS Schwarzschild black hole, we consider

C[1]=-1/(z0^3) and C[2]=0";

This function f(z) is reflected in Eq.(6.3). The beauty of using a conformal

field theory is that we can discard of the L2/z2 prefactor in the metric com-

ponents of In[9], by either absorbing this into either our coordinate system

or choice of function f . We consider a new function g(z), and re-run the

program with this function in-situ (cf. Section 6.3).

In[1]:=Clear[All]
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In[2]:="specify the number of dimensions";

In[3]:=n=4;

In[4]:="specify the coordinate system";

In[5]:=coord={t,z,x,y};

In[6]:=g(z_)=1-((z^3)/(z0^3));

In[7]:="specify the components of the vector potential";

In[8]:=A={g(z)*At(z),0,0,0};

In[9]:="specify the ansatz for the metric (i.e., asymptotically AdS)";

In[10]:=metric={{g(z),0,0,0},{0,-(1/g(z)),0,0},

{0,0,-1,0},{0,0,0,-1}};

In[11]:=inversemetric=Simplify[Inverse[metric]];

In[12]:="our first key result is finding the determinant of the metric";

In[13]:=Det[metric]

Out[13]=-1

In[14]:="now calculate the Christoffel symbols";

In[15]:=affine:=affine=Simplify[Table[(1/2)*Sum[(inversemetric[[i,s]])

*(D[metric[[s,j]],coord[[k]]]+D[metric[[s,k]],coord[[j]]]

-D[metric[[j,k]],coord[[s]]]),{s,1,n}],{i,1,n},{j,1,n},{k,1,n}]]

In[16]:=listaffine:=Table[If[UnsameQ[affine[[i,j,k]],0],{ToString[

Gamma[i,j,k]],affine[[i,j,k]]}],{i,1,n},{j,1,n},{k,1,n}]

In[17]:=TableForm[Partition[DeleteCases[Flatten[listaffine],Null],2],

TableSpacing->{2,2}]

In[18]:="now calculate the Riemann tensor";

In[19]:=riemann:=riemann=Simplify[Table[D[affine[[i,j,k]],coord[[l]]]

-D[affine[[i,j,l]],coord[[k]]]+Sum[affine[[s,j,k]]

*affine[[i,s,l]]-affine[[s,j,l]]*affine[[i,s,k]],{s,1,n}],

{i,1,n},{j,1,n},{k,1,n},{l,1,n}]]
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In[20]:=listriemann:=Table[If[UnsameQ[riemann[[i,j,k,l]],0],{ToString[

R[i,j,k,l]],riemann[[i,j,k,l]]}],{i,1,n},{j,1,n},{k,1,n},

{l,1,n}]

In[21]:=TableForm[Partition[DeleteCases[Flatten[listriemann],Null],2],

TableSpacing->{2,2}]

In[22]:="now calculate the Ricci tensor and scalar";

In[23]:=ricci:=ricci=Simplify[Table[Sum[riemann[[i,j,i,l]],{i,1,n}],

{j,1,n},{l,1,n}]]

In[24]:=listricci:=Table[If[UnsameQ[ricci[[j,l]],0],{ToString[R[j,l]],

ricci[[j,l]]}],{j,1,n},{l,1,n}]

In[25]:=TableForm[Partition[DeleteCases[Flatten[listricci],Null],2],

TableSpacing->{2,2}]

In[26]:=scalar=Simplify[Sum[inversemetric[[i,j]]*ricci[[i,j]],{i,1,n}

,{j,1,n}]]

Out[26]=-g’’[z]

In[27]:="we now calculate the electromagnetic term F=dA";

In[28]:=FullSimplify[Sum[inversemetric[[i,l]]*inversemetric[[j,k]]

*(D[A[[k]],coord[[l]]]-D[A[[l]],coord[[k]]])*(D[A[[j]],

coord[[i]]]-D[A[[i]],coord[[j]]]),{i,1,n},{j,1,n},{k,1,n},

{l,1,n}]

Out[28]=-2*((At[z]*g’[z]+g[z]*At’[z])^2)

In[29]:=FullSimplify[Sum[inversemetric[[i,j]]*D[P[z],coord[[j]]]

*D[P[z],coord[[i]]]-I*q*A[[i]]*P[z]*inversemetric[[i,j]]

*D[P[z],coord[[j]]]+I*q*A[[j]]*P[z]*inversemetric[[i,j]]

*D[P[z],coord[[i]]]+(q^2)*A[[i]]*A[[j]]*inversemetric[[i,j]]

*(P[z]^2),{i,1,n},{j,1,n}]]

Out[29]=g[z]*((q^2)*(At[z]^2)*(P[z]^2)-(P’[z]^2))



APPENDIX B. MATHEMATICA CODE 102

B.2.1 Figure 6.1

The next stage is to calculate the action functional S[ψ, φ]. We take all the

necessary parameters from the previous lines of code, and substitute them

into our action (6.1), and thus giving Eq.(6.4).

In[1]:=g[z_]=*(z^2)/(L^2))*1-((z^3)/(z0^3)));

In[2]:="we reparametrise both m and q to be dimensionally consistent";

In[3]:=q=Q/L;

In[4]:=m=M/L;

In[5]:="we consider asymptotic solutions as outlined in the main text";

In[6]:=P[z_]=(1/(q*Sqrt[k]))*(I+P3*(z^3)/(L^3));

In[7]:=Pc[z_]=(1/(q*Sqrt[k]))*(-I+P3*(z^3)/(L^3));

In[8]:=At[z_]=At0+At3*((z^3)/(L^3));

In[9]:=m=0;

In[10]:="substitute everything into the action functional";

In[11]:=action=FullSimplify[(1/(2*k))*(-g’’[z]-(1/2)*((At[z]*g’[z]

+g[z]*At’[z])^2)+k*(g[z]*((q^2)*(At[z]^2)*(P[z]^2)-(P’[z]^2))

-2*(m^2)*(P[z]^2)))];

In[12]:="integrate the action functional over the holographic

dimension";

In[13]:=function=Integrate[action,{z,0,z0}];

In[14]:=eq1=D[function,P3];

In[15]:=eq2=D[function,At3];

In[16]:=Solve[{eq1==0,eq2==0},{P3,At3}];

In[17]:=L=1;

In[18]:=k=1;

In[19]:=At0=1;

In[20]:="for the next line of code, one must copy a solution for P3
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from Out[14]. This will plot P3 for differing of horizon

radius z0";

In[21]:=Animate[Plot[{P3,At3},{z0,0,20},PlotRange->{0,0.1}],{Q,0,3}]
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Abstract

The speed of silicon-based transistors has reached an impasse in the recent

decade, primarily due to scaling techniques and the short-channel effect.

Conversely, graphene (a revolutionary new material possessing an atomic

thickness) has been shown to exhibit a promising value for electrical con-
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ductivity. Graphene would thus appear to alleviate some of the drawbacks

associated with silicon-based transistors. It is for this reason why such a

material is considered one of the most prominent candidates to replace sil-

icon within nano-scale transistors. The major crux here, is that graphene

is intrinsically gapless, and yet, transistors require a band-gap pertaining

to a well-defined ON/OFF logical state. Therefore, exactly as to how one

would create this band-gap in graphene allotropes is an intensive area of

growing research. Existing methods include nano-ribbons, bilayer and multi-

layer structures, carbon nanotubes, as well as the usage of the graphene

substrates. Graphene transistors can generally be classified according to

two working principles. The first is that a single graphene layer, nanorib-

bon or carbon nanotube can act as a transistor channel, with current being

transported along the horizontal axis. The second mechanism is regarded

as tunneling, whether this be band-to-band on a single graphene layer, or

vertically between adjacent graphene layers. The high-frequency graphene

amplifier is another talking point in recent research, since it does not require a

clear ON/OFF state, as with logical electronics. This paper reviews both the

physical properties and manufacturing methodologies of graphene, as well as

graphene-based electronic devices, transistors, and high-frequency amplifiers

from past to present studies. Finally, we provide possible perspectives with

regards to future developments.
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Abstract

Scientists are always yearning for new and exciting ways to unlock graphene’s

true potential. However, recent reports suggest this two-dimensional mate-

rial may harbor some unique properties, making it a viable candidate for

use in optoelectronic and semiconducting devices. Whereas on one hand,
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graphene is highly transparent due to its atomic thickness, the material does

exhibit a strong interaction with photons. This has clear advantages over ex-

isting materials used in photonic devices such as Indium-based compounds.

Moreover, the material can be used to ’trap’ light and alter the incident

wavelength, forming the basis of the plasmonic devices. We also highlight

upon graphene’s nonlinear optical response to an applied electric field, and

the phenomenon of saturable absorption. Within the context of logical de-

vices, graphene has no discernible band-gap. Therefore, generating one will

be of utmost importance. Amongst many others, some existing methods to

open this band-gap include chemical doping, deformation of the honeycomb

structure, or the use of carbon nanotubes (CNTs). We shall also discuss

various designs of transistors, including those which incorporate CNTs, and

others which exploit the idea of quantum tunneling. A key advantage of

the CNT transistor is that ballistic transport occurs throughout the CNT

channel, with short channel effects being minimized. We shall also discuss

recent developments of the graphene tunneling transistor, with emphasis be-

ing placed upon its operational mechanism. Finally, we provide perspective

for incorporating graphene within high frequency devices, which do not re-

quire a pre-defined band-gap.

D.1 Introduction

Two-dimensional materials have always been considered unstable due to

their thermal fluctuations [64, 65], in what were famously referred to as the

Landau-Peierls arguments. However, many scientists have not given up hope

that such two-dimensional structures exist. In 2004, a research team based in

Manchester successfully segregated graphene flakes from a graphite sample
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via ‘mechanical exfoliation’ (more commonly referred to as the scotch-tape

method) [64, 66, 67, 68, 69]. They witnessed a full preservation of graphene’s

hexagonal honeycomb structure, with astounding electrical, thermal and op-

tical characteristics.

Graphene is an allotrope of carbon - other examples include diamond,

fullerene and charcoal, all with their own unique properties. Usually graphene

will be found in the form of highly ordered pyrolytic graphite (HOPG),

whereby individual graphene layers stack on top of one another to form a

crystalline lattice. Its stability is due to a tightly packed, periodic array

of carbon atoms [70] (cf. Figure D.1), and an sp2 orbital hybridization -

a combination of orbitals px and py that constitute the σ-bond. The final

pz electron makes up the π-bond, and is key to the half-filled band which

permits free-moving electrons [71]. In total, graphene has three σ-bonds and

one π-bond. The right-hand portion of Figure D.1, emphasizes how small

displacements of the sub-lattices A and B can be shifted in the z-direction

[72].

Moreover, graphene’s mode of preparation will have a strong influence

upon its overall quality and characteristics. As conducted by Geim et al.

[10], mechanical exfoliation consists of gradually stripping more and more

layers from a graphite sheet, until what remains are a few layers of graphene.

In terms of overall mobility and the absence of structural defects, this method

will produce the highest quality material. Other methods such as vacuum

epitaxial growth or chemical vapour deposition (CVD), each have their own

merits, but will generally lead to inferior quality. For a more in-depth dis-

cussion of the available manufacturing methods, one can refer to [64, 74, 75,

76, 77, 78, 79, 80, 81, 82, 83, 84].

On the other hand, graphene is highly impermeable [70] - the mobility
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Figure D.1: The honeycomb structure of graphene is presented in the left-

hand figure. The right-hand figure depicts small quantum corrugations of

the sub-lattices A and B, which are shifted in the transverse direction by a

small fraction of the inter-atomic spacing ‘a’.

can become severely compromised upon molecular attachment. Yet, this ap-

parent flaw has immediate applications for molecular sensors. By monitoring

the deviation of electrical resistivity [85, 86], one could, for example, envi-

sion novel smoke detection systems. So too is graphene more than 100 times

stronger than steel [70], possessing a Young’s modulus as large as 1TPa [87].

Together with its outstanding electrical [71], thermal [88, 89, 90] and in par-

ticular, optical properties [74, 87, 91, 92], graphene has thus become a widely

sought after material for use in future semiconducting and optoelectronic de-

vices [75, 93].

Electrical Mobility - As a material, graphene harbors some remarkable

qualities; highly elastic due to its monolayer structure, and more conductive

than copper with mobilities reaching up to 200, 000cm−2V−1s−1 for perfect



APPENDIX D. PUBLICATION #2 111

structures [87, 94, 95]. Charge carriers in graphene travel with a Fermi ve-

locity vF =
√
3γ0a/2~ ≈ 106ms−1. Here, γ0 ≈ 3 eV is the energy required to

’hop’ from one carbon atom to the nearest neighbor, a ≈ 1.42Å is the inter-

atomic spacing between two neighboring carbon atoms, and ~ is Planck’s

constant [71, 87, 96]. This Fermi velocity is approximately 1/300 the speed

of light, thus presenting a miniaturized platform upon which to test many

features of quantum electrodynamics (QED) [64]. Theoretical studies with

graphene show that the density of states (DoS) of electrons approaches zero

at the Dirac point. However, a minimum conductivity σ0 ≈ 4e2/h has been

displayed [64], which is approximately double that for the conductance quan-

tum [97, 98]. Even at room temperature, electrons can undergo long range

transport with minimal scattering [64, 95, 99].

Thermal Conductivity - Heat flow in suspended graphene was recently

shown to be mediated by ballistic phonons, and has been verified by Pumarol

et al [88] with the use of high resolution vacuum scanning thermal microscopy.

However, when considering multiple layers of graphene, this transport will be

reduced due to an increase of inelastic scattering. The same is observed for

graphene coated upon a substrate - the mean free path of thermal phonons

degrading to less than 100 nm. Nevertheless, graphene on a silicon substrate

can still retain a thermal conductivity of around 600Wm−1K−1 [89] - even

higher than copper. Whilst the mechanism of heat transport across the

graphene-substrate interface remains unknown [100], it is possible this may

be linked to the in-plane thermal conductivity [88, 90].

Optical Response - Graphene’s atomic thickness makes it almost perfectly

transparent to visible light [72, 101], allowing such a material to become
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widely accessible to a number of applications. These cover everything from

photovoltaic cells, to graphene photonic transistors [93, 96, 102, 103]. Being

a single layer of carbon atoms, graphene also exhibits many interesting pho-

tonic properties. As such, our focus will be directed mainly upon those which

are associated with applications to optoelectronic devices. The transmittance

between multiple graphene layers, how optical frequency relates to conduc-

tivity, nonlinear optical response, saturable absorption and plasmonics will

all be discussed in later sections.

Most semiconducting photonic devices will be governed in some way by

electron excitation and electron-hole recombination. Excitation refers to an

electron absorbing photon energy of a very specific wavelength within the

allowed energy bands. On the other hand, recombination is a process which

leads to the emission of photons (cf. electro-luminescence) [101]. Gallium

arsenide (GaAs), indium functional compounds and silicon are all common

semiconductors for use in photonic devices [104, 105]. However, graphene

exhibits a strong interaction with photons, with the potential for direct

band-gap creation and thus being a good candidate for optoelectronic and

nanophotonic devices [106]. Its strong interaction with light arises due to

the Van Hove singularity [107]. Graphene also possesses different time scales

in response to photon interaction, ranging from femtoseconds (ultra-fast) to

picoseconds [106, 108]. Overall, graphene could easily be an ideal candidate

for transparent films, touch screens and light emitting cells. It may even be

used as a plasmonic device which confines light, and altering the incident

wavelength. We shall elaborate upon this in later sections.
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D.2 Energy Spectrum, Band-Gap and Quan-

tum Effects

Theoretical studies of monolayer graphite (i.e., graphene) first began in 1947

by Wallace [71], who considered a simple tight-binding model with a single

hopping integral. This model takes into account the hopping of an electron

from one carbon atom to its first and second nearest neighbors only. Wallace’s

conclusions were stark; an electrical conductivity should theoretically exist

for two-dimensional graphene. To elaborate; at six positions of the Brillouin

zone, Dirac points (K and K’) exist. These are points in momentum space

for which the energy E(p0) = 0, where p0 = ~K (or ~K’). Here, we have

denoted the momentum as a vector p = (px, py) = ~k, where k = (kx, ky)

is the wave vector [64]. The energy eigenvalues were found to take a gapless

form [71],

E±(kx, ky) = ±γ0

√

1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
(D.1)

where the plus and minus signs refer to the upper and lower half-filled bands

respectively [87, 97]. By expanding the above equation in the vicinity of the

K or K’ points, one can thus obtain a linear dispersion relation that is given

by E± = ±vF~|δk|, where k = K+δk. These constitute what are known as

Dirac cones, and are clearly emphasized by Figure D.2. Here, a direct contact

of the conduction and valence bands is found [68, 71, 73, 74], thus pertaining

to a zero energy band-gap Eg [64, 71, 75]. Therefore, generating a band-

gap in graphene will be essential for its application within semiconducting

devices (e.g., transistors). On the other hand, graphene may secure its place



APPENDIX D. PUBLICATION #2 114

in high-frequency devices, which do not require a logical OFF state [101].

Figure D.2: The energy-dispersion spectrum as given by Eq.(D.1). Here,

the z-axis represents the energy E(k), with the x − y plane corresponding

to the momentum k=(kx, ky). Dirac cones are located at both the K and K’

points of the Brillouin zone.

A. Dirac Energy-Momentum Dispersion

Supposing we consider the Hamiltonian Ĥ as given by Wallace [71] - in the

low energy limit, spinless carriers in graphene possess a zero effective mass,

and are well approximated by the relativistic Dirac Hamiltonian Ĥ [97],

Ĥ = vF~σ̂δ̇k (D.2)

where σ̂δ̇k = σxδkx + σyδky. Here, σ̂ = (σx, σy) is the vector of 2 × 2 Pauli
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matrices:

σx =




0 1

1 0



 σy =




0 −i
i 0



 (D.3)

The spinor wave function ψ of graphene can be obtained from,

Ĥψ = Eψ (D.4)

where E denotes the energy eigenvalues of Ĥ [87]. Here, ψ = (ψA, ψB)
T is

a vector containing the two component wave function. These components

represent the sub-lattices A and B accordingly [97].

B. Band-Gap Creation

Generally speaking, the electrical conductivity of a material can fall into

one of three groups: conductors, insulators, semiconductors [109, 110, 111].

For a conductor, electrons are able to move freely in the conduction band

since electron states are not fully occupied. However, the conduction and

valence band may sometimes be separated by an energy band-gap Eg (e.g.,

for insulators and semiconductors), thus preventing the free movement of

electrons in the conduction band. For an insulator, an electron requires a

huge energy in order to excite from the valence to conduction band. A small

band-gap is present for semiconductors, with an electronic band structure

that is parabolic in shape [75, 94]. Doped semiconductors will make the

band-gap even smaller, and hence more easy to control (cf. Figure D.3).

Graphene’s high mobility makes it a particularly enticing material for use

in electronic devices. However, we have already mentioned that in the vicin-
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Figure D.3: The upper half of this figure depicts the electronic band struc-

ture of a doped semiconductor. Typically, the band-gap for a doped semi-

conductor is very small, with only a small energy being required to excite an

electron from the valence to conduction band. The lower figure shows the

electronic band structure for graphene. For pure samples, no energy band-

gap Eg exists. In principle, an energy band-gap can be created via many

methods.

ity of the Dirac point, graphene possesses a conical band structure which

is gapless (i.e., Eg = 0) [64, 73]. Thus our main concern with regards to

logical devices, is the absence of this well-defined OFF state pertaining to

zero current flow. To rectify this, we must open up an energy band-gap such

that Eg 6= 0. With regards to optoelectronic devices, a tunable band-gap can

specify the range of wavelengths which can be absorbed. The energy bands

for pure graphene, and graphene with a small band-gap Eg are displayed in

Figure D.3. The Fermi energy level EF is situated at the Dirac point for
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pure graphene [66]. For graphene that has been modified to include a band-

gap, an energy is required to excite electrons from the valence to conduction

band, and hence an ON/OFF state regime is established [73]. Amongst

many others, existing methods include the use of carbon nanotubes (CNTs),

graphene nanoribbons (GNRs) or even bilayer graphene [64, 94, 101, 112].

However, it is important to note that although bilayer graphene does pos-

sess a zero energy band-gap, an applied electric field can be used to create

one [72, 75, 94]. Other methods include deformed structures, graphene oxide

(GO) [75, 85, 86], and also the use of chemical doping via compounds such as

Boron Nitride (BN) [113, 114]. The idea here, is that the doped atoms alter

graphene’s honeycomb structure, similar to deformation or localized defects

[115, 116]. All in all, one has to note that the aforementioned methods are

not well-developed enough to maintain a high mobility. Much more exotic

concepts are required, which we shall now discuss.

C. Quantum Phenomena

Of its more surprising attributes, graphene has also displayed signs of anoma-

lous quantum behaviors, even at room temperature [68, 117]. We shall briefly

discuss two key phenomena in particular.

Quantum Hall Effect: QHE has been observed for both single and bi-

layer graphene [74, 118, 119], in the presence of a magnetic field B. The

Landau levels for graphene are given by,

ELandau =
√

|2e~v2FBj| (D.5)
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where e is the electric charge, and j ∈ Z is the Landau index [68, 117].

In conventional 2-D semiconductors, the Landau levels are E = ~ωc(j +

1/2), where ωc is the cyclotron frequency [68, 117]. The anomalous energy

spectrum for graphene subject to a B field leads to a one half shift of the

minimum conductivity at the zero energy Landau level, whereas traditional

QHE semiconductors give an integer one [68, 117]. The Hall conductivity σH

is therefore given by [87, 97],

σH = g

(

j +
1

2

)
e2

h
(D.6)

where g is the degeneracy. For graphene, a fourfold degeneracy exists - two

spins, and the valley degeneracy of the K and K’ Dirac points [68]. Addition-

ally, the fractional QHE has been observed for both monolayer and bilayer

graphene (cf. for details [68, 118, 119]).

Klein Tunneling: Intuition states that if a particle’s kinetic energy KE

is less than some value U , then it will be physically incapable of surpassing a

potential barrier of the same energy U . However, quantum mechanics states

that a particle is able to tunnel the potential barrier U with a certain de-

cay probability [68]. Furthermore, relativistic quantum mechanics permits

a remarkable phenomenon called Klein tunneling. Much like a freight train

instead taking a tunnel from one side of a mountain to the other, an elec-

tron can perform a similar process [117, 120]. This occurs when an electron

experiences a strong repulsive force from the barrier U , and hence induces a

hole inside the barrier [68, 118, 119]. This leads to a matching of the energy

spectrum inside and outside the barrier, with the transmission probability

becoming very close to one [117]. A perfect transmission is demonstrated for
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square potentials only, and is dependent upon the energy KE, and the angle

of incidence θ relative to the barrier [121]. Confined bound states will arise

for energies close to the Dirac point [121]. Further details regarding how this

confinement effect may relate to the special waveguide geometry has been

discussed in references [122, 123, 124, 125, 126].

D.3 Photonic Properties

Optical communication networks are ubiquitous nowadays, affecting our ev-

eryday lives. A fiber-optic cable provides a much wider bandwidth, and less

energy loss than some traditional copper wiring [104, 105]. According to the

Shannon-Hartley theorem [127], the maximum capacity of a channel is given

by

max(C) = Blog2(1 +
Ps

Pn

), (D.7)

where B is the channel bandwidth, and Ps and Pn are the average signal and

noise powers respectively. It is therefore obvious that optical cable provides

a much larger channel capacity, where Ps/Pn ≫ 1.

When optical and electronic devices work together (e.g., a modulator),

light signals are converted into an electrical equivalent. Generally speak-

ing, the term ’optoelectronic’ refers to an optical (photonic) electronic de-

vice, which transmits signals via light waves, or electron-photon interaction

[104, 105]. A photonic device can be made of semiconductors, either being

integrated into electronic circuits or transistors. Optoelectronics also play an

important role as the mediator of optical communication. Devices will typ-

ically operate with an optical frequency ranging from ultraviolet to infrared
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(400–700 nm) [104, 105], although graphene photonic devices can possess an

even wider spectrum than this [128].

A. Transmittance Properties

As emphasized by Figure D.4, a single layer of graphene absorbs a mere

2.3% of incident light, allowing around 97.7% to pass through. Wavelengths

typically range from the infrared to ultraviolet regions [96]. The transmit-

tance T of single-layer graphene (SLG) can be approximated by the following

Talyor expansion [96, 102, 103, 129, 130]

T =
1

(1 + απ/2)2
≈ 1− απ ≈ 97.7% , (D.8)

where α = e2/c~ ≈ 1/137 is the fine structure constant. For multiple layers

of graphene, this can be roughly estimated by

T ≈ (1−Nαπ) , (D.9)

where N is number of layers (cf. Bao et al. [102]). For example, the transmit-

tance of bilayer graphene (N = 2) is around 95.4% (cf. Figure D.4). Indium

Tin Oxide (ITO) is a semiconductor which is typically used in photonic de-

vices, with a transmittance of around 80% [96]. It is therefore obvious that

graphene film has a clear advantage over ITO. Bonaccorso et al. [96] also

point out that the resistance per unit area for ITO is much smaller than for

graphene. However, this value can be minimized by increasing the concen-

tration of charge carriers via methods such as doping.

The degree of reflection from SLG is almost negligible, just less than 0.1%
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Figure D.4: Incident light passes through the to layers of graphene. The

transmission, absorption and reflection coefficients are all shown. Each layer

of graphene only absorbs 2.3% of incident light, transmitting around 97.7%,

and reflecting less than 0.1%.

[96]. Avouris et al. [103, 129, 130] also mention that graphene shows a strong

interaction of photons, much stronger than some traditional photonic mate-

rials per unit depth. It is also surprising that absorption can rise from 2.3%

to around 40% with high concentration doping [103, 129, 130]. Unquestion-

ably, these properties present graphene as an excellent candidate for use in

photonic applications.

B. Optical Conductivity

As mentioned by Avouris et al. [103, 129, 130], graphene possesses a uni-

versal optical conductance Gop = e2/4~. In general, the optical conductivity
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σop depends upon the frequency ω, Fermi energy EF (via chemical doping

or an applied gate voltage), and the transition rate Γ. Moreover, the optical

conductivity can be divided into real and imaginary components, ℜ(σop) and
ℑ(σop) [96, 102, 103, 129, 130],

σop(ω,EF ,Γ) = ℜ(σop) + iℑ(σop) (D.10)

with energy loss originating from the imaginary part [103, 129, 130].

Bao et al. [102] further explain that the interband and intraband carriers’

transitions are the major factors governing the optical conductivity σop (cf.

Figure D.5). Interband transitions refer to an exchange of charge carriers

between the conduction and valence bands, whereas intraband transitions

refer to a ’jump’ between quantized energy levels. For carriers performing an

interband transition (at high frequency), the energy of a photon ~ω should be

satisfying the relationship ~ω ≥ 2EF [102]. For the low frequency THz range

(~ω < 2EF ), the intraband transition would be a significant contribution

to the optical conductivity, while interband transitions are prohibited in this

range due to the Pauli exclusion principle (Pauli block) [130]. It is important

to note that a change in doping concentration would alter the Fermi energy

EF , and hence the optical conductivity. Bao et al. [102] state that one

can tune the optical conductivity by controlling the chemical doping (shift

of EF ) and the frequency response. However, one must remain aware that a

high doping concentration may deteriorate the transmittance T of graphene

itself.

C. Linear and Nonlinear Optical Response
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Figure D.5: The Fermi energy level EF can be shifted upward due to ei-

ther chemical doping or an applied electric field. Interband transitions refer

to an electron ‘jumping’ from the valence to conduction bands, satisfying

the relationship ~ω ≥ 2EF . Intraband transitions refer to an electron mov-

ing through quantized energy levels, and requires less energy (~ω < 2EF ),

provided the states are not already occupied.

Graphene also exhibits a strong nonlinear optical response to an electric

field, and is an important factor in modifying the shape of the wavefront

for incident light [103, 129, 130]. The displacement field Dz is given by the

dielectric response of an applied electric field Ez along the ’z’ direction, with

polarization P(Ez) (cf. Figure D.6);

Dz = ǫ0ǫrEz = ǫ0Ez + P(Ez) . (D.11)

Here, ǫ0 is the electric permittivity of free space, and ǫr is the relative per-
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mittivity. The polarization response can be written in terms of a power series

(cf. for details [102, 131])

P(Ez) = C0 + ǫ0

∞∑

j=1

χj(Ez)
j , (D.12)

where C0 is a constant associated with the hysteresis (typically C0 = 0), χj

refers to the dielectric susceptibility of the j-th order correction, and (Ez)j

is the j-th power of Ez. The linear dielectric susceptibility χ1 can again be

divided into a real part χR1 and an imaginary part χI1 [102]. The relative

dielectric constant can then be expressed in terms of ǫr = χR1 + 1, with an

optical refractive index nop given by,

nop ≈
√
ǫr =

√

χR1 + 1 . (D.13)

Thus, the refractive index is determined by the real part of the linear sus-

ceptibility χR1, as mentioned by Bao et al. [102]. Meanwhile, the imaginary

part of the linear susceptibility χI1 corresponds to the tangent loss arising

at optical frequencies. Bao et al. [102] also come to the conclusion that the

second order susceptibility χ2 is generally small, provided that the symmetry

of the graphene honeycomb structure is not broken (i.e., flat). The major

contribution to the nonlinear response of graphene originates via the third

order term ǫ0χ3E
3
z, which modifies the current density in graphene (cf. for

details [102]).

D. Surface Plasmons

Surface plasmons describe a set of quantized charge oscillations of electrons
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Figure D.6: This figure shows the linear and nonlinear responses to an

electric field E. The lefthand figure schematically represents an atom without

electric field, whilst the right-hand figure has a non-zero electric field. The

equation is related to the polarization response P. The linear susceptibility

χ1 is usually associated with the refractive index, whereas the nonlinear

susceptibility χ3 provides a unique contribution to the optical properties of

graphene. Due to the symmetry of graphenes honeycomb structure, the χ2

component is very small, and is therefore neglected here.

and holes, acting upon the graphene-substrate interface [102] (cf. Figure

D.7). Plasmons, in general, interact with photons or phonons to form the

surface plasmon polariton (SPP). At present, aluminium, silver and gold

are all ideal materials for plasmonic platforms [102, 93, 129, 130]. The ba-

sic idea is as follows - a dielectric material can be coated upon a graphene

layer. Electrons then oscillate on the graphene-substrate interface, excited

by the phonon or photon interactions of electromagnetic (EM) fields [102].
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The SPP wavelength λSPP is normally suppressed, and much smaller than

the incident wavelength λin - the ratio of these wavelengths typically being

around λin/λSPP ≈ 10 − 100 [102, 103, 129, 130]. The plasmonic frequency

ωSPP on the graphene surface is proportional to the square root of the Fermi

energy, as given by [96, 102, 103]

Figure D.7: This figure shows the surface plasmonic wave for graphene

coated on a semiconductor. Plasmonic waves are trapped, and oscillate along

the graphene and semiconductor interface. Typically, the surface plasmonic

wavelength λSPP will be suppressed, and is much smaller than the incident

wave λin. Either TM or TE wave modes can propagate along the plasmonic

surface, depending upon the imaginary component of the optical conductiv-

ity.

ωSPP ∝
√

EF ∝ n
1

4 , (D.14)
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where n is a carrier density. In practice, graphene can trap incident light,

and an EM wave can propagate along the graphene surface in the THz to in-

frared range [103, 129, 130]. As mentioned by Avouris et al. [103, 129, 130],

the distance traveled for a plasmonic wave in graphene is around dSPP ≈
10 − 100λSPP . Graphene is thus a suitable material for a waveguide. Bao

et al. [102] further remark that graphene is suitable for guiding transverse

magnetic (TM) waves when the imaginary part of the optical conductivity

ℑ(σop) > 0, and suitable for guiding transverse electric (TE) waves when

ℑ(σop) < 0.

E. Saturable Absorption and Optical Excitation

There is an interesting property which prevents graphene from absorbing

photons at high intensity, and can be used to adjust the wavefront of the

light [103, 129, 130]. This is referred to as ‘saturable absorption’, and is

dependent upon the wavelength and incident light intensity. This will be

elaborated upon in later sections when we discuss the saturable absorber

and photonic (optical) limiter.

The timescale of graphene’s response to the interaction of photons, phonons

and electron-hole recombination can be divided into three regimes [96, 102,

103, 129, 130] (cf. Figure D.8). Graphene has a very quick response to in-

cident photons, around 10-100 fs, whereby ’hot’ electrons are excited from

the valence to conduction band [96, 102]. This also links to an excitation

of the non-equilibrium state. Electrons may then cool down via the intra-

band phonon emission, with timescales of 0.1 ps [103, 129, 130]. Finally, an

electron-hole pair may recombine, thus emitting photons, and an equilibrium

state being reached. This process takes a mere 1-10 ps. It is important to note
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Figure D.8: There are three time scales associated with optical response.

The left-hand figure represents the interband non-equilibrium excitation, and

lasts around 10-100 fs. The middle figure relates to phonon cooling via the

intraband interaction (0.1-1 ps). Finally, the right-hand figure is the process

of electron-hole recombination (1-10 ps).

that these excitations and scattering processes are influenced by both topo-

logical defects of the lattices (e.g., dislocation and disclination) and boundary

characteristics [103, 129, 130].

F. Graphene Photonic Crystal

The photonic crystal is a kind of optical device, whereby a lattice can be

periodically allocated upon or within a semiconductor [132, 133] (cf. Figure

D.9). A band-gap can be obtained in these periodic structures, and only a

certain range of photon energies (i.e., frequencies) are allowed to propagate
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within. The basic idea is that the periodic dielectric behaves as a superlat-

tice, with restriction being placed upon the wave properties of the electrons

[133]. Moktadir et al. [134] find that the graphene photonic crystal provides

a wide transmission range, which can be tuned via an applied gate voltage.

It has also been reported by Majumdar et al. [134] that the resonance re-

flectivity can be increased fourfold via a slight 2 nm shifting of the graphene

crystalline structure (i.e. dislocations). Graphene’s flexible nature therefore

offers numerous applications.

Figure D.9: Here, we present a periodic photonic crystal lattice on the

substrate. The lattice forms a band-gap, allowing only certain wavelengths

to propagate inside. The photonic properties can therefore be controlled.

D.4 Graphene Optoelectronic Devices

In this section, we will present ideas for optical devices which incorporate

graphene, with emphasis being placed upon their photonic properties. The
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various photodetectors, optical modulator, and the photonic limiter (mode-

locked laser) will all be discussed.

A. Photodiode and Graphene Photodetector

The n-p or p-n junctions are comprised of two different semiconductors (n-

type and p-type). Electrons from the n-type semiconductor will flow across

the p-type, whereas holes in the p-type will move to the n-type [136]. In any

case, a depletion layer is formed at the junction interface. In principle, n-p

or p-n junctions can be forward or reverse biased [136]. Since a band-gap can

be created in graphene (cf. Section D.2.B), it is therefore feasible to conceive

of a graphene-semiconductor junction.

Figure D.10: A schematic of the photodiode is shown. The basic idea is

that a reverse current flows upon illumination of the photodiode. The figure

also emphasizes that a depletion layer is formed at the interface of the p-n

junction.
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Photodiodes are a key component for use in logical devices. It is a current

generating device that is sensitive to incoming light (cf. Figure D.10 for the

p-n junction configuration). In the absence of light, the device carries a high

resistance. However, incoming photons can break down some of the bonding

within the compounds at the depletion layer (cf. Figure D.10). Electrons

and holes will then be created, and hence a drift current Id flows across the

diode [136]

Id ≈ c1(1− exp(−c2WDL)) . (D.15)

Here, c1 is a constant associated with electric charge and photonic flux, WDL

is the width of the depletion layer, and c2 is a constant associated with the

photon energy and band-gap [108].

The working principle of the photodetector is similar to that of the photo-

diode, transforming photons into an observable current [96, 137] (cf. Figure

D.11). More specifically, photons transfer energy to electrons, causing them

to ’jump’ from the valence band to conduction band (cf. interband transi-

tion). This has a typical timescale of ∼1 ps [102].

γ(photon) + e−val → e−con (D.16)

Here, e−val and e−con refer to electrons in the valence and conduction bands

respectively. Bonaccorso et al. [96] point out that the absorption bandwidth

of light spectra depends upon the choice of semiconductor. As we mentioned

before, graphene interacts with an EM range covering the majority of the

visible spectrum [96, 102]. Xia et al. [138] have also reported that the

frequency response of graphene can be upwards of 40GHz, with a theoretical
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Figure D.11: This figure shows how electrons in the valence band can

be excited to conduction band by incident photons. The conductivity of

graphene increases, and a measurable current can flow around the circuit. In

practice, the idea can be used to measure incident light intensity, for example.

limit reaching even 500GHz. This response generally depends upon the

electrical mobility, resistance and capacitance of the materials [102]. An

appropriate bandwidth for graphene can therefore be adjusted via doping or

an applied electric field. Mueller et al. [139] further reveal that their results

for graphene display a strong photonic response at a wavelength of 1.55µm,

when applying the graphene photodetector on fast data communication links.

Bao et al. [102] have summarized that current from a photodetector can

also be generated just by the contact of graphene and a semiconductor, due

to the differing work functions and thermal gradient. Current leakage is one

of the major drawbacks of the graphene photodetector, although this can be

optimized by reducing the band-gap, or coating some dielectric material on
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the graphene surface [96, 102]. Echtermeyer et al. [140] show that a number

of metallic nanoparticles can be allocated on the graphene substrate, vastly

improving the efficiency of the devices. The basic idea is that a metallic

nanoparticle touches the graphene film, and forms a ’junction like’ contact.

Metallic nanoparticles on the graphene layer would thus act as small pho-

todetectors at the same time, and thus enhance the sensitivity [140, 141].

Some other applications such as the measurement of refractive index [142],

and the analysis of metamaterials via the graphene sensor [143], are all being

studied on the graphene photonic detector platform.

B. Optical Modulator

The optical modulator is a photonic device which transforms electrical sig-

nals into an optical equivalent [137, 144, 145] (cf. Figure D.12 for a schematic

overview). It is an essential communication link within many electronic de-

vices, and can also alter the properties of light via doping or an applied

electric field [102]. For example, assume a plane wave propagates as

A = |A| exp(iθ) , (D.17)

where A can be either electric or magnetic in origin, and θ is the phase of the

wave. A modulator changes the amplitude |A| and phase θ of the input wave

[102]. Graphene is a suitable material for a modulator since it has a strong

response to a wide range of light spectra (i.e., bandwidth) [130, 144, 145].

Typically, graphene will be coated upon the silicon substrate to enhance the

absorption rate [130].

Optical modulators can generally be divided into two types [102]. The
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Figure D.12: The optical modulator is an important device for converting

electrical signals into an optical equivalent, and therefore an ideal bridge

between electronic and optical devices. This device can also change the

properties of the incident wave, such as the phase, frequency, and amplitude.

The Modulation Index (M.I.) is defined as the maximum of the modified

signal Xf , divided by the input signal Xi.

first is an absorptive modulator, converting photons into some other form

of energy. Normally, an absorption modulator can tune the transmitted

light intensity via adjustment of the Fermi energy level EF [102, 130]. The

second type is a refractive modulator which can change the dielectric constant

according to variation of the electric field. Graphene is a promising material

for an absorption modulator due to its wide bandwidth and tunable Fermi

energy level [96, 102]. Bao et al. [102] further reveal that the interband

transition can be tuned to a logical ON/OFF state, dependent upon EF

. Regardless, graphene provides a high optical Modulation Index (M.I.),
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making it an ideal material for any modulator [102]. This index is given by

M.I. =
max(Xf )

Xi

, (D.18)

where Xi and Xf refer to the variable before and after modulation respec-

tively. The graphene modulator can also be applied to the optical resonator,

allowing the wavelength to be altered (cf. for details [102]).

Recently, the dielectric sandwich - two layers of graphene with dielectric

filling - has been used as an optical signaling modulator [144, 145]. Gosciniak

et al. [144] estimate that this graphene optical modulator can reach speeds

of up to 850GHz, with 3 dB modulation and small losses. Liu et al. [145]

have also reported a wide absorption range of 1.35-1.60µm in wavelength.

C. Graphene Waveguide

A waveguide is a physical channel which traps light, guiding it through

a designated path [124, 146]. For example, fiber-optic cable is a common

waveguide for the communication of light signals - its high refractive index

nop trapping light inside the fiber [124]. As we have already seen, the refrac-

tive index depends upon the linear dielectric susceptibility χR1 [102]. Zhang

et al. [146] have studied the wave-modes of the graphene quantum well,

identifying energy dispersion relations associated with Klein tunneling and

classical wave-modes [146]. Zhang et al. [146] further note an absence of the

third order classical, and first order tunneling wave-modes.

Graphene plasmonic waveguides have become an essential component for

integration with logical devices [147, 148]. Kim et al. [147] have studed the

plasmonic waveguide for a dielectric substrate coated on graphene, discover-



APPENDIX D. PUBLICATION #2 136

Figure D.13: Graphene is coated upon the semiconducting substrate, and

either the TE or TM wavemodes can be transmitted along the graphene thin

film.

ing little optical loss and very fast operating speeds. They show that at the

peak wavelength λ = 1.31µm, the transmission ratio is around 19 dB for the

TM mode [147].

D. Saturable Absorber

As we have already highlighted upon, saturable absorption refers to an ab-

sorption of photons decreasing as the light intensity increases [129, 149] (cf.

Figure D.14). It is usually applied via the mode-locked laser [102, 150].

Many semiconductors exhibit saturable absorption, but are not as sensitive

as graphene [102, 129]. The basic idea is as follows - a number of excited

electrons occupy the conduction band during high intensity exposure, and
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electrons in the valence band are no longer able to absorb photons due to

the Pauli exclusion principle [102, 150]. This property originates from the

nonlinear susceptibility of graphene for a short response time [96]. In appli-

cation, a saturable absorber can be used to transform a continuous wave to a

very short wave pulse [96]. Generally speaking, monolayer graphene provides

a high saturable absorption coeffcient, and recently, some research has un-

covered that CNTs may also be suitable candidate for a saturable absorber

[149, 151]. Bao et al. [150] also report that a single layer graphene (SLG)

saturable absorber can provide around 66% modulation depth, and produce

picosecond wave pulses.

Figure D.14: The idea of saturable absorption for graphene is shown.

Graphene can absorb photons, and create electron-hole pairs at low incident

light intensity. However, electrons are incapable of occupying the conduc-

tion band at high light intensity, since most of the states have already been

occupied (cf. Pauli exclusion principle).
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E. Photonic Limiter

A photonic limiter is used to reduce the intensity of light that is emitted

from the source [96, 102, 152, 153]. The mechanism is to permit the passage

of low intensity light, and to filter out light of higher intensity [152, 153]. Dis-

persed graphene-oxide solutions are generally used for studying the optical

limiter [149, 150]. In particular, graphene, has a strong response to a change

of light intensity [102], with a transmittance T (I) that is inversely depen-

dent upon the light intensity I. Such a device can therefore, for example, be

implemented to protect the human eye when working with laser apparatus

[96]. Wang et al. [152] also note how graphene’s nonlinear response is the

working principle behind the reduction of light transmitted at high intensity,

and also show that graphene can limit a wide range of the visible spectrum

[152, 153].

According to Bao et al. [102], the reverse saturable absorption (opposite

to saturable absorption) is the key nonlinear response that filters high inten-

sity light, and subject to certain conditions. This relates to an optical limiter

absorbing more high-energy photons than low-energy photons [102]. Lim et

al. [149] have reported that, in practice, the property will change from sat-

urable absorption to reverse saturable absorption, only when microplasmas

or microbubbles appear. These lead to a nonlinear thermal scattering, which

is also an important factor in limiting high intensity light [102]. Nevertheless,

the graphene photonic limiter is still in the early stages of development, with

more drastic efforts being required in the near future.
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D.5 Transistors

Nowadays, field effect transistors (FETs) are a key component of most inte-

grated circuitry, commonly acting as a simple logic gate. These devices can

be of either n-p-n or p-n-p type, depending upon the desired operation. In

this day and age, when the speed and size of devices are becoming all im-

portant, scientists are having to seek revolutionary new materials to replace

the likes of Silicon (Si), Germanium (Ge) and Gallium Arsenide (GaAs).

With outstanding electrical mobility, graphene-based materials are becom-

ing evermore prominent as candidates within future transistors (cf. Figure

D.15).

Figure D.15: The idea of the graphene FET is shown. The channel of the

transistor is made of graphene, and a gate voltage VG controls the current

flow IDS from drain to source.

A. Carbon Nanotube Transistor
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Before we commence any in-depth discussion of this particular design [85,

86, 154], we must first discuss the physical properties of graphene nanorib-

bons (GNRs) [155] and carbon nanotubes (CNTs) [101, 156, 157, 158, 159].

A GNR is considered to be a piece of graphene of exceptionally narrow width

[155]. The electrical attributes of GNRs are determined by their boundary

conditions (BCs) (cf. Figure D.16). The ’armchair’ BC can cause either

metallic or semi-metallic behavior to be exhibited, whereas the zig-zag BC

yields only metallic characteristics [101, 156, 157]. Therefore, GNRs are an-

other means of generating an energy band-gap. In this case, the gap size is

inversely proportional to the nanoribbon width.

Figure D.16: The lower portion of this figure highlights the two possible

boundary conditions (BCs) that a graphene nanoribbon (GNR) can satisfy.

The zig-zag BC yields only a conducting state, whereas the armchair BC

can either imply a conducting or semiconducting state (dependent upon the

width of the nanoribbon). The GNR can also be curled to form a carbon

nanotube (CNT), with a band-gap that is inversely proportional to its radius.
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Carbon nanotubes are often considered to be one-dimensional structures,

and can be formed by curling a GNR (typically 10-100 nm in width [101, 155])

into a cylindrical configuration (for further details concerning their fabrica-

tion, one can refer to [101, 158]). The nanotubes can either be single-walled

or multi-walled, although this must be taken into account when considering

the CNT radius rCNT . Since this process leads to structural deformation

of graphene’s honeycomb lattice, there is an overall modification of the elec-

tronic band structure [101, 156, 157]. Quantum equivalents of the capaci-

tance, inductance and resistance have all been exhibited within the electrical

properties of CNTs, and an energy band-gap Eg is found to be inversely

proportional to this CNT radius rCNT [101],

Figure D.17: The figure shows the back-gated CNT transistor. It contains

multiple CNTs as the intermediary channels, providing stable performance

and current flow. Since the device is back-gated, it can easily be applied

within integrated circuitry.



APPENDIX D. PUBLICATION #2 142

Eg ∼ 1/rCNT . (D.19)

Thus, together with graphene’s capability for long-range ballistic transport

(even at room temperature), this presents many useful applications. For

example, CNTs would be an apt source-drain channel within semiconducting

devices such as transistors [156].

For decades now, the CNT transistor has been subject to intense study

[94, 101, 156, 160, 161, 162], with a recently reported high switching ra-

tio [162]. They consume much less power, and can possess shorter channel

lengths than their silicon-based counterparts. They can also exist in many

forms, the most popular being the top-gate, back-gate and wrap-around gate

designs [156, 163, 164, 165]. Recently, Shulaker et al. [163] have developed a

simple computer from the CNT-based transistors, which can perform more

than 20 different instructions. Figure D.17 provides a diagrammatic repre-

sentation of how a back-gated multi-CNT transistor may look - the CNTs

themselves acting as the intermediary channels. Currently, one can produce

a purified CNT having less than 0.0001% impurity - which can minimize any

inelastic scattering in the channel [164]. The ON/OFF drain-source current

IDS can be tuned by using an applied electric field (i.e., the gate voltage

VG) to act upon the CNT channel [164]. Moreover, the ballistic transport

of electrons is a result of the one-dimensional CNT structure [101], which

again restricts the degree of inelastic scattering. CNT transistors would also

appear to alleviate the issue of the short-channel effect in silicon-based de-

vices. In theory, the shorter the channel, the faster the transistor [94, 101].

However, usually when the channel has a length scale in tens of nanometers,

the drain-source current IDS tends to become most unstable [101]. A recent
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study [161, 164] has revealed that the CNT channel can be as short as 9 nm,

whilst maintaining a stable current. There are even some predictions that

the CNT channel can reach even down to 7 nm in the near future [161, 164].

Schottky barriers at the channel-electrode contacts, are the major obsta-

cle with regards to the CNT’s application within transistors [165]. Specif-

ically, they provide a large resistance at the CNT-electrode interface, due

to the differing work-functions [101]. The Schottky barrier would generally

downgrade the ON/OFF switching ratio [101, 165]. Even worse, this barrier

is much larger than for silicon-based devices. A recent study by Javey et

al. [165] reveals that the Schottky barrier would be greatly reduced when

using the noble metal, Palladium (Pd) as the electrode. They also show

that the CNT channel can even then maintain ballistic transport [165]. It is

important to emphasize how both classical and quantum equivalents of in-

ductance, resistance and capacitance are exhibited for CNT transistors [101].

In particular, quantum effects become most apparent at the nanoscale. Both

quantum inductance and capacitance are determined by the size, BCs and

the density of states (DoS) of the CNT [94, 101], whereas the quantum re-

sistance is equal to h/4e2.

B. Tunneling Transistor

1. Mechanisms of Tunneling

As we have already highlighted upon many times now, the absence of a well-

defined OFF state in the graphene transistor is a major setback [166, 167].

Assuming a band-gap were to be created, the next hurdle to overcome is

the back-current leakage during this OFF state, since this downgrades the
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power efficiency [166, 167]. Furthermore, opening this band-gap would then

reduce the mobility of graphene, with the Dirac fermions being subject to

some inelastic scattering [167].

The tunneling graphene transistor is a revolutionary new concept, and

may be capable of alleviating some of the aforementioned drawbacks. It

consumes very little power (up to 109 times less than silicon-based devices

[168]) and possesses a very fast response time (steep sub-threshold slope)

[94]. Michetti et al. also report that an ON/OFF switching ratio can reach

as high as 104, even with a small electric field [169, 170, 171]. It is also found

that tunneling occurs at exceptional speed [171]. The underlying concept is

visualized in Figure D.18. The interband tunneling is tuned via an applied

drain-source voltage VDS and gate voltage VG [167, 172]. Both VDS and VG

are used to accumulate the electrons and holes in upper and lower graphene

layers respectively, and thus altering the shape of the potential barrier [173].

The tunneling is also associated with the channel length, and thickness of

the gate oxide layer tox [169].

2. Vertical Design

A relatively new concept which relies upon vertical tunneling has been de-

veloped by the Manchester research group [166, 167]. The graphene-based

device consists of a few (insulating) layers of hexagonal Boron Nitride (hBN)

or molybdenum disulphide (MoS2) [174, 175, 176]. These are positioned be-

tween two graphene sheets which then constitute the electrodes (cf. Figure

D.19). The key point here, is that the insulating layers act as a barrier, and

thus preventing the flow of current. As such, there is no need for a well-

defined band-gap in graphene [174, 175, 176]. This has the added benefit of
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Figure D.18: The upper figure shows an intermediate barrier separating

the two layers of graphene. In the absence of external electric fields, the

Fermi energies are situated at the Dirac points. When the gate voltage VG

and drain-source voltages VDS are applied, electrons begin to accumulate in

the conduction band of one graphene layer, and holes in the other. Tunneling

can readily occur in this situation, via a fine tuning of both voltages.

greatly reducing any current leakage whilst in the OFF state [174, 175, 176].

The whole process of current tunneling then acts perpendicular to the layers

[174, 175, 176]. Electrons in the bottom graphene layer will begin to accu-

mulate once a gate voltage VG is applied across the lower insulating layer

[177, 178]. The drain-source voltage VDS is then added to create holes in

the upper graphene layer [166, 174, 175, 176]. This has the desired effect of

increasing the Fermi energy EF in bottom graphene layer, and decreasing EF

in the upper layer. Electrons in the bottom graphene layer are then capable

of tunneling to the top graphene layer [167]. A recent study by Georgiou
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et al. [174] reveals that the current modulation can reach a high value of

106 (even at room temperature). It is also interesting to note that a reso-

nant tunneling within the vertical transistor occurs in some energy states,

and a negative differential conductance exists (i.e., current decreases upon

an increase in voltage) [175, 176].

Figure D.19: The vertical tunneling graphene transistor is shown. The

hexagonal Boron Nitride (hBN) insulating layers act as an intermediary bar-

rier. The accumulation of holes in the upper graphene layer is controlled

by the drain-source voltage VDS, whereas the build-up electrons in the lower

graphene layer can be tuned via the gate voltage VG . Electrons are then

capable of tunneling from the bottom to top layer of graphene.

C. High Frequency Devices

High frequency transistors do not require an OFF state, and can oper-

ate solely through variations of the current or voltage signaling [94, 179].
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Graphene may thus be applicable within the realms of high-frequency tran-

sistors, inverters, or operational amplifiers [94, 147, 180]. Graphene’s re-

sponse to these signals is incredibly fast, with operating speeds of around a

few hundred GHz [147, 179, 181, 182, 183].

The performance of high frequency devices is characterized by two im-

portant parameters - the cut-off frequency fcut and maximum oscillation fre-

quency fmax. The cut-off frequency fcut is given by a current gain GI equal

to unity [179]

GI = 20 log10

(
Iout
Iin

)

, (D.20)

where Iout and Iin are the output and input currents respectively. Typically,

fcut is proportional to the trans-conductance grf and the thickness of the gate

oxide layer tox, whereas inversely proportional to the transistor gate length

LG and gate width WG [94, 179]. The whole expression is given by

fcut = c1
tox grf
LGWG

, (D.21)

where c1 is a constant associated with dielectric gate. In experiments, one

would only shorten the gate length LG for simplicity, thereby increasing the

cut-off frequency. Wu et al [179] report that with CVD-prepared graphene,

fcut can reach upwards of 155GHz for a relatively short gate length of 40 nm.

Theoretical simulations have indicated that a cut-off frequency of 1THz can

be attained for just a few nanometers gate length [181].

Similar to fcut, the maximum oscillation frequency fmax is obtained for a

power gain GP equal to one. Here, we have GP = 10 log10(Pout/Pin), where

Pout and Pin are the output and input powers respectively [179]. The value of
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fmax in graphene-based devices is slightly more complicated, and is dependent

upon the cut-off frequency, gate resistances, and the trans-conductance grf

[179, 181]. A recent report [179] has mentioned that fmax can reach up to

20GHz. However, it is important to note that a short gate length would not

necessarily imply a high value for fmax [179, 181]. At present, not much is

understood of the I − V characteristic curve - this has three regions, firstly

linear, then saturating, and finally a second linear region [94, 179, 181]. In

addition, a change of gate voltage VG would alter the shape of the I−V curve,

and making the saturation region ambiguous. Without a stable saturation

region, the value of fmax is limited. This problem will require urgent attention

in the near future, if the high-frequency transistor is to make any headway

[147, 184].

D.6 Summary

Graphene’s outstanding capabilities have drawn the attention of scientists

from several interdisciplinary backgrounds - all looking to take advantage.

This stand-alone two-dimensional structure is a playground for Dirac fermions

which possess a zero effective mass [67, 185, 186]. Quantum phenomena have

been observed even at room temperature; a series of anomalous quantum ef-

fects including QHE and Klein tunneling [64, 117]. Graphene’s versatility

is nigh on endless - in this paper, we have merely focused upon optoelec-

tronic devices and transistors. Optical communications provide a much wider

bandwidth, with higher efficiencies than most typical conducting wire. We

are thus dawning upon a new golden photonic age of higher internet speeds,

and entertainment-based devices. Graphene’s high transmittance, strong in-

teraction of light with ultra-fast response time, wide absorption spectrum,
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and tunable optical conductivity [96, 102, 130], present an ideal material

for optical devices! Amongst many others, these include the photodetector,

optical modulator, plasmonic waveguide and also the saturable absorber.

The absence of any discernible band-gap for graphene is an unavoidable is-

sue for logical devices, although one may be created via various methods

(e.g., structural deformation or chemical doping) [94]. The CNT transistor

is now a well-established technology - developed over more than 30 years.

Only now has the dream of a CNT-based computer become a working re-

ality [163]. Carriers in CNT channels can perform ballistic transport, even

for very short lengths. However, the graphene vertical tunneling transistor

is something rather novel. This device itself does not require band-gap at

all, and yet, both operates at exceptional speeds, whilst consuming very lit-

tle power. Our final talking point was the high frequency transistor, which

acts as amplifier in the circuit rather than a typical logical device. The cut-

off frequency can reach theoretical estimates of up to 1THz, for just a few

nanometers of gate length [101]. Although we have plainly made the case for

graphene’s implementation within numerous optical and electronic devices,

there are a few obstacles which we must overcome. These are the nonlinear

I−V characteristic curve, and the emergence of Schottky barriers (although

we mention a suitable fix). Fifty years ago, no one would have ever envisaged

that optical or silicon-based devices would have their place in everyday life.

Graphene may change the world!
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