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Abstract: This work is based on the formalism developed in the study of the thermodynamics of
spacetime used to derive Einstein equations from the proportionality of entropy within an area. When
low-energy quantum gravity effects are considered, an extra logarithmic term in the area is added
to the entropy expression. Here, we present the derivation of the quantum modified gravitational
dynamics from this modified entropy expression and discuss its main features. Furthermore, we
outline the application of the modified dynamics to cosmology, suggesting the replacement of the
Big Bang singularity with a regular bounce.
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1. Introduction

In the absence of a final theory of quantum gravity, the study of its phenomeno-
logical effects has obtained relevance in recent years. The aim of these approaches is
to shed some light on the effective, dynamical low-energy quantum gravity effects near
singularities [1–6]. Phenomenological models are naturally constrained to a particular
candidate theory of quantum gravity and usually also to simple particular models that
prevent the extrapolation of results. In order to improve this situation we aim at finding
the general phenomenological effects of quantum gravity, allowing us to extract general
features of and possible constraints on the final theory. Thus, we suggest the derivation of
the phenomenology from general thermodynamics tools.

The use of thermodynamics to understand gravitational mechanics was pointed out
first in the context of black hole thermodynamics and subsequently extended to general
spacetimes, giving rise to the derivation of Einstein equations from thermodynamics [7–9].
Specifically, the starting point of the derivation is the equilibrium condition for maximal
entropy on the horizon. This relationship between thermodynamics and gravitational
dynamics has been seen to not be just a particular characteristic of General Relativity,
but relevant for many modified theories of gravity [10–16] and for the introduction of
quantum fields as gravitational sources [8,16]. In this framework of understanding the
interface between gravitational dynamics and thermodynamics we propose a further step.
By introducing quantum gravity effects to thermodynamics we obtain a set of modified
gravitational dynamics, which encode the low-energy effects of quantum gravity.

As it is a suitable modification of thermodynamics using quantum gravity effects, we
make use of the leading order modification of Bekenstein entropy. Different approaches
to quantum gravity predict the same qualitative logarithmic correction to this entropy,
such as loop quantum gravity (LQG) [17,18], string theory [19,20], and AdS/CFT corre-
spondence [21,22]; this also appears in some model-independent thought experiments and
phenomenological approaches such as the generalized uncertainty principle (GUP) [2,4].
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Due to the fact that we are considering modifications on the entropy associated with a
horizon, we note that the studied modification of entanglement entropy also gives rise to
the same correction term [23–25]. In fact, some proposals interpret Bekenstein entropy as
an entanglement entropy [23,26,27]. The convergence of approaches leading to the same
qualitative modification of entropy allows for a universal interpretation of it as a general
feature of quantum gravity effects, additionally providing different quantitative results
that could be used to constrain the models.

This article presents a review of our work that covers the contribution presented in
the workshop "The Quantum and The Gravity" and is organised as follows. In Section 2,
we briefly review the classical results of the derivation of Einstein equations that we will
extend later into the quantum realm. In Section 3, we first introduce the quantum gravity
modification of entropy. Then, we use methods from the thermodynamics of spacetime
to derive effective quantum gravitational equations of motion and discuss the results.
Finally we present a sketch of the application of our equations to a simple cosmological
model, where our scheme provides an effective avoidance of the singularity. We conclude
in Section 5 by summarizing our results and outlining possible future work perspectives.
Throughout the paper, we express equations in SI units.

2. Einstein Equations of Motion from Thermodynamics

In general, derivations in the thermodynamics of spacetime are based on the idea
that gravitational dynamics are encoded in the equilibrium condition for the maximal
entropy on the horizon, δS = 0. Thus, all the technical challenges lie in the definitions of
the relevant entropies and of the horizon itself. In this work we will follow two recent
derivations performed from different definitions for the entropy of the matter fields, being
the entanglement entropy of the matter present there [8] or the Clausius entropy flux
across the horizon [9,28]. The consideration of both cases allow us to analyze the possible
equivalence of these definitions that has been already established at the semi-classical level
(see the detailed analysis by the authors in [9,28]). Regarding the definition of the horizon,
we develop both derivations associated with the horizon of geodesic local causal diamonds
(GLCD) that we will introduce in this paper1. We would like to note that the derivations
in the semi-classical case seem to point to the emergence of Unimodular Gravity instead
of General Relativity. These two gravitational theories are dynamically equivalent in the
semi-classical regime, so to reliably determine which theory is likelier, one would need to
introduce quantum gravity effects.

2.1. Geodesic Local Causal Diamonds

Let us consider an arbitrary point P of spacetime and any of unit time-like vec-
tor nµ emerging from it. If we choose Riemann normal coordinates (RNC), holding
n = ∂/∂t + O(l), and expand around P, we obtain [32]:

gµν(x) = ηµν −
1
3

Rµανβ(P)xαxβ + O
(

x3
)

. (1)

When sending a family of geodesics orthogonal to nµ with parameter length l out
from P, we obtain a three-dimensional geodesic ball, Σ0. The causal region determined by
this geodesic ball is what defines a geodesic local causal diamond (see Figure 1).

One of the relevant quantities for our derivation will be the area of the 2-sphere
defined by the boundary B of Σ0 (for a value of l much smaller than the local curvature
length) [8]

A = 4πl2 − 4π

9
l4G00(P) + O

(
l5
)

, (2)

where G00 ≡ Gµνnµnν.
The other relevant quantity is the conformal Killing vector, which generates a confor-

mal Killing horizon on the null boundary of the GLCD, which will allow us to define the
variation of matter entanglement entropy inside the geodesic ball.
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Figure 1. A representation of a GLCD having originated from point P (where the angular coordinate
is suppressed) and with a unit time-like vector nµ. The geodesics of length l form the spatial geodesic
ball Σ0, whose boundary B is an approximate 2-sphere . The boundary of the diamond given by the
null geodesic generators runs from the past apex Ap (t = −l/c) to the future apex A f (t = l/c).

2.2. Classical Derivation of Einstein Equations

In basic terms, the gravitational dynamics are encoded in the equilibrium condition for
maximal entropy on the horizon, that is δS = 0. The entropy on the horizon is composed
of the sum of the entropy of quantum correlations across the horizon and the entropy of
the matter–energy crossing it.

On one side, the entropy given by the correlations of the vacuum fluctuations of
quantum fields across the horizon is calculated as von Neumann (entanglement) entropy.
This entropy comes from having a region of the spacetime inaccessible to an observer
and it is associated with the horizon defining that boundary. Then, as this entropy
describes any causal horizon, the observer-dependent horizons are of interest in this
framework [12,26,27]. The entanglement entropy was found to be proportional to the area
of the horizon S = ηA [23,26,27,33], where η depends on a UV cut-off and, in principle, can
also depend on the position in spacetime [12]. When we perform a variation of this entropy,
it corresponds to a variation of the area (for constant η). The variation of the area in this
model is determined by the previous equation in the diamond, performing a variation of it
from a maximally symmetric spacetime [34].

Let us remark that, in order to recover the Einstein equations of motion from this
derivation, it is necessary to assume an equivalence of entanglement entropy with the
Bekenstein entropy of black holes [35–37]:

SBH =
kBA
4l2

P
, (3)

where A is the area of the black hole’s event horizon, lP =
√

Gh̄/c3 is the Planck length,
and kB is the Boltzmann constant. This assumption is not something new or exclusive to
thermodynamic derivations. Among the many proposals for microscopic interpretations
of this entropy [38], one of the ideas classifies the appearance of Bekenstein entropy as
a product of the quantum entanglement between two causally separated regions [26]2.
Under this identification method, the proportionality constant takes a universal value
of η = kB/4l2

P. Note also that setting the equivalence with Bekenstein entropy in this
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context of thermodynamic derivation implies the assumption of the Strong Equivalence
Principle [40].

On the other hand, we need to consider the variation of matter–energy entropy
crossing the horizon. The standard method used is to calculate the thermodynamic entropy
of the horizon, as was the case in the seminal work of Jacobson [7]. The issue there was
whether thermodynamic entropy can be summed directly with the entanglement entropy
to result in a general equilibrium condition, because of the different characters of both.
Later, a computation for the entropy of matter was developed in terms of entanglement
entropy for GLDC explicitly evaluated for small perturbations from a vacuum [34]. This
entropy can be combined with the entanglement entropy of the geometry to generate a
total equilibrium condition, and this will be the derivation on which we will base our study.
The expression of this entropy comes from realizing that the vacuum state of the field can
be written as an expression of a thermal density matrix at the Unruh temperature. Thus,
in the semi-classical framework, δSm is given by (for a detailed derivation see [34]):

δSm =
2πkB

h̄c
4πl4

15
(δ〈T00〉+ δX), (4)

where X is a spacetime scalar depending on l, which reflects the presence of non-conformal
fields [34]. This equation is valid as long as there is a fixed UV point for each field.

When one sums up these two contributions to calculate the total entropy and demands
the equilibrium condition, after some calculations (and fixing the value of η as described
earlier) and assuming the Einstein Equivalence Principle [40] (in order to generalize the
local equation to all the components of the Einstein tensor in the whole spacetime [7]),
the traceless equations of motion emerge in the derivation:

Rµν −
1
4

Rgµν =
8πG

c4

(
Tµν −

1
4

Tgµν

)
. (5)

Imposing the local conservation of the energy–momentum tensor results in the Ein-
stein equations, with the cosmological constant Λ appearing as an integration constant:

Gµν + Λgµν =
8πG

c4 Tµν. (6)

In order to both understand a possible equivalence between thermodynamic and
entanglement entropies, and to check the results via a different method, we developed
another procedure. In this derivation [9], the matter–energy entropy expression comes from
the explicit definition of a Clausius flux, SC, crossing the horizon [28]. One starts by defining
a class of time-like observers traveling inside the GLCD with constant acceleration a. Then,
from the velocity of these observers, Vµ, the normal, Nµ, used to time the hyperbolic sheet
of these observers’ sweep out, Σ, and the energy momentum tensor, it can be defined the
heat (matter–energy) crossing a segment of Σ as:

δQ = −1
c

∫
Σ

TµνVµNνd3Σ. (7)

From this expression, one can directly obtain the Clausius entropy by invoking the
Unruh temperature measured by these uniformly accelerated observers dSC = δQ/T.
The general expression for the Clausius entropy for a bifurcate null horizon is then found
by taking a limit, a→ ∞, yielding [28]:

SC(λ) = S(B) + 2πkBc
h̄

∫ λ

0

∫
S(λ)

λ̃Tµνkµ
±kν
±d2Adλ̃ + O

(
λ3
)

, (8)

where λ is the affine parameter along the geodesic generators of the null surface, kµ
± are

null vectors tangent to the surface (for positive and negative values of λ, respectively),
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d2A is the area element of the null surface’s spatial cross-section S(λ), and S(B) is an
unspecified Clausius entropy referred to the 2-surface B (given at λ = 0).

From the definition of the Clausius entropy, we can integrate this entropy into the
diamond to obtain the total entropy flux across the horizon, and then add this contribution
of the matter–energy flux to the entanglement entropy, demanding the equilibrium condi-
tion for maximal entropy. Using this procedure, it was shown that the same derivation for
the Einstein equations could be completed under the same assumptions as the previous
procedure [9].

There are few remarks concerning these classical derivations that we consider relevant
for our next analysis. The first is the found equivalence of the Clausius and entanglement
entropies at the semi-classical level (for a detailed analysis see [9]). It is not clear to what
extent this equivalence hold when we introduce quantum effects, as the very definition of
Clausius entropy is no longer valid in this instance. The second remark comes from noting
the traceless form of the derived equations of motion, with the local conservation of the
energy–momentum tensor appearing as an additional assumption. This is characteristic
of Unimodular Gravity theories. From this, it could be argued that General Relativity
does not emerge from the thermodynamics of spacetime, rather Unimodular Gravity
does. However, these two theories are dynamically equivalent at the semi-classical level,
preventing us from reaching a clear conclusion3. In contrast, these two theories might differ
when one tries to quantize them. So, we expect that the introduction of quantum effects
in the thermodynamic derivation can shed light on which of the two theories emerges
from thermodynamics.

3. Modified Equations of Motion

Now, we introduce low-energy effects of quantum gravity on thermodynamics and
analyze the effective equations of motion that emerge from it. For this purpose, we first
studied the modified entropy of the horizon as a general prediction from the inclusion
of quantum gravity effects. Once we obtained the modified thermodynamic tools, we
proceeded to derive the equations of motion by following an extension of the two classical
procedures we mentioned in previous section.

3.1. Modified Entropy of the Horizon

Modification of the horizon entropy is characterized by the appearance of a logarithmic
correction. This modification emerges from the quantum gravity effects on both the
Bekenstein entropy associated with the black hole horizon and on the entanglement entropy
associated with observer-dependent causal horizons.

The modification of Bekenstein entropy by quantum gravity effects has been argued
in very different contexts, e.g., in LQG [17,18], GUP phenomenology [4,6], entanglement
entropy calculations [23,45], AdS/CFT duality [21,22], string theory [19,20], and in the
analysis of statistical fluctuations around equilibrium [46]. We can express the modified
entropy in a general form:

SBH,q =
kBA
4l2

P
+ CkB ln

(
A
A0

)
+ O

(
kBl2

P
A

)
, (9)

where C is a real dimensionless constant and A0 is another constant with dimensions
of area. The specific values of these constants are characteristic of the different theories
and models.

The entanglement entropy calculations of the logarithmic modifications are particu-
larly appropriate in our case (for a detailed description of these methods see, e.g., [23–25]).
On one hand, these calculations are appropriate, because they provide an expression for
the logarithmic modification for virtual observer-dependent horizons. On the other hand,
these calculations are appropriate, because they show how the corrections depend on the
horizon’s topology, such that they do not appear for a plane (such as the Rindler horizon)



Universe 2022, 8, 50 6 of 13

but they emerge for 2-spheres [23]. So, it is more appropriate to use these calculations for
the derivation of a horizon with closed spatial cross-sections such as the one of the GLCD,
in contrast with the Rindler horizon used in Jacobson’s original paper [7].

Let us briefly remark that only the sign of the constant C is relevant to determine
the character of the effective equations of motion. Some of the mentioned models have
proposed opposite signs for it, which could be used in the future as a constraint on the
proposal. In general, one could classify the modifications to entropy in two categories
regarding the sign of C. C < 0 is associated with microcanonical modifications, providing
more accuracy on the microstates at fixed horizon areas. As expected, those modifications
reduce the uncertainty, being reflected in a negative correction term to the entropy [6,47,48].
Conversely, C > 0 is associated with canonical modifications, coming from the thermal
fluctuations of the horizon area at a fixed temperature, providing an additional source
of uncertainty [6,47,48]. Throughout this work we will keep a general value of C in
Equation (9), which can later be set to any particular value, in order to study the general
features of the theory (as we will see in the simple cosmological example).

3.2. Modified Equations of Motion

We now incorporate the modified entanglement entropy into the semi-classical meth-
ods developed in the thermodynamics of spacetime. By doing this, we aim to obtain
a general expression for modified equations of motion reflecting the phenomenological
low-energy effects of quantum gravity dynamics. Note that we still assume in this regime
that spacetime exists as a four-dimensional Lorentzian manifold, i.e., we are restricting the
study to length scales still significantly larger than those of the Planck scale.

From a technical point of view, in order to develop our derivation, we will use causal
diamonds, as they provide a closed region of spacetime with a naturally defined boundary,
which is especially well suited to local calculations. Moreover, as we have previously
mentioned in the subsection which defined closed causal horizons, the use of causal
diamonds is necessary for the logarithmic modifications to entanglement entropy4. In the
following sections, we explain the results of the derivation in terms of the two independent
methods mentioned in previous section (for a detailed computation of the results, see [49]).

3.2.1. Derivation from MVEH

This derivation is based on the maximal vacuum entanglement hypothesis (MVEH) [8]
concerning GLCD, which establishes that a first order variation of the modified total
entropy (i.e., summing the entropies for the geometry and quantum fields) from a vacuum
of maximally symmetric spacetime vanishes in a small geodesic ball at a fixed volume.
We can express this as δSe,q + δSm = 0, where Se,q is the modified vacuum entanglement
entropy and Sm the entanglement entropy of the matter.

On one hand, in order to evaluate δSe,q, we consider the entropy as given by:

Se,q = ηA+ kBC ln
A
A0

+ O

(
kBl2

P
A

)
, (10)

where C is a dimensionless constant, and the area of B, using the expression for the area
(corresponding to B), is determined by Equation (2). Note that we have kept η as a general
constant for the moment, instead of fixing it to the Bekenstein value. In order to find the
equations of motion, we need to consider a variation of the metric that leaves fixed the
volume of Σ0 [8,15] and compute the corresponding change δSe,q as:

δSe,q = Se,q − SMSS
e,q

= ηδA|V + kBC
δA|V
AMSS

− kB
C
2

(
δA|V
AMSS

)2

+ O
(
(δA|V)3

)
, (11)
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where the superindex MSS accounts for the maximally symmetric spacetime from where
we perform the variation.

On the other hand, we also need to evaluate δSm, expressing it in terms of the varia-
tion of the energy–momentum tensor expectation value, δ〈Tµν〉. In order to peform that
evaluation, we express the vacuum state of the field in terms of a thermal density matrix at
the Unruh temperature [7,49]. The consideration of the Unruh effect implies assuming the
ground state of the quantum fields, approximated locally as the Minkowski vacuum, which
implies assuming the Einstein Equivalence Principle [12,40], as we have already seen in the
semi-classical case. However the inclusion of the quantum gravity effect could lead to the
violation of the EEP (as it has been studied, for example, in GUP phenomenology [50–53],
with very different conclusions). Nevertheless, in this modified picture, it has been argued
that the Unruh effect is also modified due to quantum gravity effects. In that case, such a
modification already accounts for changes in the local quantum field theory induced by
a possible EEP violation. This allows us to consider the (modified) Unruh temperature
regardless of the validity of the EEP. Some modifications of this kind have been suggested
in the framework of GUP [54,55], following previous discussions of Hawking temperature
modifications [4]. Even though the proposed models modifying the Unruh temperature
differ, all of them show a leading order correction term proportional to T3 ∝ a3, where T is
the standard Unruh temperature. Thus, it can be written generally as:

TGUP =

h̄a
(

1 + ψ
l2
P

c4 a2
)

2πkBc
+ O

(
l4
Pa5

c8

)
, (12)

where ψ is a real constant (with an estimation of being of the order of unity) [54,55].
It is noteworthy that a complete rigorous analysis of possible modifications of Unruh

temperature has not been developed yet, and, therefore, we lack conclusive arguments
for or against them. Nevertheless, due to the general basis of the validity of GUP ap-
proaches [2], it is worth considering this possibility and showing that, even if some mod-
ifications appear, our construction is consistent. Hence, we will keep the more general
expression, using the standard Unruh temperature when ψ = 0 as a particular case. We
will see that resulting gravitational dynamics has no dependence on the exact expression
for the Unruh temperature (as one would expect from the fact that both Hawking and
Unruh effects are kinematic results [56]).

The variation of Sm can be expressed as the semi-classical variation plus an extra term
from the temperature modification:

δSm =
2πkBc

h̄
4π

15
l4(δ〈T00〉+ δX)− 4ψl2C2 2πkBl2

P
h̄c3

4π

15
l4(δ〈T00〉+ δX) + O

(
l5
)

, (13)

where C is a constant from an arbitrary normalization of the conformal Killing vector [8,34].
When bringing together both variations of entropy, one can check that the necessary

condition implied by MVEH reads [49]:

Sµν(P)nµnν +
C l2

Pl
30π

Sαβ(P)nαnβSµν(P)nµnν −Φ(P) =
8πG

c4 δ〈Tµν(P)〉(P)nµnν, (14)

where Sµν = Rµν − Rgµν/4 denotes the traceless part of the Ricci tensor, and Φ is a scalar
independent of l. In order to recover Einstein equations in the semi-classical limit, when
C → 0, we set η = kB/4l2

P. This assumption implies the consideration of G as a universal
constant. The equation is valid for any unit of the time-like vector nµ in P (note that time
indices used previously were the result of contractions with the time-like vector nµ), as
there is no preferred time direction. In order to determine Φ, we can obtain a system of
conditions by differentiating the equation with respect to nµ and thus finding that Φ is
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uniquely reduced to a single undetermined scalar function, (0)Φ5, leading the equations to
be expressed as:(

Sµν(P)−
Cl2

Pl
30π

Sµλ(P)Sλ
ν(P)− 8πG

c4 Tµν(P)

)
nµnν = (0)Φ(P). (15)

Similar to the semi-classical case [9], the contractions containing nµ and a dependence
on P can be disregarded when considering the validity of the Einstein Equivalence principle.
This already-mentioned assumption allows for a generalization of the equations throughout
the whole spacetime, thus:

Sµν −
Cl2

Pl
30π

SµλSλ
ν −

8πG
c4 δ〈Tµν〉 = −(0)Φgµν. (16)

Finally, taking the trace of these equation, we fully determine (0)Φ and obtain the
following expression for the traceless equations of gravitational dynamics:

Sµν −
Cl2

Pl
30π

SµλSλ
ν +

Cl2
Pl

120π

(
RκλRκλ − 1

4
R2
)

gµν =
8πG

c4

(
δ〈Tµν〉 −

1
4

δ〈T〉gµν

)
.

These represent completely general effective equations of motion that reduce to (trace-
less) Einstein equations within an appropriate limit. In order to obtain a deeper understand-
ing of them, and before we analyze them in detail, we performed an alternative derivation
via the expression for the Clausius entropy flux.

3.2.2. Derivation from the Clausius Entropy Flux

In this derivation, as we have seen in the semi-classical case, we use the flux of Clausius
entropy crossing the null boundary of a GLCD to quantify the contribution of matter–energy
entropy. However, the standard semi-classical prescription for this derivation lacks validity
here. Hence, we first need to modify the definition of Clausius entropy.

The modified Unruh temperature is measured as the standard temperature, by uni-
formly accelerating observers so entropy is defined in a similar way to the semi-classical
case as dSC = δQ/TGUP. One relevant change in this framework is that, in the semi-
classical set up, entropy is calculated in the limit a → ∞ [28], when Σ approaching the
bifurcate null surface; however, when the Unruh temperature is modified according to
Equation (12), the term proportional to ψa2 becomes dominant for a going to infinity. There-
fore, we instead need to consider an a value that is smaller than 1/

√
ψ but still very large6.

By introducing these modifications, one can finally find that the time-derivative Clausius
entropy takes the form [49]:

dSC(t)
dt

=
2πkBc

h̄
t
∫
S(t)

Tµν(x(t, θ, φ))kµ
±kν
±d2A+ O

(
l4
)
+ O

(
ψ

l2
Pa2

c4

)
+ O

(
1
a2

)
, (17)

which recovers semi-classical results when ψ = 0. From this expression, we can directly
obtain the total flux of Clausius entropy across the GLCD horizon during its lifetime by
integrating it from the bifurcation surface, B, at t = 0 to the diamond’s future apex A f ,
at t = l/c [9,49] obtaining:

∆SClausius = −
8π2kBl4

9h̄c

(
T00(P) +

1
4

T(P)
)
+ O

(
l5
)
+ O

(
ψ

l2
Pa2

c4

)
+ O

(
1
a2

)
. (18)

Once we obtained this expression, we demanded, as before, thermodynamic equilib-
rium in addition to the change of entanglement entropy Se,q associated with the GLCD
horizon (this will have the same expression as the other derivation as well as the same
origin). In this case, to perform this addition inside the thermodynamic equilibrium,
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we assume that, at a leading order in l, the Clausius entropy is equivalent to the matter
entanglement entropy, and this will allow us to check the validity of that equivalence.

We can proceed with the calculations in a similar way as for the other derivation, i.e.,
finding that the modified gravitational equations of motion result from that process, thus:

Sµν −
C l2

P
18π

SµλSλ
ν +
C l2

P
72π

(
RκλRκλ − 1

4
R2
)

gµν =
8πG

c4

(
Tµν −

1
4

Tgµν

)
. (19)

We can clearly see that these equations are nearly identical to the ones obtained from
the previous derivation. The only variation between them is a numerical difference in the
proportionality constant. In this case, the modification term carries a factor of −C/18π,
in contrast to the factor of −C/30π found in previous derivations. This minor discrepancy
could show some modifications in the equivalence between Clausius and matter entangle-
ment entropy when quantum effects become relevant [9,49]. This discrepancy is expected
from the classical character of Clausius entropy but it can be interesting to analyze it in
detail to understand the relationship among different entropies (this issue will be addressed
in a future work)7. In any case, the 5/3 difference factor will have no relevant effects on
the obtained physics, and its value will also be encompassed in the indeterminacy of the
coefficient C.

4. Interpretation of the Modified Dynamics

In view of the similarity of both derivations of the modified dynamics, we can write a
general expression for the modified equations of motion as:

Sµν − Dl2
PSµλSλ

ν +
Dl2

P
4

(
RκλRκλ − 1

4
R2
)

gµν =
8πG

c4

(
Tµν −

1
4

Tgµν

)
, (20)

where D = C/30π or D = C/18π for the equations derived using the MVEH or Clausius
entropy approaches, respectively.

As we mentioned before, the introduction of quantum effects tips the scale in favor of
the emergence of Unimodular Gravity instead of General Relativity. This occurs in part
because of the traceless character of the equations, but even more so in that case, where the
additional assumption of the local energy–momentum conservation gives rise to:

1
4

R;µ − Dl2
P

(
SλνSµλ

)
;ν
+

Dl2
P

2

(
RκλRκλ;µ −

1
4

RR;µ

)
= −2πG

c4 T;µ, (21)

which, in contrast to the semi-classical dynamics, cannot be generally solved for T, prevent-
ing us from expressing them as modified Einstein equations. This shows in a clear way the
tendency of the thermodynamics of spacetime towards Unimodular Gravity rather than
General Relativity when introducing phenomenological effects of quantum gravity8.

On another note, both derivations are not affected by any possible modifications of the
Hawking and Unruh temperatures. This is expected and can be considered as a consistency
check of the process by realizing that both effects are kinematic and independent of
gravitational dynamics [56].

In order to understand the generality of the equations and their possible predictive
power, we need to remember that the modification is completely governed by the extra
logarithmic term in the modified horizon entanglement entropy model. Due to the fact that
the emergence of this term from quantum gravity effects is predicted by many different
methods of calculating entropy, we can conclude that our results are considerable and
robust and can point, in the future, towards constraints on the proportionality factor.
The extension of the modifications in any model is controlled by the squared Planck length,
so, in any case, they become relevant only in a window where the curvature length scale
approaches the Planck scale. In our model, the curvature length is significantly larger than
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the Planck scale, allowing the consideration of spacetime as a Lorentzian manifold to be
retained9.

Application to a Simple Cosmological Model

In order to better understand the possible physical effects that these modified equa-
tions of motion produce, we briefly analyzed a simple flat Friedmann–Lemaître–Robertson–
Walker (FLRW) model, whose metric is given by:

ds2 = −c2dt2 + a(t)2
(

dr2 + r2dΩ2
)

, (22)

where a(t) is the scale factor. For the sake of simplicity we also assume a universe filled
with dust such that Tµν = ρδ0

µδ0
ν . Solving the phenomenological equations of motion in this

model gives rises to a modified Raychaudhuri equation that can be written as:

Ḣ − D
l2
PḢ2

c2 = −4πGρ, (23)

where H = ȧ/a is the Hubble parameter, and the dot denotes the coordinate time derivative.
In the same way that the modifications of entropy came from an expansion in powers

of l2
P around the semi-classical value, S = kBA/4l2

P, in this case, the modified Hubble
parameter comes from an expansion around the classical one, H0, as:

H = H0 + l2
PH1 + O

(
l4
P

)
. (24)

Taking into account that Ḣ0 must satisfy the standard Raychaudhuri equation, we
determine:

Ḣ = −4πGρ

(
1− 4πD

ρ

ρP

)
. (25)

In this case, local energy–momentum conservation can be imposed (mainly because
of the vanishing of Weyl tensor), resulting in ρ = ρ0/a3, where ρ0 is an arbitrary constant
with the dimensions of energy density. When we substitute this value into the previous
equation and integrate it, we obtain a modified Friedmann equation of the form [49]:

H2 =
8πGρ

3

(
1− 2πDρ

ρP

)
+ Λ̃, (26)

where there is an arbitrary integration constant, Λ̃, which corresponds to the cosmological
term (Λ̃ = Λc2/3), as it is characterized in Unimodular Gravity. From this equation,
we can show how positive modifications to the GLCD entanglement entropy (implying
D > 0) modify the gravitational dynamics close to the singularity in a way that allows the
avoidance of this cosmological singularity. This is also in agreement with the resulting
quantum bounce in the effective dynamics of loop quantum cosmology [59]. In that
approach, similar equations are obtained, e.g., H2 = 8πG

3 ρ
(

1− ρ
ρsup

)
, which, when are

compared to our results, fix ρsup = ρP/2πD10. In contrast, the equations indicate that the
appearance of corrections with D < 0 would not only not avoid the singularity but even
strengthen it. This feature deserves a deeper analysis in future research.

5. Discussion

We have reviewed and described general quantum phenomenological gravitational
dynamics that emerge from the description of thermodynamics. The low-energy quantum
gravity effects are codified in the modification of entropy via a logarithmic extra term.
The generality of this framework comes from the universality of the logarithmic modifica-
tion of entropy in very different approaches to quantum gravity, such as LQG, string theory,
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AdS/CFT correspondence, path integral quantum gravity, and some phenomenological
approaches, such as GUP.

Our results show how the dynamics are modified when quantum gravity effects
become relevant (but we can still consider spacetime as a smooth Lorentzian manifold)
via a completely general expression. These equations then allow us to investigate the
dynamics in particular models of interest. As a first approach, we studied a simple
FLRW cosmological model, where the modified dynamics give rise to the avoidance of the
singularity and its replacement through a bounce (in close analogy with the bounce found
in LQC). We also expect to find relevant results and connections with other particular
effective approaches by analyzing other more complex solutions.

Further analysis of these phenomenological equations in the future could allow us
to set some constraints on the approaches to phenomenological quantum gravity effects
and the underlying theories, via the analysis of parameter D and the finding of the action
implied by the equations.

In connection with the standard thermodynamics of spacetime, there are two effects
that will deserve more analysis in the future. The first is the finding of the expected break-
down of the equivalence of General Relativity and Unimodular Gravity when quantum
effects are introduced. This breakdown also shows that the thermodynamics of spacetime
appear to imply the emergence of Unimodular Gravity, as opposed to General Relativity.
The second idea relates to strengthening the equivalence of Clausius and entanglement
entropy, even beyond the semi-classical approach. We have seen that the introduction
of quantum gravity effects, despite breaking the complete equivalence, shows the persis-
tence of a strong relationship between both entropies that will be investigated further in
future works.
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Notes
1 for a deeper analysis of GLCDs, see, e.g., [29–31].
2 We remember that this interpretation, as are all interpretations, is not free of controversy. It has been argued that this interpretation

states that entropy depends on the number of fields and their coupling to gravity [23]. However, some scenarios have been also
proposed to solve this issue [39].

3 More precisely, the behavior of the thermodynamics of local causal horizons under Weyl transformations actually suggests
that the derived gravitational values correspond to Weyl Transverse Gravity [41,42]. This is a theory of gravity invariant under
both metric determinant preserving diffeomorphisms and Weyl transformations (in fact, Unimodular Gravity can then be
understood as a gauge fixed form of Weyl Transverse Gravity). While it has been argued that Unimodular Gravity is not
physically distinguishable from General Relativity [43], these arguments do not apply to Weyl Transverse Gravity [44]. Therefore,
Weyl Transverse Gravity represents a distinct alternative to General Relativity, which offers a new perspective on some of the
problems associated with the value of the cosmological constant [44]. We plan to address the possibility of the emergence of Weyl
Transverse Gravity from thermodynamics in a future study.

4 Note that, by following these requirements, we could also have used light cones [14], and we expect that the result would
be equivalent.

5 For a detailed derivation of this argument, see the discussion in [49].
6 See that this mathematical consideration agrees with the proposal that quantum gravity establishes a maximal attainable

acceleration [57], and that this correction would be consistent with our modification by taking the particular case ψ = 2 [55].
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7 Some studies have already pointed out some mechanisms for the emergence of a fundamental concept of entropy in the quantum
regime, e.g., [58].

8 Note that, as we will see in the simple example of a cosmological model, in some particular cases there exists a solution to the
previous condition. In that case, we will see that the cosmological constant Λ would appear as an arbitrary integration constant,
as it is characteristic in Unimodular Gravity.

9 For a complete discussion on the possible features and consistency checks of these equations, see the discussion in [49].
10 It is also worth noting that our results are also in agreement with particular GUP-induced modifications of FLRW universes [5].
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