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Abstract. We study φ meson production in heavy-ion collisions from sub-
threshold energies of 1.23 A GeV up to RHIC energies within the microscopic
Parton-Hadron-String Dynamics (PHSD) transport approach where novel pro-
duction channels for φ mesons based on a coupled channel T-matrix approach
are implemented along with the collisional broadening of the φ meson spec-
tral width in medium. Since φ meson production is closely related to the
production of kaons and antikaons, antikaon properties are described via the
self-consistent coupled-channel unitarized scheme within a SU(3) chiral La-
grangian (G-matrix) which incorporates explicitly the s− and p− waves of the
kaon-nucleon interaction, while the in-medium modifications of kaons are ac-
counted for via a kaon-nuclear potential, which is assumed to be proportional
to the local baryon density.

1 Introduction

Recently it has been reported by the HADES collaboration that φ mesons are produced in a
relatively large quantity in Au+Au collisions at subthreshold energies and the ratio of hid-
den strangeness to open strangeness reaches values of ≈ 0.5 [1]. The same tendency of an
enhanced φ production in Ni+Ni and Al+Al collisions at 1.93 A GeV has been reported ear-
lier by the FOPI collaboration [2, 3]. With increasing beam energy this ratio decreases to
0.2 as has been measured recently by the STAR collaboration [4] and at high energies the
dependence on the collision energy is mild [5–9].

The goal of this study is to show that the observed ’enhanced’ φ multiplicity and φ/K−

ratio close to threshold can be understood by considering a collisional broadening of the φ
meson spectral function and accounting for additional multi-step meson-baryon and meson-
hyperon reactions for φ meson production as predicted by the SU(6) extension of the meson-
baryon chiral Lagrangian within a unitary coupled channel T-matrix approach.
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2 In-medium modification of φ meson properties

In order to explore the influence of in-medium effects on the vector-meson spectral function
we introduce the collisional broadening by

Γ∗φ(M, |�p|, ρ) = Γφ(M) + Γcoll(M, |�p|, ρ), (1)

where M is the mass, Γφ(M) the total width of the vacuum spectral function of the φ meson,
and Γcoll the collisional width approximated as

Γcoll(M, |�p|, ρ) = γ ρ < v σtot
VN >≈ αcoll

ρ

ρ0
. (2)

Here v is the velocity of the φmeson in the rest frame of the nucleon current, γ2 = 1/(1−v2), ρ
the nuclear density scaled by ρ0 = 0.168 fm−3 (normal nuclear density) and σtot

VN the meson-
nucleon total cross section in vacuum. In order to simplify the calculations of Γcoll(ρ) we
use the linear density approximation [10] with a coefficient αcoll which is taken to be 25
MeV [11].

3 φ production/absorption within a SU(6) based T-matrix approach

The s-wave scattering amplitude of meson and baryon from the SU(6) chiral effective La-
grangian is written as [12],

VS IJ
i j = ε

S IJ
i j

2
√

s − Mi − Mj

4 fi f j

√
Ei + Mi

2Mi

√
E j + Mj

2Mj
, (3)

where i( j) indicates the initial (final) meson-baryon scattering states, Mi( j) and Ei( j) are, re-
spectively, mass and center-of-mass energy of the baryon, fi( j) the decay constant of the
meson in the i( j) state, and εS IJ

i j the degeneracy coefficient, corresponding to the scattering
channel with S , I, and J being total strangeness, isospin and angular momentum of the colli-
sion, respectively [13, 14]. The T-matrix approach can be formulated on the basis of the Born
scattering amplitude VS IJ

ik ,

T S IJ
i j = VS IJ

i j + VS IJ
ik GS IJ

kk T S IJ
k j , (4)

where k is the intermediate meson-baryon state and the sum is performed over all possi-
ble states. GS IJ

kk is the product of the meson and baryon propagators of the state k [15],
which is renormalized such that GS IJ

kk (s = m2
N + m2

π) = 0 with mN and mπ being nu-
cleon and pion masses, respectively. The channels considered in this study for φ meson
production are ηN, KΛ, KΣ, ρN, KΣ∗, ρ∆, K∗Λ, K∗Σ, K∗Σ∗ → φN for I = 1/2 and
KΣ, ρN, η∆, KΣ∗, ρ∆, K∗Σ, K∗Σ∗ → φ∆ for I = 3/2, including their inverse reactions by
detailed balance.

4 φ meson production in heavy-ion collisions

Fig. 1 shows the PHSD results for the rapidity distribution of reconstructed φ mesons from
the decay into K+K− pairs, compared with the experimental data from the HADES and STAR
collaborations. The short dashed orange lines show the PHSD results without including the
novel mB channels from the T-matrix approach and without any in-medium modifications of
φ and K, K̄ mesons. The dash-dotted green lines show the results without in-medium modifi-
cations of φ and K, K̄ mesons [17]. The dashed red lines indicate the φ rapidity distributions
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Figure 1. Rapidity distribution of reconstructed φmesons in 0-40 % central Au+Au collisions at Ekin =

1.23 A GeV, in 0-30 % central Ag+Ag collisions at Ekin = 1.58 A GeV and 0-10 % and 10-40 % central
Au+Au collisions at

√
sNN =3 GeV, compared with experimental data from the HADES and STAR

collaborations [1, 4, 16]. Each colored line is explained in the text.

with φ collisional broadening, but without in-medium effects for K, K̄ mesons. The solid blue
lines show the results with collisional broadening for φ mesons and with in-medium modifi-
cations of K, K̄ mesons.The number of φ mesons, reconstructed from K+K− pairs, is divided
by the branching ratio Br(φ → K+K−). We note that the rescattering of the K+ or K− in
the medium reduces the reconstructed φ meson to 60-70% in Au+Au reactions at energies
between Ekin = 1.23 A GeV and

√
sNN = 3 GeV. In addition, φ yield rapidly increases from

Ekin = 1.23 A GeV to Ekin = 1.58 A GeV, because both are sub-threshold energies for φ
production.

Fig. 2 shows the φ/K− ratio as a function of the collision energy from Ekin = 1.23 A GeV
to
√

sNN = 200 GeV. The PHSD results are presented for four different scenarios as in Fig. 1.
An inclusion of the in-medium effects for K, K̄, which leads to a strong enhancement of the
K− yield [17] and, as a result, to a reduction of the φ/K− ratio.

5 Summary

In this study we have investigated the hidden strangeness (φ meson) production in heavy-ion
collisions from subthreshold to relativistic energies within the microscopic off-shell PHSD
transport approach. We have found that a collisional broadening of the φ meson spectral
function lead to an enhancement of φ meson production, especially at subthreshold energies
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Figure 2. The PHSD results for the ratio
φ/K− at midrapidity (|y| ≤0.3) as a function
of the collision energy for four different
scenarios: with and without novel mB
channels for the φ meson production from
the T-matrix approach and with and without
the collisional broadening of the φ meson
width and in-medium effects on (anti-)kaons
(cf. the legend). The solid symbols show the
compilation of the experimental data from
Refs. [3–9].

and that the novel mB → φB channels from the SU(6) chiral Lagrangian in the T-matrix
approach also enhance considerably the φ production in heavy-ion collisions.
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