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Abstract
Simulating quantum circuits efficiently on classical computers is crucial given the 
limitations of current noisy intermediate-scale quantum devices. This paper adapts 
and extends two methods used to contract tensor networks within the fast tensor 
decision diagram (FTDD) framework. The methods, called iterative pairing and 
block contraction, exploit the advantages of tensor decision diagrams to reduce both 
the temporal and spatial cost of quantum circuit simulations. The iterative pairing 
method minimizes intermediate diagram sizes, while the block contraction algo-
rithm efficiently handles circuits with repetitive structures, such as those found in 
quantum walks and Grover’s algorithm. Experimental results demonstrate that, in 
some cases, these methods significantly outperform traditional contraction orders 
like sequential and cotengra in terms of both memory usage and execution time. 
Furthermore, simulation tools based on decision diagrams, such as FTDD, show 
superior performance to matrix-based simulation tools, such as Google tensor net-
works, enabling the simulation of larger circuits more efficiently. These findings 
show the potential of decision diagram-based approaches to improve the simulation 
of quantum circuits on classical platforms.
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1  Introduction

In recent years, quantum computing has captured the interest of researchers 
across a wide range of fields due to its potential to advance disciplines such as 
chemistry [1], pharmacology [2], and machine learning [3, Cap 1], among oth-
ers [4]. However, currently and in a near future, we will only have noisy inter-
mediate-scale quantum computers (NISQ)  [5]. As a result, it is only feasible 
to execute algorithms with a limited number of qubits and gates before accu-
mulating significant errors that render the results highly unreliable. Therefore, 
developing efficient simulators of quantum computers on classical computers is 
crucial for designing, validating, and improving quantum algorithms, as well as 
for designing and testing new quantum computers.

The standard method for simulating a quantum circuit involves breaking 
it down into a series of matrix–vector and matrix–matrix multiplications. As 
the number of qubits increases, the size of these vectors and matrices grows 
exponentially, leading to a rapid increase in the time needed for these opera-
tions. Despite that, the simulation of medium-sized quantum algorithms is 
mainly limited by the available memory, due to the substantial amount of space 
required to store the quantum states and operators [6, 7]. To address this issue, 
different techniques have been developed for circuit simulation, including full 
wave-function evolution  [8], Feynman paths  [9], and tensor network contrac-
tion [10]. Simulators based on tensor networks have demonstrated to be highly 
effective in simulating random quantum circuits (RQCs)  [11]. However, their 
efficiency is highly dependent on the order in which the tensors are contracted. 
Determining the optimal order is an NP-hard problem 1 [12], so it is important 
to develop heuristics to efficiently approximate the optimal order.

In addition, alternative ways of representing, storing, and manipulating states and 
operations have been used to reduce the computational and spatial cost of simula-
tion. For example, decision diagrams (DD) [13] are gaining relevance for the rep-
resentation of quantum information due to their two main advantages. On the one 
hand, quantum circuits and operators can exploit mathematical properties to reduce 
data storage requirements. On the other hand, DDs store operations and take into 
account the structure of quantum operators to avoid their repetition  [14]. Among 
the most notable variants of DDs are the quantum multiple-valued decision diagram 
(QMDD) [14], which provides a very efficient implementation, and tensor decision 
diagrams (TDDs), which combine the advantages of tensor networks and DDs [15].

In this study, we utilized the fast tensor decision diagram (FTDD) tool to imple-
ment our algorithms and perform the experiments [16]. This tool provides an effi-
cient implementation of the TDD, enhanced with various optimizations. Specifically, 
we adapted and extended two methods employed to improve contraction ordering 
for quantum circuit simulation. These enhancements not only expand the function-
ality of the FTDD but also demonstrate distinct advantages depending on the cir-
cuit structure. The results highlight the potential of these methods when compared 

1  As a reminder, NP-hard problems are those that are at least as complex as NP problems, and are there-
fore in the group of higher complexity problems.
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with existing ordering techniques used in this framework and other simulation tools 
based both on matrix and decision diagram representations.

The main contributions of this work are the following:

•	 Adaptation and implementation of two tensor network contraction ordering 
methods for simulating quantum circuits–iterative pairing and block contraction–
within the FTDD framework. They are designed to optimize the contraction pro-
cess for the TDDs used by the tool.

•	 Enhancement of the functionality of the block contraction method by adding a 
preprocessing method to automatically detect repeated subcircuits whose con-
traction can be avoided.

•	 Comprehensive evaluation of the proposed methods on various quantum circuits, 
demonstrating significant improvements in both temporal and spatial efficiency 
compared to traditional contraction orders such as sequential and cotengra.

•	 Exploitation of the repetitive structure of quantum circuits, such as quantum 
walks and Grover’s algorithm, to reduce the computational and spatial cost of 
simulation.

•	 Comparative analysis of FTDD with other state-of-the-art quantum circuit sim-
ulation tools, highlighting the superior performance and scalability of decision 
diagram-based approaches.

•	 Experimental evaluation of the effect of contracting different implementations of 
the same quantum algorithm.

The paper is structured as follows: Sect. 2 briefly reviews some related work. Sec-
tion 3 summarises the theoretical background of our work, including basic aspects 
of quantum computation, tensor networks, and decision diagrams. In Sect.  4, we 
detail the implementation of the contraction methods on the FTDD tool. In Sect. 5, 
we provide a detailed description of the experiments conducted and discuss the 
results. Finally, Sect. 6 presents the conclusions of the study and suggests directions 
for future research.

2 � Related work

There are many quantum simulators that operate both sequentially and in paral-
lel  [17]. A survey of the main types of existing simulators can be found in  [18]. 
Most of these quantum simulators evolve the full quantum state using matrices. 
Some of the most well-known simulators are IBM Qiskit, Google Cirq, QuEST [19], 
or qHiPSTER  [20]. However, the exponential growth of the spatial and temporal 
cost of simulation restricts the number of circuit qubits to a few tens, even on the 
most powerful supercomputer available today.

Markov and Shi first proposed to use tensor networks to simulate quantum cir-
cuits [21]. Following this paper, a number of simulators based on tensor networks 
have been developed, such as qFlex [22], QuantEx [23], Jet [24], QTensor [25], Ten-
sorCircuit  [26], or the one presented by Huang [27]. (An improved version of the 
one presented by Gray [7] called cotengra.) One of the most widely used simulators 
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of this kind is quimb [28], which has been extensively utilized to obtain contraction 
orders that can challenge the quantum supremacy demonstrated by Google.

One of the most common approaches to order the contractions of tensor networks 
is based on the tree decomposition of the line graph associated with the network. 
It includes methods such as QuickBB [29] and Flowcutter [30]. Another approach 
is the hypergraph-based method, used for example in cotengra  [31]. This method 
builds contraction trees using hypergraph partitioning such as KaHyPar [32]. In [7], 
the authors introduce several new heuristics to find good contraction paths and com-
bine them with other well-known methods in a framework. They find that the orders 
obtained can be very close to the optimal. Also, they compare six methods on dif-
ferent tensor networks, some of them associated to quantum circuits. These meth-
ods include the exhaustive optimal ordering search found in in opt_einsum  [33], 
QuickBB, and Flowcutter; one method based on hypergraph partitioning and another 
based on community detection and a greedy agglomerative method.

All of the aforementioned tools utilize matrix representations to perform opera-
tions. However, there are alternative techniques for handling quantum circuits. DD 
was initially proposed to represent switching circuits [34]. Following this work, DDs 
were adopted to represent data and operations for various applications, due to their 
ability to reduce both temporal and spatial costs. The first attempt to adapt this data 
structure for quantum computation was made in [35], where it was used to simulate 
a quantum circuit [13, 36]. This adaptation is known as reduced ordered binary deci-
sion diagram (ROBDD). Since then, many tools have been developed using this type 
of diagram. The most well-known library that implements this concept is MQT [14], 
which is utilized for both simulating and verifying quantum circuits. This tool 
implements a type of DD called QMDD [14].

Another type of DDs that combines tensor networks to represent quantum circuits 
and DD to store and manipulate them are the TDD, firstly introduced at [15]. This 
work focuses on the use of FTDD, an optimized implementation of TDDs intro-
duced at [16].

3 � Background

This section briefly discusses the basic theoretical foundations of quantum comput-
ing, tensor networks, and decision diagrams, which form the basis for the develop-
ment of this work. For a more in-depth information on quantum computing and its 
mathematical foundation, you can refer for example to [3] or [37].

3.1 � Quantum circuits as tensor networks

The basic unit of information in quantum computing is the qubit, which is the 
counterpart to the classical bit. The state of a qubit can be written as a linear 
combination of two basic states as ��0⟩ + ��1⟩ with �, � ∈ ℂ [38]. A quantum sys-
tem is composed of a set of n qubits, �1,⋯ ,�n , described by a Hilbert space of 
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dimension 2n , whose basic states are in the set {0, 1}n . Therefore, the state of a 
quantum system ��⟩ can be described as:

where the probability of measuring a particular state �i⟩ is given by |�i|2 . Quantum 
systems are manipulated through quantum operators, represented by unitary matri-
ces of dimension 2n × 2n . Typically, these operators only act on a subset of the sys-
tem’s qubits. Quantum circuits are commonly used to represent the successive appli-
cation of quantum operators g1,⋯ , gk to a quantum state. Quantum algorithms can 
be represented by a quantum circuit. To relate input states to their corresponding 
output states, a unitary operator representing the complete functionality of the cir-
cuit can be constructed.

On the other hand, tensors are a natural generalization of vectors and matri-
ces. A tensor of rank r is defined as an element d1 ×⋯ × dr existing in the space 
ℂ

d1,⋯,dr . Then, a complex value can be seen as a tensor of rank 0, while a vector 
with d complex elements (dimension d) is a tensor of rank 1. Similarly, a matrix 
of dimension n × m is a tensor of rank 2 in ℂn×m space. Tensors have also become 
popular due to their simple notation and graphical representation, which facili-
tates the visualization of tensor networks. Tensors have a defined set of opera-
tions, including the tensor product, trace, contraction, and partitioning [39]. One 
of the most significant operations that can be performed on tensors is the contrac-
tion. The contraction of two tensors is a tensor obtained by summing up over the 
shared indices. To exemplify, if two tensors, Rx,z and Sy,z , are considered, with the 
common index z, the resulting contraction, Tx,y , is defined as follows:

In general, the successive contraction between pairs of tensors of a network allows 
to obtain a single tensor representing its full functionality.

The quantum state ��⟩ of a qubit can be represented as a vector

Therefore, it can be represented as a rank 1 tensor Tq . Similarly, the operators associ-
ated with the gates applied to a single qubit are matrices of size 2 × 2 , and can be 
represented as rank 2 tensors Tq1,q2 . In general, a gate acting on n qubits can be rep-
resented as a tensor of rank 2n. Note that in tensor notation, input and output indices 
are not distinguished.

A quantum circuit can be modeled as a tensor network, where each gate is 
represented as a tensor, and the lines connecting the qubits between gates serve as 
shared indices between these tensors. Consequently, since the behavior of a quan-
tum circuit can be simulated using the matrix representing its functionality, it can 
similarly be simulated using its tensor representation. This implies that simulat-
ing a quantum circuit is equivalent to contracting its associated tensor network. 

(1)��⟩ =
�

i∈{0,1}n

�i�i⟩ with ∀i ∈ {0, 1}n, �i ∈ ℂ,

(2)Tx,y =
∑

z∈{0,1}

Rx,z ⋅ Sy,z

(3)��⟩ = [�0, �1]
T , where �0, �1 ∈ ℂ.
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This principle underpins the approach proposed by Markov and Shi to reduce the 
cost of simulating quantum circuits [21]. They demonstrated that if the treewidth 
of the underlying graph associated with the tensor network is logarithmic in the 
number of gates, the quantum circuit can be simulated with polynomial cost in 
the number of gates. Furthermore, the treewidth aligns with the maximum rank of 
all tensors encountered during the contraction process and is a key factor in deter-
mining the overall simulation cost.

3.2 � Contraction ordering methods for tensor networks

The goal of ordering methods is to identify a contraction sequence that approxi-
mates the optimal order, thereby minimizing the temporal and spatial costs of 
the contraction process. These costs are heavily influenced by the rank of the 
intermediate tensors produced during contractions, higher ranks leading to expo-
nentially increased costs. For instance, consider the tensor network illustrated in 
Fig.  1. If we start by contracting R with T, the resulting tensor will have four 
indices ( x1, x2, x3, x5 ). On the other hand, if we first contract the tensors R and V, 
the resulting tensor will have six indices ( x1, x2, x4, x5, y1, y2 ), resulting in a higher 
cost due to the larger rank of the intermediate tensor. Thus, selecting an effective 
contraction order involves avoiding scenarios that lead to high-rank intermediate 
tensors, thereby reducing the overall contraction cost.

Obtaining a good contraction order has been extensively studied, and various 
methods and heuristics have been proposed, as we have seen in Sect. 2. One of 
the most significant proposals is based on the results of Markov and Shi  [21], 
which obtains a tree decomposition of the line graph associated with the tensor 
network. Other proposals are based on the use of greedy methods, which use heu-
ristics to choose the next pair of tensors to contract based on the current state 
of the network. Different strategies can be employed such as selecting the two 
tensors that share the most indices or the two tensors with the lowest rank. The 
iterative pairing method that we have implemented using TDDs falls within this 
family of methods.

Fig. 1   Example of a tensor network with 3 tensors. It has 3 closed indices ( x3, x4, x5 ) and 4 open indices 
( x1, x2, y1, y2)
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3.3 � Decision diagrams

Quantum circuits are usually implemented by using vectors and matrices. Its 
main advantage is the availability of highly efficient algorithms for matrix mul-
tiplication in all types of architectures, whether sequential or parallel. However, 
this is not the only type of structure that we can use to implement them. DDs are 
acyclic undirected graphs that represent the gates that compose the circuits and 
the unitary matrices used during its processing (simulation, verification, etc.). To 
accomplish this, the matrix is divided into a predetermined number of sub-matri-
ces based on a specific criterion.

Two main data structures are usually employed to efficiently store the DDs 
and the operations in order to reduce the spatial and temporal cost. On the one 
hand, the unique table stores the information about the graph nodes in such 
a way that nodes with identical information are not duplicated, thus significantly 
reducing the storage cost. On the other hand, the compute table stores the 
operations as they are performed, so that they are not repeated when they are 
needed again. This implementation is very advantageous because the operations 
on tree-like DDs are usually performed recursively based on the subtrees of each 
node  [15]. In many cases, these subtrees are repeated, both in the construction 
of a diagram and in the contraction of two of them. If an operation between sub-
trees has already been performed, it is retrieved directly from the compute table, 
avoiding repetition. The affected subtrees can be large, which would avoid a high 
percentage of computations with DDs.

Tensors and tensor networks can also be represented as DDs using TDDs [15]. 
This allows the benefits of both techniques to be leveraged in the handling of quan-
tum circuits. In order to achieve this objective, a number of methods have been 
developed that are essential for DDs to be able to work with tensor networks. These 
methods are recursive and are based on the traversal of tree-like DDs. Typically, 
when utilizing these operations, we work with reduced and normalized versions of 
the DDs, as this enables us to exploit the benefits of spatial and temporal advan-
tages. One of the most crucial operations that must be implemented and falls within 
this category is the contraction. The implementation details of this operation can be 
found in [15].

TDDs use nodes to represent the indices of the tensor network, with each node 
having two successors linked by edges. One of the successors is associated with the 
value 0 of the node (which is usually represented by a dashed line), while the other 
successor is associated with the value 1 of the node (which is usually represented 
by a solid line). Each edge has a weight indicating the value by which the TDD 
represented by the successor must be multiplied. In the graphical representation, the 
absence of a weight on the edge indicates that its weight is 1.

Figure 2 shows a simple example of how to represent a circuit as a TDD. The 
circuit shown on the left of the Fig. 2a can be represented by the matrix on the 
right, which defines its functionality. Using this matrix, we can construct the TDD 
as shown in Fig.  2b. If all the elements of the matrix were unique and without 
common factors, the resulting diagram would be a tree with four levels of nodes, 
one per index, and a final level with the 16 values of the matrix. TDDs leverage 
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the structure and repetition of elements or blocks in matrices to reduce the num-
ber of nodes and edges required to store and operate with tensor networks.

Another well-known type of DD is the QMDD [40], which provides a compact 
representation of the matrix associated with the circuit functionality. QMDDs are 
constructed by recursively dividing the matrix into four quadrants. This results in 
a quaternary tree in which the leaves correspond to the elements of the matrix. 
Normalization and reduction techniques based on the structure and repetitions in 
the sub-matrices are applied in order to obtain a compact and canonical represen-
tation of the functionality of the quantum circuit. The main differences between 
QMDD and TDD are that the former is based on matrix multiplication instead of 
tensor contraction, and that the depth levels in QMDD represent qubits instead 
of indices as in TDD. Furthermore, QMDDs can be transformed into TDDs in a 
natural and flexible way, since the order of the indices does not have to respect 
the order of the qubits. This provides TDDs with advantages for certain circuit 
types that heavily utilize SWAP gates, as it can be seen in [15] and [41].

The TDD introduced in  [15] is implemented in Python and do not include 
the majority of the implementation-level improvements that are included in the 
tools that implement QMDD. As a consequence, in place of the original TDD 
tool, the improved C-implemented version of this tool, designated FTDD, will be 
employed  [16]. In this new version, the authors implemented in C++ the TDD 
with the contraction orders sequential  and cot  and the aforementioned 
improvements. That includes improvements such as edge-centric data struc-
tures for TDD, employment of key BDD optimizations, or the execution of near-
optimal contraction order (cot  in this case), with which the authors can obtain 
speedups up to 175 respect to the python version.

Fig. 2   Comparison of the matrix and TDD representations of a quantum circuit
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One of the improvements that FTDD implements is the Tetris preprocessing. 
Tetris is a rank simplification technique that is applied prior to getting the contrac-
tion order to reduce the number of gates to be simulated by consolidating tensors 
in a local manner. The algorithmic process is analogous to that of the renowned 
video game from which it derives its nomenclature. To accomplish this, the initial 
step is to place the first tensor corresponding to the initial gate identified in accord-
ance with the specified order of the quantum circuit on each line of qubits. Subse-
quently, the gates of the circuit are methodically examined and treated as if they 
were descending along the lines of qubits, akin to the manner in which tetrominoes 
are arranged in the game of Tetris. Each gate is then examined in relation to the top 
tensors of the stacks corresponding to the associated qubits. In the event that there 
are shared qubits between the gate and the top tensors, and the rank simplification 
constraint is satisfied, the gate is consolidated with the top tensors by a contraction, 
with the resulting tensor replacing the top tensors. In the event that this is not the 
case, the gate is moved to the uppermost positions within the stacks.

4 � Contraction ordering method proposals

In this section, we will describe two contraction ordering methods based on the pro-
posals described in [42], where they were used in an equivalent problem for order-
ing matrix multiplications with QMDDs. Both methods aim at exploiting the prop-
erties of DDs to reduce the number and cost of intermediate contractions needed to 
obtain the final tensor representing the circuit functionality.

4.1 � Iterative pairing

The most straightforward method for ordering contractions in a tensor network 
involves traversing the gates of the circuit and sequentially contracting them with the 
resulting accumulated diagram. We will call this the sequential method. How-
ever, with the multiplication of quantum operations, their representations become 
increasingly complex, thus reducing their sparsity, increasing the level of entangle-
ment between qubits and eliminating existing redundancies, which in turn increases 
the cost. In other words, the bottleneck arises from the consequences of performing 
successive multiplications.

In  [42], a solution to a similar problem using QMDDs is proposed. The objec-
tive is to derive the matrix representing the complete functionality of the circuit 
by multiplying the matrices associated with each gate. The authors suggest taking 
advantage of the associative property of matrix multiplication to combine matrices 
associated with disjoint pairs of gates. Initially, we multiply the matrices of indi-
vidual gates in the circuit. Then, we iteratively combine pairs of matrices obtained 
from the previous iteration until the final matrix is produced. This method (called 
from now on the iterative method) allows for better exploitation of redundan-
cies and results in DD with smaller average sizes compared to those obtained by 
cumulative multiplication, as demonstrated in the paper. This is because, by dividing 
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the multiplications in this way, the representations are kept as small as possible. The 
proposed pairing of multiplications is as follows:

where U is the matrix representing the functionality of the circuit, and Ui is the 
matrix representing the functionality of the gate i. After applying the first iteration 
of the algorithm, the following equation is obtained:

The algorithm proceeds to the next step to obtain the next level of matrices. In this 
step, the same associative property is applied again to that set of matrices, perform-
ing the same type of matching between them. This process can be applied itera-
tively to each of the successive levels obtained until a single matrix is calculated. 
Assuming, for simplicity, that the number of gates in the circuit n can be expressed 
as n = 2k for a certain k ∈ ℕ , the proposed scheme defines a tree-like pairing order.

This approach can also be applied to contract the tensor network representing a 
quantum circuit. At each step, all disjoint tensors at the same level are contracted 
in pairs, resulting in a new set of tensors for the next level. This process is repeated 
until a single tensor remains. The initial level consists of tensors representing the 
gates of the quantum circuit, and the final tensor represents the complete functional-
ity of the circuit.

4.2 � Block contraction algorithm

The block contraction algorithm (named blocks  from now on) is based on the 
approach proposed in  [42] to exploit the repetition of gate groups that occurs in 
many quantum circuits, such as those implementing the Grover’s search algo-
rithm  [43], quantum random walk  [44], amplitude estimation  [45], and quantum 
phase estimation [46].

This type of circuits typically begins with an initialization phase consisting of a 
set of gates represented by the DD U_{ini} . This is followed by several iterations of 
blocks of identical gates, where each block is represented by the diagram Uiter , and a 
set of final gates represented by Uend . The DD U that represents the full functionality 
of the quantum circuit can then be obtained as:

where we assume for simplicity that N = 2k for k ∈ ℕ.
This quantum circuit structure enables the use of a multistep ordering method. 

First, the iterative pairing method proposed in the previous section is used to obtain 
the DDs U_{ini} , Uiter and Uend . Subsequently, all the diagrams representing the iter-
ations, Uiter , are contracted to obtain UN

iter
 . To perform this operation, we also apply 

the iterative pairing method as follows.

(4)U = (U1 ⋅ U2) ⋅ (U3 ⋅ U4) ⋅… ⋅ (Un−1 ⋅ Un),

(5)U = U1,2 ⋅ U3,4 ⋅… ⋅ Un−3,n−2 ⋅ Un−1,n

(6)U = Uend ⋅ Uiter ⋅… ⋅ Uiter ⋅ Uini = Uend ⋅ U
N
iter

⋅ Uini
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The main advantage of the blocks  algorithm arises from the fact that at each 
pairing level, from l = 0 to k − 1 , we only need to perform one contraction 
U2l

iter
∗ U2l

iter
= U2l+1

iter
 , since the rest will be exactly the same and can be avoided by 

reusing the results stored in the compute table. As a last step of the blocks algo-
rithm, we will calculate the DD that represents the full functionality of the circuit:

The original article [42] presents this idea with a significant drawback: it requires 
prior knowledge of the circuit type to identify its constituent blocks. In other words, 
the algorithm needs to be provided with the blocks of operations included in the cir-
cuit. This limitation prevents users from taking advantage of the method for circuits 
that have blocks but whose structure is unknown or is not programmed into the tool. 
To address this, we propose incorporating an algorithm that begins by searching for 
possible blocks within a circuit.

The algorithm takes a file in quantum assembler format (qasm, [47]) as an input 
parameter. This file is processed gate by gate checking for identical operations done 
in the same set of qubits and in the same order. Then, it tests whether at least one 
block of gates (operations) is repeated. This happens when all the gates between 
the first gate of the block and its next occurrence are exactly the same as the fol-
lowing ones, and acts in the same set of qubits in the exact same order. If there are 
two consecutive identical blocks, the algorithm tries to find more repetitions of the 
same block until it reaches a nonidentical block. The size and total number of gates 
in each block are recorded. This process is repeated for each gate in the file, and the 
configuration containing more gates in the blocks is returned.

Listing 1 presents the algorithm used to perform block contraction after identify-
ing the repeated blocks. The method takes as input a list of tensors representing the 
circuit, parameters for block detection, and the contraction method to be applied. 
The required block detection parameters include the number of gates in U_{ini} , 
Uiter and Ufinal (lines 3-5). Using this information, the algorithm determines the start 
and end of each block and the number of repetitions (lines 6 and 7). The blocks 
are contracted from lines 11 to 16. Note that the calculation of Uiter is not repeated, 
thanks to the use of the compute table in decision diagrams, which avoids 
redundant calculations. After contracting the blocks, in line 18, we apply the itera-
tive pairing ordering method to contract the resulting tensors. This algorithm takes 
into account scenarios where the condition N = 2k is not satisfied, handling cases 
such as U2

iter
∗ Uiter.

Uiter_final = Uiter ⋅ Uiter ⋅… ⋅ Uiter = (U20
iter ⋅ U

20
iter) ⋅…(U20

iter ⋅ U
20
iter)

== (U21
iter ⋅ U

21
iter)… (U21

iter ⋅ U
21
iter) = … = U2k

iter,

U = Uend ⋅ Uiter_final ⋅ Uini
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The algorithm in Listing 1 requires prior knowledge of the blocks within the cir-
cuit and the number of gates in each block, making it necessary to preprocess the 
circuit to gather this information. Listing  2 outlines this preprocessing step. The 
algorithm takes a file describing the quantum circuit in quantum assembler format 
(qasm) as its input parameter [47]. It processes the file gate by gate (line 9), check-
ing for identical gates (line 17). It then verifies whether at least one block of gates 
is repeated (lines 21 and 24), identifying this scenario when all the gates between 
the first occurrence of the block and its next occurrence are exactly the same as the 
subsequent ones (line 24). If two consecutive identical blocks are detected, the algo-
rithm attempts to find further repetitions of the same block until it encounters a non-
identical block (line 28). The size of each block and the total number of gates it 
contains are then recorded (lines 32-37). This process is repeated for each gate in the 
file, ultimately returning the configuration with the largest number of gates within 
the blocks (line 42).
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It is important to note that contraction ordering algorithms such as the 
sequential method, the iterative pairing, or the block contraction algorithm 
described in this section rely on traversing the circuit’s gates stored in a specific 
sequence. Altering this sequence may change the contraction order obtained by 
the algorithms and could significantly affect the cost of the contraction process.

5 � Circuit simulation and results

This section describes the methodology used to perform the experiments, as well 
as the results obtained and their analysis. Our goal is to compare the temporal 
and spatial cost of the two proposed ordering methods with others present in the 
literature for a varied set of well-known quantum circuits using different tools.
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5.1 � Experimental environment and methodology

The experimental analysis was carried out using a server with 4 Intel Xeon Gold 
6330  H processors at 2  GHz with 24 cores each, a total of 394 GiB of DDR4 
RAM and 33 MiB of cache memory. We used the Linux 5.4.0-72-generic 
80-Ubuntu operating system.

In order to evaluate the efficiency of the methodologies outlined in the pre-
ceding sections, a variety of tools and circuits will be used. The tools will be 
utilized in the subsection 5.2.3 to assess their relative capabilities. With regard to 
the circuits to be utilized, there are two main categories: those comprising repeat-
ing blocks (QWalk and Grover) and those devoid of repeating blocks. The latter 
will be employed in the subsection 5.2.1. The selected circuits are associated with 
some of the most well-known quantum algorithms and are commonly utilized not 
only with tensor network methods [15, 16], but also with matrix representations 
of quantum circuits  [48, 49] and various types of DD [41, 50]. Most of the cir-
cuits can be found at [51].

It is important to note that all simulators used in our experiments can be config-
ured to perform different types of simulations. The computational and spatial cost 
varies depending on the type of simulation performed. The main categories of cir-
cuit simulations are as follows:

•	 Unitary simulation: Computes the unitary matrix that represents the complete 
functionality of the quantum circuit. This corresponds to contracting the tensor 
network associated with the circuit while keeping both the input and output indi-
ces open.

•	 Statevector simulation: Computes the evolution of the entire quantum state as 
it propagates through the quantum circuit for a given input state (typically �0⟩n ). 
This corresponds to contracting the tensor network with the input indices closed 
and the output indices open.

•	 Amplitude simulation: Computes the probability amplitude for a specific input–
output state pair. This corresponds to contracting the tensor network with both 
the input and output indices closed.

Table  1 provides a comprehensive overview of the metrics employed for the cir-
cuits utilized in the experiments conducted in this study. We use several metrics that 
defines the circuit, including the number of qubits (referred to as “n"), the total num-
ber of gates (referred to as “# gates"), the number of one-qubit gates (referred to as 
“# gates 1qb"), the percentage of one-qubit gates (referred to as “% gates 1 qb"), the 
total number of indexes associated with all tensors in the tensor network when the 
circuit is open (referred to as “# indexes"), and the depth of the circuit (referred to 
as “depth"). As evidenced by the table, the circuits exhibit a considerable degree 
of diversity. Notably, the values of the metrics are much larger for the circuits with 
blocks (QWalk and Grover) for a similar number of qubits. It is also noteworthy that 
the "% gates 1qb" parameter of the circuit exhibits the greatest variability among 
the selected circuits, with percentages ranging from a low of 7% to a high of 76%. 
In general, this percentage tends to decrease as the number of qubits in the circuit 
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increases. Table 1 also contains references for each type of circuit. In them, this can 
be found more details about the definition and applications of the circuits.

The number of qubits used in each circuit during the testing phase depends on 
the maximum number that could be simulated in our experiments. As the number of 

Table 1   Metrics of the circuits that will be used in the following tests

Circuit n # gates # gates 1qb % gates 1 qb # Indexes Depth

QAOA [52] 9 45 27 60.00% 135 9
10 50 30 60.00% 150 10
11 55 33 60.00% 165 9
12 60 36 60.00% 180 10

VQE [53] 13 63 39 61.90% 187 17
14 68 42 61.76% 202 18
15 73 45 61.64% 217 19
16 78 48 61.54% 232 20

QFT [46] 18 180 18 10.00% 702 36
20 220 20 9.09% 860 40
22 264 22 8.33% 1034 44
24 312 24 7.69% 1224 48

QGAN [54] 10 65 20 30.77% 230 19
11 77 22 28.57% 275 21
12 90 24 26.67% 324 23
13 104 23 25.00% 377 25

QNN [55] 8 223 104 46.64% 692 76
9 278 126 45.32% 869 86

10 339 150 44.25% 1066 96
11 406 176 43.35% 1283 106

QPE [46] 12 346 202 58.38% 992 107
13 400 231 57.75% 1151 110
14 453 260 57.40% 1306 113
15 531 301 56.69% 1537 142

QWalk [44] 9 23796 11964 50.28% 71265 19652
11 97428 48796 50.08% 292131 80932
13 392244 196220 50.02% 1176549 326532
15 1178847 589509 50.00% 3536385 982059

Grover [43] 5 1461 765 52.36% 4319 1205
6 4282 2234 52.17% 12666 3429
7 13715 6995 51.00% 40977 11141
8 36780 18604 50.58% 109920 30213

RQC [56] 10 115 87 75.65% 302 11
12 135 103 76.30% 350 13
14 151 111 73.51% 398 15
16 172 128 74.42% 448 17
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qubits increases, simulations become impractical due to either exhausting the total 
available memory or exceeding the preestablished time limit of 24 h. This limita-
tion accounts for the reduced number of qubits presented in Table 1, as it reflects 
the maximum feasible size for which comparisons could be performed using unitary 
simulation-a method that is extremely demanding in both time and memory.

In the tables, the cells colored bold represent the best results for each row. The 
potential errors are labeled as follows:

•	 Out of memory (O.M.): We run out of available memory and we could not fit 
the circuit in memory.

•	 Time out (TimeOut): The simulation runs for more than 24 h.

5.2 � Experimental results

5.2.1 � Evaluation of different methods of ordering contractions

This section will present the simulation of six circuits, each of which exhibits a 
distinct structural configuration, according to the metrics included in Table 1. We 
evaluate the performance of 3 different ordering methods implemented in the FTDD 
tool, which are: the sequential method (named sequential  from now on), the 
iterative method (named iterative from now on), and the order given by coten-
gra (named cot from now on). We will configure the tool to perform unitary simu-
lations (that means, both the input and output indices will be open).

The aim is to find the best method for ordering the contraction of open circuits. 
This is because we want to find the best method for contracting each block of the 
blocks algorithm, where the contraction of each individual block can be consid-
ered as the contraction of a circuit with open indices.

Table  2 presents the execution time and memory usage for the simulations. 
Notably, for the cot  method, this time is further divided into contraction and 
ordering time. The latter refers to the time taken to compute the order. This divi-
sion between contraction and ordering time was considered useful, as in most 
experiments, ordering represented the majority of the cost. In contrast, for the 
other two methods, this step incurs no additional cost since the order is predeter-
mined and does not require calculation. Thus, in these cases, the execution time 
corresponds solely to the contraction time. With regard to memory usage, it is 
evident that the order cot  represents the optimal choice for almost all circuits 
and sizes. However, when considering the contraction time required, the cot  is 
only the best for the QAOA circuit and without considering the ordering time. If 
we include the cost of obtaining the order, cot is only the fastest method in the 
two largest versions of this type of circuit. In this regard, the iterative  and 
sequential  methods are the fastest options in most cases. When comparing 
sequential  and iterative  methods exclusively, analysis of the % gates 
1qb metric reveals that in instances where it falls below 30% (QFT and QGAN), 
the iterative method is preferable. Conversely, when it exceeds 40% (QAOA, 
VQE, QNN, and QPE), the sequential method emerges as the best strategy.
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In order to get a global assessment of the efficiency of the different order-
ing methods, we have computed the median speedup of the iterative  and 
cot  methods with respect to the sequential  method. In Table  2, we com-
pute the median of the speedups for all sizes for each type of circuit. Only results 
where the 3 methods performed the final contraction were used to calculate the 
speedups. Note also that the speedups of the cot methods were calculated using 
only the contraction time. Table  3 shows that in most cases there are not large 
differences between the median contraction times using the three ordering meth-
ods. The best method depends on the type of circuit. For example, the itera-
tive  method has a much better performance for the QFT circuits, but a very 
poor performance for the QNN circuits.

Table 2   Results of performing unitary simulations with FTDD using different contraction orders

Bench-
marks

Execution time (s) Memory usage (Mb)

Circuit n Sequen-
tial 

Itera-
tive 

Cot  Sequen-
tial 

Itera-
tive 

Cot 

Contraction Order

QAOA 9 102.05 226.47 58.32 734.42 423.36 289.94 195.29
10 36.63 36.32 0.33 722.34 374.05 170.61 27.72
11 9,676.73 17,096.15 3,645.01 725.10 7,349.51 4,347.04 2,091.57
12 O.M. O.M. 14,529.13 740.34 O.M. O.M. 4,908.77

VQE 13 23.21 44.87 14.25 715.76 299.63 383.48 217.50
14 276.08 492.24 434.24 701.23 1,780.79 1,537.64 1,550.66
15 22,069.35 17,613.46 O.M. O.M. 15,331.52 9,314.90 O.M.
16 454.69 7,694.27 O.M. O.M. 2,728.53 8,650.53 O.M.

QFT 18 3,717.24 64.49 95.47 3,600.74 2,242.73 2,312.71 580.91
20 TimeOut 217.04 1,181.72 3,605.38 TimeOut 6,808.48 3,628.43
22 TimeOut 217.04 1,181.72 3,605.38 TimeOut 6,808.48 3,628.43
24 TimeOut 2,688.44 10,556.57 3,613.52 TimeOut 52,054.11 6,950.88

QGAN 10 110.03 69.41 107.29 3,611.27 364.75 223.52 242.82
11 1,422.12 509.93 544.11 3,611.83 1,696.73 780.34 814.96
12 28,619.07 29,940.78 4,901.78 342.86 12,521.45 6,265.39 2,794.70
13 TimeOut 22,016.52 35,206.80 3,610.53 TimeOut 6,982.79 7,581.86

QNN 8 8.33 949.77 14.08 265.24 140.25 330.80 110.75
9 133.81 9,722.81 422.33 264.35 591.24 1,650.57 586.27

10 1,628.87 TimeOut 4,212.08 271.30 2,503.12 TimeOut 2,495.95
11 15,467.34 TimeOut O.M. O.M. 10,582.41 TimeOut O.M.

QPE 12 168.04 1,429.71 301.41 773.91 1,502.31 1,257.14 749.88
13 1,562.13 23,107.16 2,491.92 2,058.88 6,186.98 5,776.72 2,964.72
14 6,126.27 TimeOut 8,587.96 1,411.76 17,873.52 TimeOut 7,891.84
15 TimeOut TimeOut 40,528.28 1,191.91 TimeOut TimeOut 29,640.93
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5.2.2 � Exploitation of structural repetitions

In this section, we will assess the efficiency of the FTDD tool using the 
blocks  method and compare it with the three ordering methods evaluated 
in the previous section. For the experiments, we use two types of circuits that 
include repetitions of large blocks of gates: QWalk and Grover. These repetitions 
arise from the fact that the circuits are associated to iterative algorithms where 
a part of the circuit is executed several times. In all cases, we have performed 
the simulations with circuits including four repeated blocks. For these experi-
ments, we configure the tool to perform amplitude simulations (that is, both input 
and output indices are closed). This is a very common type of simulation, espe-
cially when dealing with very large or complex circuits, such as the RQC [22] or 
Sycamore circuits used in our experiments, or when comparing different contrac-
tion ordering methods with very large tensor networks  [7]. It is also the worst 
case for the blocks  method. Closing the input is advantageous for the other 
order contraction methods, since starting by contracting these indices results in 
a reduction of the range of tensors. However, this advantage is not exploited in 
the blocks method because the input qubits are contracted last to maintain the 
integrity of the block structure.

It is important to note that in all the methods employed by the FTDD tool, the 
Tetris optimization method described in [16] has been applied to simplify the tensor 
network represented by the circuit, with the exception of the blocks order. We do 
not apply Tetris or any form of preprocessing before the contraction process when 
using the blocks method, as doing so would modify the QASM representation of 
the circuit, which is essential for detecting the blocks. Furthermore, in most cases, 
applying Tetris can result in losing the block structure of the circuit. This implies 
that the results of the experiments will allow us to determine whether utilizing the 
block structure is more advantageous than any preprocessing that can be conducted 
prior to this stage. It is also worth noting that once the blocks are identified, an 
additional advantage can be gained by applying optimization techniques (preproc-
essing) to each individual block. One potential optimization that could be applied 
within each block is the recursive detection of smaller blocks, which should further 
enhance its performance. It should be noted, however, that these improvements have 
not been incorporated into the present work and are planned as future research.

Table 3   Speedups of performing 
unitary simulations with FTDD 
using different contraction 
orders with respect to the 
sequential method

Circuit Iterative  Cot 

QAOA 0.981 1.750
VQE 0.910 1.120
QFT 16.933 3.500
QGAN 1.629 0.987
QNN 0.056 0.687
QPE 0.822 0.942
Median 0.946 1.053
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Table 4 presents the contraction times, in seconds, for the two circuit types with 
repeated blocks. Results show that exploiting the repeated blocks of the algorithm 
clearly reduces the temporal and spatial cost of the simulation, even if we do not 
use the simplifications provided by the Tetris technique. In the case of the QWalk 
circuits, which have the largest number of gates and indexes (see Table  1), the 
blocks method allows us to simulate larger circuits and is the fastest when all the 
methods finish the simulation. As for the Grover circuits, the blocks methods is 
again the fastest except for the circuit with 8 qubits.

5.2.3 � Evaluation of different simulation tools

In this section, we will use the two repeated block circuits from Sect. 5.2.2 and one 
of the circuits from Sect. 5.2.1 to compare the behavior of different simulation tools. 
All tools were configured to perform amplitude simulations with identical input 
and output states. This approach was chosen for the same reason as above, namely 
that it allows the simulation of circuits with a larger number of qubits, in particular 
those belonging to the RQC category. The selected tools use different methods to 
represent quantum circuits, including matrix-based and DD-based approaches. The 
ordering methods evaluated were cot  and blocks  which are the most efficient 
methods or the only ones available in the tool. It is important to note that in circuits 
where no repeated block structures are detected, the blocks method is similar to 
the iterative method.

The tools used are the following:

•	 Fast Tensor Decision Diagrams (FTDDs2): Simulation tool that uses TDDs to 
represent the information.

•	 Google Tensor Networks (GTNs3): Tool for contracting tensor networks that 
uses matrices to represent the information.

Table 4   Execution times 
in seconds of performing 
amplitude simulations 
with FTDD using different 
contraction orders in circuits 
which have structural blocks

Circuit n Sequential  Iterative  Cot  Blocks 

QWalk 9 487.33 478.02 471.37 4.09
11 11037.17 11172.16 O.M. 76.30
13 O.M. O.M. O.M. 1491.17
15 O.M. O.M. O.M. 36733.63

Grover 5 0.77 0.76 0.77 0.03
6 8.46 8.43 8.57 0.20
7 122.84 135.21 124.91 7.07
8 1038.34 6559.69 1031.92 11491.14

2  https://​github.​com/​Qirui​Zhang/​FTDD
3  https://​github.​com/​google/​Tenso​rNetw​ork

https://github.com/QiruiZhang/FTDD
https://github.com/google/TensorNetwork
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•	 quimb4: Simulation tool developed for cotengra that uses matrices to represent 
the information.

•	 DDSIM5: Simulation tool that uses QMDDs to represent the information.

The results are presented in Table 5. As can be observed, the DDSIM tool yields 
the best results by far in all cases except with the RQC circuits, where the fastest 
tools are FTDD or quimb using the ordering method provided by cotengra. Clearly, 
DDSIM is using a very efficient implementation of the QMDD diagrams and of the 
iterative ordering method for very different types of circuits. The second fastest tool 
is FTDD, which also uses DDs to store and manipulate the circuits. Results also 
show that matrix-based tools such as quimb and GTN have many problems to store 
the information and can only simulate circuits with very few qubits, especially if 
they are circuits with many gates, such as the QWalk circuits. All in all, the results 
show the advantage of employing DDs in order to reduce the spatial and temporal 
cost of the simulations and to be able to carry out simulations of larger circuits.

5.2.4 � Comparison between circuit implementations

The cost of contraction depends not only on the quantum algorithm we are solv-
ing, but also on how it is implemented as a quantum circuit. The same algo-
rithm can have very different implementations depending on the gate set used 
or the optimizations carried out by the compiler. When analyzing experimental 

Table 5   Execution times of performing amplitude simulations using different contraction orders and 
tools for different types of circuits presented in seconds

Benchmarks FTDD quimb GTN DDSIM

Circuit n Blocks  Cot  Cot  Cot  Iterative  Iterative 

QWalk 9 4.09 471.38 8.54 O.M. 507.89 0.23
11 76.30 O.M. O.M. O.M. 11001.84 0.72
13 1491.18 O.M. O.M. O.M. O.M. 2.73
15 36733.63 O.M. O.M. O.M. O.M. 8.03

Grover 5 0.03 0.77 0.48 0.83 0.81 0.04
6 0.20 8.57 1.44 8.70 10.18 0.07
7 7.07 124.91 5.12 136.88 132.42 0.35
8 11491.14 1031.92 16.28 1099.90 1078.32 0.94

RQC 10 0.07 0.03 0.21 0.22 2.08 0.27
12 0.24 0.08 0.17 0.31 16.07 0.57
14 680.70 0.18 0.20 0.40 60.09 0.91
16 2153.49 0.26 0.17 0.44 178.73 1.62

4  https://​quimb.​readt​hedocs.​io
5  https://​github.​com/​cda-​tum/​mqt-​ddsim

https://quimb.readthedocs.io
https://github.com/cda-tum/mqt-ddsim
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results, it can be misleading to rely only on the name of the algorithm solved 
(QFT, Grover, QPE, etc.). Various implementations of these algorithms can result 
in contraction costs that differ by several orders of magnitude. This section com-
pares the contraction costs of different circuits implementing the same algorithm: 
QFT. A circuit of this type, obtained from [51], serves as a reference. From this 
base, four other circuits were generated, named qft_p0, qft_p1, qft_p2, 
and qft_p3, each using a different set of gates. The four circuits were generated 
using Qiskit’s transpile compilation function with the same parameters and 
optimization level 3. The gate set used for each circuit is detailed as follows:

•	 qft_p0: id, u1, u2, u3, cx.
•	 qft_p1: id, rz, sx, x, cx, reset.
•	 qft_p2: id, rz, sx, x, cz, reset.
•	 qft_p3: rz, sx, x, ecr.

Figure 3 shows the contraction times of these circuits using the iterative 
algorithm. The  figure illustrates the enormous influence that the gates used to 
implement a circuit can have on the contraction cost, which in the case shown is 
several orders of magnitude. For instance, the reference circuit, with 8 qubits, has 
a contraction cost of 0.95 seconds, while the qft_p3 circuit, with the same num-
ber of qubits, has a cost of 1539.17 seconds. The figure illustrates that the size of 
circuits, range of contracted tensors, and savings achievable through TDDs vary 
significantly depending on the gates utilized.

Fig. 3   Comparison of the unitary simulation time of the reference QFT circuit versus four compiled vari-
ants using the iterative method in the FTDD tool
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6 � Conclusions and future work

In this work, we have implemented and evaluated two methods based on DDs to 
order the contractions of tensor networks using the FTDD tool: iterative  and 
blocks  methods. TDDs combine the advantages of tensor networks with the 
use of DDs to reduce the time and spatial cost of contraction. The itera-
tive method reduces the average size of the intermediate diagrams produced dur-
ing contraction, thereby decreasing the spatial and temporal cost of the process. 
The blocks  method detects and exploits the iterative structure of many quan-
tum circuits to avoid repeating a large number of costly contractions. Experiments 
on a variety of quantum circuits show that in many cases the proposed methods 
improve the temporal and spatial performance of other well-known methods such as 
sequential or cot orders. In particular, the blocks method achieves signifi-
cant cost reductions for circuits such as those that implement quantum walks or the 
Grover algorithm.

Finally, the results indicate that the proposed methods utilizing the FTDD tool 
can reduce the cost of building a representation of the full functionality of a quan-
tum circuit when compared to well-known tools such as quimb that rely on matrix 
operations. Moreover, the comparison of different simulation tools indicates that 
DD-based tools, such as FTDD or DDSIM, reduce the simulation time of well-
known tools using matrices, such as quimb and GTN. Besides, using DDs much 
larger circuits can be simulated.

As a future goal, we aim to develop methods to simulate efficiently quantum cir-
cuits on classical computers using TDDs. One way to achieve this is by applying 
parallelization techniques at different levels of quantum circuit simulation. These 
levels include parallelizing a single contraction between two tensors, parallelizing 
contractions of different groups of tensors, and applying slicing to the tensor net-
work and parallelizing the contraction of the resulting sub-tensor networks. By com-
bining TDDs with these parallelizing strategies, we intend to reduce the spatial cost 
of contracting the tensor network and simulate larger circuits.
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