The Journal of Supercomputing (2025) 81:354
https://doi.org/10.1007/s11227-024-06836-w

™

Check for
updates

Efficient quantum circuit contraction using tensor decision
diagrams

Vicente Lopez-Oliva' - Jose M. Badia' - Maribel Castillo'

Accepted: 17 December 2024
© The Author(s) 2024

Abstract

Simulating quantum circuits efficiently on classical computers is crucial given the
limitations of current noisy intermediate-scale quantum devices. This paper adapts
and extends two methods used to contract tensor networks within the fast tensor
decision diagram (FTDD) framework. The methods, called iterative pairing and
block contraction, exploit the advantages of tensor decision diagrams to reduce both
the temporal and spatial cost of quantum circuit simulations. The iterative pairing
method minimizes intermediate diagram sizes, while the block contraction algo-
rithm efficiently handles circuits with repetitive structures, such as those found in
quantum walks and Grover’s algorithm. Experimental results demonstrate that, in
some cases, these methods significantly outperform traditional contraction orders
like sequential and cotengra in terms of both memory usage and execution time.
Furthermore, simulation tools based on decision diagrams, such as FTDD, show
superior performance to matrix-based simulation tools, such as Google tensor net-
works, enabling the simulation of larger circuits more efficiently. These findings
show the potential of decision diagram-based approaches to improve the simulation
of quantum circuits on classical platforms.

Keywords Quantum circuit simulation - Tensor decision diagrams - Tensor
networks - Contraction ordering methods - Quantum computing

P4 Vicente Lopez-Oliva
voliva@uji.es

Jose M. Badia
badia@uji.es

Maribel Castillo
castillo@uji.es

Departamento de Ingenieria y Ciencia de Computadores, Universitat Jaume I de Castelld, Avda.
Sos Baynat, s/n, 12071 Castellén de la Plana, Castellén, Spain

Published online: 30 December 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06836-w&domain=pdf

354 Page 2 of 25 V. Lopez-Oliva et al.

1 Introduction

In recent years, quantum computing has captured the interest of researchers
across a wide range of fields due to its potential to advance disciplines such as
chemistry [1], pharmacology [2], and machine learning [3, Cap 1], among oth-
ers [4]. However, currently and in a near future, we will only have noisy inter-
mediate-scale quantum computers (NISQ) [5]. As a result, it is only feasible
to execute algorithms with a limited number of qubits and gates before accu-
mulating significant errors that render the results highly unreliable. Therefore,
developing efficient simulators of quantum computers on classical computers is
crucial for designing, validating, and improving quantum algorithms, as well as
for designing and testing new quantum computers.

The standard method for simulating a quantum circuit involves breaking
it down into a series of matrix—vector and matrix—matrix multiplications. As
the number of qubits increases, the size of these vectors and matrices grows
exponentially, leading to a rapid increase in the time needed for these opera-
tions. Despite that, the simulation of medium-sized quantum algorithms is
mainly limited by the available memory, due to the substantial amount of space
required to store the quantum states and operators [6, 7]. To address this issue,
different techniques have been developed for circuit simulation, including full
wave-function evolution [8], Feynman paths [9], and tensor network contrac-
tion [10]. Simulators based on tensor networks have demonstrated to be highly
effective in simulating random quantum circuits (RQCs) [11]. However, their
efficiency is highly dependent on the order in which the tensors are contracted.
Determining the optimal order is an NP-hard problem ! [12], so it is important
to develop heuristics to efficiently approximate the optimal order.

In addition, alternative ways of representing, storing, and manipulating states and
operations have been used to reduce the computational and spatial cost of simula-
tion. For example, decision diagrams (DD) [13] are gaining relevance for the rep-
resentation of quantum information due to their two main advantages. On the one
hand, quantum circuits and operators can exploit mathematical properties to reduce
data storage requirements. On the other hand, DDs store operations and take into
account the structure of quantum operators to avoid their repetition [14]. Among
the most notable variants of DDs are the quantum multiple-valued decision diagram
(QMDD) [14], which provides a very efficient implementation, and tensor decision
diagrams (TDDs), which combine the advantages of tensor networks and DDs [15].

In this study, we utilized the fast tensor decision diagram (FTDD) tool to imple-
ment our algorithms and perform the experiments [16]. This tool provides an effi-
cient implementation of the TDD, enhanced with various optimizations. Specifically,
we adapted and extended two methods employed to improve contraction ordering
for quantum circuit simulation. These enhancements not only expand the function-
ality of the FTDD but also demonstrate distinct advantages depending on the cir-
cuit structure. The results highlight the potential of these methods when compared

! As a reminder, NP-hard problems are those that are at least as complex as NP problems, and are there-
fore in the group of higher complexity problems.

@ Springer

Efficient quantum circuit contraction using tensor decision... Page3of25 354

with existing ordering techniques used in this framework and other simulation tools
based both on matrix and decision diagram representations.
The main contributions of this work are the following:

e Adaptation and implementation of two tensor network contraction ordering
methods for simulating quantum circuits—iterative pairing and block contraction—
within the FTDD framework. They are designed to optimize the contraction pro-
cess for the TDDs used by the tool.

e Enhancement of the functionality of the block contraction method by adding a
preprocessing method to automatically detect repeated subcircuits whose con-
traction can be avoided.

e Comprehensive evaluation of the proposed methods on various quantum circuits,
demonstrating significant improvements in both temporal and spatial efficiency
compared to traditional contraction orders such as sequential and cotengra.

e Exploitation of the repetitive structure of quantum circuits, such as quantum
walks and Grover’s algorithm, to reduce the computational and spatial cost of
simulation.

e Comparative analysis of FTDD with other state-of-the-art quantum circuit sim-
ulation tools, highlighting the superior performance and scalability of decision
diagram-based approaches.

e Experimental evaluation of the effect of contracting different implementations of
the same quantum algorithm.

The paper is structured as follows: Sect. 2 briefly reviews some related work. Sec-
tion 3 summarises the theoretical background of our work, including basic aspects
of quantum computation, tensor networks, and decision diagrams. In Sect. 4, we
detail the implementation of the contraction methods on the FTDD tool. In Sect. 5,
we provide a detailed description of the experiments conducted and discuss the
results. Finally, Sect. 6 presents the conclusions of the study and suggests directions
for future research.

2 Related work

There are many quantum simulators that operate both sequentially and in paral-
lel [17]. A survey of the main types of existing simulators can be found in [18].
Most of these quantum simulators evolve the full quantum state using matrices.
Some of the most well-known simulators are IBM Qiskit, Google Cirq, QuEST [19],
or gHiPSTER [20]. However, the exponential growth of the spatial and temporal
cost of simulation restricts the number of circuit qubits to a few tens, even on the
most powerful supercomputer available today.

Markov and Shi first proposed to use tensor networks to simulate quantum cir-
cuits [21]. Following this paper, a number of simulators based on tensor networks
have been developed, such as gqFlex [22], QuantEx [23], Jet [24], QTensor [25], Ten-
sorCircuit [26], or the one presented by Huang [27]. (An improved version of the
one presented by Gray [7] called cotengra.) One of the most widely used simulators

@ Springer

354 Page 4 of 25 V. Lopez-Oliva et al.

of this kind is quimb [28], which has been extensively utilized to obtain contraction
orders that can challenge the quantum supremacy demonstrated by Google.

One of the most common approaches to order the contractions of tensor networks
is based on the tree decomposition of the line graph associated with the network.
It includes methods such as QuickBB [29] and Flowcutter [30]. Another approach
is the hypergraph-based method, used for example in cotengra [31]. This method
builds contraction trees using hypergraph partitioning such as KaHyPar [32]. In [7],
the authors introduce several new heuristics to find good contraction paths and com-
bine them with other well-known methods in a framework. They find that the orders
obtained can be very close to the optimal. Also, they compare six methods on dif-
ferent tensor networks, some of them associated to quantum circuits. These meth-
ods include the exhaustive optimal ordering search found in in opt_einsum [33],
QuickBB, and Flowcutter; one method based on hypergraph partitioning and another
based on community detection and a greedy agglomerative method.

All of the aforementioned tools utilize matrix representations to perform opera-
tions. However, there are alternative techniques for handling quantum circuits. DD
was initially proposed to represent switching circuits [34]. Following this work, DDs
were adopted to represent data and operations for various applications, due to their
ability to reduce both temporal and spatial costs. The first attempt to adapt this data
structure for quantum computation was made in [35], where it was used to simulate
a quantum circuit [13, 36]. This adaptation is known as reduced ordered binary deci-
sion diagram (ROBDD). Since then, many tools have been developed using this type
of diagram. The most well-known library that implements this concept is MQT [14],
which is utilized for both simulating and verifying quantum circuits. This tool
implements a type of DD called QMDD [14].

Another type of DDs that combines tensor networks to represent quantum circuits
and DD to store and manipulate them are the TDD, firstly introduced at [15]. This
work focuses on the use of FTDD, an optimized implementation of TDDs intro-
duced at [16].

3 Background

This section briefly discusses the basic theoretical foundations of quantum comput-
ing, tensor networks, and decision diagrams, which form the basis for the develop-
ment of this work. For a more in-depth information on quantum computing and its
mathematical foundation, you can refer for example to [3] or [37].

3.1 Quantum circuits as tensor networks
The basic unit of information in quantum computing is the qubit, which is the
counterpart to the classical bit. The state of a qubit can be written as a linear

combination of two basic states as «|0) + g|1) with a, § € C [38]. A quantum sys-
tem is composed of a set of n qubits, ¢, ---, ¢,, described by a Hilbert space of

@ Springer

Efficient quantum circuit contraction using tensor decision... Page50f25 354

dimension 2", whose basic states are in the set {0, 1}". Therefore, the state of a
quantum system |¢) can be described as:

|p) = Z ;i) with Vi € {0,1}", a; € C,
i€{0,1}"

(D

where the probability of measuring a particular state |i) is given by |a;|>. Quantum
systems are manipulated through quantum operators, represented by unitary matri-
ces of dimension 2" x 2". Typically, these operators only act on a subset of the sys-
tem’s qubits. Quantum circuits are commonly used to represent the successive appli-
cation of quantum operators g, -+, g to a quantum state. Quantum algorithms can
be represented by a quantum circuit. To relate input states to their corresponding
output states, a unitary operator representing the complete functionality of the cir-
cuit can be constructed.

On the other hand, tensors are a natural generalization of vectors and matri-
ces. A tensor of rank r is defined as an element d; X --- X d, existing in the space
C4-4r Then, a complex value can be seen as a tensor of rank 0, while a vector
with d complex elements (dimension d) is a tensor of rank 1. Similarly, a matrix
of dimension n X m is a tensor of rank 2 in C™™ space. Tensors have also become
popular due to their simple notation and graphical representation, which facili-
tates the visualization of tensor networks. Tensors have a defined set of opera-
tions, including the tensor product, trace, contraction, and partitioning [39]. One
of the most significant operations that can be performed on tensors is the contrac-
tion. The contraction of two tensors is a tensor obtained by summing up over the
shared indices. To exemplify, if two tensors, R, _ and S, , are considered, with the

1,20
common index z, the resulting contraction, TX), is defined as follows:
T, = Z R, - Sy,z)

ze{0,1}

In general, the successive contraction between pairs of tensors of a network allows
to obtain a single tensor representing its full functionality.
The quantum state |y) of a qubit can be represented as a vector

lw) = [ag, a,]", where a,, a; € C. 3)

Therefore, it can be represented as a rank 1 tensor 7,,. Similarly, the operators associ-
ated with the gates applied to a single qubit are matrices of size 2 X 2, and can be
represented as rank 2 tensors 7, . In general, a gate acting on n qubits can be rep-
resented as a tensor of rank 2n. Note that in tensor notation, input and output indices
are not distinguished.

A quantum circuit can be modeled as a tensor network, where each gate is
represented as a tensor, and the lines connecting the qubits between gates serve as
shared indices between these tensors. Consequently, since the behavior of a quan-
tum circuit can be simulated using the matrix representing its functionality, it can
similarly be simulated using its tensor representation. This implies that simulat-
ing a quantum circuit is equivalent to contracting its associated tensor network.

@ Springer

354 Page 6 of 25 V. Lopez-Oliva et al.

Fig. 1 Example of a tensor network with 3 tensors. It has 3 closed indices (x3, x4, x5) and 4 open indices
(x1, %2, ¥1,¥2)

This principle underpins the approach proposed by Markov and Shi to reduce the
cost of simulating quantum circuits [21]. They demonstrated that if the treewidth
of the underlying graph associated with the tensor network is logarithmic in the
number of gates, the quantum circuit can be simulated with polynomial cost in
the number of gates. Furthermore, the treewidth aligns with the maximum rank of
all tensors encountered during the contraction process and is a key factor in deter-
mining the overall simulation cost.

3.2 Contraction ordering methods for tensor networks

The goal of ordering methods is to identify a contraction sequence that approxi-
mates the optimal order, thereby minimizing the temporal and spatial costs of
the contraction process. These costs are heavily influenced by the rank of the
intermediate tensors produced during contractions, higher ranks leading to expo-
nentially increased costs. For instance, consider the tensor network illustrated in
Fig. 1. If we start by contracting R with 7, the resulting tensor will have four
indices (x;, x,, X3, x5). On the other hand, if we first contract the tensors R and V,
the resulting tensor will have six indices (x;, x5, X4, X5, Y}, y,), resulting in a higher
cost due to the larger rank of the intermediate tensor. Thus, selecting an effective
contraction order involves avoiding scenarios that lead to high-rank intermediate
tensors, thereby reducing the overall contraction cost.

Obtaining a good contraction order has been extensively studied, and various
methods and heuristics have been proposed, as we have seen in Sect. 2. One of
the most significant proposals is based on the results of Markov and Shi [21],
which obtains a tree decomposition of the line graph associated with the tensor
network. Other proposals are based on the use of greedy methods, which use heu-
ristics to choose the next pair of tensors to contract based on the current state
of the network. Different strategies can be employed such as selecting the two
tensors that share the most indices or the two tensors with the lowest rank. The
iterative pairing method that we have implemented using TDDs falls within this
family of methods.

@ Springer

Efficient quantum circuit contraction using tensor decision... Page70f25 354

3.3 Decision diagrams

Quantum circuits are usually implemented by using vectors and matrices. Its
main advantage is the availability of highly efficient algorithms for matrix mul-
tiplication in all types of architectures, whether sequential or parallel. However,
this is not the only type of structure that we can use to implement them. DDs are
acyclic undirected graphs that represent the gates that compose the circuits and
the unitary matrices used during its processing (simulation, verification, etc.). To
accomplish this, the matrix is divided into a predetermined number of sub-matri-
ces based on a specific criterion.

Two main data structures are usually employed to efficiently store the DDs
and the operations in order to reduce the spatial and temporal cost. On the one
hand, the unique table stores the information about the graph nodes in such
a way that nodes with identical information are not duplicated, thus significantly
reducing the storage cost. On the other hand, the compute table stores the
operations as they are performed, so that they are not repeated when they are
needed again. This implementation is very advantageous because the operations
on tree-like DDs are usually performed recursively based on the subtrees of each
node [15]. In many cases, these subtrees are repeated, both in the construction
of a diagram and in the contraction of two of them. If an operation between sub-
trees has already been performed, it is retrieved directly from the compute table,
avoiding repetition. The affected subtrees can be large, which would avoid a high
percentage of computations with DDs.

Tensors and tensor networks can also be represented as DDs using TDDs [15].
This allows the benefits of both techniques to be leveraged in the handling of quan-
tum circuits. In order to achieve this objective, a number of methods have been
developed that are essential for DDs to be able to work with tensor networks. These
methods are recursive and are based on the traversal of tree-like DDs. Typically,
when utilizing these operations, we work with reduced and normalized versions of
the DDs, as this enables us to exploit the benefits of spatial and temporal advan-
tages. One of the most crucial operations that must be implemented and falls within
this category is the contraction. The implementation details of this operation can be
found in [15].

TDDs use nodes to represent the indices of the tensor network, with each node
having two successors linked by edges. One of the successors is associated with the
value O of the node (which is usually represented by a dashed line), while the other
successor is associated with the value 1 of the node (which is usually represented
by a solid line). Each edge has a weight indicating the value by which the TDD
represented by the successor must be multiplied. In the graphical representation, the
absence of a weight on the edge indicates that its weight is 1.

Figure 2 shows a simple example of how to represent a circuit as a TDD. The
circuit shown on the left of the Fig. 2a can be represented by the matrix on the
right, which defines its functionality. Using this matrix, we can construct the TDD
as shown in Fig. 2b. If all the elements of the matrix were unique and without
common factors, the resulting diagram would be a tree with four levels of nodes,
one per index, and a final level with the 16 values of the matrix. TDDs leverage

@ Springer

354 Page 8 of 25 V. Lopez-Oliva et al.

00 01 10 11 yy,
Y] .
H &
| | 11 1 1|00
1w |1 o 1 o
X, Y, 11 4 1|10 1

(b) TDD representing the
(a) Example of a quantum circuit and its associated uni- circuit. The path defined by
tary matrix represented by a tensor the edges (in red).

Fig.2 Comparison of the matrix and TDD representations of a quantum circuit

the structure and repetition of elements or blocks in matrices to reduce the num-
ber of nodes and edges required to store and operate with tensor networks.

Another well-known type of DD is the QMDD [40], which provides a compact
representation of the matrix associated with the circuit functionality. QMDDs are
constructed by recursively dividing the matrix into four quadrants. This results in
a quaternary tree in which the leaves correspond to the elements of the matrix.
Normalization and reduction techniques based on the structure and repetitions in
the sub-matrices are applied in order to obtain a compact and canonical represen-
tation of the functionality of the quantum circuit. The main differences between
QMDD and TDD are that the former is based on matrix multiplication instead of
tensor contraction, and that the depth levels in QMDD represent qubits instead
of indices as in TDD. Furthermore, QMDDs can be transformed into TDDs in a
natural and flexible way, since the order of the indices does not have to respect
the order of the qubits. This provides TDDs with advantages for certain circuit
types that heavily utilize SWAP gates, as it can be seen in [15] and [41].

The TDD introduced in [15] is implemented in Python and do not include
the majority of the implementation-level improvements that are included in the
tools that implement QMDD. As a consequence, in place of the original TDD
tool, the improved C-implemented version of this tool, designated FTDD, will be
employed [16]. In this new version, the authors implemented in C++ the TDD
with the contraction orders sequential and cot and the aforementioned
improvements. That includes improvements such as edge-centric data struc-
tures for TDD, employment of key BDD optimizations, or the execution of near-
optimal contraction order (cot in this case), with which the authors can obtain
speedups up to 175 respect to the python version.

@ Springer

Efficient quantum circuit contraction using tensor decision... Page9of25 354

One of the improvements that FTDD implements is the Tetris preprocessing.
Tetris is a rank simplification technique that is applied prior to getting the contrac-
tion order to reduce the number of gates to be simulated by consolidating tensors
in a local manner. The algorithmic process is analogous to that of the renowned
video game from which it derives its nomenclature. To accomplish this, the initial
step is to place the first tensor corresponding to the initial gate identified in accord-
ance with the specified order of the quantum circuit on each line of qubits. Subse-
quently, the gates of the circuit are methodically examined and treated as if they
were descending along the lines of qubits, akin to the manner in which tetrominoes
are arranged in the game of Tetris. Each gate is then examined in relation to the top
tensors of the stacks corresponding to the associated qubits. In the event that there
are shared qubits between the gate and the top tensors, and the rank simplification
constraint is satisfied, the gate is consolidated with the top tensors by a contraction,
with the resulting tensor replacing the top tensors. In the event that this is not the
case, the gate is moved to the uppermost positions within the stacks.

4 Contraction ordering method proposals

In this section, we will describe two contraction ordering methods based on the pro-
posals described in [42], where they were used in an equivalent problem for order-
ing matrix multiplications with QMDDs. Both methods aim at exploiting the prop-
erties of DDs to reduce the number and cost of intermediate contractions needed to
obtain the final tensor representing the circuit functionality.

4.1 Iterative pairing

The most straightforward method for ordering contractions in a tensor network
involves traversing the gates of the circuit and sequentially contracting them with the
resulting accumulated diagram. We will call this the sequential method. How-
ever, with the multiplication of quantum operations, their representations become
increasingly complex, thus reducing their sparsity, increasing the level of entangle-
ment between qubits and eliminating existing redundancies, which in turn increases
the cost. In other words, the bottleneck arises from the consequences of performing
successive multiplications.

In [42], a solution to a similar problem using QMDDs is proposed. The objec-
tive is to derive the matrix representing the complete functionality of the circuit
by multiplying the matrices associated with each gate. The authors suggest taking
advantage of the associative property of matrix multiplication to combine matrices
associated with disjoint pairs of gates. Initially, we multiply the matrices of indi-
vidual gates in the circuit. Then, we iteratively combine pairs of matrices obtained
from the previous iteration until the final matrix is produced. This method (called
from now on the iterative method) allows for better exploitation of redundan-
cies and results in DD with smaller average sizes compared to those obtained by
cumulative multiplication, as demonstrated in the paper. This is because, by dividing

@ Springer

354 Page 10 of 25 V. Lopez-Oliva et al.

the multiplications in this way, the representations are kept as small as possible. The
proposed pairing of multiplications is as follows:

U=, -U)-U;-Up-... U, - Uy, @)

where U is the matrix representing the functionality of the circuit, and U, is the
matrix representing the functionality of the gate i. After applying the first iteration
of the algorithm, the following equation is obtained:

U=U, Usy .. Upz,0- Uy 5)

The algorithm proceeds to the next step to obtain the next level of matrices. In this
step, the same associative property is applied again to that set of matrices, perform-
ing the same type of matching between them. This process can be applied itera-
tively to each of the successive levels obtained until a single matrix is calculated.
Assuming, for simplicity, that the number of gates in the circuit n can be expressed
as n = 2% for a certain k € N, the proposed scheme defines a tree-like pairing order.

This approach can also be applied to contract the tensor network representing a
quantum circuit. At each step, all disjoint tensors at the same level are contracted
in pairs, resulting in a new set of tensors for the next level. This process is repeated
until a single tensor remains. The initial level consists of tensors representing the
gates of the quantum circuit, and the final tensor represents the complete functional-
ity of the circuit.

4.2 Block contraction algorithm

The block contraction algorithm (named blocks from now on) is based on the
approach proposed in [42] to exploit the repetition of gate groups that occurs in
many quantum circuits, such as those implementing the Grover’s search algo-
rithm [43], quantum random walk [44], amplitude estimation [45], and quantum
phase estimation [46].

This type of circuits typically begins with an initialization phase consisting of a
set of gates represented by the DD U_{ini}. This is followed by several iterations of
blocks of identical gates, where each block is represented by the diagram U, and a
set of final gates represented by U,,4. The DD U that represents the full functionality
of the quantum circuit can then be obtained as:

U= Uend) : Uiler ' Uini = VUend * Ui]:]er : Uini (6)

iter © v -

where we assume for simplicity that N = 2* for k € N.

This quantum circuit structure enables the use of a multistep ordering method.
First, the iterative pairing method proposed in the previous section is used to obtain
the DDs U_{ini}, U, and U, 4. Subsequently, all the diagrams representing the iter-
ations, U,,,, are contracted to obtain Ui’:; .- To perform this operation, we also apply
the iterative pairing method as follows.

@ Springer

Efficient quantum circuit contraction using tensor decision... Page 110f25 354

_ _ 20 20 20 20
Uiterﬁﬁnal = Uiler : Uiter Tl Uiter = (Uiter : Uiter) T (Uiter : Uiter)

- 2! 2! 2! 2l ok

- (Uiter ’ Uiler) (Uiter ’ Uiter) - Uiter’

The main advantage of the blocks algorithm arises from the fact that at each
pairing level, from /=0 to k— 1, we only need to perform one contraction
Uizt;r Uizt;r = Uizli:, since the rest will be exactly the same and can be avoided by
reusing the results stored in the compute table. As a last step of the blocks algo-
rithm, we will calculate the DD that represents the full functionality of the circuit:
U= Uend : Uiterfﬁnal : Uini

The original article [42] presents this idea with a significant drawback: it requires
prior knowledge of the circuit type to identify its constituent blocks. In other words,
the algorithm needs to be provided with the blocks of operations included in the cir-
cuit. This limitation prevents users from taking advantage of the method for circuits
that have blocks but whose structure is unknown or is not programmed into the tool.
To address this, we propose incorporating an algorithm that begins by searching for
possible blocks within a circuit.

The algorithm takes a file in quantum assembler format (qasm, [47]) as an input
parameter. This file is processed gate by gate checking for identical operations done
in the same set of qubits and in the same order. Then, it tests whether at least one
block of gates (operations) is repeated. This happens when all the gates between
the first gate of the block and its next occurrence are exactly the same as the fol-
lowing ones, and acts in the same set of qubits in the exact same order. If there are
two consecutive identical blocks, the algorithm tries to find more repetitions of the
same block until it reaches a nonidentical block. The size and total number of gates
in each block are recorded. This process is repeated for each gate in the file, and the
configuration containing more gates in the blocks is returned.

Listing 1 presents the algorithm used to perform block contraction after identify-
ing the repeated blocks. The method takes as input a list of tensors representing the
circuit, parameters for block detection, and the contraction method to be applied.
The required block detection parameters include the number of gates in U_{ini},
Uier and Uy, (lines 3-5). Using this information, the algorithm determines the start
and end of each block and the number of repetitions (lines 6 and 7). The blocks
are contracted from lines 11 to 16. Note that the calculation of U, is not repeated,
thanks to the use of the compute table in decision diagrams, which avoids
redundant calculations. After contracting the blocks, in line 18, we apply the itera-
tive pairing ordering method to contract the resulting tensors. This algorithm takes
into account scenarios where the condition N = 2 is not satisfied, handling cases

2
suchas U; # Uy,

@ Springer

354 Page 12 of 25 V. Lopez-Oliva et al.

1 def blocks(tensors, args, contraction):

2 n = len(self.tensors)

3 n_ig = args.n_init_gates

4 n_gxb = args.n_gates_x_block

5 n_lg = args.n_last_gates

6 n_tensor_blocks = (n - n_ig - n_lg) // n_gxb

7 tensor_blocks = [None for _ in range(n_tensor_blocks)]

8 i_g = n_ig

9 i=0

10 # The contractions of all blocks are performed

11 while i_g < n - n_lg:

12 i_lg = i_g + n_gxb

13 # The contraction of each block is performed

14 tensor_blocks[i]l = contraction(tensors[i_g:i_1g]l)

15 i +=1

16 i_g = i_1lg

17 # The iterative pairing method ts used to contract the blocks.
18 tdd = iterative_pairing(tensor_blocks)

19 # Initial gates are contracted on the result of the blocks
20 if n_ig > O0:
21 tdd = cont(contraction(tensors[:n_igl), tdd)
22 # The final gates are contracted on the result of the blocks.
23 if n_1lg > O:
24 tdd = cont(tdd, contraction(tensors[-n_lg:]))
25 return tdd

Listing 1: Block contraction algorithm.

The algorithm in Listing 1 requires prior knowledge of the blocks within the cir-
cuit and the number of gates in each block, making it necessary to preprocess the
circuit to gather this information. Listing 2 outlines this preprocessing step. The
algorithm takes a file describing the quantum circuit in quantum assembler format
(qasm) as its input parameter [47]. It processes the file gate by gate (line 9), check-
ing for identical gates (line 17). It then verifies whether at least one block of gates
is repeated (lines 21 and 24), identifying this scenario when all the gates between
the first occurrence of the block and its next occurrence are exactly the same as the
subsequent ones (line 24). If two consecutive identical blocks are detected, the algo-
rithm attempts to find further repetitions of the same block until it encounters a non-
identical block (line 28). The size of each block and the total number of gates it
contains are then recorded (lines 32-37). This process is repeated for each gate in the
file, ultimately returning the configuration with the largest number of gates within
the blocks (line 42).

@ Springer

Efficient quantum circuit contraction using tensor decision... Page 130f25 354

O 00~ Uk W~

def get_blocks_params(file):
circ = read_file(file)
N = len(circ)
n_gates_ini = N
n_gates_final = 0
block_len = 0
max_gates = 0
Run through all the doors of the file
for i in range(N):
i_final = i + 1
isFinal = False
We check for all the identical doors that we can find in the file.
while not isFinal:
The try block is necessary because searching for the indexz of an element will
result in an error if the element is not found.
try:
Search for the next appearance of the gate 1%
j = circ.index(circ[i], i_final)
i_final = j + 1
i_len = j - i
If there are not enough gates to complete a block, move on to the nexzt gate.
if i + i_len >= N:

continue

Consecutive gates are checked to see if they are identical.
if circ[i:jl == circ[j:(j + i_len)]:

k_ini = j

k_fin = j + i_len

Try to find as many consecutive blocks as possible

while k_fin <= N and circ[i:j] == circl[k_ini:k_fin]:

k_ini += i_len
k_fin += i_len
k_ini will contain the number of the last gate of the last block.
n_gates = k_ini - i
if n_gates max_gates:
max_gates n_gates
block_len = i_len
n_gates_ini = i
n_gates_final = N - k_ini
except ValueError:
isFinal = True
It stops searching <f it cannot find blocks that cover more gates.
if N - i < max_gates:
break
return [n_gates_ini, block_len, n_gates_final]

[N VA

Listing 2: Algorithm for detecting repeated blocks in a quantum circuit.

It is important to note that contraction ordering algorithms such as the

sequential method, the iterative pairing, or the block contraction algorithm
described in this section rely on traversing the circuit’s gates stored in a specific
sequence. Altering this sequence may change the contraction order obtained by
the algorithms and could significantly affect the cost of the contraction process.

5

Circuit simulation and results

This section describes the methodology used to perform the experiments, as well

as

the results obtained and their analysis. Our goal is to compare the temporal

and spatial cost of the two proposed ordering methods with others present in the
literature for a varied set of well-known quantum circuits using different tools.

@ Springer

354 Page 14 of 25 V. Lopez-Oliva et al.

5.1 Experimental environment and methodology

The experimental analysis was carried out using a server with 4 Intel Xeon Gold
6330 H processors at 2 GHz with 24 cores each, a total of 394 GiB of DDR4
RAM and 33 MiB of cache memory. We used the Linux 5.4.0-72-generic
80-Ubuntu operating system.

In order to evaluate the efficiency of the methodologies outlined in the pre-
ceding sections, a variety of tools and circuits will be used. The tools will be
utilized in the subsection 5.2.3 to assess their relative capabilities. With regard to
the circuits to be utilized, there are two main categories: those comprising repeat-
ing blocks (QWalk and Grover) and those devoid of repeating blocks. The latter
will be employed in the subsection 5.2.1. The selected circuits are associated with
some of the most well-known quantum algorithms and are commonly utilized not
only with tensor network methods [15, 16], but also with matrix representations
of quantum circuits [48, 49] and various types of DD [41, 50]. Most of the cir-
cuits can be found at [51].

It is important to note that all simulators used in our experiments can be config-
ured to perform different types of simulations. The computational and spatial cost
varies depending on the type of simulation performed. The main categories of cir-
cuit simulations are as follows:

e Unitary simulation: Computes the unitary matrix that represents the complete
functionality of the quantum circuit. This corresponds to contracting the tensor
network associated with the circuit while keeping both the input and output indi-
ces open.

e Statevector simulation: Computes the evolution of the entire quantum state as
it propagates through the quantum circuit for a given input state (typically |0)").
This corresponds to contracting the tensor network with the input indices closed
and the output indices open.

¢ Amplitude simulation: Computes the probability amplitude for a specific input—
output state pair. This corresponds to contracting the tensor network with both
the input and output indices closed.

Table 1 provides a comprehensive overview of the metrics employed for the cir-
cuits utilized in the experiments conducted in this study. We use several metrics that
defines the circuit, including the number of qubits (referred to as “n"), the total num-
ber of gates (referred to as “# gates"), the number of one-qubit gates (referred to as
“# gates 1qb"), the percentage of one-qubit gates (referred to as “% gates 1 gb"), the
total number of indexes associated with all tensors in the tensor network when the
circuit is open (referred to as “# indexes"), and the depth of the circuit (referred to
as “depth"). As evidenced by the table, the circuits exhibit a considerable degree
of diversity. Notably, the values of the metrics are much larger for the circuits with
blocks (QWalk and Grover) for a similar number of qubits. It is also noteworthy that
the "% gates 1gb" parameter of the circuit exhibits the greatest variability among
the selected circuits, with percentages ranging from a low of 7% to a high of 76%.
In general, this percentage tends to decrease as the number of qubits in the circuit

@ Springer

Efficient quantum circuit contraction using tensor decision... Page 150f25 354

Table 1 Metrics of the circuits that will be used in the following tests

Circuit n # gates # gates 1gb % gates 1 qb # Indexes Depth
QAOA [52] 9 45 27 60.00% 135 9
10 50 30 60.00% 150 10
11 55 33 60.00% 165 9
12 60 36 60.00% 180 10
VQE [53] 13 63 39 61.90% 187 17
14 68 42 61.76% 202 18
15 73 45 61.64% 217 19
16 78 48 61.54% 232 20
QFT [46] 18 180 18 10.00% 702 36
20 220 20 9.09% 860 40
22 264 22 8.33% 1034 44
24 312 24 7.69% 1224 48
QGAN [54] 10 65 20 30.77% 230 19
11 77 22 28.57% 275 21
12 90 24 26.67% 324 23
13 104 23 25.00% 377 25
QNN [55] 8 223 104 46.64% 692 76
9 278 126 45.32% 869 86
10 339 150 44.25% 1066 96
11 406 176 43.35% 1283 106
QPE [46] 12 346 202 58.38% 992 107
13 400 231 57.75% 1151 110
14 453 260 57.40% 1306 113
15 531 301 56.69% 1537 142
QWalk [44] 9 23796 11964 50.28% 71265 19652
11 97428 48796 50.08% 292131 80932
13 392244 196220 50.02% 1176549 326532
15 1178847 589509 50.00% 3536385 982059
Grover [43] 5 1461 765 52.36% 4319 1205
6 4282 2234 52.17% 12666 3429
7 13715 6995 51.00% 40977 11141
8 36780 18604 50.58% 109920 30213
RQC [56] 10 115 87 75.65% 302 11
12 135 103 76.30% 350 13
14 151 111 73.51% 398 15
16 172 128 74.42% 448 17

increases. Table 1 also contains references for each type of circuit. In them, this can
be found more details about the definition and applications of the circuits.

The number of qubits used in each circuit during the testing phase depends on
the maximum number that could be simulated in our experiments. As the number of

@ Springer

354 Page 16 of 25 V. Lopez-Oliva et al.

qubits increases, simulations become impractical due to either exhausting the total
available memory or exceeding the preestablished time limit of 24 h. This limita-
tion accounts for the reduced number of qubits presented in Table 1, as it reflects
the maximum feasible size for which comparisons could be performed using unitary
simulation-a method that is extremely demanding in both time and memory.

In the tables, the cells colored bold represent the best results for each row. The
potential errors are labeled as follows:

e Out of memory (O.M.): We run out of available memory and we could not fit
the circuit in memory.
e Time out (TimeOut): The simulation runs for more than 24 h.

5.2 Experimental results
5.2.1 Evaluation of different methods of ordering contractions

This section will present the simulation of six circuits, each of which exhibits a
distinct structural configuration, according to the metrics included in Table 1. We
evaluate the performance of 3 different ordering methods implemented in the FTDD
tool, which are: the sequential method (named sequential from now on), the
iterative method (named iterative from now on), and the order given by coten-
gra (named cot from now on). We will configure the tool to perform unitary simu-
lations (that means, both the input and output indices will be open).

The aim is to find the best method for ordering the contraction of open circuits.
This is because we want to find the best method for contracting each block of the
blocks algorithm, where the contraction of each individual block can be consid-
ered as the contraction of a circuit with open indices.

Table 2 presents the execution time and memory usage for the simulations.
Notably, for the cot method, this time is further divided into contraction and
ordering time. The latter refers to the time taken to compute the order. This divi-
sion between contraction and ordering time was considered useful, as in most
experiments, ordering represented the majority of the cost. In contrast, for the
other two methods, this step incurs no additional cost since the order is predeter-
mined and does not require calculation. Thus, in these cases, the execution time
corresponds solely to the contraction time. With regard to memory usage, it is
evident that the order cot represents the optimal choice for almost all circuits
and sizes. However, when considering the contraction time required, the cot is
only the best for the QAOA circuit and without considering the ordering time. If
we include the cost of obtaining the order, cot is only the fastest method in the
two largest versions of this type of circuit. In this regard, the iterative and
sequential methods are the fastest options in most cases. When comparing
sequential and iterative methods exclusively, analysis of the % gates
1gb metric reveals that in instances where it falls below 30% (QFT and QGAN),
the iterative method is preferable. Conversely, when it exceeds 40% (QAOA,
VQE, QNN, and QPE), the sequential method emerges as the best strategy.

@ Springer

Efficient quantum circuit contraction using tensor decision... Page 170f25 354

Table 2 Results of performing unitary simulations with FTDD using different contraction orders

Bench- Execution time (s) Memory usage (Mb)

marks

Circuit n Sequen-— Itera- Cot Sequen-— Itera- Cot
tial tive tial tive

Contraction Order

QAOA 9 102.05 226.47 58.32 73442 423.36 289.94 195.29
10 36.63 36.32 0.33 722.34 374.05 170.61 27.72
11 9,676.73 17,096.15 3,645.01 725.10 7,349.51 4,347.04 2,091.57
12 O.M. O.M. 14,529.13 74034 O.M. O.M. 4,908.77
VQE 13 2321 44.87 14.25 715.76 299.63 383.48 217.50
14 276.08 492.24 434.24 701.23 1,780.79 1,537.64 1,550.66
15 22,069.35 17,613.46 O.M. O0.M. 15,331.52 9,314.90 O0.M.
16 454.69 7,694.27 O.M. O.M. 2,728.53 8,650.53 O.M.
QFT 18 3,717.24 64.49 95.47 3,600.74 2,242.73 2,312.71 580.91
20 TimeOut 217.04 1,181.72 3,605.38 TimeOut 6,808.48 3,628.43
22 TimeOut 2]7.04 1,181.72 3,605.38 TimeOut 6,808.48 3,628.43
24 TimeOut 2,688.44 10,556.57 3,613.52 TimeOut 52,054.11 6,950.88
QGAN 10 110.03 69.41 107.29 3,611.27 364.75 223.52 242.82
11 1,422.12 509.93 544.11 3,611.83 1,696.73 780.34 814.96

12 28,619.07 29,940.78 4,901.78 342.86 12,521.45 6,265.39 2,794.70
13 TimeOut 22,016.52 35206.80 3,610.53 TimeOut 6,982.79 7,581.86

QNN 8 833 949.77 14.08 265.24 140.25 330.80 110.75
9 133.81 9,722.81 422.33 26435 591.24 1,650.57 586.27
10 1,628.87 TimeOut 4,212.08 271.30 2,503.12 TimeOut 2,495.95
11 15467.34 TimeOut O.M. O0.M. 10,582.41 TimeOut O.M.
QPE 12 168.04 1,429.71 301.41 77391 1,502.31 1,257.14 749.88

13 1,562.13 23,107.16 2,491.92 2,058.88 6,186.98 5,776.72 2,964.72
14 6,126.27 TimeOut 8,587.96 1,411.76 17,873.52 TimeOut 7,891.84
15 TimeOut TimeOut 40,528.28 1,191.91 TimeOut TimeOut 29,640.93

In order to get a global assessment of the efficiency of the different order-
ing methods, we have computed the median speedup of the iterative and
cot methods with respect to the sequential method. In Table 2, we com-
pute the median of the speedups for all sizes for each type of circuit. Only results
where the 3 methods performed the final contraction were used to calculate the
speedups. Note also that the speedups of the cot methods were calculated using
only the contraction time. Table 3 shows that in most cases there are not large
differences between the median contraction times using the three ordering meth-
ods. The best method depends on the type of circuit. For example, the itera-
tive method has a much better performance for the QFT circuits, but a very
poor performance for the QNN circuits.

@ Springer

354 Page 18 of 25 V. Lopez-Oliva et al.

Table 3 Speedups of performing

.) . : Circuit Iterative Cot

unitary simulations with FTDD

using different contraction QAOA 0.981 1750

orders with respect to the ' ’

sequential method VQE 0.910 1.120
QFT 16.933 3.500
QGAN 1.629 0.987
QNN 0.056 0.687
QPE 0.822 0.942
Median 0.946 1.053

5.2.2 Exploitation of structural repetitions

In this section, we will assess the efficiency of the FTDD tool using the
blocks method and compare it with the three ordering methods evaluated
in the previous section. For the experiments, we use two types of circuits that
include repetitions of large blocks of gates: QWalk and Grover. These repetitions
arise from the fact that the circuits are associated to iterative algorithms where
a part of the circuit is executed several times. In all cases, we have performed
the simulations with circuits including four repeated blocks. For these experi-
ments, we configure the tool to perform amplitude simulations (that is, both input
and output indices are closed). This is a very common type of simulation, espe-
cially when dealing with very large or complex circuits, such as the RQC [22] or
Sycamore circuits used in our experiments, or when comparing different contrac-
tion ordering methods with very large tensor networks [7]. It is also the worst
case for the blocks method. Closing the input is advantageous for the other
order contraction methods, since starting by contracting these indices results in
a reduction of the range of tensors. However, this advantage is not exploited in
the blocks method because the input qubits are contracted last to maintain the
integrity of the block structure.

It is important to note that in all the methods employed by the FTDD tool, the
Tetris optimization method described in [16] has been applied to simplify the tensor
network represented by the circuit, with the exception of the blocks order. We do
not apply Tetris or any form of preprocessing before the contraction process when
using the blocks method, as doing so would modify the QASM representation of
the circuit, which is essential for detecting the blocks. Furthermore, in most cases,
applying Tetris can result in losing the block structure of the circuit. This implies
that the results of the experiments will allow us to determine whether utilizing the
block structure is more advantageous than any preprocessing that can be conducted
prior to this stage. It is also worth noting that once the blocks are identified, an
additional advantage can be gained by applying optimization techniques (preproc-
essing) to each individual block. One potential optimization that could be applied
within each block is the recursive detection of smaller blocks, which should further
enhance its performance. It should be noted, however, that these improvements have
not been incorporated into the present work and are planned as future research.

@ Springer

Efficient quantum circuit contraction using tensor decision... Page 190f25 354

Table 4 Execution times

. . Circuit n Sequential Iterative Cot Blocks
in seconds of performing
amplitude simulations QWalk 9 487.33 478.02 47137 4.09
with FTDD using different
contraction orders in circuits 11 11037.17 11172.16 oM. 76.30
which have structural blocks 13 O.M. O.M. O.M. 1491.17
15 O.M. 0.M. O0.M. 36733.63
Grover 5 0.77 0.76 0.77 0.03
6 8.46 8.43 8.57 0.20
7 122.84 135.21 12491 7.07
8 1038.34 6559.69 1031.92 11491.14

Table 4 presents the contraction times, in seconds, for the two circuit types with
repeated blocks. Results show that exploiting the repeated blocks of the algorithm
clearly reduces the temporal and spatial cost of the simulation, even if we do not
use the simplifications provided by the Tetris technique. In the case of the QWalk
circuits, which have the largest number of gates and indexes (see Table 1), the
blocks method allows us to simulate larger circuits and is the fastest when all the
methods finish the simulation. As for the Grover circuits, the blocks methods is
again the fastest except for the circuit with 8 qubits.

5.2.3 Evaluation of different simulation tools

In this section, we will use the two repeated block circuits from Sect. 5.2.2 and one
of the circuits from Sect. 5.2.1 to compare the behavior of different simulation tools.
All tools were configured to perform amplitude simulations with identical input
and output states. This approach was chosen for the same reason as above, namely
that it allows the simulation of circuits with a larger number of qubits, in particular
those belonging to the RQC category. The selected tools use different methods to
represent quantum circuits, including matrix-based and DD-based approaches. The
ordering methods evaluated were cot and blocks which are the most efficient
methods or the only ones available in the tool. It is important to note that in circuits
where no repeated block structures are detected, the blocks method is similar to
the iterative method.
The tools used are the following:

e Fast Tensor Decision Diagrams (FTDDs?): Simulation tool that uses TDDs to
represent the information.

e Google Tensor Networks (GTNs?): Tool for contracting tensor networks that
uses matrices to represent the information.

2 https://github.com/QiruiZhang/FTDD
3 https://github.com/google/TensorNetwork

@ Springer

https://github.com/QiruiZhang/FTDD
https://github.com/google/TensorNetwork

354 Page 20 of 25 V. Lopez-Oliva et al.

Table5 Execution times of performing amplitude simulations using different contraction orders and
tools for different types of circuits presented in seconds

Benchmarks FTDD quimb GTN DDSIM

Circuit n Blocks Cot Cot Cot Iterative Iterative

QWalk 9 4.09 471.38 8.54 O0.M. 507.89 0.23

11 76.30 O0.M. O.M. O.M. 11001.84 0.72

13 1491.18 O.M. O0.M. O.M. O.M. 2.73

15 36733.63 O.M. O0.M. O.M. 0.M. 8.03

Grover 5 0.03 0.77 0.48 0.83 0.81 0.04

0.20 8.57 1.44 8.70 10.18 0.07

7 7.07 124.91 5.12 136.88 132.42 0.35

8 11491.14 1031.92 16.28 1099.90 1078.32 0.94

RQC 10 0.07 0.03 0.21 0.22 2.08 0.27

12 0.24 0.08 0.17 0.31 16.07 0.57

14 680.70 0.18 0.20 0.40 60.09 0.91

16 2153.49 0.26 0.17 0.44 178.73 1.62

e quimb*: Simulation tool developed for cotengra that uses matrices to represent
the information.
e DDSIM’: Simulation tool that uses QMDD to represent the information.

The results are presented in Table 5. As can be observed, the DDSIM tool yields
the best results by far in all cases except with the RQC circuits, where the fastest
tools are FTDD or quimb using the ordering method provided by cotengra. Clearly,
DDSIM is using a very efficient implementation of the QMDD diagrams and of the
iterative ordering method for very different types of circuits. The second fastest tool
is FTDD, which also uses DDs to store and manipulate the circuits. Results also
show that matrix-based tools such as quimb and GTN have many problems to store
the information and can only simulate circuits with very few qubits, especially if
they are circuits with many gates, such as the QWalk circuits. All in all, the results
show the advantage of employing DDs in order to reduce the spatial and temporal
cost of the simulations and to be able to carry out simulations of larger circuits.

5.2.4 Comparison between circuit implementations

The cost of contraction depends not only on the quantum algorithm we are solv-
ing, but also on how it is implemented as a quantum circuit. The same algo-
rithm can have very different implementations depending on the gate set used
or the optimizations carried out by the compiler. When analyzing experimental

* https://quimb.readthedocs.io
5 https://github.com/cda-tum/mqt-ddsim

@ Springer

https://quimb.readthedocs.io
https://github.com/cda-tum/mqt-ddsim

Efficient quantum circuit contraction using tensor decision... Page210f25 354

104
103
107
n
(@)}
2 10!
g
£ 10° —e— reference
-1 po
10 —— pl
p2
-2
10 — p3
2 4 6 8 10 12 14 16 18

Qubits

Fig.3 Comparison of the unitary simulation time of the reference QF T circuit versus four compiled vari-
ants using the iterative method in the FTDD tool

results, it can be misleading to rely only on the name of the algorithm solved
(QFT, Grover, QPE, etc.). Various implementations of these algorithms can result
in contraction costs that differ by several orders of magnitude. This section com-
pares the contraction costs of different circuits implementing the same algorithm:
QFT. A circuit of this type, obtained from [51], serves as a reference. From this
base, four other circuits were generated, named gft p0, gft pl, gft p2,
and gft p3, each using a different set of gates. The four circuits were generated
using Qiskit’s transpile compilation function with the same parameters and
optimization level 3. The gate set used for each circuit is detailed as follows:

qft_p0: id, ul, u2, u3, cx.
qft_pl: id, rz, sx, x, cx, reset.
qft_p2: id, rz, sx, X, cz, reset.
qft_p3: rz, sx, X, ecr.

Figure 3 shows the contraction times of these circuits using the iterative
algorithm. The figure illustrates the enormous influence that the gates used to
implement a circuit can have on the contraction cost, which in the case shown is
several orders of magnitude. For instance, the reference circuit, with 8 qubits, has
a contraction cost of 0.95 seconds, while the gft p3 circuit, with the same num-
ber of qubits, has a cost of 1539.17 seconds. The figure illustrates that the size of
circuits, range of contracted tensors, and savings achievable through TDDs vary
significantly depending on the gates utilized.

@ Springer

354 Page 22 of 25 V. Lopez-Oliva et al.

6 Conclusions and future work

In this work, we have implemented and evaluated two methods based on DDs to
order the contractions of tensor networks using the FTDD tool: iterative and
blocks methods. TDDs combine the advantages of tensor networks with the
use of DDs to reduce the time and spatial cost of contraction. The itera-
tive method reduces the average size of the intermediate diagrams produced dur-
ing contraction, thereby decreasing the spatial and temporal cost of the process.
The blocks method detects and exploits the iterative structure of many quan-
tum circuits to avoid repeating a large number of costly contractions. Experiments
on a variety of quantum circuits show that in many cases the proposed methods
improve the temporal and spatial performance of other well-known methods such as
sequential or cot orders. In particular, the blocks method achieves signifi-
cant cost reductions for circuits such as those that implement quantum walks or the
Grover algorithm.

Finally, the results indicate that the proposed methods utilizing the FTDD tool
can reduce the cost of building a representation of the full functionality of a quan-
tum circuit when compared to well-known tools such as quimb that rely on matrix
operations. Moreover, the comparison of different simulation tools indicates that
DD-based tools, such as FTDD or DDSIM, reduce the simulation time of well-
known tools using matrices, such as quimb and GTN. Besides, using DDs much
larger circuits can be simulated.

As a future goal, we aim to develop methods to simulate efficiently quantum cir-
cuits on classical computers using TDDs. One way to achieve this is by applying
parallelization techniques at different levels of quantum circuit simulation. These
levels include parallelizing a single contraction between two tensors, parallelizing
contractions of different groups of tensors, and applying slicing to the tensor net-
work and parallelizing the contraction of the resulting sub-tensor networks. By com-
bining TDDs with these parallelizing strategies, we intend to reduce the spatial cost
of contracting the tensor network and simulate larger circuits.

Author contributions V.L.O. implemented the codes and executed all the experiments on the computing
platforms. J.M.B. and M.C. supervised the work and helped to conceive the codes and experiments. All
authors discussed the results and contributed to the final version of the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work has been funded by the project UJI-B2021-26 of the Universitat Jaume I and by grant
PID2020-113656RB-C21 funded by MCIN/AEI/10.13039/50110011033 and MICINN.

Data availability Not yet available.

Code availability Not yet available.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of
this article.

@ Springer

Efficient quantum circuit contraction using tensor decision... Page230f25 354

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication All authors read and approved the final manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.
References
1. Yuan X (2020) A quantum-computing advantage for chemistry. Science 369(6507):1054—1055
2. Gerbert P, Ruel3 F (2018) The next decade in quantum computing and how to play. Boston Consult-
ing Group
3. Sutor RS (2019) Dancing with qubits: how quantum computing works and how it can change the
world. Packt Publishing Ltd, Birmingham
4. Forum WE (2022) State of quantum computing: building a quantum economy. https://www3.wefor
um.org/docs/WEF_State_of_Quantum_Computing_2022.pdf
5. Preskill J (2018) Quantum computing in the NISQ era and beyond. Quantum 2:79
6. Huang C, Zhang F, Newman M, Ni X, Ding D, Cai J, Gao X, Wang T, Wu F, Zhang G et al (2021)
Efficient parallelization of tensor network contraction for simulating quantum computation. Nat
Comp Sci 1(9):578-587
7. Gray J, Kourtis S (2021) Hyper-optimized tensor network contraction. Quantum 5:410
8. Wu XC, Di S, Dasgupta EM, Cappello F, Finkel H, Alexeev Y, Chong FT (2019) Full-state quantum
circuit simulation by using data compression. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp 1-24
9. Bernstein E, Vazirani U (1993) Quantum complexity theory. In: Proceedings of the Twenty-fifth
Annual ACM Symposium on Theory of Computing, pp 11-20
10. Vincent T, O’Riordan LJ, Andrenkov M, Brown J, Killoran N, Qi H, Dhand I (2022) Jet:fast quan-
tum circuit simulations with parallel task-based tensor-network contraction. Quantum 6:709
11. Boixo S, Isakov SV, Smelyanskiy VN, Babbush R, Ding N, Jiang Z, Bremner MJ, Martinis JM,
Neven H (2018) Characterizing quantum supremacy in near-term devices. Nat Phys 14(6):595-600
12. Chi-Chung L, Sadayappan P, Wenger R (1997) On optimizing a class of multi-dimensional loops
with reduction for parallel execution. Parallel Process Lett 7(02):157-168
13. Akers SB (1978) Binary decision diagrams. IEEE Trans comput 27(06):509-516
14. Zulehner A, Wille R (2018) Advanced simulation of quantum computations. IEEE Trans Comput
Aided Des Integr Circuits Syst 38(5):848-859
15. Hong X, Zhou X, Li S, Feng Y, Ying M (2022) A tensor network based decision diagram for repre-
sentation of quantum circuits. ACM Trans Des Autom Electr Syst (TODAES) 27(6):1-30
16. Zhang Q, Saligane M, Kim HS, Blaauw D, Tzimpragos G, Sylvester D (2024) Quantum circuit
simulation with fast tensor decision diagram. arXiv preprint arXiv:2401.11362
17. Quantiki (2023) List of QC simulators. https://quantiki.org/wiki/list-qc-simulators
18. Dahi Z, Alba E, Gil-Merino R, Chicano F, Luque G (2023) A survey on quantum computer simula-
tors. https://api.semanticscholar.org/CorpusID:259257304
19. Jones T, Brown A, Bush I, Benjamin SC (2019) QuEST and high performance simulation of quan-

tum computers. Sci Rep 9(1):1-11

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www3.weforum.org/docs/WEF_State_of_Quantum_Computing_2022.pdf
https://www3.weforum.org/docs/WEF_State_of_Quantum_Computing_2022.pdf
http://arxiv.org/abs/2401.11362
https://quantiki.org/wiki/list-qc-simulators
https://api.semanticscholar.org/CorpusID:259257304

354 Page 24 of 25 V. Lopez-Oliva et al.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

Guerreschi GG, Hogaboam J, Baruffa F, Sawaya NP (2020) Intel quantum simulator:a cloud-ready
high-performance simulator of quantum circuits. Quantum Sci Technol 5(3):034007

Markov IL, Shi Y (2008) Simulating quantum computation by contracting tensor networks. SIAM J
Comp 38(3):963-981

Villalonga B, Boixo S, Nelson B, Henze C, Rieffel E, Biswas R, Mandra S (2019) A flexible high-
performance simulator for verifying and benchmarking quantum circuits implemented on real hard-
ware. npj Quantum Inform 5(1):86

Brennan J, Allalen M, Brayford D, Hanley K, Iapichino L, O’Riordan LJ, Doyle M, Moran N (2021)
Tensor network circuit simulation at exascale. In: 2021 IEEE/ACM Second International Workshop
on Quantum Computing Software (QCS), IEEE, pp 20-26

Vincent T, O’Riordan LJ, Andrenkov M, Brown J, Killoran N, Qi H, Dhand I (2022) Jet: fast quan-
tum circuit simulations with parallel task-based tensor-network contraction. Quantum 6:709

Lykov D, Schutski R, Galda A, Vinokur V, Alexeev Y (2022) Tensor network quantum simulator
with step-dependent parallelization. In: 2022 IEEE International Conference on Quantum Comput-
ing and Engineering (QCE), IEEE, pp 582-593

Zhang S-X, Allcock J, Wan Z-Q, Liu S, Sun J, Yu H, Yang X-H, Qiu J, Ye Z, Chen Y-Q et al (2023)
Tensorcircuit: a quantum software framework for the NISQ era. Quantum 7:912

Huang C, Zhang F, Newman M, Cai J, Gao X, Tian Z, Wu J, Xu H, Yu H, Yuan B, et al (2020) Clas-
sical simulation of quantum supremacy circuits. arXiv preprint arXiv:2005.06787

Gray J (2018) quimb: a python package for quantum information and many-body calculations. J
Open Sour Softw 3(29):819

Gogate V, Dechter R (2012) A complete anytime algorithm for treewidth. arXiv preprint arXiv:
1207.4109

Strasser B (2017) Computing tree decompositions with flowcutter: PACE 2017 submission. arXiv
preprint arXiv:1709.08949

Gray J (2023) Cotengra. https://github.com/jcmgray/cotengra

Schlag S, Heuer T, Gottesbiiren L, Akhremtsev Y, Schulz C, Sanders P (2023) High-quality hyper-
graph partitioning. ACM J Exp Algorithm 27:1-39

Daniel G, Gray J et al (2018) opt_einsum. A python package for optimizing contraction order for
einsum-like expressions. J Open Sour Softw 3(26):753

Lee C-Y (1959) Representation of switching circuits by binary-decision programs. Bell Syst Tech J
38(4):985-999

Bryant RE (1986) Graph-based algorithms for boolean function manipulation. Comput IEEE Trans
100(8):677-691

Bergman D, Cire AA, Van Hoeve W-J, Hooker J (2016) Decision diagrams for optimization, vol 1.
Springer, Cham

Oliva VL (2022) Fundamentos de la computacién cuantica. TEMat 6:31-47

Dirac PAM (1939) A new notation for quantum mechanics. Math Proceed Camb Philos Soc
35(3):416-418

Bridgeman JC, Chubb CT (2017) Hand-waving and interpretive dance: an introductory course on
tensor networks. J phys A Math Theor 50(22):223001

Miller DM, Thornton MA (2006) QMDD: a decision diagram structure for reversible and quantum
circuits. In: 36th International Symposium on Multiple-Valued Logic (ISMVL’06), IEEE, pp 30-30
Niemann P, Wille R, Miller DM, Thornton MA, Drechsler R (2015) QMDDs: efficient quantum
function representation and manipulation. IEEE Trans Comput Aided Des Integr Circuits Syst
35(1):86-99

Burgholzer L, Raymond R, Sengupta I, Wille R (2021) Efficient construction of functional repre-
sentations for quantum algorithms. In: Reversible Computation: 13th International Conference, RC
2021, Virtual Event, Springer, 7-8 July 2021, Proceedings, pp 227-241

Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the
Twenty-eighth Annual ACM Symposium on Theory of Computing, pp 212-219

Venegas-Andraca SE (2012) Quantum walks: a comprehensive review. Quantum Inform Process
11(5):1015-1106

Brassard G, Hoyer P, Mosca M, Tapp A (2002) Quantum amplitude amplification and estimation.
Contemp Math 305:53-74

Nielsen MA, Chuang IL (2011) Quantum computation and quantum information: 10th anniversary
edition. Cambridge University Press, New York, USA

Springer

http://arxiv.org/abs/2005.06787
http://arxiv.org/abs/1207.4109
http://arxiv.org/abs/1207.4109
http://arxiv.org/abs/1709.08949
https://github.com/jcmgray/cotengra

Efficient quantum circuit contraction using tensor decision... Page250f25 354

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

Cross AW, Bishop LS, Smolin JA, Gambetta JM (2017) Open quantum assembly language. arXiv
preprint arXiv:1707.03429

Efthymiou S, Ramos-Calderer S, Bravo-Prieto C, Pérez-Salinas A, Garcia-Martin D, Garcia-Saez
A, Latorre JI, Carrazza S (2021) Qibo: a framework for quantum simulation with hardware accelera-
tion. Quantum Sci Technol 7(1):015018

Mei J, Bonsangue M, Laarman A (2024) Simulating quantum circuits by model counting. In: Inter-
national Conference on Computer Aided Verification, Springer, pp 555-578

Niemann P, Wille R, Drechsler R (2013) On the “Q” in QMDDs: efficient representation of quan-
tum functionality in the QMDD data-structure. In: Reversible Computation: 5th International Con-
ference, RC 2013, Victoria, BC, Canada, 4-5 July 2013. Proceedings 5, Springer, pp 125-140
Quetschlich N, Burgholzer L, Wille R (2022) MQT bench: benchmarking software and design auto-
mation tools for quantum computing. arXiv. MQT Bench is available at https://www.cda.cit.tum.de/
mgqtbench/

Choi J, Kim J (2019) A tutorial on quantum approximate optimization algorithm (QAOA): Funda-
mentals and applications. In: 2019 International Conference on Information and Communication
Technology Convergence (ICTC), IEEE, pp 138-142

Fedorov DA, Peng B, Govind N, Alexeev Y (2022) VQE method: a short survey and recent develop-
ments. Mater Theor 6(1):2

Wang P, Wang D, Ji Y, Xie X, Song H, Liu X, Lyu Y, Xie Y (2019) QGAN: quantized generative
adversarial networks. arXiv preprint arXiv:1901.08263

Narayanan A, Menneer T (2000) Quantum artificial neural network architectures and components.
Inform Sci 128(3-4):231-255

Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG,
Buell DA et al (2019) Quantum supremacy using a programmable superconducting processor.
Nature 574(7779):505-510

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/1707.03429
http://arxiv.org/abs/MQT
https://www.cda.cit.tum.de/mqtbench/
https://www.cda.cit.tum.de/mqtbench/
http://arxiv.org/abs/1901.08263

	Efficient quantum circuit contraction using tensor decision diagrams
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Quantum circuits as tensor networks
	3.2 Contraction ordering methods for tensor networks
	3.3 Decision diagrams

	4 Contraction ordering method proposals
	4.1 Iterative pairing
	4.2 Block contraction algorithm

	5 Circuit simulation and results
	5.1 Experimental environment and methodology
	5.2 Experimental results
	5.2.1 Evaluation of different methods of ordering contractions
	5.2.2 Exploitation of structural repetitions
	5.2.3 Evaluation of different simulation tools
	5.2.4 Comparison between circuit implementations

	6 Conclusions and future work
	References

