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Abstract The global conformal gauge is playing the crucial
role in string theory providing the basis for quantization. Its
existence for two-dimensional Lorentzian metric is known
locally for a long time. We prove that if a Lorentzian metric
is given on a plain then the conformal gauge exists globally
on the whole R

2. Moreover, we prove the existence of the
conformal gauge globally on the whole worldsheets repre-
sented by infinite strips with straight boundaries for open and
closed bosonic strings. The global existence of the confor-
mal gauge on the whole plane is also proved for the positive
definite Riemannian metric.

1 Introduction

The (super)string theory attracts much interest in physics
and mathematics for the last fifty years (see, e.g., [1–3]). It
is usually considered as the basis for construction of the uni-
fied quantum theory of all fundamental interactions including
gravity. The crucial role in the theory is played by the con-
formal gauge for a metric of Lorentzian signature in which it
is conformally flat. In fact, almost all results in string theory
are obtained using the assumption that the conformal gauge
exists on the whole string worldsheets represented by infinite
strips with straight boundaries. For example, the covariant
and light cone quantizations use Fourier series which exist
only if the conformal gauge is applied on the whole string
worldsheet.

The local existence of the conformal gauge is well known
for a long time (see, for C2-metric, e.g., [4, Ch. I, § 6.1],
or [5, Ch. I, § 3.1]). This gauge and boundary value prob-
lems were also considered in [6]. The local existence of the
gauge is proved by writing down equations for transforma-
tion functions and considering their integrability conditions
which guarantee the existence of solution in some neigh-
bourhood of an arbitrary point. However it is not enough. In
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string theory, it is assumed that the conformal gauge exists on
an infinite strip with straight boundaries. There are two sub-
tle questions: does the conformal gauge exist on the whole
strip? and can the boundaries be made straight? In the present
paper, we answer these questions affirmatively. The transi-
tion from local to global considerations is based on the global
existence theorem for the solution of the Cauchy problem for
two-dimensional hyperbolic differential equations with vary-
ing coefficients (see, e.g., [7], book IV, ch. I). This theorem is
highly nontrivial, but allows one to make global statements.

The existence of the global conformal gauge, adopted
in string theory, results in beautiful and consistent theory.
Therefore the theory deserves attention by itself. But the
question remains: are there other solutions of the initial
Nambu–Goto string which are not captured by the usual
approach? We prove that there are no such solutions. The
main results of the present paper for Lorentzian signature
metric are published in [8] without proofs.

The local existence of the conformal gauge (isothermal
coordinates) for positive definite Riemannian metric is also
known in mathematics for a long time. The proof for analytic
metric is given e.g. in [4, Ch. I, § 6.4] and [5, Ch. I, § 3.4]
and for C3-metric e.g. in [9, Theorem 2.5.14]. In the present
paper, we extend the proof to the whole Euclidean plane.

In the next section, we introduce notation and write down
equations of motion with boundary conditions. Afterwards
we consider infinite, open, and closed strings in subsequent
sections, respectively. Finally, we analyze the Riemannian
two-dimensional metric.

All functions are supposed to be sufficiently smooth by
default.

2 The bosonic string

Consider two manifolds: a plane R
2 with arbitrary global

coordinates x = (xα) := (x0, x1) := (τ, σ ), α = 0, 1, and
D-dimensional Minkowskian space R

1,D−1 with Cartesian
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coordinates X = (Xa), a = 0, 1, . . . , D − 1, D ≥ 2, and
the Lorentz metric ηab := diag (+ − · · · −). Let there be a
smooth embedding

X : R
2 ⊃ U � (τ, σ ) �→ (

Xa(τ, σ )
) ∈ R

1,D−1,

(1)

of some closed subset U of a plane. We assume that U is con-
nected and simply connected open subset in R

2. The embed-
ding defines the string worldsheet M := X (U).

Embedding (1) defines symmetric quadratic form with
components

hαβ := ∂αX
a∂βX

bηab = ∂αX
a∂βXa. (2)

In general, this form may be negative definite, degenerate, or
indefinite. We assume that the embedding is such that

(∂0X)2 := Ẋ2 := Ẋa Ẋbηab > 0,

(∂1X)2 := X ′2 := X ′aX ′bηab < 0,
(3)

where the dot and prime denote differentiation with respect to
τ and σ , respectively, onU. The vectors Ẋ and X ′ are linearly
independent onM. Here and in what follows indices a, b, . . .
are often omitted. So global coordinates τ, σ on U are time-
like and spacelike, respectively. Then the determinant of the
induced quadratic form is negative

h := det hαβ = Ẋ2X ′2 − (Ẋ , X ′)2 < 0, (4)

where brackets denote the usual scalar product in R
1,D−1.

Now the embedding (1) defines the Lorentzian metric on the
string worldsheet interior U with signature (+−).

Open string is the embedding (1) of the closed straight
strip

− ∞ < τ < ∞, 0 ≤ σ ≤ π (5)

with properties (3). This strip is vertical if τ and σ coordinate
axes are depicted by vertical and horizontal straight lines on
a plain R

2, respectively.
Closed string is the embedding (1) of the closed straight

vertical strip

− ∞ < τ < ∞, −π ≤ σ ≤ π (6)

with identified boundaries. There are many ways to iden-
tify smoothly the boundaries (6). In string theory, we, first,
impose the conformal gauge on the metric on the same strip
(6) and, second, impose the smooth periodicity conditions

∂k1 X
a
∣∣
σ=−π

= ∂k1 X
a
∣∣
σ=π

, ∀a,∀τ, k = 0, 1, 2, . . . ,(7)

up to the needed order. It is the prime aim of the present
paper to prove that the conformal gauge on the same strips
does exist.

Sure, a cylinder is not a simply connected manifold and
cannot be covered by a single coordinate chart. The domain

(6) is the fundamental domain for a closed string worldsheet
with identified boundaries.

A coordinate system defined on the domains for open (5)
and for closed (6) strings we call global coordinate system
on the string worldsheets.

If infinite strips in the τ, σ plane have curved boundaries,
then all of them are diffeomorphic to strips (5) or (6). Thus we
did not loose generality by specifying the coordinate range
in the τ, σ plane.

The dynamics of the Nambu–Goto string is governed by
the action which is proportional to the string worldsheet area

Sng := −
∫

U

dx
√|h| = −

∫

U

dτdσ

√
(Ẋ , X ′)2 − Ẋ2X ′2, (8)

where h := det hαβ . This action is invariant with respect to
arbitrary coordinate changes and global Lorentz transforma-
tions. It implies the Euler–Lagrange equations

1√|h|
δSng
δXa

= �(h)X
a = hαβ∇α∇βX

a

= 1√|h|∂α

(√|h|hαβ∂βX
a
)

= 0, (9)

where the two-dimensional wave operator �(h) is build by
the induced metric hαβ (2) and ∇α is the covariant derivative
with respective Christoffel’s symbols.

We assume that ends of an open string are free, and then
the action (8) implies also the boundary conditions

sβ∂βX
a
∣∣
σ=0,π

= 0, (10)

where sα are components of the spacelike vector which is
perpendicular to the boundaries with respect to the induced
metric.

The action (8) does not yield any boundary condition for
a closed string. Instead, we have periodicity conditions (7)
imposed by hands.

In string theory, the crucial role is played by the possibility
to impose global conformal gauge

hαβ = e2φηαβ, ηαβ := diag (+−), (11)

where φ(x) is some sufficiently smooth function, on the
whole string worldsheet. The aim of the present paper is to
prove that this conformal gauge can be imposed on the same
strips (5) and (6) both for open and closed strings with the
same straight boundaries.

3 The idea of the proof

The idea of the proof is the following. We construct two
orthogonal vector fields: the timelike t = tα∂α and spacelike
s = sα∂α vector fields such that the following conditions
hold on the whole string worldsheet U ↪→ R

1,D−1:
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(t, s) = 0, t2 + s2 = 0, t2 > 0, ∀x ∈ U, (12)

where the scalar product is defined by the induced metric hαβ

(2):

(t, s) := tαsβhαβ, t2 := (t, t), s2 := (s, s).

Then we find conditions for commutativity of these vector
fields: [t, s] = 0. The next step is to find two families of
integral curves xα(τ̃ , σ̃ ) which are defined by the system of
differential equations

∂xα

∂τ̃
= tα,

∂xα

∂σ̃
= sα, (13)

where τ̃ and σ̃ are parameters along integral curves of vector
fields t and s, respectively. The integrability conditions for
this system are fulfilled on the whole U:

∂2xα

∂τ̃ ∂σ̃
− ∂2xα

∂σ̃ ∂τ̃
= ∂sα

∂τ̃
− ∂tα

∂σ̃
= tβ∂βs

α − sβ∂β t
α

= [t, s]α = 0,

due to commutativity of vector fields. Consequently, there is
a nondegenerate coordinate transformation (τ, σ ) �→ (τ̃ , σ̃ )

on the whole worldsheet U.
In the new coordinate system, the induced metric h̃αβ is

conformally flat due to the properties of the vector fields (12):

h̃00 = hαβ

∂xα

∂τ̃

∂xβ

∂τ̃
= t2,

h̃01 = hαβ

∂xα

∂τ̃

∂xβ

∂σ̃
= (t, s) = 0,

h̃11 = hαβ

∂xα

∂σ̃

∂xβ

∂σ̃
= s2 = −t2.

(14)

The final step is the analysis of domains of the definition of
parameters τ̃ and σ̃ of integral curves (13) which are new
coordinates.

The last two conditions (12) imply the inequality s2 < 0,
i.e. the vector field s is necessarily spacelike.

Here and in what follows, U denotes either the whole
Euclidean plane (infinite string) or an open set (strip) on
the plane (τ, σ ) ∈ U ⊂ R

2 (open or closed string), where
the induced metric is nondegenerate. The boundaries ∂U of
open string, on which the metric is degenerate, are considered
separately.

4 Infinite string

Let us start the detailed analysis. First, we consider the
embedding (1) where U = R

2, i.e. the embedding of the
whole plane (infinite string). Arbitrary timelike and space-
like tangent vectors T and S to the string worldsheet in the

embedding spaceR1,D−1 can be decomposed on tangent vec-
tors Ẋ and X ′:
T = A(cosh ϕ Ẋ + sinh ϕX ′),
S = B(sinh ψ Ẋ + cosh ψX ′),

(15)

where A(x) �= 0, B(x) �= 0 and ϕ(x), ψ(x) ∈ R are some
functions. Suppose that vectors T and S for ϕ = ψ = 0 are
directed in the same way as vectors Ẋ and X ′, respectively.
Then A > 0 and B > 0.

Lemma 4.1 Vector fields T and S on U satisfy equalities

(T, S) = 0, T 2 + S2 = 0, (16)

if and only if vector field S is given by Eq. (15) with arbitrary
functions B > 0 and ψ ∈ R, and the second vector field has
the form

T = − B√|h|
[

cosh ψX ′2 + sinh ψ(Ẋ , X ′)
]
Ẋ

+ B√|h|
[

sinh ψ Ẋ2 + cosh ψ(Ẋ , X ′)
]
X ′. (17)

Proof Substitution of Eq. (15) into the orthogonality condi-
tion (16) yields equation

(T, S)

cosh ϕ cosh ψ
= tanh ψ Ẋ2 + (1 + tanh ϕ tanh ψ)(Ẋ , X ′)

+ tanh ϕX ′2 = 0 (18)

which imply

tanh ϕ = − tanh ψ Ẋ2 + (Ẋ , X ′)
X ′2 + tanh ψ(Ẋ , X ′)

.

Then vector field T can be written in the form

T = − Ã
[
X ′2 + tanh ψ(Ẋ , X ′)

]
Ẋ

+ Ã
[

tanh ψ Ẋ2 + (Ẋ , X ′)
]
X ′,

where

A := Ã
√[

tanh ψ Ẋ2 + (Ẋ , X ′)
]2 + [

X ′2 + tanh ψ(Ẋ , X ′)
]2

.

Now algebraic equation T 2 + S2 = 0 has the unique solution

Ã = B√|h| cosh ψ.

As a result, we obtain solution (17) for arbitrary S. ��
The similar statement can be formulated considering the

vector field T as independent variable. To this end we have
to solve Eq. (18) with respect to ψ and afterwards find S.

Vector fields T and S are defined on the whole string
worldsheet and lie in the tangent space to the Minkowskian
space T(R1,D−1). The differential map of the embedding
U ↪→ R

1,D−1 acts on vectors as follows
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T(U) � t = tα∂α, s = sα∂α �→
T = tα∂αX

a∂a, S = sα∂αX
a∂a ∈ T

(
R

1,D−1
)

,

where t and s are vector fields on U. Note the relations

T 2 = t2 S2 = s2, (T, S) = (t, s), (19)

which follow from the definition of the induced metric. Com-
paring the above formulae with Eqs. (15) and (17) allows us
to define vector fields on U:

t = − B√|h|
[

cosh ψX ′2 + sinh ψ(Ẋ , X ′)
]
∂0

+ B√|h|
[

sinh ψ Ẋ2 + cosh ψ(Ẋ , X ′)
]
∂1.

s = B sinh ψ∂0 + B cosh ψ∂1.

(20)

These vectors can be easily rewritten in the form

t = εαβsβ∂α, s = sα∂α, (21)

where εαβ is the totally antisymmetric second rank tensor,
ε01 = −1/

√|h|, and components sα are arbitrary. It imme-
diately implies equalities (12). There is a one-to-one corre-
spondence between vector components (21)

tα = εαβsβ ⇔ sα = εαβ t
β. (22)

That is we can take either tα or sα as independent variables.
Now we have to find the condition of their commutativity.

Lemma 4.2 Vector fields t and s on U related by equalities
(22) commute if and only if

tα = ∂αχ

∂χ2 , ∂χ2 := hαβ∂αχ∂βχ > 0, (23)

where χ is a nontrivial solution of the wave equation

�(h)χ := hαβ∇α∇βχ = 0, (24)

satisfying ∂χ2 > 0.
For any nontrivial solution of Eq. (24) satisfying the con-

dition ∂χ2 > 0, vector fields (22) and (23) commute.

Note that for different nontrivial solutions of the wave equa-
tion (24) the pairs of vector fields t , s differ in general.

Proof The equality [t, s] = 0 together with conditions (22)
is equivalent to the system of equations

sα∇βs
β − 1

2
∇αs

2 − sβ∇βsα = 0. (25)

This equation is equivalent to the same equation for t :

tα∇β t
β − 1

2
∇αt

2 − tβ∇β tα = 0. (26)

Contraction of Eq. (25) with sα yields

∇α

(
sα

s2

)
= 0 ⇔ εαβ∇α

(
tβ
t2

)
= 0. (27)

Since Christoffel’s symbols are symmetric, the covariant
derivatives in the last equation can be replaced by the par-
tial ones. Then, due to the Poincaré lemma, there exists such
function χ that

tα
t2 = ∂αχ ⇒ t2 = 1

∂χ2

on arbitrary connected and simply connected domain U, in
particular, on the whole plane U = R

2.
We require ∂χ2 > 0 because vector field t on U must be

timelike, t2 > 0. Consequently, representation (23) is valid
for components tα . Substitution of equality (23) into Eq. (26)
yields

∂αχ �(h)χ

∂χ2 = 0. (28)

Since (∂αχ) �= 0 and ∂χ2 > 0, we obtain Eq. (24) for the
unknown function χ .

It is clear that for any nontrivial solution of the wave equa-
tion (24) the vector fields t and s exist, commute, and have
properties (12). ��

Thus commuting vector fields t and s with properties (12)
have generally the following form

t = hαβ∂βχ

∂χ2 ∂α, s = εαβ∂βχ

∂χ2 ∂α, (29)

where χ is an arbitrary solution of the wave equation (24)
such that ∂χ2 > 0. That is we have described the total arbi-
trariness existing in vector fields if Eq. (24) has many solu-
tions.

Comment We did not use in Lemma 4.2 the fact that vector
fields t and s were obtained by the embeddingU ↪→ R

1,D−1.
It is sufficient to consider two vector fields related by Eq. (21).
The properties (12) are easily verified without embedding. ��

Suppose that the determinant of the induced metric hαβ is
nonzero on the whole plane (τ, σ ) ∈ R

2 and separated from
0 and ±∞ at infinity:

0 < ε ≤ lim
τ 2+σ 2→∞

| det hαβ | ≤ M < ∞, (30)

where ε and M are some constants. It is well known that the
Cauchy problem for the hyperbolic equation (24) has unique
solution χ on the whole plain, if the Cauchy data are given
on a spacelike curve, say, τ = 0 (see, e.g. [7], book IV, ch.
I). It is easily verified that there exist such Cauchy data that
the inequality ∂χ2 > 0 holds everywhere. This implies that
nontrivial solution of the wave equation (24) exists on the
whole plane R2. There are many such solutions, and they are
parameterized by the Cauchy data.

Thus the vector fields s and t are given on the whole plane
R

2. The inequality (30) implies that component t0 is sepa-
rated from zero and bounded on the plane including infinity.
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Thus Eq. (13) imply

∂τ

∂τ̃
= t0 ⇒ τ̃ ∼

∫ ∞ dτ

t0 .

The last integral is divergent and thus the coordinate τ̃ runs
over the whole real line R. Similar statement is valid for the
space coordinate σ̃ . Consequently, new coordinates cover the
whole plane (τ̃ , σ̃ ) ∈ R

2.
Thus we proved

Theorem 4.1 Let an arbitrary metric hαβ of Lorentzian sig-
nature be given on the whole planeR2. Let it be nondegener-
ate at infinity (30). Then there exists a surjective diffeomor-
phism on the plane

R
2 � (xα) �→ (

x̃α(x)
) ∈ R

2 (31)

such that metric hαβ in new coordinate system has confor-
mally flat form

h̃αβ := hγ δ

∂xγ

∂ x̃α

∂xδ

∂ x̃β
= e2φηαβ, (32)

where φ(x̃) is some function on R
2 separated from ±∞ at

infinity τ̃ 2 + σ̃ 2 → ∞.

In contrast to the local theorem (see, e.g., [4,5]) stating the
existence of the conformal gauge only in some neighborhood
of every point, the above theorem is global in a sense that it
provides the existing of the conformal gauge for a Lorentzian
metric given on the whole plane x ∈ R

2.
If metric hαβ and scalar field χ are given, then the diffeo-

morphism (31) is defined uniquely up to shifts of coordinates
τ̃ and σ̃ (constants of integration of Eq. (13)).

Corollary Let

Ũ0 := {(τ̃ , σ̃ ) ∈ R
2 : σ̃ ∈ [σ̃1, σ̃2], τ̃ ∈ R} (33)

be closed vertical strip with straight boundaries on the
plane of new coordinates τ̃ , σ̃ and assumptions of Theo-
rem 4.1 hold. Then there exists diffeomorphism (31) of a
closed domain (τ, σ ) ∈ U ⊂ R

2 bounded by integral curves
x(τ̃ , σ̃1,2):

∂x(τ̃ , σ̃1,2)

∂τ̃
= t1,2,

where t1,2 are inverse images of vector fields ∂/∂τ̃ on the
boundaries of Ũ0. ��

Proof Internal and boundary points are mapped under dif-
feomorphism into internal and boundary points, respectively.

��

To clarify the arbitrariness in coordinates τ̃ , σ̃ defined by
the function χ we consider

Example 1 Let the induced metric be conformally flat:

hαβdx
αdxβ = e2φ(dτ 2 − dσ 2) = e2φdξdη, φ = φ(x),

(34)

where light cone coordinates ξ := τ + σ , η := τ − σ are
introduced. Then the wave equation (24) is reduced to the
flat d’Alembert equation

�(h)χ = (∂2
0 − ∂2

1 )χ = 0.

Its general solution is given by two arbitrary sufficiently
smooth functions

χ = F(ξ) + G(η).

We choose only the functions which satisfy inequality

∂χ2 = 4 e−2φF ′G ′ > 0 ⇒ F ′G ′ > 0,

where prime denotes differentiation by the corresponding
argument. Then the metric takes the form

h̃αβdx̃
αdx̃β = e2φ

4F ′G ′ d ξ̃dη̃

in new coordinates ξ̃ := τ̃ + σ̃ , η̃ := τ̃ − σ̃ . This metric
corresponds to the conformal transformation

ξ̃ := 2F(ξ), η̃ := 2G(η).

Thus the arbitrariness in definition of the vector fields
described in Lemma 4.2 corresponds to conformal transfor-
mations on the string worldsheet. ��
Let us find the image of vector fields t and s (29) under
the coordinate transformation xα �→ x̃α(x) where (x̃α) =
(τ̃ , σ̃ ). The definition of new coordinates (13) implies the
expression for the inverse Jacobi matrix

J−1
α

β = ∂xβ

∂ x̃α
=

(
t0 t1

s0 s1

)
. (35)

This expression yields the Jacobian of the coordinate trans-
formation

J := det Jα
β =

(
t0s1 − t1s0

)−1 = √|h|∂χ2,

where representation (29) is used, and the Jacobi matrix

Jα
β := ∂ x̃β

∂xα
= √|h|∂χ2

(
s1 −t1

−s0 t0

)
. (36)

Vector fields are transformed under the differential of the
map:

tα∂α �→ t̃α∂̃α := tβ∂β x̃
α∂̃α = ∂τ̃ ,

sα∂α �→ s̃α∂̃α := sβ∂β x̃
α∂̃α = ∂σ̃ .

It means that integral curves of the vector fields t and s are
perpendicular straight lines on the plane (τ̃ , σ̃ ) ∈ R

2.
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In the target Minkowskian space R1,D−1 the vector fields
t and s have the form

T = hαβ∂βχ

∂χ2 ∂αX = h0β∂βχ

∂χ2 Ẋ + h1β∂βχ

∂χ2 X ′,

S = εαβ∂βχ

∂χ2 ∂αX = ε0β∂βχ

∂χ2 Ẋ + ε1β∂βχ

∂χ2 X ′.
(37)

It was already mentioned, that the wave equation (24)
has nontrivial solutions χ , ∂χ2 �= 0, on the whole plane
(τ, σ ) ∈ R

2. The wave equation has the same form in new
coordinates τ̃ , σ̃ as on the Minkowskian plane. Therefore a
general solution of the wave equation (24) is

χ = F(ξ̃ ) + G(η̃) = F(τ̃ + σ̃ ) + G(τ̃ − σ̃ ),

(ξ̃ , η̃) ∈ R
2, (38)

where F and G are two arbitrary sufficiently smooth func-
tions of one argument. It implies equalities:

∂0χ := ∂χ

∂τ
= √|h|∂χ2

[(
s1 − t1

)
F ′ +

(
s1 + t1

)
G ′] ,

∂1χ := ∂χ

∂σ
= √|h|∂χ2

[(
t0 − s0

)
F ′ +

(
t0 + s0

)
G ′] ,

were Jacobi’s matrices (36) are used. Then the components
of vectors t̂ and ŝ corresponding to solution (38) are

t̂0 = − 1√|h|
[
X ′2 (

s1 − t1
)
F ′ + X ′2 (

s1 + t1
)
G ′

+(Ẋ , X ′)
(
s0 − t0

)
F ′ + (Ẋ , X ′)

(
s0 + t0

)
G ′] ,

t̂1 = 1√|h|
[
(Ẋ , X ′)

(
s1 − t1

)
F ′ + (Ẋ , X ′)

(
s1 + t1

)
G ′

+Ẋ2
(
s0 − t0

)
F ′ + Ẋ2

(
s0 + t0

)
G ′] ,

ŝ0 =
(
s0 − t0

)
F ′ +

(
s0 + t0

)
G ′,

ŝ1 =
(
s1 − t1

)
F ′ +

(
s1 + t1

)
G ′.

(39)

The components on the left hand side are marked by the hat
because vectors t̂ and ŝ differ in general from the ones which
were used for the transformation of the wave equation to the
flat form. However for some functions F and G we must get
identities.

Proposition 4.1 Equalities

t̂ = t, ŝ = s

become identities if and only if arbitrary functions in solution
(38) are linear: F ′ = G ′ = 1/2.

Proof Straightforward calculations. ��
Thus for

χ = 1

2
ξ̃ + 1

2
η̃ = τ̃ , (40)

equalities (29) become identities. The vector fields ∂τ̃ and
∂σ̃ are obtained from the fields t and s by the differential of
the map (τ, σ ) �→ (τ̃ , σ̃ ) only for this solution of the wave
equation.

Thus to find the diffeomorphism (31) in explicit form for
a given metric hαβ , we have to (i) find a nontrivial solution
of the wave equation (24), (ii) construct the vector fields t
and s using Eqs. (22), (23), and (iii) find a general solution
of the system of equations (13). We have proved that this
problem does have many solutions (the whole arbitrariness
is contained in the choice of nontrivial solution of the wave
equation).

5 Open string

Now we consider an open string whose worldsheet U is an
infinite strip on the plane (τ, σ ) ∈ R

2 with two, probably,
curved boundaries: the left γl and right γr boundaries. The
induced metric on the boundaries is degenerate, and results
of the previous section must be revised. First, we assume that
metric is not degenerate and return to this problem later.

If the metric is nondegenerate on U including the bound-
aries, then we continue it on the whole plain in some
sufficiently smooth manner. As the consequence of theo-
rem 4.1 there is a diffeomorphism (31) after which the metric
becomes conformally flat. The problem is that the bound-
aries γl,r on the plain τ̃ , σ̃ may be not straight vertical lines.
However there are residual diffeomorphisms in the form of
conformal maps of τ̃ , σ̃ coordinates. We now show that it is
enough to straighten the strip.

Remember that we do not consider shifts of the plain
ξ̃ , η̃ ∈ R

2 as a whole which preserve the conformal form
of the metric but is not a conformal map.

Let boundary equations after diffeomorphism (τ, σ ) �→
(τ̃ , σ̃ ) be (see Fig. 1)

γl : η̃ = η̃l(ξ̃ ), γr : η̃ = η̃r(ξ̃ ), ξ̃ ∈ R, (41)

where functions η̃l,r ∈ C1(R) have properties:

η̃l > η̃r, 0 < ε ≤ dη̃l,r

d ξ̃
≤ M < ∞, ε, M ∈ R

for all ξ̃ ∈ R including infinite points.

Theorem 5.1 The conformal transformation

ξ̂ = F(ξ̃ ), η̂ = G(η̃), F,G ∈ C1(R),

such that the boundaries (41) of an open string worldsheet
become straight vertical lines

γl : η̂ = ξ̂ , γr : η̂ = ξ̂ − 2π, ξ̂ ∈ R (42)

on the plain ξ̂ , η̂ ∈ R
2 exists.
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Fig. 1 Open string worldsheet
in different coordinates (τ, σ ),
(τ̃ , σ̃ ), and (τ̂ , σ̂ ). Three
integral curves are shown both
for timelike t and spacelike s
vector fields

Proof Let us straighten first the left boundary by conformal
transformation

ξ̌ = F(ξ̃ ), η̌ = G(η̃).

It is necessary and sufficient to fulfill the condition

F(ξ̃ ) = G
(
η̃l(ξ̃ )

)
, ∀ξ̃ ∈ R,

in order that the left boundary to be vertical straight line
going through the origin. This equation uniquely defines the
function G for a given F because the function η̃l is strictly
monotonic, the function F being arbitrary.

Now we consider the right boundary. After straightening
the left boundary, we are left with the coordinate transforma-
tion

ξ̂ = F(ξ̌ ), η̂ = F(η̌),

which does not change the left boundary and is described
by one arbitrary function F . It is necessary and sufficient to
satisfy the functional equation

F
(
η̌r(ξ̌ )

) = F(ξ̌ ) − 2π, ∀ξ̌ ∈ R, (43)

after which the right boundary becomes the vertical straight
line going through the point (τ̂ , σ̂ ) = (0, π). This functional
equation for F has many solutions. Indeed, the map

f : R � ξ̌ �→ η̌r(ξ̌ ) ∈ R

is a bijective map of real lines, and η̌r(ξ̌ ) < ξ̌ for all ξ̌ ∈ R.
Therefore the sufficiently smooth cyclic group { f k, k ∈ Z} is
defined. Consequently, the function F with property F ′ > 0
can be arbitrary defined on the fundamental domain, say,
[η̌r(0), 0] and then extended on the whole real line using
Eq. (43). If the function satisfies Eq. (43) at the ends of the
fundamental domain then we obtain continuous function on
R but its derivative may be discontinuous. The function F
must be C1 in order to define the conformal transformation.
To avoid possible discontinuities in derivatives, we differen-
tiate Eq. (43):

F ′(η̌r(ξ̌ )
)dη̌r

d ξ̌
= F ′(ξ̌ ).

Since dη̌/d ξ̌ ≥ ε > 0, then we define arbitrary the deriva-
tive F ′ > 0 on the fundamental domain [η̌r(0), 0] such that

equation

F ′(η̌r(0)
) dη̌r

d ξ̌

∣∣
∣∣
η̌r(0)

= F ′(0)

holds at the ends, and continue it on the real line. Then F is
the primitive of F ′ with the constant of integration defined
by Eq. (43). ��

So, if the metric is not degenerate on the boundaries of
an open string worldsheet, then there exists such global C1

coordinate transformation that the transformed metric is con-
formally flat (32) on the whole vertical strip with straight
boundaries σ̃ = 0 and σ̃ = π . This statement follows from
Theorems 4.1 and 5.1 because the conformal transformation
is a diffeomorphism, and diffeomorphisms form a group.

Now we discuss an open Nambu–Goto string for which
the induced metric on the boundaries is degenerate due to
boundary conditions. Let us parameterize metric hαβ by its
determinant −�4 and “unimodular metric” kαβ :

hαβ := �2kαβ, det kαβ := −1, � ≥ 0, (44)

separating its determinant explicitly. For nondegenerate met-
ric hαβ , the inverse transformation is

� = | det hαβ |1/4, kαβ = �−2hαβ, � > 0.

Definition (44) implies that the variable � is the scalar density
of degree −1/2 and unimodular metric is the second rank
tensor density of degree 1.

Note that the unimodular metric kαβ is additionally multi-
plied by the Jacobian under arbitrary transformation of coor-
dinates because it is a tensor density of degree 1. It means that
the induced and unimodular metrics take the conformally flat
form simultaneously.

The boundary condition (10) has the form

n0 Ẋa + n1X ′a = 0 ⇒ X ′a = −n0

n1 Ẋ
a,

because the normal vector to the boundaries (nα) = (n0, n1)

must be spacelike and consequently n1 �= 0. As the conse-
quence, the metric degenerates on the boundaries:

det hαβ = −ρ4 = Ẋ2X ′2 − (Ẋ , X ′)2 → 0.
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Therefore vector fields t and s (12) become null

t2 = ρ2kαβ t
αtβ → 0, s2 = ρ2kαβs

αsβ → 0

at the ends of the string with respect to the induced metric
but not with respect to the unimodular metric, as we shall see
later.

Now we construct new vector fields for the unimodular
metric kαβ satisfying relations

(t, s) := kαβ t
αsβ = 0, t2 + s2 = 0, (45)

where

t2 := kαβ t
αtβ s2 := kαβs

αsβ.

Equalities (45) are equivalent to original equations (12) in
internal points ofU and extended on boundaries ∂U by conti-
nuity. It is clear that properties (45) do not contradict Eq. (12).
Now we prove that new vector fields t and s exist and coincide
with the original ones for hαβ .

Formulae (14) for metric components after the coordinate
transformation have the same form. In addition,

h̃00 = −h̃11 = �2kαβ t
αtβ, h̃01 = 0.

Equation (28) in new variables does not depend on ρ and
therefore function χ must satisfy equation

�(k)χ := ∂α

(
kαβ∂βχ

) = 0. (46)

This wave equation has many solutions on the whole plainR2

because depends on nondegenerate unimodular metric kαβ .
It implies that vector fields t and s exist and do not depend
on �:

tα = kαβ∂βχ

kγ δ∂γ χ∂δχ
sα = ε̂αβ∂βχ

kγ δ∂γ χ∂δχ
, (47)

where

ε̂αβ = ρ2εαβ =
(

0 −1
1 0

)

is the totally antisymmetric tensor density of degree −1.
One can easily verify that in new variables the Euler–

Lagrange equations for bosonic string (9) take the form

√|h|�(h)X
a = ∂α

(√|h|hαβ∂βX
a) = ∂α

(
kαβ∂βX

a) = 0,

(48)

i.e. do not depend on �. They must be solved with the bound-
ary condition

nα∂αX
a
∣∣
γl,r

= 0, (49)

which does not depend on ρ too.
Consequently, the problem is reduced to solution of

Eq. (48) with boundary conditions (49) for an open Nambu–
Goto string. To make the transformation of coordinates

(τ, σ ) �→ (τ̃ , σ̃ ) we have to find the unimodular metric kαβ

for a given metric hαβ , choose a solution χ of the wave equa-
tion (46) satisfying the condition kγ δ∂γ χ∂δχ > 0, construct
the vector fields t and s using formulae (47), and, finally,
integrate Eq. (13). Therefore the corollary of Theorem 4.1
is valid also for an open string. If needed, after solution of
this problem, one can compute the conformal factor for the
induced metric (32) using equation

e2φ = �2kαβ t
αtβ. (50)

Sure, it is zero on the boundaries because ρ → 0. Thus we
proved the existence of the global conformal gauge for an
open string.

6 Closed string

In the initial coordinates τ, σ ∈ R
2, the fundamental domain

of a closed string worldsheet is given by an infinite strip with
timelike boundaries which are identified. The identification
can be performed in many ways and therefore requires defi-
nition. Here we describe the method adopted in string theory.

We showed in the previous section that there is the global
diffeomorphism (τ, σ ) �→ (τ̂ , σ̂ ) which maps an arbitrary
infinite strip with timelike boundaries on the vertical strip
with straight boundaries where metric becomes conformally
flat. The same procedure can be performed for the funda-
mental domain of a closed string. Without loss of generality,
we assume that boundaries go through points σ̂ = ±π , as is
usually supposed in string theory. Then the boundary identi-
fication is written as the periodicity condition for every value
of the timelike coordinate τ̂ :

∂k Xa

∂σ̂ k

∣∣∣∣
σ̂=−π

= ∂k Xa

∂σ̂ k

∣∣∣∣
σ̂=π

, ∀a, ∀τ̂ , k = 0, 1, 2, . . . .

(51)

That is we continuously glue the coordinate functions them-
selves and their derivatives up to the needed order. In the ini-
tial coordinate system this condition is written in the covari-
ant form

∇k
s X

a
∣∣
σ̂=−π

= ∇k
s X

a
∣∣
σ̂=π

, (52)

where ∇s := sα∇α is the covariant derivative for the Levi–
Civita connection along the vector field s which is the pull-
back of the vector field ∂/∂σ̂ under the diffeomorphism
(τ, σ ) �→ (τ̂ , σ̂ ). The properties of vector fields t, s (12)
imply that the covariant derivatives are taken along normal
vectors to the boundaries. However it is not clear at the begin-
ning for which value of τ on the left and right the identifica-
tion takes place, because we have to find the diffeomorphism
(τ, σ ) �→ (τ̂ , σ̂ ) explicitly. Simply speaking we firstly trans-
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form the metric to conformally flat form and afterwards per-
form the natural gluing.

7 The Euclidean signature

Many of the preceeding statements do not depend on the sig-
nature of the metric, and the results can be generalized for
an arbitrary Riemannian positive definite metric. In this sec-
tion, we suppose that sufficiently smooth two-dimensional
Riemannian metric hαβ , det hαβ > 0, is given on the whole
plane R

2. It is not necessarily induced by some embedding.
Let us consider two vector fields t = tα∂α and s = sα∂α ,

related by equation

tα = εαβsβ, (tα) �= 0, (53)

where εαβ := hαγ hβδεγ δ is the totally antisymmetric second
rank tensor, ε12 := √

det hαβ . They have the properties

t2 − s2 = 0, (t, s) = 0, (54)

where the scalar product is defined by hαβ . The changing of
the metric signature results in changing of one sign in the
first equation in Eq. (54) as compared to Eq. (12).

After the coordinate transformation τ, σ �→ τ̃ , σ̃ defined
by Eq. (13) the metric becomes conformally flat:

ds2 = hαβ

∂xα

∂ x̃γ

∂xβ

∂ x̃δ
dx̃γ dx̃δ = t2d τ̃ 2 + s2dσ̃ 2 = t2(d τ̃ + dσ̃ 2),

where t2 := hαβ tαtβ .

Lemma 7.1 Vector fields t and s on U related by Eq. (53)
commute if and only if

tα = ∂αχ

∂χ2 , (55)

where χ is a nontrivial solution of the Laplace–Beltrami
equation

�(h)χ := hαβ∇α∇βχ = 0. (56)

For any nontrivial solution of Eq. (56) vector fields (53)
and (55) commute.

Proof Repeats the proof of Lemma 4.2 which does not
depend on the signature of the metric, but now we obtain the
Laplace–Beltrami equation. It is well known that Eq. (56) has
many solutions on a plane (harmonic functions), and there is
no local extremum. Therefore the requirements (∂αχ) �= 0
and ∂χ2 �= 0 are fulfilled automatically for any nontrivial
(nonconstant) solution of Eq. (56). ��
So, the most general commuting vector fields having proper-
ties (54) have the same form (29) as in the Lorentzian case.
The only difference is that now an arbitrary function χ satis-
fies the Laplace–Beltrami equation (56) instead of the wave
equation (24).

To clarify the meaning of the harmonic function χ we
consider the example.

Example 2 Let the initial metric be conformally flat

ds2 = e2φ(dx2 + dy2) = e2φdzdz̄,

where φ(x, y) is a real valued function, we introduced com-
plex coordinate z := x + iy, and the bar denotes complex
conjugation. After the coordinate transformation xα �→ x̃α

defined by function χ it is

ds2 = t2(dx̃2 + d ỹ2) = t2dz̃d ¯̃z,
where z̃ := x̃ + i ỹ and

t2 = hαβ t
αtβ = 1

∂χ2 .

The Laplace–Beltrami equation for conformally flat metric
reduces to the Laplace equation

∂z∂z̄χ = 0.

Its general real valued solution is

χ = w(z) + w̄(z̄),

where w(z) is an arbitrary holomorphic function. Therefore

∂χ2 := hαβ∂αχ∂βχ = e−2φ∂z(w + w̄)∂z̄(w + w̄)

= e−2φ∂zw∂z̄w̄,

and the metric is

ds2 = e2φ∂wz∂w̄ z̄ dwdw̄.

Thus the transformation of coordinates defined by the har-
monic function χ coincides with the conformal transforma-
tion z �→ w(z). ��
The existence of vector fields t and s provides sufficient con-
ditions for the existence of the conformal gauge on the whole
Euclidean planeR2 for metrics separated from zero and infin-
ity (30, and analog of Theorem 4.1 holds.

The Euclidean version of string theory is used in the path
integral formulation of quantum string theory, which assumes
summation over Riemannian surfaces of different genera.
The Riemannian surfaces cannot be covered by a single coor-
dinate chart, and therefore we cannot talk about the confor-
mal gauge on the whole Riemannian surface. The results of
the present section guarantee the existence of the conformal
gauge on the whole coordinate chart which is diffeomorphic
toR2. Previous theorems provide sufficient conditions for the
existence of the conformal gauge only in some sufficiently
small neighbourhood of each point of the manifold.

8 Conclusion

It was assumed for many years that there exists the global
conformal gauge in string theory though this statement was
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proved only locally. In fact, almost all results were obtained
under validity of this assumption which turns out to be true
quite unexpectedly at least to the author. We proved the
global existence of the conformal gauge for infinite, open,
and closed strings. The transition from local to global state-
ment is based on the global existence of the solution of the
Cauchy problem for a two-dimensional hyperbolic equation
with varying coefficients [7] and is far from being obvious.

As a byproduct, we proved global existence of the con-
formal gauge for a general two-dimensional Lorentzian met-
ric defined on the whole plane R

2 which is not necessarily
induced by an embedding and is well known locally for a
long time (see, e.g. [4,5]).

The existence theorem is also proved for a Riemannian
positive definite metric defined on the whole Euclidean plane.
It generalizes previous results providing the existence of the
conformal gauge in some sufficiently small neighbourhood
of each point.
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