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Abstract

The main objects of study in this work are tensor networks. We study appli-
cations of these objects to problems in computer science and physics using
methods from algebraic geometry, representation theory, and geometric in-
variant theory. The main results are:

(1) Descriptions of several classes of tensor networks that can be efficiently
contracted and some counting problems that they can model.

(2) A classification of the invariant ring of a product of groups acting by
conjugation, in particular the adjoint action of

ˆni“1GLpViq ñ

ˆ n
â

i“1

EndpViq

˙‘m

.

(3) A sufficient condition for a point in EndpV q‘m to have a Zariski closed
orbit under this action.

(4) Applications to the study of quantum entanglement on density oper-
ators.
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Chapter 1

Introduction

In 1971, Roger Penrose introduced what he called “spin networks” to model
interactions of particles in quantum systems [84]. These models were given
as graphs where edges were systems of particles and vertices represented
events or relations among different systems. Later formalization came to
associate vector spaces to edges and tensors to vertices. These models have
been invented a few different times with different names including birdtracks
([23]) and the term by which they are now known: tensor networks.

Tensor networks have seen applications to various different aspects of
physics over the years. They have very recently been used to model ground
states of Hamiltonians and quantum systems more generally [104, 53, 35, 33].
They can also represent channels, maps, states and processes appearing in
quantum theory [40, 41, 42, 11]. They also have applications in the study
of quantum gravity [93, 5].

Tensor networks have showed up independently in several other disci-
plines. In complexity theory, tensor networks can be viewed as a generalized
notion of circuit. The tensors associated to vertices are the analog of logic
gates in classical circuits. As an example, all quantum circuits can be inter-
preted as tensor networks. A different class of tensor networks were given
by Leslie Valiant, who restricted the allowed tensors to lie in a particular
variety. He was able to show any circuit built up from this restricted class
of gates could be evaluated in polynomial time [98, 63, 79, 78].

In algebraic statistics, tensor networks appear under the name of “graph-
ical models”. Graphical models are a tool for modeling dependencies among
random variables. An active area of research is to understand which tensors
can be modeled using a particular graphical model. These models give a
polynomial parameterization of sets of tensors and the motivating problem
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is to find the ideal of the image of this parameterization. A famous example
is the problem posed by E. Allman (now solved set-theoretically) to deter-
mine the equations defining σ4pP3 ˆ P3 ˆ P3q, which arose in the area of
phylogenetics, specifically by looking at representations of graphs modeling
phylogenetic trees [2, 37, 7, 29].

Tensor networks are a particular case of a diagrammatic language for a
monoidal category [96, 55, 54]. Every monoidal category has a corresponding
diagrammatic language and tensor networks arise from considering the cat-
egory of finite dimensional vector spaces over some field. Studying monoidal
categories more generally allowed for many more mathematical questions to
be treated in a fashion similar to tensor networks.

In fact, studying representations of monoidal categories have proven to
be very useful. By a representation of a monoidal category, we mean a
functor from said category into the category of finite dimensional vector
spaces. Examples include topological quantum field theory, knot invariants,
typed graphs, and many algebraic combinatorial models such as edge and
vertex coloring models.

One of the interesting aspects of tensor networks is that they possess a
lot of internal symmetry. Tensor networks admit natural actions of products
of general linear groups under which the tensor they represent is fixed. In
physics, these are sometimes called gauge symmetries on graphs [5]. These
problems naturally lend themselves to techniques from invariant theory and
algebraic geometry and are deeply related to work done by Hilbert, Noether,
Mumford, Procesi, Kraft, Popov, and Derksen, to name a few.

In this dissertation, we focus on two main aspects of tensor networks.
Chapters 4 and 5 treat tensor networks as generalizations of circuits. We dis-
cuss tensor networks that can be evaluated efficiently and some applications
to known counting problems. In Chapters 7 and 8, we discuss the invariant
theory behind the internal symmetries of tensor networks. We also discuss
how the invariant theory relates to understanding quantum entanglement.

1.1 Bra-Ket Notation

Throughout this dissertation, we use the so called bra-ket notation for ten-
sors that is common in physics, but less so in mathematics. We briefly
explain this notation here.

Given vector spaceces V1, . . . , Vr`s, let us consider the vector space V ˚1 b
¨ ¨ ¨bV ˚r bVr`1b¨ ¨ ¨bVr`s, where each Vi has a specified orthonormal basis
vi,1, . . . , vi,di , where di “ dimpViq. Let v˚i,j be the associated dual basis
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element to vi,j . We then express the vector

v˚1,i1 b ¨ ¨ ¨ b v
˚
r,ir b vr`1,ir`1 b ¨ ¨ ¨ b vr`s,ir`s “: |i1 ¨ ¨ ¨ iryxir`1 ¨ ¨ ¨ irs |

where i1 ¨ ¨ ¨ ir and ir`1 ¨ ¨ ¨ ir`s are numeric strings of indices. Sometimes,
when the vector spaces involved are not clear, the indices in the string may
have a subscript indicating which vector space it is associated to. For exam-
ple, considering the vector space AbB “ pC2q˚ b C2 with an orthonormal
basis v0, v1, the vector v˚1 b v0 be written as |1Ayx0B| or simply |1yx0| if the
vector spaces involved are clear.

Taking the tensor product of two vectors is straightforward, simply add
indices in the appropriate places in the numeric strings. We denote the
bilinear pairing between V1 b ¨ ¨ ¨ b Vn and V ˚1 b ¨ ¨ ¨ b V

˚
n by

xi1,V1 ¨ ¨ ¨ in,Vn |j1,V1 ¨ ¨ ¨ jn,Vny :“ v˚1,i1pv1,j1q ¨ ¨ ¨ v
˚
n,inpvn,inq.
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Chapter 2

An Introduction to Monoidal
Categories and Tensor
Networks

In this chapter, we introduce the formalism behind the diagrammatic lan-
guages that we use throughout this work, in particular, tensor networks. We
first describe what a monoidal category is as well as axiomatizing several
special types of monoidal categories.

2.1 Monoidal Categories

A monoidal category is one where a notion of product exists both for objects
and morphisms and is typically thought of as a tensor product. There also
exists a special object which acts like a unit for this product, hence the term
“monoidal”.

Definition 2.1. A monoidal category, C, is a tuple pObpCq,HompCq,b, α, λ, ρ,1q
where

1. ObpCq is a class of objects and HompCq a class of morphisms.

2. A bifunctor b : C ˆ C Ñ C such that

• idAb idB “ idAbB for all A,B P ObpCq and

• pfbgq˝phbiq “ pf˝hqbpg˝iq for f P HompA,Bq, h P HompB,Cq,
g P HompD,Eq, and i P HompE,F q.
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3. A natural isomorphism αABC : pA b Bq b C Ñ A b pB b Cq for all
A,B,C P ObpCq.

4. Natural isomorphisms ρA : pAb1q Ñ A and λA : p1bAq Ñ A, for all
A P ObpCq.

Theorem 2.2 (Maclane’s Coherence Theorem [73]). A tuple pObpCq,HompCq,b, α, λ, ρ,1q
is a monoidal category if and only if C is a category and the following dia-
grams commute for all A,B,C,D P ObpCq.

pAb 1q bB
α //

ρAbidB ((

Ab p1bBq

idAbλB
��

AbB

ppC bAq bBq bD

α
tt

αbidD
// pC b pAbBqq bD

α

��

pC bAq b pB bDq

α
**

C b pAb pB bDqq C b ppAbBq bDq
idC bα
oo

There are many important examples of monoidal categories and their
study has applications to many different areas. In this dissertation, we are
primarily interested the category of finite dimensional vector spaces over a
field k, Vectk, or more generally subcategories that are also monoidal. The
category Vectk is monoidal when b is defined by the usual tensor product
on vector spaces, 1 “ k, and the natural isomorphisms α, λ, and ρ are the
usual ones.

Example 2.3. Some other important examples of monoidal categories are

• FinRel, the category of finite sets and relations, where b is defined by
cartesian product and 1 “ tHu.

• Top, the category of topological spaces, where b is the cartesian prod-
uct and 1 is the 1-point space.

• Braid, the category of braids, where b is the disjoint union of braids
and 1 is the empty braid.
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• Cat, the category of locally small categories, where b is the product of
categories and 1 is the category with only one object and the identity.

There are several other additional structures that may be present in a
monoidal category. For example, note that in the Definition 2.1, there is no
relationship between A b B and B b A. However, in the all the examples
listed above, these two objects are isomorphic. We present now the types of
structures that will be relevant for this dissertation.

2.1.1 Types of Monoidal Categories

As we already pointed out, it is often natural for a monoidal category C
to have the property that A b B is naturally isomorphic to B b A for all
A,B P ObpCq. Let σAB : AbB Ñ BbA be a natural isomorphism. Then C
is called a braided monoidal category if the following two diagrams commute
for all A,B,C P ObpCq.

pB bAq b C
α // B b pAb Cq

idB bσA,C

((
pAbBq b C

σA,BbidC
66

α
((

B b pC bAq

Ab pB b Cq
σA,pBbCq// pB b Cq bA

α

66

pB bAq b C
α // B b pAb Cq

idB bσ
´1
A,C

((
pAbBq b C

σ´1
A,BbidC

66

α
((

B b pC bAq

Ab pB b Cq
σ´1
A,pBbCq// pB b Cq bA

α

66

Furthermore, if σ´1 “ σ, then the category is called symmetric.
Since we are interested in the category Vectk, we wish to also axiomatize

the notions of dual vector spaces, traces, and adjoints of linear maps. These
correspond to autonomous, traced, and dagger categories respectively.

In an autonomous category, for every A P ObpCq, there exists left and
right duals of A denoted ˚A and A˚, respectively. Furthermore, there are
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maps ηA : 1Ñ A˚bA, η1A : 1Ñ Ab˚A and εA : AbA˚ Ñ 1, ε1A : ˚AbAÑ
1 so that

pηA b idAq ˝ pidAbεAq “ idA . (2.1a)

pid˚Abη
1
Aq ˝ pε

1
A b id˚Aq “ id˚A . (2.1b)

For all categories we consider, ˚A “ A˚. This will be a consequence of our
categories being symmetric. Often, instead of calling a monoidal category
autonomous, we say it has duals for objects. A symmetric autonomous
category is often called a closed compact category.

For a traced monoidal category, we have maps TrC : HompAbC,BbCq Ñ
HompA,Bq. In the case of Vectk, this operation corresponds to a partial
trace over C. This function must satisfy the following four axioms:

1. TrCppg b idCq ˝ f ˝ phb idCqq “ g ˝ TrCpfq ˝ h.

2. TrCpf ˝ pidAbgqq “ TrCppidB bgq ˝ fq for f : A b D Ñ B b C and
g : C Ñ D.

3. Tr1pfq “ f and TrAbBpfq “ TrApTrBpfqq.

4. TrCpg b fq “ g b TrCpfq.

5. If C is a symmetric monoidal category, then TrCpσC,Cq “ idC for all
C P ObpCq.

We should mention that if a category is autonomous, it is traced. This will
be made clear in the diagrammatic language below.

In a dagger monoidal category, we have a contravariant functor : : C Ñ C
that is the identity on objects and f ÞÑ f : for all f P HompCq. Furthermore,
f :: “ f , that is, the functor : is an involution. We also require pf b gq: “
f : b g: and the isomorphisms α, λ,and ρ are unitary (that is, their image
under the : functor is their inverse). If C is braided, then the map σ must
be unitary. Lastly, if C is a traced category, then TrCpf

:q “ pTrCpfqq
:.

There are many other notions that can be considered when studying
monoidal categories, but we shall not need them for this dissertation. For a
more complete description of types of monoidal categories, see [96].

2.1.2 Functors Between Monoidal Categories

We now need to describe the functors between monoidal categories and how
structures on monoidal categories are to be preserved. Let

C “ pObpCq,HompCq,bC , αC , λC , ρC ,1Cq

7



and
D “ pObpDq,HompDq,bD, αD, λD, ρD,1Dq

be two monoidal categories.

Definition 2.4. A (strong) monoidal functor, F : C Ñ D is a functor
with natural isomorphisms F0 : F p1Cq Ñ 1D, and F1 : F pA bC Bq Ñ
F pAq bD F pBq such that the following diagrams commute:

F pAq bD pF pBq bD F pCqq
αD //

idF pAqbF1

��

pF pAq bD F pBqq bD F pCq

F1bDidF pCq
��

F pAq bD pF pB bC Cqq

F1

��

pF pAbC Bq bD F pCqq

F1

��
F pAbC pB bC Cqq

F pαCq // F ppAbC Bq bC Cq

F pBq bD 1D
ρD //

idF pBqbDF0

��

F pBq

F pBq bD F p1Cq
F1 // F pB bC 1Cq

F pρCq

OO
1D bD F pBq

λD //

F0bDidF pBq
��

F pBq

F p1Cq bD F pBq
F1 // F p1C bC Bq

F pλCq

OO

The functor F is called a strict monoidal functor if F0 and F1 are equalities.

We may also want a monoidal functor to preserve the structures on C,
such as the braiding, duals, daggers, and traces. If C is an autonomous
category, then any strong monoidal functor automatically induces a natural
isomorphism F pA˚q – F pAq˚ [56]. So strong monoidal functors preserve
autonomy automatically. If F pA:q “ F pAq:, then F is a monoidal functor
between dagger categories. If σ is the braiding for C, and τ the braiding for
D, then F is a functor between braided categories if the following diagram
commutes:

F pAq bD F pBq
F1 //

τF pAqF pBq

��

F pAbC Bq

F pσABq

��
F pBq bD F pAq

F1 // F pB bC Aq.

(2.2)

If C and D are both symmetric, the same condition holds. Lastly, if C and
D are both traced categories, then F is a functor of traced categories if

F pTrCpfqq “ TrF pCqpF
´1
1 ˝ F pfq ˝ F1q.

8



We can now make precise a useful notion for monoidal categories. A
monoidal category is called strict if the natural isomorphisms α, λ, and ρ
are equalities. Recall the following notion of equivalence for categories.

Definition 2.5. A functor F : C Ñ D is called an equivalence of categories
if the image of F contains at least one object from every isomorphism class
of objects in D (essentially surjective) and for every pair of objects A,B P

ObpCq, F induces a bijection HompA,Bq Ñ HompF pAq, F pBqq.

Theorem 2.6 ([56]). Every monoidal category is equivalent to a strict
monoidal category.

2.1.3 Diagrammatic Language for Monoidal Categories

In a monoidal category, well-formed expressions formed from morphisms,
objects, and the symbols p,b, ˚, :, ˝, and q can all be expressed as diagrams,
called string diagrams. Furthermore, it has been shown that the value of
these diagrams remain unchanged under the allowed homotopies [55, 54].
This makes expressing formulae in monoidal categories more intuitive and
makes many of the axioms above very natural. We describe the appropriate
graphical notions for the types of monoidal categories listed above.

For each of the string diagrams now described, see Figure 2.1. Objects in
a monoidal category C are denoted by labeled arrows (which we also some-
times call wires or edges) which, by our convention, we shall have pointing
left. The exception is the distinguished object 1, which is denoted simply
by empty space. The tensor product of two objects, A b B is drawn as
two arrows, one above the other. Our convention shall be that the tensor
product is taken from top to bottom.

A morphism f : pbni“1Aiq Ñ pbmi“1Biq shall be depicted as a box with
the arrows labeled Bi on its left and the arrows labeled Ai on its right.
Composition is achieved by horizontally stringing morphisms together and
tensor product is once again vertical juxtaposition. The morphism idA is
the same way as the object A. It may be viewed as stretching the arrow.

The string diagrams we have described thus far are the basic building
blocks for all string diagrams. However, as we add structures to our monoidal
categories, we must add other pictorial representations. The first is for
braided categories. The morphism σAB is denoted by crossing the arrows
for the objects A and B, see Figure 2.2 (a). If the category is symmetric,
there is no notion of which wire is under the other, so we use the picture in
Figure 2.2 (b).

9



A

(a) The object A.

B

A

(b) The object AbB.

...
... f

(c) A morphism f .

f g

(d) The expression f ˝g.

f

g

(e) The expression fb
g.

Figure 2.1: Basic String Diagrams

The arrows on objects have so far had no importance. However, in an
autonomous category, where a notion of duals for objects exists, the arrows
are used to keep track of primal and dual objects. The morphisms ηA and
εA, sometimes called the cup and cap morphisms, are the maps that bend
wires, reversing the arrows. The map ηA can be thought of as the bilinear
pairing of A and A˚. Indeed, this will be the case when working with a
subcategory of Vectk. The map εA is the adjoint of this map. The diagrams
for these maps are given in Figure 2.2 (c). The axioms given in Equations
2.1 state that if the cup and cap morphisms are paired in such a way to
make an “s” shape, they can be pulled straight into the identity morphism.
These are sometimes called the “yank axioms”.

Note that composing the maps ηA and εA gives a cycle. In the category
Vectk, this morphism can be easily checked to be the trace of identity map on
the vector space A. Cycles correspond to traces more generally. For a traced
monoidal category, the operation TrC should be thought of as a partial trace
over the object C and is depicted as in Figure 2.2 (d). Note that since cycles
can be formed using the cup and cap morphisms, the previous assertion that
autonomous categories are traced is justified.

The first three axioms for a traced monoidal category then say that
one can stretch cycles without affecting the expression it represents, move
morphisms around a cycle, and the order of forming cycles does not matter.
For a symmetric monoidal category, TrApσA,Aq is the identity arrow on A
with a loop in it. By straightening out the loop, we see that TrApσA,Aq “ idA.

For dagger monoidal categories, we do not need to add any more dia-
grammatic rules. Thus we have all of the necessary ingredients for building
the string diagrams that will be relevant for this dissertation. At various
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B

A

(a) The mor-
phism σAB in
a braided cat-
egory.

A

B

(b) The mor-
phism σAB in
a symmetric
category.

ηA
A

A˚
εA

A

A˚

(c) The cup and cap mor-
phisms.

fB A

C

(d) The operation
TrCpfq.

Figure 2.2: Further String Diagrams

points we may introduce further diagrammatic conventions e.g., for specific
tensors, but these shall be defined as they are needed.

2.2 Tensor Networks

Given a monoidal category with a specified set of structures (e.g. braided,
closed compact), the set of allowed diagrams forms a strict monoidal cate-
gory with the same set of structures. The above process of turning formulae
in a structured monoidal category C actually describes a functor φ from C to
a category of diagrams D. This category is a free category in the following
sense. For every functor from F : C Ñ F that preserves a set of structures,
there exists a functor Ψ such that the following diagram commutes

C φ //

F ��

D

DΨ
��
F

Therefore, every monoidal category can be viewed as a quotient category of
a category of diagrams. In particular, the category Vectk is a dagger closed
compact monoidal category. We are interested in functors from the category
of diagrams into Vectk.

Definition 2.7. A tensor network is the image of a diagram in the category
Vectk.

Proposition 2.8. The category Vectk is a dagger closed compact category.

11



Proof. This category is clearly symmetric as V b W – W b V and the
isomorphism is an involution. As previously mentioned, the map ηA is the
map from AbA˚ Ñ k by abα ÞÑ αpaq; εA is the adjoint map. The function
TrC is the partial trace over the vector space C. The : functor is the usual
adjoint of a linear transformation. We do not check the commutativity of
the appropriate diagrams here.

When working with general tensor networks, we often specify a basis for
each vector space for convenience. By choosing a basis, a vector space and
its dual can be identified. Then we drop the arrows from the tensor network,
instead working with undirected wires. There are some categories that we
shall work with, however, where the arrows matter.

When two tensors are connected by a wire in a tensor network, this can be
turned into another tensor via an operation called tensor contraction. Given
a tensor T P V1 b ¨ ¨ ¨ b Vs b pVs`1q

˚ b ¨ ¨ ¨ b pVrq
˚ written in a chosen basis

tviju for each Vi and tηiju the associated dual basis, denote the coefficient of

basis vector v1
j1
b ¨ ¨ ¨ b vsjs b η

s`1
js`1

b ¨ ¨ ¨ b ηrjr in T by T j1,...,jsjs`1,...,jr
.

Making use of the fact that indices can be raised or lowered as we wish
as we have identified vector spaces with their duals, let our two tensors,
expressed in a basis, be

T “
ÿ

T i1,...,itj pv1
i1 b ¨ ¨ ¨ b v

t
it b η

t`1
j q and

S “
ÿ

Sjk1,...,kspv
t`1
j b vt`2

k1
b ¨ ¨ ¨ b vt`s`1

ks
q,

where j is the index they share by being connected by a wire. Then we
contract along this shared index to form the new tensor with coefficients

U i1,...,itk1,...,ks
“

ÿ

j

T i1,...,itj Sjk1,...,ks .

Tensor contraction can be similarly expressed in bra-ket notation, as detailed
in Section 1.1, in the following way

U “
ÿ

i1,...,it
k1,...,ks

U i1,...,itk1,...,ks
|i1 ¨ ¨ ¨ ityxk1 ¨ ¨ ¨ ks| “

ÿ

j

T i1,...,itj S`k1,...,ks |i1 ¨ ¨ ¨ ityxj|`yxk1 ¨ ¨ ¨ ks| “

ÿ

j

T i1,...,itj Sjk1,...,ks |i1 ¨ ¨ ¨ ityxk1 ¨ ¨ ¨ ks|

12



noting that for an orthonormal basis, xi|jy “ δij .
In this way, every tensor network can be viewed as an element of kbn,

where n is the number of dangling (or open) wires. We can also view a
tensor network as a multilinear polynomial. Let T be a tensor network
and denote the boxes in the diagram M1, . . . ,M`. Then by varying the
tensors placed in the boxes M1, . . . ,M`, with each tensor Mi P Wi, for
the appropriate vector space Wi, we get a multilinear polynomial function
FT pM1, . . . ,M`q :

Â`
i“1Wi Ñ kbn.

In fact, the polynomial FT has even more structure. Let E be the set
of edges in the tensor network T and Ve the associated vector space. Then
consider the group GLT :“

À

ePE GLpVeq. It acts on the polynomial FT by
applying to every e P E, geg

´1
e where ge P GLpVeq. The clearly leaves FT

invariant. However, it induces an action on
Â`

i“1Wi and we see that FT is
a covariant of this group action.

Observation 2.9. Thus each coordinate of the map FT is a polynomial
invariant of the group action GLT .

A tensor network that is an element of Homp1,1q – k is called closed
tensor network. This observation will be studied further in Chapters 7 and
8.
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Chapter 3

The Complexity of
Contracting Tensor Networks

In this chapter, as well as Chapters 4 and 5, we are concerned with the
following question: working in the category VectC, if we are given a tensor
network T P Homp1,1q – C, which complex number does it represent? This
is called the tensor contraction problem. It turns out that for general tensor
networks, answering this problem is hard.

Definition 3.1. If L P NP, let FL : L Ñ N be the function that takes a
problem P P L to the number of accepting solutions. A problem is in the
complexity class #P if it is of the form “compute FLpP q for some L P NP
and any P P L.

The complexity class FP is the subset of problems in #P the can be
solved in polynomial time.

The class #P was introduced by Leslie Valiant to classify the difficulty
of computing the permanent of a matrix [100]. The counting version of any
NP-hard problem is immediately #P-hard as well. A bit surprisingly, while
2-SAT can be decided to have a satisfying assignment in polynomial time,
counting the number of such satisfying assignments is also #P-complete.
However, as with the class NP, the problem that is arguably most studied
is #SAT, the problem of counting the number of satisfiable solutions to a
SAT problem. Much work focuses particularly on #3-SAT or #2-SAT.

It turns out that the tensor contraction problem is #P-hard. In the
following section we discuss the reduction of #SAT problems to tensor con-
traction problems. Later in the chapter, we exploit graphical properties of
a tensor network modeling a #SAT problem to find a class of efficiently
tractable Boolean formulas.

14



3.1 Modeling #SAT Problems as Tensor Networks

We describe a way to write a Boolean satisfiability problem as a tensor
network, as in [52, 62]. Suppose we are given a SAT formula f and we wish
to express it as a tensor ψf . Let x1, . . . , xn be the variables appearing in
this formula. We further suppose that f is given to us in the following form.

Definition 3.2. A Boolean formula is in Conjunctive Normal Form (or
CNF form for short) if it is of the form

α
ľ

i“1

ˆ

li,1 _ ¨ ¨ ¨ _ li,ki

˙

where each literal li,j is of the form xk or  xk. A problem is in r-CNF form
if each clause has r literals.

We assign an open wire to each variable xi. If a variable xi appears in
k clauses, we make k copies of xi via the COPY-tensor |0yx0|bk ` |1yx1|bk.
We call k the degree of the COPY-tensor. It is depicted as a solid black dot
in a tensor network.

A Boolean gate (or clause) ϕ : t0, 1um Ñ t0, 1u is expressed as the tensor

ÿ

xPt0,1um

|xyxϕpxq|.

Then the COPY-tensor associated to each variable is connected to each
tensor representing a clause which that variable appears in. This gives a
tensor network with n dangling wires corresponding to the variables and α
dangling wires corresponding to the output of each clause. Since we want
each clause to have the value of 1, we attach to each of these wires the tensor
|1y. This is equivalent to composing with the tensor |1αy “ |1y

bα. It is not
hard to check that the entire network can be contracted to the tensor

ψf “
ÿ

x

|xyxfpxq|1αy “
ÿ

x

fpxq|xy.

We call a state of the form ψf a Boolean state.

Remark 3.3 (Counting SAT solutions). Let f be a SAT instance. Then
}ψf }

2, using the standard norm, counts the number of satisfying solutions
of f .

15



ψf

xn

...

x1

(a) An abstract
depiction of a
Boolean state.

ψf...ψ:f “ }ψf }
2

(b) A Boolean state contracted
with itself.

Figure 3.1: Tensor Networks the Count the Number of Satisfying Solutions
for a Boolean Formula

We calculate the inner product of this state with itself viz

||ψf ||
2 “

ÿ

x,y

fpxqfpyqxx,yy “
ÿ

x

fpxq, (3.1)

which gives the number of satisfying inputs. This follows since xx,yy “ δxy.
We note that solving the counting problem for general formula is known

to be #P-complete [101]. The condition

||ψf || ą 0 (3.2)

implies that the SAT instance f has a satisfying assignment. Determining
if this condition holds for general Boolean states is an NP-complete decision
problem.

The tensor network contraction for the counting problem is depicted in
Figure 3.1: (a) gives a network realization of the function and (b) is the
contraction that represents the norm of ψf . Note that we represent vectors
and covectors as triangles pointing in opposite directions. This is meant to
resemble the shape of a “bra” and “ket”.

Alternatively, we can count the number of solutions to a Boolean formula
f in the following way. For an n-variable Boolean formula f , let χn “
px0| ` x1|qbn. Then

xχn, ψf y “
ÿ

xPt0,1un

fpxqxx,xy “
ÿ

xPt0,1un

fpxq.

Example 3.4. As a first example, we consider the simple non-satisfiable
Boolean formula x ^ p xq, which is in Conjunctive Normal Form. The
tensor representing the literal x is |0yx0|` |1yx1| and the tensor representing
the literal  x is |0yx1| ` |1yx0|. The tensor χ1 “ x0| ` x1|. The picture is
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ψ 12χ1

The dot is the aforementioned COPY-tensor. The tensor ψ “ p|0yx0| `
|1yx1|q b p|0yx1| ` |1yx0|q. Then contracting, we get

px0| ` x1|q ˝ p|0yx00| ` |1yx11|q˝

p|01yx01|` |10yx10|` |00yx01|` |11yx10|q ˝ p|11yq “ 0.

Seeing that any #SAT problem can be easily rephrased as a tensor con-
traction problem, we can conclude the following well-known fact: the ten-
sor contraction problem is #P-hard.

3.1.1 Complexity Theory Via Tensor Networks

Relationships between multilinear maps and counting problems have long
been known in computer science and physics [100, 85]. This observation
makes natural the generalization from classical to quantum computing. Quan-
tum circuits are in fact tensor networks with a measurement, where the only
morphisms allowed are unitary matrices [8].

It is not hard to see that tensor networks actually provide an alternative
model of computation using the ideas outlined above. Consider a function
f : t0, 1un Ñ C, then consider the tensor ψf “

ř

xPt0,1un fpxq|xy. Then
fpxq “ xx|ψf for any x P t0, 1un. So computing any binary function can be
expressed as a tensor contraction problem.

Because of this, much work has been done to understand which tensor
networks can be contracted in polynomial time. Of particular interest are
the following generalization of Boolean formulas.

Definition 3.5. A constraint satisfaction problem (or CSP for short) is a
triple pX,D,Cq where X “ tx1, . . . , xnu denotes a set of variables, D “

tD1, . . . , Dnu are the domains for the respective xi, and C “ tC1, . . . , Cku
are a set of constraints Cj “ pXj , Rjq, where Xj Ď X and Rj Ď ˆxiPXjDi

is a |Xj |-ary relation.
A solution to a CSP is an assignment to each variable xj :“ tj such that

for every Cj , Xj satisfies the relation Rj . A complex valued CSP is one
where the assignment of the variables are drawn from C. A complex valued
#CSP problem is the problem of counting the number of satisfying solutions
to a CSP.
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A complex-valued #CSP problem can be modeled as a tensor contrac-
tion problem similarly to our construction of Boolean states. Each Di

can be associated with a the set r|Di|s. Then the variable tensor xi is
x0|b|Di|`x1|b|Di|. The clauses are now removed of any constraint. The vec-
tor space associated to a wire connecting a variable xi to a particular clause
has dimension |Di|. In this way, every #CSP problem can be expressed in
terms of tensor networks.

In general, solving #CSP problems is #P-hard [19, 25]. However, several
dichotomy theorems exist for when a tensor network modeling a #CSP
problem is either in FP or #P-hard [16, 32, 17]. Furthermore, great emphasis
has been placed on how easily a given #CSP problem can be determined to
be tractable or not.

One can also restrict to #CSP problems with extra constraints, such as
the restriction that its tensor network representation be planar. An impor-
tant class of efficiently tractable tensor networks are Valiant’s matchcircuits
which have a planarity restriction [103, 98, 99]. Work has been done to show
that this tensor networks are precisely the planar tractable tensor networks
[18]. These particular tensor networks will be discussed further in Chapter
4.

Throughout the rest of this chapter, we focus on #SAT problems, which
every #P problem can easily be expressed as, and discuss different criteria
for tractability of such problems. We also discuss how effective each of these
criterion are, in the sense that testing whether or not a given #SAT problem
satisfies a given criterion can be done in polynomial time.

3.2 Criteria for Tractability of #SAT Problems

When considering a criterion for tractability of a #SAT problem, there are
two natural questions: How does this property affect the computation of the
problem and how easy is it to determine the value of said property. In this
chapter we consider the following criteria:

1. Tensor networks with the structure of a tree,

2. The fan-out of the variables,

3. Treewidth of the tensor network,

4. Rényi entropy of tensor networks.
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Figure 3.2: A Boolean Function Expressible as a Tree.

Tree tensor networks can always be efficiently contracted. The algorithm is
the sum product algorithm and has been rediscovered many times. Within
the tensor network formalism, the algorithm was provided in [75].

We measure the fan-out of the variables via the number of COPY-tensors
in the Boolean state as well the degree of the COPY-tensors. The number
of COPY-tensor networks restricts the number of variables that can appear
in more than one clause. The degrees of the COPY-tensors measures how
many clauses a variable may appear in. By combining these two conditions,
we can find a new class of tractable #SAT problems. Theorem 3.15 gives
an explicit polynomial time algorithm for such problems.

The related study of Boolean formulas in r-CNF form where the number
clauses a variable can appear in is restricted have been studied previously
[97, 30]. We will explain how this criteria relates to bounded treewidth,
specifically which #SAT problems are tractable via the algorithm in Theo-
rem 3.15 but not by the tree-width based algorithms. Lastly, we discuss the
Rényi entropy as a measure of complexity, as suggested in [21]. We address
the fact that it may not be defined or easily computed.

3.2.1 Some SAT Instances That Are Always Satisfiable

We focus on a class of SAT instances that are always satisfiable simply by
the structure of their tensor networks, namely trees where every variable is
a leaf. These are more familiarly known as read-once functions. Here, we
do not demand that the tensor network representation of the be in the form
described in Section 3.1. Instead, we look at tensor networks as depicted in
Figure 3.2.1, where the variables are the left-side leaves, the right-side leaf
is the output of the function, and each box is any Boolean function except
the two constant functions. Such a network can always be rewritten into
CNF form.
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Definition 3.6 (read-once). A function f is called read-once if it can be
represented as a Boolean expression using the operations conjunction, dis-
junction and negation in which every variable appears exactly once. We call
such a factored expression a read-once expression for f .

We call such a function ROF for short. The definition implies that
there are no COPY-tensors since every variable can only appear in one of
the Boolean tensors in the network. As such, it does indeed have a tree
structure when expressed as a tensor network.

These formulas represent a special subclass of r, s-SAT, which is defined
to be the decision problem for SAT formulas written in r-CNF form where
each variable appears in at most s clauses. Read once formulas, given in
CNF form, represent the cases where r is general and s “ 1. These problems
have been studied classically and we mention two seminal results:

Theorem 3.7 (Tovey, [97]). Every instance of r, r-SAT is satisfiable.

Theorem 3.8 (DuBois, [30]). If every instance of r0, s0-SAT is satisfiable,
then r, s-SAT is satisfiable for r “ r0 ` λ and s ď s0 ` λrs0{r0s, λ P N.

This implies that r, s-SAT is satisfiable for s ď r by Theorem 3.7 and
letting λ “ 0 in Theorem 3.8. In particular, all ROF are satisfiable. Using
tensor networks, we can give a very short proof of this.

Definition 3.9. Let f : t0, 1un Ñ t0, 1u be a Boolean function. Considering
the tensor ψ̃f “

ř

xPt0,1un |xyxfpxq|, we call a tensor of the form ψ̃:f ψ̃f a
diagonal map.

Lemma 3.10. For a Boolean function f ,

ψ̃:f ψ̃f “ #f´1p0q|0yx0| `#f´1p1q|1yx1|

where #f´1pbq denotes the size of the pre-image of b. Furthermore, if f is
not a constant function, we can normalize it to get a tensor ζf such that

ζ:fζf “ id.

Proof.
ψ̃:f ψ̃f “

ÿ

x,y

|fpxqyxx|yyxfpyq|

“
ÿ

x

|fpxqyxfpxq|

“ #f´1p0q|0yx0| `#f´1p1q|1yx1|.
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Now let ζf “
ř

x

a

#f´1pfpxqq
´1
|xyxfpxq|. It is clear that ζf has the

desired property and is well defined since we assumed that f was non-
constant.

For a Boolean state representing an ROF, we replace every gate with
its normalization. This gives positive weights to the different assignments
of variables. The contraction then sums up the weights of the satisfying
assignments. It is clear that normalizing a ROF does not change the fact
that the norm will be zero if and only if it has no satisfying solution. The
resulting scalar, however, will no longer reflect the number of satisfying
solutions.

Theorem 3.11. Every ROF built up from non-constant gates is satisfiable.

Proof. To show that f is satisfiable, we must show that }ψ̃f |1y}
2 ě 1. This

tensor network is depicted in the picture below.

We normalize every gate ψ̃g in the tree using Lemma 3.10. As discussed
above, this new tensor network will have norm zero if and only if it is
unsatisfiable. We observe a series of nested diagonal maps. As any ROF
does not allow a constant Boolean gate, by Lemma 3.10 these maps are
equivalent to the identity. So we can successively collapse them until we get
the contraction x1|pidq|1y “ 1. So it is indeed satisfiable.

3.2.2 Efficient Tensor Contraction Algorithm for Boolean
States With Restricted Fan-out

Consider a tensor network with a known efficient, i.e. polynomial, contrac-
tion method. By inserting new wires and tensors into the network, one can
construct a tensor network which is not necessarily easy to contract. Of in-
terest are ways to reduce tensor networks to those that are computationally
tractable in an efficient way.
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In particular, we are interested in transforming Boolean states into other
Boolean states with polynomial time evaluations. One approach is to restrict
the number of tensors added to an efficiently contractible class of tensor
networks to be at most Oplog nq, where n is the number of variables.

Definition 3.12 (Tensor network correspondence). Let v be the minimum
number of vertices needed to be removed from the network T , with their
incident edges becoming dangling wires, to transform it into a network U
known to be efficiently contractible. The correspondence of T with respect
to U is defined to be 1{v.

For our purposes, we will be interested in restricting our definition of
correspondence to the number of COPY-tensors needed to be removed to
recover a tensor network that can be quickly evaluated. In this way, we can
construct a wide class of counting problems that can be solved efficiently
using tensor contraction algorithms. Here we focus on the Boolean states
that are close to tree tensor networks.

It is well known that tree tensor networks are polynomially contractible
in the number of gates [43, 65, 75]. For Boolean states, the gate count
includes the tensors x0| ` x1| placed on the variable wires.

Definition 3.13. Given a rooted tree, a limb is a sequence of vertices
v1, . . . , vk such that v2, . . . , vk´1 each only have one child and vi`1 is a child
of vi.

Proposition 3.14. An n-variable Boolean state that is a tree has Opnq
gates.

Proof. A Boolean state has a natural root: the output bit. We argue that
the limbs of a Boolean state are of length at most three. Take a limb
v1, . . . , vk. Then consider vi, i ‰ 1, k. It is a unary operation on clauses,
implying that it must either be the identity or negation operator. We can
therefore assume that there is at most a single negation operator between v1

and vk and nothing else. So at worst the tree is a perfect binary tree which
has Opnq gates.

So we can conclude that the norm of a Boolean state that is a tree can
be computed in polynomial time in the number of variables.

Let X be a Boolean state. The multilinearity of tensor networks allows
us to remove a COPY-tensor, resulting in a sum of tensor networks:
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We note that there are two summands, where either 0 or 1 is attached to the
dangling wires resulting from the removal of the COPY-tensor. Given a ten-
sor network X, if we remove a COPY-tensor, we denote the two summands
X0 and X1. Furthermore, we have that

CtX,Xu “
ÿ

i

CtXi, Xiu.

We can now give an algorithm for contracting a tensor network, assuming
we have an algorithm for contracting a tree tensor network in polynomial
time. Let C1, . . . , Cm be the COPY-tensors appearing in X. Then

CtX,Xu “
ÿ

i1,...,im

CtXi1,...,im , Xi1,...,imu

where Xi1,...,im is the tree formed by removing all the COPY-tensors and
assigning the value ik to the wires that were incident to Ck. So the algorithm
for computing CtX,Xu computes the expression as a sum of contractions of
trees.

Theorem 3.15 (Upper bounding tensor contraction in terms of COPY-
-tensors). Given a tensor network as described in Section 3.1, the complex-
ity of evaluating this network is Oppg ` cdqOp1q2cq where c is the number of
COPY-tensors, g is the number of gates, and d is the maximal degree of any
COPY-tensor.

Proof. Contracting a tensor network is upper bounded by evaluating the
expression

CtX,Xu “
ÿ

i1,...,im

CtXi1,...,im , Xi1,...,imu.

For each COPY-tensor removed, we double the number of summands. We
also add a gate to each dangling wire created by removing a COPY-tensor.
So the computation is bounded by summing over the contraction of 2c trees,
each of which can be contracted in time Oppg ` cdqOp1qq [75].

Remark 3.16. We must mention that Theorem 3.15 only applies when
the Boolean state is given by a tensor network as described in Section 3.1.
Otherwise, there are many tensor networks to describe a given Boolean state,
many of which invalidate the statement of Theorem 3.15.
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Corollary 3.17 (A class of efficiently solvable #SAT instances). Suppose
that a Boolean state with n variables has inverse logarithmic correspondence
with a tree tensor network and the maximal degree of the COPY-tensors is
Opnαq. Then this Boolean state can be contracted in polynomial time.

Proof. Inverse logarithmic correspondence implies that if the SAT instance
has n variables, then it has Oplogpnqq COPY-tensors. By Theorem 3.15, the
complexity of contraction is Oppg ` nα logpnqqOp1q2logpnqq. By Proposition
3.14, g is Opnq, so the algorithm presented will contract the tensor network
in polynomial time.

Theorems 3.7 and 3.8 only pertain to instances of r, s-SAT that are
always satisfiable; they do not address the complexity of the corresponding
counting problem. For instance, read-twice monotone 3-CNF formulas are
always satisfiable by Theorems 3.7 and 3.8, but counting the number of
solutions is #P-hard [106].

In contrast, Theorem 3.15 gives conditions for the tractability of the
counting problem associated to r, s-SAT. One of these conditions is not
implicit in the definition of r, s-SAT, namely that we bound the number of
variables that can appear in more than one clause. To restate Corollary
3.17, we have shown that #r, polypnq-SAT is polynomial time countable if
the number of COPY-tensors is bounded by logpnq.

3.2.3 Relation to Other Algorithms

There have been several results relating the complexity of contracting tree
tensor networks to various measures such as treewidth, clique-width, and
branchwidth. An overview can be found in [83]. The general type of result
is that the time to solve a #SAT instance is polynomial in the number of
variables and exponential in the corresponding notion of width [4, 36].

We discuss how our algorithm compares with algorithms based on the
treewidth of Boolean states and the relationship between treewidth and the
number of COPY-tensors. Contracting a tree tensor network T takes time
gOp1q expptwpT qq, where twpT q is the treewidth of T [75]. More explicitly,
there exists the following results:

Theorem 3.18 ([36]). Given an n-variable SAT formula with treewidth
k, there is an algorithm counting the number of solutions in time 4kpn `
n2 log2pnqq.
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Theorem 3.19 ([94]). Given a SAT formula with treewidth k, largest clause
of size l, and N the number of nodes of the tree-decomposition, the #SAT
problem can be solved in time Op4klNq.

Proposition 3.20. Given a Boolean state, let k be the treewidth and c the
number of COPY-tensors. Then k ď c.

Proof. If is well known that if H is a subgraph of G, then twpHq ď twpGq.
If we place the tensor x0|` x1| on each variable wire and then compose with
the COPY-tensors to get a tensor network T , a variable will correspond to a
leaf if and only if it appears in exactly one clause. The treewidth of T with n
variables, n1 of which are not leaves, and m clauses, is at most the treewidth
of Kn1,m, which is known to be minpm,n1q. This is because adding leaves to
a graph does not increase the treewidth. On the other hand, c “ n1.

Note that if the number of variables is large with respect to the number
of clauses, then c may be much larger than the treewidth, k. However, the
algorithms are comparable as long as c is bounded by 2k by Theorems 3.15
and 3.18. We note that if the clause to variable ratio is extremely small
or large, the tree width is small and the tensor network can be contracted
efficiently. In the critical case when c u k, our algorithm runs exponentially
faster in k. There is the added advantage that, unlike treewidth, calculating
c is not NP-complete. As such, c is an attractive estimate for the complex-
ity of the counting problem. However, the trade off is that it is a cruder
measurement.

3.2.4 Rényi Entropy and Complexity

Rényi entropies [92] have also been proposed as an indicator of the complex-
ity of counting problems [21]. The Rényi entropies are attractive as they
are well understood and motivated from areas such a physics and statis-
tics. We look at the question pertaining to the use of Rényi entropies as
a measurement of counting complexity. A natural question is the efficiency
of determining the Rényi entropy of a given state. Many proposed mea-
sures of complexity are difficult to determine. As we noted in Section 3.2.2,
the number of COPY-tensors can be easily computed, whereas treewidth
cannot.

Given a Boolean state ψf , we can instead look at the operator |ψf yxψf |.
We choose a partition for the rows and columns into two disjoint subsystems,
A and B. This is called a bipartition of the operator, denoted A : B. The
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Rényi entropy of order q with respect to a bipartition A : B is defined to be

HAB
q pρq “

1

1´ q
ln Trtρqu “

1

1´ q
ln
ÿ

i

λqi , (3.3)

ρ “
1

Z0
TrAp|ψf yxψf |q.

Here, Z0 “ Trp|ψf yxψf |q. The case q Ñ 0 gives the rank of the biparti-
tion and the positive sided limit q Ñ 1 recovers the familiar von Neumann
Entropy HAB

qÑ1pρq “ ´Trpρ ln ρq.
In terms of the counting problem, note that the state |ψf y could be

given by the zero vector, in which case it is not possible to define the state
ρ: so more generally we can consider the unnormalized variant of ρ, which
is defined as ρ “ TrAp|ψf yxψf |q. This has the following computational
significance.

Theorem 3.21 ( Rényi entropy implies satisfiability). For any bipartition,
deciding if the Rényi entropy is defined is NP-hard.

Proof. Given an unnormalized Boolean state ρ,

ρ “ TrAp|ψyxψ|q

for some bipartition A : B, HAB
q pρq takes a finite value if and only if the

Boolean state is satisfiable. Note that this is independent of choice of bipar-
tition as ln Trpρqq is undefined if |ψf y “ 0. Thus determining if the Rényi
entropy is defined is NP-hard.

We can then consider instead the promise problem called Unambiguous-
SAT: Given a SAT instance promised to have at most one solution, determine
if it is satisfiable. Unambiguous-SAT is still a hard problem.

Theorem 3.22 (Valiant-Vazirani, [102]). If there is a polynomial time al-
gorithm for solving Unambiguous-SAT, then NP “ RP.

Theorem 3.23 (Rényi Entropy Reduction to Unambiguous-SAT). Suppose
you have a Boolean state with the promise that the Rényi entropies are all
undefined or zero. Then deciding if the Rényi Entropies are undefined or
zero is as hard as Unambiguous-SAT.

Proof. The Rényi entropies are zero if and only if the density operator is
a product state, which implies that the corresponding Boolean state has a
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unique solution. It is undefined if and only if it has no solution as previ-
ously discussed. Therefore, if we are promised the Rényi entropies are zero
or undefined for all partitions, we are promised that there is at most one
solution. This is precisely Unambiguous-SAT.

What we see is that while Rényi entropies may encode information about
the complexity of a counting problem, they are unfortunately not easy to
compute. Furthermore, they may not even be defined and determining this
is computationally challenging.
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Chapter 4

Determinantal, Pfaffian, and
Match Circuits

In the previous chapter, we looked at a general class of problems, phrased
as tensor contraction problems, and gave conditions for when such problems
could be solved efficiently. In this chapter, we take the opposite approach.
We will study classes of tensor networks whose corresponding tensor con-
traction problem can always be solved in polynomial time. Then one can ask
which problems can be solved by such a particular class of tensor networks.

The classes of tensor networks considered will be subcategories of VectC.
By a circuit we mean a combinatorial counting problem expressed as a string
diagram in a monoidal subcategory of VectC.

LetM be a (strict) monoidal category such that SM “ HomMp1M,1Mq
is a semiring; call this a semiringed category. A strict monoidal functor
F :MÑM1 between semiringed categories is count preserving if the induced
map F :SMÑSM1 is an injective morphism of semirings.

In each type of circuit, we consider two semiringed categories C and S.
Let L be a problem of interest. We call C the counting category and S
is a subcategory of VectC. Then let i : L Ñ C be a map that gives an
interpretation or encoding of the problem as a string diagram in C. By this
we mean that for every instance of a problem l P L, iplq is a string diagram
that solves this instance of the problem.

The category C may have a non-intuitive encoding of the problem but has
the advantage that there exists a polynomial-time algorithm to determine
which morphism of Homp1C ,1Cq is represented by an arbitrary monoidal
word. We also have an interpretation f : LÑ S. Then we want a monoidal
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functor F such that the diagram

L i //

f ��

C

F
��
S

commutes and F is a count preserving functor. S is the subcategory of VectC
generated by the morphisms in the image of either F or f . The induced maps
on SC and SS make SC a sub-semiring of SS .

Of course, it is important that the interpretation i is implementable in
polynomial time. Often this is not a concern, because diagrams in C and L
are effectively identified, and the problem is expressed in the language that
will be used to perform the contraction.

Throughout this chapter, we use the following notation: in most cases we
use M,N for matrices, I, J for sets (especially of indices), f, g for morphisms,
F,G for functors, and C,M for categories. For a matrix X, we let XIJ be
the submatrix with rows in I and columns in J.

4.1 Pfaffian circuits

As a first example, we consider the counting category (and corresponding
subcategory of VectC) that defines Pfaffian Circuits. Pfaffian circuits were
introduced in [78, 63] as a reformulation of matchcircuits [98]. Both prior
formulations were combinatorial in nature. We present a slightly different
construction using category theory to incorporate the theory into the tensor
network formalism.

We first define the counting category for Pfaffian circuits, denoted P.
Consider the category of planar diagrams where every box is a morphism
such that its domain or codomain equals the unit 1P . Notice that this allows
the cup and cap morphisms, so this category will have duals for objects.
The objects are vertical arrays of wires and can be labeled by elements of
N. Therefore, objects are identified with ordered subsets of N and 1P “ H.

Consider the set Mˆt0, 1u, where M is the set of labeled skew-symmetric
matrices such that the columns and rows have the same labels in the same
order. Then every box in a diagram has a label, where morphisms J Ñ H

are labeled by an element of Mˆt1u with label set J, and morphismsHÑ J
are labeled by elements of M ˆt0u with label set J. Henceforth, we refer to
morphisms simply as pM, bq instead of labeled boxes.

We define the tensor product of this category as follows:
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(a) pM, bq b pN, bq :“ pM ‘N, bq.

(b) pM, 1q b pN, 0q :“ pN, 0q ˝ pM, 1q.

Note that every diagram with no dangling edges can be collapsed to a di-
agram representing the map pM, 1q ˝ pN, 0q : H Ñ H. This describes our
counting category P.

We now define a functor sPf from P Ñ VectC. For i P N, let Vi – C2

be spanned by an orthonormal basis (with inner product) vi,0, vi,1 and for
N Ă N write VN :“ biPNVi. Now let us consider the following function:

sPf : M ˆ t0, 1u Ñ V ˚N b VN

sPfpM, 0q “
ÿ

IĎN

PfpMIq|Iy

sPfpM, 1q “
ÿ

IĎN

PfpMĪqxI|

where |Iy “
Â

iPN vi,χpi,Iq, xJ| “
Â

iPM v
˚
i,χpi,Jq and the indicator function

χpi, Iq “ 0 if i R I and 1 if i P I. We denote by MI the principal minor of
M with row and column labels I. MĪ means the principal minor of M with
the rows and columns labeled I removed. We will use the convention that
sPfpM, 0q will be denoted sPfpMq and sPfpM, 1q will be denoted sPf_pMq.

The sPf function lets us define a monoidal subcategory of VectC. Let
P be the free monoidal category defined as follows. The objects are of
the form VN for ordered subsets of N, the tensor product being the usual
one. The morphisms of P are generated by elements from the image of sPf.
Composition and tensor product will be inherited from VectC. It turns out
that sPf is a functor that gives an equivalence of categories between P and
P [78].

We now define a Pfaffian circuit to be a diagram in either of the equiv-
alent categories P or P representing a map from 1P Ñ 1P , equivalently a
map CÑ C. Classically, the vectors sPfpMq are called gates and the covec-
tors sPf_pMq are called cogates. Note that any Pfaffian circuit T P P has
the natural group action of GLT as mentioned in Observation 2.9. There-
fore, a natural extension of the definition of a Pfaffian circuit is a tensor
network T that is in the GLT -orbit of a tensor network in P. A Pfaffian
(co)gate is a (co)vector that is in the GLT -orbit of a (co)gate in P.

This is the original definition used in [98, 63, 78]. However, this means
that determining whether or not a circuit is Pfaffian, and the general expres-
siveness of Pfaffian circuits, is much more difficult. But this action allowed
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for new polynomial time algorithms to be found for problems for which no
such algorithms were previously known [99, 103]. The problem of deter-
mining if a tensor network is a Pfaffian circuit falls into geometric invariant
theory which we investigate in later chapters. However, for the remainder
of this chapter, we restrict ourselves to Pfaffian circuits built up from the
standard set of (co)gates previously described.

Now suppose we are given a Pfaffian circuit Γ. Let Ξi be the morphisms
of the form sPfpMq and Θi be the morphisms of the form sPf_pMq. We
define Ξ “ ˜À

iΞi and Θ likewise. The operation ˜À is the direct sum with
the row and columns reordered as follows: draw a planar curve through the
Pfaffian circuit such that every edge is intersected by the curve exactly once.
Since a Pfaffian circuit is planar and bipartite, such a curve always exists
and the induced ordering is independent of the choice of curve. The edges
are then labeled based on when the curve intersects them. This is ordering
used to define ˜À. The matrix qΘ is defined to be tp´1qi`j`1θiju. This
ordering allows for the possibility that the Pfaffian circuits are not drawn
with arrows drawn vertically, as classically has not been required. However,
Theorem 4.2 tells us that this does not affect the well definedness of the
value a Pfaffian circuit represents.

Theorem 4.1. The value of a Pfaffian circuit Γ is given by PfpΞ` qΘq [78]

Thus Pfaffian circuits can be computed in polynomial time. Further-
more, we will show that P is a traced category, with the trace provided by
the expression in Theorem 4.1. First, we investigate the structures of the
category P.

Theorem 4.2. P is a strict monoidal category with duals for objects.

Proof. By our definition of P, it will be the smallest monoidal subcategory
of VectC containing the generating morphisms with the specified objects. A
monoidal category pC,b, λ, ρ, αq is strict if the natural transformations λ, ρ,
α are identities. Recall from Theorem 2.6 that every monoidal category is
equivalent to a strict one.

So we can assume without loss of generality that we are working with a
strict category equivalent to VectC instead. So the α, λ, and ρ maps that
P inherits will be identities. We want to show that the identity morphism
is actually generated by our specified morphisms. Consider the following
matrix for an object A:

IA “

ˆ

A A

A 0 1
A ´1 0

˙

.
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Let εA “ sPfpIAq “ |0A0Ay` |1A1Ay and ηA “ sPf_pIAq “ x0A0A|`x1A1A|.
Then we can contract these these two morphisms along a single edge as in
the following picture:

A εA
ηA A .

This gives us the morphism |0Ayx0A| ` |1Ayx1A| which is the identity mor-
phism on A. Furthermore, εA and ηA are the cup and cap morphisms and
we have just shown that they satisfy the yank axioms given by Equations
2.1. This shows that P has duals for objects.

Definition 4.3. The anti-transpose of a matrix N , denoted by N̂ , is N
flipped across the non-standard diagonal.

Lemma 4.4. PfpN̂q “ PfpNq.

Proof. Let N “ tηiju be an n ˆ n matrix. If n is odd, the above is trivial,
so let n be even. Now let F be the set of partitions of rns into pairs,
pik, jkq, ik ă jk. If π P F we can define the sign of π, sgnpπq. This is
done by considering the set rns as a sequence of nodes laid out horizontally
and labeled 1, . . . , n from left to right. Then if two nodes are paired in π,
connect them with an edge. Then sgnpπq is p´1qk where k is the number of
places where lines cross. Now we can define PfpNq as follows:

PfpNq “
ÿ

πPF

sgnpπq
ź

pik,jkqPπ

ηikjk .

Now let η1ij “ ηn´j`1,n´i`1 be the entries of N̂ and suppose π P F . Then
the mapping F Ñ F : π ÞÑ π1 given by pik, jkq ÞÑ pn ´ jk ` 1, n ´ ik ` 1q
is a bijective involution. Note that π1 is the matching formed from π by
relabeling the nodes as n, . . . , 1 from left to right. This preserves the number
of crossings of edges so that sgnpπ1q “ sgnpπq. Thus we get

PfpN̂q “
ÿ

πPF

sgnpπq
ź

pik,jkq

η1ikjk “

ÿ

π1PF

sgnpπ1q
ź

pn´jk`1,n´ik`1q

ηn´jk`1,n´ik`1 “ PfpNq.
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Definition 4.5. If I is a bitstring, let Ĩ be the bitstring reflected across a
vertical axis. If I Ď N, where N is a finite ordered set, I can be viewed
as a bitstring representing a characteristic function, where 1 in the ith bit
indicates inclusion of the ith element of N in the set I. Then Ĩ is a charac-
teristic function defining another subset of N. Then |̃Iy “

Â

iPN vi,χpi,̃Iq and

x̃I| “
Â

iPN v
˚

i,χpi,̃Iq

Corollary 4.6. Let N be a skew symmetric matrix with labels M. Let N̂
also have labels M. sPfpN̂q “

ř

IĎM PfpNIq|̃Iy

Proof. Let I Ď M. Note that NI “ N̂Ĩ. Then PfpNIq “ PfpN̂Ĩq. This gives
the result.

Example 4.7. Consider the following matrix:

N “

¨

˚

˚

˝

0 0 a 0
0 0 0 b
´a 0 0 0
0 ´b 0 0

˛

‹

‹

‚

sPfpN̂q “ |0000y ` b|1010y ` a|0101y ´ ab|1111y

“ PfpNHq|0000y ` PfpNt2,4uq|1010y ` PfpNt1,3uq|0101y ` PfpNq|1111y

“
ÿ

IĎM

PfpNIq|̃Iy.

Proposition 4.8. For any skew-symmetric matrix M ,
ÿ

I

PfpMIqxI|

ÿ

I

PfpMĪq|Iy

are morphisms of P. This implies that P is a dagger monoidal category.

Proof. Let M have labels A “ tA1, . . . , Anu. Then M̂ will have labels
Ã “ tAn, . . . , A1u. Here the cup morphism ηA is given by:

ηA “ sPf

ˆ

Ã A

Ã 0 Ĩ
A ´ĨT 0

˙

where Ĩ is the identity matrix reflected over a vertical axis. Then consider
the following morphism in P:
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Θ̌ Ξ

A1
...

An

(a) A Collapsed
Pfaffian Circuit

Ξ Θ̌

A1

...

An

(b) The Same Pfaffian
Circuit Redrawn as a
Trace

Figure 4.1: Viewing P as a Traced Category.

sPfpM̂q

An
...

A1
ηA

...
An

A1

.

This diagram represents the morphism
ˆ

ÿ

IĎA

PfpMIq|̃Iy

˙ˆ

ÿ

IĎtÂAu

x̃I|xI|

˙

“

ÿ

IĎA

PfpMIqxI|.

We can similarly form
ř

I PfpMĪq|Iy by instead using sPf_pM̂q and the
cap morphism εA. Now since every generating morphism has a dagger, the
entire category has a dagger and it is the usual vector space dagger.

Now we can show that P is a traced category. Recall that, as it is
equivalent to the category P, we can collapse every Pfaffian circuit to one
of the form in Figure 4.1(a). But, because we have duals for objects in P
and P, this can be recast as a trace, as in Figure 4.1(b). We know that this
trace is equal to PfpΞ` qΘq in P. Therefore, we define this to be the trace
for P.

4.2 Determinantal Circuits

We now formulate a class of circuits based on determinants, which we call
determinantal circuits. We show that the corresponding tensor contraction
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problem is solvable in polynomial time. The existence of such a class was
conjectured in [63]. This was conjectured based on the following theorem:

Theorem 4.9 ( [22]). Given a graph G endowed with an arbitrary orienta-
tion, let B be its incidence matrix . Then detpI ` BBT q is the number of
rooted spanning forests.

For Pfaffian circuits, the polynomial time evaluation was due to the ex-
istence of a formula that exploited an exponential amount of cancellation in
the sum resulting from the tensor contraction. Tensor networks are very well
suited for counting structures in graphs and we have a formula for solving
the tensor contraction problem in polynomial time already recommended to
us: detpI ` Xq, where is X is the result of combining all of the gates in a
determinantal circuit in some way.

Suppose X is an nˆm matrix of elements of C with rows and columns
labeled by finite disjoint subsets I and J of N “ Zě0. As before, for i P N, let
Vi “ C2 be spanned by an orthonormal basis (with inner product) vi,0, vi,1
and for finite N Ă N write VN :“ biPNVi. Define the function sDet (which
we later show to be a functor) by sDetpNq “ VN and

sDet : Matkpn,mq Ñ V ˚N b VM – pC2˚qbn b pC2qbm

sDetpXq “
ÿ

IĂrns,JĂrms

detpXIJq|IyxJ|

where |Iy “
Â

iPN vi,χpi,Iq, xJ| “
Â

iPM v
˚
i,χpi,Jq and the indicator function

χpi, Iq “ 0 if i R I and 1 if i P I. Throughout this paper, we work with the
understanding that detpXIJq “ 0 if |I| ‰ |J|.

This subdeterminant function sDet induces a strong monoidal functor
sDet : C Ñ VectC from a counting category to a subcategory D Ă VectC.
Let C be the monoidal category described as follows freely generated from
the following objects and morphisms. The objects of C are finite ordered
subsets of N (which may have repeated elements), with monoidal product
on objects defined by disjoint union. The morphisms are C-valued matrices
with rows and columns labeled by ordered subsets of N. If M,N are two
matrices with the set of row labels of M equal to the set of column labels
of N , let N ˝M “ NM be the ordinary matrix product, with the resulting
matrix inheriting the row labels of N and the column labels of M . The
monoidal product bC is the direct sum of labeled matrices.

Let D be the image of C in VectC. It will be a dagger symmetric traced
monoidal subcategory of finite-dimensional C-vector spaces generated by the
object C2, endowed with an orthonormal basis, and morphisms sDetpMq for
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M a labeled matrix. Tensor product and composition/contraction are the
usual operations.

Proposition 4.10. C is a strict dagger symmetric monoidal category.

Proof. We first show that bC is a bifunctor. For A Ă N, idA is the identity
matrix with row and column labels A. It is easy to see that for any A,B Ă N,
idAbC idB “ idAbCB. Now for morphisms W,X, Y, Z P MorpCq, W bC X ˝

Y bC Z “ pW ‘XqpY ‘ Zq “ WY ‘XZ “ pW ˝ Y q bC pX ˝ Zq, so bC is
indeed a bifunctor.

The maps α, ρ, and λ must be natural transformations. For A,B,C P

ObpCq, the associator αABC : pAbCBqbCC Ñ AbC pBbCCq is just equality
by the associativity of matrix direct product. The unit for C, denoted 1C ,
is the empty set. Then λA : 1C bC A Ñ A and ρA : A bC 1C Ñ A are also
equality since it is union with H. It is clear that α, λ, and ρ are natural
isomorphisms.

We need to check that the diagrams from Theorem 2.2 commute. First
let us check, for A,B P ObpCq:

pAbC 1Cq bC B
α //

ρAbC idB ))

AbC p1C bC Bq

idAbCλB
��

AbC B

pAbC 1CqbCB “ pAYHqYB is mapped to AYB by ρAbC idB via equality.
Then α maps pAYHqYB to AYpHYBq via equality. This is then mapped
to AYB by idAbCλB via equality, and the diagram commutes.

Now let us check the second diagram, for A,B,C,D P ObpCq (as writing
bC simply as b:

ppC bAq bBq bD

α
tt

αbidD
// pC b pAbBqqbD

α

��

pC bAq b pB bDq

α
**

C b pAb pB bDqq C b ppAbBqøDq
idC bα
oo

.

The object ppC bC Aq bC Bq bC Dq “ ppC Y Aq Y Bq Y D is mapped to
C Y pAY pB YDqq by pidC bCαq ˝ pαq ˝ pα bC idDq via equality. Similarly,
it is mapped to C Y pAY pB YDqq by α ˝α via equality. This diagram also
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commutes and so C is a monoidal category. Furthermore, since α, λ, and ρ
are equalities, C is a strict monoidal category.

The braiding for C is a map σA,B : AbC B Ñ B bC A, A,B P ObpCq. It
is given by the matrix

σA,B “

ˆ

B A

A 0 1
B 1 0

˙

.

We need to check that the diagrams in Subsection 2.1.1 for braided categories
commute for A,B,C P ObpCq (once again writing b in lieu of bC):

pB bAq b C
α // B b pAb Cq

idB bσA,C

((
pAbBq b C

σA,BbidC
66

α
((

B b pC bAq

Ab pB b Cq
σA,pBbCq// pB b Cq bA

α

66

pB bAq b C
α // B b pAb Cq

idB bσ
´1
A,C

((
pAbBq b C

σ´1
A,BbidC

66

α
((

B b pC bAq

Ab pB b Cq
σ´1
A,pBbCq// pB b Cq bA

α

66

.

The first diagram commutes by noting that

¨

˝

B A C

A 0 1 0
B 1 0 0
C 0 0 1

˛

‚

¨

˝

B A C

B 1 0 0
A 0 1 0
C 0 0 1

˛

‚

¨

˝

B C A

B 1 0 0
A 0 0 1
C 0 1 0

˛

‚“

¨

˝

A B C

A 1 0 0
B 0 1 0
C 0 0 1

˛

‚

¨

˝

B C A

A 0 0 1
B 1 0 0
C 0 1 0

˛

‚

¨

˝

B C A

B 1 0 0
C 0 1 0
A 0 0 1

˛

‚.

The second diagram commutes since σ´1
B,A “ σA,B (which implies the cate-

gory is symmetric) for any A,B P ObpCq and so the second diagram is the
same as the first.
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The dagger for C is given by matrix transpose and the identity on ob-
jects. We need to check the axioms for being a dagger symmetric monoidal
category listed in Subsection 2.1.1. Clearly id:A “ idTA “ idA. Given
X,Y P MorpCq, X : A Ñ B, Y : B Ñ C, pX ˝ Y q: “ pXY qT “ Y TXT “

Y : ˝X: : C Ñ A. Lastly X:: “ XTT “ X.
Given X,Y P HompCq, pX bC Y q

: “ pX ‘ Y qT “ XT ‘ Y T “ X:bC Y
:.

Secondly, α, λ, and ρ should all be unitary (its inverse is equal to its dagger).
Since they are all the identity morphism, this is also satisfied. Thus C is
indeed a strict dagger symmetric monoidal category.

Theorem 4.11. The map sDet defines a strict monoidal functor which is
an equivalence of dagger symmetric traced categories. Thus while computing
a trace in VectC is in general #P -hard, in the image of sDet it can be
computed in polynomial time.

We prove this in two parts as Lemmata 4.12 and 4.13.

Lemma 4.12. The map sDet defines a strict monoidal functor which is an
equivalence of monoidal categories.

Proof. First we must show that sDet is a functor, i.e. that it respects
composition and that sDetpidAq “ idsDetpAq. Suppose X P HomCpI, Jq,
Y P HomCpJ,Kq so X is a matrix with row labels I, column labels J and
Y has row labels J and column labels K:

sDetpY q ˝ sDetpXq “
ÿ

iĎI

ÿ

jĎJ

ÿ

kĎK

detpXijq detpYjkq|iyxk|

“
ÿ

iĎI

ÿ

jĎJ

detpXYikq|iyxk| “ sDetpXY q

where the middle equality is the Cauchy-Binet formula. Now in C, idA
is the identity matrix with row and column labels A. Then sDetpidAq “
ř

IĎA |IyxI| which is the identity morphism for the object sDetpAq in D, so
sDet is indeed a functor.

For sDet to be a monoidal functor, we must demonstrate two additional
properties. We must show that for matrices M and N , sDetpM ‘ Nq “
sDetpMqb sDetpNq. Here b denotes the usual tensor product in VectC. Let
I and J be the rows and columns of M , respectively. Let I1 and J1 be likewise
for N . A straightforward calculation gives

sDetpM ‘Nq “
ÿ

UĎIYI1

ÿ

VĎJYJ1

detpM ‘NqUV|UyxV|
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“
ÿ

UĎIYI1

ÿ

VĎJYJ1

detpMUXI,VXJq detpNVXI1,VXJ1q|UX Iy|UX I1yxV X J|xV X J1|

“
ÿ

UĎI

ÿ

U1ĎI1

ÿ

VĎJ

ÿ

V1ĎJ1

detpMUVq detpNU1V1q|Uy|U
1yxV|xV1| “ sDetpMqbsDetpNq.

Secondly we must show there are morphisms F0 : 1D Ñ sDetp1Cq and
for any A,B P ObpCq, F1 : sDetpAq b sDetpBq Ñ sDetpA bC Bq satisfying
the commutative diagrams in Definition 2.4.

Since sDetpHq “ biPHVi “ C, F0 is simply equality. Similarly for objects
A and B,

sDetpAbC Bq “ sDetpAYBq “ biPAYBVi

“ pbiPAViq b pbjPBVjq “ sDetpAq b sDetpBq.

Thus F1 is equality. In the following diagrams, we shall denote sDet by F.
Let α1, λ1, ρ1 be the natural transformations for D. Note that all three

are equalities. For A,B,C P ObpCq, the following diagrams from Definition
2.4 must commute :

FpAq b pFpBq b FpCqq
α1 //

idFpAqbF1

��

pFpAq b FpBqq b FpCq

F1bidFpCq

��
FpAq b pFpB bC Cqq

F1

��

pFpAbC Bq b FpCqq

F1

��
FpAbC pB bC Cqq

Fpαq // FppAbC Bq bC Cq

.

FpBq b 11
ρ1 //

idFpBqbF0

��

FpBq

FpBq b Fp1q
F1 // FpB b 1q

Fpρq

OO
11 b FpBq

λ //

F0bidFpBq

��

FpBq

Fp1q b FpBq
F1 // Fp1bBq

Fpλq

OO

The diagrams trivially commute as all of the maps are identities. So sDet is
a strong monoidal functor. Since F0, F1 are equalities, it is a strict monoidal
functor.

Lastly, we want to say that C and D are equivalent as monoidal cate-
gories. By definition of D, sDet surjects onto objects and morphisms, so
it is a full functor. Now consider HompA,Bq for objects A,B P ObpCq.
Let X P HompA,Bq. sDetpXq contains all the entries of X as coefficients
in the sum since the entries of X are 1 ˆ 1 minors, and X is determined
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by its image sDetpXq. Thus sDet induces an injection on HompA,Bq Ñ
HompsDetpAq, sDetpBqq, so the functor is faithful. Thus it is an equiva-
lence. However, it is not quite an isomorphism as sDet does not give a
bijection on objects as all subsets of N of size n map to pC2qbn.

We have yet to define the braiding and dagger for D required to state
Theorem 4.11. For F “ sDet to respect the braiding, we need the following
diagrams from Equation 2.1.2 to commute:

FpAq b FpBq
F1 //

σFpAq,FpBq

��

FpAbBq

FpσA,Bq

��
FpBq b FpAq

F1 // FpB bC Aq

.

Recalling the matrix σA,B as defined in Theorem 4.10, we define the braiding
for D to be F pσA,Bq “ sDetpσA,Bq “ |00yx00|`|01yx10|`|10yx01|´|11yx11|,
which makes the diagram commute trivially. We do not check the diagrams
that ensures this is a valid braiding for D since it is equivalent to C. For the
dagger, consider X P HompCq with row labels I and column labels J, and
note

sDetpX:q “
ÿ

iĎI,jĎJ

detpXT
ij q|iyxj| “

ÿ

iĎI,jĎJ

detpXijq|jyxi| “ sDetpXqT .

So the dagger for D is the normal dagger in VectC.
For f : A Ñ A P C, define trpfq “ detpI ` fq and define trace in D in

the usual way. This choice of trace may seem unusual, but it satisfies the
axioms of a traced category given in Subsection 2.1.1 and its image under
the sDet functor is the usual trace in D (as we show in a moment). This is
the most important aspect as it allows us to frame problems in C and find
the answer to the contraction problem without the need to pass over to the
category D which has exponentially larger tensors.

Lemma 4.13. The map sDet defines a strict monoidal functor which is an
equivalence of dagger symmetric traced categories.

Proof. By construction, sDet respects the braiding. We also showed that
this functor respects the normal dagger for linear transformations. Theorem
4.15 and Proposition 4.16 below shows that sDet induces the identity map
from Homp1C ,1Cq Ñ Homp1D,1Dq and thus respects the trace.
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Remark 4.14. This braiding is not the usual braiding for VectC. Thus
while the functor sDet is count-preserving, the count will not be the same as
if the standard braiding ub v ÞÑ v b u is used.

Using the operations of ‘ and matrix multiplication, we can transform
any string diagram in C into a diagram with a single matrix, M , and thus
evaluate the determinantal circuit efficiently.

A determinantal circuit is the trace of a linear map defined by an ex-
pression of the form pf1,1b ¨ ¨ ¨ b f1,n1q ˝ ¨ ¨ ¨ ˝ pfm,1b ¨ ¨ ¨ b fm,nmq. Let dk be
the dimension of the domain of the kth linear map pfk,1 b ¨ ¨ ¨ b fk,nkq, with
k “ 1, . . . ,m. The maximum width of such a circuit is maxk“1,...,m log2 dk
and the depth is m.

Theorem 4.15. The time complexity of computing the trace of a determi-
nantal circuit in C is Opdwωq “ Opdwω ` cωq where d is the depth of the
circuit, w is the maximum width, c is width at the input and output (so
can be chosen to be the minimum width), and ω is the exponent of matrix
multiplication.

Proof. We have an n ˆ n matrix with equal row and column labels, which
we may assume to be 1, . . . , n. Then

sDetpMq “
ÿ

I,JĎrns

detpMI,Jq|IyxJ|

and contracting this against itself gives

ÿ

I,JĎrns

detpMI,JqxJ|IyxJ|Iy “
ÿ

IĂrns

detMI,I.

That is, the trace of a matrix M in C is the exponentially large sum of its 2n

principal minors; we claim that detpI`Aq is precisely this sum (Proposition
4.16). This enables us to compute this number in time nω.

The following identity is well-known (e.g. it can be derived from results
in [50]); we include a proof for completeness.

Proposition 4.16. Given an nˆ n matrix M ,

detpI `Mq “
ÿ

JĎrns

detpMJq

where MJ “MJ,J.
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ˆ

a1 b1
c1 d1

˙ ˆ

a2

c2

˙

`

a3 b3
˘

ˆ

a4 b4
c4 d4

˙

Figure 4.2: An example of a determinantal circuit (wires oriented clockwise).
The four tensors in VectC, from left to right, are obtained by applying sDet
to each matrix. Letting V “ C2, they lie in pV ˚qb2 b V b2, pV ˚qb2 b V ,
V ˚ b V b2, and pV ˚qb2 b V b2 respectively.

Proof. Let ui be the columns of M and ei the standard basis vectors, i P rns.
Then detpI ` Mq “

Źn
i“1 pei ` uiq. Expanding this gives the sum of the

determinants of all 2n matrices with ith column either ui or ei.
Consider one of these matrices, W . Let J Ď rns be the set of indices of

the uj appearing as columns in W . Then for any j R J, ej is a column of W .
Using the Laplace expansion, detpW q “ detpWjq, where Wj is W with the
jth row and column omitted. Then iterating the Laplace expansion gives us
that detpW q “ detpMJq.

Note that while D could be equipped with cup and cap morphisms from
the category of finite-dimensional vector spaces to obtain a dagger closed
compact category, the matrix category C is not a closed compact category:
it lacks the morphisms ηA and εA. The morphism eA : A b A˚ Ñ C would
have to be the sDet of a 2ˆ0 matrix, or the composition of several morphisms
to obtain one of this type.

Proposition 4.17. The category C does not have duals for objects.

Proof. We cannot have eA “ sDetpMq for any M . The morphism we want
is |00y ` |11y, but there is a unique 2ˆ 0 matrix M and sDetpMq “ |00y.

As a consequence, we really do have to work with traced categories rather
than the more convenient dagger closed compact categories.

A diagram in the equivalent categories C,D is called a determinantal
circuit, an example is given in Figure 4.2. When the morphism represented
is a field element, it computes the value of the tensor contraction problem.
We discuss applications of determinantal circuits further in Chapter 5.

42



4.3 Determinantal Circuits are Pfaffian Circuits

In looking to find a new class of efficiently tractable tensor networks, we
found that surprisingly, all determinantal circuits are Pfaffian circuits. The
converse is not true, however. To show this, we find a functor transforming
determinantal circuits into Pfaffian circuits. Such a functor should preserve
the trace so that the resulting Pfaffian circuit solves the same problem as
the original determinantal circuit. The functor should also be faithful so
that C is a subcategory of P, consequently D is a subcategory of P.

The morphisms in D from Vn Ñ Vm are isomorphic to the variety

Dn,m :“ tp1, . . . ,detpMIJq, . . . ,detpMqq|M P Matnˆmu

given by tuples of minors of nˆm matrices. Then define the variety

Pn :“ tp1, . . . ,PfpMIJq, . . . ,PfpMq|M P Mnu,

the tuples of minors of n ˆ n skew-symmetric matrices. This variety is
isomorphic to the image of the sPf functor on the set Mn ˆ t0u. We first
want to find a closed immersion Dn,m ãÑ Pn`m.

We can assume that n “ m, otherwise, we pad the matrix with columns
or rows of zeros as necessary. So we want to find a map Dn,n ãÑ P2n. For
an nˆ n matrix M , the following formula is classically known:

Pf

„

0 M
´MT 0



“ p´1qnpn´1q{2 detpMq.

This embedding of M into a skew-symmetric matrix is close to the map we
are looking for, however this näıve way may change the sign on some of the
minors of M . So we must modify this map slightly.

Definition 4.18. Let M̃ be the matrix M reflected across a vertical axis,
and define SpMq to be

SpMq :“

„

0 M̃

´M̃T 0



.

If M has row labels R and column labels C, then we give SpMq the row and
column labels RY C̃, where C̃ is the reverse ordering of C.

Proposition 4.19. For an nˆ n matrix M ,

PfpSpMqq “ Pf

„

0 M̃

´M̃T 0



“ detpMq.
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Proof. In general, M̃ can be made from M with tn2 u column swaps. So if

n ” 0, 1 modulo 4, tn2 u is an even number and so detpM̃q “ detpMq. Now if

n is congruent to 0 or 1 modulo 4, then PfpSpMqq “ p´1qnpn´1q{2 detpM̃q “
detpM̃q “ detpMq. If n is congruent to 2 or 3 modulo 4, then tn2 u is an odd

number so detpM̃q “ ´detpMq and PfpSpMqq “ p´1qnpn´1q{2 detpM̃q “
´detpM̃q “ detpMq.

We must turn this closed immersion into a functor. The morphisms of D
and P look quite different. Note that there are two primary types of mor-
phisms in P, namely those of the form sPfpMq and those of form sPf_pMq.
Thus Pfaffian circuits form bipartite graphs. Determinantal circuits, on the
other hand, are not bipartite at all. There are morphisms from Vn Ñ Vm for
any sets n and m of any size.

Given how different these circuits look on the surface, we must really
look at the categorical properties of P to construct the functor. We will
need the ability to bend wires in Pfaffian circuits. So we will exploit the
fact that P is a monoidal category with a dagger structure and duals for
objects, as proved in Theorem 4.2 and Proposition 4.8.

Theorem 4.20. Every morphism in D is a morphism in P. Thus there
is a trace-preserving faithful strict monoidal functor from D Ñ P given by
inclusion.

Proof. First suppose that M is an nˆn matrix. The labels of SpMq “ RYC̃
where R is the row labels of M and C are the column labels of M . Now let
K be a subset of the labels. Then let I “ K XR and J̃ “ K X C̃. Then we
get

PfpSpMqKq “ Pf

„

0 M̃I,J

´M̃T
I,J 0



“ detpMI,Jq,

so that
sPfpSpMqq “

ÿ

IĎR,JĎC

detpMI,Jq|Iy|J̃y

sPf_pSpMqq “
ÿ

IĎR,JĎC

detpMĪ,J̄qxI|xJ̃ |.
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The identity morphism on Ã :“ Anb¨ ¨ ¨bA1 in C is given by the matrix

IÃ “

¨

˚

˚

˚

˝

An An´1 ¨ ¨ ¨ A1

An 1 0 ¨ ¨ ¨ 0
An´1 0 1 ¨ ¨ ¨ 0
...

...
... ¨ ¨ ¨

...
A1 0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‚

.

Suppose we have an n ˆ n matrix M : B1 b ¨ ¨ ¨ b Bn Ñ A1 b ¨ ¨ ¨ b An.
Then we define M˚ “ sPfpSpMqq and ηÃ “ sPf_pSpIÃqq. Let us consider
the morphism in P given by

B1 ...
Bn

M˚An
...

A1
ηÃ

...
An

A1

.

For I Ď tB1, . . . , Bnu, J̃ , J̃
1 Ď tAn, . . . , A1u; and J 1 Ď tA1, . . . Anu, we can

represent this tensor as

ˆ

ÿ

detpMI,Jq|Iy|J̃y

˙ˆ

ÿ

xJ̃ 1|xJ 1|

˙

“

ÿ

detpMI,Jq|IyxJ | “ sDetpMq.

So for any square matrix M , sDetpMq is a morphism in P. Now not every
morphism in C is a square matrix. However, if we have an nˆm matrix M ,
we can make it square. If n ă m, then let M 1 “M ‘ Zm´n where Zm´n is
the pm ´ nq ˆ 0 matrix. If m ă n, then let M 1 “ M ‘ Z 1n´m where Z 1n´m
is the 0 ˆ pn ´mq matrix. What this amounts to is either adding rows or
columns of zeros as needed.

Now note that sPfpr0sq “ |0y and thus x0| is also a morphism in P.
Consider sPf_pKq “ x0A0B| ` x1A1B| where

K “

ˆ

A B

A 0 1
B ´1 0

˙

,
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and contracting this with the morphism |0By, we obtain x0A|.
Let M be an arbitrary nˆm matrix. Then let us consider SpM 1q where

M 1 is defined as above. Suppose n ă m. Then

sPfpSpM 1qq “
ÿ

I,J

detpMI,Jq|I0n`1 ¨ ¨ ¨ 0myxJ |

Consider the following diagram in P:

1 ...
n
x0| ...
x0|

sPfpSpM 1qq

1

...

m
.

The morphism this represents will obviously come out to be sDetpMq. If
n ą m, then copies of |0y are added to the extra output wires of sPfpSpM 1qq.
Thus we have finished the proof of theorem. Every morphism of D is in fact
a morphism in P. Furthermore, the reinterpretation of a determinantal
circuit as a Pfaffian circuit can obviously be done in polynomial time.
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Chapter 5

The Combinatorics of
Determinantal Circuits

In this chapter, we discuss how to determine what a determinantal circuit is
counting in terms of its underlying graph. Knowing this allows us to phrase
counting problems as determinantal circuits.

We discuss two applications of determinantal circuits in particular. In
Section 5.2, we describe how to set up a determinantal circuit that counts
the number of rooted spanning forests of a specified graph. We then show
that collapsing this determinantal circuit to a single matrix yields that the
number of rooted spanning forests is detpI`BBT q, recovering Theorem 4.9.

In Section 5.3, we define lattice path matroids. It is known that com-
puting the Tutte polynomial of such a matroid can be done in polynomial
time. However, using determinantal circuits we can make an improvement
to this algorithm.

5.1 Equivalence Classes of Multicycles

We describe what a the tensor contraction of a determinantal circuit counts
in the most general setting. Considering the underlying weighted graph
of the determinantal circuit, the value can be phrased as summing the
weights associated to certain structures within the graph. These structures
are equivalence classes of multicycles, which we define momentarily. Thus,
when trying to count with determinantal circuits, one needs to embed the
objects to be counted as equivalence classes of multicycles.

A determinantal circuit is given as the trace of a composition of linear
maps pf1,1b¨ ¨ ¨bf1,n1q˝¨ ¨ ¨˝pfm,1b¨ ¨ ¨bfm,nmq. Let Si “ fi,1b¨ ¨ ¨bfi,ni . Let
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MSi be the matrix such that sDetpMSiq “ Si. We call the Si or associated
MSi stacks. Pictorially, the situation is as follows:

f1,1
...

...

S1

...

f1,n1

...
...

¨ ¨ ¨

...

fm,1
...

...

Sm

...

fm,nm
...

...

.

Forgetting, for a moment, the categorical structure of the circuit, we consider
the above as a graph.

Definition 5.1. A multicycle of a graph is an edge-disjoint union of cycles
in the graph. We consider the empty graph a multicycle.

What matters is whether a subgraph can be interpreted as several cy-
cles, not which edges are in which particular cycles. Call two multicycles
equivalent if they contain the same edges and denote an equivalence class of
multicycles by rC s.

Definition 5.2. A weighted multicycle of a determinantal circuit is a multi-
cycle of the underlying graph where each cycle in the multicycle is assigned
a scalar. The weight of the multicycle is the product of these scalars.

Proposition 5.3. Given a determinantal circuit, let M be the set of all
equivalence classes of its multicycles. There exists an assignment of a weight
WrC s to every rC s P M such that the value of the determinantal circuit is
ř

rC sPM WrC s.

Proof. A determinantal circuit with a single nˆ n matrix M has value

detpI `Mq “
ÿ

IĎrns

detpMIq “ TrpsDetpMqq “ Tr

ˆ

ÿ

IĎrns

detpMIq|IyxI|

˙

.

A general determinantal circuit is the trace of a composition of stacks
S1 ˝ ¨ ¨ ¨ ˝ Sm. Let Ek be the set of edges entering Sk from the right and
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exiting Sk´1 to the left, and observe that

TrpsDetpMS1 ˝ ¨ ¨ ¨ ˝MSmqq “

Tr

ˆ

ÿ

I1,...,Im

„ m
ź

k“1

detpMSk
Ik,Ik`1

q



|I1yxI2|I2y ¨ ¨ ¨ xIm|ImyxI1|

˙

“
ÿ

I1,...,Im

„ m
ź

k“1

detpMSk
Ik,Ik`1

q



(5.1)

where each Ik Ď Ek.
We want to describe (5.1) as a sum over equivalence classes of multicycles

of S1 ˝ ¨ ¨ ¨ ˝ Sm. Consider the subgraph of the determinantal circuit whose
edges are those in the sets Ik. We claim that if the subgraph does not
correspond to an equivalence class of multicycles,

ś

detpMSk
Ik,Ik
q “ 0.

Each summand
ś

detpMSk
Ik,Ik`1

q in (5.1) will be non-zero only if |I1| “

¨ ¨ ¨ “ |Im| as the determinant of a non-square matrix is zero. This implies
that the number of edges of a entering a vertex from the left in the underlying
graph must equal the number of edges exiting it to the right. This is sufficient
for the circuit subgraph given by the subsets Ik to be viewable as a multicycle.

We have not specified a cycle decomposition of the multicycle, so each
summand corresponds to an equivalence class of multicycles with weight
ś

detpMSk
Ik
q.

Example 5.4. Suppose we are given the following determinantal circuit:

ˆ

a b
c d

˙

.

Its value is the sum of the principal minors of the matrix: 1`a`d`ad´bc.
In the picture below we draw the weighted multicycles in bold on the circuit:

ˆ

a b
c d

˙

weight=1 weight=a
ˆ

a b
c d

˙
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ˆ

a b
c d

˙

weight=d weight=ad´ bc
ˆ

a b
c d

˙

.

5.2 Recovering the matrix tree theorem

In this section, we describe the construction of a determinantal circuit from
a given graph, G “ tV,Eu, such that its value counts the number of rooted
spanning forests of G. Necessary for the theorem, choose an arbitrary ori-
entation on the graph G. Let B be the directed incidence matrix of G.

We construct a string diagram ZZ: in C which can be reduced to a
determinantal circuit consisting of only the matrix BBT using the operations
of ‘ and matrix multiplication. An example of a graph is given in Figure
5.1(a) and the determinantal circuit constructed for it in Figure 5.1(b).

We first build a string diagram, Z, from a collection of C-morphisms
(nodes); there is one node for every edge and vertex of G. Denote an edge
of G by ε, the edge node in Z corresponding to it by e and the edge node in
Z: corresponding to it by e:. Denote a vertex in G by ν and its node in DG

by v. An edge node is connected to a vertex node if the edge and vertex are
incident in G.

We induce an orientation on Z from the orientation placed on G, al-
though this has no categorical meaning. An wire in Z connecting an edge
and vertex node is oriented towards the vertex node if that vertex is a sink
for the edge in G; otherwise the wire is oriented towards the edge node.
Arrange Z into two stacks: the first consists of the edge nodes, the second
of the vertex nodes. The dashed box in Figure 5.1(b) gives an example of
this construction.

Edge nodes are 1ˆ2 matrices, vertex nodes are dpνqˆ1 matrices, where
dpνq is the degree of ν. The matrix Me associated to an edge node e in Z
is either r1 ´ 1s or r´1 1s; it has a ´1 in the column corresponding to the
output wire oriented away from e and a 1 in the other column. Let v be a
vertex node. The matrix Mv associated with a vertex node v is a dpνq ˆ 1
matrix with every entry equal to 1. Although in general we suppress it in

pictures, whenever two wires cross, we put the braiding matrix

ˆ

0 1
1 0

˙

on

the crossing.
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(a) A rooted
graph

(b) Its corresponding circuit

(c) Equivalent circuit

Figure 5.1: Transforming a rooted graph to a determinantal circuit.
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Lemma 5.5. Using the operations of matrix multiplication and ‘, the ma-
trices in Z collapse to the incidence matrix of G with some orientation placed
on it.

Proof. Let E be the matrix equal to the direct sum of all the matrices on
the edge nodes and V be the direct sum of all the matrices on vertex nodes.
Then Z reduces to the matrix A “ EPV where P is the permutation matrix
obtained from crossed wires. Let e be an edge node and let re be the row
vector of E corresponding to e. For any column vector cv of PV associated
with vertex node v, re ¨ cv ‰ 0 if and only if e is incident to v. In fact, re ¨ cv
is equal to the number of wires v Ñ e minus the number of wires e Ñ v in
Z. This implies that A “ B, the incidence matrix.

Reflect Z across a vertical line, transposing all node matrices, to obtain
Z:, which collapses to the matrix BT . Our final circuit ZZ: is the compo-
sition of Z with Z:. Figures 5.1(a) and (b), show an example of a graph
G and its transformation into a circuit ZZ:. We denote the determinantal
circuit like in Figure 5.1(b) associated to a graph G by DG.

By analyzing the values of the multicycle classes of DG and what they
represent in the graph G, one can arrive at Theorem 4.9, although the proof
via this method is quite tedious. We briefly sketch the correspondence,
although we do not prove it.

There is a several to one, surjective map φ from weighted multicycles
classes of DG to subgraphs of G. This is given by looking at the subgraph
induced by the edge nodes included in the multicycle class. For a subgraph
H that is not a forest, φ´1pHq contains an even number of multicycles, half
with weight +1 and half with weight -1. Thus subgraphs that are not forests
do not contribute to the sum. If H is a forest, then φ´1pHq has as many
multicycle classes as choice of roots for the forest. Furthermore, the weight
of every multicycle class in φ´1pHq is +1. Every forest can be lifted to a
unique spanning forest by adding the vertices of G not included in H (but
none of their incident edges) and making all of the added vertices roots.
This is sufficient to prove Theorem 4.9.

5.3 Computing the Tutte Polynomial of Lattice
Path Matroids

Lattice path matroids were introduced in [12] as a particularly well-behaved
and yet very interesting class of matroids. In the same paper, the authors
prove that computation of the Tutte polynomials of lattice path matroids is
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p0, 0q

p4, 5q

(a) Lattice bounded by two
monotone paths P (lower) and
Q (upper).

w1 w4 w7

w2

w3

w5

w6

(b) Weighted lattice.

Figure 5.2: Lattices

polynomial time. In [13], they go on to prove that the time complexity of
computing the Tutte polynomial is Opn5q, where n is the size of the ground
set of the matroid.

First we discuss weighted lattice paths and their relation to determinan-
tal circuits, specifically as a special case of weighted equivalence classes of
multicycles. Then we define lattice path matroids and state the relevant
theorems from [12, 13]. Lastly, we give an explicit algorithm for computing
the Tutte polynomial and analyze its time complexity. We give an algorithm
that improves the complexity to Opn4q using determinantal circuits. Then
we show that evaluating the Tutte polynomial on a specific input (fixed
values of x and y) can be done in time Opn2q.

5.3.1 Weighted Lattice Paths

Let us consider Z2 as an infinite graph where two points are connected if they
differ by p˘1, 0q or p0,˘1q. Suppose we are given two monotone paths on Z2,
P and Q, that both start at p0, 0q and end at pm, rq. Furthermore, suppose
that P is never above Q in the sense that there are no points pp1, p2q P P ,
pq1, q2q P Q such that p1 ´ q1 ă 0 and p2 ´ q2 ą 0. We are interested in
subgraphs of Z2 bounded by such pairs of paths. From here on out, “lattice”
means of subgraph of this form. An example is given by Figure 5.2(a).

Let E be the set of edges of a lattice G. Suppose for each e P E, we
assign it a weight, wpeq. We call this a weighted lattice. Given a monotone
path C Ď G, we define the weight of C to be the product of its edge weights

wpCq :“
ź

ePC

wpeq.
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Definition 5.6. Let G be a lattice bounded by two paths with common
endpoint pm, rq. A full path in G is monotone path from p0, 0q to pm, rq.

Definition 5.7. Let F be the set of full paths of a weighted lattice G. The
value of G is defined to be

ÿ

CPF

wpCq.

In Figure 5.2(b), there are three full paths of the weighted lattice. The
value of this lattice is w1w2w5 ` w3w4w5 ` w3w6w7.

We assign matrices to every vertex of a weighted lattice to encode the
weights of each edge that will be the C-morphisms for a determinantal circuit.
Let G “ tV,Eu be a weighted lattice. For v P V , we define the incoming
edges of v to be those edges below or to the left of v incident to v. The
other edges incident to v are the outgoing edges of v.

The matrix we associate to v has rows equal to the number of incoming
edges and columns equal to the number of outgoing edges. We order the in-
coming edges of v counter-clockwise starting with the incoming edge closest
to the negative x-axis. We order the outgoing edges of v clockwise starting
with the outgoing edge closest to the positive y-axis. This order defines how
to associate the edges of v with rows and columns of the matrix. We fill
each column with the weight of the outgoing edge of v it corresponds to.
For example:

e1 v

e3

e2

e4 ÞÑ

ˆ

e3 e4

e1 wpe3q wpe4q

e2 wpe3q wpe4q

˙

Note that every edge in a lattice is the outgoing edge of precisely one
vertex, so given the matrices associated to the vertices, the weight on the
edges can be recovered. For a vertex v, we denote the matrix associated
with it by Mv.

However, for the matrices associated with p0, 0q and pm, rq, we do some-
thing slightly different. As defined, Mp0,0q would be have zero rows and
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Figure 5.3: A Determinantal Circuit

Mpm,rq zero columns. We define Mp0,0q to have one row with the weights of
the outgoing edges in the appropriate columns. We define Mpm,rq to have
one column, with all entries 1.

5.3.2 Phrasing the Tutte Polynomial as a Determinantal Cir-
cuit

Take a weighted lattice with the matrices described above assigned to each
vertex. Figure 5.3.2 shows an example of how to determine the stacks (as
described in Section 5.2) of the determinantal circuit from the lattice. For
each of the diagonal arrows, take the matrix direct sum of the matrices Mv

along the direction of the arrow, i.e., Mv will be block diagonal. If G is a
weighted lattice, let DG be its associated determinantal circuit.

Let G be a weighted lattice bounded by two paths P and Q from p0, 0q
to pm, rq, and F the set of full paths of G. If C P F , we describe it as a
series of triples pvi, ei, ei`1q where ei is the ith edge and vi is the common
vertex of ei and ei`1, i ranging from 1 to n “ m ` r. The following is a
special case of Proposition 5.3.

Corollary 5.8. The value of DG is given by the expression

ÿ

CPF

ˆ

detpMv1,1,e1qdetpMvn,en,1q
ź

pvi,ei,ei`1qPP

detpMvi,ei,ei`1q

˙

where Mvi,ei,ei`1 is the minor of Mvi specified by the edges e, e1.

Proposition 5.9. The value of DG ´ 1 is equal to the value of G.
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Figure 5.4: Weighted lattice with Tutte polynomial px2 ` xy ` y2 ` x `
yqpxqpx` y ` y2q as its value.

Proof. By the way we constructed Mvi , Mvi,ei,ei`1 is a 1 ˆ 1 minor with
entry wpei`1q. Furthermore Mv1,1,e1 has single entry wpe1q and Mvn,en,1 has
single entry 1. Thus

ÿ

CPF

ˆ

detpMv1,1,e1qdetpMvn,en,1q
ź

pvi,ei,ei`1qPP

detpMvi,ei,ei`1q

˙

“
ÿ

CPF

n
ź

i“1

wpeiq “
ÿ

CPF

wpCq.

However, the case of the empty path is counted in this value, so if we subtract
one from the value of DG, we get the value of G.

5.3.3 Lattice Path Matroids

Recall that a matroid is a pair pG, Iq where G, the ground set, is a finite
set and I, the independent sets, are a collection of subsets of G such that
(i) H P I, (ii) if A P I and A1 Ă A, then A1 P I, and (iii) if A,B P I and
|A| ą |B|, then Da P AzB such that B Y tau P I.

Lattice path matroids are defined with respect to a lattice bounded by
two monotone paths P and Q from p0, 0q to pm, rq as described in Subsection
5.3.1. Since P and Q are both monotone, they can be described by a string
of n “ m ` r 0’s and 1’s where ’1’ corresponds to moving up one step and
’0’ corresponds to moving east one step.

Definition 5.10 ([12]). Let P “ p1 ¨ ¨ ¨ pn and Q “ q1 ¨ ¨ ¨ qn be two lattice
paths from p0, 0q to pm, rq with P never going above Q. Let u1 ă ¨ ¨ ¨ ă ur
be the set of indices such that pui “ 1. Let l1 ă ¨ ¨ ¨ ă lr be similarly for
Q. Then let Ni be the interval rli, uis of integers. Define M rP,Qs to be the
matroid with ground set rns and presentation pNi : i P rrsq. A lattice path
matroid is any matroid isomorphic to some M rP,Qs.
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Lattice path matroids are a very nice example of matroids and of interest
is the Tutte polynomial of such matroids. It turns out that this can be given
as the value of a particular weighting of the lattice defining the matroid. The
following is a slight restatement of the original theorem:

Theorem 5.11 ([12]). The Tutte polynomial of a lattice path matroid M rP,Qs
is the value of the lattice G defined by P and Q with the north steps of Q
having weight x, the east steps of P having weight y, and all other lattice
weights equal to 1.

An example is shown in Figure 5.4. Beside the edges in bold are the
corresponding weights. The weight of each non-bold edge is simply 1.

5.3.4 Algorithm for Computing the Tutte Polynomial

We now give the algorithm for computing the Tutte polynomial in pseu-
docode. We assume that we are given as input two monotone paths P and
Q from p0, 0q to pm, rq such that P never goes above Q. These paths are
given to us as a list of 1’s and 0’ where a ’1’ denotes a step north and a ’0’
denotes a step east.

Distance(P,Q,i):

Find the number of matrices in the ith stack. This is

how many more north steps Q has made than P by the ith stack.

M(v):

For input vertex v, return Mv.

Tutte(P,Q):

Let T be the length-one row vector (1)

for each stack i:

Let A be the empty list

for each node in the stack , v:
Append Mpvq to A

Update the vector T “ pT1Ar1s, . . . TiAris, . . . q
After the last stack, T is 1 by 1, T=(t).
Return t

Let n “ m ` r be the length of P and Q. The function Tutte iterates
over the stacks. The function Distance calculates the number of lattice
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points in a stack. For each vertex in the stack, the matrix Mpvq associated
to the vertex is found by a constant-time lookup.

After the matrices are calculated, we could take their direct sum and
multiply it by T . For example, the matrices associated to the nine stacks in
Figure 5.4, each of which is a direct sum of Mpvq, are multiplied to obtain

`

x y
˘

ˆ

x 1 0
0 0 1

˙

¨

˝

1 0 0
0 1 y
0 1 y

˛

‚

¨

˝

1 0
1 0
0 1

˛

‚

ˆ

x
x

˙

`

x y
˘

ˆ

1 0 0
0 1 y

˙

¨

˝

1 0
1 0
0 1

˛

‚

ˆ

1
1

˙

,

which equals the Tutte polynomial px2 ` xy ` y2 ` x` yqpxqpx` y ` y2q.
We can be more careful, however, to improve the running time since each

matrix Si is block-diagonal with block size at most 2.
T starts out as a (row) vector and each iteration of the main loop updates

T to a new vector. Since at each stage we are multiplying T by a block
diagonal matrix, we can partition T into T “ pT1, . . . , Ti, . . . q such that
multiplying T by

À

Mvi is the same as calculating pT1Mv1 , . . . , TiMvi , . . . q.
Eventually, T becomes a 1 ˆ 1 matrix and the algorithm then returns its
sole entry.

Inside of the main for loop of the function tutte, there are three main
contributors to the time complexity: the function Distance, finding the
matrix associated to a vertex, and the matrix multiplication.

If we let P ris be the ith bit of P and Qris likewise. Then Distance finds
ř

kďiQrks ´ P rks. This runs in time Opnq.
For the function Mpvq, there are a fixed finite of number of cases that

need to be checked depending on which entering and exiting edges it has
and whether or not v lies on P or Q. This runs in time Op1q.

For any stack, there are at most n vertices in the stack, and each Mvi

has at most two rows and at most two columns. If we specify values for x
and y, calculating pT1Mv1 , . . . , TiMvi , ¨ ¨ ¨ q takes at most 16n computations.
Thus it is Opnq.

Both the function distance and updating T runs in time Opnq inside the
main loop. Since there are n iterations of the main for loop, the overall
time complexity is Opn2q.

Should we wish to compute the polynomial itself rather than its value, we
need to account for multiplying intermediate polynomials by 1, x, or y, and
adding them. The polynomials in the intermediate vector T after stack i are
of degree at most i so have at most

`

i`2
i

˘

terms. The last application of an
Si can involve adding quadratically large polynomials and so the additional
cost is at most Opn2q.
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Then updating the vector can be done in time Opn3q and this lies in a
for loop that iterates at most n times. So the overall algorithm is Opn4q.
This is indeed an improvement over [13]
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Chapter 6

An Introduction to Invariant
Theory

In Chapter 4, we noted the difficulty of determining whether or not a tensor
network is a Pfaffian or determinantal circuit. This motivates our attempt
to study the invariant theory of the action of GLT on a tensor network T ,
viewed as an invariant polynomial. We present our results in subsequent
chapters. This chapter serves to introduce many of the classical results from
invariant theory that we use.

Let G ñ V be a group acting on a vector space or, more generally, a
variety. For our purposes, V will always be an affine variety over a field k of
characteristic 0, often algebraically closed. Many of the motivating examples
come from working over the field C. Throughout this dissertation, we always
choose an basis for any vector space under consideration, although we may
change this basis when it proves convenient.

Choosing a basis for V , if it is n-dimensional then we have the isomor-
phism SV ˚ – krx1, . . . , xns. Under a choice of basis, we have the coordinate
ring of V , denoted krV s, is isomorphic to krx1, . . . , xns. Since we always
choose a basis, we simply define krV s :“ krx1, . . . , xns.

There is an induced action by G on krV s: For f P krV s, g.f :“ fpg´1q,
for g P G. One can then form the ring of polynomials that are fixed by this
action:

krV sG :“ tf P krV s | g.f “ f, @g P Gu.

Note that this ring consists of the polynomials that are constant on orbits.
The basic idea is to try and distinguish two orbits from one another by
testing to see if they agree on all invariant polynomials.

While it is always the case that two orbits are distinct if they take a
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different value on some invariant, the converse is not generally true. To
understand when two orbits can be distinguished by invariants, how orbits
relate to the Zariski topology must be considered.

Defining a polynomial on a Zariski dense set means that the polynomial
can be uniquely lifted to one on the Zariski closure. So if an invariant is
constant on an orbit, it is constant on the Zariski closure of that orbit.
If the orbit closures of two orbits intersect, any invariant must take the
same value on both orbits. Thus these two orbits cannot be distinguished
by polynomials. This defines an equivalence class of orbits: two orbits are
equivalent if their closures intersect. The study of orbit closures leads into
algebraic geometry. We call such an equivalence class of orbits an orbit class.

Example 6.1. Let V “ k2, so krV s – krx, ys. Then consider the action of
kˆ on V given by t.px, yq “ ptx, t´1yq. Then it is easy to see that krV sk

ˆ

is equal to the ring krxys. In this example, determining the orbits of this
action is straightforward. If we set xy “ c for c ‰ 0, this specifies a unique
orbit. Furthermore, each such orbit is closed as it is defined by an irreducible
polynomial. However, if xy “ 0, there are three possible orbits. These are
the origin, the x-axis minus the origin, and the y-axis minus the origin.
Since the invariant ring cannot distinguish between these three orbits, we
claim that the closure of any two intersect. Indeed, it is easily seen that
this is the case. What we see then is that each equivalence class of orbits is
specified by the value of the single invariant polynomial. So the equivalent
classes of orbits can be associated with SpeckrV sG – k. We will see that
something similar holds in general in Section 6.2.

The groups we consider are typically products of general or special lin-
ear groups which are algebraic groups. Recall that an algebraic group is a
group that is also a variety such that multiplication and inversion are regular
functions on the variety.

A rational representation of an algebraic group φ : G Ñ GLpV q is one
where φ is a rational map of varieties. If G “ GLpW q, then this means every
entry coordinate is a polynomial in the entries of GLpW q divided by some
power of the determinant.

Definition 6.2. A representation G ñ V is called simple if there is no
non-trivial submodule W Ĺ V such that G.V Ď V . It is called semisimple
if it is the direct sum of simple modules.

Definition 6.3. An algebraic group over an algebraically closed field of
characteristic 0 is called reductive if every rational representation φ : G Ñ
GLpV q is semisimple.
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All groups we consider will be reductive and all representations will be
rational. For a reductive group G ñ V , the invariant ring krV sG has many
nice properties. The most important fact about such rings is Hilbert’s cele-
brated Basissatz.

Theorem 6.4 ([47, 46]). If W is a G-module and the induced action on
krW s is completely reducible, the invariant ring krV sG is finitely generated.

We note that for rational representations of reductive groups, the action
on krW s will always be completely reducible. As a consequence, for rational
representations of reductive groups, the resulting invariant ring is always
finitely generated. This is incredibly useful because then one needs only find
a finite generating set for the invariant ring. Two orbits can be separated
by orbits if and only if there is a generator that separates them. Actually,
one does not necessarily need the generators of the invariant ring. A set of
invariants is called a separating set if they induce the same equivalence class
of orbits as the full invariant ring [57].

There are other useful properties of invariant rings of rational repre-
sentations of reductive groups. Of note is the fact that the invariant ring
is Cohen-Macaulay [49]. This is useful when trying to establish a degree
bound on generators of the invariant ring, see for example [87, 88].

6.1 Centralizers of Semisimple Algebras

In this section, we outline the basic theory of centralizers of finite semisimple
algebras. The use of centralizers has been fundamental in the computation of
many of the invariant rings of classical actions. We first recall the definition
of a semisimple algebra. Recall the if M is an A-module, M is called simple
if it contains no non-zero proper A-submodule.

Definition 6.5. A finite dimensional algebra A is called semisimple if, when
viewed as an A-module acting on itself by left (or right) multiplication, it
decomposes as a direct sum of simple A-modules. Equivalently, every A-
module is semisimple.

Semisimple algebras are well understood. For finite dimensional semisim-
ple algebras over a field k, the Artin-Wedderburn Theorem implies that every
such algebra is a product of matrix algebras over finite dimensional division
algebras [3, 105]. More precisely, if A is such an algebra, then

A –
n
ź

i“1

MatniˆnipDiq
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where each Di is a division algebra over k.
We have been discussing actions by groups, that is, representations φ :

G Ñ GLpV q for some vector space V . Note that this lifts uniquely to a
representation of algebras φ : krGs Ñ EndpV q. Let xGyφ denote the image
of krGs under the map φ.

The algebra krGs is called the group algebra of G. It is the algebra
generated by the k-span of the elements tvg | g P Gu and where multipli-
cation is defined by vg ¨ vh :“ vgh. In many classical cases, the image of a
representation of krGs is a finite dimensional semisimple algebra.

Definition 6.6. Given an algebra representation ϕ : A Ñ EndpV q, we
define the centralizer of A with respect to ϕ as

EndApV q :“ ta P EndpV q | ab “ ba @b P ϕpAqu.

Studying the algebra EndApV q can been used to construct invariant rings
for adjoint actions of various classical groups. However, it is important that
these algebras be well behaved. The following famous theorem is a key
ingredient to much of classical invariant theory.

Theorem 6.7 (Double Centralizer Theorem [60]). Over any field k, let A Ď
EndpV q be a finite dimensional semisimple algebra and A1 be its centralizer.
Then

(a) A1 is a finite dimensional semisimple algebra and pA1q1 “ A.

(b) V has a unique decomposition V1 “
Àn

i“1 Vi into simple, non-isomorphic
AbA1-modules.

(c) Each Vi “ Wi bDi Yi where Wi is a simple A-module, Yi a simple A1-
module, and Di a finite dimensional division algebra over k.

Consider the representation of Sn on V bn by permutation on the factors
Vi. Over a field of characteristic 0, Maschke’s theorem says that the image
of krSns in EndpV bnq is a semisimple algebra [76, 77].

There is also an action of GLpV q on V bn by g.pbni“1viq “ b
n
i“1gvi. It

is a classical fact that EndSnpV
bnq “ EndpV q and likewise EndGLpV qpV

bnq

is the image of krSns under the discussed representation. The second and
third parts of Theorem 6.7 then lies at the heart of the celebrated Schur-
Weyl duality for the symmetric group.

We are interested in products of groups, so we wish to prove that cen-
tralizers behave well for products for the representations we consider. We
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are interested in a groups of the form Gd :“ ˆni“1Gdi acting on the space
V bm where V “

Ân
i“1 Vi by a representation φ “

Ân
i“1 φi. Viewing

V bm – V bm1 b ¨ ¨ ¨ b V bmn , this action is given by

pg1, . . . , gnq.pp
m
â

j“1

v1jqb¨ ¨ ¨bp

m
â

j“1

vnjqq “ p
m
â

j“1

φ1pg1qv1jqb¨ ¨ ¨bp

m
â

j“1

φnpgnqvnjq

extended linearly.

Theorem 6.8. Let Gd “ ˆ
n
i“1Gdi act on V bm – V bm1 b ¨ ¨ ¨ b V bmn over

a field of characteristic 0 via a representation φ. Assume each xGdiyφi is a
semisimple algebra, where φi is the restricted representation Gdi ñ pViq

bm.
If EndGdi pV

bm
i q “ Ai then

(a) EndbAipV
bmq “ xGdyφ.

(b) EndGd
pV bmq “

Ân
i“1Ai.

Proof. To prove part (a), we know that V bm – V bm1 b ¨ ¨ ¨ b V bmn and we
have an action of ˆni“1Ai by

pa1, . . . , anq.p
m
â

j“1

v1jq b ¨ ¨ ¨ b p

m
â

j“1

vnjq “ a1.p
m
â

j“1

v1jq b ¨ ¨ ¨ b an.p
m
â

j“1

vnjq

extended linearly. We see that the span of the image of the action of ˆni“1Ai
is equal to

Ân
i“1Ai. Let ϕ : EndpV qbm – EndpV bmq be the isomorphism

given by
ϕ
`
â

i,j

Mij

˘`
â

i,j

vij
˘

“
â

i,j

Mijvij .

Since the image of ˆni“1Ai spans
Ân

i“1Ai, it is sufficient to see that for
α “ pa1, . . . , anq P ˆ

n
i“1Ai,

α.ϕp
â

i,j

Mijqp
â

i,j

vijq “ ϕp
â

i,j

aiMijqp
â

i,j

vijq and

ϕp
â

i,j

Mijqpα.
â

i,j

vijq “ ϕp
â

i,j

Mijqp
â

i,j

aivijq “ ϕp
â

i,j

Mijaiqp
â

i,j

vijq.

So ϕp
Â

i,jMijq P EndpV bmq commutes with ˆni“1Ai precisely when we have

that each ϕip
Â

jMijq P EndAipV
bm
i q where ϕi : EndpViq

bm – EndpV bmi q is
the canonical isomorphism. Thus we have that EndbAipV

bmq is generated
by those tensors w1 b ¨ ¨ ¨ b wn where each wi P xGdiyφi . So rewriting gives
us that

w “
n
â

i“1

ˆ

ÿ

j

βijxij

˙

“
ÿ

j1,...,jn

β1j1x1j1 b ¨ ¨ ¨ b βnjnxnjn
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where xij P xGdiyφi . So we see that w P xGdyφ. This proves the first part.
Part (b) follows from the Double Centralizer Theorem (Theorem 6.7).

6.2 The Categorical Quotient

Even if we can determine invariant rings for the actions of interest to us, we
still want to investigate how well polynomials separate orbits. This leads us
to study the orbit spaces using algebraic geometry. We saw in Example 6.1
that the orbit classes where parameterized by k – Spec krV sk

ˆ

. In fact, for
any G ñ krV s, the orbit classes form a variety isomorphic to Spec krV sG.
We have already seen that all invariants are constant on orbit classes. It
turns out that distinct orbit classes can always be distinguished.

Theorem 6.9 ([80]). For two distinct orbit classes, there is an invariant
that takes different values on each class.

As a consequence, every orbit class is specified by a choice of value for
each generator of the invariant ring. Thus we prove our assertion that the
orbit classes are parameterized by the points of Spec krV sG. This variety
is called the categorical quotient of the action G ñ V and is often denoted
V {{G. This comes with a canonical map π : V Ñ V {{G.

The fibers of the map π also contain a lot of structure. We give the
following structure theorem for orbit classes.

Theorem 6.10 ([15, 80]). Given an action of an algebraic group G ñ V , the
orbit closure G.x is the union of G.x and orbits of strictly smaller dimension.
An orbit of minimal dimension is closed, thus every closure G.x contains a
closed orbit. Furthermore, this closed orbit is unique.

So we have that every orbit class has a unique representative given by
closed orbit and every closed orbit trivially lies in some orbit class. So the
closed orbits are also parameterized by V {{G. This motivates the definition
of different types of points in V with respect to an action of G.

Definition 6.11. Given an action G ñ V and a point v P V zt0u, then v is
called

(a) an unstable point if 0 P G.v,

(b) a semistable point if 0 R G.v,

(c) a polystable point if G.v is closed,
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(d) or a stable point if G.v is closed and the stabilizer of v is finite.

A powerful tool in studying orbit closures lies in looking at limits of
1-parameter subgroups, also called cocharacters. Given a representation
ϕ : G Ñ GLpV q, a cocharacter of G is a representation λ : kˆ Ñ GLpV q
such that there exists a map ψ : kˆ Ñ G such that the following diagram
commutes.

kˆ
ψ //

λ ##

G

ϕ

��
GLpV q.

Given a group homomorphism ψ : kˆ Ñ G, this induces a cocharacter by
the representation λ “ ϕ ˝ ψ : kˆ Ñ GLpV q. Often we simply specify the
map ψ and then write ψptq.v :“ ϕpψptqqv.

Theorem 6.12 (The Hilbert-Mumford Criterion [58]). For a linearly re-
ductive group G acting on a variety V , if v P G.wzG.w then there exists a
cocharacter λptq : kˆ Ñ G, such that limtÑ0 λptq.w “ v.

From the representation theory of kˆ, we know that since this group is
semi-simple, any rational representation of kˆ ñ V decomposes into a direct
sum of 1-dimensional subspaces on which it acts by multiplication by tα, for
some α P Z. Thus every cocharacter is diagonalizable where the diagonal
entries are of the form tαi , αi P Z (cf. [60]). If the group G is sufficiently
large, the change of basis necessary to diagonalize any cocharacters is an
element of the group. This is useful since one can then focus one’s attention
to studying limits of diagonal cocharacters.

Definition 6.13. The null cone of an action G ñ V is the set of unstable
points and the origin. We denote it by NV . Equivalently, NV are those
v P V such that fpvq “ fp0q for all invariant polynomials f .

If one wants to compute the generators of an invariant ring, this can be
accomplished by determining the null cone. This is done by seeing which
elements of v P V have the property that there is a cocharacter that takes
v Ñ 0. If the cocharacters can be diagonalized by G, this makes the task
even easier.

Proposition 6.14 ([46, 27]). For G ñ V , the ideal IpNV q is generated by
invariants f1, . . . , fs and the invariant ring is krV sG “ krf1, . . . , fss.
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6.3 An Extended Example: The Adjoint Action
of GLpV q on EndpV q

We now work out in detail the invariant ring and categorical quotient of
GLpV q acting on EndpV q by conjugation. Of course, it is well known that
two matrices are in the same conjugacy class if and only if they have the
same Jordan normal form. We rephrase this fact in the context of invariant
theory using the methods outlined in the previous section.

We first seek to understand the null cone of this action, NEndpV q. From
there we will determine generators of this ideal that are also invariant un-
der conjugation. This will give us the generators of the invariant ring by
Proposition 6.14.

Let us consider a cocharacter of GLpV q, λptq written in some basis.
Apart from conjugation, λptq also acts naturally on V by left multiplication.
Therefore, we know that under some change of basis, λptq is diagonal with
entries tαi , αi P Z. That is to say, there is some g P GLpV q such that
gλptqg´1 is diagonal.

Now suppose we are considering the limit limtÑ0pλptqMλptq´1q for some
M P EndpV q, and suppose this limit exists. Then the following limit exists:

lim
tÑ0

gλptqg´1gMg´1gλptq´1g´1.

Now if we choose g such that µptq “ gλptqg´1 is diagonal, and we denote
N “ gMg´1, we have that

lim
tÑ0

µptqNµptq´1

exists. Furthermore, N is in the orbit of M . So we study those matrices
that can be taken to the origin by a diagonal cocharacter. We know that
every element of the null cone has such a matrix in its orbit.

Let us now focus our attention on the diagonal cocharacters of GLpV q
in some given basis. Let λptq be such a cocharachter and M P EndpV q. Let
λptqii “ tαi and M “ tmiju is an n ˆ n matrix. Then λptqMλptq´1 (which
we henceforth abbreviate as λptq.M) is equal to ttαi´αjmiju.

We want to know under what conditions does limtÑ0 λptq.M “ 0. We
have now moved to the action of a maximal torus inside of GLpV q on
EndpV q. This action also has invariants, which are much easier to see.
They are of the form

Ci1,...,ikpMq :“
k
ź

i“1

mjiji`1pmod kq
.
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Indeed, let us look at the value of Ci1,...,ikpλptq.Mq:

Ci1,...,ikpλptq.Mq “
k
ź

i“1

t
αji´αji`1pmod kq qmjiji`1pmod kq

“

t
řk
i“1 αji´αji`1pmod kq ¨

k
ź

i“1

mjiji`1pmod kq
“

k
ź

i“1

mjiji`1pmod kq
.

Thinking of M as an adjacency matrix, where the edges have weights,
these polynomials correspond to the products of weights on a cycle. It is
not difficult to see that these generate all of the invariants of this action.

Clearly, if M “ 0, then all of the polynomials Ci1,...,ikpMq “ 0. The null
cone of this new actions is therefore all matrices M such that Ci1,...,ikpMq “
0. But this means that if we view M as a weighted adjacency matrix, the
graph is acyclic. From there it is not hard to see that M is permutation
conjugate to a strictly upper triangular matrix. In particular M is nilpotent.

In fact, every nilpotent matrix is conjugate to a strictly upper triangular
matrix. Therefore, the null cone is precisely the nilpotent matrices. Further-
more, we know that a matrix M is nilpotent if and only if TrpMkq vanish
for 1 ď k ď n. The polynomials TrpMkq are the power sum symmetric
polynomials in the eigenvalues: λk1 ` ¨ ¨ ¨ ` λkn. It is well known that these
polynomials are algebraically independent.

Thus we have that krEndpV qsGLpV q “ krTrpMkq | 1 ď k ď dimpV qs.
Setting each generator to a specific value uniquely determines a choice of
spectrum. Since there are no restrictions on what may constitute the spec-
trum of a matrix, this is another proof that the generators are algebraically
independent. Thus we have that categorical quotient is EndpV q{{GLpV q “
Spec krEndpV qsGLpV q – kdimpV q. Furthermore, each orbit class is parame-
terized by a choice of spectrum.

In this example, two matrices are distinguishable by invariants if only
if they have the same spectrum. If the matrix is diagonalizable, then it is
well known that the corresponding orbit is closed (cf. [14]). So diagonaliz-
able matrices are polystable. We will prove a generalization of this fact in
Chapter 8.

The Jordan decomposition tells us that every matrix can be written as
the sum of a diagonalizable matrix and a nilpotent matrix. So we see that
the unique closed orbit contained in the orbit closure of a matrix is the orbit
of the diagonalizable matrix in this decomposition. This tells us a lot about
the geometry of the orbit space and motivates the following definition.
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Definition 6.15. Given an action G ñ V , a Jordan decomposition of a
point v is given by v “ vs ` vn where vs is a polystable point and vn is an
unstable point.

For a rational representation of a reductive group G ñ V , such a Jordan
decomposition always exists. This is well known (cf. [66]), but we include a
proof for completeness.

Theorem 6.16. For a reductive group action ϕ : G Ñ GLpV q a Jordan
decomposition always exists.

Proof. By Theorem 6.10, ϕpGqv contains a polystable point vs, and by
the Hilbert-Mumford criterion (Theorem 6.12), there exists a cocharachter
λptq : kˆ Ñ G such that limtÑ0 ϕpλptqqv is polystable. Since ϕpλptqq is diag-
onalizable, there is some g P GLpV q such that limtÑ0 gϕpλptqqg

´1gv “ gvs
for some vs P V .

Now if gϕpλptqqg´1 is diagonal, then gϕpλptqqv is the vector gv with
every entry multiplied by a some non-negative power of t (since the limit
exists). The unstable part of gv, gvn, is the all zero vector except for those
entries of gv that get multiplied by a positive power of t. The stable part
is gvs “ gv ´ gvn. Then we see that limtÑ0 gϕpλptqqg

´1gvs “ gvs and
so limtÑ0 ϕpλptqqvs “ vs. Then we let vn “ v ´ vs. We quickly see that
limtÑ0 ϕpλptqqv “ vs and thus limtÑ0 ϕpλptqqvn “ 0. Then v “ vs ` vn is
the Jordan decomposition.
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Chapter 7

The Invariants of Local
Conjugation

We now turn directly to the problem of studying the invariant ring of GLT
acting on a tensor network T . This problem in full generality is very dif-
ficult, so we make some strong simplifying assumptions. We first restrict
ourselves to tensor networks where all boxes contain morphisms in the same
space: EndpV q, where V “

Ân
i“1 Vi over an algebraically closed field of

characteristic 0, k.
The graphs underlying such tensor networks will be regular. We also

restrict the action to a subgroup of GLT for such regular tensor networks.
We define a local group Gd “ ˆ

n
i“1Gdi , where Gdi is a subgroup of GLpViq,

acting on EndpV q by

ˆni“1gi.M :“

ˆ n
â

i“1

gi

˙

M

ˆ n
â

i“1

g´1
i

˙

. (7.1)

This naturally extends to an action on EndpV q‘m by simultaneous conju-
gation. If there are m boxes in a regular tensor network T , we restrict our
action to the group GLd :“ ˆni“1GLpViq on EndpV q‘m, which is a subgroup
of GLT . In this chapter, we compute the invariant ring for certain local
groups, which includes GLd. The case n “ 1 was solved by Procesi [89].

This problem is also important for understanding entanglement of quan-
tum states [9, 38, 39, 45, 51, 61, 71, 72, 74]. For V “

Ân
i“1 Vi, physicists

look at trace one, positive semi-definite matrices in EndpV q. These opera-
tors, called density operators, represent a superposition of quantum states,
where each is a state of n particles with the ith particle having dimpViq spins.
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Many of the most important notions of entanglement are invariant un-
der the action of Ud :“ ˆni“1UpCdiq [31]. Entanglement in turn relates to
quantum computation [82, 90], quantum error correction [82], and quan-
tum simulation [70]. Many of the results we prove in this and subsequent
chapters are with this application in mind.

For the study of actions of Ud, we do note have access to many of
the theorems from Chapter 6 as it is not a reductive group. However, the
following two propositions tell us that studying GLd is sufficient.

Proposition 7.1. If H is a Zariski dense subgroup of G and ρ is a rational
representation of G acting on a vector space V , krV sG “ krV sH .

Proof. The representation ρ is a continuous map from G Ñ GLpV q with
respect to the Zariski topology by assumption of the rationality of the rep-
resentation. For every v P V , consider the map ϕv : G Ñ G.v given by
g ÞÑ g.v. This is also a continuous map and it implies that for every v P V ,
H.v is dense in G.v since the continuous image of dense sets are dense. The
invariant ring is the ring of polynomials which are constant on orbit closures.
Since the orbit closures of H and G coincide, their invariant rings must be
the same.

It is well known that UpCdiq is the maximal compact subgroup of GLpCdiq
and as such is a Zariski dense subgroup. This implies that Ud is Zariski
dense in GLd, so CrEndpV q‘msUd “ CrEndpV q‘msGLd . Furthermore, the
action GLd ñ EndpV q‘m is not faithful and has the same orbits as the
action of SLd ñ EndpV q‘m. Therefore, we have that CrEndpV q‘msSUd “

CrEndpV q‘msSLd “ CrEndpV q‘msGLd .

Proposition 7.2. Two Hermitian matrices are in the same GLd orbit if
and only if they are in the same Ud orbit.

Proof. Consider the polar decomposition ofbni“1gi “ pb
n
i“1piqpb

n
i“1uiq where

the pi are invertible Hermitian matrices and the ui are unitary. We can as-
sume without loss of generality that all ui “ id since it does not change
the Ud orbit we are in. So note that P “ bni“1pi is a Hermitian ma-
trix. Let H be Hermitian and suppose that PHP´1 is Hermitian. Then
PHP´1 “ pPHP´1q: “ P´1HP , implying that P 2HP´2 “ H. This im-
plies that either P commutes with H, and thus PHP´1 is in the same Ud

orbit as H, or P 2 “ PP : “ id, implying that P was unitary.

We first determine the homogeneous invariants of GLd. We know from
Theorem 6.4 that the invariants ring is finitely generated. We compute an
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upper bound for βGLpV qpEndpV q‘mq, defined as follows. Given a represen-
tation of a group G on a vector space V over a field k,

βGpV q :“ mintd | krV sG is generated by polynomials of degree ď du.

For arbitrary semisimple groups G, general upper bounds have been given
on βGpV q [27, 87, 88, 48]. For a ring R, we define

βpRq :“ mintd | R is generated by polynomials of degree ď du.

7.1 Multilinear Invariants of Local Groups

We first describe the invariants for a product of groups Gd “ ˆ
n
i“1Gdi acting

by conjugation on EndpV q. Let Aki be the centralizer of xGdiy acting on V bk.
Here we do not make any assumptions about our base field.

We describe a surjection of
À8

k“1b
n
i“1A

k
i onto the multilinear invariants

of krEndpV q‘msGd where the module bni“1A
k
i maps to the ith graded piece of

krEndpV q‘msGd under the natural grading. We follow Kraft and Procesi’s
([60]) treatment of the Fundamental Theorems, generalizing to conjugation
by Gd; see also Leron [67].

Definition 7.3. We define the following multilinear polynomials on rank
one tensors of V bm and extend linearly. For every αi P Ami , there is a
corresponding multilinear invariant of degree m, Tmαi P krEndpV q‘msGdi

(we prove this in Theorem 7.4 although it is classical). We define Tmα :“
śn
i“1 T

m
αi which acts on rank one tensors by

Tmα p
n
â

j“1

Mj1, . . . ,
n
â

j“1

Mjmq :“
n
ź

i“1

Tmαi pMi1, . . . ,Mimq.

Theorem 7.4. The multilinear invariants of EndpV q‘m under the adjoint
action of Gd are generated by the Tmα .

Proof. Let M be the multilinear functions from EndpV q‘m – pV bV ˚q‘m Ñ
k. Then we can identify M with pV b V ˚q˚bm by the universal property of
tensor product. But we have an isomorphism

ϕ : EndpV qbm Ñ pV b V ˚q˚bm

given by ϕpMqpv b ηq “ ηpMvq which is GLpV q-equivariant. So we get a
Gd-equivariant isomorphism EndpV qbm –M . This induces an isomorphism

EndGd
pV bmq –MGd
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where MGd are the Gd-invariant multilinear functions.
Since V bm – V bm1 b ¨ ¨ ¨ b V bmn , we can write ϕ “

Â

ϕi where ϕi are
the induced isomorphisms EndpViq

bm Ñ pVi b V
˚
i q
˚bm.

Since EndGd
pV bmq – MGd , by Theorem 6.8, the image of each α P

ˆni“1A
m
i under the isomorphism ϕ gives the generators of MGd . In the case

of n “ 1, this is classical and gives the multilinear invariants MGd1 . This is
the map that associates to every αi a multilinear invariant in krEndpV q‘msGdi .

So consider α “ pα1, . . . , αnq P ˆ
n
i“1A

m
i ; we have

ϕpαq
`â

i,j

vij b
â

i,j

ηij
˘

“
`â

i,j

ηij
˘

p
â

i,j

αivij
˘

“

n
ź

i“1

ηimpαivimq “ Tmα1
¨ ¨ ¨Tmαn “ Tmα ,

where bmj“1vij P V
bm
i and bmj“1ηij P pV

˚qbm.

We already mentioned in Section 6.1 that over a field of characteristic 0,
EndGLpV qpV

bmq “ xSmyφ, where φ : Sm Ñ GLpV ‘m is the representation
of Sm acting on V bm by a permutation of the copies of V . Therefore, by
Theorem 6.8, EndGLd

pV bmq “ xSnmyφ, where φ : Snm Ñ GLpV bmq is the
representation of Snm acting on V bm – V ‘m1 b ¨ ¨ ¨ b V ‘m where the ith

factor acts by permuting the copies of Vi.
Since xSnmyφ is generated by the elements of Snm, to determine the mul-

tilinear invariants of EndpV q‘m acted upon by GLd, we need only look at
the image of αpσq for each σ P Snm. Working this out gives the following
functions.

Definition 7.5. For σ “ pσ1, . . . , σnq P Snm, let σi “ pr1 ¨ ¨ ¨ rkqps1 ¨ ¨ ¨ slq ¨ ¨ ¨
be a disjoint cycle decomposition. For such a σ P Snm, define the trace
monomials by Trσ “ Tσ1 ¨ ¨ ¨Tσn on EndpV q‘m, where

Tσip
â

Aj1, . . . ,
â

Ajmq “ TrpAir1 ¨ ¨ ¨AirkqTrpAis1 ¨ ¨ ¨Aislq ¨ ¨ ¨ (7.2)

and extend multilinearly.

Corollary 7.6. The multilinear invariants of EndpV q‘m (over a field of
characteristic 0) acted upon by GLd are generated by the functions Trσ for
σ P Snm.
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7.1.1 Description of the Invariant Ring

Over a field characteristic 0 (which we assume from here on out), knowing
the multilinear invariants of an action gives an easy way to determine all
invariants. The idea is that, by repeating some of the entries of any mul-
tilinear invariant, one can come up with a generating set for all invariants.
We now make this precise.

Definition 7.7. A function f P krV1 ‘ ¨ ¨ ¨ ‘ Vrs is multihomogeneous of
degree d “ pd1, . . . , drq if fpλ1v1, . . . , λrvrq “ λd11 ¨ ¨ ¨λ

dr
r fpv1, . . . , vrq.

The coordinate ring krV1‘¨ ¨ ¨‘Vrs can be graded with respect to the mul-
tidegree,and the multihomogeneous components of an invariant polynomial
are themselves invariant. It is clear that the multihomogeneous components
of krV1 ‘ ¨ ¨ ¨ ‘ Vrs

G generate this ring.

Definition 7.8. Suppose f P krV ‘d11 ‘ ¨ ¨ ¨ ‘ V ‘drr s is a multilinear polyno-
mial. Then the restitution of f , Rf P krV1 ‘ ¨ ¨ ¨ ‘ Vrs is defined by

Rfpv1, . . . , vrq “ fpv1, . . . , v1

d1

, . . . , vr, . . . , vr
dr

q.

Given a multihomogeneous polynomial F , we know that it is the resti-
tution of a multilinear polynomial f . We call f the polarization of F . Thus,
by polarizations and restitutions, we can move freely between multihomo-
geneous and multilinear polynomials. For a more formal definition of polar-
ization, see [64, 60].

Proposition 7.9 ([60]). Assume char k=0 and V1, . . . , Vm are representa-
tions of a group G. Then every multihomogeneous invariant f P krV1‘¨ ¨ ¨‘

Vms
G of degree d “ pd1, . . . , dmq is the restitution of a multilinear invariant

F P krV ‘d11 ‘ ¨ ¨ ¨ ‘ V ‘dmm sG.

We are now able to describe the invariant ring for a product of groups
acting by conjugation on EndpV q‘m. Let us fix the notation that for a
graded ring R, Rd1,...,dr is the graded piece of pd1, . . . , drq multihomogeneous
functions.

Theorem 7.10. Over a field of characteristic 0,

krEndpV q‘msGd
d1,...,dr

–

n
â

i“1

krEndpViq
‘ms

Gdi
d1,...,dr

.
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Proof. We know that every multilinear invariant of krEndpV q‘msGd
d1,...,dr

is

a multilinear invariant of
Ân

i“1 krEndpViq
‘ms

Gdi
d1,...,dr

by Theorem 7.4. Then
taking restitutions gives all invariants by Proposition 7.9.

We now return to the case of GLd. Consider an ordered multiset M “

tmiu with elements from rms, and denote the group of permutations on |M |
letters by S|M |. Let σ “ pσ1, . . . , σnq P Sn|M |. Let pmr1 ¨ ¨ ¨mrkqpms1 ¨ ¨ ¨mslq ¨ ¨ ¨

be a disjoint cycle decomposition for σi.

Definition 7.11. Given a multiset M and σ P Sn
|M |, define the trace mono-

mials on EndpV q‘m by their action on simple tensors in
Ân

i“1 EndpViq,

TMσi p
n
â

j“1

Aj1, . . . ,
n
â

j“1

Ajmq “ TrpAimr1 ¨ ¨ ¨Aimrk qTrpAims1 ¨ ¨ ¨Aimsl q ¨ ¨ ¨

TrMσ “

d
ź

i“1

TMσi

and extending multilinearly to EndpV q‘m.

Note that Definition 7.11 differs from Definition 7.5 in that it allows for
repetition. As such, we see that these are restitutions of the multilinear
invariants Trσ in Definition 7.5.

Corollary 7.12. The ring of GLd-invariants of EndpV q‘m is generated by
the TrMσ .

Note that TrMσ TrM
1

σ1 “ TrM\M
1

σ\σ1 , where σ\σ1 is the induced permutation
on M \M 1. So every invariant is a linear combination of the generators
above.

7.2 Tensor Network Representations of Invariants

In the next section, we work out bounds for βGLd
pEndpV q‘mq for a particular

case of GLd. The approach is very combinatorial; as such it is convenient
to consider invariants as represented by tensor networks.

Observation 7.13. Each trace monomial TrMσ corresponds to a tensor net-
work.

The polynomial TrpA1 ¨ ¨ ¨Akq, where each Ai is one of m possible nˆ n
matrices, has a representation as a tensor network by
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A1 ¨ ¨ ¨ Ak .

A trace monomial TrMσ acting on a simple tensor is a product of such
loops. For example, let V “ V1 b V2 and take M “ t1, 2, 1u “ tm1,m2,m3u

and σ “ ppm1m2qpm3q, pm1qpm2m3qq P S2
3 . Then the degree-three trace

monomial TrMσ pA1 bB1, A2 bB2q is equal to the tensor network:

1

2

1

–

σ

A1 A2 A1

B1 B2 B1

.

Thus M tells us which elements of EndpV q are selected and σ how to
connect the wires. The trace monomials TrMσ defined on simple tensors
in EndpV1q b ¨ ¨ ¨ b EndpVnq extend to all of EndpV q‘m. In particular, a
matrix M in a tensor network whose wires correspond to copies of the vector
space kn decomposes as a sum of simple tensors of n ˆ n matrices: M “
ř

j

`

bni“1 Aij
˘

, and we are considering m such M .
For example, arbitrary M1,M2 P EndpV1 b V2q

‘m are of rank at most
four. So M1 “

ř4
i“1A1i bB1i and M2 “

ř4
i“1A2i bB2i, corresponding to

a sum of tensor network diagrams as follows:

M1 M2 M1 “
ř

i,j,k

A1i

B1i

A2j

B2j B1k

A1k

.

Multiset reordering corresponds to the action of an element of Sn
|M | as

an automorphism of the invariant ring. In the following we assume that
M is in weakly increasing order, so the M in our example would become
M “ t1, 1, 2u.

7.3 Bounding the Degree of the Generators

In this section, we focus on the case V “ pk2qbn. We exploit the relationship
between krEndpV q‘msGLd and the rings krEndpViqs

GLpViq. Much is known
about ring of invariants of EndpV q‘m under the adjoint representation of
GLpV q. We will be able to use several classical theorems that will allow us to
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A1 A2 A1

B1 B2 B1

“
A1 A2 A1

B1 B2 B1

ˆ vs. A2 A1 A1

B2 B1 B1

Figure 7.1: The network on the left factors as Tr1,2,1
p12q,p23q “ Tr1,2

p12q,p12qTr1
pq,pq

into generators of smaller degree, while the network Tr2,1,1
p12q,p23q on the right

does not factor.

bound the degrees of generators for our related ring of invariants, beginning
with the following:

Theorem 7.14 ([60, 91]). The ring krEndpV q‘msGLpV q under the adjoint
action is generated by

tri1,...,ik :“ TrpAi1 ¨ ¨ ¨Aikq 1 ď i1, . . . , ik ď m

where k ď dimpV q2. If n “ dimpV q ď 3, k ď
`

n`1
2

˘

suffices.

This, however, does not provide a bound on the degree. Note that the
degree of TrMσ as a polynomial in the matrix entries equals |M |. To see
the issue, consider the tensor networks depicted in Figure 7.1. Some trace
monomials such as Tr1,2,1

p12q,p23q factor into trace monomials of smaller degree,

Tr1,2,1
p12q,p23q “ Tr1,2

p12q,p12qTr1
pq,pq, while others such as Tr2,1,1

p12q,p23q do not.

We will need to bound the maximal degree of a trace monomial which
does not factor. This will require a somewhat detailed combinatorial argu-
ment which will occupy the rest of this section. We begin with the following
definitions.

Definition 7.15. The size of TMσi is defined to be the size of the largest
cycle in the disjoint cycle decomposition of σi.

Definition 7.16. Given a minimal set of generators, we define the girth of
krEndpV q‘msGt as the tuple pw1, . . . , wnq where wi is the maximum size of
any TMσi appearing in a generator. The girth of a function TrMσ is a tuple
ps1, . . . , snq, where si is the size of TMσi .

Note that the girth of the simple case krEndpV qsGLpV q is simply the
minimum k such that the functions tTrpAi1 ¨ ¨ ¨Aikq : 1 ď i1, . . . , ik ď mu
generate it. We put a partial ordering on girth as follows: pw1, . . . , wnq ă
pw11, . . . , w

1
nq if Di such that wi ă w1i and for no j do we have w1j ă wj . The

girth is bounded locally by the square of the dimension.
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Proposition 7.17. If pw1, . . . , wnq is the girth of krEndpV q‘msGLd, then
wi ď yi, where yi is the girth of krEndpViq

‘msGLpViq. In particular for
V “ V1 b ¨ ¨ ¨ b Vn, the girth of krEndpV q‘msGLd is bounded by pt21, . . . , t

2
nq.

If ti ď 3, then the girth is bounded by
``

t1`1
2

˘

, . . . ,
`

tn`1
2

˘˘

.

Proof. First note that TMσi lies in the invariant ringRi “ krEndpViq
‘msGLpViq.

Thus it has size at most yi, where yi is the girth of Ri. Now apply Theorem
7.14.

As we mentioned above, we are specifically interested in the case where
V “ pk2qbn. The case where n “ 1 is well understood for krEndpk2q‘msGLpk2q

are well understood. We make use of the following theorem.

Theorem 7.18 ([44]). The ring krEndpk2q‘msGLpk2q is minimally generated
by

TrpAiq 1 ď i ď m

TrpAi1Ai2q 1 ď i1, i2 ď m, and

TrpAi1Ai2Ai3q 1 ď i1 ă i2 ă i3 ď m.

So we may assume that TrMσi is written in terms of the trace monomials
in Theorem 7.18. The degree bound for generators of krEndpV q‘msGLd

we give depends on the generic tensor rank of EndpV q as an element of
Ân

i“1 EndpViq.
We begin the analysis by restricting to the tensors in EndpV q which are

rank one in
Ân

i“1 EndpViq in Sections 7.3.1 and 7.3.2 and then will consider
linear combinations of these to obtain the general case in Section 7.3.3.

7.3.1 Girth at most p2, . . . , 2q invariants operating on rank-
one tensors

Let S be the subvariety of Endpk2qbn of rank one matrices, i.e. matrices of
the form

Ân
i“1Mi, Mi P Endpk2q. First we bound the degree on a simpler

ring, which we call Rtrans, which is the subring of R “ krS‘msGLd generated
by functions with girth at most p2, . . . , 2q. Note that in the case m “ 2,
Rtrans “ R by Theorem 7.18

We want to show that for |M | sufficiently large, for any σ P Sn
|M |, TrMσ

factors as TrMσ “ TrMa
σa TrMb

σb
for two disjoint multisets Ma,Mb with M “

Ma YMb.
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Definition 7.19. Let M 1 Ď M be a sub-multiset. Let x1, . . . , xk P M . We
say that M 1 does not separate the points x1, . . . , xk if either txi| 1 ď i ď
ku Ď M 1 or txi| 1 ď i ď ku Ď MzM 1. Otherwise, we say M 1 separates
x1, . . . , xn.

Definition 7.20. Given a trace polynomial TrMσ , we say that M 1 Ď M
separates a monomial of TrMσ if there is a trace monomial TrpAim1 ¨ ¨ ¨Aimkq,
1 ď k ď 3, in TrMσ such that M 1 separates m1, . . . ,mk. Otherwise we say
that M 1 does not separate monomials of TrMσ .

We can now rephrase what it means for a trace polynomial to factor in
a more convenient way.

Definition 7.21. A trace polynomial TrMσ factors if there exists M 1 Ĺ M
such that M 1 does not separate monomials of TrMσ .

We describe a tableau-shape for a multiset M that we will use to encode
which elements of M we want to be inseparable. For the purposes of this
subsection, at most two elements of M will be inseparable.

The tableau-shape of M , M, will be a collection of pairs, r , s, and
singles r s, which are unfilled, arranged in a particular pattern, see Figure
7.2 (a). Let M be drawn from rms and let s “ |M |. There will be m ` 1
rows. The first m rows each have t s2 u pairs and will be labeled from top to
bottom by the elements of rms. The last row, which we call the augmented
row, contains s singles followed by t s2 u pairs. In the tableau-shape, pairs
represent elements that cannot be separated by some M 1 Ď M for a trivial
reason.

We fill M by declaring the pairs m1,m2 inseparable if TrpAim1Aim2q

appears in TMσi . We fill each the kth row with pairs of the form rm1,m2s for
those inseparable pairs m1,m2 PM where m1 “ m2 “ k. We call such pairs
duplicate pairs. There are at most t s2 u of them. The pairs in the augmented
row are of the form rm1,m2s and represent inseparable pairs m1,m2 P M
where m1 ‰ m2. These are called non-duplicate pairs. The singles in the
tableau contain the elements mk appearing in TrpAimkq.

Note that there is some non-uniqueness in how to fill the augmented
row. We call a filled tableau-shape simply a tableau. This gives a recipe
for taking a trace polynomial TMσi and filling M to give a tableau which we
denote Tσi . An example is given in Figure 7.2 (b).

Let T be a tableau. Then choosing an 1 ď i ď n, we can associate
a function TMσi , for some σi, to T. First let us disregard pairs or singles
containing no elements. Secondly, if a pair has a single element, move that
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(a) M

11 1 2 2 3

(b) Tσi

1 3

2 2

1 1

(c) T̃σi

Figure 7.2: For M “ t1, 1, 1, 2, 2, 3u and σi “ pm1qpm2qpm3m4qpm5m6q.
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element to a single in the augmented column. Then for every pair rm1,m2s in
the tableau, TrpAim1Aim2q appears in TMσi . For every single, rm1s, TrpAim1q

appears. Let the fi,T denote the function that T represents for choice of i.
Note that fi,Tσi “ TMσi .

We define an equivalence relation „ on tableaux in the following way:
T1 „ T2 if fi,T1 “ fi,T2 , which will be independent of choice of i. Now let T1

and T2 be two different fillings of M, T1 „ T2. Then if we allow horizontal
permutations of the elements in a row and vertical permutations of elements
in a column, we can permute T1 into T2.

Now suppose we are considering a tableau Tσi filled from M. We make
two types of adjustments. First, take any two elements m1,m2 appearing
in singles in the augmented row. We declare them inseparable. We do this
until there is at most one element appearing in a single left.

Secondly, look at the non-duplicate pairs. Suppose there are two ele-
ments of rms repeated in this row. So we have the pairs rm1,m2s, rm3,m4s

where m1 “ m3. We replace these two pairs with rm1,m3s, rm2,m4s and
then move the pair rm1,m3s to the appropriate row of duplicate pairs. We re-
peat until all elements appearing in non-duplicate pairs are distinct. Lastly,
we flush all elements are far right as possible. Note that the augmented row
has at most 2tm2 u ` 1 elements. Let us call this adjusted tableau T̃σi . An
example is given in Figure 7.2 (c).

Now we consider a restricted set of permutations on our adjusted tableaux.
Let Paug be permutations of the elements of the augmented row and Pvert
be permutations of elements within a column, for any column. Then our
restricted permutations are PaugˆPvert. In fact, we can insist that the per-
mutation in Paug is always applied first, followed by the permutation from
Pvert.

Observation 7.22. Consider two functions TMσi and TMσj . Since many types

of permutations on T̃σi are trivial with respect to „, it is not hard to see that
there is a permutation in Paug ˆ Pvert that takes T̃σi to a tableau T1 „ Tσj ,
although they won’t be equal in general.

Theorem 7.23. The TrMσ with degree at most 2pm`1qtm2 u`2m`1 generate
Rtrans.

Proof. Let us first consider T̃σ1 . The tableau T̃σ1 differs from a tableau
T1 such that T1 „ Tσi by first applying a horizontal permutation in the
augmented row and then vertical permutations in the columns, for any i.

Now suppose that |M | ą 2pm ` 1qtm2 u ` 2m ` 1. Then there are at

least 2tm2 u` 3 filled columns in T̃σ1 . Indeed, suppose T̃σ1 had only 2tm2 u` 2
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filled columns, what is the maximum |M |? This is the case where there are
tm2 u`1 duplicate pairs for every element of rms as well as tm2 u non-duplicate
pairs and one single. Thus the duplicate pairs contribute 2mtm2 u ` 2m to
the size of |M | and the augmented row contributes 2tm2 u` 1.

Now let M 1 be the elements filling the rightmost 2tm2 u ` 2 columns, so
M 1 Ĺ M . Note that the restricted set of permutations we described above
preserve M 1 as the subset of M filling the rightmost 2tm2 u ` 2 columns of
T1 and fσi,T1 “ TMσi . Furthermore, M 1 does not separate monomials for all

TMσi . So TrMσ factors.

Corollary 7.24. For m “ 2, the βpkrS‘msq ď 11.

Proof. This follows from Theorem 7.23 by substituting in 2 for m and notic-
ing that Rtrans “ R when m “ 2.

7.3.2 General girth, rank-one tensors

For general m, R has girth p3, . . . , 3q. We adapt the ideas from the previous
section to achieve our degree bound.

For a multiset M , we define a tableau-shape M the same as before but
with extra rows added above. We add

`

m
3

˘

rows each with t s3 u triplets
r , , s, s “ |M |. We will think of each of these rows corresponding to
a trace monomial TrpAi1Ai2Ai3q, 1 ď i1 ă i2 ă i3 ď m.

We call a filled tableau-shape a tableau and, as before, we can associate
to a tableau T a trace polynomial TMσi for some i, which we denote fi,T,
and we define the same equivalence relation „ as before. Given a trace
polynomial TMσi , we fill M as before, but now placing the trace monomials
TrpAi1Ai2Ai3q is the corresponding row. We call this tableau Tσi . We have
fi,Tσi “ TMσi .

Given a tableau Tσi , we will form another tableau T̃σi by first performing
the two adjustments we did before. In addition, suppose there are three non-
duplicate pairs in the augmented row: rm1,m2s, rm3,m4s, rm5,m6s, and we
can assume that m1 ă m2 ă ¨ ¨ ¨ ă m6. Then replace these three pairs
with the triplets rm1,m2,m3s, rm4,m5,m6s, which are then placed in their
appropriate rows.

If there are two non-duplicate pairs and one single left afterwards, then
one of the non-duplicate pairs contains two elements distinct from the ele-
ment in the single. We declare this pair and single inseparable and place it
in the appropriate triplet row. Otherwise, there may be two non-duplicate
pairs left and no singles.
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We also make adjustments on the duplicate pairs. For rm1,m1s, rm2,m2s,
and rm3,m3s, replace them with rm1,m2,m3s, rm1,m2,m3s

One may object that we separated m3 and m4, for example, while they
we clearly inseparable originally. This does not matter however since we do
not require fi,T̃σi

“ fi,Tσi and it will still be true that T̃σi differs from Tσi
by some combination of horizontal and vertical permutations. Note that the
augmented row of T̃σi has at most four elements. There are at most two
non-empty rows of duplicate pairs.

Observation 7.25. Suppose we have two function Tσi and Tσj . Once again,

many of these permutations on T̃σi are trivial with respect to „. Once again,
there is a permutation Paug ˆ Pvert that transforms T̃σi into a tableau T1,
T1 „ Tσj . We can insist, as before, that the element of Paug is applied first.

Theorem 7.26. For m ě 3, βpkrS‘msq ď 6
`

m
3

˘

` 16.

Proof. Let us first consider T̃σ1 . T̃σ1 differs from a tableau T1 such that
T1 „ Tσi by first applying a horizontal permutation in the augmented row
and then vertical permutations in the columns, for any i.

Not suppose that |M | ą 6
`

m
3

˘

` 15. Then there are at least seven filled

columns in T̃σ1 . Indeed, suppose T̃σ1 had only six filled columns, what is
the maximum |M |? The augmented row accounts for four elements. Every
column (excluding elements in the augmented row) accounts for

`

m
3

˘

` 2
elements. Thus there are at most 6

`

m
3

˘

` 16 elements in the tableau.
Now letM 1 be the elements filling the rightmost six columns, soM 1 ĹM .

Note that the restricted set of permutations we described above preserve
M 1 as the subset of M filling the rightmost six columns of T1 and fσi,T1 “
TMσi . Furthermore, M 1 does not separate monomials for all TMσi . So TrMσ
factors.

Example 7.27. Let V be the subvariety of EndpC2q of rank one matrices.
Let V ‘2 be acted on by G “ GLpk2q ˆ GLpk2q. The ring krV ‘2sG has 23
generators. For a pair of 4 ˆ 4 matrices pA,Bq “ pA1 b A2, B1 b B2q, the
generators are:
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TrpA1B1qTrpA2B2q, TrpA1qTrpA1B1qTrpB2qTrpA2
2q,

TrpA1qTrpB1qTrpA2B2q , TrpA2
1qTrpB1qTrpA2B2qTrpA2q

TrpA1B1qTrpA2qTrpB2q, TrpB1qTrpA1B1qTrpA2qTrpB2
2q,

TrpA2
1qTrpB2

1qTrpA2B2q
2, TrpA1qTrpB2

1qTrpB2qTrpA2B2q,
TrpA1B1q

2TrpA2
2qTrpB2

2q, TrpA1B1q
2TrpA2

2qTrpB2q
2,

TrpA1q
2TrpB2

1qTrpA2B2q
2, TrpA2

1qTrpA2q
2,

TrpA2
1qTrpB1q

2TrpA2B2q
2, TrpB2

1qTrpB2q
2,

TrpA1B1q
2TrpA2q

2TrpB2
2q, TrpB1q

2TrpB2
2q,

TrpA1qTrpA2q, TrpA1q
2TrpA2

2q,
TrpA2

1qTrpA2
2q, TrpB1qTrpB2q,

TrpB2
1qTrpB2

2q,

TrpA1B1qTrpA1qTrpB1qTrpA2
2qTrpB2q

2,
TrpA2

1qTrpB2
1qTrpA2B2qTrpA2qTrpB2q.

We then extend these functions multilinearly to give 23 TrMσ . By Corol-
lary 7.24, those TrMσ of degree at most 11 generate krV ‘2sG. We simply
enumerated all TrMσ up to degree 11 and removed those that were a product
of functions of smaller degree. Notice that the highest degree in this example
is 4.

7.3.3 General case, arbitrary tensors

Theorem 7.28. Let r be the generic rank of EndpV q as a 4ˆ ¨ ¨ ¨ ˆ 4 “ 4n

tensor. Then βGtpkrEndpV q‘msq ď 6
`

rm
3

˘

` 16.

Proof. This proof follows precisely the same logic as Theorem 7.26 with the
difference that the tableaux can contain up to rm different matrices.
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Chapter 8

A Complete Set of Invariants
for Local Unitary
Equivalence

In this chapter we concern ourselves with the problem of finding a complete
set of invariants for density operators. By this we mean a set of Ud-invariant
functions f1, . . . , fs such that two density operators Ψ1 and Ψ2 are in the
same Ud-orbit if and only if fipΨ1q “ fipΨ2q for all i. As already mentioned,
this problem is important for understanding quantum entanglement.

If we restrict the functions to be polynomials, Propositions 7.1 and 7.2
tell us that we can focus our attention instead on the ring CrEndpV qsGLd .
However, we may run into the problem that two density operators are in
distinct GLd-orbits but cannot be distinguished by invariant polynomials.
We show in Section 8.1 that GLd-orbits of density operators can always be
separated by invariant polynomials.

Throughout this chapter, whenever possible, our theorems hold for the
invariant ring krEndpV qsGLd , where k is an algebraically closed field of char-
acteristic zero. Otherwise, k “ C. We wish to find a finite (and preferably
small) generating set of invariants. We know that this ring is generated by
the functions TrMσ and we can compute an upper bound for βGLd

pEndpV qq
by studying the ring krEndpV qsGLd much more thoroughly.

Proposition 8.1 ([46]). For a reductive action G ñ V , there exists a set
of homogeneous algebraically independent polynomials p1, . . . , ps such that
krV sG is a finitely generated module over krp1, . . . , pss.

This is a special case of Noether’s Normalization Lemma which gen-
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eralizes this statement to all commutative Noetherian L-algebras, with L
any field. The polynomials p1, . . . ps are called a homogeneous system of
parameters, or an hsop for short.

In the context of invariant theory, these polynomials are also sometimes
called primary invariants. For reductive groups, since krV sG is Cohen-
Macaulay, krV sG is a finite free module over P :“ krp1, . . . , pss. That is,
there exist secondary invariants h1, . . . , hr such that krV sG –

Àr
i“1 Phi.

This fact will be useful in computing a bound for βGLd
pEndpV qq.

8.1 Closed Orbits

We first give an a sufficient condition for M P EndpV q to have a closed GLd-
orbit, where V is a Hilbert space throughout this section. We show that,
in particular, normal matrices over C satisfy the given properties. Since
density operators are Hermitian, they are immediately normal.

Definition 8.2. Given M P EndpV q, we define a decomposition V “ W ‘

WK to be separable if there exists a cocharacter of GLd, λptq such that
@w P W , limtÑ0 λptqw “ 0, and @w P WK, w ‰ 0, limtÑ0 λptqw ‰ 0. We
call λptq the separating subgroup of the decomposition.

Given an arbitrary cocharacter of GLd, it is not clear that there is neces-
sarily a separable decomposition that one can associate to it. The following
lemma allows us to replace a cocharacter by one that does have a separable
decomposition associated to it that does not affect limits.

Lemma 8.3. Let λptq be a cocharacter of GLd. Then there exists another
cocharacter µptq such that the following hold:

(a) limtÑ0 λptqMλptq´1 “ limtÑ0 µptqMµptq´1 for all M P EndpV q such
that the limit exists.

(b) µp0q :“ limtÑ0 µptq exists and is a matrix.

(c) Unless λptq “ tα id, then µp0q has two nontrivial eigenspaces with eigen-
values 0, 1.

Proof. We can diagonalize λptq by some element g P GLd. Thus it suf-
fices to prove the aboves statements for diagonal cocharacters. If λptq is a
diagonal cocharacter, the diagonal entries are of the form tαi , αi P Z, as
previously mention in Section 6.2. Let αm be the most negative exponent.
Then let µptq “ t´αmλptq. We see that for any M P EndpV q, λptqMλptq “
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µptqMµptq´1. Therefore limtÑ0 λptqMλptq´1 “ limtÑ0 µptqMµptq´1 when-
ever the limit exists.

Furthermore, we see that µptq has diagonal entries all non-negative pow-
ers of t. Therefore, limtÑ0 µptq exists and is in fact equal to µp0q. Further-
more, unless µptq “ tα id, which occurs precisely when λptq “ tβ id, µp0q will
have both zeros and ones on the diagonal. Thus it will have to non-trivial
eigenspaces with eigenvalues 0, 1.

We now show how to construct separable decompositions as it is not
clear that they necessarily exist. We must use cocharacters of the form as
in Lemma 8.3.

Lemma 8.4. Given a cocharacter as in Lemma 8.3, except for λptq “ tα id,
we can associate it to a separable decomposition for which it is the separating
subgroup.

Proof. Let µptq be a cocharacter as in Lemma 8.3. Then we know that
µp0q :“ limtÑ0 µptq exists and is a matrix. Then µp0q has two eigenspaces,
one attached to eigenvalue 1 and the other to eigenvalue 0. Let W be the
null space of µp0q. Then consider the decomposition V “ W ‘WK. Then
@w P W , limtÑ0 µptqW “ µp0qW “ 0, and @w P WK then limtÑ0 µptqw “
µp0qw, which projects WK onto the eigenspace attached to the eigenvalue
1. This means that the only v P WK such that µp0qv “ 0 is v “ 0. So this
a separable decomposition for which µptq is the separating subgroup.

Let us analyze which decompositions are separable. Let us first ana-
lyze the case that λptq “

Ân
i“1 λiptq is as in Lemma 8.3 and is diagonal.

Then λiptq is diagonal and can be taken to have diagonal entries with all
non-negative powers of t. Thus we can decompose Vi “ Wi ‘WK

i where
limtÑ0 λptqw “ 0 for all w P Wi and λptqw “ w for all w P WK

i . Then
V1 b ¨ ¨ ¨ b Vi´1 bWi b ¨ ¨ ¨ b Vn gets sent to zero by λptq. It is easy to see
that every seperable decompositon for a diagonal cocharacter is of the form

pV1 b ¨ ¨ ¨ bWi b ¨ ¨ ¨ b Vnq ‘ pV1 b ¨ ¨ ¨ bW
K
i b ¨ ¨ ¨ b Vnq.

From here, it is easy to see that every seperable decomposition is of the
same form by taking the GLd-orbits of diagonal cocharacters.

Given a matrix M P EndpV q, we are interested in separable decomposi-
tions W ‘WK such that MpW q Ď W . Let PW and PWK be the projection
operators onto each of the two subspaces. Then define M |W :“ PW pMq and
M |WK :“ PWKpMq.
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Lemma 8.5. Given a separable decomposition V “W‘WK with projections
PW , PWK, there exists aseparating subgroup λptq that is a cocharacter of GLd

such that

λ1ptq “

ˆ

W WK

W tI 0
WK 0 I

˙

Proof. We saw above that every separable decomposition is of the form

pV1 b ¨ ¨ ¨ bWi b ¨ ¨ ¨ b Vnq ‘ pV1 b ¨ ¨ ¨ bW
K
i b ¨ ¨ ¨Vnq

and it is easy to see that λptq “
Ân

i“j λjptq where λjptq “ id for j ‰ i and

λiptq “

ˆ

Wi WK
i

Wi tI 0
WK
i 0 I

˙

satisfies the above conditions.

Proposition 8.6. For every separable decomposition V “ W ‘WK such
that MpW q ĎW , M |W ‘M |WK is in the orbit closure of M .

Proof. We can write M as

M “

ˆ

W WK

W A B
WK 0 C

˙

Let λptq be a separating subgroup of the decomposition V “W ‘WK as in
Lemma 8.5. Let tI “ PW pλptqq, then we get a cocharacter,

ˆ

W WK

W tI 0
WK 0 I

˙ ˆ

W WK

W A B
WK 0 C

˙ ˆ

W WK

W t´1I 0
WK 0 I

˙

“

ˆ

W WK

W A tB
WK 0 C

˙

which we see takes M ÑM |W ‘M |WK as tÑ 0.

Theorem 8.7. A matrix M has a closed GLd-orbit if for every separable
decomposition V “W ‘WK such that MpW q ĎW , then MpWKq ĎWK.

Proof. Suppose that M does not have a closed orbit, so it can be written
as M “ Ms `Mn where Ms has a closed orbit and Mn is in the null cone.
Then by Theorem 6.12, there is a cocharacter λptq taking M ÑMs. We can
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assume that λptq satisfies the properties of Lemma 8.3. Letting W be the
kernel of λp0q, we see that V “W ‘WK is a separable decomposition.

Let w PW . We note that λptqMw “ λptqMλptq´1λptqw. We know that
λptqMλptq´1 is a matrix in which only non-negative powers of t appears.
Furthermore, every entry of λptqw is scaled by some positive power of t.
Therefore every element of λptqMw is scaled by a positive power of t, so
limtÑ0 λptqMw “ 0. Therefore MpW q ĎW .

Notice that a similar argument shows that MspW q Ď W and therefore
we can write

Ms “

ˆ

W WK

W A B
WK 0 C

˙

However, by Proposition 8.6, we can assume that B “ 0. That is to say,
MspW

Kq ĎMspW
Kq.

If u P WK, then limtÑ0 λptqu lies in the eigenspace of λp0q attached to
the eigenvalue of 1 (it may not be the case that this eigenspace is orthogonal
to the kernel of λp0q). However, we note that λptqMnλptq

´1 has every entry
scaled by a positive power of t, and thus λptqMλptq´1λptqu has all entries
scaled by some positive power of t and thus limtÑ0 λptqMnu “ 0. This
implies that Mnu is in W and therefore, and since Mspuq PW

K, WK is not
an invariant subspace

We can show that matrices that respect orthogonal decompositions have
closed orbits. The prime example are normal matrices as these are precisely
the matrices with an orthogonal basis by the spectral theorem.

Theorem 8.8. For GLd ñ EndpV q‘m, V a finite dimensional Hilbert
space, then those tuples of matrices, each with an orthogonal eigenbasis,
have closed orbits.

Proof. It suffices to show that for GLd ñ EndpV q, matrices with an or-
thogonal eigenbasis have closed orbits. Then the result follows from the fact
that, if such a tuple did not have a closed orbit, then projecting onto one of
the copies of EndpV q would induce a non-trivial limit point, implying that
the matrix in that coordinated did not have a closed orbit.

Let M have an orthogonal eigenbasis. Then let V “ W ‘ WK be a
separable decomposition such that MpW q Ď W . It must be that W is a
direct sum of eigenspaces of M (here, by eigenspace, we mean any subspace
which M acts on by scaling). Since the eigenspaces of M are orthogonal
(in the sense that given two vectors in two different eigenspaces, they are
orthogonal), we immediately have that WK is a direct sum of eigenspaces.
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Thus WK is an invariant subspace of M . Then applying Theorem 8.7, we
get that M has a closed orbit.

Corollary 8.9. The GLd-orbits of tuples of density matrices are closed,
so can be separated by polynomial invariants. Moreover, two Hermitian
matrices are in the same GLd-orbit if and only if they are in the same Ud-
orbit.

Proof. We know from Proposition 7.2 that two density operators are in the
same GLd-orbit if and only if they are in the same Ud-orbit. We know from
Theorem 8.8 that tuples of density operators have closed orbits. We know
from Theorem 6.9 that two closed orbits can be distinguished by invariants
if and only if they are distinct.

For the adjoint action of GLpV q ñ EndpV q, the normal matrices are
precisely all of the closed orbits. However, this is not necessarily all of the
closed GLd-orbits. We know that the null cone NGLd

of GLd ñ EndpV q
is contained in the null cone NGLpV q of GLpV q ñ EndpV q. Suppose they

were equal. Then by Proposition 6.14, we would have krEndpV qsGLd “

krEndpV qsGLpV q. However, we know this is not true for GLd ‰ GLpV q
by Corollary 7.12. Therefore, NGLd

Ĺ NGLpV q. Then take an element
N P NGLpV qzNGLd

. Since N is not in the null cone of GLd, its orbit closure
contains a closed orbit that is different from the origin and thus there is a
closed orbit in NGLpV qzNGLd

by Theorem 6.10. Let M be in that closed
orbit. Since it is nilpotent, it is not normal.

Corollary 8.10. The functions TrMσ form a complete set of invariants for
tuples of density operators under the action of Ud.

Proof. This follows from Corollary 8.9 and Corollary 7.12.

So we know that two tuples of density operators are not in the same Ud

orbit if and only if there is some TrMσ on which they take different values.
We know from Theorem 6.4, that there exists a finite set of functions TrMσ
that forms a complete system of invariants. However, this theorem does not
tell us what such a finite set may be.

There are some general bounds known for reductive groups. We mention
one such here, giving a complete, finite set of invariants. For a reductive
group G, it is in particular an affine variety defined by polynomials h1, . . . , h`
in the ring krX1, . . . , Xts. Let H :“ maxtdegreeph1q, . . . ,degreeph`qu. For
a rational representation ρ : G Ñ GLpV q, for g P G we have that ρpgq is
equal to the matrix taijpgqu for maps aij in the coordinate ring of G. Let
A :“ maxtdegreepaijqu.
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Theorem 8.11 ([26]). For a reductive group G and a rational representation
ρ : GÑ GLpV q, if ρ has finite kernel then

βpkrV sGq ď maxt2,
3

8
dimpV qHt´mAmu

where m :“ dimpGq.

We note that while the representation of GLd ñ EndpV q‘m does not
have a finite kernel, it is the same action as SLd ñ EndpV q‘m which does
have a finite kernel. We note that H “ dimpV q as SLd is defined by
quadratic polynomials (for the Segre variety) and the equation of setting
the determinant equal to 1. Furthermore, it is easy to see that for con-
jugation A “ 2. Lastly, dimpSLdq “

řn
i“1 pdimpViq

2 ´ 2q ` 1 since is the
affine cone over the image of the Segre embedding of groups of dimension
dimpV1q

2 ´ 1, . . . ,dimpVnq
2 ´ 1.

Corollary 8.12. The group krEndpV q‘msGLd is generated by the polyno-
mials TrMσ of degree at most dimpV qpdimpV q2´Dq2D where

D “
n
ÿ

i“1

pdimpViq
2 ´ 2q ` 1.

8.2 Description of the Null Cone

This and the following section are dedicated to results to help find smaller
generating sets of krEndpV qsGLd , although we do not find such sets in this
dissertation. One strategy is to use Proposition 6.14, so we first investigate
the null cone NGLd

. By Theorem 6.12, we need to determine those matrices
M P EndpV q that can be taken to 0 by a cocharacter. Note that if λptq “
pλ1ptq, . . . , λnptqq is a cocharacter of GLd, we can choose g “ pg1, . . . , gnq P
GLd so that

gλptqg´1 “

n
â

i“1

giλiptqg
´1
i ,

where each giλiptqg
´1
i is a diagonal matrix. We then follow a similar ap-

proach to determining NGLd
as we did in Example 6.3.

Definition 8.13. A point M is viable if it can be taken to a point in the
unique closed orbit contained in its orbit closure by a diagonal cocharacter.
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Given a viable matrix M with Jordan decomposition M “ Ms `Mn,
we would like to be able to analyze the matrices Ms and Mn more closely.
Unfortunately, as Jordan decompositions are not unique, we make a choice
of Jordan decomposition.

Definition 8.14. We define a Jordan decomposition (as in Definition 6.15)
of a viable matrix M “Ms`Mn to be a maximal Jordan decomposition if for
every diagonal cocharacter λptq, limtÑ0 λptqMsλptq

´1 “Ms or is undefined.
Then Ms is the stable part of M and Mn is the unstable part of M .

The terminology of stable and unstable parts is justified for viable ma-
trices because of the uniqueness of the decomposition supplied by Corollary
8.19. This does not, however, lift to a unique choice of decomposition for
every matrix.

We quickly recall the definition of a quiver.

Definition 8.15. A quiver is a directed graph, denoted by a tuple Q “

pQ0, Q1, h, tq, where Q0 are the vertices, Q1 the edges (or arrows), and maps
h, t : Q1 Ñ Q0, denoting the head and tail of an arrow, respectively. A
quiver can thus be viewed as a category where Q0 are the objects, Q1 the
morphisms, h and t the domain and codomain maps.

Definition 8.16. Viewing a quiver Q as a category, a representation of a
quiver is a functor from QÑ Vectk.

We describe a way to associate a representation of a quiver to a viable
matrix. Suppose we are given an d1 ¨ ¨ ¨ dn ˆ d1 ¨ ¨ ¨ dn matrix M “ tmiju P

EndpV q. Define rpQM q as the quiver representation on the complete digraph
with nodes t1, . . . , d1 ¨ ¨ ¨ dnu, dimension vector α “ p1, . . . , 1q P Nd1¨¨¨dn , and
maps iÑ j given by multiplication by mij .

The diagonal subgroup inside of GLd, naturally has more invariants than
the action by the subgroup of diagonal matrices in GLpV q which are well
understood [66]. Here we have that the group acting on EndpV q is the
tensor product of diagonal groups on each Vi. We need to find which tuples
of arrows have the property that the product of the scalars on each arrow is
invariant under the diagonal GLd action. We call the product of the scalars
on the arrows of a subgraph H of the complete digraph on d1 ¨ ¨ ¨ dn vertices
the weight of the subgraph, denoted wtpHq.

Let T “ ttiju be a diagonal matrix in GLd acting on M “ tmiju.
Then TMT´1 “ tµiju where µij “ tiimijt

´1
jj . The diagonal matrices of

GLd are cut out from the diagonal matrices of GLpV q by the equations of
the affine cone over the Segre embedding of Pd1´1

C ˆ ¨ ¨ ¨ ˆ Pdn´1
C . This is
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just the observation that GLd is the affine cone over the Segre embedding
ˆni“1GLpViq Ñ

Ân
i“1 GLpViq (for an exposition on the Segre variety, see for

example [64]).
If tiitjj ´ tkkt`` is such an equation, then mikmj`,mi`mjk,mkimj`, and

m`imkj are invariant under the action of any such diagonal, local T . These
are all the new invariants caused by restriction from diagonal GLpV q to
diagonal GLd, since any others would give new relations satisfied by points
on the Segre variety. Together with the cyclic invariants discussed in Section
6.3, these generate the invariants of the diagonal GLd action.

Definition 8.17. Denote the set of subgraphs H of QM whose weights
wtpHq are diagonal-GLd-invariant by CpMq.

The diagonal GLd orbit O corresponding to a representation rpQM q is
GLd.M . We now need to say when the representations rpQM q correspond
to closed orbits GLd.M .

Suppose that we now have a quiver representation rpQM q. We want
to find the GLd-stable part of M . Beginning with rpQM q, define another
representation rpQM qs by setting the map on an arrow to zero if and only
if every subgraph c P C which includes the arrow has weight zero.

Theorem 8.18. Given the representation rpQM q, the matrix associated to
rpQM qs is the stable part of M .

Proof. Let rpQM qn “ rpQM q ´ rpQM qs. We see that the weight of every
subgraph in CpMq is 0 and thus rpQM qn lies in the null cone of the diagonal
GLd action and thus the GLd null cone. We just need to show that rpQM qs
has a closed orbit. Every arrow with a nonzero map lies on a subgraph in
CpMq with nonzero weight. Let T “ ttiju be a diagonal matrix in GLd

acting on M “ tmiju. Since TMT´1 “ tµiju where µij “ tiimijt
´1
jj , taking

the limit t Ñ 0 in any diagonal cocharacter takes a map on an arrow to
zero, infinity, or leaves it unchanged. We see that no arrow with a nonzero
map can be taken to the zero map by a cocharacter, otherwise a nonzero
invariant will then take the value zero in the limit. Therefore the limit of
every cocharacter is either undefined or it leaves the representation fixed.
By the Hilbert-Mumford criterion, this implies that it has a closed orbit.

Corollary 8.19. The unique maximal GLd Jordan decomposition of a viable
M is M “ Ms `Mn, where Ms and Mn are the matrices associated to the
representations rpQM qs and rpQM qn, respectively.

Theorem 8.18 implies that if M is a matrix which is both viable and
unstable, then the weight of every subgraph in CpMq is zero. We can now
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give a description of the null cone of GLd as the orbits of viable unstable
matrices. The following theorem gives a more concrete description of such
matrices.

Definition 8.20. A subsystem of V “
Ân

i“1 Vi is a vector space A “
Â

iPIĎrns Vi.

Theorem 8.21. The null cone of GLd ñ EndpV q are the orbits of matrices
M , such that for every subsystem A “ biPIĎrnsVi, TrApMq is permutation
conjugate to a strictly upper triangular matrix.

Proof. For I Ď rns let A and B be a bipartition. We may assume the order
of the tensor product is such that A is the tensor product of the first |I|
vector spaces.

Suppose Eij is a basis vector in V and Eij “ E1
i1j1

b ¨ ¨ ¨ b E
|I|
i|I|j|I|

b

E
|I|`1
i|I|`1j|I|`1

b¨ ¨ ¨bEninjn . Denote the tensor factors EAij :“ E1
i1j1
b¨ ¨ ¨bE

|I|
i|I|j|I|

and EBij :“ E
|I|`1
i|I|`1j|I|`1

b ¨ ¨ ¨ b Eninjn .

Let λptq “
Ân

i“1 λiptq be a diagonal cocharacter, and define λptqA “
Â

iPI λiptq. Then EAij is one of the idempotent basis vectors in A if and only

if λAptq.EAij “ EAij for every choice of λ. Two matrices λptqEijλptq
´1 and

λptqEi1j1λptq
´1 have the same power of t in their unique nonzero entry for

every choice of λ if and only if there exists a subsystem A such that EAij and

EAi1j1 are both idempotent and EBij “ EBi1j1 .
So we see that a subgraph c is in CpMq if and only if it induces a cycle

in the associated quiver of TrApMq for some subsystem A. So for M to
be a viable matrix in the null cone, it must be that for every subsystem A,
TrApMq must have an associated quiver such that, for every cycle, its weight
is zero. This implies that the associated quiver is acyclic as a directed graph,
proving the claim.

Corollary 8.22. The null cone of GLd ñ EndpV q‘m are those tuples
pM1, . . . ,Mmq such for every subsystem A, pTrApM1q, . . . ,TrApMmqq is in
the null cone of EndpBq‘m acted upon by GLpBq, where B is the comple-
mentary subsystem of A.

Proof. Each Mi must be in the null cone, so it is conjugate to a matrix
Ni such that for every subsystem A, TrApNiq is permutation conjugate to
a strictly upper triangular matrix. Furthermore, it must be the case that
all TrApMiq are simultaneously upper triangularizable for every subsystem
A.
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If one can find a set of homogeneous polynomials that set-theoretically
define the null cone, one can get a degree bound on the ring of invariants.
Let σ be the largest degree of a set of polynomials defining the null cone.
Then there exists an hsop where every polynomial is homogeneous of degree
lcmt1, . . . , σu (cf. [27]).

Theorem 8.23 ([59, 87]). For a reductive group G ñ V , and δ is the
largest degree of a hsop, then βpV q ď dimpV qδ. In particular, if σ is the
largest degree of a set of polynomials defining the null cone, then βpV q ď
dimpV qlcmt1, . . . , σu.

8.3 The Relations Among the Invariants

For the classical action of GLpV q ñ EndpV q‘m, the relations among invari-
ants of krEndpV q‘msGLpV q are all a consequence of the Cayley-Hamilton
Theorem [89]. Every invariant of degree d is the restitution of a mul-
tilinear invariant of EndpV q‘d. We denote the set of degree d multilin-
ear invariants by pEndpV qbdqGLpV q. Recall that there is a homomorphism
ϕGLpV q : krSds – pEndpV qbdqGLpV q; it is the special case of the map de-
fined in Equation 7.5 where n “ 1. The relations among multihomogeneous
invariants come from relations among multilinear invariants and vice versa.

Theorem 8.24 ([89, 91]). Given the map

ϕGLpV q :
8
à

m“1

krSms Ñ
8
à

m“1

pEndpV qbmqGLpV q,

the kernel is generated by the completely skew-symmetric Young symmetriz-
ers acting on Young diagrams on at least dimpV q ` 1 boxes. That is, the
kernel is generated by

ř

σPSm sgnpσqσ for m ą dimpV q. The image of these
Young symmetrizers are the Cayley-Hamilton relations.

Note that the kernel of map ϕGLpV q is graded by degree as well. We let

ϕ
GLpV q
m : krSms Ñ pEndpV qbmqGLpV q be the induced map on the mth graded

piece. Considering GLd ñ
Ân

i“1 EndpViq, we now look at the homomor-
phism of graded rings

φ :
8
à

m“1

n
â

i“1

krSms Ñ
8
à

m“1

n
â

i“1

pEndpV qbmqGLpViq. (8.1)

We note that for a particular graded piece, the induced map φm :
Ân

i“1 krSms Ñ
Ân

i“1 pEndpViq
bmqGLpViq is equal to

Ân
i“1 ϕ

GLpViq
m .
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Given linear maps ψ1, . . . , ψn, ψi : Vi ÑWi, it is a well known fact from
linear algebra that the kernel of ψ1 b ¨ ¨ ¨ b ψn is

ˆ

kerpψ1q b V2 b ¨ ¨ ¨ b Vn

˙

‘

ˆ

V1 b kerpψ2q b ¨ ¨ ¨ b Vn

˙

‘ ¨ ¨ ¨ . (8.2)

However, consider the subgroup Sm Ă Snm given by the inclusion ι : σ ÞÑ
pσ, . . . , σq. For m ą dimpV q, the map φ takes the element

ř

σPSm sgnpσqιpσq
to 0. These give the relations among the classical invariants of GLpV q ñ

EndpV q‘m.

Definition 8.25. A subgroup H Ď Snm, which is isomorphic to Skm, is said
to have standard action on V bm if there is decomposition V “

Âk
i“1 Vi such

that the induced action of H on V bm – V bm1 b ¨ ¨ ¨ b V bmk is

σ “ pσ1, . . . , σkq.p
â

i,j

vijq “
â

i,j

viσipjq,

where bmj“1vij P V
bm
i . We say that H has a semi-standard action if it has a

standard action or there is a decomposition V “
Âk`1

i“1 Vi such that H acts

by a standard action on
Âk

i“1 Vi and trivially on Vk`1.

Observation 8.26. Every subgroup H Ď Snm with a semi-standard action
is one where, for each of the natural projection maps pi, 1 ď i ď n, pipHq is
either equal to Sm or t0u.

For every H Ď Snm with a semi-standard action, H – Sk´1
m or Skm (de-

pending if the action is standard or not), the map φm restricts to a map

n
â

i“1

krSkms Ñ
k
â

i“1

pEndpViq
bmqGLpViq

where V “
Âk

i“1 Vi is the decomposition associated to the action of H. Fur-
thermore, this map is exactly of the form given in Equation 7.5. Therefore,
we have that this restricted map is equal to a product

φHm :“ ψH1 b ¨ ¨ ¨ b ψ
H
k . (8.3)

We see that each map ψHi is a map krSms Ñ pEndpViq
GLpViqq of the form

as in Equation 7.5, with the exception of ψHk if the action is properly semi-
standard. In that case, it is a map of the same kind but precomposed
with the map krSms Ñ krSms induced by the group homomorphism Sm Ñ
t0u. Once again, we know that the kernel looks like the decomposition in
Equation 8.3.
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Theorem 8.27. Given V “
Ân

i“1 Vi, every relation among the invariants
of krEndpV q‘msGLd is in the kernel of ψHi for some H Ď Snm with a semi-
standard action.

Proof. We know that the kernel is graded by degree, so we restrict ourselves
to the mth graded piece of the ring krEndpV qsGLd . We know that every rela-
tion comes from a relation on pEndpV qbmqGLd “

Ân
i“1 pEndpViq

bmqGLpViq.
Given a relation, it is of the form bri“1ζi where some of the ζi “ 0. We can
also assume that each such ζi “ 0 cannot be written as a product

Â

j ζij
where some of the ζij are 0. If it could, we would readjust the original
factorization bri“1ζi.

Let ζ`1 , . . . , ζ`k “ 0 be the factors that are relations. We know that
ζ`j lies in some subsystem Aj “

Â

iPIjĎrns
Vi. Furthermore, the relation ζ`j

comes from the image of a the Young symmetrizer
ř

σPSm sgnpσqσ given how

the map φm is defined. Then consider the decomposition V –
Âk

i“1AibW
where W “

Â

iR
Ť

Ij
Vi.

We see that there is a corresponding subgroupH Ď Snm that is isomorphic
to Skm with an inclusion ι: given σ “ pσ1, . . . , σkq P H, pipσq “ σj for i P Ij
and pipσq “ id for i R

Ť

Ij . Then we see that φm restricts to a map equal
ψH1 b¨ ¨ ¨bψ

H
k bψ

H
k`1 where ψHj is the map krSms Ñ pkrEndpAjqs

bmqGLpAjq

and ψHk`1 is the map krSms Ñ pkrEndpW qsbmqW , where every basis vector
of krSms is first mapped to the basis vector associated with the identity and
then composed with map ϕGLpW q. Then the kernel of ψH1 b¨ ¨ ¨bψ

H
k bψ

H
k`1

is of the form in Equation 8.3 and this proves the result.

Given that the degree bound in Corollary 8.12 is so large as to be compu-
tationally infeasible for moderate examples, it is desirable to better under-
stand the relations among the invariants in the hope of lowering the bound.

One may also wonder if, by restricting to tuples of density operators,
some relations are introduced among the TrMσ that may decrease the number
of polynomials that need to be checked for equivalence. We denote the set
of m-tuples of density operators inside of EndpV q‘m by D‘m.

Proposition 8.28 ([81]). Let G act on a subvariety X Ď V . If G is reduc-
tive, and its ideal, I Ď krV s, is a G-stable ideal, then krV sG{pI X krV sGq –
pkrV s{IqG.

Lemma 8.29. The Zariski closure of D‘m is the set T “ tpA1, . . . , Amq| TrpAiq “
1u.

Proof. First we work with the case m “ 1. The result will follow from
the fact that the product of Zariski dense sets is Zariski dense. Note that
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ConvpPq “ D Ă affpPq (the affine hull of P). Now suppose that ConvpPq Ĺ
affpPq. Then ConvpPq must sit in a hypersurface of affpPq and thus have
dimension less than that of affpPq. But ConvpPq contains a full dimensional
simplex in affpPq, so it cannot lie in a hypersurface. Thus ConvpPq “ affpPq.
Now note that affpPq “ H X T , where H is the set of Hermitian matrices.
However, H is Zariski dense in EndpV q([28]). Thus affpPq “ T , noting that
T is Zariski closed.

Theorem 8.30. CrD‘msGLd – CrEndpV q‘msGLd{I, where I Ă CrEndpV q‘msGLd

is generated by the polynomials TrpMiq ´ 1.

Proof. The invariant ring of D‘m is equal to the invariant ring of its Zariski
closure, which is defined by the ideal ICrEndpV q‘ms by Lemma 8.29. By
Proposition 8.28, CrD‘msGLd – CrEndpV q‘msGLd{I.
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Chapter 9

Applications to the Study of
Quantum Entanglement

In this chapter, we outline how the results in Chapters 7 and 8 can poten-
tially be used to distinguish whether or not two quantum states have the
same entanglement in the laboratory setting. We also present an example
where we determine, using invariants, that two density operators are in the
same local unitary orbit.

Given two quantum states with density operators Ψ1 and Ψ2, to deter-
mine if they have the same entanglement, then by Corollary 8.10, one only
needs to see if TrMσ pΨ1q “ TrMσ pΨ2q for all TrMσ up to the degree bound
given in Corollary 8.12.

However, given two quantum states in the laboratory, determining the
density operators Ψ1 and Ψ2 is not necessarily feasible. This shortcoming
also appears when trying the approach of finding normal forms for each Ud

orbit. Necessary and sufficient conditions for Ud-equivalence using a normal
form for each Ud-orbit were worked out in several papers [61, 108, 107, 69,
68].

Nevertheless, computing the values of invariant polynomials for a density
operator may not require such knowlede. For example, consider the Rényi
Entropies, defined previously in Equation 3.3. Given a bipartition A :B of
V , where A and B are complementary subsystems, and a density operator
ρ, we then note the following equality.

TrpTrApρq
qq “ exppp1´ qqHAB

q pρqq

which is a polynomial for q a natural number. The Rényi entropies [92,
6, 9, 10, 34] are a well-studied measurement of entanglement. Positive in-
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tegral (q P Zě1) Rényi entropies can be measured experimentally without
computing the density operators explicitly [20, 1, 24, 95, 86]. This makes
them especially attractive as invariants used to separate Ud-orbits of density
operators. However, they are not necessarily a complete set of invariants.

This suggests that it may be possible to compute TrMσ pΨ1q without com-
puting Ψ1. This would mean that the invariant polynomials can be expressed
as a series of measurements that can be carried out on a quantum state in
the laboratory. However, whether or not this is true is still unresolved.

9.1 Example

We now consider the case of two qubit quantum states, that is to say, states
with density operators in EndppC2qb2q. Suppose we are given the following
two density operators:

Ψ1 “ ´
1

8

¨

˚

˚

˝

´6 ´4` 2i 18 12´ 6i
´4´ 2i 2 12` 6i ´6

18 12´ 6i ´6 ´4` 2i
12` 6i ´6 ´4´ 2i 2

˛

‹

‹

‚

Ψ2 “ ´
1

8

¨

˚

˚

˝

´8 0 24i 0
0 4 0 ´12i

´24i 0 ´8 0
0 12i 0 4

˛

‹

‹

‚

Then we note that both of these matrices are in the image of the Segre
embedding EndpC2q ˆEndpC2q inside of EndpC4q and so can be factored in
the following way:

Ψ1 “ ´
1

8

ˆ

´1 3
3 ´1

˙

b

ˆ

6 4´ 2i
4` 2i ´2

˙

,

Ψ2 “ ´
1

8

ˆ

´2 6i
´6i ´2

˙

b

ˆ

4 0
0 ´2

˙

.

We calculated a complete generating set for krEndpC4q2sGL2,2 , GL2,2 :“
GLpC2qˆGLpC2q in Example 7.27. Here we only need those invariants that
are also invariants of krEndpC4qsGL2,2 . We simply need to check whether
these two density operators agree on the resulting 4 invariants. If we write
Ψ1 “ ´

1
8A1 bB1 and Ψ2 “ ´

1
8A2 bB2, we first note that
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TrpA1q “ ´2 TrpA2
1q “ 20

TrpB1q “ 4 TrpB2
1q “ 80

TrpA2q “ ´4 TrpA2
2q “ 80

TrpB2q “ 2 TrpB2
2q “ 20

Then computing the values of the 4 invariants, we get

´1
8TrpA1qTrpB1q “ 1 “ ´1

8TrpA2qTrpB2q
1
64TrpA2

1qTrpB2
1q “ 25 “ 1

64TrpA2
2qTrpB2

2q
1
64TrpA1q

2TrpB2
1q “ 5 “ 1

64TrpA2q
2TrpB2

2q
1
64TrpA2

1qTrpB1q
2 “ 5 “ 1

64TrpA2
2qTrpB2q

2

Then according to Corollary 8.10, we know that these two matrices must
be in the same local unitary orbit. Indeed, taking the matrix

g “

ˆ

´1 0
0 ´i

˙

b

˜

2´i?
6

´2`i?
30

1?
6

5?
30

¸

we get that gΨ2g
´1 “ Ψ1. Thus these two density operators are in the same

U2,2 orbit. We were able to reduce the number of invariants that needed to
be tested down to four by restricting our example to matrices in the image
of the Segre embedding of EndpC2q2 inside of EndpC4q.

Note that these invariants are the polynomial versions of Rényi En-
tropies, as noted in Equation 3.3. In general, for those density operators
in the image of the Segre embeding of ˆni“1EndpViq inside of Endpbni“1Viq,
the Ud orbits can be separated by the Rényi Entropies. Thus they can be
separated in the laboratory setting. However, the states represented by such
density operators correspond to the so-called separable states, which are not
entangled.

In general, many more invariants need to be computed to determine if
two matrices are in the same Ud-orbit. However, these invariants give a
concrete computational method for solving this problem.
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