Quantum circuit design for computer-assisted
Shor’s algorithm

Chi-Chuan Hwang Chu-Yuan Tseng
Department of Engineering Science Department of Engineering Science
National Cheng Kung University National Cheng Kung University
Tainan City, 701, Taiwan Tainan City, 701, Taiwan
email: chchwang@mail.ncku.edu.tw email: jimmy0608861997jimmy@qgmail.com

Cheng-Fang Su
Department of Applied Mathematics
National Yang Ming Chiao Tung University
Hsinchu City, 30010, Taiwan
email: scf1204@nycu.edu.tw

September 11, 2021

Abstract

We successfully construct the quantum universal gate for Shors algorithm and de-
rive the cost of this quantum circuit to estimate the complexity. In our circuit design,
several modules are developed to perform integer operations such as addition and con-
trolled addition on a quantum computer. These integer operations are achieved by
using single-qubit logic gates and CNOT logic gates that are then combined into the
quantum circuit for Shors algorithm. To reduce the number of qubits requires to de-
compose composite numbers, we adopt an adder using quantum Fourier transform and
introduce a semi-classical quantum computer model to handle the multiplication oper-
ation. Using our circuit design to crack the widely used 1024-bit RSA encryption, both
the space complexity and time complexity are 10'* approximately. In this case, the en-
tire decomposition requires approximately 520, 000 qubits. Finally, we implement Shors
factorization of the composite number 15 through IBM’s platform. If the hardware can
be improved in the future, the quantum circuit design proposed in this paper can be
used to decompose larger composite numbers.

1 Introduction

Quantum information science (QIS) is an emerging field that seeks to store and process
information with qubits. QIS is very different from classic information science (CIS), given
the characteristics of the hardware of a quantum computer. Quantum parallelism|[1] and
quantum entanglement[2] are the two major characteristics related to qubits that allow QIS
to have better performance in dealing with certain problems than traditional methods. For
example, quantum entanglement can be adopted as the theoretical basis for applications
such as quantum cryptography[3] and quantum key distribution[4][5]. Owing to these char-
acteristics, a quantum computer can be hundreds of times more efficient than a traditional

1 INTRODUCTION

computer with regard to certain problems and can even handle problems that cannot be
solved with classical computer.

The origin of quantum computers can be traced back to 1980 when Paul Benioff de-
scribed the first quantum mechanical model of a computer[6]. In his study, Benioff described
the Schrodinger equation for the Turing machine and demonstrated that computers could
operate under the laws of quantum mechanics[7], thereby laying an important foundation for
quantum computing. In the same year, Tommaso Toffoli introduced the reversible Toffoli
gate[8] that, together with the NOT and XOR gates, provides universal gates for classical
reversible computing. Finally, in 1985, David Deutsch described the first universal quan-
tum computer. Similar to a universal Turing machine capable to effectively simulate any
other Turing machine, a universal quantum computer can also simulate any other quantum
computer with polynomials.

In 1994, Peter Shor obtained a quantum algorithm for cracking RSA encryption to solve
the following problem: Given a positive integer IV, obtain its prime factors. This is the
first specific algorithm for quantum computing[9]. Solving the prime factorization of large
numbers is a difficult problem for traditional computers. Compared with classical meth-
ods, factoring large numbers is exponentially faster with this algorithm on an envisioned
quantum computer. In theory, Shors algorithm can crack several cryptosystems that are
currently in use. Therefore, this theory drew great attention from researchers worldwide on
quantum computing, which has continued to be improved and refined by researchers to date.
Shor proposed the first quantum error-correcting code in 1995[10]. In the following year,
David P. DiVincenzo from IBM stated the minimum requirements for creating a quantum
computer[11]. In 1998, the first nuclear magnetic resonance (NMR) computer with three
qubits was developed. In the same year, the Grover algorithm was implemented for the first
time on an NMR computer.

In 2001, Knill, Laflamme, and Milburn observed that optical quantum computing was
possible using single-photon sources, linear optical elements, and single-photon detectors,
thus opening a door for exploring linear optical quantum computing. In the same year,
Raussendorf and Briegel proposed quantum computing based on measurement[12]. In 2004,
the first functional NMR quantum computer in a pure state was demonstrated by the Univer-
sity of Oxford and the University of York. In 2006, Christoph Boehme from the University
of Utah demonstrated that reading data stored as nuclear spins with a phosphorus-and-
silicon quantum computer was feasible. Another research (2008) demonstrated that image
storage might enable better quantum storage of qubits [13]. 1QB Information Technologies,
Inc. (1QBit) is the worlds first dedicated quantum computing software company established
in 2012. In 2015, the first quantum logic gate in silicon was successfully developed. In 2016,
IBM launched "IBM Quantum Experience", which is an online interface for superconducting
quantum computing and is used for fast releasing new protocols in quantum information
processing. In 2017, IBM demonstrated a functional quantum computer that could handle
50 qubits and preserve the quantum state for 90 ms, extending the application of quan-
tum computing in other fields. In 2012, a study published in Nature Photonics proposed a
method[14] for reducing the number of qubits in Shors algorithm based on the characteris-
tics of photons, and the number of qubits required by the register was reduced to a single
qubit.

2 RSA AND SHORS ALGORITHM

Shors algorithm is a classic and significant algorithm in quantum computing. As quan-
tum computers and related technologies continue to develop, this algorithm will greatly
impact long-standing cryptosystems. Moreover, as the first algorithm designed for quantum
computing, it considers the characteristics of a quantum computer as part of its theoreti-
cal basis to fully exert the strengths of the quantum computer, providing inspiration and
guidance for developing quantum algorithms in the future. In 2013, Gamel, Omar, and
James[15] designed a quantum circuit for factoring composite numbers 15, 21 and 33. In
the same year, Geller, Michael R., and Zhou[16] proposed quantum circuits for factoring
composite numbers 51 and 85. Their main idea is first to determine the period based on
the results of x and a®” mod N, establish a truth table of x and a®” mod NN and finally design
a quantum circuit that decomposes the composite number N according to the truth table.
Despite these advances, the above quantum circuits are all simplified circuits and therefore
lack the quantum circuits for Shors algorithm that can actually be implemented.

This research aims to construct a quantum circuit that can actually be implemented for
Shors algorithm, with the shortest possible circuit depth and the smallest possible number of
qubits. In addition to the algorithm mentioned in the literature[17], this research adopted
a traditional computer to help implement multiplication so that the quantum computer
can implement Shors algorithm at a lower cost. To enable operations on a real quantum
computer, circuit functions required for Shors algorithm were constructed step by step
using universal logic gates, including quantum Fourier transform (QFT), inverse QFT, and
adders.

This paper is organized into five sections. Section 1 introduces the development of
quantum computers and related research on Shors algorithm and quantum computers, as
well as the rationale and objectives of this research. Section 2 describes the procedure of
RSA encryption and Shors algorithm, steps of adding a classical computer to the circuit,
and differences between the fully quantum computing model and the semi-classical quantum
computing model. Section 3 presents a detailed procedure for constructing various circuit
modules for Shors algorithm and the advantages of using quantum adders based on QFT.
Section 4 introduces how to use basic logic gates to construct the required modules, as
well as how to implement the circuit for factoring composite number 15 via IBMs platform.
Section 5 provides concluding statements.

2 RSA and Shors Algorithm

RSA encryption[18][19]]20] is based on prime factorization. By providing a big composite
number, hackers cannot crack within the effective time of the secret key, thus achieving
secure encryption. To crack RSA encryption, the most critical step is to decompose N into
the product of two prime factors, which is exactly what Shors algorithm seeks to achieve.
Therefore, this section will introduce the principle and procedure of Shors algorithm.

2.1 Principle and procedure of Shors algorithm

When decomposing a composite number using Shors algorithm, the first step is to guess a
value smaller than N and determine if ¢ and N are coprime. When a is not relatively prime

2.2 Quantum period-finding subroutine 2 RSA AND SHORS ALGORITHM

to N, we use their greatest common factor to decompose IV, which rarely happens. After
obtaining a suitable a relatively prime to N and less than N, we then need to obtain the
period of the function ¢® mod N. This part is extremely crucial in Shors algorithm and is
the only part that uses the quantum computer, described in detail in the next section. After
obtaining 7, if r is odd or a’/? = 1(mod N), the value of a should be re-determined until
it is satisfied that r is an even number and a’/? # 1(mod N). After obtaining a suitable r,
we can then obtain p and ¢ with the following two equations:

p=ged(@’?+1,N); ¢q=ged(a"?—1,N).

2.2 Quantum period-finding subroutine

The subroutine in Fig.1 can obtain the period of a® mod N with a quantum computer. The
quantum circuits[21] for the period-finding subroutine contain 6 steps. The first step is to
obtain the initial quantum state. The second step is to add the Hadamard logic gate to
Register A to form a superposition of states. The third step is to calculate f(z) = a® mod N.
The fourth step is to measure register B, which causes Register A to collapse in a specific
location; The fifth step is the inverse QFT, and the last step is quantum measurement.
After the period-finding subroutine, an arithmetic periodic pulse will be obtained.

Among the above steps, the construction of U for calculating a® mod N is the most
challenging. Its circuit implementation is also the most important part of this paper. The
method for constructing U will be described in Section 3.

o—EH"]
Register A ‘0> QFT
e ==
oz
U
0
Register B 10
1) A

Figure 1: Quantum subroutine in Shors algorithm

2.3 Quantum circuit for Shors algorithm

To obtain U for Shors algorithm, the inputs and outputs should satisfy the setting in Fig.2.

2.3 Quantum circuit for Shors algorithm 2 RSA AND SHORS ALGORITHM

Register A {

input |z) }output)

Register B {

x
input [1) }output |a® mod N)

Figure 2: Black box diagram of Shors algorithm circuit

Let us first discuss the calculation of a* mod N. It is decomposed as follows:
a*mod N (1)
— (@127 222" P 12 4 2n20)) 0 N
:((120 mod N)*" . (a21 mod N)¥n=t... ((12%2 mod N)*2 - ((127171 mod N)*
=[a®" (@ (a® (¢ mod N)*mod N)*1... mod N)™mod N|",

where x; = 0 or z; = 1. From the above equation, the circuit for Shors algorithm can then
be structured as shown in Fig.3, where the inputs and outputs of Uy are as Fig.4. In Section
3, we will construct small modules based on the above diagram.

o]
o—{]

Register A QFT

W

L
§

a a a

Register B U . U n2 EHU o /=

Figure 3: Diagram of the circuit for Shors algorithm

—

x{ U]azmod]\]

Figure 4: Diagram of the U module

2.4 Models for fully quantum computer and semi-classi@aAyaNINSHORSusdsGORITHM

2.4 Models for fully quantum computer and semi-classical quantum com-
puter

According to (1), we should prepare the required qubits and logic gates for kj to kaj, in this
model. Models for fully and semi-classical quantum computers are also compared in this
subsection. First, the fully computer model is shown as Fig.5.

o]
o—{#]
2n qubits QFT =
{1
o—{#}]
|0y———— - — - — —
[0...01) _ H == =_—
[1)————r — — - — —
Carry n — 1 bits {] T
b (n bits) { U] T
Uk |] -
N (n bits) { BECI
—N (n bits) {] T | Uk
k1
ka
] I} A total of (22! — 1)(n — 1) + 1 bits are required

kon

Figure 5: Fully quantum computers

Each multiplication requires n — 1 bits and (1) has 22"~! — 1 multiplications. Therefore,
based on the number of multiplications, the maximum number of bits required would be
(227~ — 1)(n — 1). In addition, the modulo operation requires +1 bit. Altogether, we
need to prepare a total of (22771 —1)(n — 1) + 1 bits. As n increases, the number of bits
required increases astronomically, which is why we use (b + ax) mod N. The model for
the semi-classical quantum computing can be obtained from Fig.6. First, k1 to ks, are
first computed using a classical computer, and the results are then used as inputs into the
quantum circuit. To input ki, we prepare n qubits. For ko, we also prepare n qubits, and
so on. The reason is that no matter how big a number is, it must be less than N after

2.4 Models for fully quantum computer and semi-classi@aAyaNINSHORSusdsGORITHM

mod N, so we don’t need to prepare more bits than N. This is why we use traditional

computers to perform multiplication. In other words, we can assume that x is the input
221'71

to U ,i. Therefore, we define ko; = a mod N. Subsequently, based on the following
equation

(kiz)mod N = ((a2i mod N) - z)mod N
= ((a* mod N) - (zmod N))mod N
= (k; - (xmod N)) mod N . (2)
We obtain

[a2n—1(a2n—2 . (a21 (a20 mod N)c2n mod N)Canl ... mod N)C2 mod N]Cl
:[]4;2” A (k2 . (kl mod)CQn mod)C2n—l ... mod N]cl (3)

2n qubits . QFT-!

v oo

L%
l_

|0)————— - —— —
[0...01) = H == =_—
[1)—— — —— —
Carry n — 1 bits { | T
(n bits) { Uk | T
Uk | L -
N ’ﬂ bltb { |] Uk! T _
—N (n bits) {] T | Uk
k1 (n bits)
k2 (n bits)
] | A total of 2n? bits are required
= I=—n—
kon (n bits)

Figure 6: Semi-classical quantum computers

3 CIRCUIT MODULES FOR SHORS ALGORITHM

3 Circuit modules for Shors algorithm

This section introduces how to construct U and the circuit for Shors algorithm based on
quantum Fourier transform (QFT).
3.1 Quantum Fourier Transformation

QFT[23][24] is a linear transformation for quantum states, widely used in quantum comput-
ers and various quantum algorithms. It maps one quantum state to another as

1 Nt N
QFT) = = D wn Ik
0

1 0
Let Ry, = [0 e2m’/2k

QFT-based circuit (see Fig.7), as well as the inverse QFT-based circuit (see Fig.8).

}. According to the above equation, we can draw the diagram of the

l71> ~oA Ru1 H Rn | . . . L k)

72 — (n}- R oHR o po———— Ik

Pon =

ljn—1) : : = - k1)
|9 : : - —{HH F Ik

Figure 7: Circuit for n-qubit QFT

k1) — : — R HE AR HAEF i

k) 4/ A Bai H Bae —|H : lj2)

Pyn

‘kn71>] ' : : : ‘jn71>
‘k">] H : : : ‘jn>

Figure 8: Circuit for n-qubit inverse QFT

Next, we construct a circuit for 5-qubit QFT and inverse QFT on the IBMs platform.
Considering that CNT-R,, can be decomposed into universal logic gates[25], modules are
constructed for subsequent use, as shown in Fig.9.

3.1 Quantum Fourier Transformat3on CIRCUIT MODULES FOR SHORS ALGORITHM

PG HPHHPEH PG|

[HHPGHPEHHPG)]

HRPE)HPE)

c— qft—

Figure 10: Circuit module for 5-qubit QFT on IBMs platform

|PH HPHHPHHPG)

|
=
ool

Hro Hre Ha]

c— qfti —

Figure 12: Circuit module for 5-qubit inverse QFT on IBM’s platform

3.2 Adder 3 CIRCUIT MODULES FOR SHORS ALGORITHM

3.2 Adder

Following QFT, this subsection describes how to construct a quantum adder[26]. For a
classical computer, the adder has three inputs (A, B, Cy;,) and two outputs (S, Coyt), sug-
gesting that the transformation is irreversible. In contrast, reversible adders are essential in
quantum computing systems. To this end, a unitary transformation is designed to obtain
both S and C,,; simultaneously through one operation with the input quantum states, as
Fig.13.

|4 ——l—l— |4
|B) 4—& & |B)

15

|Cin)

0) -b—+ |Couty

Figure 13: Quantum full adder

The relation between the inputs and outputs in the above figure is expressed as
S:A@BG‘)CWL; Cout = AB® BCyy, ® ACyy, .

However, the above-mentioned quantum full adder is only the most basic quantum full
adder and can be further optimized. Many people are interested in creating new adders
or perfecting existing adder designs. Some studies minimize the necessary cost, and some
focus on optimizing the time required for the overall calculation.

Our goal is to optimize the basic quantum full adder circuit, hoping to use fewer logic
gates to achieve the same result. To achieve the same result with fewer logic gates, a new
adder needs to be constructed using QFT. This QFT-based adder can convert the quantum
state through operations and obtain the inverse QFT results. The QFT-based quantum
addition requires fewer qubits than the full adder, though its logic gate design is more
complicated.

To reduce the cost of Shors algorithm, IBM’s platform is used in this subsection to
test the validity of the quantum adder, QFT, and inverse QFT. Related modules are also
constructed to be used for factorization in Section 4.

The diagram of the quantum adder based on QFT is shown in Fig.14.

10

3.2 Adder 3 CIRCUIT MODULES FOR SHORS ALGORITHM

a1y : : : la1)
[az) : : : laz)
|an—1> . . . ‘an—1>
|an) : . . |an)
10y - HRHR}- A Bos HRa - : RO
[62(0)) — : [Ri} A Roa H Rar |- = lpa(a +0))
= D : : . Pon =
|¢n—1(b)) — : : AR HR,| L Jéno1(a+ b))
lén(®) 4| : : ~ [mH | 19aa+b)

Figure 14: n-qubit quantum adder

Then, a 5-bit quantum adder is constructed on the IBM’s platform, and a module is
built for subsequent use, as shown in Fig.15 and Fig.16.

qo
q1

q2
a3
q4

[
s {PmHPOHPOHPOH PG|

@ [P HPGHHPOHPG]

a [rmHPE HP@]

s [P HPE) -

99 ,?(w) |—

add

Figure 16: Circuit module for 5-qubit quantum adder on IBM’s platform

11

3.3 Control-Adder 3 CIRCUIT MODULES FOR SHORS ALGORITHM

3.3 Control-Adder

The next operation that needs to be included is controlled addition. In addition to the
qubits for the operation of addition, another control qubit is used to determine whether the
addition operation is applied. If the control qubit is |0), the addition operation is applied.
If the control qubit is |1), the addition operation is not applied. We first add a control point
to each logic gate when constructing the control adder, as shown in Fig.17.

Control qubit . . .
a1 : : : la1)
|az) : : : |az)
‘an—l> . . : ‘(ln—]>
|any : . . lan)
lo10) - HRHR: - Rai HR, | : : TF i@+
|62(b)) — - (B} AR R | - [ga(a+ b))
=P . : . P =
|én-1(0)) — : : AR HR.] - [éno1(a+b)
6a®) = | : : : [RiH F [6ala+b)

Figure 17: Diagram of an n-qubit control-adder

The question then arises as to how we could simplify CNT-CNT-R so that it can be
input into IBM’s platform. To solve this question, we adopted the following method for
simplification[27].

—|Rn+1
7, o

Figure 18: Decomposition of CNT-R

— _ RrH—l
Rn
Bk mje{n.te

Figure 19: Decomposition of CNT-CNT-R

The construction of a 5-qubit control-adder requires CNT-CNT-R,,, where n is 15. The
Toffoli gate can be used for decomposition[28], and the following modules can be pre-built

12

3.4 Control-Control-Adder 3 CIRCUIT MODULES FOR SHORS ALGORITHM

on IBM'’s platform.

Il
T

cerl —

v
~
ISE)
=

P(-%) —b— “ —

I
T

cer2 —

)
PSS
“1A
2

rpfe- o |

Figure 21: CNT-CNT-R3 module on IBM’s platform

We can then use the above modules to construct the control-adder, as shown in the
figure below.

do — a Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha -
a—b H H H H H H H H H H H H H H -
92 — Hb H ccr3 H H Hb H H H H H H H H H -
43 — cerl Heer2 Hb H cerd H cerb H Hb Hcer3 H Hb H H H H H -
94 — H H Hb H Heerl Heer2 Hb Heerd H Hb Her3Hb 4 H =
5 — H H H Hb H H H Hb HecorlHer2qb H Hb Hb |
6 c c c c c cerl | | cer2
cerl

q7 c Hc Hc Hc H H H H H H -
qs c H c Hc H H a L
99 c Hc H -
q10 c -

Figure 22: Control-adder module on IBM’s platform

3.4 Control-Control-Adder

As described in the previous subsection, an additional control point is added to each logic
gate for the addition operation. Similarly, the control-control-adder adds additional control
points to each logic gate in the controlled addition operation. In this sense, we then require
CNT-CNT-CNT-R,, rather than CNT-CNT-R,,, as shown in Fig.23.

13

3.4 Control-Control-Adder 3 CIRCUIT MODULES FOR SHORS ALGORITHM

R,

Figure 23: Decomposition of CNT-CNT-CNT-R,,

Specifically, CNT-CNT-R,, is decomposed by using the same method as for controlled
addition. The controlled NOT (CNOT) gates at multiple control points are referred to as
the multi-qubit CNOT gate, which can be decomposed in the following manner[29][30].

q1

Q1 —e— &

q3

2 ——
q3 —e— [0) —b ©D— |0)

u—d— |0 & 10>
G4 ——P——

Figure 24: Decomposition of CNT-CNT-CNT-NOT

The above simplification requires an extra two-qubit register. Therefore, a total of 14
qubits are used to construct the control-control-adder, including 10 qubits for the addition
operation, 2 control qubits, and 2 qubits for the register. The multi-qubit CNOT module
is established as Fig.25.

= B 90

b— - q1

o— | q2

i ceer| = g3 gy 4
f— | q/l Fany fj

g | @5 ——Pp—

Figure 25: CNT-CNT-CNT-NOT module on IBM’s platform

CNT-CNT-CNT-R; to CNT-CNT-CNT-Rj5 are required for the 5-qubit control-control-
adder, so we should first construct CNT-CNT-R5 to CNT-CNT-Rg, as well as CNT —CNT—R;
to CNT—CNT—RZS. The method for constructing CNT-CNT-R,, has been mentioned in the
previous subsection, and the method for CNT—CNT—RIL is shown as Fig.26.

14

3.5 CNT-CNT-(b+ a) mod N 3 CIRCUIT MODULES FOR SHORS ALGORITHM

a] L
b—cer2i—— P(-7)
c— I T T

2 —B— P(7) P(-7)

Figure 26: Construction of CNT—CNT—R; module on IBM’s platform

The constructed multi-qubit CNOT module, CNT-CNT-R, and its conjugate transpose
are used to form the CNT-CNT-CNT-R module, which is used to build the control-control-
adder.

cer2 cer2 ceecx cer2i ceex

qo —a —a Ha M a a —

b ~ a—b Hb Hb Hb Hb

“ m_ e—]c H e He -
ccerl =

a7 - s ——1 Ha H Ll |

H B e—— Ht H Hf F

g— | 5 ———— ¢ — 9 — ¢ 9 —

T —a Ma Ma Ha ma Ha Ma Ha Ma Ma Ha Ma Ha ra Ma r
a—b Hb Hb Hb Hb Hb Hb Hb Hb Hb Hb Hb Hb Ho Hb F B
2 —c H H H H H H H H H H H H H H - — —
a3 — H H H H H H H H H H H H H H L
a3 c c i— |
U ceer [ccera [eers [] ceera [ecers [] 1 1 1 1 [] (] 1 [] [
a5 —]| coorl [ccer2 | | ecer3 | | ccerd | | ceers || | He H i L c U ceersd ¢ U ceera H ceert = — I
]]]] He [eeort[Jecorz[Jecers[Vecera] oqll sl e Heerte He |

9—| -
97 —d Hd Hd Hd Hd Hd nd Hd Hd Hd Hd Hd Hd Hd Hd [
s — f nf nf nf nf nf M f nf Mof Hf nf Hf HAf Af A F= —

f = ccadd

@w—9 H9 H9 H9 H9 H H H H H H H H H H - -
Q10 9 H9 H9 HY H H H H H H r = B

— -
7 9 H9 H9 H H H - | L
q12 g Ha L L n—

I | W o

713 9 -

P— —

Figure 28: Construction of CNT-CNT-ADD on IBM’s platform

3.5 CNT-CNT-(b+ a) mod N

The next step is to establish CNT-CNT-(b + a) mod N. To be more specific, when two
control qubits are |1), the operation of (b + a) mod N is applied on the input a, b and N

15

3.6 CNT-(b+ ax) mod N 3 CIRCUIT MODULES FOR SHORS ALGORITHM

must satisfy: the following condition
0<a,b<N.

This operation will be realized by using the aforementioned modules, and its structure is
shown as Fig.29.

Yoy [¢1) [t2)
|

e 2 bit to control

| i
2-bit registers for input |0) ADD(a) ADD(-N) || ADD(N) || ADD(-a) ADD(a) [
T T

‘ : ® o i
‘ ‘
n bits for input b QFT : QFTi QFT : QFTi QFT
‘ i
: :
‘ ‘

Sign bit for put0> ; [0y
\ \

(b+a)mod N

[/
f |
| |
0 i ! Iy i L
{ ato - N i ~NtoN [Nto —a —ato —a }1
| \
I I ! 1 L L
| |

Figure 29: Schematic of the n-qubit CNT-CNT-(b + a) mod N

Specifically, there are many conversion modules in the phase of the input qubits. As
the value of Register A does not change after the addition operation is completed, we can
change the value in the phase of the input qubits to reuse a when performing multiple
additions continuously. To explain the operation of the entire circuit, let us assume that
the two control qubits are both |1). The initial state of an input is

Y0y = 1) ® |a) ®[00) ® |b) ® [0) -

The next step is to apply the operation of (—a + N) to the area of operations, i.e., the
location of |b), with the following equation:

Y =NMH®|-N)®|00)®[b+a—N)®I0) .

We would then have either b+a— N <Qorb+a— N >=0. If b+a— N < 0, when the
result is obtained from inverse QFT, the highest qubit in the phase of operations will be
|1>, and then the label qubit will be changed to |1) through CNT-NOT. The label qubit
can be then used to control whether to apply the operation of (+NN) to make the value in
the phase of operations return to a positive value. On the contrary, if b+ a — N > 0, no
action will be taken. Its state is expressed as follows:

[h2) = I ®N)®[00)®[b+a—- N)®|0), ifb+a—N<O0;
) = 1H®|IN)®|00)®|b+a—N+N)®|1), ifb+a—Nz=0.

3.6 CNT-(b+ ax) mod N

The next module to construct is CNT-(b + azx) mod N, and the same requirements are
predetermined as for CNT-CNT-(b + a) mod N:

0<ab<N.

16

3.6 CNT-(b+ ax) mod N 3 CIRCUIT MODULES FOR SHORS ALGORITHM

Furthermore, x should meet the following condition as a and b:
0<z<N.
First, (b + ax) mod N can be organized as
r=212" " 202" 2 oy 28 + 2,20,
where x1,x9,...,2n_1,2, € 0 or 1. Substituting the above into (b + az) mod N, we have

(b+ ar12" V4 aze2V %t am, 12V + aanO)mod N
(- ((b+ azp2”Ymod N + az,_12)mod N + - - aze2" 2 mod N + az12" !)mod N
[(b + azp,2”)mod N)mod N)* + a2'mod N)* ! + ... a2" tmod N]*'.

Reserve 1 bit to control —] L

n bits for input z { } T

Reserve n bits for input a l MOD;, MOD,) 2"~1mod N
—Ci[1 C2 [O3 T | Cn|
e —— o
2-bit registers for input |0) 0

} (b + az) mod N

n bits for input b {

Sign bit for input [0) — — . — — 10>

C1 = CCADDMOD(a); C3 = CCADDMOD(2a mod N);
C3 = CCADDMOD(2%2a mod N); C, = CCADDMOD(2" !a mod N);
MOD; = a to (2a mod N); MODgz = (2a mod N) to (22a mod N).

Figure 30: Diagram of n-qubit circuit

The circuit design related to the multiplication operation here uses the semi-classical
quantum computer model mentioned in section 2.4. After comparing the time complexity
of the semi-classical quantum model and the fully quantum computer model, we can get the
results in the figure below. Thus, traditional computers for multiplication operations can
significantly reduce the number of qubits required compared to the fully quantum computer
model. To crack the widely used 1024-bit RSA encryption takes about 30 seconds to use
the ideal Shor’s algorithm, about 300 years to use the best classical (GNFS) algorithm, and
about 50 minutes to use the semi-classical algorithm proposed in this paper.

17

4 PRIME FACTORIZATION IN QISKIT

1035
10%°
10%°

1020

Fully quantum computer model

- Best classical (GNFS)

1018

100

Number of operations

R Semi-classical computer model

- The ideal Shor’s algorithm model

0 200 400 600 800 1000 (N=2102%)

Figure 31: Comparison of different models

4 Prime factorization in Qiskit

In this section, we use the circuit modules in section 3 to compose the circuit of Shor’s
algorithm and actually decompose the composite number 15 on the IBM’s platform.

4.1 Construction of the circuit

As previously mentioned, the modules required for Shors algorithm must have the input x
and the output (kz) mod N. While this is very similar to (b + ax) mod N (if b = 0) that
we constructed in previous section, the biggest difference between the two is the location
of the output. Here, the input and the output (kz) mod N must be in the same register.
Therefore, we introduced CNT-SWAP after CNT-(b + ax) mod N to have the input and
output in the same place as Fig.32.

Reserve 1 bit to control —| .
n bits for input =
Reserve n bits for input a (MOD; MOD,
i 1 Ca[1 | Cs— G
2-bit registers for input |0) {
n bits for input b
Sign bit for input |0) — _

C; = CCADDMOD(a); Cs = CCADDMOD(2a mod N);
C3 = CCADDMOD(2%2a mod N); C, = CCADDMOD(2" 'a mod N);
MOD; = a to (2a mod N); MODj3 = (2a mod N) to (22a mod N).

Figure 32: CNT-(b + az) mod N with CNT-SWAP
Another issue that needs to be addressed is that the value in the phase of operations is

18

4.2 Quantum circuit (N =15, a = 4) 4 PRIME FACTORIZATION IN QISKIT

no longer |0) when the next operation is executed. In that case, the register must be zero
so that there will be no error in the next calculation. We also reserved n-qubit |0) that was
initialized to the zero-position by using CNT-SWAP, as shown in Fig.33.

Reserve 1 bit to control —| —

n bits for input

Reserve n bits for input a MOD; MODy
01] Ca1 T Cs[| Cn

2-bit registers for input |0) {

n bits for input b

Sign bit for input [0) — — . —

N bits for input [0)

C1 = CCADDMOD(a); C3 = CCADDMOD(2a mod N);
C3 = CCADDMOD(2%a mod N); C, = CCADDMOD(2" 'a mod N);

MOD; = a to (2a mod N); MODj3 = (2a mod N) to (22(1 mod N).

Figure 33: Diagram of the CNT-U module

The U module mentioned in Section 3 has now been constructed. The following sub-
section will implement the designed circuit for factoring the composite number 15 on the
IBM'’s platform.

4.2 Quantum circuit (N =15, a = 4)

A circuit with V = 15 and a = 4 was constructed on IBM’s platform as Fig.34.

19

4.2 Quantum circuit (N =15, a = 4) 4 PRIME FACTORIZATION IN QISKIT

fo— H a —a —a —la EH @
4 bits :
n{#Ha a2 - FHa — — — T [i} {~]
|
\
] AM, b ANy fed AN, fed AM, AM; b= A0, = Ads; —] A0 D E
i
R = — —— b ™ 1 —® E :
1 ——i — —b C— — — b = E :
i
15— e | b | | [~ :
1
w—Bb t— b =
fr—— ¢ Fc ¢ ¢ € [¢ [—1¢ [|¢ :
——od HP{d HPHd —d d Fd [—d (&d :
o—f B —f] f e sk a ki
o——g9 9 —g [P @1 g o g 9 .
i D s L s s e I N e N 1
— i 0 I e D e N e '
p——k —k —k —k K —k —k —k .
—1 1 1 [N e -
|
1y M by m e M S L m = m P m f—{ m)
i
e —o n —n F—— n n — n — n —n :
17— O — o +—o o o o o o :
w——op —P —p —p p F—p [—p /P
o—9_F—9 s s | s s j—a e] :
1
|
@ -
2 -
|
|
G2
|
|
|

AM; = addmod4; AMy = addmod8; AM3 = addmodl; AMy = addmod2;
AMs5 = addmodl; AMg = addmod2; AMy7 = addmod4; AMg = addmod8.

Figure 34: Quantum circuit (N = 15, a = 4)

As the initial input value of the first module was |00001), the modules whose control
points passed through the first to fourth qubits can be omitted. For the second module, the
only possible input value was 1 or 4, [00001) or |00100), so modules with control points in
the first, second, and fourth modules can be omitted. After omitting the above modules,
the circuit diagram can be simplified as Fig.35.

20

4.2 Quantum circuit (N =15, a = 4) 4 PRIME FACTORIZATION IN QISKIT

|
w{if—————a 2 {HHre
t4 hits }
! 7]
a{#Ha [1 LA 7
|
pram— YA AM, — AN v ;
|
|
T . (71 1
|
|
fa— —b 177 1
|
i
=
sl
|
’—‘\
1o—B— b b \Z‘
|
ffr—— ¢ c —c ‘
d d [—d]
|
o f B f B f :
|
qro—— 9 g — 9 ;
—T i e i tadi 1
|
T i :
|
ha— k k [k |
|
gra—— | | I e
|
|
fis—— m m —m
|
|
dip——mo n n —n ‘
|
- o o — ©
|
|
G P P [—P ;
|
Qe q qg —a :
I I B !
|
I
|
4n
|
|
|
|
g2
|
|
42 ‘
|

AM; = addmod4; AMjy = addmodl; AM3 = addmod4.

Figure 35: Diagram of the simplified circuit (N = 15, a = 4)

The corresponding probabilities of register A in the |00), |01), |10), and |11) states were
calculated to be 26.66%, 22.56%, 26.46%, and 24.32%, respectively. Because of the noise on
the hardware, it is necessary to square the amplitude before normalizing. The wavefunction
was normalized to observe the peaks better. Subsequently, the obtained frequencies for the
four states were 33.01%, 13.32%, 31.79%, and 20.85%, respectively, where the peaks were
observed at |00) and [10). The use of regularization can make the distribution of probability
more obvious. However, the error generated here is related to the hardware. In the case
of many logic gates and a deep circuit depth, the hardware error will increase. In addition,
many teams study noise reduction[31][32][33], so this is an important research direction in
the future.

The obtained peak values |00) and |10) were converted into binary (i.e., 0 and 2). Sub-

21

4.3 Comparison of cost between classical and quantum computing 5 CONCLUSION

stituting the binary values into the following equation, we have:

¢ 02 01

204 474 2727
where ¢; is the measured value; t 4 is the number of qubits in Register A. The above equation
shows that the period r is 2. Substituting it into the following equation, we obtain

ged(az —1,15) = ged(3,15) = 3;
ged(az +1,15) = ged(5,15) = 5.

The above results show that we have successfully implemented the complete circuit for
Shors algorithm and factored the composite number 15 (15 = 3 x 5) on IBM’s platform.
The following equation can be used to estimate the complexity of decomposition of the
composite number with n qubits, where k& denotes the number of qubits in Register A.

C? (circuit for n-qubit Shors algorithm)
=k -CP(CNT — (b+ ax) mod N)+ k-n-CP(CNT-SWAP
+(k—1)-n-(SWAP) + (QFT))
n? —
2

—k - (425503 + 406502 +3n) + k-n- 17+ (k—1)-n-3+5- " 4p

k- (425.5n° + 406.5n% + 23n) + 2.5n% — 4.5n..

The total number of qubits required by the whole circuit is 2n + k(n + 1), and the value
of k is normally between 0.5n and 2n. The commonly used RSA encryption usually uses
1024-bit keys, i.e., n = 1024. In this case, with k£ = 0.5n and n = 1024, the space and time
complexity of the algorithm are both approximately 104, and it would require 520,000
qubits for factorization.

4.3 Comparison of cost between classical and quantum computing

For factoring an n-qubit number, we need to calculate

0 1 21
a®> mod N, a®> mod N, ---, a*> mod N,

a total of § calculations. When using a classical computer, we theoretically need to calculate
2% times. This shows that the computation time to crack RSA encryption can be signifi-
cantly reduced with a quantum computer. The difference between classical and quantum
computing is noticeable if n = 1024, which is the length of an RSA key.

5 Conclusion

Our study successfully constructs a complete quantum circuit for Shors algorithm that can
actually be implemented. This research combined both classical multiplication operation

22

5 CONCLUSION

and quantum computers for reducing the circuit depth and the number of qubits as much as
possible. In addition, Our quantum circuit greatly improves the efficiency of Shors algorithm
by using fewer qubits. Furthermore, universal logic gates were adopted to realize operations
required by Shors algorithm, including QFT, inverse QFT, the QFT-based adder, CNT-
ADD, CNT-CNT-ADD, CNTCNTCNT-R,,, CNT-CNT-(b+a) mod N, and CNT-(b+ ax)
mod N.

According to the design of all circuit modules we mentioned before, we successfully
factored 15 by using the constructed modules on IBM’s platform. Although the noise is
high with the actual operation of the quantum computer running on IBM’s hardware, which
often produces certain errors with a large number of logic gates and long runtime (or circuit
depth). Future research will explore how to reduce the noise generated by the quantum
circuit due to the hardware.

In addition, we herein calculated the complexity and the number of qubits required by
the circuit to estimate the cost of cracking the n-bit RSA encryption. The related modules
established can be used for the future development of other quantum algorithms. These
modules can be applied directly for integer operations.

Finally, we summarize the main conclusions of this article as following:

1. The circuit we design to implement Shor’s algorithm’s first complete quantum circuit
rather than a simplified circuit. Moreover, we decompose the composite number 15
on IBM’s platform to validate our design of modules. Although the time and space
complexity are still greater than traditional computers, it still proves that Shor’s
algorithm can be implemented in quantum computers without considering the total
number of qubits.

2. To reduce the overall operation cost of Shor’s algorithm, we have made the following
efforts:

(a) In the part of the adder, we use a quantum adder designed by quantum Fourier
transform and design modules for it. The advantage is that our hardware needs
fewer qubits, although the design of quantum gates is more complex than ordi-
nary.

(b) We abandon quantum computers in multiplication steps. Instead, we use tradi-
tional computers to process multiplications and then we use the results of the
operations as inputs to the quantum circuit to process subsequent calculations.
Actually, the cost of a semi-classical computer model designed in this way is
much lower than a fully quantum computer model.

3. We decompose 15 = 5 x 3 on the IBM’s platform with 63 qubits. However, to de-
compose a composite number requires a large number of quantum gates. The deeper
circuit depth, the higher noise generated. The processing of noise must start with
the improvement of quantum computer hardware. However, we can still see the peak
probability from the quantum state of register A |00), |01), |10), |11), and finally
complete the decomposition of the composite number 15.

23

REFERENCES REFERENCES

The development of quantum algorithms is the key to the success of the development of

quantum computers. Through the circuit realization and improvement of Shor’s algorithm,
we hope this research is helpful to future quantum algorithms.

References

1]

2]
[3]

[4]

[10]

[11]

[13]

[14]

Dugic, Miroljub; Cirkovic, Milan M. Quantum parallelism in quantum information
processing. International Journal of Theoretical Physics, 2002, 41.9: 1641-1649. 1

Horodecki, R., et al., Quantum Entanglement. Rev. Mod. Phys., 2007. 81. 1

Hanggi, Esther; Renner, Renato; Wolf, Stefan. Quantum cryptography based solely on
Bell’s theorem. arXiv preprint arXiv:0911.4171, 2009. 1

Shor, Peter W., Preskill, John. Simple proof of security of the BB84 quantum key
distribution protocol. Physical review letters, 2000, 85.2: 441. 1

Holloway, Catherine, et al. Optimal pair generation rate for Entanglement-based QKD.
arXiv preprint arXiv:1210.0209, 2012. 1

Hemmer, P. and J. Wrachtrup, Where Is My Quantum Computer? Science, 2009.
324(5926): p. 473. 1

Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum me-
chanical Hamiltonian model of computers as represented by Turing machines". Journal
of Statistical Physics. 22 (5): 563591. 1

Toffoli, Tommaso. J. W. de Bakker and J. van Leeuwen, Automata, Languages and
Programming, Seventh Colloquium. Noordwijkerhout, Netherlands: Springer Verlag.
pp. 632644 1

Show, Peter W. Algorithms for quantum computation: discrete logarithms and factor-
ing. In:Proceedings 35th annual symposium on foundations of computer science. Ieee,
1994. p. 124-134. 1

Show, Peter W. "Scheme for reducing decoherence in quantum computer memory".
Physical Review A.,1996 52 (4): R2493R2496. 1

DiVincenzo, David P. "Topics in quantum computers." Mesoscopic electron transport.
Springer, Dordrecht, 1997. 657-677. 1

Raussendorf, R; Briegel, H. J, "A One-Way Quantum Computer". Physical Review
Letters.,2001, 86 (22): 518891 1

Damgard, Ivan B., et al. Cryptography in the bounded-quantum-storage model. STAM
Journal on Computing, 2008, 37.6: 1865-1890. 1

Martin-Lopez, Enrique, et al. Experimental realization of Shor’s quantum factoring
algorithm using qubit recycling. Nature photonics, 2012, 6.11: 773-776 1

24

REFERENCES REFERENCES

[15]

[16]

[17]

[18]

Gamel, Omar, and Daniel FV James. "Simplified Factoring Algorithms for Validating
Small-Scale Quantum Information Processing Technologies." arXiv:1310.6446 (2013).
1

Geller, Michael R., and Zhongyuan Zhou. "Factoring 51 and 85 with 8 qubits." Scientific
reports 3.1 (2013): 1-5. 1

Beauregard, Stephane. Circuit for Shor’s algorithm using 2n+ 3 qubits.arXiv preprint
quant-ph/0205095, 2002. 1

Wiener, Michael J. Cryptanalysis of short RSA secret exponents. IEEE Transactions
on Information theory, 1990, 36.3: 553-558. 2

Boneh, Dan, et al. Twenty years of attacks on the RSA cryptosystem. Notices of the
AMS, 1999, 46.2: 203-213. 2

Shand, Mark; Vuillemin, Jean. Fast implementations of RSA cryptography.
In:Proceedings of IEEE 11th Symposium on Computer Arithmetic. IEEE, 1993. p.252-
259. 2

Vandersypen, Lieven Mk, et al. Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance.Nature, 2001, 414.6866: 883-887. 2.2

Stephane Beauregard. Circuit for Shor’s algorithm using 2n+3 qubits, Quantum Infor-
mation and Computation. Volume 3, Issue 2, March 2003, 175185.

Ruiz-Perez, Lidia; Garcia-Escartin, Juan Carlos. Quantum arithmetic with the quan-
tum Fourier transform.Quantum Information Processing, 2017, 16.6: 152. 3.1

Browne, Daniel E. Efficient classical simulation of the quantum Fourier transform.New
Journal of Physics, 2007, 9.5: 146. 3.1

Kim, Taewan; Choi, Byung-Soo. Efficient decomposition methods for controlled-R n
using a single ancillary qubit. Scientific reports, 2018, 8.1: 1-7. 3.1

Draper, Thomas G. Addition on a quantum computer. arXiv preprint quant-
ph/0008033, 2000. 3.2

Kim, Taewan; Choi, Byung-Soo. Efficient decomposition methods for controlled-R n
using a single ancillary qubit.Scientific reports, 2018, 8.1: 1-7. 3.3

Shende, Vivek V., Markov, Igor L. On the CNOT-cost of TOFFOLI gates. arXiv
preprint arXiv:0803.2316, 2008. 3.3

Lavor, Carlile, MANSSUR, L. R. U., PORTUGAL, Renato. Grover’s Algorithm: quan-
tum database search. arXiv preprint quant-ph/0301079, 2003. 3.4

Williams, C.P., Explorations in quantum computing. [electronic resource]. 2nd ed.
Texts in computer science. 2011: Springer-Verlag London Limited. 3.4

25

REFERENCES REFERENCES

[31] Daniel Volya, Prabhat Mishra. Special Session: Impact of Noise on Quantum Algo-
rithms in Noisy Intermediate-Scale Quantum Systems. 2020 IEEE 38th International
Conference on Computer Design (ICCD). October 2020, Complete, 1-4. 4.2

[32] Robin Harper, Steven T. Flammia, Joel J. Wallman. Efficient learning of quantum
noise. Nature Physics, VOL 16, December 2020, 11841188. 4.2

[33] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, Guo-Ping Guo. Effects of Quantum Noise
on Quantum Approximate Optimization Algorithm. CHIN. PHYS. LETT. Vol. 38, No.
3 (2021). 4.2

26

	Introduction
	RSA and Shor’s Algorithm
	Principle and procedure of Shor’s algorithm
	Quantum period-finding subroutine
	Quantum circuit for Shor’s algorithm
	Models for fully quantum computer and semi-classical quantum computer

	Circuit modules for Shor’s algorithm
	Quantum Fourier Transformation
	Adder
	Control-Adder
	Control-Control-Adder
	CNT-CNT-(b+a)12mumodN
	CNT-(b+ax)12mumodN

	Prime factorization in Qiskit
	Construction of the circuit
	Quantum circuit (N=15, a=4)
	Comparison of cost between classical and quantum computing

	Conclusion

