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Abstract. In previous papers we have shown how Schrödinger equations which include
an electromagnetic field interaction can be deduced from a fluid dynamical Lagrangian
of a charged potential flow that interacts with an electromagnetic field. The quantum
behaviour was derived from Fisher information terms which were added to the classical
Lagrangian. It was thus shown that a quantum mechanical system is drived by infor-
mation and not only electromagnetic fields. This program was applied also to Pauli’s
equations by removing the restriction of potential flow and using the Clebsch formalism.
Although the analysis was quite successful there were still terms that did not admit in-
terpretation, some of them can be easily traced to the relativistic Dirac theory. It is thus
suggested to repeat the analysis for a relativistic flow, relating it to the Dirac theory by
adding invariant four dimensional Fisher information terms. It is shown that while the
classical parts of a classical fluid and a Dirac fluid can be mapped, the Fisher information
term of Dirac theory is non-trivial.

LQuantum = LClassical Fluid + LFisher Information

1 Introduction
Quantum mechanics is commonly understood through the Copenhagen interpretation, which views the
quantum wave function as an epistemological tool, used solely for predicting measurement probabilities,
aligning with Kantian philosophy that denies human ability to understand things ”as they are” (ontology)
[1]. However, another prominent school of thought interprets quantum mechanics differently, believing
in the wave function’s reality. This view, supported by Einstein and Bohm [2, 3, 4], considers the
wave function as a real entity akin to an electromagnetic field. This perspective led to alternative
interpretations, such as Madelung’s fluid realization [5, 6], which proposes that the square of the wave
function’s modulus represents a fluid density, and its phase represents the fluid’s velocity potential.
However, this approach is limited to spinless electron wave functions and cannot account for a full set of
attributes even for slow-moving electrons. We mention that also in the heuristic deduction/rationalization
of Schrödinger equation in Merzbacher’s book [7], the continuity equation is employed for a generic
complex fluid without regard to its constituents.

Wolfgang Pauli [8] introduced a non-relativistic quantum equation for a spinor in 1927. This equa-
tion utilizes a two-dimensional operator matrix Hamiltonian. It was shown that such a theory can be
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interpreted through fluid dynamics [9]. This interpretation is significant because proponents of the Copen-
hagen interpretation of quantum mechanics often use the concept of spin as evidence that nature has
inherently quantum elements without classical analogues or interpretations.

Holland [3] and others provided a Bohmian analysis of the Pauli equation, but they did not address
the analogy between Pauli theory and fluid dynamics or the notion of spin vorticity. Thus, spin fluid
dynamics for a single electron with spin [9] was introduced subsequently.

Interpreting Pauli’s spinor in terms of fluid density and velocity variables connects us to the 19th-
century work of Clebsch, which is closely tied to the Eulerian variational analysis of fluids. Clebsch
[10, 11] and, much later, Davidov [12] described variational principles for barotropic fluid dynamics.
Clebsch introduced a four-function variational principle for an Eulerian barotropic fluid, and Davidov
aimed to quantize fluid dynamics, though his work was not well-known in the West due to being written
in Russian. Eckart [13] provided a variational description for Lagrangian fluid dynamics, which differs
from the variational approach to Eulerian fluid dynamics.

Initial attempts to formulate Eulerian fluid dynamics using variational principles in the English lit-
erature were made by Herivel [15], Serrin [16], and Lin [17]. However, their methods were complicated,
relying on numerous Lagrange multipliers and auxiliary potentials, involving between eleven to seven in-
dependent functions—more than the four required for the Eulerian and continuity equations of barotropic
flow, making these methods impractical.

Seliger and Whitham [18] reintroduced Clebsch’s variational formalism using only four variables for
barotropic flow. Lynden-Bell and Katz [19] proposed a variational principle in terms of two functions,
load λ and density ρ, but their approach had an implicit definition of velocity v⃗, requiring the solution
of a partial differential equation to determine v⃗ in terms of ρ and λ and its variations. Yahalom and
Lynden-Bell [20] addressed this limitation by adding one more variational variable, allowing for arbitrary
(unconstrained) variations and providing an explicit definition of v⃗.

A key challenge in interpreting quantum mechanics through fluid dynamics lies in understanding
thermodynamic quantities. In traditional fluids, concepts like specific enthalpy, pressure, and temperature
relate to specific internal energy, which is a unique function of entropy and density defined by the
equation of state. This internal energy can be explained through the microscopic composition of the
fluid using statistical physics, based on the interactions of atoms, ions, electrons and molecules through
electromagnetic fields.

However, a quantum fluid lacks such structure. Yet, equations for both spinless [5, 6] and spin [9]
quantum fluid dynamics show terms analogous to internal energies. This raises the question: where
do these internal energies come from? Suggesting that quantum fluids have a microscopic substructure
contradicts empirical evidence that electrons are point particles.

The answer lies in measurement theory, particularly Fisher information [21, 22], a measure of the
quality of any quantity’s measurement. It has been shown [22] that Fisher information corresponds to
the internal energy of a non-relativistic spinless electron (up to a proportionality constant)and can partly
explain the internal energy of non-relativistic electron with spin [22].

There has been an attempt to derive most physical theories from Fisher information by Frieden [23],
however, in this approach there is always a J component to the Lagrangian (in addition to the Fisher
information) which is unique to each physical system and is chosen without justification such that the
desired Lagrangian is derived.

At the time of Clebsch, relativity was not introduced yet hence there was no need to write a varia-
tional principle for an Eulerian relativistic flow (which invariant under a Lorentz transformation). This
was recently rectified in a series of papers [27, 28, 29] in which relativistic Clebsch fluid dynamics was
introduced. It was shown also that relativistic Clebsch fluid dynamics can lead to relativistic quantum
mechanics by adding a Lorentz invariant Fisher information term. For null vorticity and low velocities
this variational principle reduces to the Schrödinger variational principle.

Thus it is now needed to compare the fluid derived relativistic quantum mechanics to the more
prevalent Dirac theory which is the current established theory of relativistic quantum mechanics. This
comparison involves several steps the first of which is to express the theory in terms of four variables of
a fluid (velocity vector & density) rather than eight (a complex four spinor) of Dirac. This will be done
in the following sections.

2 Dirac Theory
The theory of Dirac is defined in terms of the equation (we initially neglect the electromagnetic interac-
tions):

(ih̄γµ∂µ −mc)Ψ = 0 (1)
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Ψ is a four dimensional complex column vector (spinor). And γµ are four dimensional complex matrices
satisfying the anticommutation relations:

{γµ, γν} = 2ηµνI4, ηµν = diag(+1,−1,−1,−1) (2)

I4 is a unit matrix in four dimensions. In what follows Greek indices: µ, ν ∈ {0, 1, 2, 3} and Latin indices:
i, j, k ∈ {1, 2, 3}. There are multiple representations of γν , we shall use the following representation:

γ0 =

(
I2 0
0 −I2

)
γi =

(
0 σi

−σi 0

)
(3)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4)

and I2 is a unit matrix in two dimensions. Equation (1) may be integrated provided initial conditions
are supplied, that is:

Ψ(0, x⃗) = Ψ0(x⃗) (5)

The theory seems disconnected from any fluid dynamic interpretation as Ψ depends on eight scalar
quantities while a barotropic fluid theory depends on only four variables (half the required amount).
However, the theory can be expressed in terms of less variables as follows. First we write the four
dimensional spinor in terms of two dimensional spinors:

Ψ =

(
ψ1

ψ2

)
. (6)

This form induces by equation (5) initial condition on both ψ1 and ψ2:

ψ1(0, x⃗) = ψ10(x⃗), ψ2(0, x⃗) = ψ20(x⃗), Ψ0 =

(
ψ10

ψ20

)
. (7)

Substituting equation (6) in equation (1) we obtain:

(ih̄∂0 −mc)ψ1 + ih̄σi∂iψ2 = 0, (ih̄∂0 +mc)ψ2 + ih̄σi∂iψ1 = 0 (8)

Introducing the hatted variables:

ψ̂1 ≡ e−
imc
h̄ x0ψ1 = e−

imc2

h̄ tψ1, ψ̂2 ≡ e−
imc
h̄ x0ψ2 = e−

imc2

h̄ tψ2. (9)

We can substitute:
ψ1 = e+

imc
h̄ x0 ψ̂1, ψ2 = e+

imc
h̄ x0 ψ̂2. (10)

in equation (8) and obtain the simplified set of equations:

(ih̄∂0 − 2mc)ψ̂1 + ih̄σi∂iψ̂2 = 0, ih̄∂0ψ̂2 + ih̄σi∂iψ̂1 = 0 (11)

The initial conditions for this equations at x0 = 0 are the same as before, because ψ and ψ̂ are the same
at that particular time:

ψ̂1(0, x⃗) = ψ10(x⃗), ψ̂2(0, x⃗) = ψ20(x⃗). (12)

The second equation for ψ̂2 can be readily solved if ψ̂1 is known:

ψ̂2(x0, x⃗)[ψ̂1] = ψ̂2(0, x⃗)− σi∂i

∫ x0

0

ψ̂1(x
′
0, x⃗)dx

′
0 (13)

Introducing the auxiliary variable:

intψ̂1 ≡
∫ x0

0

ψ̂1(x
′
0, x⃗)dx

′
0 ⇒ ∂0intψ̂1 = ψ̂1, ∂

2
0 intψ̂1 = ∂0ψ̂1 (14)

and the time independent spinor:

W (x⃗) ≡ −σk∂kψ̂2(0, x⃗), (15)
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we may write equation (11) and thus the Dirac theory in the form:

(∂µ∂µ + 2
imc

h̄
∂0)intψ̂1 =W (x⃗), ψ̂2(x0, x⃗) = ψ̂2(0, x⃗)− σi∂iintψ̂1 (16)

Hence the mathematical problem of Dirac theory is to solve the first part of equation (16) because the

second equation is just a relation giving us ψ̂2 explicitly in terms of ψ̂1. Moreover, if we have a solution

for ψ̂1 then intψ̂1 follows immediately from equation (14). Taking the temporal partial derivative of the

first equation in (16) it follows that ψ̂1 must satisfy the equation:

(∂µ∂µ + 2
imc

h̄
∂0)ψ̂1 = 0 (17)

The initial conditions of this second order equation are fixed by the initial conditions of equation (11)
because those conditions also fix the first derivative in time x0 = 0.

(ih̄∂0 − 2mc)ψ̂1|x0=0 + ih̄σi∂iψ20 = 0, ∂0ψ̂2|x0=0 + σi∂iψ10 = 0. (18)

Or more simply as:

∂0ψ̂1|x0=0 =
2mc

ih̄
ψ10 − σi∂iψ20 (19)

As we are given both the initial condition of the function and the initial condition of its first derivative,
the solution of the second order differential equation (17) are fixed, and its solution is the entire content
of the Dirac theory. We notice at this point that one can reintroduce the original function ψ1 using
equation (9) which will result in the Klein Gordon equation:

(∂µ∂µ +
m2c2

h̄2
)ψ1 = 0 (20)

with the initial conditions:

ψ1|x0=0 = ψ10, ∂0ψ1|x0=0 =
mc

ih̄
ψ10 − σi∂iψ20. (21)

which is also equivalent to Dirac’s theory. However, notice first that in this case the Klein Gordon
equation is an equation for a two dimensional spinor nor a scalar or even a complex scalar. Second, the
physical interpretation in Dirac theory is quite different with respect to the original Klein Gordon theory.
In particular the conserved probability four current is:

Jµ ≡ Ψ̄γµΨ, Ψ̄ ≡ Ψ†γ0 (22)

Thus we obtain the probability density:

J0 = Ψ̄γ0Ψ = Ψ†(γ0)2Ψ = Ψ†Ψ = ψ†
1ψ1 + ψ†

2ψ2 ≥ 0. (23)

This is quite different from J0 in the original Klein Gordon theory which could become negative, and
thus unphysical. Nevertheless, we have shown that from a mathematical point of view both theories
have identical equations but different mathematical dependent variables. In the Klein Gordon theory
we consider (complex) scalars and in the Dirac theory we consider spinors. We are in a better position
now to show the analogies with relativistic flows as at least both theories depend on identical number of
dependent variables that is four scalar functions.

3 Variational description
Equation (20) can be deduced from a variational principle using the Lagrangian density:

LKG ≡ m

(
h̄2

m2
∂µψ†

1∂µψ1 − c2ψ†
1ψ1

)
, AKG ≡

∫
d4xLKG (24)

provided that the variations are constrained in a suitable manner on the spatial and temporal boundaries.
This is not the traditional Dirac Lagrangian density but has the same mathematical content non the less,



ISQS28
Journal of Physics: Conference Series 2912 (2024) 012027

IOP Publishing
doi:10.1088/1742-6596/2912/1/012027

5

as we have shown in the previous section. Let us write the two dimensional spinor ψ1 in terms of its up
and down components:

ψ1 =

(
ψ↑
ψ↓

)
. (25)

Inserting equation (25) into equation (24) we obtain:

LKG = m

(
h̄2

m2
∂µψ∗

↑∂µψ↑ − c2ψ∗
↑ψ↑ +

h̄2

m2
∂µψ∗

↓∂µψ↓ − c2ψ∗
↓ψ↓

)
. (26)

We now write the up and down wave functions in an amplitude and phase representation:

ψ↑ = R↑e
im
h̄ ν↑ , ψ↓ = R↑e

im
h̄ ν↓ (27)

Substituting equation (27) into equation (26) will lead to the form:

LKG = LKGq + LKGc

LKGq ≡ h̄2

m
(∂µR↑∂µR↑ + ∂µR↓∂µR↓)

LKGc ≡ m
(
R2

↑
(
∂µν↑∂µν↑ − c2

)
+R2

↓
(
∂µν↓∂µν↓ − c2

))
. (28)

in which we have partitioned LKG into a quantum part LKGq and a classical part LKGc. In the classical
limit in which h̄→ 0:

lim
h̄→0

LKGq = 0 ⇒ lim
h̄→0

LKG = LKGc (29)

We introduce a mass density and an angle θ in the following natural way:

ρ̄ ≡ m
(
R2

↑ +R2
↓
)
, tan θ ≡ R↓

R↑
, ⇒ R↑ =

√
ρ̄

m
cos θ, R↓ =

√
ρ̄

m
sin θ (30)

It thus follows that:
LKGc = ρ̄

[
cos2 θ∂µν↑∂µν↑ + sin2 θ∂µν↓∂µν↓ − c2

]
. (31)

Now let us set:

ν ≡ ν↑, β ≡ ν↓ − ν↑,

α ≡
−∂µν∂µβ ±

√
(∂µν∂µβ)2 + sin2 θ(∂µβ∂µβ) (∂µβ(2∂µν + ∂µβ))

∂µβ∂µβ
(32)

In terms of which we define a four dimensional Clebsch field:

vµC ≡ α∂µβ + ∂µν (33)

Plugging equation (33) and using the definitions of equation (32) we obtain after some cumbersome but
straight forward calculations the result:

LKGc = ρ̄
[
vµCvCµ − c2

]
. (34)

Defining the mass density in the rest frame as:

ρ0 =
ρ̄

c

[√
vµCvCµ + c

]
. (35)

It follows that:

LKGc = cρ0

[√
vµCvCµ − c

]
= LRelativistic Flow. (36)

Thus the classical part of LKG is equivalent (although in a non trivial way) to a Lagrangian density of a
classical relativistic fluid but of course without an internal energy (see equation (103) in [27]). We note
that unlike the non-relativistic Pauli spin flow which has a classical redundant term (in the sense that it
does not comply with the fluid frame work) of the form (see equation (63) in [25]):

lim
h̄→0

εqs =
1

2
(1− α2)(∇⃗β)2 (37)

In Dirac theory we have a perfect mapping between the classical parts of Dirac’s Lagrangian and the
relativistic flows, without any ”left overs”.
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4 The Dirac quantum term
Let us now compare the Dirac quantum term LKGq appearing in equation (28) to the quantum Fisher
information term appearing in equation (113) of [27] which we cite here for completeness:

LRFq =
h̄2

2m
∂µa0∂µa0, a0 ≡

√
ρ0
m
. (38)

On a superficial consideration they look quite the same, however, looking more closely striking differences
appear. First LKGq depends on two ”density amplitudes” (one for each spin) as opposed to the single
amplitude of LRFq. Indeed, it is known that each energy eigenstate of the Dirac equation can accommo-
date two electrons each with a different spin. Second a factor of 2 is missing in the denominator of LKGq.
We shall try to answer the questions as follows, looking at equation (35) we recall that the amplitudes
R↑ and R↓ are not simply connected to the density as:

ρ0 = ρ̄

[√
vµCvCµ

c2
+ 1

]
. (39)

However, according to equation (104) of [27]:

√
vCµv

µ
C = |vC0|

√
1−

v⃗2C
v2C0

= |vC0|
√

1− v⃗2

c2
=

|vC0|
γ

(40)

Also according to equation (101) of [27]:
|vC0| = cλ (41)

For a classical fluid lacking internal energy and satisfying the equations of motion (see equation (58) of
[27]):

λ = γ (42)

thus up to quantum corrections: √
vCµv

µ
C ≈ c (43)

Inserting equation (43) into equation (39)
ρ0 ≈ 2ρ̄. (44)

Thus:

a0 =

√
ρ0
m

≈
√

2ρ̄

m
=

√
2R, R2 ≡ R2

↓ +R2
↑ (45)

In terms of R and θ one may write the quantum part of the Lagrangian density as:

LKGq =
h̄2

m
(∂µR↑∂µR↑ + ∂µR↓∂µR↓) =

h̄2

m

(
∂µR∂µR+R2∂µθ∂µθ

)
. (46)

Thus:

LKGq ≈ h̄2

2m

(
∂µa0∂µa0 + a20∂

µθ∂µθ
)
. (47)

We notice that in Dirac’s theory R is not a probability amplitude as according to equation (23)

J0 = ψ†
1ψ1 + ψ†

2ψ2 = R2 + ψ†
2ψ2 ≥ R2. (48)

thus the second term in the quantum Lagrangian density perhaps is not surprising, and of course a
complete calculation requires the inclusion of the quantum effects neglected in equation (43).
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5 Conclusion
We have shown the equivalence of the classic sector of Dirac theory to relativistic fluid dynamics. This
solves the riddle about some strange terms appearing in the fluid description of Pauli’s theory. How-
ever, the quantum sector of Dirac’s theory contains an additional term (the same ”redundant” terms
appears also in the fluid representation of Pauli’s theory [25]), which is not expected based on purely
Fisher information considerations. Thus a deeper study is warranted, taking into account both quantum
contributions to the λ term which is a property of the relativistic fluid and also the unique definition of
the probability density in Dirac’s theory taking into account all four spinor amplitudes. This important
task is left for the future.

Of course a complete description of the physics of the electron in terms of Dirac theory will require
the interaction of the electron with the electromagnetic field which imply four potential terms in the
variational action. This also is left for future endeavours.

Finally we remark that the nature of the quantum relativistic flow remains quite mysterious. One
cannot avoid the obvious question: ”a flow of what?” This fundamental question has consequences for
both the issues raised above (the strange Fisher information addition and the existence of electromagnetic
fields). We offer a rather bold hypothesis that dates back to Riemann regarding the geometry of space
time. According to Riemann [30] all physical entities are geometrical, hence the flow is just the geometrical
description of some thin elongated defect in space-time (thin in spatial dimensions but elongated in the
temporal direction), the position of this defect is not well defined which is the reason for the appearance
of the Fisher information term. We recall, that based on Riemann’s proposal Einstein suggested the very
successful theory of general relativity [31] describing gravity to high precision as the metric of space-time.
However, an attempt of Weyl [30] to geometrize the electromagnetic field based on affine geometry is
regarded as less successful. Also the idea of Schrödinger [32] to geometrize matter based on the non-
symmetric affine connection is not considered successful. Yet we are hopeful that the current mapping
of relativistic flow to Dirac theory may shed some light on those early attempts and some progress can
be made. It is emphasized that non-symmetric affine connection components will survive even in a
flat space-time in which there is no curvature at all and thus no gravity. The conjecture suggests that
those components can be mapped to the (classical) flow under consideration. This is an extension of
Schrödinger’s original idea according to which all matter should be attributed to those non-symmetric
affine connection components. The regions in space-time that contain a non-symmetric affine connection
which is not null, are conjectured to be attributed to ”defects” in space-time. Of course, this can only
(potentially) explain the classical part of the Lagrangian but not the (quantum) Fisher information terms
for which an explanation is still needed.
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