
Chapter 2

Beam Optics and Orbits: Methods Used

at the Tevatron Accelerators

V. Lebedev, V. Shiltsev, and A. Valishev

The success of the Tevatron Run II would not be possible without detailed work on

the linear and nonlinear beam optics. The scope of optics work included all major

stages: the optics design, optics measurements, and optics correction. Optics of all

transport lines and rings was measured and corrected. This work resulted in a

significant reduction of the emittance growth for beam transfers and increased the

acceptances of the rings and transfer lines. The most spectacular improvements are

related to the improvements of antiproton beam transport from the Accumulator to

the Main Injector (MI) and optics improvements in Tevatron, Debuncher, and

Accumulator. The electron cooler beam transport presented significant challenge

for both the optics design and its commissioning.

2.1 Linear Optics with Coupling Between Degrees

of Freedom

The major part of optics work has been focused on the linear optics problems. In

this section we consider the fundamentals of betatron motion with coupled degrees

of freedom. The significant fraction of Run II optics work has been based on this

formalism and otherwise would hardly be possible. In particular the beam transport

in the electron cooler (see Chap. 7) is completely x–y coupled, and the Tevatron

lattice has significant coupling terms and the tune working point close to the

difference resonance that it cannot be accurately described using the perturbation

theory. The most of material is related to the x–y coupled motion. However, it can

be directly applied to coupling of any two degrees of freedom. An extension to three

degrees of freedom is straightforward and is not presented to keep text and

equations compact.
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First, we describe the equations of motion and notations. Second, we consider

the relationship between eigenvectors, emittances, and the particle 4D ellipsoid in

the phase space. Third, we consider the parameterization of particle motion based

on an extension of the Mais–Ripken parameterization [1, 2] presented in

[3]. Finally, we consider a perturbation theory for the case where the unperturbed

motion is Hamiltonian.

2.1.1 Equations of Motion and Conditions of Symplecticity

In the absence of dissipative processes, the particle motion is Hamiltonian. For the

linear motion the Hamiltonian is a second-order form of particle coordinates and

momenta. For two-dimensional motion, it can be presented in the following matrix

form:

H x; px; y; py; s
� � ¼ xTHx, ð2:1Þ

where x¼ [x, px, y, py]
T, x and y are the particle coordinates, px¼ x0 �R y/2 and

py¼ y0 + R y/2 are its canonical momenta,1 x0 ¼ dx/ds and y0 ¼ dy/ds are the particle
angles, s is the longitudinal coordinate (time coordinate), R¼ eBs/Pc, Bs is the

longitudinal magnetic field, and P is the total momentum of the reference particle.

Following the standard procedure for obtaining the equations of motion [4],

dpi
dt

¼ �∂H
dxi

,
dxi
dt

¼ ∂H
dpi

, ð2:2Þ

one comes to

dx

ds
¼ UHx, ð2:3Þ

where

U ¼
0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0

2664
3775 ð2:4Þ

is the unit symplectic matrix. In the case of flat orbit, the Hamiltonian and the

corresponding equations of motion are [2]

1Note that in practical optics calculations the difference between particle angles and their

canonical momenta does not usually exist because most optics codes compute transfer matrices

between points where the longitudinal magnetic fields are equal to zero.
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H ¼

Kx
2 þ k þ R2

4
0 N �R

2

0 1
R

2
0

N
R

2
�k þ R2

4
0

�R

2
0 0 1

266666666666664

377777777777775
, ð2:5Þ

x00 þ Kx
2 þ k

� �
xþ N � 1

2
R0

0@ 1Ay� Ry0 ¼ 0 ,

y00 � kyþ N þ 1

2
R0

0@ 1Axþ Rx0 ¼ 0 :

ð2:6Þ

Here Kx¼ eBy/Pc, k¼ eG/Pc, N¼ eGs/Pc, and By is the vertical component of the

magnetic field; G and Gs are the normal and skew components of the magnetic field

gradient (the skew component is obtained by +45� rotation around the s axis in the

right-handed coordinate frame).

For any two solutions of Eq. (2.3), x1(s) and x2(s), one can write that

d

ds
x1

TUx2
� � ¼ dx1

T

ds
Ux2 þ x1

T U
dx2
ds

¼ x1
THTUTUx2 þ x1

TUUHx2 ¼ 0,

and, consequently,

x1
TUx2 ¼ const, ð2:7Þ

where the following properties of the unit symplectic matrix were employed:

U
T
U¼ I and UU ¼ �I; I is the identity matrix. The integral of motion in

Eq. (2.7) is called the Lagrange invariant.

Let us introduce the transfer matrix from coordinate 0 to coordinate s, x ¼
M(0, s)x0. Taking into account that the invariant of Eq. (2.7) does not change during
motion, we can write that

x1
TUx2 ¼ x1

TM 0; sð ÞTUM 0; sð Þx2 ¼ const:

As the above equation is satisfied for any x1 and x2, it yields

M 0; sð ÞTUM 0; sð Þ ¼ U: ð2:8Þ

Equation (2.8) expresses the symplecticity condition for particle motion. It is

equivalent to n2¼ 16 scalar equations, but taking into account that the matrix
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MTUM is antisymmetric, only six ((n2� n)/2¼ 6) of these equations are indepen-

dent [5]. Consequently, only 10 of 16 elements of the transfer matrix are indepen-

dent. Thus, the symplecticity condition imposes more severe limitations than the

Liouville’s theorem [4], which imposes only one condition, det(M)¼ 1, and leaves

15 independent parameters.

Multiplying both sides of Eq. (2.8) by U on the left and byM�1 on the right, we

obtain that the inverse of matrix M is

M 0; sð Þ�1 ¼ �UM 0; sð ÞTU: ð2:9Þ

Then, multiplying Eq. (2.9) byM on the left and by U on the right, we obtain an

alternative expression of symplecticity condition:

M 0; sð ÞUM 0; sð ÞT ¼ U: ð2:10Þ

Note that Eqs. (2.9) and (2.10) are not related by matrix transposition.

2.1.2 Eigenvalues, Eigenvectors, and Condition of Motion
Stability

Consider a circular accelerator with the one-turn transfer matrix M. The transfer

matrix has four eigenvalues, λi, and four corresponding eigenvectors, vi (i¼ 1, 2, 3, 4):

Mvi ¼ λivi: ð2:11Þ

Then, the turn-by-turn particle motion can be presented in the following form:

xn ¼
X4
i¼1

λni civi, ð2:12Þ

where ci are the coefficients determined by particle initial coordinates.

Comparing the two equations below

det M� λIð Þ ¼ λ4 þ � � � þ det Mð Þ ¼ λ4 þ � � � þ 1,

det M� λIð Þ ¼ λ� λ1ð Þ λ� λ2ð Þ λ� λ3ð Þ λ� λ4ð Þ ¼ λ4 þ � � � þ λ1λ2λ3λ4,

one obtains that the product of all eigenvalues is equal to 1:

λ1λ2λ3λ4 ¼ 1: ð2:13Þ

Matrix M is a real matrix. Therefore, the complex conjugate of an eigenvalue

and corresponding eigenvector are also an eigenvalue and eigenvector. As follows

from Eq. (2.12) the motion stability requires |λi|� 1. Combining that with the
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requirement of Eq. (2.13), one obtains that the four eigenvalues split into two

complex conjugate pairs confined to a unit circle, |λi|¼ 1. We denote them as λ1,
λ�1, λ2, and λ�2 and the corresponding eigenvectors as v1, v1*, v2, and v2*, where

*

denotes the complex conjugate value. Note that if any eigenvalue is equal to�1, its

complex conjugate partner has the same value; consequently, the solution is

degenerate and an infinitesimally small perturbation makes the system unstable.

For any two eigenvectors, the symplecticity condition of Eq. (2.8) yields the

identity:

0 ¼ λjvj
TU Mvi � λivið Þ ¼ Mvj

� �T
UMvi � λjvj

TUλivi ¼ 1� λjλi
� �

vj
TUvi,

which results in that the product vj
TUvi can be different from zero only if vi and vj

represent a complex conjugate pair. The product vj
+Uvi is purely imaginary, indeed:

vþUvð Þ� ¼ vþUvð Þþ ¼ vþUþv ¼ �vþUv,

where v+¼ v*T denotes the Hermitian conjugate, and we took into account that the

transpose of a scalar is equal to itself. That allows us to introduce the symplectic

orthogonality conditions:

v1
þUv1 ¼ �2i, v2

þUv2 ¼ �2i,

v1
TUv1 ¼ 0, v2

TUv2 ¼ 0,

v2
TUv1 ¼ 0, v2

þUv1 ¼ 0:

ð2:14Þ

Other combinations can be obtained by applying the transposition and/or the

complex conjugation to Eq. (2.14). Note that the sign choice in the two top

equations determines which of two vectors in each complex conjugate pair is the

primary vector (see Sect. 2.1.5). The normalization value is chosen to make the

matrix V introduced in the next section symplectic. Similarly as for the transfer

matrix elements, there are only six independent real scalar equations among

Eq. (2.14). Note that the two equations in the second line are identities because

a+ U a¼ 0 for any a.

2.1.3 Mode Emittances and Emittance Ellipsoid in 4D Phase
Space

The turn-by-turn particle positions and angles can be represented as a linear

combination of four independent solutions,
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x¼ Re A1e
�iψ1v1 þ A2e

�iψ2v2
� �

¼ A1 v1
0 cosψ1 þ v1

00 sinψ1ð Þ þ A2 v2
0 cosψ2 þ v2

00 sinψ2ð Þ, ð2:15Þ

where four real parameters, A1, A2, ψ1, and ψ2, represent the betatron amplitudes

and phases. The amplitudes remain constant in the course of betatron motion, while

the phases are incremented after each turn.

Let us introduce the following real matrix:

V ¼ v1
0, � v1

00, v20, � v2
00½ �: ð2:16Þ

This allows one to rewrite Eq. (2.15) in the compact form

x ¼ VAξA, ð2:17Þ

where the amplitude matrix A is

A ¼
A1 0 0 0

0 A1 0 0

0 0 A2 0

0 0 0 A2

2664
3775 	 diag A1;A1;A2;A2ð Þ, ð2:18Þ

and

ξA ¼
cosψ1

� sinψ1

cosψ2

� sinψ2

2664
3775: ð2:19Þ

Applying the orthogonality conditions given by Eq. (2.14), one can prove that

matrix V is a symplectic matrix. It can be seen explicitly as follows:

VTUV ¼ v1 þ v1
�

2
, � v1 � v1

�

2i
,
v2 þ v2

�

2
, � v2 � v2

�

2i

24 35T

U
v1 þ v1

�

2
, � v1 � v1

�

2i
,
v2 þ v2

�

2
, � v2 � v2

�

2i

24 35 ¼ U:

Here we took into account that every matrix element in matrix V̂ TUV̂ can be

calculated using vector multiplication of Eq. (2.14).

Let us consider an ensemble of particles, whose motion at the beginning of the

lattice (or any other point of a ring) is contained in a 4D ellipsoid. A 3D surface of

this ellipsoid is determined by particles with extreme betatron amplitudes. For any
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of these particles, Eq. (2.17) describes the 2D subspace of single-particle motion,

which is a subspace of the 3D surface of the ellipsoid, described by the bilinear form

xTΞx ¼ 1: ð2:20Þ

This ellipsoid confines the motion of all particles. To describe a 3D surface, in

addition to parameters ψ1 and ψ2 of Eq. (2.19), we introduce the third parameter ψ3

so that the vector ξ would belong to a 3D sphere with a unit radius, according to the

equation

ξ; ξð Þ ¼ 1, ð2:21Þ

where

ξ ¼
cosψ1 cos ψ3

� sinψ1 cosψ3

cosψ2 sinψ3

� sinψ2 sinψ3

2664
3775: ð2:22Þ

Then, we can rewrite Eq. (2.17) in the following form:

x ¼ VAξ ð2:23Þ

which describes a 3D subspace confining all particles of the beam (water-bag

particle distribution). In other words we can consider that the amplitudes of the

boundary particles are parameterized by ψ3 (A1!A1cosψ3, A2!A2sinψ3), so that

we would obtain a 4D ellipsoid.

Expressing ξ from Eq. (2.23) and substituting it into Eq. (2.21), one obtains the

quadratic form describing a 4D ellipsoid containing all particles:

xT VAð Þ�1
� �T

VAð Þ�1
x ¼ 1: ð2:24Þ

Comparing Eqs. (2.20) and (2.24) and using Eq. (2.9) for matrix inversion, one

can express the bilinear form, Ξ, as follows:

Ξ ¼ UV Ξ̂VTUT, ð2:25Þ

where Ξ̂ ¼ A�1A�1 ¼ diag A1
�2;A1

�2;A2
�2;A2

�2
� �

is a diagonal matrix

depending on two amplitudes A1 and A2, and we took into account that matrices

A�1 and U commute. Inversion of Eq. (2.25) yields

Ξ̂ ¼ VTΞV, ð2:26Þ

i.e., a symplectic transform V reduces matrix Ξ to its diagonal form.
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To determine the beam emittance (volume of the occupied 4D phase space)

described by Eq. (2.20), we note that due to symplecticity det(V)¼ 1. Conse-

quently, the coordinate transform x¼Vx0 corresponding to Eq. (2.26) does not

change the ellipsoid volume. Then, in the new coordinate frame, the 3D ellipsoid

enclosing the total 4D phase space of the beam is described by the following

equation:

Ξ̂11x
02 þ Ξ̂22p

02 þ Ξ̂33y
02 þ Ξ̂44y

02 ¼ 1:

It is natural to define the beam emittance as a product of the ellipsoid semiaxes

(omitting the factor π2/2 correcting for the real 4D volume of the ellipsoid) so that

ε4D ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ξ̂11Ξ̂22Ξ̂33Ξ̂44

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ξ̂
� �q ¼ A1

2A2
2: ð2:27Þ

Thus, the squares of amplitudes A1 and A2 can be considered as 2D emittances ε1
and ε2 corresponding to the eigenvectors v1 and v2. Their product is equal to the

total 4D emittance: ε1ε2¼ ε4D. We will call them the mode emittances. Conse-

quently, one can write matrix Ξ̂ as

Ξ̂ ¼ diag ε1
�1; ε1

�1; ε2
�1; ε2

�1
� �

: ð2:28Þ

2.1.4 Eigenvectors and Particle Phase Space Ellipsoid

Similarly to the one-dimensional case, the particle ellipsoid shape, described by

matrix Ξ, determines the mode emittances ε1 and ε2 and the eigenvectors v1 and v2.
In this case the mode emittances are reciprocal to the roots of the following

characteristic equation:

det Ξ� iλUð Þ ¼ 0: ð2:29Þ

One can prove the above using Eq. (2.25) as follows:

det Ξ� iλUð Þ ¼ det UVΞ̂VTUT � iλU
� � ¼ det Ξ̂ � iλUTVTUVU

� �
¼ det Ξ̂ � iλU

� � ¼ 1

ε12
� λ2

0@ 1A 1

ε22
� λ2

0@ 1A ¼ 0:
ð2:30Þ

Knowing the mode emittances and, consequently, Ξ̂, one can obtain from

Eq. (2.25) a system of linear equations for matrix V:
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ΞVU ¼ UVΞ̂: ð2:31Þ

Multiplying the above equation by ul, one obtains two equations for the

eigenvectors:

Ξ� i

εl
U

� �
vl ¼ 0, ð2:32Þ

where l¼ 1, 2, and

u1 ¼
1

�i
0

0

2664
3775, u2 ¼

0

0

1

�i

2664
3775: ð2:33Þ

We also took into account that Vul¼ vl, Uul¼� iul, and Ξ0ul ¼ 1
εl
ul.

Taking into account Eq. (2.20) a Gaussian distribution function for coupled

beam motion can be written in the following form:

f xð Þ ¼ 1

4π2ε1ε2
exp � 1

2
xTΞx

� �
: ð2:34Þ

Then, the second-order moments of the distribution function are

Σij 	 xixj ¼
ð
xixjf xð Þdx4 ¼ 1

4π2ε1ε2

ð
xixj exp � 1

2
xTΞx

� �
dx4: ð2:35Þ

To carry out the integration, one can perform a coordinate transform, y¼V� 1x,

which reduces matrix Ξ to its diagonal form. Taking into account that

1

4π2ε1ε2

ð
yiyjdy

4 exp � 1

2
yTΞ̂y

� �
¼ diag ε1; ε1; ε2; ε2ð Þ½ �ij 	 Σ̂ ij, ð2:36Þ

one obtains that the matrix of the second-order moments is

Σ ¼ VΣ̂VT: ð2:37Þ

Using Eqs. (2.25) and (2.37), one can easily prove that matrix Σ is the inverse of

matrix Ξ. Consequently, a symplectic transform VU reduces matrix Σ to its

diagonal form. Applying a similar scheme as above for obtaining emittances and

eigenvectors from matrix Ξ, one finds that the mode emittances ε1 and ε2 can be

computed from matrix Σ as roots of its characteristic equation,

det ΣUþ iλ Ið Þ ¼ 0, εl ¼ λl, ð2:38Þ
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while the equations for the eigenvectors are

ΣUþ iεlIð Þvl ¼ 0: ð2:39Þ

It also follows from Eq. (2.37) that the total beam emittance is equal to

ε4D ¼ ε1ε2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Σð Þ

p
: ð2:40Þ

Taking into account that the beam motion from point s to point s0 results in the

matrix Ξ transformation so that Ξ(s0)¼M(s, s0)TΞ(s)M(s, s0) and using Eq. (2.29)

and the motion symplecticity, one can easily prove that the mode emittances ε1 and
ε2 are the motion invariants, i.e., there is no configuration of linear electric and

magnetic fields which can change them. Consequently, each mode emittance is

bound to the corresponding betatron mode. If the beamline is built so that the

motion is decoupled at some point, then the mode emittances coincide with

conventional horizontal and vertical emittances.

2.1.5 Beta-Functions of Coupled Motion

Employing the previously introduced notation, one can describe a single-particle

phase-space trajectory along the beam orbit as

x sð Þ ¼ M
�
0, s
�
Re

ffiffiffiffiffiffiffi
2I1

p
v1e

�iψ1 þ ffiffiffiffiffiffiffi
2I2

p
v2e

�iψ2

� �
¼ Re

ffiffiffiffiffiffiffi
2I1

p
v1 sð Þe�i ψ1þμ1 sð Þð Þ þ ffiffiffiffiffiffiffi

2I2
p

v2 sð Þe�i ψ2þμ2 sð Þð Þ� �
,

ð2:41Þ

where the vectors v1 sð Þ 	 eiμ1 sð ÞM 0; sð Þv1 and v2 sð Þ 	 eiμ2 sð ÞM 0; sð Þv2 are the

eigenvectors of the matrix M(0, s)MM(0, s)� 1, ψ1 and ψ2 are the initial phases of

betatron motion and I1 and I2 are the corresponding actions, and M¼M(0,L) is the

transfer matrix for the entire ring. The terms e�iμ1 sð Þ and e�iμ2 sð Þ are introduced to bring
the eigenvectors to the following form:

v1 sð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
β1x sð Þp

� iu1 sð Þþα1x sð Þffiffiffiffiffiffiffiffiffiffiffiffi
β1x sð Þpffiffiffiffiffiffiffiffiffiffiffiffi

β1y sð Þ
q

eiν1 sð Þ

� iu2 sð Þþα1y sð Þffiffiffiffiffiffiffiffiffiffiffiffi
β1y sð Þ

q eiν1 sð Þ

266666666664

377777777775
, v2 sð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
β2x sð Þp

eiν2 sð Þ

� iu3 sð Þþα2x sð Þffiffiffiffiffiffiffiffiffiffiffiffi
β2x sð Þp eiν2 sð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
β2y sð Þ

q
� iu4 sð Þþα2y sð Þffiffiffiffiffiffiffiffiffiffiffiffi

β2y sð Þ
q

266666666664

377777777775
, ð2:42Þ

so that μ1(s) and μ2(s) would be the phase advances of betatron motion. Here β1x(s),
β1y(s), β2x(s), and β2y(s) are the beta-functions; α1x(s), α1y(s), α2x(s), and α2y(s) are
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the alpha-functions which, as will be shown in the next section, coincide with the

beta-functions’ negative half-derivatives at regions with zero longitudinal magnetic

field; and six real functions u1(s), u2(s), u3(s), u4(s), v1(s), and v2(s) are determined

by the orthogonality conditions of Eq. (2.14). Below we will be omitting their

dependence on s where it does not cause an ambiguity. Two eigenvectors v1 and v2
were chosen out of two pairs of complex conjugate eigenvectors by selecting u1 and
u4 to be positive.

The first orthogonality condition of Eq. (2.14),

v1
þUv1ð Þ ¼ �2i u1 þ u2ð Þ ¼ �2i,

yields u1¼ 1� u2, and similarly for the second eigenvector, u4¼ 1� u3. The next

two equations, v1
TUv1¼ 0 and v2

TUv2¼ 0, are identities.

Taking into account the above relations for u1 and u4, the remaining two

nontrivial orthogonality conditions can be written as follows:

v2
þUv1ð Þ ¼ �

ffiffiffiffiffiffi
β2x
β1x

s
i 1� u2ð Þ þ α1x½ � þ

ffiffiffiffiffiffi
β1x
β2x

s
iu3 � α2x½ �

0@ 1Ae�iν2

�
ffiffiffiffiffiffi
β1y
β2y

s
i 1� u3ð Þ � α2y
	 
þ ffiffiffiffiffiffi

β2y
β1y

s
iu2 þ α1y
	 
0@ 1Aeiν1 ¼ 0,

ð2:43Þ

v2
TUv1ð Þ ¼ �

ffiffiffiffiffiffi
β2x
β1x

s
i 1� u2ð Þ þ α1x½ � �

ffiffiffiffiffiffi
β1x
β2x

s
iu3 þ α2x½ �

0@ 1Aeiν2

�
ffiffiffiffiffiffi
β1y
β2y

s
i u3 � 1ð Þ � α2y
	 
þ ffiffiffiffiffiffi

β2y
β1y

s
iu2 þ α1y
	 
0@ 1Aeiν1 ¼ 0:

ð2:44Þ

Multiplying both terms in Eqs. (2.43) and (2.44) by their complex conjugate

values, one obtains

Ax
2 þ κx 1� u2ð Þ þ κx�1u3

�� �2 ¼ Ay
2 þ κy 1� u3ð Þ þ κy�1u2

� �2
,

Ax
2 þ κx 1� u2ð Þ � κx�1u3

�� �2 ¼ Ay
2 þ κy 1� u3ð Þ � κy�1u2

� �2
,

ð2:45Þ

where
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Ax ¼ κxα1x � κx�1α2x,
Ay ¼ κyα2y � κy�1α1y,

κx ¼
ffiffiffiffiffiffi
β2x
β1x

s
, κy ¼

ffiffiffiffiffiffi
β1y
β2y

s
:

ð2:46Þ

Subtracting Eq. (2.45) yields u2¼ u3. Substituting u2¼ u3¼ u into the first

equation of Eq. (2.45), one obtains the following expression for u:

u ¼
�κx2κy2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κx2κy2 1þ Ax

2�Ay
2

κx2�κy2
1� κx2κy2
� �� �r

1� κx2κy2
: ð2:47Þ

By definition uk (k¼ 1, . . . 4) are real functions2 and u1 and u4 are positive. That
sets a constraint for possible values of beta- and alpha-functions,

Ax
2 � Ay

2

κx2 � κy2
1� κx

2κy
2

� � 
 �1, ð2:48Þ

and a constraint on a value of u, u� 1 (see also Sect. 2.1.6).

Knowing u makes it easy to find ν1 + ν2 and ν1� ν2 from Eqs. (2.43) and (2.44):

eiνþ 	 ei ν1þν2ð Þ ¼ Ax þ i κx 1� uð Þ þ κx�1uð Þ
Ay � i κy 1� uð Þ þ κy�1u

� � ,
eiν� 	 ei ν1�ν2ð Þ ¼ Ax þ i κx 1� uð Þ � κx�1uð Þ

Ay þ i κy 1� uð Þ � κy�1u
� � , ð2:49Þ

and, consequently, ν1 and ν2:

ν1 ¼ 1

2
νþ þ ν�ð Þ þ π nþ mð Þ,

ν2 ¼ 1

2
νþ � ν�ð Þ þ π n� mð Þ:

ð2:50Þ

Here n and m are arbitrary integers. Equation (2.49) results in that ν� and ν+ are

determined modulo 2π which, consequently, yields that ν1 and ν2 are determined

modulo π (see Eq. (2.50)) resulting in additional solutions. Actually there are only

two independent solutions for ν1 and ν2. The first one corresponds to the case when

2 Equation (2.47) also demonstrates that if beta- and alpha-functions are chosen incorrectly, such

that the value of the discriminant is negative, u becomes imaginary, thus redetermining the alpha-

functions.
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both n and m have the same parity, which is equivalent to m + n¼m� n¼ 0.

The second one corresponds to different parity of m and n, which is equivalent to

m + n¼m� n¼ 1. Thus, in a general case, one has four independent solutions for

u and ν1 and ν2 set by symplecticity conditions: two solutions for u and two

solutions for ν1 and ν2 for each u.
Finally, we can express the eigenvectors in the following form:

v1 ¼

ffiffiffiffiffiffi
β1x

p

� i 1� uð Þ þ α1xffiffiffiffiffiffi
β1x

pffiffiffiffiffiffi
β1y

p
eiν1

� iuþ α1yffiffiffiffiffiffi
β1y

p eiν1

2666666664

3777777775
, v2 ¼

ffiffiffiffiffiffi
β2x

p
eiν2

� iuþ α2xffiffiffiffiffiffi
β2x

p eiν2ffiffiffiffiffiffi
β2y

p
� i 1� uð Þ þ α2yffiffiffiffiffiffi

β2y
p

2666666664

3777777775
: ð2:51Þ

That yields the following expression for matrix V (see Eq. (2.16)):

V¼

ffiffiffiffiffiffi
β1x

p
0

ffiffiffiffiffiffi
β2x

p
cos ν2 � ffiffiffiffiffiffi

β2x
p

sin ν2

� α1xffiffiffiffiffiffi
β1x

p 1�uffiffiffiffiffiffi
β1x

p u sin ν2�α2xcos ν2ffiffiffiffiffiffi
β2x

p u cos ν2þα2xsin ν2ffiffiffiffiffiffi
β2x

pffiffiffiffiffiffi
β1y

p
cos ν1 � ffiffiffiffiffiffi

β1y
p

sin ν1
ffiffiffiffiffiffi
β2y

p
0

u sin ν1�α1ycos ν1ffiffiffiffiffiffi
β1y

p ucos ν1þα1ysin ν1ffiffiffiffiffiffi
β1y

p � α2yffiffiffiffiffiffi
β2y

p 1�uffiffiffiffiffiffi
β2y

p

266666664

377777775
:

ð2:52Þ

Below we will call eleven functions, β1x(s), β1y(s), β2x(s), β2y(s), α1x(s), α1y(s),
α2x(s), α2y(s), u(s), ν1(s), and ν2(s), the generalized Twiss functions. Only eight of

them are independent. Other three can be determined from the symplecticity

conditions. Although for known eigenvectors the Twiss parameters can be deter-

mined uniquely, it is not the case if we know only alpha- and beta-functions. In this

case an application of symplecticity conditions leaves four independent solutions

for the eigenvectors. Two of them are related to the sign choice for u in Eq. (2.47),

and other two (for each choice of u) are related to uncertainty of ν1 and ν2 in

Eq. (2.50). The latter is related to the fact that the mirror reflection with respect to

the x or y axis does not change β’s and α’s but changes the relative signs for the

x and y components of the eigenvectors, with subsequent change of ν1 and ν2 by π. It
can also be achieved by a change of the coupling sign (simultaneous sign change for

gradients of all skew quads and magnetic fields of all solenoids), which does not

change the beta-functions but does change the ν-functions by π. To choose a unique
solution for the eigenvectors, one needs to know which of the two choices for u and
ν1 (or ν2) needs to be taken in addition to the alpha- and beta-functions.

In the case of weak coupling, one should normally choose v1 as the eigenvector,

which mainly relates to the horizontal motion, and v2 to the vertical motion. In the

case of strong coupling, the choice is arbitrary. As can be seen from Eq. (2.51), in
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determining beta- and alpha-functions, swapping two eigenvectors causes the

following redefinitions: β1x$ β2x, β1y$ β2y, α1x$ α2x, α1y$ α2y, u! 1� u,
ν1!�ν2, and ν2!�ν1.

2.1.6 Derivatives of the Tunes and Beta-Functions

Let us consider the relations between the beta- and alpha-functions and the beta-

functions and the betatron phase advances. A differential trajectory displacement

related to the first eigenvector can be expressed as follows:

x sþdsð Þ¼x
�
s
�þx0

�
s
�
ds¼x

�
s
�þ px sð ÞþR

2
y

0@ 1Ads

¼ ffiffiffiffiffiffiffi
2I1

p
Re

ffiffiffiffiffiffiffiffiffiffiffiffi
β1x sð Þp þ � i 1�u sð Þð Þþα1x sð Þffiffiffiffiffiffiffiffiffiffiffiffi

β1x sð Þp þR

2

ffiffiffiffiffiffiffiffiffiffiffiffi
β1y sð Þ

q
eiν1 sð Þ

24 35ds
0@ 1Ae�i μ1 sð Þþψ1ð Þ

0@ 1A:

ð2:53Þ

Alternatively, one can express particle position through the beta-functions at the

new coordinate s þ ds:

x sþ dsð Þ ¼ Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I1βx sþ dsð Þp

e�i μ1 sþdsð Þþψð Þ� �
¼ ffiffiffiffiffiffiffi

2I1
p

Re
ffiffiffiffiffiffiffiffiffiffiffiffi
β1x sð Þp þ dβ1x

2
ffiffiffiffiffiffiffiffiffiffiffiffi
β1x sð Þp � i

ffiffiffiffiffiffiffiffiffiffiffiffi
β1x sð Þ

p
dμ

24 35e�i μ1 sð Þþψð Þ

0@ 1A:

ð2:54Þ

Comparing both the imaginary and real parts of Eqs. (2.53) and (2.54), one

obtains

dβ1x
ds

¼ �2α1x þ R
ffiffiffiffiffiffiffiffiffiffiffiffi
β1xβ1y

q
cos ν1,

dμ1
ds

¼ 1� u

β1x
� R

2

ffiffiffiffiffiffi
β1y
β1x

vuut sin ν1:
ð2:55Þ

Similarly, one can write down equivalent expressions for the vertical

displacement,
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y sþdsð Þ¼y
�
s
�þy0

�
s
�
ds¼y

�
s
�þ py sð Þ�R

2
x

0@ 1Ads

¼ ffiffiffiffiffiffiffi
2I1

p
Re

ffiffiffiffiffiffiffiffiffiffiffiffi
β1y sð Þ

q
eiν1 sð Þ� iu sð Þþα1y sð Þffiffiffiffiffiffiffiffiffiffiffiffi

β1y sð Þ
q eiν1 sð Þþ R

2

ffiffiffiffiffiffiffiffiffiffiffiffi
β1x sð Þ

p264
375ds

0B@
1CAe�i μ1 sð Þþψ1ð Þ

0B@
1CA,

and

y sþdsð Þ¼
ffiffiffiffiffiffiffi
2I1

p
Re

ffiffiffiffiffiffiffiffiffiffiffiffi
β1y sð Þ

q
þ dβ1y

2
ffiffiffiffiffiffiffiffiffiffiffiffi
β1y sð Þ

q þi
ffiffiffiffiffiffiffiffiffiffiffiffi
β1y sð Þ

q
dν1�dμ1ð Þ

264
375e�i μ1 sð Þþψ�ν1 sð Þð Þ

0B@
1CA,

which yields

dβ1y
ds

¼ �2α1y � R
ffiffiffiffiffiffiffiffiffiffiffiffi
β1xβ1y

q
cos ν1,

dμ1
ds

� dν1
ds

¼ u

β1y
þ R

2

ffiffiffiffiffiffi
β1x
β1y

s
sin ν1:

ð2:56Þ

Similar calculations carried out for the second eigenvector yield

dβ2y
ds

¼ �2α2y � R
ffiffiffiffiffiffiffiffiffiffiffiffi
β2xβ2y

p
cos ν2,

dμ2
ds

¼ 1� u

β2y
þ R

2

ffiffiffiffiffiffi
β2x
β2y

s
sin ν2,

dβ2x
ds

¼ �2α2x þ R
ffiffiffiffiffiffiffiffiffiffiffiffi
β2xβ2y

p
cos ν2,

dμ2
ds

� dν2
ds

¼ u

β2x
� R

2

ffiffiffiffiffiffi
β2y
β2x

vuut sin ν2:

ð2:57Þ

One can see that in the absence of longitudinal magnetic field, the alpha- and

beta-functions are related the same way as for the uncoupled case (α¼�(dβ/ds)/2)
and the derivatives of the phase advances dμ1/ds and dμ2/ds are proportional to

(1� u) and are positive. That explains the selection rule for the eigenvectors

formulated in Sect. 4.1.5 which requires u1 and u4 being positive

(u1¼ u4¼ 1� u
 0). Note that there is no formal requirement for d(μ1 + ν1)/ds
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and d(μ2 + ν2)/ds being also positive, and therefore u can be negative,3 while in the

majority of practical cases, it belongs to the [0, 1] interval.

2.1.7 Representation of Transfer Matrix and Second-Order
Moments in Terms of Generalized Twiss Functions

One can derive a useful representation of the transfer matrix M1,2	M(s1, s2)
between two points of a transfer line in terms of the generalized Twiss functions.

Using the definitions of eigenvector and matrix V (see Eqs. (2.16) and (2.41)), one

can derive the following identity:

V2 S ¼ M12V1: ð2:58Þ

Here V1 and V2 are the V-matrices given by Eq. (2.52) for the initial and final

points. The matrix S is

S ¼
cosΔμ1 sinΔμ1 0 0

� sinΔμ1 cosΔμ1 0 0

0 0 cosΔμ2 sinΔμ2
0 0 � sinΔμ2 cosΔμ2

2664
3775, ð2:59Þ

where Δμ1,2 are the betatron phase advances between points 1 and 2 for the first and
second modes. Multiplying both sides of Eq. (2.59) by the inverse matrix,

V1
� 1¼�UV1

TU, as given by Eq. (2.9), allows one to express the transfer matrix,

M12, in the form

M12 ¼ �V2SUV1
TU: ð2:60Þ

In the case of the one-turn transfer matrix, the matrices V1 and V2 are equal and

Eq. (2.60) simplifies. That results in the following expressions for the matrix

elements of diagonal 2� 2 sub-matrices:

M11 ¼ 1� uð Þ cos μ1 þ α1x sin μ1 þ u cos μ2 þ α2x sin μ2,

M12 ¼ β1x sin μ1 þ β2x sin μ2,

M21 ¼ � 1� uð Þ2 þ α21x
β1x

sin μ1 �
u2 þ α22x

β2x
sin μ2,

M22 ¼ 1� uð Þ cos μ1 þ u cos μ2 � α1x sin μ1 � α2x sin μ2,

3 The Tevatron lattice is based on the detailed optics measurement and takes into account large

coupling terms coming mainly from the skew-quadrupole components of the superconducting

dipoles. If the coupling corrections are adjusted to minimize the tune split, the value of coupling

parameter u varies along the lattice in the range of about [�0.002, 0.04].
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M33 ¼ u cos μ1 þ 1� uð Þ cos μ2 þ α2y sin μ2 þ α1y sin μ1, ð2:61Þ
M34 ¼ β1y sin μ1 þ β2y sin μ2,

M43 ¼ � u2 þ α21y
β1y

sin μ1 �
1� uð Þ2 þ α22y

β2y
sin μ2,

M44 ¼ u cos μ1 þ 1� uð Þ cos μ2 � α1y sin μ1 � α2y sin μ2,

where μ1 and μ2 are the betatron tunes of two betatron modes. The elements for

off-diagonal sub-matrices can be found in [3].

We also present here the elements of matrix Σ used in other chapters of this book

(see Eq. (2.25)):

Σ11 	 x2
� � ¼ ε1β1x þ ε2β2x, Σ33 	 y2

� � ¼ ε1β1y þ ε2β2y,

Σ12 	 xpxh i ¼ Σ21 ¼ �ε1α1x � ε2α2x, Σ34 	 ypy
� � ¼ Σ43 ¼ �ε1α1y � ε2α2y,

Σ13 	 xyh i ¼ Σ31 ¼ ε1
ffiffiffiffiffiffiffiffiffiffiffiffi
β1xβ1y

q
cos ν1 þ ε2

ffiffiffiffiffiffiffiffiffiffiffiffi
β2xβ2y

q
cos ν2,

Σ22 	 px
2

� � ¼ ε1
1� uð Þ2 þ α1x2

β1x
þ ε2

u2 þ α2x2

β2x
,

Σ44 	 py
2

� � ¼ ε1
u2 þ α1y2

β1y
þ ε2

1� uð Þ2 þ α2y2

β2y
, ð2:62Þ

Σ24 	 pxpy
� �¼ Σ42 ¼ ε1

α1y 1� uð Þ � α1xu
� �

sinν1 þ u 1� uð Þ þ α1xα1y
� �

cosν1ffiffiffiffiffiffiffiffiffiffiffiffi
β1xβ1y

p
þ ε2

α2x 1� uð Þ � α2yu
� �

sinν2 þ u 1� uð Þ þ α2xα2y
� �

cos ν2ffiffiffiffiffiffiffiffiffiffiffiffi
β2xβ2y

p :

For other elements of matrix Σ and the expression of matrix Ξ, we refer reader
to [3].

2.1.8 Edwards–Teng Parameterization

The material presented in Sects. 2.1.5, 2.1.6, and 2.1.7 is based on the extension of

the Mais–Ripken parameterization presented in [3]. However, the consideration of

coupled motion would be incomplete without a discussion of the Edwards–Teng

parameterization [6], which was proposed earlier and is presently one of the most

popular parameterizations for description of coupled optics. It is based on a

canonical transform R which reduces a 4� 4 transfer matrix
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M ¼ P p

q Q


 �
ð2:63Þ

to its normal mode form

eM ¼ RMR�1, ð2:64Þ

where

eM ¼ A 0

0 B


 �
ð2:65Þ

and P, p, Q, q, A, and B are 2� 2 matrices. Edwards and Teng suggested

parameterizing a symplectic matrix R as follows:

R ¼ E cosϕ �D�1 sinϕ
D sinϕ E cosϕ


 �
, ð2:66Þ

where E is the unit 2� 2 matrix and D is a 2� 2 symplectic matrix,

D ¼ a b
c d


 �
: ð2:67Þ

Thus, matrix R is parameterized by four parameters: a, b, c, and ϕ. Matrix eM
describes the particle motion in new coordinates and can be parameterized by six

Twiss parameters: β1, α1, μ1, β2, α2, and μ2 which are called the Twiss parameters of

the decoupled motion. Edwards and Teng expressed them through the transfer

matrix elements. Here we present their connection to the extended Mais–Ripken

parameterization considered above:

sinϕ ¼ � ffiffiffi
u

p
,

β1 ¼
β1x
1� u

, α1 ¼ α1x
1� u

, β2 ¼
β2y
1� u

, α2 ¼ α2y
1� u

, ð2:68Þ

R ¼ �1ffiffiffiffiffiffiffiffiffiffiffi
1� u

p
1 0 �dt bt
0 1 ct �at
at bt 1 0

ct dt 0 1

2664
3775,

at ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2y=β2x

q
α2x sin ν2 þ u cos ν2ð Þ,

bt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
β1xβ1y

p
sin ν1,

dt ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1x=β1y

q
u cos ν1 þ α1y sin ν1
� �

,

ct ¼ atdt þ u� 1ð Þ=bt:
ð2:69Þ

Details of calculations can be found in [3]. Although, the top Eq. (2.68) yields

four different solutions for angle ϕ, there are unique solutions for the beta- and

alpha-functions of the decoupled motion and matrix R. Note that the choice of sign
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for matrix R in Eq. (2.69) is determined by the requirement that
ffiffiffiffiffiffiffiffi
β1,2

p
are positive.

However, a problem appears if the value of u is negative somewhere in the lattice.

That results in ϕ being purely imaginary. The solution considered in [6] suggests a

replacement of sin(ϕ) and cos(ϕ) by sinh(ϕ) and cosh(ϕ) with an appropriate sign

changes in the symplectic transform of Eq. (2.66). It formally addresses the issue

but still requires a redefinition of Eq. (2.66) symplectic transforms every time

u changes its sign.

Edwards and Teng determined the phase advance of the betatron motion using a

standard recipe for the uncoupled motion:

evi sð Þe�iμi sð Þ ¼ eM 0; sð Þevi 0ð Þ, ð2:70Þ

whereevi sð Þ are the eigenvectors of decoupled motion. It is important to note that the

betatron phase advances of both parameterizations are equal; i.e., the betatron phase

advance for the Edwards–Teng representation is directly related to particle oscil-

lations in the x or y plane, depending on which plane a particular eigenvector is

referenced to.

As will be shown in the next section, the value of u is changing fast if a system

approaches the coupling resonance. Consequently, the beta-functions of extended

Mais–Ripken parameterization also change fast although the sums β1x+ β2x and

β1y+ β2y stay approximately constant. In contrast, the Edwards–Teng beta-functions

are insensitive to the coupling resonance, while ϕ and matrix R are sensitive.

2.1.9 Betatron Tunes

Substituting the ring transfer matrix expressed in the block form of Eq. (2.63)

into the symplecticity conditions of Eqs. (2.8) and (2.10) and performing matrix

multiplication, one obtains

PTU2Pþ qTU2q PTU2pþ qTU2Q

pTU2PþQTU2q pTU2pþQTU2Q


 �
¼ U2 0

0 U2


 �
,

PU2P
T þ pU2p

T PU2q
T þ pU2Q

T

qU2P
T þQU2p

T qU2q
T þQU2Q

T


 �
¼ U2 0

0 U2


 �
,

ð2:71Þ

where U2 is the two-dimensional unit symplectic matrix.

Expanding the diagonal sub-matrices, one obtains four scalar equations:

det Pð Þ þ det
�
q
� ¼ 1, det

�
p
�þ det

�
Q
� ¼ 1,

det Pð Þ þ det
�
p
� ¼ 1, det

�
q
�þ det

�
Q
� ¼ 1:

ð2:72Þ

The solution of above equations yields that the determinants for two diagonal

and two off-diagonal matrices are equal:
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κ ¼ det pð Þ ¼ det qð Þ, 1� κ ¼ det Pð Þ ¼ det Qð Þ, ð2:73Þ

where parameter κ characterizes the coupling strength. The off-diagonal

sub-matrices in each matrix equation of Eq. (2.71) are related by matrix transpose,

and the matrix equations are linearly dependent leaving only four independent

scalar equations. That bounds up matrices p and q:

p ¼ U2 PT
� ��1

qTU2Q ¼ 1

1� κ
PU2q

TU2Q, ð2:74Þ

where we took into account that P� 1¼�U2P
TU2/(1� κ).

To separate coupling effects from effects of uncoupled betatron motion, let us

consider the betatron motion in the normalized coordinates, so that in the new

coordinates the ring transfer matrix would be presented in the following form:

Mc ¼
Pc pc

qc Qc


 �
, Pc ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p cos μx sin μx
� sin μx cos μx


 �
,

Qc ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p cos μy sin μy
� sin μy cos μy

" #
,

ð2:75Þ

where we explicitly took into account that det(Pc)¼ det(Qc). Here and below we

denote by index c the vectors and matrices in the normalized coordinate frame. A

symplectic matrix Rc performs transformation from the old to the new coordinates,

xc¼Rcx , and can be chosen in the following form:

Rc ¼
Rcx 0

0 Rcy


 �
, Rcx ¼

1=
ffiffiffiffiffiffi
βxc

p
0

αxc=
ffiffiffiffiffiffi
βxc

p ffiffiffiffiffiffi
βxc

p" #
,

Rcy ¼
1=

ffiffiffiffiffiffi
βyc

p
0

αyc=
ffiffiffiffiffiffi
βyc

p ffiffiffiffiffiffi
βyc

p" #
:

ð2:76Þ

Then, the ring transfer matrix in the normalized coordinates is Mc¼RcMRc
� 1.

Performing matrix multiplication and requiring the resulting matrix to be in the

form of Eq. (2.75), one obtains the parameters of matrix Rc:

βxc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4M12
2

4M12M21 þ M11 �M22ð Þ2
vuut , αxc ¼ βxc

M11 �M22

2M12

,

βyc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�4M34
2

4M34M43 þ M33 �M44ð Þ2
vuut , αyc ¼ βyc

M33 �M44

2M34

:

ð2:77Þ

The symplectic transform does not change the trace of the diagonal

sub-matrices. That yields
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cos μx ¼
tr Pcð Þ

2 1� κð Þ ¼
tr Pð Þ

2 1� κð Þ ¼
M11 þM22

2 1� κð Þ ,

cos μy ¼
tr Qcð Þ
2 1� κð Þ ¼

tr Qð Þ
2 1� κð Þ ¼

M33 þM44

2 1� κð Þ :
ð2:78Þ

The off-diagonal sub-matrices of matrix Mc are

qc 	 ac bc
cc dc


 �
¼ RcxqRcy

�1, pc 	 â c b̂ c

ĉ c d̂ c


 �
¼ RcxpRcy

�1: ð2:79Þ

Note that Eq. (2.74) uniquely couples ac, bc, cc, and dc with â c, b̂ c, ĉ c, and d̂ c.

That leaves only four independent parameters for coupling characterization out of

eight parameters of off-diagonal sub-matrices. There is another useful property of

matrices Pc, Qc, pc, and qc:

tr Pc
TPc

� � ¼ tr Qc
TQc

� �
, tr pc

Tpc
� � ¼ tr qc

Tqc
� �

: ð2:80Þ

The first equation follows from the definitions of Pc andQc. The following string

of conversions proves the second equation:

tr pc
Tpc

� � ¼ tr U2 Pc
T

� ��1
qc

TU2Qc

� �T
U2 Pc

T
� ��1

qc
TU2Qc

� �
¼ tr Qc

TU2qcPc
�1U2U2 Pc

T
� ��1

qc
TU2Qc

� �
¼ �tr Qc

TU2qcPc
�1 Pc

T
� ��1

qc
TU2Qc

� �
¼ �1

1� κ
tr Qc

TU2qcqc
TU2Qc

� � ¼ �tr U2qcqc
TU2

� � ¼ tr qcqc
T

� �
:

Here we used that Pc
�1¼Pc

T/(1� κ), Qc
�1¼Qc

T/(1� κ), U2U2¼�I, and

tr(AB)¼ tr(BA).

To find the betatron tunes, we follow the standard recipe for finding roots of

dispersion equation: det(Mc� λI)¼ 0. Computing the determinant and performing

further simplifications, we obtain

λ4 � 2
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p
cos μx þ cos μy
� �

λ3 þ λ
� �

þ 2 1� κð Þ 1þ cos μx cos μy
� �� tr pcqcð Þ� �

λ2 þ 1

¼ 0: ð2:81Þ

In the case of stable motion, the solution of Eq. (2.81) consists of two complex

conjugated pairs. The corresponding fourth-order polynomial can be presented in

the following form:
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Y4
i¼1

λ� λið Þ¼ λ2�2λcosμ1þ1
� �

λ2�2λcosμ2þ1
� �

¼ λ4�2 λ3þ λ
� �

cosμ1þ cosμ2ð Þþ2 1þ2cosμ1 cosμ2ð Þλ2þ1¼ 0:

ð2:82Þ

Comparing Eqs. (2.81) and (2.82), we obtain the following system of equations:

cos μ1 þ cos μ2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p
cos μx þ cos μy
� �

,

1þ cos μ1 cos μ2 ¼ 1� κð Þ 1þ cos μx cos μy
� �� tr pcqcð Þ=2: ð2:83Þ

The solution is

cos μ1,2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p cos μx þ cos μy
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� κð Þ cos μx � cos μy

2

� �2
þ 1

2
κ þ 1

2
tr pcqcð Þ

� �s
: ð2:84Þ

The same as sub-matrices p and q, the sub-matrices pc and qc are related by

Eq. (2.74). That allows one to express tr(pcqc) through matrix qc. Performing

matrix multiplication, one obtains

tr pcqcð Þ¼ 1

1�κ
tr PcU2qc

TU2Qcqc
� �¼ sinμx sinμytr qc

Tqc
� ��2cosμx cosμydet qcð Þ

¼ sinμx sinμy ac
2þbc

2þcc
2þdc

2
� ��2cosμxcosμy acdc�bcccð Þ:

ð2:85Þ

To express the tunes directly through the transfer matrix elements, we take into

account that the coefficients in Eq. (2.81) do not change when we perform a

transform to the normalized coordinates. In particular it means that coefficients in

front of λ and λ3 are equal. It simplifies the calculations. As a result, we obtain the

dispersion equation:

λ4 � tr Mð Þ λ3 þ λ
� �þ Λλ2 þ 1 ¼ 0, ð2:86Þ

where

Λ ¼ M11M22 �M12M21ð Þ þ M33M44 �M34M43ð Þ þ M11M33 �M13M31ð Þ
þ M11M44 �M14M41ð Þ þ M33M22 �M23M32ð Þ þ M22M44 �M24M42ð Þ:

ð2:87Þ

Then, the solution is [6]
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cos μ1,2 ¼
1

4
tr Mð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr Mð Þð Þ2 þ 8� 4Λ

q� �
: ð2:88Þ

2.1.10 Coupling Strength, Tune Split, and Width
of Resonance Stop Band

There is no single parameter to completely characterize coupling. However, the

parameter u (see Eq. (2.51)) is one of the most informative. It characterizes the

relative contributions of x and y parts to the eigenvector normalization of Eq. (2.14),

so that they are proportional to u or 1� u. In the absence of coupling, the parameter

u is equal to 0 (or 1 if x and y vectors are swapped). Note that, in the general case,

the equality u¼ 0 does not imply an absence of coupling. As one can see from

Eqs. (2.45) and (2.49), the condition u¼ 0 requires Ax
2 + κx

2¼Ay
2 + κy

2 and yields

eiνþ ¼ Ax þ iκxð Þ= Ay � iκy
� �

and eiν� ¼ Ax þ iκxð Þ= Ay þ iκy
� �

. These equations do

not require auxiliary beta-functions β1y and β2x to be equal to zero, and, conse-

quently, the condition u¼ 0 does not automatically mean an absence of coupling.

Although strictly speaking u cannot be considered as a unique coupling parameter,

it reflects the strength of coupling and is a good value to characterize it in practice.

In particular u¼½ corresponds to 100 % coupling when the motion for both

eigenvectors is equally distributed in both planes. It is also useful to note that

u does not change in the part of a beamline without coupling terms. Actually, in the

absence of coupling, the x and y parts of the eigenvector, vx and vy, are independent
and their normalization, vx,y

+U2vx,y¼ {u, 1� u}, does not change because the

determinants of the corresponding 2� 2 transfer matrices are equal to 1. Here U2

is the 2D unit symplectic matrix.

To express the value of u through the betatron tunes, we add up the matrix

elements M11 and M22 of Eq. (2.61). That yields M11 +M22¼ 2(1� u)
cos μ1 + 2u cos μ2. Taking into account that it is also justified for Mc11 þMc22 and

by definition Mc11 þMc22 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p
cos μx, we obtainffiffiffiffiffiffiffiffiffiffiffi

1� κ
p

cos μx ¼ 1� uð Þ cos μ1 þ u cos μ2:

That results in

u ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� κ

p
cos μx � cos μ1

cos μ2 � cos μ1
: ð2:89Þ

Let coupling be small,4 tr(qc
Tqc)� 1, and tunes be located in the vicinity of

difference coupling resonance. Then, the fractional parts of the tunes, μ̂ x, μ̂ y, μ̂ 1 ,

4 The condition tr(qc
Tqc)� 1 also results in that |κ|� 1. Actually, expressing both equations

through the matrix elements, one obtains tr(qc
Tqc)¼ a2 + b2 + c2 + d2 and κ	 det(qc)¼ ad� bc.

Obviously, |ad� bc|< a2 + b2 + c2 + d2.
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and μ̂ 2, are close to each other, and we introduce the following definitions:

Δμ ¼ μ̂ x � μ̂ y � 1, μ̂ 1 ¼ μ̂ x þ Δμ1, and μ̂ 2 ¼ μ̂ x þ Δμ2. Consequently, we

expand Eq. (2.84) into Taylor series:

cos μx � Δμ1,2 sin μx 
 1� κ

2

� � 2 cos μx � Δμ sin μx
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δμ sin μx

2

� �2

þ 1

2
κ þ 1

2
tr pcqcð Þ

� �s
: ð2:90Þ

Simplifying the above equation with the help of Eq. (2.85), leaving only the

leading order terms and returning to the tunes from their differentials, we obtain

μ̂ 1,2 

1

2
μ̂ x þ μ̂ y

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂ x � μ̂ y

� �2 þ δμd2
q� �

, μ̂ x � μ̂ y

�� ��, δμd � 1, ð2:91Þ

where

δμd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac þ dcð Þ2 þ bc � ccð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â c þ d̂ c

� �2 þ b̂ c � ĉ c

� �2q
ð2:92Þ

represents the minimum tune split. Substitution of Eq. (2.91) to Eq. (2.89) results in

the coupling strength dependence on the tunes in the vicinity of difference coupling

resonance:

u 
 1

2
1� μ̂ x � μ̂ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ̂ x � μ̂ y

� �2 þ δμd2
q

0B@
1CA, μ̂ x � μ̂ y

�� ��, δμd � 1: ð2:93Þ

If μ̂ x ¼ μ̂ y, the coupling parameter is equal to 1/2. That corresponds to 100 %

coupled motion. In the case of μ̂ x � μ̂ y

�� ��� δμd, the coupling strength, u, is small

(or close to one if the order of tunes is reversed.) That corresponds to a weakly

coupled motion.

If the tunes are located in the vicinity of coupling sum resonance, then

μ̂ x þ μ̂ y � 2π ¼ Δμ � 1. Introducing the following definitions, μ̂ 1 ¼ μ̂ x þ Δμ1
and μ̂ 2 ¼ 2π � μ̂ x þ Δμ2, and expanding Eq. (2.84) into Taylor series, we obtain

cos μx � Δμ1 sin μx 
 1� κ

2

� � 2 cos μx þ Δμ sin μx
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δμ sin μx

2

� �2

þ 1

2
κ þ 1

2
tr pcqcð Þ

� �s
: ð2:94Þ

Simplifying the above equation with the help of Eq. (2.85), leaving only leading

order terms, repeating similar expansion for Δμ2, and returning to the tunes from

their differentials, we obtain
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μ̂1,2

1

2
� μ̂x�μ̂y

� �þ2πþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂xþμ̂y�2π
� �2�δμs2

q� �
,

2π� μ̂xþμ̂y

� ��� ��,δμs�1,

ð2:95Þ

where

δμs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac � dcð Þ2 þ bc þ ccð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
â c � d̂ c

� �2 þ b̂ c þ ĉ c

� �2q
ð2:96Þ

represents the total width of the resonance stop band. One can see that tunes μ1 and
μ2 become imaginary if the tunes μx and μy are located inside the resonance stop

band. Consequently, the particle motion becomes unstable.

2.1.11 Perturbation Theory for Coupled Motion

The symplecticity allows one to build an effective perturbation theory for the case

of coupled motion. Let the unperturbed motion eigenvalues and eigenvectors be

related by Eq. (2.11). Then, for the perturbed motion one can write

Iþ ΔMð ÞMevj ¼ λj þ Δλj
� �evj, ð2:97Þ

where the new transfer matrix, (I+ΔM)M, is not necessarily a symplectic matrix.

The eigenvectors of perturbed motion can be presented as a sum of the unperturbed

ones,

evj ¼ vj þ
X4
i¼1

εijvi, εij << 1, ð2:98Þ

and without limitation of generality, one can consider that εii¼ 0 for every i.
Substituting Eq. (2.98) into Eq. (2.97), linearizing the resulting equation, and

using Eq. (2.11), one obtains

X4
i¼1

λi � λj
� �

εijvi ¼ ΔλjI� ΔM M
� �

vj: ð2:99Þ

In the case of stable unperturbed motion, the eigenvalues and eigenvectors

represent two complex conjugate pairs. Taking this into account,

v1 v2 v3 v4½ � ! v1 v1
� v2 v2

�½ �, and introducing complex matrix

Vp ¼ v1 v1
� v2 v2

�½ �, one can rewrite Eq. (2.99) in the form of two matrix

equations:
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Vp

1 0 0 0

0 λ1 � λ1
� 0 0

0 0 λ1 � λ2 0

0 0 0 λ1 � λ2
�

2664
3775

Δλ1
ε21
ε31
ε41

2664
3775 ¼ ΔMMv1,

Vp

λ2 � λ1 0 0 0

0 λ2 � λ1
� 0 0

0 0 1 0

0 0 0 λ2 � λ2
�

2664
3775

ε12
ε22
Δλ2
ε42

2664
3775 ¼ ΔMMv2:

ð2:100Þ

Matrix Vp is built from symplectic vectors and its inverse is equal to

Vp
�1 ¼ � 1

2i
UVp

TU: ð2:101Þ

One can verify it by utilizing the eigenvector normalization of Eq. (2.14).

Inversion of Eq. (2.100) with the help of Eq. (2.101) finally results in [7]

Δλ1
ε21
ε31
ε41

2664
3775 ¼ � λ1

2i

1 0 0 0

0 λ1 � λ1
� 0 0

0 0 λ1 � λ2 0

0 0 0 λ1 � λ2
�

2664
3775
�1

UVc
TUΔMv1,

ε12
ε22
Δλ2
ε42

2664
3775 ¼ � λ2

2i

λ2 � λ1 0 0 0

0 λ2 � λ1
� 0 0

0 0 1 0

0 0 0 λ2 � λ2
�

2664
3775
�1

UVc
TUΔMv2: ð2:102Þ

Multiplication of Eqs. (2.102) by 1 0 0 0½ � and 0 0 1 0½ �, correspond-
ingly, results in corrections for the eigenvalues:

Δλ1 ¼ � λ1
2i

v1
þUΔMv1,

Δλ2 ¼ � λ2
2i

v2
þUΔMv2:

ð2:103Þ

Taking into account the relationship between the eigenvalue corrections and the

tune shifts, ΔQn¼ i/(4π) (Δλn/λn), one obtains [8]

ΔQ1 ¼ � 1

4π
v1

þUΔMv1,

ΔQ2 ¼ � 1

4π
v2

þUΔMv2:
ð2:104Þ

To demonstrate an application of the above formalism, let us find the tune shifts

due to a local focusing perturbation. In the general case the perturbation of the

54 V. Lebedev et al.



Hamiltonian is proportional to Φxx
2 + 2Φsxy +Φyy

2. That results in the transfer

matrix of the perturbation:

ΔM ¼
0 0 0 0

�Φx 0 �Φs 0

0 0 0 0

�Φs 0 �Φy 0

2664
3775:

Substituting it to Eq. (2.104), one obtains [7]

ΔQ1 ¼
1

4π
Φxβ1x þ 2Φs

ffiffiffiffiffiffiffiffiffiffiffiffi
β1xβ1y

q
cos ν1 þΦyβ1y

� �
,

ΔQ2 ¼
1

4π
Φxβ2x þ 2Φs

ffiffiffiffiffiffiffiffiffiffiffiffi
β2xβ2y

q
cos ν2 þΦyβ2y

� �
:

ð2:105Þ

One can see that in the case of uncoupled motion, β1y¼ β2x¼ 0, the tune shifts

coincide with the well-known expression for the tune shift of uncoupled motion.

Note that for a quadrupole field Φx¼�Φy.

2.1.12 Sum and Difference Coupling Resonances

An analysis of the coupled motion using a perturbation theory applied directly to

the equations describing initially uncoupled motion is useful in many applications.

Let us consider the two uncoupled modes x and y. For each of them the formalism

described in Sects. 2.1.1–2.1.7 can be reduced from four dimensional to two

dimensional, so that

x sð Þ 	 x
x0

� �
¼ Re Axv1 sð Þe�iμx sð Þ� � ¼ 1

2
Axv1

�
s
�
e�iμx sð Þ þ 1

2
A�
xv

�
1

�
s
�
eiμx sð Þ,

y sð Þ 	 y
y0

� �
¼ Re Ayv2 sð Þe�iμy sð Þ� � ¼ 1

2
Ayv2

�
s
�
e�iμy sð Þ þ 1

2
A�
yv

�
2

�
s
�
eiμy sð Þ:

ð2:106Þ

Here Ax and Ay are the complex amplitudes of horizontal and vertical motion (the

same as described by amplitudes A1, A2 and phases ψ1, ψ2 in Eq. (2.15)) and the

eigenvectors v1, v2 are two-dimensional vectors:
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v1 ¼

ffiffiffiffiffiffiffiffiffiffi
βx sð Þp

� iþ αx sð Þffiffiffiffiffiffiffiffiffiffi
βx sð Þp

0B@
1CA, v2 ¼

ffiffiffiffiffiffiffiffiffiffi
βy sð Þ

q
� iþ αy sð Þffiffiffiffiffiffiffiffiffiffi

βy sð Þ
q

0BB@
1CCA: ð2:107Þ

One can express the amplitudes Ax, Ay via x(s) and y(s), correspondingly. Indeed,

multiplying Eq. (2.106) by eiμx sð Þvþ1 U or eiμy sð Þvþ2 U on the left and using the

orthogonality conditions in Eq. (2.14), one obtains

Ax ¼ 1

i
eiμx sð Þvþ1 U2x, Ay ¼ 1

i
eiμy sð Þvþ2 U2y: ð2:108Þ

Here U2 is a 2� 2 unit symplectic matrix. Now let us look for the solution of

Eq. (2.6) in the form of Eq. (2.106), but with Ax, Ay not being constant. Substituting

Eq. (2.106) into Eq. (2.6) and considering N and R as small perturbations, we obtain

the equations for Ax, Ay:

dAx

ds
¼ eiμx sð Þ

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βx sð Þβy sð Þ

q
� N � R0

2

0@ 1A Aye
�iμy sð Þ þ A∗

y e
iμy sð Þ

� �24
� R Ay

αy sð Þ þ i

βy sð Þ e�iμy sð Þ þ A∗
y

αy sð Þ � i

βy sð Þ eiμy sð Þ

0@ 1A35,
dAy

ds
¼ eiμy sð Þ

2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βx sð Þβy sð Þ

q
� N þ R0

2

0@ 1A Axe
�iμx sð Þ þ A∗

x e
iμx sð Þ

� �24
þ R Ax

αx sð Þ þ i

βx sð Þ e�iμx sð Þ þ A∗
x

αx sð Þ � i

βx sð Þ eiμx sð Þ

0@ 1A35 :

ð2:109Þ

In the vicinity of sum and difference resonances, Eq. (2.109) can be solved by

averaging.

Near the sum resonance νx + νy¼ k+ +Δ, the system Eq. (2.109) reduces to

dAx

ds
¼ CþA∗

y e
2iπ Δ�s=C,

dAy

ds
¼ CþA∗

x e
2iπ Δ�s=C,

ð2:110Þ

where the resonance strength C+ is defined by
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Cþ¼ i

2

ðC
0

ds

C

ffiffiffiffiffiffiffiffiffi
βxβy

q
2NþR

αx
βx
�αy
βy

 !
�i

1

βx
� 1

βy

 !" # !
ei μxþμy�2π νxþνyð Þs=Cþ2πkþs=Cð Þ:

ð2:111Þ

Here integration is performed over the machine circumference C. For the difference
resonance νx�νy¼k�+Δ, the equations are

dAx

ds
¼ C�Aye

i2πΔ�s=C,

dAy

ds
¼ �C∗

�Axe
�i2πΔ�s=C,

ð2:112Þ

and the resonance strength is

C�¼ i

2

ðC
0

ds

C

ffiffiffiffiffiffiffiffiffi
βxβy

q
2NþR

αx
βx
�αy
βy

 !
�i

1

βx
þ 1

βy

 !" # !
ei μx�μy�2π νx�νyð Þs=Cþ2πk�s=Cð Þ:

ð2:113Þ

Integration of Eqs. (2.112) over one revolution binds up two complex resonance

strengths, Cþ and C�, to the elements of the off-diagonal sub-matrices qc and pc of

Eq. (2.79).

2.1.13 Emittance Growth at Beam Transfers Due to Optics
Mismatch and X–Y Coupling

As an application of the above-developed formalism, we consider here the emit-

tance growth related to an optics mismatch at beam transfer from one ring to

another. Let the incoming beam distribution function be Gaussian and be described

by bilinear form Ξ (see Eq. (2.34)). The corresponding eigenvectors and V-matrix

we denote as v1, v2 and V (see Eqs. (2.16) and (2.32)). The eigenvectors and V-

matrix of the circulating beam we denote as v01, v
0
2 and V

0. Rewriting Eq. (2.41), we
express the coordinates of each particle at the injection point through their new

actions (single-particle rms emittances) and new eigenvectors:

x ¼ 1

2

ffiffiffiffiffiffiffi
2I01

q
v01e

iψ1 þ v01�e�iψ1
� �þ ffiffiffiffiffiffiffi

2I02
q

v02e
iψ2 þ v02�e�iψ2

� �� �
: ð2:114Þ

Multiplying each side of the above equation by v01
+U or v02

+U and using the

orthogonality conditions of Eq. (2.14), we obtain
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I0k xð Þ ¼ 1

2
vk

þUxj j2, k ¼ 1, 2: ð2:115Þ

Averaging over all particles yields the new rms emittances:

ε0k ¼
ð
dx4I0i xð Þf xð Þ ¼ 1

8π2ε1ε2

ð
dx4 v0k

þUx
�� ��2exp � 1

2
xTΞx

� �
: ð2:116Þ

Similar to Eq. (2.35) a coordinate transform, y¼V� 1x, reduces matrix Ξ to its

diagonal form. That results in

ε0k ¼
1

8π2ε1ε2

ð
dy4 v0k

þUVy
�� ��2exp � 1

2
yTΞ̂y

� �
, ð2:117Þ

where matrix Ξ̂ is determined by the beam initial emittance in accordance with

Eq. (2.28). Taking into account Eqs. (2.36) and (2.37), we finally obtain

ε0k ¼
1

2
v0k

þUΣUTv0k, k ¼ 1, 2: ð2:118Þ

For initially uncoupled beam characterized by βx, βy, αx, and αy at the injection
point that yields

ε10 ¼ ε1A11 þ ε2A12,

ε20 ¼ ε1A21 þ ε2A22,
ð2:119Þ

where

A11 ¼ 1

2

βx
β1x

1� uð Þ2 þ α1x
2

h i
þ β1x

βx
1þ αx

2
	 
� 2α1xαx

0@ 1A,

A12 ¼ 1

2

βy
β1y

u2 þ α1y
2

	 
þ β1y
βy

1þ αy
2

	 
� 2α1yαy

0@ 1A,

A22 ¼ 1

2

βy
β2y

1� uð Þ2 þ α2y
2

h i
þ β2y

βy
1þ αy

2
	 
� 2α2yαy

0@ 1A,

A21 ¼ 1

2

βx
β2x

u2 þ α2x
2

	 
þ β2x
βx

1þ αx
2

	 
� 2α2xαx

0@ 1A
and β1x, β1y, β2x, β2y, α1x, α1y, α2x, α2y, and u are the generalized Twiss parameters

of the ring at the injection point. For uncoupled ring optics,

β1y¼ β2x¼ α1y¼ α2x¼ u¼ 0, we obtain the well-known expression:
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εx0 ¼ 1

2
εx

βx
β1x

1þ α1x
2

	 
þ β1x
βx

1þ αx
2

	 
� 2α1xαx

0@ 1A,

εy0 ¼ 1

2
εy

βy
β2y

1þ α2y
2

	 
þ β2y
βy

1þ αy
2

	 
� 2α2yαy

0@ 1A:

ð2:120Þ

One can see that the emittance growth is absent only if the Twiss parameters of

injected and circulating beams are equal.

2.2 Linear Optics Measurements

Linear optics measurements have played an important role for improvement of the

Tevatron complex performance. Accurate knowledge of the ring and transfer line

optics resulted in the significant reduction of the emittance growth for beam trans-

fers and increased the acceptances of the rings and transfer lines with subsequent

reduction of the beam loss at transfers and in the course of other operations. In the

case of Tevatron, it resulted in a decrease of the beta-functions at the IPs (with

subsequent luminosity increase), helped to maintain equal luminosities at the two

experiments, was instrumental in locating magnet misalignments and keeping the

machine stable over long periods of time, and provided valuable input for various

simulations, including the simulation of beam–beam effects, optimization of helical

orbits, and collimation. In the case of Debuncher and Accumulator, an accurate

knowledge of magnet focusing allowed us to modify machine optics so as to

maximize acceptances of the machines and to improve performance of stochastic

cooling systems (see Chap. 7). A number of methods and software tools were

developed to streamline the process of data acquisition, processing, and analysis.

All methods that were employed for the Tevatron linear optics measurements rely

on the beam position information provided by the Tevatron BPM system (see

Chap. 9). Later these methods were used to build accurate optics models for

Debuncher, Accumulator, and Recycler.

Historically, the first method used for optics measurements in Run II was based

on the analysis of orbit response data generated by a small number (usually four) of

dipole correctors and an energy change [9]. An automated software program has

been used for data acquisition. It makes the corrector current change and records the

resulting orbit difference with respect to the nominal orbit (hence, we use the term

differential orbit measurement to describe the method). The generated orbits were

then compared with the model prediction, and the model was corrected to minimize

discrepancies between measurements and the model. Later more sophisticated

software tools were built for analysis of multiple differential orbits and an auto-

matic correction of optics model for circular machines. Unfortunately this software

cannot be used effectively for transfer lines because it requires much more data, and
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such data acquisition is time prohibitive for the most transfer lines of the Tevatron

complex.

The idea of the method is based on an excitation of betatron wave with a single

dipole corrector kick. For a transfer line, the wave is propagating downstream of the

corrector and corresponding beam displacement is

x sð Þ ¼ θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β sð Þβ s0ð Þ

p
sin μ sð Þ � μ s0ð Þð Þ: ð2:121Þ

For a ring the closed orbit displacement is

x sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β sð Þβ s0ð Þp

2 sin πQð Þ θ cos μ sð Þ � μ s0ð Þj j � πQð Þ: ð2:122Þ

Here Q is the betatron tune, θ is the corrector kick, β and μ are the betatron function
and phase, and index 0 labels the corrector location. A focusing error results in an

unaccounted kick with angle

δθ ¼ ΔKlx,

where ΔKl is the error in the integrated quadrupole strength and x is the orbit

displacement. That affects the phase and amplitude of betatron motion relative to

the computer model predictions. As one can see from the above equation, the value

of the kick is proportional to the trajectory displacement in the quadrupole, and

therefore a single differential orbit has suppressed sensitivity to focusing errors in

the vicinity of locations where the differential orbit crosses zero. Therefore, at least

two differential orbits (for each plane) are needed to sense all focusing errors. In

optimum the betatron phases of these orbits should be shifted by (n+ 1/2) π,
although deviations from optimum in the range of �π/4 do not introduce large

penalty to the measurement accuracy. In the case of energy change, the beam

displacement is proportional to the corresponding plane dispersion. This response

is “orthogonal” to responses of orbit bumps; it additionally limits possible correc-

tions of quadrupole strength and therefore is extremely helpful in finding an actual

machine model. Its usefulness is greatly amplified by limited accuracy of BPM

measurements related to the BPM noise and errors of BPMs differential response.

Although the noise in principle (but not always in practice) can be reduced by

increasing number or duration of measurements, the BPM differential sensitivity is

a significant factor affecting the accuracy of the measurements and has to be

specially addressed.

The most detailed optics models of rings and transfer lines were built using the

OptiM code [10]. The models have included all optics-related elements: magnets,

linear and nonlinear correctors, BPMs, profile monitors, aperture limitations, sto-

chastic cooling tanks, etc. All important properties of magnets such as the depen-

dence of strength on the current and nonlinearities derived from magnetic

measurements have been also included in the models. Locations of all elements
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have been cross-checked with machine alignment data. However, comparison of

model predictions with measurements showed significant discrepancies pointing

out that there are non-negligible errors in the focusing properties of magnets. To

address it we added into the model the pseudo-quadrupoles (and if necessary the

pseudo-skew-quadrupoles) near each quadrupole which adjustments allowed

matching the model to the measurements. Although in the most of cases we do

not know origins of focusing errors, such approach allowed us to build credible

machine models accurately describing ring or transfer line focusing.

There is significant difference in optics measurements for transfer lines and

circular machines. In a ring the beam is permanently present, and therefore an

accumulation of multiple BPMmeasurements can be done fast and accumulation of

large datasets is not a problem. In this case multiple correctors are used for optics

measurements. That creates a redundancy in the data allowing us to make an

automated data analysis resulting in a high-accuracy optics model. Accumulation

of differential orbit data for a transfer line happens much slower—once or twice per

minute. Usually to achieve a minimally required statistical accuracy, at least four

measurements are required for each corrector. Taking into account that at least four

correctors and an energy change are required and the reference orbit has to be

measured before and after the measurement, one obtains a minimum measurement

time of about 15 min. Usually measurements are done for both polarities of

differential orbits resulting in 30 min to an hour to acquire good dataset for a

transfer line. Therefore, the datasets for transfer lines do not have sufficient

redundancy for an automatic data analysis and data are analyzed manually, i.e., a

person assigns focusing errors to quads. Normally it takes from a few hours to a day

to build a transfer line optics. That is a good compromise between time spent for

measurements and the data analysis. Due to lack of data and limited human ability

to digest still quite large datasets, the accuracy of obtained optics model is not the

same good as for rings. However, we found it adequate to the requirements of

Tevatron complex transfers. Together with absolute and differential orbits the

software records a beam intensity signals for each BPM. Changes in the beam

intensity correlated with beam displacement allow one to identify places of poten-

tial beam scraping and, taking into account that the measurements are performed for

both polarities of each kick, to formulate suggestions for changes of the beam orbit

in the transfer line.

Note also that as part of the effort to improve the status of the accelerator

complex, three databases were created: (1) the lattice repository which keeps the

optics files, (2) the magnet database which keeps the results of magnetic measure-

ments, and (3) the survey database which keeps results of machine surveys and

alignment.
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2.2.1 Linear Optics Optimization and Linear Optics
Measurements for Transfer Lines

At the Run II beginning improvements of optics for transfer lines was much more

important problem than optics improvements for circular machines. There were

three main reasons: first, historically much more attention was paid to the optimi-

zation of optics for circular machines; second, most transfer lines are between rings

belonging to different departments and therefore their ownership was not uniquely

determined; third, long transfer lines historically were split into a few segments and

optics was designed and supported independently for each segment. The Run II

clearly demonstrated that resolving transfer line optics is the same challenging as

resolving circular machine optics, and therefore the same attention has to be paid to

the transfer line optics design and commissioning. There are ten transfer lines in the

Tevatron complex: (1) linac to Booster, (2) Booster to MI, (3) Main Injector to

antiproton production target, (4) antiproton production target to Debuncher,

(5) Debuncher to Accumulator, (6) Accumulator to Main Injector, (7, 8) two lines

(proton and antiproton) from Recycler to Main Injector which are also used for

Main Injector-to-Recycler transfers, and (9, 10) two lines (proton and antiproton)

from Main Injector to Tevatron. There are also transfer lines for neutrino experi-

ments and experiments with fixed targets which are not discussed here. For almost

all lines optics was redesigned to improve transport quality. Optics for all of them

was measured and if necessary corrected to meet the design intent.

At the Run II beginning the most outstanding optics problems were related to the

Accumulator-to-Main Injector transport of antiprotons at 8 GeV. It is the longest

and most complicated transfer line in the Tevatron complex. Therefore, resolving

its optics problems is considered here in detail. Optics problems of other transport

lines were similar and the same approach and software were used to address them.

If not directly mentioned, the discussion in the rest of this section is about the

Accumulator-to-Main Injector transport.

The total length of beam transport from Accumulator to Main Injector is more

than 900 m. Almost 600 m of this line is also used for the 120 GeV proton beam

transport fromMain Injector to the antiproton production target. Large difference in

the energies results in that the magnetic fields of the low-energy transport are

dominated by the residual magnetic field of the magnets. At the Run II beginning

the situation was so critical and uncertain that the question of building a new 8 GeV

line was seriously discussed. However, the differential orbit measurements proved

that the line optics is sufficiently reproducible and the decision was made to

redesign and tune optics of the existing line. The main objectives for new optics

design were as follows: (1) maximize the line acceptance for existing aperture

limitations, (2) match transfer line optics to the optics of both rings including both

vertical and horizontal dispersions, and (3) minimize (or better eliminate) any

hardware work in the tunnel. The transfer line has 63 quadrupoles connected to

35 quadrupole families. Large number of quadrupole families offers considerable

freedom for optics design, but at the same time it greatly complicates finding a good
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solution. Existing aperture limitations were one of the major complications. It

forced us to minimize the beta-functions at the aperture limitations and, conse-

quently, yielded an increase of beta-functions in their vicinity and made optics

irregular. Although the split of quadrupoles into families was far from optimal, a

satisfactory solution was found. Figure 2.1 presents calculated beam envelopes

through the entire transport line for the final choice of beamline optics. The

horizontal dispersion and both beta-functions were matched to the ring dispersions

and beta-functions. The existing quadrupole families did not allow matching the

vertical dispersion, but the line optics was designed to minimize the vertical

dispersion leakage from the line. Together with a small value of extracted beam

momentum spread, it resulted in a negligible contribution of vertical dispersion

mismatch to the emittance growth, thus, allowing us to achieve good transfer line

performance without reconnecting the quadrupole families.

The optics measurements have been based on the differential orbit measure-

ments. Normally the measurements were performed with reverse protons, where the

proton beam is sent from Main Injector to Accumulator. Figure 2.2 presents a

typical measurement consisting of five differential orbits representing responses to

two horizontal and two vertical correctors and an energy change. To make sure that

the BPM response is not affected by beam scraping, the measurements were

acquired for positive and negative excitations. It also improves statistical accuracy.

Curves present the model predictions after the model was fitted to the data. X–Y
coupling in the line is sufficiently small, and therefore the cross-plane responses for

the corrector excited orbits are not presented in the figure. Variations of BPM

Fig. 2.1 Calculated beam envelopes of the entire Accumulator-to-Main Injector transport for the

beam emittances equal to the line normalized acceptances 48 and 42 mm mrad for horizontal (red)
and vertical (blue) planes, correspondingly. Top and bottom plots present the envelopes for the first

and second halves of the beamline. Blue and black curves present contributions to the beam size

coming from the momentum spread ofΔp/p¼ 6� 10�4 corresponding to 2.5σ of typical momentum

spread of extracted beam. Vertical lines show aperture limitations for horizontal (red) and vertical

(green) planes. Squares below the plots present locations of dipoles (blue) and quadrupoles (red)
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differential response significantly complicate finding good solution. In this case the

beam displacement reported by a BPM is proportional to the actual displacement

but not necessarily with correct coefficient of proportionality.5 Therefore, the best

fit to the data usually yields too large corrections to quadrupole focusing, and,

Fig. 2.2 Typical differential obit measurement for the Accumulator-to-Main Injector beam

transport and its fitting by refined optics model: red and blue dots present a horizontal response

to a horizontal corrector and green and black dots a vertical response to a vertical corrector. Blue
and black dots represent inverted values of data acquired with negative corrector excitation. Short
error bars present a standard deviation and long error bars present a maximum deviation from the

mean value of 3 measurements. Long error bars which cross the entire plot show BPMs with an

error status which potentially can have incorrect measurements

5 Experience gained with the upgrade of electronics of Tevatron BPMs carried out in 2004 proved

that before the upgrade the major contribution to variations of differential BPM response was

related to imperfections of electronics. After the upgrade the spread of variations was reduced

from ~10 to ~1 %. Contribution coming from nonlinearity of differential BPM response with

coordinate related to the geometry of BPM was much smaller. The imperfection of electronics

looks the most probable reason for variations of differential BPM response for the transfer

line BPMs.
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consequently, the model represents poor the actual line focusing. To address this

problem we put more trust to the BPMs in which measurements are close to zero,

and, consequently, are weakly affected by errors of differential beam response.

Normal functioning of these BPMs is verified by measurements with nonzero beam

displacements. They come from another corrector of the same plane. Normally

optics model update/correction proceeds from the transport line beginning to its

end. One corrects quadrupole focusing iterating between different differential

orbits. A few rounds of corrections are usually required before a satisfactory

match to the measurements is found. Figure 2.3 presents corrections to the power

supply currents required to match the model to the differential orbit measurements.

One can see significantly larger corrections to the quadrupoles operating both for

8 and 120 GeV transport. Although corrections to quadrupole focusing obtained

with this procedure are not unique and do not represent actual errors of the beam

transport, they allow one to get an optics model describing the line focusing with

satisfactory accuracy. Usually we use the first two correctors of a transfer line, but it

does not excite differential orbit in the first quadrupole, and therefore focusing

errors of the first quadrupole (closest to Main Injector) are invisible. It can be

resolved by an excitation of differential orbit in Main Injector, but it makes both

measurements and data analysis more complicated. An upgrade of the transfer line

BPM electronics carried out in 2006 made possible accurate position measurements

with antiprotons. That allowed us to carry out differential orbit measurements with

antiprotons [11]. The measurements were almost not invasive, and because they

used antiprotons moving in the opposite to protons’ direction, they pointed out a

focusing error of the quadrupole closest to the Accumulator (Q901). That resulted

in a further improvement of transport quality.

The turn-by-turn measurements of transverse beam sizes of injected antiproton

beam offer an independent measurement of the beamline optics. Such measure-

ments became available later in the run when the ion profile monitor (IPM) was

commissioned for operations with antiprotons (see Chap. 9). The beam sizes

oscillate at the double betatron frequency corresponding to observed frequencies

Fig. 2.3 Corrections (in %) to quadrupole power supplies currents for Accumulator-to-Main

Injector beam transport. The 120 GeV beamline includes quadrupoles from Q701 to Q207. The

rest of the line operates at 8 GeV only
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2νx ~ 0.12 and 2νy ~ 0.16. Figure 2.4 presents an improvement of IPM signals with

improving optics match [11]. As one can see in Fig. 2.4, there was a considerable

mismatch between Accumulator and Main Injector before correction. However, the

emittance increase was not as bad as the beta-function mismatch because the

emittance growth is proportional to (Δβ/β)2. The estimate can be obtained from

the well-known formula, describing the emittance growth due to optics mismatch:

ε0 ¼ ε
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where β1, α1, D1, and D0
1 are the beta- and alpha-functions, the dispersion and its

derivative for the incoming beam, and β1, α1, D1, and D0
1 are the beta- and alpha-

functions of circulating beam. Expending this equation for the case of small quadru-

pole betatron oscillations and taking into account that Δβ/β
2Δσ/σ, one obtains
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For the data presented in Fig. 2.4, it yields δεx/εx
 0.5 (0.03) and δεy/εy
 0.07

(0.015), correspondingly, before and after the final correction.

Fig. 2.4 Main Injector IPM measurements of the transverse beam size oscillations at injection.

Left and right plots show horizontal and vertical oscillations, correspondingly, before the optics

matching (blue), after first correction (green), and after second correction (red)

66 V. Lebedev et al.



Standardization of hysteresis protocol and two sets of power supplies (one for

8 and another for 120 GeV) have been required to achieve desired reproducibility of

beam transport. However, its seasonal variations still were present in the

Accumulator-to-Main Injector line. Other transfer lines operate at the energies

which they were designed for. Consequently, they have better reproducibility and

have not required additional tuning since the time when their optics was corrected.

As it was already mentioned, Run II inherited a number of problems rooted in

Tevatron history. One of them was a vertical dispersion mismatch in the Main

Injector-to-Tevatron proton beam transport line. Existing quadrupole powering did

not allow matching of vertical dispersion. An independent powering for a string of

7 quadrupoles could address the problem, but it required new power supplies and

additional cabling. A simple solution of the problem implied rolling 4 of 7 quadru-

poles of the string by small angles. The angles and quadrupole strengths were

adjusted to make the uncoupled transport through the string (see inset in Fig. 2.5)

and to match beta-functions and dispersions. This line is also used for the antiproton

transport described above and the proton beam transport to the antiproton produc-

tion target. Uncoupled transport through the string simplified their optics

correction.

Note that in most cases the emittance increase of about 5 % is acceptable. In this

case Eq. (2.124) yields a required transfer line optics match Δβ/β� 0.3. The

requirements to optics of circular machines like Tevatron, Debuncher, and Accu-

mulator are much stricter, and therefore a usage of the multi-corrector automated

algorithm described in the next section has been absolutely essential to address their

optics issues.

Fig. 2.5 Beta-functions and dispersions for proton transport fromMain Injector to Tevatron. Inset
presents auxiliary beta-functions of coupled motion, β1y and β2x
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2.2.2 Linear Optics from Closed Orbit

The simplified differential orbit method described above was used in 2003 for

measurement and correction of the injection and collision lattices for Tevatron. The

most spectacular result was achieved for the collision optics—it was discovered

that due to the significant (up to 1 %) gradient errors in the final focus quadrupoles,

the β* values were about 30 % larger than the design. Correction of these errors

resulted in an immediate increase of the luminosity. However, the data analysis was

tedious and the results still were not sufficiently accurate. It was recognized that

both more accurate and better-automated methods are required. The development

followed two directions: extension of the differential orbit technique discussed here

and analysis of the turn-by-turn data discussed in the next section.

Response matrix fitting is a well-known method of calibrating the machine

optics. It was first suggested at SLAC [12] and then it was used at NSLS [13] for

X-ray ring analysis. Today the method is widely used at many accelerators around

the world [14]. At the Tevatron, a modification of the response matrix fitting

software developed at Argonne National Laboratory for the Advanced Photon

Source (APS) [15] has been used.

The response matrix fitting program SRLOCOFitting [15] written in Tcl/Tk has

an extensive graphical user interface, and uses SDDS toolkit [16] for data

processing. The code was developed to calibrate the APS model and to provide

data for beta-function correction. Coupling correction was not an issue at the APS;

therefore, the calculations were limited to the uncoupled case. On the contrary,

coupling of horizontal and vertical betatron motion was an important for the

Tevatron; therefore, existing analyses had to be expanded to a fully coupled motion.

Another important modification was the addition of dispersion to the fit. This

allowed us to resolve two issues. First, addition of dispersion adds a constraint on

the quadrupole gradients, removing the degeneracy between in-phase quadrupoles.

Second, the dispersion can be used to calibrate average gain of BPMs, which

otherwise would be a degenerated value. Technically, dispersion is treated as a

column of the response matrix. A number of other minor code modifications have

been made to ensure that the software could be used with other Fermilab

accelerators.

The Tevatron ring has 110 correctors and 118 BPMs in each plane. The response

matrix measurement procedure was fully automated and used the following proce-

dure: each steering magnet was excited first with positive current and then with

negative current. At each value of current, the orbit was measured 25 times. The

total response to the steering magnet excitation was the average positive orbit

minus the average negative orbit. The output of the measurement program was an

SDDS file containing average orbit responses and their rms deviations in a format

readable by SRLOCOFitting. The dispersion measurement was done by scanning

the RF frequency, measuring orbit at five points, and fitting a straight line at each

BPM. It resulted in an improvement of measurement accuracy. Acquisition of the

full response matrix required approximately 2 h of beam time. However, it was
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determined that a good quality fit could be obtained with a smaller dataset, and in

normal operations the response matrix was measured using 60 correctors, which

took less than 1 h.

The fit produced values of the following variables: quadrupole gradient errors,

quadrupole tilts, corrector calibration errors, corrector tilts, BPM gains and BPM

tilts, and energy shift due to corrector changes. The total number of unknown

variables was about 1,000. Since the LOCO fitting procedure is based on the

computation of pseudo-inverse of the response matrix derivative using singular

value decomposition, important information is contained in the spectrum of singu-

lar values. Figure 2.6 presents a typical plot of the singular values for the Tevatron

collision optics. The SVD cutoff was typically chosen at 1, which corresponds to

600–650 singular values.

The main factor limiting accuracy of the LOCO fit is the resolution of the beam

position measurement. The BPMs have the resolution of about 10 μm for a single

measurement. Besides, the beams oscillate at low (~10 Hz) frequency with the

amplitude of about 50 μm. Averaging over 25 measurements has been applied to

mitigate the effect of slow oscillations. The overall accuracy of the orbit measure-

ment was then about 15 μm. Figure 2.7 shows the rms difference of the measured

orbit and the modeled orbit after the fit for each BPM. In this case, 30 horizontal and

30 vertical orbits were used and the average error was ~14 μm which is close to the

orbit measurement accuracy.

The precision of the orbit fitting sets the accuracy of gradient error determination,

which in our model is 10�3 for the arc quads and 10�4 for the final focus quads. The

corresponding error in beta-function is about 5 %. In Fig. 2.8 the found quadrupole

and skew-quadrupole errors are presented for all locations in the Tevatron.

Two locations with large skew-quadrupole component, D16 and A38, have been

identified as tilts of the corresponding quadrupoles. These tilts emerged at the

magnet assembly and could not be found by alignment measurements from outside

of the magnet.

Table 2.1 summarizes the gradient errors for the final focus quadrupoles. As one

can see, the difference from the calibration curve obtained by magnetic measure-

ments can be as high as 1 %.

Fig. 2.6 Singular values

(logarithmic scale) of the

Tevatron response matrix

derivative
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Fig. 2.7 Rms difference (mm) between the measured and modeled orbit vs. BPM name. Top,
horizontal orbit; bottom, vertical orbit

Fig. 2.8 Measured relative quadrupole and skew-quadrupole errors
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Based on the knowledge of the lattice details, new collision optics has been

implemented in 2005 with the following goals:

1. Eliminate beta-beating in the arcs.

2. Correct the discrepancy in the values of β* between the two IPs.

3. Decrease the value of β* from 35 to 28 cm, with an expected gain in luminosity

of 11 % (Fig. 2.9). Further decrease of the β* was not practical because of the

growing second-order chromaticity and little gain in luminosity due to the

hourglass effect.

Routine optics measurements with LOCO were performed over the entire length

of Run II to support collider operations and simulation efforts.

2.2.3 Turn-by-Turn Measurements

Orbit response matrix analysis is a powerful tool that supplied precise information

about the Tevatron linear lattice imperfections and errors of BPM calibrations.

Table 2.1 Relative

quadrupole errors in final

focus

Name Gradient error (10�3)

B0Q3 �11.18

B0Q2 �1.87

B0Q3D �0.09

B0Q3F �0.47

D0Q3 �9.49

D0Q2 �0.83

D0Q3F 0.24

D0Q3F �1.84

Fig. 2.9 Specific initial

luminosity (L/Na/Np)

vs. store number. Green line
marks the moment when the

new optics was put into

operation
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However, orbit data acquisition is a lengthy process and certainly could not be

performed on a daily basis and especially during acceleration. For this regime, the

Fourier analysis of turn-by-turn beam position after a single-turn kick proved to be

invaluable. This method is fast and offers information about entire machine optics. In

particular it allows fast computation of the resonance driving terms for the sum and

difference betatron coupling resonances and the location of coupling sources [17].

The distribution of coupling sources around the ring determines the resonance

driving terms (see Sect. 2.1.12):

w� sð Þ ¼ �
ðC
0

ds0
C� s0ð Þ
4 sin πν�

e�iν� 2π s�s0Þ=Cð �π�sign s�s0ð Þð Þ, ð2:125Þ
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Here χx and χy are the periodic phase functions. The functions w�(s) are constant in
coupling-free regions and experience a discontinuity at the locations of coupling

sources. On the coupling resonances νx� νy= integer, the functions w� are con-

stant. The minimum attainable tune distance is given by

C� ¼ n� � ν�
π

ðC
0

ds

C
w�ein�2πs=C,

with n�= round(νx� νy). If the kick occurs in the horizontal plane, the Fourier

component Yj(νx) of yj(s) is related to the values of w� at the j-th BPM via the Twiss

functions. When the BPM tilts are negligible or already known (e.g., from the

LOCO fit), the number of unknown quantities per BPM is reduced to two and one

can retrieve the constant value of w� in the region between two BPMs from Yj(νx)
and Yj+1(νx) assuming that there are no strong sources of coupling.

Figure 2.10 presents the vertical injection lattice beta-function reconstructed

from turn-by-turn data in comparison with the beta-function obtained by LOCO.

One can see that agreement between the two methods is good.

Fig. 2.11 presents the values of real and imaginary parts of w�(s) measured at

vertical BPMs for horizontal kick and at horizontal BPMs for vertical kick.

An application program for the online turn-by-turn data analysis has been

integrated into the Tevatron control system. The program fired the kicker, collected

the BPM data, computed Twiss and coupling functions, and, finally, computed and

applied the needed corrections to the two main skew-quadrupole circuits SQA0 and

SQ. The program was used in routine collider operations during every shot setup

and proved invaluable for decoupling on the energy ramp. The time needed to
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retrieve the turn-by-turn data from all Tevatron BPMs was too long for routine use

of the method. This limitation could be overcome due to the fact that w�(s)
 const

near the coupling resonances. Since the Tevatron working point at injection

(νx¼ 20.584, νy¼ 20.574) is reasonably close to both the difference and the sum

resonance, it was possible to use only few BPMs (typically 5 horizontal and

5 vertical) to evaluate the tunes and the functions w� at the orthogonal mode BPMs.

2.3 Nonlinear Beam Dynamics

2.3.1 Dedicated Studies of Nonlinear Beam Dynamics
in Tevatron

Several important beam studies dedicated to detailed understanding of nonlinear

beam dynamics had been carried out at the Tevatron in the late 1980s to early

1990s.

Fig. 2.10 Vertical beta-

function at vertical BPMs

(injection lattice)

Fig. 2.11 w�(s) at vertical
BPMs after a horizontal

kick (blue and red), at
horizontal BPMs after a

vertical kick (cyan and

magenta) as a function of

the machine azimuth

2 Beam Optics and Orbits: Methods Used at the Tevatron Accelerators 73



In the E778 beam dynamics experiment, performed in the Fermilab Tevatron,

strong nonlinear elements were intentionally added and observations of phase space

of nonlinear oscillations were made [18]. For that experiment the Tevatron can be

regarded as a linear system on which nonlinearity in the form of 16 sextupole

magnets, each of strength S, was intentionally superimposed. The experimental

procedure starts with a “needle beam” consisting of some 1010 circulating stored

protons, to some approximation having essentially the same momentum and to be

on the central orbit. Next the same angular deflection D is applied to every particle

by a pulsed deflecting magnet. The subsequent beam centroid displacement is

sensed for as many as a million turns by beam position monitors (BPM). These

measurements are used to generate an experimental Poincaré plot.

To a good approximation, the following equation of motion describes the

horizontal particle motion

d2x

dt2
þ K sð Þx ¼ �ε sð Þx2: ð2:127Þ

Here s is the longitudinal particle coordinate, which advances from 0 to C (the ring

circumference). In the course of the experiment the Tevatron tune was about

Q¼ 19.4. The anharmonic term in (2.127) is due to sextupole fields of strength

ε(s), proportional to S. That term makes tune of the particle amplitude dependent.

Both K(s) and ε(s) are periodic functions of s with period C. The absence of

damping in (1) is valid as the quality factor of these oscillations has a very high

value >109, making this a truly Hamiltonian system. The amplitude (and, thus, the

tune) of oscillations can be adjusted by the deflector strength D, so that 20 % of the

particles can be trapped in resonance islands. All particles in one of the islands

exhibit a tune of exactly 2/5, totally defying decoherence. The resulting BPM

signals have been observed to persist for over a minute (approaching a million

turns). As an example, Fig. 2.12 shows a “raw” Poincaré plot of transverse beam

displacements x1(t) vs. x2(t), measured at two positions separated by about one

quarter of a betatron wavelength.

The dynamics of a metastable beam of particles “injected” into artificially excited

resonance islands in the Tevatron has been further studied in a subsequent experiment

[19]. As before, the protons were under the influence of a single dominant nonlinear

resonance, caused by the strong excitation of 14 sextupoles in the otherwise nearly

linear accelerator. The island location was forced to oscillate at a modulation tune Qm

with an amplitude proportional to the modulation amplitude q:

Q t; að Þ ¼ Q00 þ q sin 2πQmð Þ þ 1

2
Ua2: ð2:128Þ

Here, the last term represents detuning with amplitude of betatron oscillations

a caused by the sextupoles. As in [18], the location and size of the island were

adjusted by varying sextupole strengths and the base tune Q00 of small-amplitude
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particles. The beam was then allowed to circulate for some 10s to allow transients to

decay before data were taken. At 9,000 turns after start of data taking, the tune

modulation Eq. (2.128) was turned on by sinusoidal driving two weak quadrupoles.

The tune modulation strength and tune, q and Qm, were linearly ramped for 1 s

(about 50,000 turns) and then turned off for the last 0.2 s (some 10,000 turns) of data

taking. Figure 2.13 shows the BMP signal during such a chirp. One can clearly see

an amplitude modulation of the islands at about 28,000 turns. The persistent signal

started dropping dramatically at about 32,000 turns, eventually driving all of the

trapped beam out of the resonant island.

The tune modulation trajectory that caused this response is drawn as the dashed

line labeled “A” in Fig. 2.14, showing that the signal was lost when the boundary

between “amplitude modulation” and “chaos” was crossed. Figure 2.14 also sum-

marizes results from a trajectory labeled “B” that had a very weak constant tune

modulation strength q¼ 0.000204, smaller or comparable to realistic operation

values. Boundaries found experimentally (circles) and theoretically predicated

boundaries between four regions are shown in Fig. 2.14. For the latter ones, the

island tune (frequency of small oscillations of the particles trapped in the islands)

QI¼ 0.0063 was the only free parameter used to adjust the location of these

boundaries. A detailed discussion on the theory and explanation of the observations

can be found in [18].

The effect of nonlinearity on transverse particle distributions has been studied in

yet another beam dynamics experiment [20]. It was concentrated on “stochastic”

effects, due to the particle dynamics, that cause “diffusive” evolution of the beam

distribution even in the absence of external sources of “noise” or random scattering

from residual gas molecules. These effects are studied by adding large nonlinearity

to the otherwise comparatively linear machine. At the start of each observation

period, a needle-shaped single bunch of some l010 circulating protons was kicked

horizontally. This yielded displacement of about 3 mm as observed at a downstream

point. The resulting transverse beam profile was repeatedly measured by Flying

Wires system every minute or so. During a run of (typical) 30 min duration, each

Fig. 2.12 “Raw

experimental Poincaré

map” exhibiting a

metastable state of the

accelerator. The logo in the

corner of the plot is a

demagnified view of the

same data with successive

points joined by straight

lines. The point lands only

on every second island,

confirming the 2/5

identification [18]
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proton circulates about 108 times and executes about 2� 109 transverse betatron

oscillations. The purpose of the kick is to generate a beam in which all the particles

are in a region of measurably large diffusion. Individual protons initially oscillate at

approximately constant amplitude with damping time equal to many tens of hours,

but due to the dynamic diffusion, they start to expand in (initially) void areas of the

phase space until they reach a physical aperture (defined by a scraper placed at

xmax¼ 8 mm) and get lost. In order to study the influence of resonance, all

measurements were performed in the vicinity of the “2/5 resonance” (fractional

horizontal tune Qx close to 0.4).

Contrary to intuition, and unlike multiple scattering, diffusion causes the beam

to narrow with time—as shown in Fig. 2.15. That behavior is caused by the sink at

the aperture xmax which devours large amplitude particles, reduces the beam

intensity, and depletes the tail of the distribution. Time evolution of the beam

intensities and full widths, similar to one depicted in Fig. 2.16, was measured at

different initial kicks and that allowed to determine the dependence of the diffusion

Fig. 2.13 Raw digitized

signals of beam position

monitor showing a

persistent signal and its

response to a chirp from (q,
Qm)¼ (0, 0) to (q, Qm)¼
(0.0102, 0.0031). Vertical

scale is in volts. Nonzero

average initial value is due

to a closed orbit offset [19]

Fig. 2.14 Structure of the

tune modulation parameter

space (q, Qm). A and

B correspond to two scans.

Four distinct “dynamical

phases” are labeled ([19],

see in the text)
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coefficient on the amplitude. Note that similar beam “shaving” phenomena with

characteristic intensity decays following exp(�t1/2) law were observed later in the

Tevatron Run II when nonlinearity induced by parasitic beam–beam interactions

resulted in a significant reduction of a dynamic aperture and beam lifetime degra-

dation—see [21] and discussion in Chap. 8.

2.4 Orbit Motion and Control

Motion of the accelerator components, most notably, quadrupole magnets, results in

the beam orbit movements and can lead to a significant deterioration of the collider

performance. The mechanism depends on the frequency. At frequencies of betatron

sidebands f0 (1� ν)
 19.7 kHz, fluctuations of the magnetic fields δB(t), e.g., due
to quadrupole magnet displacements x(t), produce transverse kicks δθ(t)¼ δB(t)el/
Pc¼ x(t)/F, where l is the length of the element and F is the focusing length. That

leads to the beam emittance growth with the rate of [22]:

dεx
dt

¼ γ
f 20
F2

XNq

k¼1

X1
n¼�1

βkSx f 0 ν� nð Þð Þ ð2:129Þ

where f0 is the revolution frequency, γ is the relativistic factor, ν is the tune, Sx( f ) is
the power spectral density of the quadrupole motion x, Nq is a total number of

quadrupole focusing magnets, and βk is the beta-function at the k-th quad location.

At much lower frequencies, f� f0, the kicks lead to a time-dependent displacement

of the closed orbit:

Fig. 2.15 Evolution of the

beam profile: the jagged

curve is the raw FlyingWire

measurement at t¼ 6 min;

smooth curves are as

predicted by diffusion

model. Times (in minutes

after hollow beam

formation) are indicated

[20]
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XCOD sð Þ ¼
ffiffiffiffiffiffiffiffiffi
β sð Þp

2 sin πνð Þ
XNq

k¼1

ffiffiffiffiffiffiffiffiffiffi
βk sð Þ

p
θk cos φ sð Þ � φk þ πð Þ, ð2:130Þ

where s is the location along the ring and φ(s), φk are betatron phases at the

locations of the observation point and at the source of the kth magnet. At very

low frequencies, hours to years, the quadrupole magnet displacements are often

governed by the “ATL law” [23, 24] according to which the mean square of relative

displacement dX2 of the points separated by distance L grows with the time interval

between measurements T as

< dX2=dt > ¼ A TL ð2:131Þ

where A is a site-dependent constant of the order of 10�5�1 μm2/(s m) and brackets

<. . .> indicate averaging over many points of observations distanced by L and over

all time intervals equal to T. Such a wandering of the accelerator elements takes

place in all directions. Corresponding average closed orbit distortion over the ring

with circumference C is equal to [25]

Fig. 2.16 Measured full

width and intensity (points)

compared to model-derived

values (smooth curve).

Intensity is normalized to

1 at t¼ 0. The steps at late

times are the result of

sudden aperture reduction

to xmax¼ 2.7 mm [20]
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< X2
COD sð Þ >
 β

�
s
�
βF þ βDð Þ

8F2 sin 2 πνð Þ ATC 
 κATC ð2:132Þ

where FODO lattice structure is assumed, βF, βD are beta-functions at the focusing

and defocusing lenses, and numerical coefficient κ
 3 for the Tevatron.

Due to feeddown effects from field non-linearities the Tevatron orbit drifts result

in machine optics changes (tunes, coupling, chromaticities). Combined with aper-

ture limitations they lead to increase of beam loss. At the injection energy of

150 GeV when the beams are several mm wide, orbit motion of about a mm

leads to losses of the beams at several known places with tight aperture. At the

energy of experiment, 980 GeV/beam, beam position in the RF cavities affects

stability of high-intensity proton beam, e.g., the power of coherent beam oscilla-

tions goes up if the beam is too far off center. Also, oscillations of the RF cavities at

synchrotron frequency (85 Hz at 150 GeV and 35 Hz at 980 GeV) are of concern for

driving longitudinal emittance growth due to microphonic effects [26]. Large-scale

long-term drifts of the orbit can be corrected by dipole correctors, and regular

realignment of the magnets—usually during annual shutdown periods—helps to

keep the corrector currents under the limit of 50 A.

2.4.1 Measurements of Betatron Oscillations and Orbit
Motion

Several instruments were used to detect betatron oscillations in the Tevatron (see

Chap. 9). The most challenging were direct measurements of natural betatron

oscillations at sub-micron level. Several instruments were built for the detecting

such oscillations and measurement of their frequency without additional excitation.

Various techniques were employed, including 3D-BBQ (direct diode detector

baseband tune) measurement system [27] and the digital tune monitor (DTM)

which uses 16 bits 100 MHz ADCs for measuring the tunes on a bunch-by-bunch

basis [28]. A very high-precision system employing a fast digital scope (Agilent

Acqiris, 10bit, 8GS/s) for measurements of the turn-by-turn vertical centroid

positions of individual bunches has been devised and used for digitizing signals

from the plates of the VB11 BPM in the large vertical beta-function location that

translates into better S/N ratio [29]. The system employs variable attenuators for

compensating the beam position offset and phase shifters synchronized within 10 ps

to minimize common mode. As a result, subtraction of the two signals by an RF

hybrid provides about 44 dB of common mode rejection. Figure 2.17 shows 21,400

turn (0.44 s) record of the vertical beam position at the VB11 location.

The FFT of the data reveal significant excess of the signal at the betatron tune

over the noise as shown in Fig. 2.18. The rms amplitude of the betatron oscillations

is about 110 nm. Note that the amplitude significantly varies from store to store and

often is two to three times smaller. That yields some 10–25 nm range of typical rms
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betatron motion amplitudes at the average beta-function location with βy
 50 m.

Spectrum of the vertical orbit motion at frequencies 2–1,000 Hz is shown in

Fig. 2.19. It scales approximately as /1/f3 and is dominated by the low-frequency

beam motion. The strongest lines are the harmonics of 60 Hz main power. The

15 Hz and the 0.45 Hz components can be explained by the effects of the fast

cycling Booster synchrotron and the Main Injector on the power distribution

systems at FNAL.

At ultralow frequencies, the orbit motion has significant (some 0.1 mm vertical

and 0.3 mm horizontal) variation with a period of 12 h, which seems to be associated

with Earth tides—see Fig. 2.20 from [30]. The rms of the orbit motion is about

100 μm horizontally and 30 μm vertically. The tide waves are clearly seen in the data

from the Hydrostatic Level System (HLS) installed in the MI-8 beamline, the 8 GeV

transfer line from the FNAL Booster to the FNAL Main Injector, located within

Fig. 2.17 Vertical position

of the proton bunch #11 at

the beginning of HEP store

#6214 (October 2008),

measured at the VB11

location with βy¼ 900 m

[29]

Fig. 2.18 Power spectral

density of the vertical

betatron oscillations (FFT

of the data presented in

Fig. 2.17) [29]
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400 m of the Tevatron tunnel. The HLS is described in detail in [24] and consists of

20 submicron resolution water level sensors separated by 15 m from one another. The

signal difference for a pair of sensors 135 m apart is plotted at the bottom of Fig. 2.20

and shows some 20 μm peak-to-peak amplitude of the 12 h period component. Slow

closed orbit distortions of some 0.5–1 mm rms have been accumulated over 1–2-

week intervals and required regular orbit “smoothing,” until an automatic orbit

stabilization system was introduced in operation in 2005 (see details in Chap. 9)

and since then only high-frequency orbit jitter of about 10 μm rms remained.

2.4.2 Magnet and Ground Motion in the Tevatron Tunnel

The low-frequency orbit motion has been found correlated with (caused by) the

vibrations of the magnets, particularly, strong focusing near interaction regions.

Figure 2.21 from [31] demonstrates strong coherence between quadrupole vibra-

tions and the Tevatron orbit motion, especially at certain frequencies. The coher-

ence spectrum C( f ) is defined as

Cxy fð Þ ¼ < Sxy fð Þ >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< Sxx fð Þ >< Syy fð Þ >p�����

�����, ð2:133Þ

where Sxy( f ) is the cross-correlation spectrum of two signals x(t) and y(t).
One can see that the orbit correlates well with the tunnel floor only at low

frequencies ~0.1 Hz, while some excessive but small coherence exists at 2–4 Hz.

The beam orbit correlates with the quadrupole magnet motion at frequencies of 0.2–

2 Hz.

The closed orbit distortions are caused by the displacements of all magnetic

elements along the circumference of the Tevatron. The strong coherence between

Fig. 2.19 Low-frequency

power spectral density of

the vertical orbit

oscillations [29]
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Fig. 2.20 Variation of the Tevatron proton orbits at the F48 location (top, horizontal, βx¼ 100 m;

middle, vertical, βy¼ 30 m); and vertical ground motion as measured in the MI-8 line and

temperature (green line) measured at the Tevatron sector F48 (both in the bottom plot) during

28 h long collider store #1668 (August 17, 2002)

Fig. 2.21 Coherence between signals of the vertical Tevatron beam orbit motion and the F11

magnet vibrations and between the orbit and the tunnel floor (red line) [31]
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the magnet and beam vibrations means that there is a common source of vibration

along the whole accelerator ring. For example, several remarkable peaks in the

orbit–magnet coherence occur at 4.6, 9.2, 13.9 Hz, etc., at the Fermilab site-specific

frequencies caused by the Central Helium Liquefier plant operation and well

detected everywhere around the ring [32]—see Fig. 2.22.

2.4.3 Slow Diffusion of the Tevatron Tunnel

Analysis of the multiyear Tevatron magnet alignment data shows that in addition to

systematic changes due to tides or slow drifts, there is a “random walk” both in time

and in space component characterized by the ATL-law of Eq. (4.3) [33].

The alignment system of the Tevatron employs more than 200 geodetic “tie

rods” (thick metal rods screwed into the concrete tunnel wall all over the ring and

equipped to hold spherical retroreflectors for precise position measurements), each

spaced approximately 30 m apart. The positions of the magnets are regularly

referenced locally with respect to the “tie rods,” while the positions of all the “tie

rods” are routinely monitored. The “tie rod” elevation datasets are available for the

years of 2001, 2003, 2005, 2006, and 2007. Figure 2.23 shows the change of the

elevations dY(z) around the ring accumulated over two intervals—2 years (2003–

2005) and 6 years (2001–2007). One can see that longer-term motion has a larger

amplitude. The variance <dY2(L )>¼<(dY(z)� dY(z+ L ))2> of the elevation dif-

ference of the points as a function of the lag (distance between pairs of the

measurement points) L has been calculated and averaged over all possible time

intervals. That is to say, there are two 1-year intervals (2005–2006, 2006–2007),

three 2-year intervals (2001–2003, 2003–2005, 2005–2007), etc., and one for the

6-year interval 2001–2007. The results for the 1-year changes and for the 6-year

change are shown in Fig. 2.24. A remarkable difference between the two plots is

that 1-year variance scales linearly only up to L
 700–800 m and does not depend

on L beyond that scale, while the 6-year variance grows all the way to distances as

Fig. 2.22 Power spectral

density of the A35

quadrupole motion and the

ground nearby, from [32]
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large as 1,800 m. The linear dependence on L is indicative of a significant level of

interdependence of the movements of distant points. The calculated variances

for all possible time differences can be well approximated by linear fits

<dY2(L)>¼ a+ bL over distances less than 900 m and the slopes (fit parameters

b with the error bars) are plotted in Fig. 2.25.

One can see that the variance per unit distance grows with the time interval

between the measurements and can be approximated by a linear fit b(T )¼ cT with

c¼ 0.153� 0.004 [mm2/km/year]. The Tevatron “tie rod” data analysis presented

in Figs. 2.24 and 2.25 can be summarized by the ATL law <dY2>¼ATL with

coefficient ATevatron¼ c¼ (4.9� 0.13)� 10�6 μm2/s/m.

It is to be noted that for small time intervals T the movements of the ground

elements are fully uncorrelated if they are separated by a long enough distance

L> Lm, for example, by more than 800 m for T¼ 1-year intervals as seen in the

Tevatron alignment data—see Fig. 2.24—or by more than 120 m for T¼ 1-week

intervals as seen in the Tevatron B-sector HLS data [24]. On the basis of these two

observations, one can assume that the boundary between totally uncorrelated and

the ATL-law regimes scales approximately as Lm/ T1/2.

2.5 Measurements and Corrections of Nonlinear Optics

2.5.1 First- and Second-Order Chromaticity and Its
Correction

Implementation of electron cooling of antiprotons in the Recycler (see Chap. 7)

resulted in a dramatic increase of the antiproton beam brightness. After the 2006

shutdown, the head-on beam–beam tune shift experienced by the proton beam

exceeded 0.025 and at times reached 0.03 (see Chap. 8). It was then when beam–

Fig. 2.23 Vertical

displacement of more than

200 “tie rods” in the

Tevatron tunnel over the

period of 2003–2005 and a

6-year period of 2001–2007

[33]
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beam-related losses and emittance blowup started to be observed in protons. It was

shown by beam–beam simulations (see Sect. 8.4) that deterioration of the proton

lifetime was caused by a decrease of the dynamical aperture for off-momentum

particles due to head-on collisions. A contributing factor to this was large chroma-

ticities of the beta-functions at the main IPs.

Initially, a major change of the betatron tune working point was considered as a

way to mitigate the beam–beam effect. A possible candidate was the working point

near the half-integer resonance, which promised up to 30 % increase of the beam

brightness. However, operation near the 1/2 resonance requires careful correction

of focusing errors, including the chromatic perturbations. Consequently, it would

require machine reproducibility well above achieved and therefore this project was

not approved. That motivated the development of a modified chromaticity

Fig. 2.24 Variances of the

Tevatron “tie rod” vertical

displacements over time

intervals of 1 year

(multiplied by 6) and

6 years vs. the distance

L [33]

Fig. 2.25 Variances of the

Tevatron alignment “tie

rods” displacements per

unit distance vs. the time

interval between the

measurements [33]
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correction scheme at the Tevatron, aiming at the reduction of the second-order

chromaticity by about an order of magnitude.

One can use the well-known perturbation theory approach to describe the

distortion of the beta-function caused by chromatic errors (see e.g., [34]). Beta-

beating excited by a single quadrupole for an off-momentum particle can be

described by the formula:

Δβ
β

sð Þ ¼ � δ

2 sin 2πQð Þ
K

Bρ
eβ cos 2 eψ � ψ sð Þj j � 2πQð Þ: ð2:134Þ

Here δ¼Δp/p is the relative momentum deviation, Q is the betatron tune, K is the

quadrupole-integrated strength, Bρ is the magnetic rigidity, ψ is the betatron phase,

and ~ denotes values at the location of the quadrupole. In the first-order approxi-

mation, the contributions from all quadrupoles are summed to give the total beta-

wave. Quadrupoles of the final focus have the largest strength and highest value of

beta-function. In the Tevatron, the betatron phase advance between the two inter-

action regions is close to π; thus, the contributions from the final focus quadrupoles

add with the same phase and they dominate the chromatic Δβ/β.
The contribution to second-order tune chromaticity from a single quadrupole

derived from the perturbation theory is given by the following expression:

d2Q

dδ2
¼ 1

4π
Keβ� �

Δβ
β

=δ

� �
: ð2:135Þ

This effectively means that the second-order chromaticity is proportional to the

strength of the final focus quadrupole and to the value of chromatic beta-function at

its location. Figure 2.26 shows the comparison of the measured and modeled

chromatic beta-function of the Tevatron in the collision mode. The measured

parameters were obtained from two orbit response measurements performed at

different values of the revolution frequency. The modeled curve was obtained by

the perturbation theory. In Fig. 2.27 the same beta-functions are plotted on a

zoomed horizontal scale close to the CDF interaction region. One can see that the

model gives quite accurate description of the effect.

Sextupole magnets can be used to correct the second-order chromaticity gener-

ated by quadrupole focusing errors. Using the same perturbative approach and

considering sextupole as a quadrupole at the off-center orbit, we get the expression

for the sextupole-driven horizontal chromatic beta-function:

Δβ
β

sð Þ ¼ δ

2 sin 2πQð Þ
SeDx

Bρ
eβ cos 2 eψ � ψ sð Þj j � 2πQð Þ ð2:136Þ

where S is the sextupole strength and ~ denotes parameters at the location of the

sextupole. Even though the effect of individual sextupoles on the beta-function

chromaticity is much less than that of the final focus quadrupoles, one can achieve
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compensation by selecting many sextupoles with the correct phase advance and

combining them into families.

There are 176 chromaticity correction sextupole magnets in the Tevatron.

Originally, they were combined into two families SF and SD, each with 88 elements

powered in series. Sextupole coils are placed in the so-called spool pieces located

next to quadrupoles in the regular FODO lattice of the arcs. The betatron phase

advance per FODO cell is close to 60� in both planes. Thus, it was possible to select
sextupoles that would have their betatron phase advance with respect to the final

focus quads equal to π or π/2. The total of 46 sextupoles in each family were found

to satisfy this condition. However, it was discovered that rewiring them into 4 new

circuits would have considerable cost mainly due to the large amount of required

new cable. Hence, we had to limit the number of elements in the new circuits and

Fig. 2.26 Chromatic beta-

function vs. azimuth

starting at F0. Blue line,
measured; red, model;

black, proposed correction

Fig. 2.27 Chromatic beta-

function vs. azimuth in the

vicinity of CDF IP. Blue
line, measured; red, model;

black, proposed correction
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group them close to three service buildings which would reduce the length of the

new cabling. The final configuration is shown in Fig. 2.28. The total of 44 sextupoles

were taken out of the SF and SD families (22 from each). The sextupoles are

powered by 12 new power supplies and logically grouped into 4 families. The new

circuits are designed to have equal number of elements with positive and negative

current. This allows to keep the linear betatron tune chromaticity constant when

using the new groups. The disadvantage of this solution is that it breaks the sixfold

symmetry of the machine but the expected feed-down effect on the beta-functions is

small.

In Figs. 2.26, 2.27, and 2.29, the simulated effect of application of the new

families on the chromatic beta-function is plotted for the collision and injection

modes. Note that the expected beta-function chromaticity at the CDF IP at colli-

sions is close to zero.

The new sextupole scheme was commissioned in three stages. First, the chosen

elements were switched to the new power supplies while being operated at the

original current and polarity. This allowed to verify the stability and reliability of

electrical components. Second, the new circuits were turned off and the Tevatron

was tuned for operating in this new mode. Finally, polarities of some of the

Fig. 2.28 Layout of sextupoles in the Tevatron
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sextupoles were flipped and the new families were turned on at the designed

strength.

Figures 2.30 and 2.31 show the comparison of expected and measured beta-

function chromaticity after implementation of the new circuits in the injection and

collision modes, respectively. The corresponding change in the second-order tune

chromaticity is presented in Fig. 2.32. Beta-function chromaticities for both the

vertical and horizontal planes were corrected.

Measured beta-functions are in good agreement with the calculated values. The

second-order tune chromaticity in the collision mode was reduced from �15,000

units to �3,000 units which is close to expected. As a result, we observe a

noticeable improvement of the proton beam lifetime at collisions (see Chap. 8).

Fig. 2.29 Horizontal

chromatic beta-function at

the injection energy. Blue
line is for the original
sextupole configuration, red
for the proposed correction

Fig. 2.30 Chromatic beta-

function near the D0 IP at

the injection energy
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Fig. 2.31 Chromatic beta-

function near the D0 IP in

the collider mode

Fig. 2.32 Dependence of

the vertical betatron tune on

particle momentum in the

collider mode

Fig. 2.33 TBT raw data for

7,300 turns after the kick.

Three cases are shown: with

the sextupoles S6 switched

on with A¼ 20 and 15 units

and without these special

sextupoles for A¼ 25 units
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