Chapter 2
Beam Optics and Orbits: Methods Used
at the Tevatron Accelerators

V. Lebedev, V. Shiltsev, and A. Valishev

The success of the Tevatron Run II would not be possible without detailed work on
the linear and nonlinear beam optics. The scope of optics work included all major
stages: the optics design, optics measurements, and optics correction. Optics of all
transport lines and rings was measured and corrected. This work resulted in a
significant reduction of the emittance growth for beam transfers and increased the
acceptances of the rings and transfer lines. The most spectacular improvements are
related to the improvements of antiproton beam transport from the Accumulator to
the Main Injector (MI) and optics improvements in Tevatron, Debuncher, and
Accumulator. The electron cooler beam transport presented significant challenge
for both the optics design and its commissioning.

2.1 Linear Optics with Coupling Between Degrees
of Freedom

The major part of optics work has been focused on the linear optics problems. In
this section we consider the fundamentals of betatron motion with coupled degrees
of freedom. The significant fraction of Run II optics work has been based on this
formalism and otherwise would hardly be possible. In particular the beam transport
in the electron cooler (see Chap. 7) is completely x—y coupled, and the Tevatron
lattice has significant coupling terms and the tune working point close to the
difference resonance that it cannot be accurately described using the perturbation
theory. The most of material is related to the x—y coupled motion. However, it can
be directly applied to coupling of any two degrees of freedom. An extension to three
degrees of freedom is straightforward and is not presented to keep text and
equations compact.
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First, we describe the equations of motion and notations. Second, we consider
the relationship between eigenvectors, emittances, and the particle 4D ellipsoid in
the phase space. Third, we consider the parameterization of particle motion based
on an extension of the Mais—Ripken parameterization [1, 2] presented in
[3]. Finally, we consider a perturbation theory for the case where the unperturbed
motion is Hamiltonian.

2.1.1 Equations of Motion and Conditions of Symplecticity

In the absence of dissipative processes, the particle motion is Hamiltonian. For the
linear motion the Hamiltonian is a second-order form of particle coordinates and
momenta. For two-dimensional motion, it can be presented in the following matrix
form:

H(x,pys,py, ) = X HX, (2.1)

where X =[x, p,, Y, py]T, x and y are the particle coordinates, p,=x' — R y/2 and
py =Y+ R y/2 are its canonical momenta,' x' = dx/ds and y' = dy/ds are the particle
angles, s is the longitudinal coordinate (time coordinate), R =eB,/Pc, By is the
longitudinal magnetic field, and P is the total momentum of the reference particle.
Following the standard procedure for obtaining the equations of motion [4],

@ _ 8H dX,' 8H

= —=— (2.2)
dt dx; dt  dp,;
one comes to
dx
— = UHx, 2.3
s X (23)
where
0O 1 0 O
-1 0 0 O
U= 0 0 0 1 (2.4)
0O 0 -1 0

is the unit symplectic matrix. In the case of flat orbit, the Hamiltonian and the
corresponding equations of motion are [2]

"Note that in practical optics calculations the difference between particle angles and their
canonical momenta does not usually exist because most optics codes compute transfer matrices
between points where the longitudinal magnetic fields are equal to zero.
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_ 2 R
K*+k+— 0 N —=
Akt 5
R
0 1 = 0
2
H= R 2 , (2.5)
N = k4 —
2 Tz 0
R
—— 0 0 1
2
1
K+ (K2 +k)x + N—ER’ y—Ry =0 ,
(2.6)

1
V' —ky + N+§R’ Xx+RX =0

Here K, =eB,/Pc, k=eG/Pc, N=eG4/Pc, and By is the vertical component of the
magnetic field; G and G, are the normal and skew components of the magnetic field
gradient (the skew component is obtained by +45° rotation around the s axis in the
right-handed coordinate frame).

For any two solutions of Eq. (2.3), x;(s) and x,(s), one can write that

T

d d d
2 (x"Ux) = 2 Uxp 3" U2 = xTH'UUX; + % "UUHX; = 0,

and, consequently,

x; TUx, = const, (2.7)
where the following properties of the unit symplectic matrix were employed:
UTU=I and UU = —I; I is the identity matrix. The integral of motion in
Eq. (2.7) is called the Lagrange invariant.

Let us introduce the transfer matrix from coordinate O to coordinate s, X =

M(O0, s)x¢. Taking into account that the invariant of Eq. (2.7) does not change during
motion, we can write that

x;TUx; = x;TM(0, 5)TUM(0, 5)x, = const.
As the above equation is satisfied for any x; and X, it yields
M(0,s)"UM(0,s) = U. (2.8)

Equation (2.8) expresses the symplecticity condition for particle motion. It is
equivalent to n>=16 scalar equations, but taking into account that the matrix
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MTUM is antisymmetric, only six ((n* = n)/2 =6) of these equations are indepen-
dent [5]. Consequently, only 10 of 16 elements of the transfer matrix are indepen-
dent. Thus, the symplecticity condition imposes more severe limitations than the
Liouville’s theorem [4], which imposes only one condition, det(M) = 1, and leaves
15 independent parameters.

Multiplying both sides of Eq. (2.8) by U on the left and by M~ on the right, we
obtain that the inverse of matrix M is

M(0,5)"" = —UM(0,s)"U. (2.9)

Then, multiplying Eq. (2.9) by M on the left and by U on the right, we obtain an
alternative expression of symplecticity condition:

M(0,5)UM(0,s)" = U. (2.10)

Note that Eqgs. (2.9) and (2.10) are not related by matrix transposition.

2.1.2 Eigenvalues, Eigenvectors, and Condition of Motion
Stability

Consider a circular accelerator with the one-turn transfer matrix M. The transfer
matrix has four eigenvalues, 4;, and four corresponding eigenvectors, v; (i =1, 2, 3, 4):

MV,‘ = /?.,‘V,‘. (211)
Then, the turn-by-turn particle motion can be presented in the following form:
4
X = Alcivi, (2.12)
i=1
where c; are the coefficients determined by particle initial coordinates.

Comparing the two equations below

detM — AI) = 2* + - +det(M) = * +--- 4 1,
detM — 1) = (A= 2)(A—A) (A —2A3) (A —Ag) = 2* + - + A dodsda,

one obtains that the product of all eigenvalues is equal to 1:
MArAzdg = 1. (2.13)
Matrix M is a real matrix. Therefore, the complex conjugate of an eigenvalue

and corresponding eigenvector are also an eigenvalue and eigenvector. As follows
from Eq. (2.12) the motion stability requires |41 <1. Combining that with the
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requirement of Eq. (2.13), one obtains that the four eigenvalues split into two
complex conjugate pairs confined to a unit circle, 14,/ =1. We denote them as 4,
A}, A2, and 45 and the corresponding eigenvectors as vy, v, *, v, and v,*, where *
denotes the complex conjugate value. Note that if any eigenvalue is equal to £1, its
complex conjugate partner has the same value; consequently, the solution is
degenerate and an infinitesimally small perturbation makes the system unstable.

For any two eigenvectors, the symplecticity condition of Eq. (2.8) yields the
identity:

0= 4v,"UMv; — 2v;) = (Mv;) UMy, — 4v;TU4v; = (1 — 4,4)v,"Uv,,

which results in that the product VJ-TUV,- can be different from zero only if v; and v;
represent a complex conjugate pair. The product v;"Uv; is purely imaginary, indeed:

(viUv)" = (viUv)" = v Uty = —v* Uy,
where v* = v*! denotes the Hermitian conjugate, and we took into account that the

transpose of a scalar is equal to itself. That allows us to introduce the symplectic
orthogonality conditions:

V1+UV1 = —2i, V2+UV2 = —2i,
vi"Uv; =0, v,"Uv, = 0, (2.14)
VZTUVl = 0, V2+UV1 =0.

Other combinations can be obtained by applying the transposition and/or the
complex conjugation to Eq. (2.14). Note that the sign choice in the two top
equations determines which of two vectors in each complex conjugate pair is the
primary vector (see Sect. 2.1.5). The normalization value is chosen to make the
matrix V introduced in the next section symplectic. Similarly as for the transfer
matrix elements, there are only six independent real scalar equations among
Eq. (2.14). Note that the two equations in the second line are identities because
a* Ua=0 for any a.

2.1.3 Mode Emittances and Emittance Ellipsoid in 4D Phase
Space

The turn-by-turn particle positions and angles can be represented as a linear
combination of four independent solutions,
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x= Re (Ale’i"”vl JrAze’i"’sz)

2.15
= A (vi’ cosy, + v{"siny,) + Az (v2 cosy, + vo" siny,), (2.15)

where four real parameters, A, A,, y, and w5, represent the betatron amplitudes
and phases. The amplitudes remain constant in the course of betatron motion, while
the phases are incremented after each turn.

Let us introduce the following real matrix:

V= [V]l, — V1//,V2l, — Vz”]. (216)

This allows one to rewrite Eq. (2.15) in the compact form

x = VAE,, (2.17)
where the amplitude matrix A is
A, 0 0 O
A= 8 %1 /?2 8 — diag(A1, A1, A2, As), (2.18)
0 0 0 A
and
cosy,
8= | cosyn |- (2.19)
—siny,

Applying the orthogonality conditions given by Eq. (2.14), one can prove that
matrix V is a symplectic matrix. It can be seen explicitly as follows:

T
VUV vy + vi* Vi — V¥ v+ V¥ Vo — Vo
2 2i 2 2i

vi+vi* vi—vi* v+ vy —Vp*
2 ’ 2i ’ 2 ’ 2i

U =U.

Here we took into account that every matrix element in matrix VTUV can be
calculated using vector multiplication of Eq. (2.14).

Let us consider an ensemble of particles, whose motion at the beginning of the
lattice (or any other point of a ring) is contained in a 4D ellipsoid. A 3D surface of
this ellipsoid is determined by particles with extreme betatron amplitudes. For any
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of these particles, Eq. (2.17) describes the 2D subspace of single-particle motion,
which is a subspace of the 3D surface of the ellipsoid, described by the bilinear form

x'Ex = 1. (2.20)

This ellipsoid confines the motion of all particles. To describe a 3D surface, in
addition to parameters y, and y, of Eq. (2.19), we introduce the third parameter 3
so that the vector & would belong to a 3D sphere with a unit radius, according to the
equation

&8 =1, (2.21)
where

COS Y| COS 3
—siny| cosy;

&= COS i, Sin 5 (2.22)
— siny, siny,
Then, we can rewrite Eq. (2.17) in the following form:
x = VA& (2.23)

which describes a 3D subspace confining all particles of the beam (water-bag
particle distribution). In other words we can consider that the amplitudes of the
boundary particles are parameterized by y3 (A; — A{cos y3, Ay — Assinys), so that
we would obtain a 4D ellipsoid.

Expressing &€ from Eq. (2.23) and substituting it into Eq. (2.21), one obtains the
quadratic form describing a 4D ellipsoid containing all particles:

xT((VA)*‘)T(VA)*lx - 1. (2.24)

Comparing Eqgs. (2.20) and (2.24) and using Eq. (2.9) for matrix inversion, one
can express the bilinear form, E, as follows:

o}

=UVEVTU", (2.25)

where E =A'A!= diag(A;2,A;%,A, %,A,"%) is a diagonal matrix
depending on two amplitudes A; and A,, and we took into account that matrices
A" and U commute. Inversion of Eq. (2.25) yields

o

=VTEy, (2.26)

i.e., a symplectic transform V reduces matrix & to its diagonal form.
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To determine the beam emittance (volume of the occupied 4D phase space)
described by Eq. (2.20), we note that due to symplecticity det(V)=1. Conse-
quently, the coordinate transform x= Vx’ corresponding to Eq. (2.26) does not
change the ellipsoid volume. Then, in the new coordinate frame, the 3D ellipsoid
enclosing the total 4D phase space of the beam is described by the following
equation:

=~ /2 = /2 o /2 ~ 2
Epx™ +Expp” +E83y +E84y =1

It is natural to define the beam emittance as a product of the ellipsoid semiaxes
(omitting the factor 7°/2 correcting for the real 4D volume of the ellipsoid) so that

1 1

S — = APA2 (2.27)
VE1EE33Ey \/det(é)

4D

Thus, the squares of amplitudes A; and A, can be considered as 2D emittances ¢,
and &, corresponding to the eigenvectors v; and v,. Their product is equal to the
total 4D emittance: €&, =ée4p. We will call them the mode emittances. Conse-

quently, one can write matrix E as

= :diag(sl_l,el_l,ez_l,82_1). (2.28)

2.1.4 Eigenvectors and Particle Phase Space Ellipsoid

Similarly to the one-dimensional case, the particle ellipsoid shape, described by
matrix &, determines the mode emittances &, and &, and the eigenvectors v, and v,.
In this case the mode emittances are reciprocal to the roots of the following
characteristic equation:

det(E —iAU) = 0. (2.29)
One can prove the above using Eq. (2.25) as follows:

det(E — i2U) = det(UVEV'UT — iAU) = det(E — iAU"VTUVU)

=det(E — iAU) = Sliz—zz eziz

2o (2.30)

Knowing the mode emittances and, consequently, E, one can obtain from
Eq. (2.25) a system of linear equations for matrix V:
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EVU = UVE. (2.31)

Multiplying the above equation by 1, one obtains two equations for the
eigenvectors:

(a - iU) v =0, (2.32)

where /=1, 2, and

1 0
—i 0
w= | w= | 2.33)
0 —i
We also took into account that Vu,=v,, Uu;= — iu;, and E'w; = Ei,ul.

Taking into account Eq. (2.20) a Gaussian distribution function for coupled
beam motion can be written in the following form:

f(x) L exp < %XTEX). (2.34)

4nle er

Then, the second-order moments of the distribution function are

Zij

1 1
XX = inx_lf(x)dx4 =— inxj exp <— EXTEX) dx*. (2.35)

4rle ey

To carry out the integration, one can perform a coordinate transform,y =V~ Ix,
which reduces matrix E to its diagonal form. Taking into account that

1 12 .
4 Tayv ) = [di =X
4”28182Jy,-yjdy exp (—Ey _.y> diag(e1, e1, €2, €2)];; = 2, (2.36)

one obtains that the matrix of the second-order moments is
r=vivl (2.37)

Using Egs. (2.25) and (2.37), one can easily prove that matrix X is the inverse of
matrix Z. Consequently, a symplectic transform VU reduces matrix X to its
diagonal form. Applying a similar scheme as above for obtaining emittances and
eigenvectors from matrix Z, one finds that the mode emittances &; and &, can be
computed from matrix X as roots of its characteristic equation,

det(ZU +idl) =0, & =4, (2.38)
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while the equations for the eigenvectors are
(ZU + igD)v; = 0. (2.39)
It also follows from Eq. (2.37) that the total beam emittance is equal to
eap = €162 = +/det(X). (2.40)

Taking into account that the beam motion from point s to point s’ results in the
matrix E transformation so that E(s") = M(s, s') "E(s)M(s, ') and using Eq. (2.29)
and the motion symplecticity, one can easily prove that the mode emittances &, and
&, are the motion invariants, i.e., there is no configuration of linear electric and
magnetic fields which can change them. Consequently, each mode emittance is
bound to the corresponding betatron mode. If the beamline is built so that the
motion is decoupled at some point, then the mode emittances coincide with
conventional horizontal and vertical emittances.

2.1.5 Beta-Functions of Coupled Motion

Employing the previously introduced notation, one can describe a single-particle
phase-space trajectory along the beam orbit as

x(s) = M(0, s)Re(\/Tvle""/’l + V2Lv,e ) (2.41)
= Re(ﬁvl( ) =iyt (s )+ \/EV2( ) —i ‘I/2+M2(S>)) ’
where the vectors vi(s) = e ()M(0,s)v; and v,(s) = e*()M(0,s)v, are the
eigenvectors of the matrix M(0, s)MM(0, s)~ !t w1 and y, are the initial phases of
betatron motion and /, and I, are the corresponding actions, and M =M(0, L) is the
transfer matrix for the entire ring. The terms e ~1*) and e ~2() are introduced to bring

the eigenvectors to the following form:

- ﬂlx(s) B r /ﬂ2x(s)eibz<s> .
i (s) +an(s) ,Mewz@)
V ﬂlx S) V ﬂzA N
vi(s) = Busen® | V200 = B (s) , (2.42)
iua(s) +aiy(s) ) iug(s) +any(s)
L ﬂly (S) | i A/ ﬂzy N ]

so that p(s) and u,(s) would be the phase advances of betatron motion. Here f,,(s),
B15(5), Pa(s), and B, (s) are the beta-functions; a;,(s), a1y(s), ax.(s), and a,,(s) are
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the alpha-functions which, as will be shown in the next section, coincide with the
beta-functions’ negative half-derivatives at regions with zero longitudinal magnetic
field; and six real functions u(s), u>(s), uz(s), us(s), vi(s), and v,(s) are determined
by the orthogonality conditions of Eq. (2.14). Below we will be omitting their
dependence on s where it does not cause an ambiguity. Two eigenvectors v, and v,
were chosen out of two pairs of complex conjugate eigenvectors by selecting u#; and
u4 to be positive.
The first orthogonality condition of Eq. (2.14),

<V1+UV1) = —2i(u1 + Ltz) = —2i,
yields u; =1 — u,, and similarly for the second eigenvector, u4 = 1 — u3. The next
two equations, VlTUV1 =0 and VZTUVZ =0, are identities.

Taking into account the above relations for #; and uy4, the remaining two
nontrivial orthogonality conditions can be written as follows:

(V2+UV1> = — \/ﬁg[ (l — Mz) + (11)&] + \/%[llh - azx] e 2

(2.43)
\/ﬁ:;i[i(l )= GZY] Zy [l”2 + aly] e =0,
(VzTUVl) = — \/?[ (1 — I/lz) + (llx] — ﬁ[li@ —|-052\] el
1x 2x
(2.44)

_ \/?Z[ ( us — 1) GZ}} ﬁly [“42 * al)] eiyl =0.

Multiplying both terms in Eqgs. (2.43) and (2.44) by their complex conjugate
values, one obtains

A2+ (1 =) )’ = A4 () )

AP+ (k1 —up) — Kx’lu3))2 =A%+ (k(1 —uz) —xy '),

where
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Ay = Kty — Kf azx,
Ay = Kkyony, — al},

\/@ \/* (2.46)

Subtracting Eq. (2.45) yields u; =u;. Substituting u, =u3; =u into the first
equation of Eq. (2.45), one obtains the following expression for u:

A2—A?
—Kk’KyE £ \/szkyz (1 +or (1 — szKyz))

- (2.47)

u =
1-— KX2K'y

By definition u; (k=1,...4) are real functions® and u; and u, are positive. That
sets a constraint for possible values of beta- and alpha-functions,

A2 — A2
ﬁ (1 — KXZK'yZ) Z —l, (248)
X y

and a constraint on a value of u, u <1 (see also Sect. 2.1.6).
Knowing u makes it easy to find vy + v, and v — v, from Eqgs. (2.43) and (2.44):

eivt = eilnitn) — A+ i(ke(1 — u) + k" tu) ’
Ay — i(Ky(l —u) + Kyflu)
i g _ Actile(l—m) — k) (249)
B Ay+i(l<y(1—u)—1<y*1u)’
and, consequently, v; and v5:
1
v = 5('4 +v_)+n(n+m)
1 (2.50)
v =5 Wy —v)+aln—m).

Here n and m are arbitrary integers. Equation (2.49) results in that v_ and v, are
determined modulo 2z which, consequently, yields that vy and v, are determined
modulo 7 (see Eq. (2.50)) resulting in additional solutions. Actually there are only
two independent solutions for vy and v,. The first one corresponds to the case when

2 Equation (2.47) also demonstrates that if beta- and alpha-functions are chosen incorrectly, such
that the value of the discriminant is negative, 1 becomes imaginary, thus redetermining the alpha-
functions.
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both n and m have the same parity, which is equivalent to m+n=m—n=0.
The second one corresponds to different parity of m and n, which is equivalent to
m+n=m —n=1. Thus, in a general case, one has four independent solutions for
u and vy and v, set by symplecticity conditions: two solutions for # and two
solutions for v, and v, for each u.

Finally, we can express the eigenvectors in the following form:

VB ] [ VP

i(1—u) + oy i+ oy o2
ﬁlx Vﬁ2x
v = ; , V= . 2.51
N N R~ 23
n+ay 4, i(1—u)+ ay
_—e J— =

\/ﬂTy P 2y

That yields the following expression for matrix V (see Eq. (2.16)):

i VPix 0 VParcosy —VPrsiny
Ay 1—u USIN Uy — A, COS Uy UCOS Ur+p, SIN V7
\/ﬂlx \/ﬂlx VﬂZx V/))Zx
V= .
Prycos v —+\/Prysinyy Py 0
usiny; —a,Cos vy UCOS Vi +aySinv; gy 1—u
L \V ﬁly V /),ly ﬁZy ﬁZy

(2.52)

Below we will call eleven functions, f,(s), £1,(5), f2.(8), Pay(s), a1:(s), a1,(s),
. (8), Ay(8), u(s), v1(s), and v,(s), the generalized Twiss functions. Only eight of
them are independent. Other three can be determined from the symplecticity
conditions. Although for known eigenvectors the Twiss parameters can be deter-
mined uniquely, it is not the case if we know only alpha- and beta-functions. In this
case an application of symplecticity conditions leaves four independent solutions
for the eigenvectors. Two of them are related to the sign choice for u in Eq. (2.47),
and other two (for each choice of u) are related to uncertainty of v; and v, in
Eq. (2.50). The latter is related to the fact that the mirror reflection with respect to
the x or y axis does not change f’s and a’s but changes the relative signs for the
x and y components of the eigenvectors, with subsequent change of v, and v, by z. It
can also be achieved by a change of the coupling sign (simultaneous sign change for
gradients of all skew quads and magnetic fields of all solenoids), which does not
change the beta-functions but does change the v-functions by z. To choose a unique
solution for the eigenvectors, one needs to know which of the two choices for u and
vy (or v,) needs to be taken in addition to the alpha- and beta-functions.

In the case of weak coupling, one should normally choose v; as the eigenvector,
which mainly relates to the horizontal motion, and v, to the vertical motion. In the
case of strong coupling, the choice is arbitrary. As can be seen from Eq. (2.51), in
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determining beta- and alpha-functions, swapping two eigenvectors causes the
following redefinitions: B, < for, Piy < oy, Qx> Oy, Qiy e Oy, U— 1 —u,
vy — —Uy, and vy — —uy.

2.1.6 Derivatives of the Tunes and Beta-Functions

Let us consider the relations between the beta- and alpha-functions and the beta-
functions and the betatron phase advances. A differential trajectory displacement
related to the first eigenvector can be expressed as follows:

x(s+ds)=x(s)+x (s)ds=x(s)+ px(s)—i—%ey ds
i(1=u(s)) +arls)

=+/2[Re Prx(s)+| — B (s)

+1§ /’71y(s)em(‘Y> ds| e~ i)+

(2.53)

Alternatively, one can express particle position through the beta-functions at the
new coordinate s + ds:

x(s +ds) = Re(, 21,5 (s + ds)e*i(ﬂl(erds)Jrv/))

d .
= VARe | (VLG gﬁ — iy/Bua(o)du | e (517w

(2.54)

Comparing both the imaginary and real parts of Eqs. (2.53) and (2.54), one
obtains

P

I = —2a1, + R\/B1.frycosv,

2.55
%:l—u_ﬁ &sinyl ( )
ds :le 2 ﬂlx

Similarly, one can write down equivalent expressions for the vertical
displacement,
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(s+ds) =y (s) + ()ds=(s) + | py(5) 5 | ds

—VaTRe || \[By(s)en o - | M) an(s) ei»1<s>+§ o) lds | et |
ﬁly(s)

and

dﬂl 7 —i s —vy (s
y(s+ds)=+/2IRe ﬁly(s)+2—y+l1/ﬂly(s)(dl/l—d/ll) e i) v—n@)|

which yields

dpy,
d—; = —2my — R\ /PPy cosvy,

2.56
do_dn_u R [ (236
ds ds  pi, 2\ By
Similar calculations carried out for the second eigenvector yield
dp,
d—sy = —2a2y —R ﬁzxﬁzy COoS Ly,
diy 1—u R [
— = + = /==sinu,,
ds ﬁ2y 2 ﬂZy
dpy (2.57)

I =2y, + R\ /5,5, cos v,

duy dvy  u

ds ds P,

One can see that in the absence of longitudinal magnetic field, the alpha- and
beta-functions are related the same way as for the uncoupled case (o = —(dp/ds)/2)
and the derivatives of the phase advances du/ds and du,/ds are proportional to
(1 —u) and are positive. That explains the selection rule for the eigenvectors
formulated in Sect. 4.1.5 which requires u#; and wu4; being positive
(uy =u4=1—u>0). Note that there is no formal requirement for d(u, +v;)/ds
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and d(u, + v,)/ds being also positive, and therefore u# can be negative,” while in the
majority of practical cases, it belongs to the [0, 1] interval.

2.1.7 Representation of Transfer Matrix and Second-Order
Moments in Terms of Generalized Twiss Functions

One can derive a useful representation of the transfer matrix M, =M(sy, 52)
between two points of a transfer line in terms of the generalized Twiss functions.
Using the definitions of eigenvector and matrix V (see Egs. (2.16) and (2.41)), one
can derive the following identity:

VzS =M, V. (258)

Here V; and V, are the V-matrices given by Eq. (2.52) for the initial and final
points. The matrix S is

cos Au;  sin Ay, 0 0
| —sinAp; cos Ay 0 0
S = 0 0 cosAp,  sinAp, |’ (2.59)
0 0 —sinAp, cosAu,

where Ay, , are the betatron phase advances between points 1 and 2 for the first and
second modes. Multiplying both sides of Eq. (2.59) by the inverse matrix,
V.~ '=—-UV,'U, as given by Eq. (2.9), allows one to express the transfer matrix,
M,,, in the form

M;, = —V,SUV,"U. (2.60)

In the case of the one-turn transfer matrix, the matrices V; and V, are equal and
Eq. (2.60) simplifies. That results in the following expressions for the matrix
elements of diagonal 2 x 2 sub-matrices:

My = (1 — u)cosu; + aysinp; + ucos py + ay, sin piy,
My = e sinpy + o sinpy,
(1 - u)z + a%,\‘ : Mz + a%x

My = ——F—L sinp; ————= sinp,,

ﬂlx ﬂ2x

My = (1 —u)cosuy +ucosu, — ar,siny; — az,sinp,,

3The Tevatron lattice is based on the detailed optics measurement and takes into account large
coupling terms coming mainly from the skew-quadrupole components of the superconducting
dipoles. If the coupling corrections are adjusted to minimize the tune split, the value of coupling
parameter u varies along the lattice in the range of about [—0.002, 0.04].
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M3z = ucosp, + (1 — u)cos piy + apy sinp, + agy sin g, (2.61)
M3s = fyysinpy + oy sinpy,

1—u)?+a
My = 7Sin”1f()—2Y

ﬂly ﬂZy

Mys = ucospy + (1 — u)cos py — ay sin iy — oy sin piy,

u? + a%y .
- S iy,

where p; and u, are the betatron tunes of two betatron modes. The elements for
off-diagonal sub-matrices can be found in [3].

We also present here the elements of matrix X used in other chapters of this book
(see Eq. (2.25)):

211 = <x2> = Slﬁlx + gzﬂlx’ 233 = <y2> = glﬂly + EzﬂZyv

I =(p,) =20 = —g1ai — a2, Zu = (p,) = i3 = —£1a1y — L2y,

213 = (xy) = Z31 = €14/ 1.1y cosvr + €24/ B Bay cos 1,

(1-u’+a? e 1 + ap,? ’
Pix Pox
u? + ayy? (1—u)*+ a,?
Py Pay '
(a1y(1 — u) — ayau) sinvy + (u(1 — u) + ageany) cosvy
VPubiy

(a2e(1 — u) — agyu) sinwy + (u(1 — u) + arcazy ) cos vy

vV ﬂ2xﬂ2y

For other elements of matrix X and the expression of matrix 2, we refer reader
to [3].

In={p})=e

Sy = <py2> =g + & (2.62)

2oy = <pxpy> =2p=¢€

+é&

2.1.8 Edwards-Teng Parameterization

The material presented in Sects. 2.1.5, 2.1.6, and 2.1.7 is based on the extension of
the Mais—Ripken parameterization presented in [3]. However, the consideration of
coupled motion would be incomplete without a discussion of the Edwards—Teng
parameterization [6], which was proposed earlier and is presently one of the most
popular parameterizations for description of coupled optics. It is based on a
canonical transform R which reduces a 4 x 4 transfer matrix
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P p
M= 2.63
e .63
to its normal mode form
M = RMR !, (2.64)
where
~ A0
-4 0] 269

and P, p, Q, q, A, and B are 2 x 2 matrices. Edwards and Teng suggested
parameterizing a symplectic matrix R as follows:

__ | Ecos¢ fD_lsinqﬁ
R= {Dsinqﬁ Ecos¢ ]’ (266)

where E is the unit 2 x 2 matrix and D is a 2 x 2 symplectic matrix,

D= {‘Cl Z] (2.67)

Thus, matrix R is parameterized by four parameters: a, b, ¢, and ¢. Matrix M
describes the particle motion in new coordinates and can be parameterized by six
Twiss parameters: 1, ay, y1, o, @, and y, which are called the Twiss parameters of
the decoupled motion. Edwards and Teng expressed them through the transfer
matrix elements. Here we present their connection to the extended Mais—Ripken
parameterization considered above:

sing = ++/u,
By = 1ﬂ1x = dix By = ﬂZy . = oy (268)
—u

1—u 1—u 1 —u
1 0 —d b a; = \/Pay/Pax (@ac sinvy + ucosvy),
R — :l:l 0 1 Cr —da; bf: ‘/ﬁlxﬂly Sinl/],
vi—u a., b1 0 d,:—,/ﬂlx/ﬂly (ucosul—i—alysinvl),

¢;=(ad; +u—1)/b,.

(2.69)

Details of calculations can be found in [3]. Although, the top Eq. (2.68) yields
four different solutions for angle ¢, there are unique solutions for the beta- and
alpha-functions of the decoupled motion and matrix R. Note that the choice of sign
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for matrix R in Eq. (2.69) is determined by the requirement that /f, , are positive.
However, a problem appears if the value of u is negative somewhere in the lattice.
That results in ¢ being purely imaginary. The solution considered in [6] suggests a
replacement of sin(¢) and cos(¢) by sinh(¢) and cosh(¢) with an appropriate sign
changes in the symplectic transform of Eq. (2.66). It formally addresses the issue
but still requires a redefinition of Eq. (2.66) symplectic transforms every time
u changes its sign.

Edwards and Teng determined the phase advance of the betatron motion using a
standard recipe for the uncoupled motion:

Vi(s)e 1) = M(0, s)¥,(0), (2.70)

where V;(s) are the eigenvectors of decoupled motion. It is important to note that the
betatron phase advances of both parameterizations are equal; i.e., the betatron phase
advance for the Edwards—Teng representation is directly related to particle oscil-
lations in the x or y plane, depending on which plane a particular eigenvector is
referenced to.

As will be shown in the next section, the value of u is changing fast if a system
approaches the coupling resonance. Consequently, the beta-functions of extended
Mais—Ripken parameterization also change fast although the sums g+ f,, and
Py + Pay stay approximately constant. In contrast, the Edwards—Teng beta-functions
are insensitive to the coupling resonance, while ¢ and matrix R are sensitive.

2.1.9 Betatron Tunes

Substituting the ring transfer matrix expressed in the block form of Eq. (2.63)
into the symplecticity conditions of Egs. (2.8) and (2.10) and performing matrix
multiplication, one obtains

[ PTU,P+q'Uyq P'Usp+q'UnQ ] _ [Uz 0 }

p'U:P +Q'Uxq p'Uop +Q'UQ 0 U 271)
PUP" + pUsp’  PUq" +pUnQ' | _ [Uy 0 '
qU,P" + QUyp"  qUxq" +QUQ" 0 U’
where U, is the two-dimensional unit symplectic matrix.
Expanding the diagonal sub-matrices, one obtains four scalar equations:
det(P) + det(q) =1, det(p) +det(Q) =1,
(2.72)
det(P) 4+ det(p) =1, det(q) + det(Q) = 1.

The solution of above equations yields that the determinants for two diagonal
and two off-diagonal matrices are equal:
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k = det(p) = det(q), 1 —« = det(P) = det(Q), (2.73)

where parameter « characterizes the coupling strength. The off-diagonal
sub-matrices in each matrix equation of Eq. (2.71) are related by matrix transpose,
and the matrix equations are linearly dependent leaving only four independent
scalar equations. That bounds up matrices p and q:

_ 1
p=U; (PT) quUZQ = EPUQqTUQQ, (274)

where we took into account that P~ ' = — UZPTUZ/(I —K).

To separate coupling effects from effects of uncoupled betatron motion, let us
consider the betatron motion in the normalized coordinates, so that in the new
coordinates the ring transfer matrix would be presented in the following form:

MC: |:PC p(‘:|, Pc:m[ CO,SﬂX Sin'ux:|’
q Q. —sInp, COSU,
(2.75)
Qc =VvIl-— K[ ‘|,

cosp,  sinu,

—sinp, cospu,

where we explicitly took into account that det(P.) =det(Q.). Here and below we
denote by index c the vectors and matrices in the normalized coordinate frame. A
symplectic matrix R, performs transformation from the old to the new coordinates,
x.=R.Xx, and can be chosen in the following form:

R, O 1/\/Be 0 1
R(? = N R(-x == )
[ 0 Rfy:| [%cc/\/@ \/ﬂ:
1//Be O ]
e/\/Bre /P

Then, the ring transfer matrix in the normalized coordinates is M. =R MR~ !
Performing matrix multiplication and requiring the resulting matrix to be in the
form of Eq. (2.75), one obtains the parameters of matrix R_:

(2.76)

cy =

B —4M,5? ., My — My
ﬂxc - 7 Oxe = ﬂxc 2—’
AM oMoy + (M) — M) M,
g (2.77)
—4M34 M3z — My,
po - = p M
AM34M 3 + (M33 — Myy) M3,

The symplectic transform does not change the trace of the diagonal
sub-matrices. That yields
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tr(P) tr(P) My + M>;
CoS i, = = _ ’
2=k 2(0-x)  2(1-x)

2.78
COS U, = r(Q.) _ r(Q) _ Mz + My (2.78)

BT 21-0 20-8)

The off-diagonal sub-matrices of matrix M, are
= e bc = -1 = dc‘ l;(' _ -1

qdc = l:CC dC:| = chchy > Pe = |:ég &,(:| = chpRCy . (279)

Note that Eq. (2.74) uniquely couples a., b, c., and d,. with a, b e C e, and d e
That leaves only four independent parameters for coupling characterization out of
eight parameters of off-diagonal sub-matrices. There is another useful property of
matrices P, Q., p., and q.:

r(P."P.) =tr(Q."Q,), tr(p."p.) =tr(q."q,). (2.80)

The first equation follows from the definitions of P. and Q... The following string
of conversions proves the second equation:

_ T _
tr(p.Tp,) :tr((Uz(Pﬁ) 1qc.Tuch) U, (P.") lqc.TUgQ(\)
—r(Q. V.. 'L (PT) g, "0,

= —tr (Q(,-TUzq(,-PFl (P.T) 7lqc-TU2Qc-)

~1
= Q0.4 02Q,) = ~tr(U2q.q."U2) = tr(q.q. ).

Here we used that P, '=P.T/(1-x), Q. '=Q./(1—x), U,Uy=-1, and
tr(AB) =tr(BA).

To find the betatron tunes, we follow the standard recipe for finding roots of
dispersion equation: det(M. — AI) =0. Computing the determinant and performing
further simplifications, we obtain

2= 2vV1 —k(cosp, + cosp,) (4’ + 2)
+ (2(1 =) (1 4 cosp, cospu,) — tr(p.q,))A* + 1
=0. (2.81)
In the case of stable motion, the solution of Eq. (2.81) consists of two complex

conjugated pairs. The corresponding fourth-order polynomial can be presented in
the following form:
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4
H(/l — )= (% —2Acosp, +1) (4> —2Acosp, + 1)

i=1
=1*—2(2+2)(cosp; + cosp,) +2(1+2cosp; cosp,)A* +1=0.

(2.82)
Comparing Egs. (2.81) and (2.82), we obtain the following system of equations:

cosp; + cosp, =1 —K(COS/JX + cos;,ty),

2.83
1+ cospy cospy = (1 —«)(1+ cosp, cosp,) — tr(p.q.)/2. (283)

The solution is

COS U, + COSu,
cospy, =VI1— K%

+ \/(1 — %) (wy +% (x + %tr(pcqc)) (2.84)

The same as sub-matrices p and q, the sub-matrices p. and q. are related by
Eq. (2.74). That allows one to express tr(p.q.) through matrix q.. Performing
matrix multiplication, one obtains

1 . .
tr(p.q,) = T (P.U2q,"U2Q,q,) = siny,sinpu,tr(q."q.) —2cosp,cosu,det(q,)

= sinp,sinp, (a.* + b+l +d.?) — 2cosp, cospy (acd. —bece).
(2.83)
To express the tunes directly through the transfer matrix elements, we take into
account that the coefficients in Eq. (2.81) do not change when we perform a
transform to the normalized coordinates. In particular it means that coefficients in

front of 1 and 1° are equal. It simplifies the calculations. As a result, we obtain the
dispersion equation:

F—uM)(F+2) + A2 +1=0, (2.86)
where

A= (MM — M1aMay) + (M33sMay — M3aMaz) + (M11M33 — M13M3:)
+ (M1 1My — M1aMay) + (M33Myy — MasM3y) + (MaoMag — MasMyy).

(2.87)

Then, the solution is [6]
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cospy » = % (tr(M) /(M) 4+ 8 — 4A>. (2.88)

2.1.10 Coupling Strength, Tune Split, and Width
of Resonance Stop Band

There is no single parameter to completely characterize coupling. However, the
parameter u (see Eq. (2.51)) is one of the most informative. It characterizes the
relative contributions of x and y parts to the eigenvector normalization of Eq. (2.14),
so that they are proportional to u or 1 — u. In the absence of coupling, the parameter
u is equal to O (or 1 if x and y vectors are swapped). Note that, in the general case,
the equality # =0 does not imply an absence of coupling. As one can see from
Egs. (2.45) and (2.49), the condition u = 0 requires A, +x,> =A,*+x,” and yields
e = (Ay + ixy)/(Ay — iky) and e~ = (A, + ik,)/ (A, + iky). These equations do
not require auxiliary beta-functions f;, and f,, to be equal to zero, and, conse-
quently, the condition u =0 does not automatically mean an absence of coupling.
Although strictly speaking u cannot be considered as a unique coupling parameter,
it reflects the strength of coupling and is a good value to characterize it in practice.
In particular u="2 corresponds to 100 % coupling when the motion for both
eigenvectors is equally distributed in both planes. It is also useful to note that
u does not change in the part of a beamline without coupling terms. Actually, in the
absence of coupling, the x and y parts of the eigenvector, v, and v,, are independent
and their normalization, VX,yJ’UzV,\.,y: {u, 1 —u}, does not change because the
determinants of the corresponding 2 x 2 transfer matrices are equal to 1. Here U,
is the 2D unit symplectic matrix.

To express the value of u through the betatron tunes, we add up the matrix
elements M;; and M,, of Eq. (2.61). That yields M;+Mp=2(1 —u)
cos pq +2u cos y,. Taking into account that it is also justified for M., + M,,, and

by definition M., + M, = 2+v/1 — kcos y,, we obtain
V1 —kcosp, = (1 —u)cosp, + ucosu,.
That results in

V1 —kcospu, — cospy

COS fty — COS U,

u =

(2.89)

Let coupling be small,* tr(q."q.) < 1, and tunes be located in the vicinity of
difference coupling resonance. Then, the fractional parts of the tunes, fi ., 4y, fi,

“The condition tr(q, q.)< 1 also results in that Ikl < 1. Actually, expressing both equations
through the matrix elements, one obtains tr(q(.Tq(.) =?+b*+*+d* and k= det(q.) = ad — bc.
Obviously, lad — bel < a* +b* + > +d°.
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and f,, are close to each other, and we introduce the following definitions:
Ap=p,—p, <1, fpy=f,+Ap, and fi, =f,+ Ap,. Consequently, we
expand Eq. (2.84) into Taylor series:

K) 2cosp, — Apsinp,

Cos fi, — Apy sinp, ~ (1 5 7

(B e b)) 90

Simplifying the above equation with the help of Eq. (2.85), leaving only the
leading order terms and returning to the tunes from their differentials, we obtain

. Lro N I
o ™5 ((uﬁﬂy) + \/(ﬂxﬂy)er(sﬂdz)’ =iy

g < 1, (2.91)

where

5//ld = \/(a(: + dc)z + (bc - C(:)Z = \/(d ¢t dc) + (b c 60 (292)
represents the minimum tune split. Substitution of Eq. (2.91) to Eq. (2.89) results in
the coupling strength dependence on the tunes in the vicinity of difference coupling
resonance:

A= fiyls Oug < 1. (2.93)

urx—-|1-—

2 \/(ﬂ,r_ﬁy)2+6ﬂd2

s

If yi = iy, the coupling parameter is equal to 1/2. That corresponds to 100 %
coupled motion. In the case of | Ay —f yf > duy, the coupling strength, u, is small
(or close to one if the order of tunes is reversed.) That corresponds to a weakly
coupled motion.

If the tunes are located in the vicinity of coupling sum resonance, then
Ayt iy —2m = Ap < 1. Introducing the following definitions, 4, = 4, + Ap
and ji, = 27 — ji . + Au,, and expanding Eq. (2.84) into Taylor series, we obtain

K) 2cosp, + Apsinp,
2 2

_ \/ (%)2 +% (K + %tr(pﬂqt)) L (294

Simplifying the above equation with the help of Eq. (2.85), leaving only leading
order terms, repeating similar expansion for Ayu,, and returning to the tunes from
their differentials, we obtain

cosu, — Ay, sinp, ~ (1
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/’At 1’2%5 (:l: (ﬂ,\‘_ﬂy) +27[+ \/(ﬁx—’—ﬁy_z”)z_éﬂsz) s

op, <1,

(2.95)

[2n— (1)

where

ous = \/ (ac — de)* + (be + ) = \/ (Ge—do)’ + (betéo) (2.96)

represents the total width of the resonance stop band. One can see that tunes y; and
U> become imaginary if the tunes u, and u, are located inside the resonance stop
band. Consequently, the particle motion becomes unstable.

2.1.11 Perturbation Theory for Coupled Motion

The symplecticity allows one to build an effective perturbation theory for the case
of coupled motion. Let the unperturbed motion eigenvalues and eigenvectors be
related by Eq. (2.11). Then, for the perturbed motion one can write

(L+AM)MY; = (4; + A4V, (2.97)

where the new transfer matrix, (I+ AM)M, is not necessarily a symplectic matrix.
The eigenvectors of perturbed motion can be presented as a sum of the unperturbed
ones,

4
Vi=vi+ Zsiivh g << 1, (2.98)
i=1

and without limitation of generality, one can consider that &; =0 for every i.

Substituting Eq. (2.98) into Eq. (2.97), linearizing the resulting equation, and

using Eq. (2.11), one obtains

4
(4 — Aj)&ivi = (ALT — AM M)v;. (2.99)

=1

1

In the case of stable unperturbed motion, the eigenvalues and eigenvectors
represent two complex conjugate pairs. Taking this into account,
[vi v2 v3 wi]—[vi vi* vy v,*], and introducing complex matrix
V,=[vi vi* v2 Ww*], one can rewrite Eq. (2.99) in the form of two matrix
equations:
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1 0 0 0 1[Aan]
0 A — /11* 0 0 21 _
Velo "0 w-am 0 ey | AMMY
0 0 0 A=A €
- R (2.100)
/12 — ﬂl 0 0 0 €12
0 ﬂg — ll* O O [0) _
Vol o 0 1 0 A, | = AMMY,.
L 0 0 0 /12 — /12* 1L €42 i
Matrix V,, is built from symplectic vectors and its inverse is equal to
-1 1 T
VvV, = _ZUV” U. (2.101)

One can verify it by utilizing the eigenvector normalization of Eq. (2.14).
Inversion of Eq. (2.100) with the help of Eq. (2.101) finally results in [7]

(A4 ] Bl 0 0 0 1!

Z,i - *% 8 " —0/11 A 9,12 8 UV."UAMYy,,
| €41 | | 0 0 0 M _/12*_
M e ] My — 0 0 o 1!

Zzﬂzz :_% 8 /12—041* (1) 8 UV."UAMYv,. (2.102)
| €42 ] | O 0 0 Jo—A"

Multiplication of Egs. (2.102) by[1 0 0 O]and[0 0 1 0], correspond-
ingly, results in corrections for the eigenvalues:

Aﬁl = *Z V1+UAMV1,
2 (2.103)
Al = —2—3 v,"UAMyv,.

Taking into account the relationship between the eigenvalue corrections and the
tune shifts, AQ, =i/(4x) (AA,/A,), one obtains [8]

1
AQ, = ——v;TUAMyvy,
4n

) (2.104)
AQZ = — —V2+UAM V.
4r

To demonstrate an application of the above formalism, let us find the tune shifts
due to a local focusing perturbation. In the general case the perturbation of the
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Hamiltonian is proportional to CIDXx2+2<I)yxy+<I>yy2. That results in the transfer
matrix of the perturbation:

0 0 0 0
—®, 0 —®, 0
AM = 0 0 0 0
—®, 0 —®, 0

Substituting it to Eq. (2.104), one obtains [7]

1
40, = o (O + 205\ B,y cosur + @B, ).

X (2.105)
AQZ = - (I)XﬂZx + 20 ﬂZJcﬂZy cosvp + q)yﬂZ_v :
4n

One can see that in the case of uncoupled motion, f;, = f,, =0, the tune shifts
coincide with the well-known expression for the tune shift of uncoupled motion.
Note that for a quadrupole field @, = —®,.

2.1.12 Sum and Difference Coupling Resonances

An analysis of the coupled motion using a perturbation theory applied directly to
the equations describing initially uncoupled motion is useful in many applications.
Let us consider the two uncoupled modes x and y. For each of them the formalism
described in Sects. 2.1.1-2.1.7 can be reduced from four dimensional to two
dimensional, so that

x(s) = (;:,) = Re(Avi(s)e ™)) = 1A (s)e7™ ) + 1A%V (s)e (),
y(s) = (;,) = Re(Ayva(s)e ™) = LAyv, (s)e ) + 1ATv; (5) e ),
(2.106)
Here A, and A, are the complex amplitudes of horizontal and vertical motion (the

same as described by amplitudes A;, A, and phases y, y, in Eq. (2.15)) and the
eigenvectors v, v, are two-dimensional vectors:
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B.(s) By(s)
vi=|_ital) | = ital) | (2.107)
B(s) B,(s)

One can express the amplitudes A,, A, via x(s) and y(s), correspondingly. Indeed,
multiplying Eq. (2.106) by e*®)viU or e*)vjU on the left and using the
orthogonality conditions in Eq. (2.14), one obtains

1 1
A= le”‘* viUsx, A, :7e”“ IviUyy. (2.108)

Here U, is a 2 X 2 unit symplectic matrix. Now let us look for the solution of
Eq. (2.6) in the form of Eq. (2.106), but with A,, A, not being constant. Substituting
Eq. (2.106) into Eq. (2.6) and considering N and R as small perturbations, we obtain
the equations for A,, Ay:

dA, ip(s) R o o
=B, |~ (N =T | (e are)
ay(s) +i _ ay(s) —i ;
Rl AT a—ing(s) —|—A* e |
G Y py(s)
(2.109)
dA ipy(s) R ) )
d—y = e 2) ﬂx(s) '(s) —\|N + E (Axe_lﬂ,\(s) + A;kelﬂ).(s))
s i
a(s)+i _ a(s) —i
+R| A, ’ﬂ\( ) _|_A* e’ﬂ,\—(s>
Bi(s) B.(s)

In the vicinity of sum and difference resonances, Eq. (2.109) can be solved by
averaging.
Near the sum resonance v, + vy, =k, + 4, the system Eq. (2.109) reduces to

dA« * 2ir A-s/C
ds = CiA e,

2.110
dA —C A* ZIﬂAS/C ( )
ds

where the resonance strength C, is defined by
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c
—i. é ﬂ_ﬂ s i_i i( ptp,—2n(vetvy )s/C+2nkys/C
C+_ZJC /ﬁxﬁy<2N+R (ﬁx ﬁy> l(ﬂx ﬂy)])e(u 1y =27 (vt )5/ C+ ).

0
(2.111)

Here integration is performed over the machine circumference C. For the difference
resonance v,—v,=k_+A, the equations are

djx — C,AyeiZHA'S/C,
S

2.112
% —_ _CfoefiZHA'S/C’ ( )
ds

and the resonance strength is

A DT (R
B B) \B B,

Integration of Egs. (2.112) over one revolution binds up two complex resonance
strengths, C, and C_, to the elements of the off-diagonal sub-matrices q. and p.. of
Eq. (2.79).
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(2.113)

2.1.13 Emittance Growth at Beam Transfers Due to Optics
Mismatch and X-Y Coupling

As an application of the above-developed formalism, we consider here the emit-
tance growth related to an optics mismatch at beam transfer from one ring to
another. Let the incoming beam distribution function be Gaussian and be described
by bilinear form Z (see Eq. (2.34)). The corresponding eigenvectors and V-matrix
we denote as v, v, and V (see Eqgs. (2.16) and (2.32)). The eigenvectors and V-
matrix of the circulating beam we denote as v|, v, and V'. Rewriting Eq. (2.41), we
express the coordinates of each particle at the injection point through their new
actions (single-particle rms emittances) and new eigenvectors:

1 . : . ,
x=2 <. [21) (VieV' + Vixe 1) + /215 (vhe? + V'z*e“”z)) : (2.114)

Multiplying each side of the above equation by v|"U or v,"U and using the
orthogonality conditions of Eq. (2.14), we obtain
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I,(x)

Averaging over all particles yields the new rms emittances
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k=1,2. (2.115)

[l

(2.116)

! de“’v +UX| exp (—%XTEX).

Similar to Eq. (2.35) a coordinate transform, y = V™~ 'x, reduces matrix E to its
diagonal form. That results in
& = ! deﬂvaVy’Zexp flyTéy , (2.117)
8n2eiey 2

(=
=

where matrix 2
Eq. (2.28). Taking into account Egs. (2.36) and (2.37), we finally obtain

/

k:2

is determined by the beam initial emittance in accordance with

1
—vifuzu"v,, k=12 (2.118)

For initially uncoupled beam characterized by p,, By, a,, and a, at the injection

point that yields

€' = €141 + ©A1, (2.119)

!
&' = €Ay + &4,
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and By, By, Pov Poys iy, A1y, Oy, oy, and u are the generalized Twiss parameters
ring  optics,

of at
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the ring the
Poy= a1y =0, =u=0, we obtain the well-known expression

injection  point. uncoupled
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One can see that the emittance growth is absent only if the Twiss parameters of
injected and circulating beams are equal.

2.2 Linear Optics Measurements

Linear optics measurements have played an important role for improvement of the
Tevatron complex performance. Accurate knowledge of the ring and transfer line
optics resulted in the significant reduction of the emittance growth for beam trans-
fers and increased the acceptances of the rings and transfer lines with subsequent
reduction of the beam loss at transfers and in the course of other operations. In the
case of Tevatron, it resulted in a decrease of the beta-functions at the IPs (with
subsequent luminosity increase), helped to maintain equal luminosities at the two
experiments, was instrumental in locating magnet misalignments and keeping the
machine stable over long periods of time, and provided valuable input for various
simulations, including the simulation of beam—beam effects, optimization of helical
orbits, and collimation. In the case of Debuncher and Accumulator, an accurate
knowledge of magnet focusing allowed us to modify machine optics so as to
maximize acceptances of the machines and to improve performance of stochastic
cooling systems (see Chap. 7). A number of methods and software tools were
developed to streamline the process of data acquisition, processing, and analysis.
All methods that were employed for the Tevatron linear optics measurements rely
on the beam position information provided by the Tevatron BPM system (see
Chap. 9). Later these methods were used to build accurate optics models for
Debuncher, Accumulator, and Recycler.

Historically, the first method used for optics measurements in Run II was based
on the analysis of orbit response data generated by a small number (usually four) of
dipole correctors and an energy change [9]. An automated software program has
been used for data acquisition. It makes the corrector current change and records the
resulting orbit difference with respect to the nominal orbit (hence, we use the term
differential orbit measurement to describe the method). The generated orbits were
then compared with the model prediction, and the model was corrected to minimize
discrepancies between measurements and the model. Later more sophisticated
software tools were built for analysis of multiple differential orbits and an auto-
matic correction of optics model for circular machines. Unfortunately this software
cannot be used effectively for transfer lines because it requires much more data, and
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such data acquisition is time prohibitive for the most transfer lines of the Tevatron
complex.

The idea of the method is based on an excitation of betatron wave with a single
dipole corrector kick. For a transfer line, the wave is propagating downstream of the
corrector and corresponding beam displacement is

x(s) = 0~/ B(s)B(s0) sin (u(s) — u(so))- (2.121)

For a ring the closed orbit displacement is

P(s)B(s0)

Xs) = 2sin (7Q)

Ocos (|lu(s) — u(so)| — =Q). (2.122)

Here Q is the betatron tune, € is the corrector kick, # and p are the betatron function
and phase, and index O labels the corrector location. A focusing error results in an
unaccounted kick with angle

00 = AKlx,

where AK/ is the error in the integrated quadrupole strength and x is the orbit
displacement. That affects the phase and amplitude of betatron motion relative to
the computer model predictions. As one can see from the above equation, the value
of the kick is proportional to the trajectory displacement in the quadrupole, and
therefore a single differential orbit has suppressed sensitivity to focusing errors in
the vicinity of locations where the differential orbit crosses zero. Therefore, at least
two differential orbits (for each plane) are needed to sense all focusing errors. In
optimum the betatron phases of these orbits should be shifted by (n+1/2) =,
although deviations from optimum in the range of +z/4 do not introduce large
penalty to the measurement accuracy. In the case of energy change, the beam
displacement is proportional to the corresponding plane dispersion. This response
is “orthogonal” to responses of orbit bumps; it additionally limits possible correc-
tions of quadrupole strength and therefore is extremely helpful in finding an actual
machine model. Its usefulness is greatly amplified by limited accuracy of BPM
measurements related to the BPM noise and errors of BPMs differential response.
Although the noise in principle (but not always in practice) can be reduced by
increasing number or duration of measurements, the BPM differential sensitivity is
a significant factor affecting the accuracy of the measurements and has to be
specially addressed.

The most detailed optics models of rings and transfer lines were built using the
OptiM code [10]. The models have included all optics-related elements: magnets,
linear and nonlinear correctors, BPMs, profile monitors, aperture limitations, sto-
chastic cooling tanks, etc. All important properties of magnets such as the depen-
dence of strength on the current and nonlinearities derived from magnetic
measurements have been also included in the models. Locations of all elements
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have been cross-checked with machine alignment data. However, comparison of
model predictions with measurements showed significant discrepancies pointing
out that there are non-negligible errors in the focusing properties of magnets. To
address it we added into the model the pseudo-quadrupoles (and if necessary the
pseudo-skew-quadrupoles) near each quadrupole which adjustments allowed
matching the model to the measurements. Although in the most of cases we do
not know origins of focusing errors, such approach allowed us to build credible
machine models accurately describing ring or transfer line focusing.

There is significant difference in optics measurements for transfer lines and
circular machines. In a ring the beam is permanently present, and therefore an
accumulation of multiple BPM measurements can be done fast and accumulation of
large datasets is not a problem. In this case multiple correctors are used for optics
measurements. That creates a redundancy in the data allowing us to make an
automated data analysis resulting in a high-accuracy optics model. Accumulation
of differential orbit data for a transfer line happens much slower—once or twice per
minute. Usually to achieve a minimally required statistical accuracy, at least four
measurements are required for each corrector. Taking into account that at least four
correctors and an energy change are required and the reference orbit has to be
measured before and after the measurement, one obtains a minimum measurement
time of about 15 min. Usually measurements are done for both polarities of
differential orbits resulting in 30 min to an hour to acquire good dataset for a
transfer line. Therefore, the datasets for transfer lines do not have sufficient
redundancy for an automatic data analysis and data are analyzed manually, i.e., a
person assigns focusing errors to quads. Normally it takes from a few hours to a day
to build a transfer line optics. That is a good compromise between time spent for
measurements and the data analysis. Due to lack of data and limited human ability
to digest still quite large datasets, the accuracy of obtained optics model is not the
same good as for rings. However, we found it adequate to the requirements of
Tevatron complex transfers. Together with absolute and differential orbits the
software records a beam intensity signals for each BPM. Changes in the beam
intensity correlated with beam displacement allow one to identify places of poten-
tial beam scraping and, taking into account that the measurements are performed for
both polarities of each kick, to formulate suggestions for changes of the beam orbit
in the transfer line.

Note also that as part of the effort to improve the status of the accelerator
complex, three databases were created: (1) the lattice repository which keeps the
optics files, (2) the magnet database which keeps the results of magnetic measure-
ments, and (3) the survey database which keeps results of machine surveys and
alignment.
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2.2.1 Linear Optics Optimization and Linear Optics
Measurements for Transfer Lines

At the Run II beginning improvements of optics for transfer lines was much more
important problem than optics improvements for circular machines. There were
three main reasons: first, historically much more attention was paid to the optimi-
zation of optics for circular machines; second, most transfer lines are between rings
belonging to different departments and therefore their ownership was not uniquely
determined; third, long transfer lines historically were split into a few segments and
optics was designed and supported independently for each segment. The Run II
clearly demonstrated that resolving transfer line optics is the same challenging as
resolving circular machine optics, and therefore the same attention has to be paid to
the transfer line optics design and commissioning. There are ten transfer lines in the
Tevatron complex: (1) linac to Booster, (2) Booster to MI, (3) Main Injector to
antiproton production target, (4) antiproton production target to Debuncher,
(5) Debuncher to Accumulator, (6) Accumulator to Main Injector, (7, 8) two lines
(proton and antiproton) from Recycler to Main Injector which are also used for
Main Injector-to-Recycler transfers, and (9, 10) two lines (proton and antiproton)
from Main Injector to Tevatron. There are also transfer lines for neutrino experi-
ments and experiments with fixed targets which are not discussed here. For almost
all lines optics was redesigned to improve transport quality. Optics for all of them
was measured and if necessary corrected to meet the design intent.

At the Run II beginning the most outstanding optics problems were related to the
Accumulator-to-Main Injector transport of antiprotons at 8 GeV. It is the longest
and most complicated transfer line in the Tevatron complex. Therefore, resolving
its optics problems is considered here in detail. Optics problems of other transport
lines were similar and the same approach and software were used to address them.
If not directly mentioned, the discussion in the rest of this section is about the
Accumulator-to-Main Injector transport.

The total length of beam transport from Accumulator to Main Injector is more
than 900 m. Almost 600 m of this line is also used for the 120 GeV proton beam
transport from Main Injector to the antiproton production target. Large difference in
the energies results in that the magnetic fields of the low-energy transport are
dominated by the residual magnetic field of the magnets. At the Run II beginning
the situation was so critical and uncertain that the question of building a new 8 GeV
line was seriously discussed. However, the differential orbit measurements proved
that the line optics is sufficiently reproducible and the decision was made to
redesign and tune optics of the existing line. The main objectives for new optics
design were as follows: (1) maximize the line acceptance for existing aperture
limitations, (2) match transfer line optics to the optics of both rings including both
vertical and horizontal dispersions, and (3) minimize (or better eliminate) any
hardware work in the tunnel. The transfer line has 63 quadrupoles connected to
35 quadrupole families. Large number of quadrupole families offers considerable
freedom for optics design, but at the same time it greatly complicates finding a good
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Fig. 2.1 Calculated beam envelopes of the entire Accumulator-to-Main Injector transport for the
beam emittances equal to the line normalized acceptances 48 and 42 mm mrad for horizontal (red)
and vertical (blue) planes, correspondingly. Top and bottom plots present the envelopes for the first
and second halves of the beamline. Blue and black curves present contributions to the beam size
coming from the momentum spread of Ap/p = 6 x 10~* corresponding to 2.56 of typical momentum
spread of extracted beam. Vertical lines show aperture limitations for horizontal (red) and vertical
(green) planes. Squares below the plots present locations of dipoles (blue) and quadrupoles (red)

solution. Existing aperture limitations were one of the major complications. It
forced us to minimize the beta-functions at the aperture limitations and, conse-
quently, yielded an increase of beta-functions in their vicinity and made optics
irregular. Although the split of quadrupoles into families was far from optimal, a
satisfactory solution was found. Figure 2.1 presents calculated beam envelopes
through the entire transport line for the final choice of beamline optics. The
horizontal dispersion and both beta-functions were matched to the ring dispersions
and beta-functions. The existing quadrupole families did not allow matching the
vertical dispersion, but the line optics was designed to minimize the vertical
dispersion leakage from the line. Together with a small value of extracted beam
momentum spread, it resulted in a negligible contribution of vertical dispersion
mismatch to the emittance growth, thus, allowing us to achieve good transfer line
performance without reconnecting the quadrupole families.

The optics measurements have been based on the differential orbit measure-
ments. Normally the measurements were performed with reverse protons, where the
proton beam is sent from Main Injector to Accumulator. Figure 2.2 presents a
typical measurement consisting of five differential orbits representing responses to
two horizontal and two vertical correctors and an energy change. To make sure that
the BPM response is not affected by beam scraping, the measurements were
acquired for positive and negative excitations. It also improves statistical accuracy.
Curves present the model predictions after the model was fitted to the data. X-Y
coupling in the line is sufficiently small, and therefore the cross-plane responses for
the corrector excited orbits are not presented in the figure. Variations of BPM
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Fig. 2.2 Typical differential obit measurement for the Accumulator-to-Main Injector beam
transport and its fitting by refined optics model: red and blue dots present a horizontal response
to a horizontal corrector and green and black dots a vertical response to a vertical corrector. Blue
and black dots represent inverted values of data acquired with negative corrector excitation. Short
error bars present a standard deviation and long error bars present a maximum deviation from the
mean value of 3 measurements. Long error bars which cross the entire plot show BPMs with an
error status which potentially can have incorrect measurements

differential response significantly complicate finding good solution. In this case the
beam displacement reported by a BPM is proportional to the actual displacement
but not necessarily with correct coefficient of proportionality.’ Therefore, the best
fit to the data usually yields too large corrections to quadrupole focusing, and,

3 Experience gained with the upgrade of electronics of Tevatron BPMs carried out in 2004 proved
that before the upgrade the major contribution to variations of differential BPM response was
related to imperfections of electronics. After the upgrade the spread of variations was reduced
from ~10 to ~1 %. Contribution coming from nonlinearity of differential BPM response with
coordinate related to the geometry of BPM was much smaller. The imperfection of electronics

looks the most probable reason for variations of differential BPM response for the transfer
line BPMs.
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Fig. 2.3 Corrections (in %) to quadrupole power supplies currents for Accumulator-to-Main
Injector beam transport. The 120 GeV beamline includes quadrupoles from Q701 to Q207. The
rest of the line operates at 8 GeV only

consequently, the model represents poor the actual line focusing. To address this
problem we put more trust to the BPMs in which measurements are close to zero,
and, consequently, are weakly affected by errors of differential beam response.
Normal functioning of these BPMs is verified by measurements with nonzero beam
displacements. They come from another corrector of the same plane. Normally
optics model update/correction proceeds from the transport line beginning to its
end. One corrects quadrupole focusing iterating between different differential
orbits. A few rounds of corrections are usually required before a satisfactory
match to the measurements is found. Figure 2.3 presents corrections to the power
supply currents required to match the model to the differential orbit measurements.
One can see significantly larger corrections to the quadrupoles operating both for
8 and 120 GeV transport. Although corrections to quadrupole focusing obtained
with this procedure are not unique and do not represent actual errors of the beam
transport, they allow one to get an optics model describing the line focusing with
satisfactory accuracy. Usually we use the first two correctors of a transfer line, but it
does not excite differential orbit in the first quadrupole, and therefore focusing
errors of the first quadrupole (closest to Main Injector) are invisible. It can be
resolved by an excitation of differential orbit in Main Injector, but it makes both
measurements and data analysis more complicated. An upgrade of the transfer line
BPM electronics carried out in 2006 made possible accurate position measurements
with antiprotons. That allowed us to carry out differential orbit measurements with
antiprotons [11]. The measurements were almost not invasive, and because they
used antiprotons moving in the opposite to protons’ direction, they pointed out a
focusing error of the quadrupole closest to the Accumulator (Q901). That resulted
in a further improvement of transport quality.

The turn-by-turn measurements of transverse beam sizes of injected antiproton
beam offer an independent measurement of the beamline optics. Such measure-
ments became available later in the run when the ion profile monitor (IPM) was
commissioned for operations with antiprotons (see Chap. 9). The beam sizes
oscillate at the double betatron frequency corresponding to observed frequencies
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Fig. 2.4 Main Injector IPM measurements of the transverse beam size oscillations at injection.
Left and right plots show horizontal and vertical oscillations, correspondingly, before the optics
matching (blue), after first correction (green), and after second correction (red)

~0.12 and 2v, ~0.16. Figure 2.4 presents an improvement of IPM signals with
improving optics match [11]. As one can see in Fig. 2.4, there was a considerable
mismatch between Accumulator and Main Injector before correction. However, the
emittance increase was not as bad as the beta-function mismatch because the
emittance growth is proportional to (Af/f)*. The estimate can be obtained from
the well-known formula, describing the emittance growth due to optics mismatch:

- %[Haz] ﬁf[ +a?] — 2aa
2 _ 2
+% ﬁz(Dg—D’1)2+2a2(D6—D’1)(D0—D1)+%(1+a22) ,
(2.123)

where f, a;, Dy, and D’1 are the beta- and alpha-functions, the dispersion and its
derivative for the incoming beam, and f,, @;, D, and D’1 are the beta- and alpha-
functions of circulating beam. Expending this equation for the case of small quadru-
pole betatron oscillations and taking into account that Af/f ~2As/c, one obtains

se 1 (Aﬁ )2 2<Aa

€ 2 ﬂ max o
For the data presented in Fig. 2.4, it yields de,/e, ~ 0.5 (0.03) and d¢,/e, = 0.07
(0.015), correspondingly, before and after the final correction.

max)z. (2.124)
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Fig. 2.5 Beta-functions and dispersions for proton transport from Main Injector to Tevatron. Inset
presents auxiliary beta-functions of coupled motion, 3, and f,,

Standardization of hysteresis protocol and two sets of power supplies (one for
8 and another for 120 GeV) have been required to achieve desired reproducibility of
beam transport. However, its seasonal variations still were present in the
Accumulator-to-Main Injector line. Other transfer lines operate at the energies
which they were designed for. Consequently, they have better reproducibility and
have not required additional tuning since the time when their optics was corrected.

As it was already mentioned, Run II inherited a number of problems rooted in
Tevatron history. One of them was a vertical dispersion mismatch in the Main
Injector-to-Tevatron proton beam transport line. Existing quadrupole powering did
not allow matching of vertical dispersion. An independent powering for a string of
7 quadrupoles could address the problem, but it required new power supplies and
additional cabling. A simple solution of the problem implied rolling 4 of 7 quadru-
poles of the string by small angles. The angles and quadrupole strengths were
adjusted to make the uncoupled transport through the string (see inset in Fig. 2.5)
and to match beta-functions and dispersions. This line is also used for the antiproton
transport described above and the proton beam transport to the antiproton produc-
tion target. Uncoupled transport through the string simplified their optics
correction.

Note that in most cases the emittance increase of about 5 % is acceptable. In this
case Eq. (2.124) yields a required transfer line optics match ApB/f <0.3. The
requirements to optics of circular machines like Tevatron, Debuncher, and Accu-
mulator are much stricter, and therefore a usage of the multi-corrector automated
algorithm described in the next section has been absolutely essential to address their
optics issues.
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2.2.2 Linear Optics from Closed Orbit

The simplified differential orbit method described above was used in 2003 for
measurement and correction of the injection and collision lattices for Tevatron. The
most spectacular result was achieved for the collision optics—it was discovered
that due to the significant (up to 1 %) gradient errors in the final focus quadrupoles,
the p* values were about 30 % larger than the design. Correction of these errors
resulted in an immediate increase of the luminosity. However, the data analysis was
tedious and the results still were not sufficiently accurate. It was recognized that
both more accurate and better-automated methods are required. The development
followed two directions: extension of the differential orbit technique discussed here
and analysis of the turn-by-turn data discussed in the next section.

Response matrix fitting is a well-known method of calibrating the machine
optics. It was first suggested at SLAC [12] and then it was used at NSLS [13] for
X-ray ring analysis. Today the method is widely used at many accelerators around
the world [14]. At the Tevatron, a modification of the response matrix fitting
software developed at Argonne National Laboratory for the Advanced Photon
Source (APS) [15] has been used.

The response matrix fitting program SRLOCOFitting [15] written in Tcl/Tk has
an extensive graphical user interface, and uses SDDS toolkit [16] for data
processing. The code was developed to calibrate the APS model and to provide
data for beta-function correction. Coupling correction was not an issue at the APS;
therefore, the calculations were limited to the uncoupled case. On the contrary,
coupling of horizontal and vertical betatron motion was an important for the
Tevatron; therefore, existing analyses had to be expanded to a fully coupled motion.
Another important modification was the addition of dispersion to the fit. This
allowed us to resolve two issues. First, addition of dispersion adds a constraint on
the quadrupole gradients, removing the degeneracy between in-phase quadrupoles.
Second, the dispersion can be used to calibrate average gain of BPMs, which
otherwise would be a degenerated value. Technically, dispersion is treated as a
column of the response matrix. A number of other minor code modifications have
been made to ensure that the software could be used with other Fermilab
accelerators.

The Tevatron ring has 110 correctors and 118 BPMs in each plane. The response
matrix measurement procedure was fully automated and used the following proce-
dure: each steering magnet was excited first with positive current and then with
negative current. At each value of current, the orbit was measured 25 times. The
total response to the steering magnet excitation was the average positive orbit
minus the average negative orbit. The output of the measurement program was an
SDDS file containing average orbit responses and their rms deviations in a format
readable by SRLOCOFitting. The dispersion measurement was done by scanning
the RF frequency, measuring orbit at five points, and fitting a straight line at each
BPM. It resulted in an improvement of measurement accuracy. Acquisition of the
full response matrix required approximately 2 h of beam time. However, it was
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determined that a good quality fit could be obtained with a smaller dataset, and in
normal operations the response matrix was measured using 60 correctors, which
took less than 1 h.

The fit produced values of the following variables: quadrupole gradient errors,
quadrupole tilts, corrector calibration errors, corrector tilts, BPM gains and BPM
tilts, and energy shift due to corrector changes. The total number of unknown
variables was about 1,000. Since the LOCO fitting procedure is based on the
computation of pseudo-inverse of the response matrix derivative using singular
value decomposition, important information is contained in the spectrum of singu-
lar values. Figure 2.6 presents a typical plot of the singular values for the Tevatron
collision optics. The SVD cutoff was typically chosen at 1, which corresponds to
600-650 singular values.

The main factor limiting accuracy of the LOCO fit is the resolution of the beam
position measurement. The BPMs have the resolution of about 10 pm for a single
measurement. Besides, the beams oscillate at low (~10 Hz) frequency with the
amplitude of about 50 pm. Averaging over 25 measurements has been applied to
mitigate the effect of slow oscillations. The overall accuracy of the orbit measure-
ment was then about 15 pm. Figure 2.7 shows the rms difference of the measured
orbit and the modeled orbit after the fit for each BPM. In this case, 30 horizontal and
30 vertical orbits were used and the average error was ~14 pm which is close to the
orbit measurement accuracy.

The precision of the orbit fitting sets the accuracy of gradient error determination,
which in our model is 10~ for the arc quads and 10~ for the final focus quads. The
corresponding error in beta-function is about 5 %. In Fig. 2.8 the found quadrupole
and skew-quadrupole errors are presented for all locations in the Tevatron.

Two locations with large skew-quadrupole component, D16 and A38, have been
identified as tilts of the corresponding quadrupoles. These tilts emerged at the
magnet assembly and could not be found by alignment measurements from outside
of the magnet.

Table 2.1 summarizes the gradient errors for the final focus quadrupoles. As one
can see, the difference from the calibration curve obtained by magnetic measure-
ments can be as high as 1 %.
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Based on the knowledge of the lattice details, new collision optics has been
implemented in 2005 with the following goals:

1. Eliminate beta-beating in the arcs.

2. Correct the discrepancy in the values of f* between the two IPs.

3. Decrease the value of f* from 35 to 28 cm, with an expected gain in luminosity
of 11 % (Fig. 2.9). Further decrease of the f* was not practical because of the
growing second-order chromaticity and little gain in luminosity due to the
hourglass effect.

Routine optics measurements with LOCO were performed over the entire length
of Run II to support collider operations and simulation efforts.

2.2.3 Turn-by-Turn Measurements

Orbit response matrix analysis is a powerful tool that supplied precise information
about the Tevatron linear lattice imperfections and errors of BPM calibrations.
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However, orbit data acquisition is a lengthy process and certainly could not be
performed on a daily basis and especially during acceleration. For this regime, the
Fourier analysis of turn-by-turn beam position after a single-turn kick proved to be
invaluable. This method is fast and offers information about entire machine optics. In
particular it allows fast computation of the resonance driving terms for the sum and
difference betatron coupling resonances and the location of coupling sources [17].

The distribution of coupling sources around the ring determines the resonance
driving terms (see Sect. 2.1.12):

C
C ! ; ’ H /
Wy (S) —_ 7st‘/ i(s ) efwi(Zﬂ(s—x)/Cflr-mgn(sfs ))’ (2125)

" 4sinzvy
0

where v, =v, £ v, and

Cils) = \/m{ZNJrRK% %) —i(l T 1)]} xeile®n)  (2.126)

2 B B, B "B,

Here y, and y, are the periodic phase functions. The functions w.(s) are constant in
coupling-free regions and experience a discontinuity at the locations of coupling
sources. On the coupling resonances v, &+ vy, =integer, the functions w,. are con-
stant. The minimum attainable tune distance is given by

c

6i _ ny — Vg JéwiemiZm/C’
P/ 5 c

0
with ny =round(v, £ v,). If the kick occurs in the horizontal plane, the Fourier
component Y;(v,) of y(s) is related to the values of w at the j-th BPM via the Twiss
functions. When the BPM tilts are negligible or already known (e.g., from the
LOCO fit), the number of unknown quantities per BPM is reduced to two and one
can retrieve the constant value of w. in the region between two BPMs from Y;(v,)
and Y;,,(v,) assuming that there are no strong sources of coupling.

Figure 2.10 presents the vertical injection lattice beta-function reconstructed
from turn-by-turn data in comparison with the beta-function obtained by LOCO.
One can see that agreement between the two methods is good.

Fig. 2.11 presents the values of real and imaginary parts of w_(s) measured at
vertical BPMs for horizontal kick and at horizontal BPMs for vertical kick.

An application program for the online turn-by-turn data analysis has been
integrated into the Tevatron control system. The program fired the kicker, collected
the BPM data, computed Twiss and coupling functions, and, finally, computed and
applied the needed corrections to the two main skew-quadrupole circuits SQAOQ and

SQ. The program was used in routine collider operations during every shot setup
and proved invaluable for decoupling on the energy ramp. The time needed to
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retrieve the turn-by-turn data from all Tevatron BPMs was too long for routine use
of the method. This limitation could be overcome due to the fact that w_(s) = const
near the coupling resonances. Since the Tevatron working point at injection
(vy=20.584, v, =20.574) is reasonably close to both the difference and the sum
resonance, it was possible to use only few BPMs (typically 5 horizontal and
5 vertical) to evaluate the tunes and the functions w_. at the orthogonal mode BPMs.

2.3 Nonlinear Beam Dynamics

2.3.1 Dedicated Studies of Nonlinear Beam Dynamics

in Tevatron

Several important beam studies dedicated to detailed understanding of nonlinear
beam dynamics had been carried out at the Tevatron in the late 1980s to early

1990s.
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In the E778 beam dynamics experiment, performed in the Fermilab Tevatron,
strong nonlinear elements were intentionally added and observations of phase space
of nonlinear oscillations were made [18]. For that experiment the Tevatron can be
regarded as a linear system on which nonlinearity in the form of 16 sextupole
magnets, each of strength S, was intentionally superimposed. The experimental
procedure starts with a “needle beam” consisting of some 10'° circulating stored
protons, to some approximation having essentially the same momentum and to be
on the central orbit. Next the same angular deflection D is applied to every particle
by a pulsed deflecting magnet. The subsequent beam centroid displacement is
sensed for as many as a million turns by beam position monitors (BPM). These
measurements are used to generate an experimental Poincaré plot.

To a good approximation, the following equation of motion describes the
horizontal particle motion

d2
d—; + K(s)x = —e(s)x%

(2.127)
Here s is the longitudinal particle coordinate, which advances from O to C (the ring
circumference). In the course of the experiment the Tevatron tune was about
0 =19.4. The anharmonic term in (2.127) is due to sextupole fields of strength
&(s), proportional to S. That term makes tune of the particle amplitude dependent.
Both K(s) and &(s) are periodic functions of s with period C. The absence of
damping in (1) is valid as the quality factor of these oscillations has a very high
value >10°, making this a truly Hamiltonian system. The amplitude (and, thus, the
tune) of oscillations can be adjusted by the deflector strength D, so that 20 % of the
particles can be trapped in resonance islands. All particles in one of the islands
exhibit a tune of exactly 2/5, totally defying decoherence. The resulting BPM
signals have been observed to persist for over a minute (approaching a million
turns). As an example, Fig. 2.12 shows a “raw” Poincaré plot of transverse beam
displacements x;(f) vs. x»(f), measured at two positions separated by about one
quarter of a betatron wavelength.

The dynamics of a metastable beam of particles “injected” into artificially excited
resonance islands in the Tevatron has been further studied in a subsequent experiment
[19]. As before, the protons were under the influence of a single dominant nonlinear
resonance, caused by the strong excitation of 14 sextupoles in the otherwise nearly
linear accelerator. The island location was forced to oscillate at a modulation tune Q,,,
with an amplitude proportional to the modulation amplitude ¢:

0(t,a) = Qg + gsin (270,,) +%Ua2. (2.128)

Here, the last term represents detuning with amplitude of betatron oscillations
a caused by the sextupoles. As in [18], the location and size of the island were
adjusted by varying sextupole strengths and the base tune Qg of small-amplitude
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Fig. 2.12 “Raw
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particles. The beam was then allowed to circulate for some 10s to allow transients to
decay before data were taken. At 9,000 turns after start of data taking, the tune
modulation Eq. (2.128) was turned on by sinusoidal driving two weak quadrupoles.
The tune modulation strength and tune, ¢ and Q,,, were linearly ramped for 1 s
(about 50,000 turns) and then turned off for the last 0.2 s (some 10,000 turns) of data
taking. Figure 2.13 shows the BMP signal during such a chirp. One can clearly see
an amplitude modulation of the islands at about 28,000 turns. The persistent signal
started dropping dramatically at about 32,000 turns, eventually driving all of the
trapped beam out of the resonant island.

The tune modulation trajectory that caused this response is drawn as the dashed
line labeled “A” in Fig. 2.14, showing that the signal was lost when the boundary
between “amplitude modulation” and “chaos” was crossed. Figure 2.14 also sum-
marizes results from a trajectory labeled “B” that had a very weak constant tune
modulation strength ¢ =0.000204, smaller or comparable to realistic operation
values. Boundaries found experimentally (circles) and theoretically predicated
boundaries between four regions are shown in Fig. 2.14. For the latter ones, the
island tune (frequency of small oscillations of the particles trapped in the islands)
0;=0.0063 was the only free parameter used to adjust the location of these
boundaries. A detailed discussion on the theory and explanation of the observations
can be found in [18].

The effect of nonlinearity on transverse particle distributions has been studied in
yet another beam dynamics experiment [20]. It was concentrated on “stochastic”
effects, due to the particle dynamics, that cause “diffusive” evolution of the beam
distribution even in the absence of external sources of “noise” or random scattering
from residual gas molecules. These effects are studied by adding large nonlinearity
to the otherwise comparatively linear machine. At the start of each observation
period, a needle-shaped single bunch of some 10'? circulating protons was kicked
horizontally. This yielded displacement of about 3 mm as observed at a downstream
point. The resulting transverse beam profile was repeatedly measured by Flying
Wires system every minute or so. During a run of (typical) 30 min duration, each
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Fig. 2.13 Raw digitized
signals of beam position
monitor showing a
persistent signal and its
response to a chirp from (g,
On) = 0, 0) to (CI’ Omw) =
(0.0102, 0.0031). Vertical
scale is in volts. Nonzero
average initial value is due
to a closed orbit offset [19]

0.20
0.15+
0.10
0.05
0.00

-0.05

Beam position monitor signal (V)

-0.10

0 10 20 30 40 50 60
Turn number (103)

Fig. 2.14 Structure of the Q1 =.0063
tune modulation parameter
space (¢, O,,)- A and

B correspond to two scans.
Four distinct “dynamical
phases” are labeled ([19],
see in the text)

=

\ Strong
Chaos Sidebands

=
o

Tune modulation strength, q

/', Amplitude Phase ]
!:, . Modulation Modulation
__________________ B
0_4 | = |
104 10-3 102 10-1

Tune modulation tune, Qm

proton circulates about 10® times and executes about 2 x 10° transverse betatron
oscillations. The purpose of the kick is to generate a beam in which all the particles
are in a region of measurably large diffusion. Individual protons initially oscillate at
approximately constant amplitude with damping time equal to many tens of hours,
but due to the dynamic diffusion, they start to expand in (initially) void areas of the
phase space until they reach a physical aperture (defined by a scraper placed at
Xmax =8 mm) and get lost. In order to study the influence of resonance, all
measurements were performed in the vicinity of the “2/5 resonance” (fractional
horizontal tune Q, close to 0.4).

Contrary to intuition, and unlike multiple scattering, diffusion causes the beam
to narrow with time—as shown in Fig. 2.15. That behavior is caused by the sink at
the aperture x,,,x which devours large amplitude particles, reduces the beam
intensity, and depletes the tail of the distribution. Time evolution of the beam
intensities and full widths, similar to one depicted in Fig. 2.16, was measured at
different initial kicks and that allowed to determine the dependence of the diffusion
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coefficient on the amplitude. Note that similar beam “shaving” phenomena with
characteristic intensity decays following exp(—r"?) law were observed later in the
Tevatron Run II when nonlinearity induced by parasitic beam—beam interactions
resulted in a significant reduction of a dynamic aperture and beam lifetime degra-
dation—see [21] and discussion in Chap. 8.

2.4 Orbit Motion and Control

Motion of the accelerator components, most notably, quadrupole magnets, results in
the beam orbit movements and can lead to a significant deterioration of the collider
performance. The mechanism depends on the frequency. At frequencies of betatron
sidebands fy (1 —v) &~ 19.7 kHz, fluctuations of the magnetic fields 6B(¢), e.g., due
to quadrupole magnet displacements x(¢), produce transverse kicks 60(¢) = 6B(¢)el/
Pc=x(t)/F, where [ is the length of the element and F is the focusing length. That
leads to the beam emittance growth with the rate of [22]:

d » 2 Ny 00
TSy D Sl —m) (2.129)

k=1 n=—00

where f; is the revolution frequencys, y is the relativistic factor, v is the tune, S,(f) is
the power spectral density of the quadrupole motion x, N, is a total number of
quadrupole focusing magnets, and f, is the beta-function at the k-th quad location.

At much lower frequencies, f < f, the kicks lead to a time-dependent displacement
of the closed orbit:


http://dx.doi.org/10.1007/978-1-4939-0885-1_8

78 V. Lebedev et al.

Fig. 2.16 Measured full 5.0 prrrr e - T T

width and intensity (points) -

compared to model-derived - ]
values (smooth curve). — i 3
Intensity is normalized to E 10.0 £ B

1 at t=0. The steps at late = E «

. = F :
times are the result of - - ]
sudden aperture reduction = 3 x
0 Xy = 2.7 mm [20] — 5.0 Pe—vetestogasge .

2 % T e asae
»lij.‘ll_l]lll]]llilltl]]llllll]lkll.]ll.kl]
0 5 I0 15 20 25 30 35 40
Time (minutes)
IO Ty T Trrvrgrrryryy T T
[ ® 5
> B i
gost 5
S 1
E i y
[ jl|lJ._l_l.Ll.AlllllI1]llli]ljlllllllllll_
o 5 I0 I5 20 25 30 35 40
Time (minutes)
VGRS
Xcon(s) = %=~ > \/Bi(s)0k cos (p(s) — @y + 7), (2.130)
2sin (av) =

where s is the location along the ring and ¢(s), @, are betatron phases at the
locations of the observation point and at the source of the kth magnet. At very
low frequencies, hours to years, the quadrupole magnet displacements are often
governed by the “ATL law” [23, 24] according to which the mean square of relative
displacement dX of the points separated by distance L grows with the time interval
between measurements T as

<dX*/dt> =A TL (2.131)
where A is a site-dependent constant of the order of 10>*' ym?/(s m) and brackets
<...> indicate averaging over many points of observations distanced by L and over
all time intervals equal to 7. Such a wandering of the accelerator elements takes
place in all directions. Corresponding average closed orbit distortion over the ring
with circumference C is equal to [25]
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[7'(8) (Br + Pp)

< X205 (s) >~
con ) 8F? sin2(nv)

ATC ~ xkATC (2.132)

where FODO lattice structure is assumed, ffr, Bp are beta-functions at the focusing
and defocusing lenses, and numerical coefficient k ~ 3 for the Tevatron.

Due to feeddown effects from field non-linearities the Tevatron orbit drifts result
in machine optics changes (tunes, coupling, chromaticities). Combined with aper-
ture limitations they lead to increase of beam loss. At the injection energy of
150 GeV when the beams are several mm wide, orbit motion of about a mm
leads to losses of the beams at several known places with tight aperture. At the
energy of experiment, 980 GeV/beam, beam position in the RF cavities affects
stability of high-intensity proton beam, e.g., the power of coherent beam oscilla-
tions goes up if the beam is too far off center. Also, oscillations of the RF cavities at
synchrotron frequency (85 Hz at 150 GeV and 35 Hz at 980 GeV) are of concern for
driving longitudinal emittance growth due to microphonic effects [26]. Large-scale
long-term drifts of the orbit can be corrected by dipole correctors, and regular
realignment of the magnets—usually during annual shutdown periods—helps to
keep the corrector currents under the limit of 50 A.

2.4.1 Measurements of Betatron Oscillations and Orbit
Motion

Several instruments were used to detect betatron oscillations in the Tevatron (see
Chap. 9). The most challenging were direct measurements of natural betatron
oscillations at sub-micron level. Several instruments were built for the detecting
such oscillations and measurement of their frequency without additional excitation.
Various techniques were employed, including 3D-BBQ (direct diode detector
baseband tune) measurement system [27] and the digital tune monitor (DTM)
which uses 16 bits 100 MHz ADCs for measuring the tunes on a bunch-by-bunch
basis [28]. A very high-precision system employing a fast digital scope (Agilent
Acqiris, 10bit, 8GS/s) for measurements of the turn-by-turn vertical centroid
positions of individual bunches has been devised and used for digitizing signals
from the plates of the VB11 BPM in the large vertical beta-function location that
translates into better S/N ratio [29]. The system employs variable attenuators for
compensating the beam position offset and phase shifters synchronized within 10 ps
to minimize common mode. As a result, subtraction of the two signals by an RF
hybrid provides about 44 dB of common mode rejection. Figure 2.17 shows 21,400
turn (0.44 s) record of the vertical beam position at the VB11 location.

The FFT of the data reveal significant excess of the signal at the betatron tune
over the noise as shown in Fig. 2.18. The rms amplitude of the betatron oscillations
is about 110 nm. Note that the amplitude significantly varies from store to store and
often is two to three times smaller. That yields some 10-25 nm range of typical rms
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betatron motion amplitudes at the average beta-function location with f, ~ 50 m.
Spectrum of the vertical orbit motion at frequencies 2—1,000 Hz is shown in
Fig. 2.19. It scales approximately as oc1/f and is dominated by the low-frequency
beam motion. The strongest lines are the harmonics of 60 Hz main power. The
15 Hz and the 0.45 Hz components can be explained by the effects of the fast
cycling Booster synchrotron and the Main Injector on the power distribution
systems at FNAL.

At ultralow frequencies, the orbit motion has significant (some 0.1 mm vertical
and 0.3 mm horizontal) variation with a period of 12 h, which seems to be associated
with Earth tides—see Fig. 2.20 from [30]. The rms of the orbit motion is about
100 pm horizontally and 30 pm vertically. The tide waves are clearly seen in the data
from the Hydrostatic Level System (HLS) installed in the MI-8 beamline, the 8 GeV
transfer line from the FNAL Booster to the FNAL Main Injector, located within
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400 m of the Tevatron tunnel. The HLS is described in detail in [24] and consists of
20 submicron resolution water level sensors separated by 15 m from one another. The
signal difference for a pair of sensors 135 m apart is plotted at the bottom of Fig. 2.20
and shows some 20 pm peak-to-peak amplitude of the 12 h period component. Slow
closed orbit distortions of some 0.5-1 mm rms have been accumulated over 1-2-
week intervals and required regular orbit “smoothing,” until an automatic orbit
stabilization system was introduced in operation in 2005 (see details in Chap. 9)
and since then only high-frequency orbit jitter of about 10 pm rms remained.

2.4.2 Magnet and Ground Motion in the Tevatron Tunnel

The low-frequency orbit motion has been found correlated with (caused by) the
vibrations of the magnets, particularly, strong focusing near interaction regions.
Figure 2.21 from [31] demonstrates strong coherence between quadrupole vibra-
tions and the Tevatron orbit motion, especially at certain frequencies. The coher-
ence spectrum C(f) is defined as

< Sy(f) >
V< Sulf) >< Sy (f) >

Colf) = (2.133)

where S,,(f) is the cross-correlation spectrum of two signals x(f) and y(¢).

One can see that the orbit correlates well with the tunnel floor only at low
frequencies ~0.1 Hz, while some excessive but small coherence exists at 2—4 Hz.
The beam orbit correlates with the quadrupole magnet motion at frequencies of 0.2—
2 Hz.

The closed orbit distortions are caused by the displacements of all magnetic
elements along the circumference of the Tevatron. The strong coherence between
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2 Beam Optics and Orbits: Methods Used at the Tevatron Accelerators 83

Fig. 2.22 Power spectral

. 5 - A3H
density of the A35 1 v — A3 NORTH,GND
quadrupole motion and the %‘ E
ground nearby, from [32] 0.1 | = £

: I ~ g
— ) =
F o001} T S5
5 0.001 Tg ] = Al
c = 1 1 | PR E
g : an HE b1
‘E 0.0001 [} Y vt | f'ué Vi
— E AUV W iy I..# I\ ﬁ g i
e = A T .”‘!-J b 1 Il: |"
2 10° P ]w;@l —— j[
i 4‘{1{9’“ \l ﬂu:,,:'mb’. _q;;ﬂ;\‘ i:
107} T = (= E
e
= V3
107 o b b 1 HE '
(o] 5 10 15 20 25

FREQUENCY (Hz)

the magnet and beam vibrations means that there is a common source of vibration
along the whole accelerator ring. For example, several remarkable peaks in the
orbit—-magnet coherence occur at 4.6, 9.2, 13.9 Hz, etc., at the Fermilab site-specific
frequencies caused by the Central Helium Liquefier plant operation and well
detected everywhere around the ring [32]—see Fig. 2.22.

2.4.3 Slow Diffusion of the Tevatron Tunnel

Analysis of the multiyear Tevatron magnet alignment data shows that in addition to
systematic changes due to tides or slow drifts, there is a “random walk” both in time
and in space component characterized by the ATL-law of Eq. (4.3) [33].

The alignment system of the Tevatron employs more than 200 geodetic “tie
rods” (thick metal rods screwed into the concrete tunnel wall all over the ring and
equipped to hold spherical retroreflectors for precise position measurements), each
spaced approximately 30 m apart. The positions of the magnets are regularly
referenced locally with respect to the “tie rods,” while the positions of all the “tie
rods” are routinely monitored. The “tie rod” elevation datasets are available for the
years of 2001, 2003, 2005, 2006, and 2007. Figure 2.23 shows the change of the
elevations dY(z) around the ring accumulated over two intervals—2 years (2003—
2005) and 6 years (2001-2007). One can see that longer-term motion has a larger
amplitude. The variance <dY’ 2(L)> = <(dY(z) — dY(z +L))*> of the elevation dif-
ference of the points as a function of the lag (distance between pairs of the
measurement points) L has been calculated and averaged over all possible time
intervals. That is to say, there are two 1-year intervals (2005-2006, 2006—2007),
three 2-year intervals (2001-2003, 2003-2005, 2005-2007), etc., and one for the
6-year interval 2001-2007. The results for the 1-year changes and for the 6-year
change are shown in Fig. 2.24. A remarkable difference between the two plots is
that 1-year variance scales linearly only up to L =~ 700-800 m and does not depend
on L beyond that scale, while the 6-year variance grows all the way to distances as
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large as 1,800 m. The linear dependence on L is indicative of a significant level of
interdependence of the movements of distant points. The calculated variances
for all possible time differences can be well approximated by linear fits
<dY*(L)>=a+bL over distances less than 900 m and the slopes (fit parameters
b with the error bars) are plotted in Fig. 2.25.

One can see that the variance per unit distance grows with the time interval
between the measurements and can be approximated by a linear fit b(T') = cT with
¢=0.153 £+ 0.004 [mm?*/km/year]. The Tevatron “tie rod” data analysis presented
in Figs. 2.24 and 2.25 can be summarized by the ATL law <dY*>=ATL with
coefficient Arevaron = ¢ = (4.9 +0.13) x 107° pm?/s/m.

It is to be noted that for small time intervals T the movements of the ground
elements are fully uncorrelated if they are separated by a long enough distance
L > L, for example, by more than 800 m for T = 1-year intervals as seen in the
Tevatron alignment data—see Fig. 2.24—or by more than 120 m for 7= 1-week
intervals as seen in the Tevatron B-sector HLS data [24]. On the basis of these two
observations, one can assume that the boundary between totally uncorrelated and
the ATL-law regimes scales approximately as L,, o< T"/>.

2.5 Measurements and Corrections of Nonlinear Optics

2.5.1 First- and Second-Order Chromaticity and Its
Correction

Implementation of electron cooling of antiprotons in the Recycler (see Chap. 7)
resulted in a dramatic increase of the antiproton beam brightness. After the 2006
shutdown, the head-on beam—beam tune shift experienced by the proton beam
exceeded 0.025 and at times reached 0.03 (see Chap. 8). It was then when beam—
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beam-related losses and emittance blowup started to be observed in protons. It was
shown by beam—beam simulations (see Sect. 8.4) that deterioration of the proton
lifetime was caused by a decrease of the dynamical aperture for off-momentum
particles due to head-on collisions. A contributing factor to this was large chroma-
ticities of the beta-functions at the main IPs.

Initially, a major change of the betatron tune working point was considered as a
way to mitigate the beam—beam effect. A possible candidate was the working point
near the half-integer resonance, which promised up to 30 % increase of the beam
brightness. However, operation near the 1/2 resonance requires careful correction
of focusing errors, including the chromatic perturbations. Consequently, it would
require machine reproducibility well above achieved and therefore this project was
not approved. That motivated the development of a modified chromaticity
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correction scheme at the Tevatron, aiming at the reduction of the second-order
chromaticity by about an order of magnitude.

One can use the well-known perturbation theory approach to describe the
distortion of the beta-function caused by chromatic errors (see e.g., [34]). Beta-
beating excited by a single quadrupole for an off-momentum particle can be
described by the formula:

Ap 0

) = K Gcos 217 — y(s)] - 220). (2.134)

~ 25sin (270) Bp

Here 6 = Ap/p is the relative momentum deviation, Q is the betatron tune, K is the
quadrupole-integrated strength, Bp is the magnetic rigidity, y is the betatron phase,
and ~ denotes values at the location of the quadrupole. In the first-order approxi-
mation, the contributions from all quadrupoles are summed to give the total beta-
wave. Quadrupoles of the final focus have the largest strength and highest value of
beta-function. In the Tevatron, the betatron phase advance between the two inter-
action regions is close to x; thus, the contributions from the final focus quadrupoles
add with the same phase and they dominate the chromatic Ap/p.

The contribution to second-order tune chromaticity from a single quadrupole
derived from the perturbation theory is given by the following expression:

o-@u)s e

This effectively means that the second-order chromaticity is proportional to the
strength of the final focus quadrupole and to the value of chromatic beta-function at
its location. Figure 2.26 shows the comparison of the measured and modeled
chromatic beta-function of the Tevatron in the collision mode. The measured
parameters were obtained from two orbit response measurements performed at
different values of the revolution frequency. The modeled curve was obtained by
the perturbation theory. In Fig. 2.27 the same beta-functions are plotted on a
zoomed horizontal scale close to the CDF interaction region. One can see that the
model gives quite accurate description of the effect.

Sextupole magnets can be used to correct the second-order chromaticity gener-
ated by quadrupole focusing errors. Using the same perturbative approach and
considering sextupole as a quadrupole at the off-center orbit, we get the expression
for the sextupole-driven horizontal chromatic beta-function:

Ap 5 SD,

5 (s) = 75 (220) By pcos (2|7 — y(s)| — 270) (2.136)

where S is the sextupole strength and ~ denotes parameters at the location of the
sextupole. Even though the effect of individual sextupoles on the beta-function
chromaticity is much less than that of the final focus quadrupoles, one can achieve
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compensation by selecting many sextupoles with the correct phase advance and
combining them into families.

There are 176 chromaticity correction sextupole magnets in the Tevatron.
Originally, they were combined into two families SF and SD, each with 88 elements
powered in series. Sextupole coils are placed in the so-called spool pieces located
next to quadrupoles in the regular FODO lattice of the arcs. The betatron phase
advance per FODO cell is close to 60° in both planes. Thus, it was possible to select
sextupoles that would have their betatron phase advance with respect to the final
focus quads equal to & or z/2. The total of 46 sextupoles in each family were found
to satisfy this condition. However, it was discovered that rewiring them into 4 new
circuits would have considerable cost mainly due to the large amount of required
new cable. Hence, we had to limit the number of elements in the new circuits and
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Sextupoles

FO

Fig. 2.28 Layout of sextupoles in the Tevatron

group them close to three service buildings which would reduce the length of the
new cabling. The final configuration is shown in Fig. 2.28. The total of 44 sextupoles
were taken out of the SF and SD families (22 from each). The sextupoles are
powered by 12 new power supplies and logically grouped into 4 families. The new
circuits are designed to have equal number of elements with positive and negative
current. This allows to keep the linear betatron tune chromaticity constant when
using the new groups. The disadvantage of this solution is that it breaks the sixfold
symmetry of the machine but the expected feed-down effect on the beta-functions is
small.

In Figs. 2.26, 2.27, and 2.29, the simulated effect of application of the new
families on the chromatic beta-function is plotted for the collision and injection
modes. Note that the expected beta-function chromaticity at the CDF IP at colli-
sions is close to zero.

The new sextupole scheme was commissioned in three stages. First, the chosen
elements were switched to the new power supplies while being operated at the
original current and polarity. This allowed to verify the stability and reliability of
electrical components. Second, the new circuits were turned off and the Tevatron
was tuned for operating in this new mode. Finally, polarities of some of the
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sextupoles were flipped and the new families were turned on at the designed
strength.

Figures 2.30 and 2.31 show the comparison of expected and measured beta-
function chromaticity after implementation of the new circuits in the injection and
collision modes, respectively. The corresponding change in the second-order tune
chromaticity is presented in Fig. 2.32. Beta-function chromaticities for both the
vertical and horizontal planes were corrected.

Measured beta-functions are in good agreement with the calculated values. The
second-order tune chromaticity in the collision mode was reduced from —15,000
units to —3,000 units which is close to expected. As a result, we observe a
noticeable improvement of the proton beam lifetime at collisions (see Chap. 8).
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