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Expansions of physical functions are controlled by their singularities, which have special structure 
because they themselves are physical, corresponding to instantons, caustics or saddle configurations. 
Resurgent asymptotics formalizes this idea mathematically, and leads to significantly more powerful 
extrapolation methods to extract physical information from a finite number of terms of an expansion, 
including precise decoding of non-perturbative effects. We quantify the gain of precision for various 
extrapolation procedures, showing that significant improvements can be achieved using exactly the same 
input data, and we illustrate the general method with examples from quantum mechanics and quantum 
field theory.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
An important problem in physics is the following: given a phys-
ical quantity (free energy, correlator, scattering amplitude, . . . ) ex-
panded in a parameter (temperature, distance, coupling, . . . ) to a 
finite number of terms in some parametric limit, we wish to extract 
as much physical information as possible about the function in 
other parametric regimes [1–19]. For e.g., an extrapolation between 
weak and strong coupling, real and complex fugacity, or Euclidean 
and Minkowski space. Note that for these latter two problems we 
need methods that can also extrapolate in the complex domain. 
The original expansion may be convergent, but in many practical 
cases it is the start of an asymptotic series. If computing further 
terms is not possible, such an extrapolation appears to be a pro-
hibitively difficult task. However, the series expansions of physical
functions are not completely generic; they have further structure 
which we can exploit. This extra structure arises because saddle 
points and critical points have physical meaning, and tend to align 
and interact in specific ways. Mathematically, this extra structure 
follows from recent work in resurgent asymptotics [20–22] which 
shows that functions arising as solutions to systems of equations 
(differential, difference, integral, . . . ), generally have special orderly 
structure in the Borel plane. Resurgence implies that global infor-
mation can be decoded from the original expansion coefficients. 
Some ingredients of our analysis are familiar: Borel summation, 
Padé approximation, conformal mapping, asymptotics of orthogo-
nal polynomials, capacity theory, but we combine these in new 
ways. This leads to new quantitative measures of the precision 
of different extrapolations, and novel strategies for decoding non-
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perturbative physics from limited perturbative information. This 
motivates the use of resurgence as a discovery tool, an approach 
with a steadily growing body of evidence in a wide variety of 
branches of physics [23–40].

A broad class of physical problems involves analyzing a finite
number of terms of an expansion of a function in a physical vari-
able x, computed in the limit x → +∞:

F2N(x) =
2N∑

n=0

an

xn+1 , x → +∞ (1)

Often this is an asymptotic expansion, with factorial leading large 
order behavior [41–44]:

an ∼ (−1)n �(n − α)

Sn
, n → ∞ (2)

We illustrate our results with this divergent structure because of 
its physical relevance, but the general results extend to all resur-
gent functions [45]. This is ultimately because resurgent functions 
have isolated algebraic or logarithmic Borel branch points, each as-
sociated with asymptotic behavior of the form (2). The parameters 
S and α in (2) have physical meaning: S is related to the action 
of a dominant saddle configuration, and α to the power of x in 
the prefactor from fluctuations about this configuration. We have 
deliberately chosen the coefficients an to be alternating in sign, in 
order to begin our analysis as far as possible from a Stokes line, 
since one of our goals is to probe a non-perturbative Stokes tran-
sition by extrapolating from a distant perturbative regime.
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Table 1
The scaling with truncation order parameter N of the 
minimum real x value at which a chosen precision can 
be obtained, for each of the five extrapolation methods 
discussed here.

Extrapolation xmin scaling

truncated series xmin ∼ N
x Padé xmin ∼ N−1

Padé-Borel xmin ∼ N−2

Taylor-Conformal-Borel xmin ∼ N−2

Padé-Conformal-Borel xmin ∼ N−4

There are (at least1) 5 natural methods for extrapolating the 
truncated asymptotic expansion (1): (i) F2N (x) itself; (ii) Padé in 
the physical x plane; (iii) Borel-Padé: Padé in the Borel p plane; 
(iv) Taylor-Conformal-Borel: truncated series in the conformally 
mapped Borel plane; (v) Padé-Conformal-Borel: Padé of truncated 
series in conformally mapped Borel plane. We show that these are 
listed in order of increasing precision. We stress that each method 
begins with exactly the same input data: the truncated series (1). 
The only difference is the different decoding of the information 
contained in the input coefficients an . We quantify the quality of 
each extrapolation method with a concrete example that captures 
the Bender-Wu-Lipatov asymptotics in (2) (we scale x to set S = 1)

F (x;α) = ex�(1 + α, x)

x1+α
∼

∞∑
n=0

(−1)n�(n − α)

�(−α)xn+1 (3)

�(β, x) is the incomplete gamma function. F (x; α) has a branch cut 
(with parameter α) along the negative x axis, far from our pertur-
bative x → +∞ expansion region, with a non-perturbative Stokes 
jump across the cut:

F (ei π x;α) − F (e−i π x;α) = −2π i

�(−α)

e−x

x1+α
(4)

We probe: (i) extrapolation from x = +∞ down to x = 0; (ii) ex-
trapolation into the complex plane, rotating from the positive to 
negative real x axis. Case (i) is an analog of a high to low tem-
perature extrapolation, and (ii) is an analog of a non-perturbative 
Stokes transition, like (4).

As mentioned above, the methods discussed here generalize 
to any resurgent function, as we can apply these tools locally by 
“zooming in” to the vicinity of any chosen Borel singularity. This, 
together with the fact that we are able to quantify the improve-
ment in precision as the number of input coefficients changes, 
explains why we describe the extrapolation methods for the rep-
resentative function in (3). We show below several examples to 
illustrate that the methods described here apply also to general 
cases with more than one contribution to the large-order behavior, 
due to multiple (indeed, infinitely many) Borel branch cuts.

The crudest approach is to use the truncated series (1), but the 
principle of least-term truncation [48] implies one can typically 
only extrapolate from x → +∞ down to xmin ∼ N . Padé approx-
imation in x yields a significant improvement. Padé is a simple 
algorithmic re-processing of the input coefficients an [48,49]. For 
F (x; α) in (3), Padé can be written in closed-form in terms of 
Laguerre polynomials, using the fundamental connection between 
Padé and orthogonal polynomials (App. A). Large N asymptotics of 
Laguerre polynomials leads to a uniform estimate for the fractional 
error, implying that a desired level of precision can be achieved 

1 Other interesting numerical methods include summation to the least term, 
greatly improved by hyperasymptotics and hyperterminants [46,47], which iterate 
the asymptotics of the asymptotics, but these typically have a terminal non-zero 
error, and a direct comparison is beyond the scope of this paper.
Fig. 1. Log plot of the fractional error in F (x; − 1
3 ), extrapolated to x → 0+ , with 

just 10 input coefficients (N = 5) from x → +∞. The horizontal line represents 1%
fractional error. The purple, red and blue curves are the x plane Padé, Padé-Borel 
and Padé-Conformal-Borel extrapolations, respectively. Processing the same input 
data in different ways can yield vastly different extrapolation quality.

down to a minimum x that scales with the truncation order as 
xmin ∼ 1/N . See Fig. 1.

Borel methods directly yield a further 1
N factor improvement. 

See Fig. 1. We stress that this improvement of precision is based 
on exactly the same input data: it is just that the input truncated 
expansion is processed differently. The truncated Borel transform, 
B2N (p) ≡ ∑2N

n=0
an
n! pn , regenerates the original truncated series by 

a Laplace transform: F2N (x) = ∫ ∞
0 dp e−p x B2N(p). Borel extrapola-

tion is achieved by analytic continuation of the truncated Borel 
transform B2N (p). The quality of this continuation in the Borel 
plane determines the quality of the extrapolation for F2N (x) in the 
physical x plane. For F (x; α) in (3), the exact Borel transform is

B(p;α) =
∞∑

n=0

(−1)n�(n − α)

�(−α)n! pn = (1 + p)α (5)

with a branch cut on the negative p axis: p ∈ (−∞, −1]. The 
closed-form expression for the diagonal Padé approximation of 
B2N (p) is:

PB[N,N](p;α) =
P (α,−α)

N

(
1 + 2

p

)

P (−α,α)
N

(
1 + 2

p

) (6)

P (α,β)
N is the Nth Jacobi polynomial. This Padé-Borel approximation 

is a ratio of polynomials, with only pole singularities. Padé at-
tempts to represent a cut with an interlacing set of zeros and poles 
[45,50,51]. We see this clearly here because Jacobi polynomial ze-
ros lie on the real axis in the interval (−1, 1), so the zeros of the 
denominator in (6) lie along the Borel plane cut, p ∈ (−∞, −1), 
accumulating to p = −1.

Away from the cut, the Padé-Borel transform PB[N,N](p; α) in 
(6) is remarkably accurate. Large N asymptotics of the Jacobi poly-
nomials quantifies this statement:

PB[N,N](p;α)

(1 + p)α
∼

Iα
((

N + 1
2

)
ln

[√
1+p+1√
1+p−1

])

I−α

((
N + 1

2

)
ln

[√
1+p+1√
1+p−1

]) (7)

Iα is the modified Bessel function. For Borel extrapolation, small x
behavior is controlled by large p behavior of the Borel transform. 
Eq. (7) implies PB[N,N](p; α) ∼ pα

(
N2

p

)α
as p → +∞. Thus Padé-

Borel is good up to p ∼ N2, translating to an x space extrapolation 
extending down to xmin ∼ 1/N2. See Fig. 1. This explains why Padé 
in the Borel plane is generally more precise than Padé in the phys-
ical plane, an old empirical observation in [52].
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The most interesting thing about our uniform Padé-Borel ap-
proximation (7) is the appearance of the conformally mapped vari-
able z:

z =
√

1 + p − 1√
1 + p + 1

←→ p = 4z

(1 − z)2
(8)

which maps the cut Borel p plane to the interior of the unit disc, 
|z| < 1. Conformal maps are well-known tools for physical resum-
mation problems [5–17], but the result (7) now explains why and 
how it works so well: the conformal variable is the natural variable 
of large order Padé asymptotics. This is a general property of Padé 
approximations [45,50,51], not just for the function F (x; α) in (3).

Another common physical extrapolation, Taylor-Conformal-
Borel, does not use Padé, but conformally maps the truncated 
Borel function to the unit disc in z, re-expands and maps back 
to the Borel p plane [6,8,13]. See Fig. 6 for an illustrative compar-
ison. This similarity arises from comparing the asymptotics of the 
Padé-Borel expression in (6) with the Padé of the Taylor-Conformal 
expansion in (A.9) [45]. Our methods show that this procedure is 
comparable to Padé-Borel, with xmin also scaling as 1/N2, but sub-
leading terms tend to make it slightly better.

A significantly better Borel extrapolation [5,12,53–55] combines 
the conformal map with a Padé approximation in the conformal 
z variable, before mapping back to the Borel p plane. We show 
that this simple extra Padé step yields a further factor of 1/N2

improvement in the extrapolation down towards x = 0. The closed-
form diagonal Padé approximant is now:

PCB[N,N](p;α) =
P (2α,−2α)

N

(√
1+p+1√
1+p−1

)

P (−2α,2α)
N

(√
1+p+1√
1+p−1

) (9)

P (α,β)
N is again the Nth Jacobi polynomial. Uniform large N asymp-

totics yields (see App. A):

PCB[N,N](p;α)

(1 + p)α
∼ I2α

((
N + 1

2

)
ln [h(p)]

)
I−2α

((
N + 1

2

)
ln [h(p)]

) (10)

where the argument now involves the function h(p) =(√
1+p+1√
1+p−1

)
((1+p)1/4+1)2

(
√

1+p+1)
, and the Bessel index is 2α. Contrast (10)

with the Padé-Borel result (7). The small x behavior is controlled 
by the large p behavior of the Borel transform. As p → +∞, we 
find PCB[N,N](p; α) ∼ pα

(
N4

p

)α
. Thus PCB[N,N](p; α) extends out 

to large p scaling like N4, corresponding to extrapolation in x
down to xmin scaling as 1/N4. See Fig. 1. This represents a dra-
matic improvement in the range of extrapolation, using exactly 
the same input coefficients, even when this number of input coef-
ficients is only of the order of 10.

Since the large N asymptotics (7), (10) are uniform in p, we can 
probe the quality of the extrapolations throughout the complex 
x plane. The most dramatic superiority of the Padé-Conformal-
Borel extrapolation is seen in the non-perturbative region near the 
negative x axis, which is “as far as possible” from the starting per-
turbative expansion region x → +∞, on the positive x axis. This 
region is governed by the Borel transform near the Borel plane cut: 
p ∈ (−∞, −1]. Both Padé-Borel and Taylor-Conformal-Borel have 
unphysical oscillations near the cut, while the Padé-Conformal-
Borel transform is extremely accurate. See Fig. 2. This is because 
the argument of the Jacobi polynomials in (9) is 1

z , the inverse of 
the conformal variable z in (8). The Jacobi zeros lie in the inter-
val (−1, 1), so z lies outside the conformal unit disc. Therefore the 
Padé singularities are on the next Riemann sheet when mapped 
back to the Borel plane. In other words, the Padé-Conformal-Borel 
transform has no poles or singularities along the cut. See Fig. 2. 
Fig. 2. Real part of the N = 5 Borel transform at a grazing angle .01π above the 
Borel cut. The Padé-Conformal-Borel transform matches the exact Borel function 
[blue curve]. The Padé-Borel (red) and Taylor-Conformal-Borel (black-dashed) ap-
proximations show unphysical oscillations near the cut.

Fig. 3. The purple, red and blue curves show the non-perturbative Stokes jump (4), 
for x-Padé, Padé-Borel and Padé-Conformal-Borel extrapolations (N = 5), resp. Padé-
Conformal-Borel agrees with the exact Stokes jump in (4). Padé in x and Padé-Borel 
fail at small |x| due to unphysical poles.

It is therefore far better representing non-perturbative Stokes phe-
nomena: see Fig. 3. With just 10 perturbative input coefficients, 
generated from an asymptotic expansion about x → +∞, the Padé-
Conformal-Borel extrapolation encodes the exact Stokes jump (4), 
even at very small |x|. The Padé-Borel extrapolation fails at small 
|x|, due to unphysical poles on the Borel cut. The x space Padé ex-
trapolation is much worse, due to unphysical poles on the x space 
cut.

Our quantitative extrapolation analysis for the physically mo-
tivated model function F (x; α) in (3) generalizes to all resurgent 
functions, which are universal in physical applications [45]. This 
is because resurgent functions have isolated algebraic or logarith-
mic Borel branch points, and physical resurgent functions tend to 
have relatively simple Borel plane structure. But even for simple 
structures with multiple singularities, Padé-Borel fails because it 
puts unphysical poles on artificial arcs along or crossing the Borel 
integration axis [45,50,51], while Padé-Conformal-Borel does not. 
See Figs. 2, 4, 5. A further advantage is that, generically for non-
linear problems, each Borel singularity pk is repeated at integer 
multiples along the direction arg(pk): a physical “multi-instanton” 
expansion or renormalon structure. Here Padé-Borel fails because 
it places unphysical poles along this direction (Figs. 4, 5), thereby 
obscuring the further resurgent Borel singularities. In contrast, 
Padé-Conformal-Borel can accurately represent such a situation of 
aligned branch points (overlapping branch cuts), resolving higher 
resurgent singularities. This has been demonstrated to high preci-
sion for the Painlevé I equation [55], which describes the double-
scaling limit of matrix models for 2d quantum gravity [56].

We illustrate these points with two physical examples from 
quantum mechanics and quantum field theory. (Two further quan-
tum field theoretic applications are in [57,58]). In each case, there 
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Fig. 4. The real part of the Borel transform of the ground state energy for the quar-
tic anharmonic oscillator, on the negative Borel axis along which there are physical 
singularities at integer multiples of the leading one at p = −1. The Padé-Borel 
transform (red curve) introduces spurious singularities beyond the leading one, and 
is unable to resolve the second. The Padé-Conformal-Borel transform (blue curve) 
smoothly resolves the first two singularities.

is an infinite set of Borel singularities, but we can apply our anal-
ysis in the vicinity of each. The quartic anharmonic oscillator is 
an important physical paradigm of the study of asymptotic series 
and Padé methods [42,44,52]. Indeed, [52] contains an early ex-
plicit instance of the Padé-Borel method. In Fig. 4 we consider the 
perturbative expansion of the ground state energy for the Hamil-

tonian H = p2

2 + 1
2 x2 + λx4, and plot the associated Borel trans-

form (the real part thereof) just above the negative Borel p axis, 
along which there are physical singularities at all integer multi-
ples of the leading singularity, normalized to be at p = −1. These 
are the singularities on the first Riemann sheet corresponding to 
the physical instability when λ → −λ. We take 40 input coeffi-
cients, generated from the BenderWu package [59]. Fig. 4 shows 
that the Padé-Borel method (red curve) resolves the leading Borel 
singularity, but beyond p = −1 Padé-Borel places artificial poles in 
an attempt to represent the leading cut, and so is unable to re-
solve the second resurgent singularity at p = −2. By contrast, the 
Padé-Conformal-Borel method (blue curve), with exactly the same 
input coefficients, has no such spurious poles between p = −1 and 
p = −2, and furthermore is able to resolve the second Borel singu-
larity. Taking more coefficients allows one to resolve further Borel 
singularities. This added precision leads to improved resummations 
of the ground state energy, and also to accurate extractions of non-
perturbative information due to the precision near the cuts.

A physical example from quantum field theory is the cusp 
anomalous dimension, denoted �(g), in maximally supersymmet-
ric Yang-Mills theory in 4 spacetime dimensions. This quantity sat-
isfies a system of non-linear integral equations, the Beisert-Eden-
Staudacher (BES) equations [60]. It is convergent at weak coupling, 
but divergent at strong coupling [61]. Its resurgent properties have 
been studied in [62,63]: �(g) has a trans-series structure, as a sum 
over an infinite tower of saddles, and the fluctuation about each 
saddle is an asymptotic series. Padé-Borel analysis of the fluctua-
tions about the first and second saddles, suggests an asymmetric 
Borel plane structure, with leading singularities at p = +1 and 
p = −4, while for the fluctuations about the third saddle the lead-
ing singularities are at p = ±1 [62,63]. Fig. 5 shows the logarithm 
of the imaginary part of the Borel transform of the divergent per-
turbative strong coupling expansion of the cusp anomalous dimen-
sion, based on 180 input coefficients (from [63]) [the fluctuation 
about the perturbative saddle], plotted along the Borel axis along 
which there are physical singularities at integer multiples of the 
leading negative one at p = −4 and the leading positive one at 
p = +1. We plot the logarithm in order to be able to show the pos-
itive and negative singularities on the same scale. We see that each 
of the Padé-Borel and Padé-Conformal-Borel transforms resolves 
Fig. 5. The logarithm of the imaginary part of the Borel transform of the divergent 
perturbative strong coupling expansion of the cusp anomalous dimension. There 
are physical singularities along the Borel axis at integer multiples of the leading 
negative one at p = −4 and leading positive one at p = +1. The Padé-Conformal-
Borel transform (blue) smoothly resolves the first two singularities, on both the 
negative and positive Borel axis. The Padé-Borel transform (red) introduces spurious 
singularities beyond the leading one, and is unable to resolve the second, in both 
directions.

the leading singularity on both the positive and negative Borel 
axis, but that the Padé-Borel method fails beyond these leading 
singularities because it places spurious poles in an attempt to rep-
resent the leading singularities. By contrast, the Padé-Conformal-
Borel method produces no such unphysical singularities along the 
cut, and furthermore resolves the second singularity on both the 
positive and negative Borel axis. In fact, higher singularities can 
also be resolved with this same input data.

To summarize, we have given new sharp estimates of the preci-
sion obtained by a variety of extrapolation methods, in the vicinity 
of an isolated branch cut Borel singularity. Dramatic, and quantifi-
able, improvements can be made based on exactly the same input 
data. In [45] we will prove analogous results for any resurgent 
function f : the optimal reconstruction accuracy is obtained from 
the truncated Taylor series of f ◦ ψ−1, where ψ is a uniformiza-
tion map from the Riemann surface of f onto the unit disk, with 
ψ(0) = 0. The resurgence perspective also leads to new approxi-
mation procedures [45]. Singularity elimination allows one to probe 
the vicinity of any given Borel singularity with extreme sensitiv-
ity. This can be applied not just in the Borel plane, but also to 
analyze branch cut singularities in the physical plane, e.g. in the 
study of phase transitions and critical exponents [2–4,9,10]. The 
capacity theory interpretation of Padé in terms of a minimal ca-
pacitor [50,51], by which poles are placed as charges on a graph 
of minimal capacitance, leads to new physically motivated methods 
to move poles out of the way, to break unphysical pole arcs, and 
to zoom in on a chosen singularity, leading to dramatic increases 
in precision. We anticipate that recent numerical conformal map-
ping algorithms [64] will be useful for analysis of realistic physical 
models. Further physical applications will be described elsewhere.
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Fig. 6. Logarithm of the fractional error in the extrapolation of F (x = 1; − 1
3 ), as a 

function of the input truncation order parameter N , extrapolated from a perturba-
tive expansion at x = +∞ down to a fixed reference value x = 1. The plots show 
the truncated series (xT), x-space Padé (xP), Padé-Borel (PB), Taylor-Conformal-Borel 
(TCB) and Padé-Conformal-Borel (PCB) extrapolations, respectively. These curves 
match well with the analytic large N results in Eqs. (A.5), (A.8) and (A.12).

Appendix A. Details of asymptotic results

This Appendix presents further technical details of the ana-
lytic comparisons between the five different extrapolation methods 
studied in this paper. Table 1 summarizes at a glance how the min-
imal x at which a chosen level of precision can be achieved scales 
with the truncation order parameter N . Fig. 6 displays the loga-
rithm of the fractional error, as a function of the truncation order 
parameter N , in the extrapolation from x = +∞ down to a fixed 
reference value, chosen here to be x = 1. The truncated series at 
fixed x gets dramatically worse for larger N , while all other ex-
trapolations improve in precision with increasing N .
1. Truncated series: For a truncated asymptotic series with coef-
ficients growing like n!, the optimal truncation order is at N ∼ x
[48], so if N is fixed we can achieve a reasonable precision only 
for x extrapolated from x = +∞ down to some xmin that scales 
with N as xmin ∼ N .
2. x-Padé: An improved extrapolation is achieved by computing 
a Padé approximant of the truncated asymptotic series in the 
physical 1/x variable. For our physical test function F (x; α) =
x−1−α ex�(1 + α, x), which has Bender-Wu-Lipatov asymptotics 
[42–44], this Padé approximant can be computed in closed form, 
which leads to precise asymptotic precision estimates. We find the 
closed-form:

P [N−1,N](F (x;α)) = R N−1(x;α)

SN(x;α)
(A.1)

where the polynomials R N−1(x; α) and SN (x; α) are in terms of 
Laguerre polynomials:

SN(x;α) = N! L(−1−α)
N (−x) (A.2)

R N−1(x;α) = (A.3)[
N−1

2

]
∑
j=0

�(N − j)�(1 + α)

�(1 + α − j)
L(2 j+1−α)

N−1−2 j (−x)

A general feature of Padé is that the difference between successive 
near-diagonal approximants can be expressed in terms of succes-
sive denominator factors [48,49]. Here this reads:

P [N,N+1](F (x;α)) − P [N−1,N](F (x;α)) (A.4)

= �(N − α)

�(−α) (N + 1)! L(−1−α)
(−x) L(−1−α)

(−x)
N+1 N
The large N asymptotics of Laguerre polynomials therefore leads to 
a sharp estimate for the fractional error:

F (x;α) − P [N−1,N](F (x;α))

F (x;α)
∼ e−√

8 N x (A.5)

Thus, for a chosen level of precision, one can extrapolate from 
x = +∞ down to xmin which scales with the truncation order as 
xmin ∼ 1

N . This is a significant improvement over the naive trun-
cated series. See Fig. 6. Recall that exactly the same input data is 
used.
3. Padé-Borel: Instead of a Padé approximation in the x plane, 
we can use a Padé approximation in the Borel p plane: we 
thereby analytically continue the truncated Borel transform func-
tion, B2N(p) = ∑2N

n=0
an
n! pn , instead of the truncated series (1). Padé 

is a nonlinear operation, so it does not commute with the Borel 
transform step. It had been observed empirically in the analysis 
of the spectrum of the quantum anharmonic oscillator [52], that a 
Padé approximation in the Borel plane produced more precise re-
sults than a Padé approximation in the coupling plane. See also 
[65]. Here we explain why this is the case, and furthermore we 
quantify the degree of improvement.

For the physical model function F (x; α) in (3), the closed-form 
Padé-Borel transform is expressed as a ratio of Jacobi polynomi-
als in (6), and the uniform large N limit is presented in Eq. (7) as 
a ratio of modified Bessel functions. This large N limit is remark-
ably precise even for small values of N . At small p, which governs 
the large x behavior of the extrapolated function in the physical x
plane, we find a fractional error:

(1 + p)α − PB[N,N](p;α)

(1 + p)α

∼ 2 sin(πα)

(√
1 + p − 1√
1 + p + 1

)2N+1

∼ 2 sin(πα)
( p

4

)2N+1
(A.6)

Note the appearance of the conformal variable z from (8) in this 
limit. This is general [45,50,51]. In the opposite limit, as p → +∞, 
which governs the small x behavior of the extrapolated function in 
the physical x plane, we have:

PB[N,N](p;α) ∼ �(1 − α)

�(1 + α)

�(N + 1 + α)

�(N + 1 − α)

×
(

1 + 2αN(N + 1)

(α2 − 1)

1

p
+ . . .

)

∼ �(1 − α)

�(1 + α)
pα

(
N2

p

)α

(A.7)

In other words, while the true Borel transform has large p be-
havior B(p; α) ∼ pα , the Padé-Borel approximation behaves as 
PB(p; α) ∼ N2α , implying that in a uniform large N and large p
limit, the Borel variable p scales with N2. Thus, there is good 
agreement between PB(p; α) and the true Borel transform up to 
a p value that scales as N2 with the truncation order. A large N
analysis of the Laplace integral, F2N (x) = ∫ ∞

0 dp e−px B2N (p), using 
the uniform asymptotics in (7) leads to the fractional error of the 
Padé-Borel extrapolation in the physical x plane:

fractional errorPB(x, N;α)

∼ 2

√
π

3

sin(πα)√
x

(
2N

x

)(2α+1)/3

×exp

[
−3

(
4N2 x

)1/3 + x + . . .

]
(A.8)
3
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This confirms that the leading behavior has xmin scaling with 1
N2 , 

and specifies the subleading corrections, which agree well with the 
numerical results in Fig. 1. Note that the dependence on the cut 
exponent α is subleading.
4. Taylor-Conformal-Borel: Another approximation method, of pre-
cision comparable with the Padé-Borel method, does not use 
a Padé approximation, but instead makes a conformal map in 
the Borel plane [6,8,13]. This Taylor-Conformal-Borel extrapolation 
consists of re-expanding the Borel transform function in the con-
formal variable to the same order as the original truncated series. 
This can then be mapped back to the original Borel plane to per-
form the integral, or equivalently the integral can be done inside 
the unit disc of the conformal z plane. For our model function 
F (x; α) in (3), the mapped Taylor-Conformal-Borel transform has 
the explicit closed-form expression

TCB2N(p;α) =
2N∑
l=0

(
2α
l

)
(A.9)

×2 F1(−l,2α,1 − l + 2α;−1)

(√
1 + p − 1√
1 + p + 1

)l

enabling rigorous estimates of the precision [45]. The resulting 
precision is comparable with, but due to sub-leading terms is gen-
erally slightly better than, the Padé-Borel extrapolation described 
above. See Fig. 6 and Table 1.
5. Padé-Conformal-Borel: A far better extrapolation, which com-
bines the advantages of the Padé-Borel method with those of con-
formal mapping, is obtained by adding a simple extra step of Padé 
approximation in the conformally mapped z plane before mapping 
back to the Borel plane [5,12,53–55]. This straightforward extra 
Padé step leads to a dramatic further improvement in the resulting 
extrapolation. See Figs. 1 and 6, and Table 1.

For the physical model function F (x; α) in (3), the closed-form 
Padé-Conformal-Borel transform is expressed as a ratio of Jacobi 
polynomials in (9), and the uniform large N limit is presented in 
Eq. (10) as a ratio of modified Bessel functions. This large N limit is 
remarkably precise even for small values of N . At small p, which 
governs the large x behavior of the extrapolated function in the 
physical x plane, we have a fractional error:

(1 + p)α − PCB[N,N](p;α)

(1 + p)α

∼ 2 sin(2πα)

( √
1 + p − 1

(1 + (1 + p)1/4)2

)2N+1

∼ 2 sin(2πα)
( p

8

)2N+1
, p → 0 (A.10)

There are two important differences compared to the correspond-
ing result for the Padé-Borel transform in (A.6). First, the branch 
cut exponent α appears as sin(2πα) instead of sin(πα), reflecting 
the fact that for a square root branch cut the conformally mapped 
function is already rational, so the Padé step is in fact exact. The 
other difference is the different function of p in (A.10). This leads 
to a further gain of a factor of 1/4N in the precision at small p, 
and hence a similar gain in precision at large x.

In the opposite limit, as p → +∞, which governs the small x
behavior of the extrapolated function in the physical x plane, we 
find:

PCB[N,N](p;α) ∼ �(1 − 2α)

�(1 + 2α)

�(N + 1 + 2α)

�(N + 1 − 2α)

×
(

1 + 4αN(N + 1)

(4α2 − 1)

1√
p

+ . . .

)

∼ �(1 − 2α)

�(1 + 2α)
pα

(
N4

p

)α

(A.11)

Thus PCB[N,N](p; α) extends accurately out to large p scaling like 
N4, which translates to a high quality extrapolation in x down to 
xmin scaling like 1/N4. See Figs. 1 and 6, and Table 1. A large N
analysis of the Borel integral back to the physical x plane, using 
the uniform asymptotics in (10), leads to the fractional error of 
the Padé-Conformal-Borel extrapolation in the physical x plane:

fractional errorPCB(x, N;α) ∼ (A.12)

2

√
2π

5

sin(2πα)√
x

(
N

x

)2(2α+1)/5

×exp

[
−5

(
N4x

) 1
5 − 4

3N2
(N4x)

3
5 + 3x

5
+ . . .

]

This confirms that the leading behavior has xmin scaling with 1
N4 , 

and specifies the subleading corrections, which agree well with the 
numerical results shown in Fig. 1.
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