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Superstring phenomenology explores classes of vacua which can reproduce the
Standard Model at low energy. We consider Weakly Coupled Free Fermionic Het-
erotic String Theory (WCFFHST) which produces four dimensional Standard-like
Models and allows for their SO(10) embedding. In the models herein, we explore the
removal of extra Higgs representations via free fermion boundary conditions directly
at the string level, rather than in the low energy effective field theory. We focus on
the flat direction analysis of four models with reduced number of Higgs, after flat
direction analysis of a three generation reduced Higgs model revealed no stringent
F— and D—flat solutions to all order in the superpotential. Flat direction analysis
of the four models presented herein shows the lack of D— and F'—flat solutions to
all order is not a general property of low Higgs models, as stringent flat directions

appear to all order for three of our four models.
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CHAPTER ONE

Introduction

1.1 Motivation

The Standard Model (SM) of Particle Physics correctly describes the physics
of the elementary particles and their interactions, as confirmed by experiment, up
to the electroweak scale, My, = 246 GeV. It combines three of the four fundamental
forces of nature, the weak nuclear, the strong nuclear, and the electromagnetic in-
teractions into a single, unique fundamental framework, a Yang-Mills gauge theory
based on the symmetry group SU(3)c x SU(2) x U(1)y, where C, L, and Y denote
the color, the weak isospin, and the hypercharge quantum number, respectively. In
particular, the weak nuclear and the electromagnetic interactions are described by
an SU(2), x U(1)y gauge symmetry, which is spontaneously broken to a U(1)e, by
the Higgs mechanism (1). The resulting massive gauge bosons, W+ and Z°, mediate
the weak interactions, while the massless boson, 7, the photon, is the carrier of the
electromagnetic force. The SU(3)¢ sector describes the Quantum Chromodynam-
ics (QCD), which remains unbroken, and whose messengers are the eight massless
gluons of the strong nuclear force. The SM content consists of three generations of
quarks, in agreement with observed experiments. The predictability of the SM is a
consequence of its renormalizability, which assures a consistent perturbative analysis
of quantities related to particle physics, i.e, infinities that may appear in the calcula-
tions are consitently absorbed into a finite number of physical parameters. Despite
the acheivements accomplished in this setup, however, several issues have not yet
been resolved. In the next few paragraphs, we detail some of the most important

shortcomings of the SM (2).



The SM does not include in its descrpition Newtonian gravity, which is 42
orders of magnitude smaller than the nuclear forces. Although General Relativ-
ity (GR) describes its infrared properties consistently, gravity is characterized by
nonrenormalizable operators which produce divergences in the ultraviolet limit.

The Higgs boson, responsible for the electroweak symmetry breaking and for
the generations of the masses for the elementary particles, has a mass of the order of
100 GeV if correctly predicted by the SM. This mass receives radiative corrections
which can make the Higgs very heavy (=~ 10! GeV'), while its vacuum expectation
value is of the order of the electroweak scale. The hierarchy between the two energy
scales in the physics of the Higgs boson appears very unnatural, and certainly unap-
pealing for a fundamental theory. The introduction of supersymmetry (a symmetry
between fermionic and bosonic degrees of freedom in the theory) solves this problem
by preventing the scalar particle from acquiring the dangerous contributions from
the perturbation theory, thus stabilizing its mass.

The coupling constants for the electromagnetic and nuclear forces are param-
eters which depend on the energy scale. If their behavior is extrapolated at high
energy, roughly 10'® GeV/, these values approach one point, but do not coincide. If
supersymmetry is included, the final theory provides a unified description of the
forces of the SM at high energy.

More than twenty free parameters describe the physics of the SM and their
values are completely arbitrary. For instance, the fermion masses, the gauge and
Yukawa couplings, the Kobayashi-Maskawa parameters, and many others have to be
fixed by experiment and put by hand into the theory.

Most quantum field theories predict a very large cosmological constant, of
the order Mp;, from the energy of the quantum vacuum. However, the measured
cosmological constant is smaller than this by a factor of 10'2°, and has been called

one of the worst theoretical predictions in the history of physics.



There are many other open questions related to the physics of the SM, such as
the non-existence of magnetic monopoles, which would explain charge quantization.
Also, there is no reasonable explanation for the number of families. In addition,
there is the issue of the non-zero neutrino masses, due to their oscillations, which
does not fit into the description of leptonic physics of the SM. The attempts at
overcoming all these inconsistencies lead to several different theoretical solutions
in physics beyond the SM, for instance, the introduction of grand unified theories
(GUTs) and supersymmetry. The main goal of GUTs (2; 3) is solving the unification
problem previously mentioned, by extending the gauge symmetry group of the SM
to a Ggyr characterized by only one gauge coupling. In principle, the strong and
weak nuclear and the electromagnetic interaction merge together at some higher
energy scale Mgyr where the theory has the larger gauge symmetry Ggyr. When
the energy decreases below Mgy, the GUT symmetry breaks to the SM gauge group
SU(3)x SU(2)xU(1) and the couplings associated with different factors evolve at at
different rates. The smallest simple group which accomodates the SM is the SU(5)
with Mgyr =~ 10 GeV. (4) A typical feature of GUTs is the mixing of quarks
and leptons into the same group representation. Thus, in the case of an SU(5)
gauge group, a matter generation is confined to the two irreducible representations
{10,5} € SU(5). By considering a larger Ggyr, an SO(10) symmetry, for example
(5), it is possible to combine one generation into only one irreducible representation,
precisely the 16 representation of SO(10). In the latter case, the presence of a
singlet state, the right-handed neutrino, and the absence of exotic particles makes
the model highly predictive.

Unfortunately, there are several unsolved questions appearing in GUTs, most
of which originated from the quark-lepton mixing. A first example is given by
the existence of new interactions that violate lepton and baryon number, which

are responsible for the instability of the proton. Another typical problem is the



presence of color-triplet Higgs states which we do not expect to see in the low energy
spectrum, called the double-triplet splitting problem. Additionally, GUTs do not
provide a solution to the hierarchy problem, which already affects the physics of the
SM. Finally, GUTs still suffer from the lack of gravity.

Several answers to the previous problems are presented by supersymmetric
theories. In particular, the heirarchy problem is solved with the introduction of
supersymmetry (SUSY), as anticipated earlier, which associates to each boson of
the theory a fermionic superpartner with the same quantum numbers (since any
internal symmetry commutes with SUSY). This symmetry is an extension of the
Poincare algebra which includes the fermionic generators Q%,i = 1,...N, satisfying
anticommutation relations. The way SUSY overcomes the heirarchy problem is
by ’doubling’ the spectrum, where each scalar coexists with its fermionic partner.
Basically, the radiative corrections of the scalar Higgs at one-loop include a divergent
scalar self-energy term. In SUSY theories, a quadratically divergent term from the
bosonic superpartner arises, giving an exactly opposite contribution. Hence, we
arrive at a cancellation of terms which stabilizes the scalar masses of the theory.
At low energies, there is no experimental evidence of SUSY particles, implying that
SUSY has to be broken at a low scale, while being an exact symmetry at high

energies.

1.2 String Theory as a Theory of Unification
As mentioned before, the non-renormalizability of GR makes a consistent de-
scription of quantum gravity problematic. Therefore, the formulation of a quantum
theory that includes gravity with the other three forces is very important. String
theory seems to be the most successful candidate to date for a unified theory of all
the forces in naure. The regularization of the gravitational interactions is realized

courtesy of the introduction of an extended object, the string. The known particles



are then associated with massless excitations of the string. Beside these particles,
there is an infinite tower of fields with increasing masses and spins(6; 7) with typical
mass of the order of the Planck scale, Mp ~ 10* GeV. Among all excitation modes,
the graviton, the quantum of the gravitational field, arises in the spectrum, and sug-
gests the interpretation of string theory as a quantum theory of gravity. Moreover,
the presence of only one parameter, the string coupling, gs, used in the description
of all phenomena, is considered a key feature in the prospect of a unifying theory.
From a more technical point of view, string theory contains gauge symmetries which
may incorporate the SM symmetry. Finally, supersymmetry arises in a natural way
in this setup, despite the existence of consistent modular invariant string theories
which are not supersymmetric. In the quantization procedure, the consistency of
string theory requires spacetime to have a critical dimension, which corresponds
to D = 10 for supersymmetric strings. In the table below, we present the five

10-dimensional perturbative superstring theories and some of their most important

properties.
Table 1.1: The Five Different Types of String Theories.
Type Nsusy String Massless Bosonic Content
Hpg v i 1 closed and oriented Guvs @, By, Ay, of Eg x Eg
Hsos2) 1 closed and oriented Guvs ¢, B, A, of SO(32)

I —50(32) 1 open + closed unoriented g, ¢, A, A, of SO(32)

ITA 2 closed and oriented Guvs ¢, Buw, Chup, A, of U(1)
IIB 2 closed and oriented G, 0, BN, o1, BE DI .

In Table 1.1, g,., ¥, B, A,, represent the graviton, the dilaton, the anti-

iz

symmetric tensor, and the gauge bosons, respectively. The bosons A, belong to the

adjoint representation of Eg x Eg or SO(32) for the first three cases, while they are



bosons of U(1) symmetries for the type ITA case. C,.,, ¢/, ny, and D;pro rep-
resent, again respectively, a three-index tensor potential, a zero-form, a two-form,
and a four-form potential, the latter with self-dual field strength. The five super-
string models represent a single, unique theory, known as M-theory, but in different
regimes. Thus, each of the five superstring models are connected by various types of

equivalencies, the so-called string dualities (8). The underlying fundamental theory,

whose low energy limit 11-dimensional supergravity (SUGRA) (9), is still poorly

understood.
M-theotry
11D 3-Dual $-Dual
¥ \ ﬁ v P4 y
— L Ll EExEZ [] S03G2 L] -
Type ITA Type I
10D TR T Heterotic Heterotic *
9T R B
T-Dual T-Dual

Figure 1.1: Supersymmetric perturbative consistent string theories in 10 dimensions.

As we can see from Figure 1.1, the duality transformations relate the super-
string theories in nine and ten dimensions. T duality inverts the radius, R, of the
circle S! along which a space direction is compactified, R — }%. In particular, this
duality relates the weak-coupling limit of a theory compactified on a space with large
volume to the corresponding weak-coupling limit of another theory compactified on
a small volume. S duality instead provides the quantum equivalence of two theories
which are perturbatively distinct. In fact, it inverts the string coupling, g, — gis.
The perturbative excitations of a theory are mapped to non-perturbative excitations

of the dual theory and vice versa. Figure 1.1 summarizes the relevant information

of the perturbative string theories and their network of dualities.



In order to make contact with the real world, the compactification of the six
extra dimensions is needed. This procedure follows the Kaluza-Klein dimensional
reduction of quantum field theory and is generalized to the case where a certain num-
ber of spacetime dimensions give rise to a compact manifold, invisible at low energy
(10; 11). Demanding four-dimensional N = 1 spacetime supersymmetric models
leads us to a special choice of internal manifolds, the so-called Calabi-Yau manifolds
(12). Compactifications of this kind are characterized by some free parameters, the
moduli, generally related to the size and shape of the extra dimensions. The low
energy parameters often depend on these free values which spoil the predictivity of
the theory. The moduli describe possible deformations of the theory, and their con-
tinuous changes allow us to go from one vacuum to another. So far, the problem of
fixing the moduli has not been solved, since no fundamental principle is able to single
out a unique physical vacuum. The study of Calabi-Yau manifolds is complicated
since the computation of properties which are not of topological nature is difficult.
A simpler class of compact manifolds is given by the toroidal compactification, al-
though the resulting theory is not chiral. Hence, combining the desirable pictures
of Calabi-Yau manifolds and toroidal compactifications, we arrive at the orbifold
construction. The orbifold seems to provide a simple framework for the realization
of N = 1 supersymmetric models in four dimensions, which contain chiral particles.

In this thesis, we discuss the free fermionic heterotic construction, one of the
two main compactification schemes which offer complementary advantages in the
understanding of semi-realistic heterotic string models. The free fermionic construc-
tion is based on an algebraic method to build consistent string vacua directly in
four dimensions. In the fermionic formalism, all the world sheet degrees of freedom,
required to cancel the conformal anomaly, are given by free fermions on the string
worldsheet. This setup offers a convenient setting for experimentation of models,

allowing a systematic classification of free fermion vacua and their phenomenological



properties. Additionally, this setup has provided the most semi-realistic models to
date.

We produced the following results in this thesis. We presented four semi-
realistic models in the free fermionic formulation with a reduced Higgs spectrum.
The truncation of the Higgs is content is realized in this setup at the level of the string
scale, by the assignment of asymmetric boundary conditions to the internal right and
left-moving fermions of the theory. The analysis of flat directions, performed with
the standard methods, leads to very different results for each of the four models,
with two of four models lacking any abelian singlet flat directions to all order. In
addition, we present preliminary analysis of the dark matter content of each model
via the hidden sector, which shows several hidden sector fields taking on mass at one
tenth of the string scale for model 1. This has greater implications to cosmology,
as the dark matter content of semi-realistic free fermionic models can be used not
only to asses the similarity of a given model to our universe based on already known
dark matter constrains, but to provide new results which may assist cosmologists in
constraining dark matter parameters in our universe. Finally, we present a geometric
variation on the Nanopoulos, Antoniadis, Hagelin and Ellis (NAHE) set of basis
vectors which change the standard NAHE gauge group of (SO(10) @ SO(6)?)ps @
(E8)nia 10 (Eg @ U(1)?)ops @ SO(22)14q. This setup provides three generations under
the 27 representation of Fg. This NAHE variation also provides for the possibility of
the investigation of mirror models, in which the observable and hidden sector gauge

groups are the same.

1.8  Organization of the Chapters
We begin with a general introduction to the bosonic and fermionic string
in order to provide perturbative superstring constructions in Chapter 2. A brief

overview of the partition function which encodes the modular invariant properties



of the theory is discussed. We explain the bosonization procedure necessary for the
correspondence between fermionic and bosonic conformal field theories. We close
the chapter with some generalities on the heterotic string, which will be analyzed in
detail in the next chapters.

We present the main features of four dimensional semi-realistic models in the
free fermionic construction and show the advantages of using this compactification
scheme in Chapter 3. We fix the formalism to provide the consistency constraints
and the model building rules for this framework and explain the general derivation
of the spectrum before analyzing specific models in the next chapter.

In Chapter 4, we provide examples of four semi-realistic free fermionic models
within the NAHE basis. Analysis and discussion of the matter content in both the
observable and hidden sectors is presented. Flat direction analysis and discussion
for each model is presented. Comparisons to the Standard Model are given, with
emphasis on the observable sector matter. Additionally, where relevant, we discuss
the implications for dark matter constraints and detection in cosmology.

Finally, in Chapter 5, we present a geometric variation on the NAHE set. We
present an example of a model within this variation and discuss its matter content
and gauge group representations. We close the chapter with discussion about the
relevance of investigating this class of models.

We conclude in Chapter 6 underlining the main aim of our research, to obtain
a semi-realistic free fermionic string model which accurately describes the Standard
Model in the observable sector, and perhaps gives new insight into dark matter via
the hidden sector. We present the main results obtained, including different motives
for investigating the different classes of models presented, and we finally provide

possible outlooks.



CHAPTER TWO

The Heterotic String

In this chapter we construct the heterotic string. We begin by describing
the bosonic string, the simplest example of a string theory. We then discuss the
quantization procedure of the theory, and show how bosons are related to fermions
in a conformal field theory description. This will be one of the building blocks for
the free fermionic description of the heterotic string. Additionally, the four different
closed strings are discussed. We explain how the different string theories are related
by dualities. In most cases, we restrict our discussion to closed strings, since our

target is the construction of the heterotic string.

2.1 The Bosonic String

Strings are one dimensional objects whose propagation in a D dimensional
spacetime gives rise to a two dimensional worldsheet, X*(o,7),u =0, ..., D —1. The
worldsheet is parameterized by the two real and independent coordinates, ¢ and T,
where o is a space-like parameter spanning the interval [0, 7], and 7 is a time-like
parameter. In Figure 2.1, this surface is shown for the cases of both the free closed
and free open string.

The simplest action which describes the motion of a string is the Nambu-Goto

action,
SNG = —T/ dQO'\/ - (21)
M

where 7 is the determinant of the induced metric on the worldsheet,
Yap = OaX"03X" g, (2.2)

T is the string tension, T' = #a,, and the integral is over the string worldsheet,

M. The notation d?c represents 0 = (0°,6') = (7,0). The action is proportional

10



(b)

Figure 2.1: The worldsheets of both (a) a closed string and (b) an open string.

to the area swept from the worldsheet, and thus it provides a geometric and intu-
itive meaning of the string action. By introducing the independent metric on the

worldsheet, h*?, we obtain the Polyakov action,’

T —
S = —5 /]Md20' _hhaﬁnpyaaxuaﬁxu7 (23>

where h = det(h®?), and we have replaced the general metric, g,,,, with the Minkowski
metric, 7, for a flat D dimensional spacetime (13; 14). For the general background
with g, (X), (2.3) becomes the worldsheet action of D dimensional scalar fields X*
coupled to the dynamical two dimensional metric, which is the theory of quantum
gravity coupled to matter.

The Polyakov action has three symmetries:

e Poincare invariance in the target space, X*.
e Local reparametrization invariance.

e Conformal (Weyl) invariance.

The last two properties are local symmetries which can be used to fix the worldsheet

metric in the conformal gauge, h®® = e?(m%)y,5, obtaining a flat metric up to a

1 We choose to work with the Polyakov action because it supplies the equations of motion
in a simpler way than the Nambu-Goto action.

11



scaling function. The equations of motion (EOM) for the bosonic fields X* and for
the metric h®® are obtained via the variation of the action with respect to each of
these fields, as is usual. Varying the Polyakov action with respect to the worldsheet

metric gives the definition of the energy momentum tensor, 7,3:

2 08
T+/—h 6ho?

The energy momentum tensor is symmetric and tracless (T,, = 0) as a result of

1
Top = = 0a X" 05X, — §ha6hmapX“@7Xw (2.4)

the Weyl invariance. Then, requiring that the energy momentum tensor vanishes,
T.s = 0, gives the EOM for h*®. The requirement that the energy momentum
tensor vanishes is a condition called the Virasoro constraint, and is important in
considering the physical states of a given model.

It is convenient to rewrite the Virasoro conditions in light cone coordinates,
ot =740, 0- =7—0, where 91 = £(9; £0,). Then, we can rewrite the Virasoro

constraints as

1 1
T,, = 5(6+X)2 =0, T__ = 5(a_X)? =0; Thy = 0. (2.5)

The EOM for the fields X* take the form 9,0_X*" = 0, whose general solution can

be written as the sum of a right moving’ solution plus a ’left moving’ solution,
XHM(1,0) = Xi(r —0) + X} (T +0). (2.6)

Together with the periodicity constraint, X#(7,0) = X*(7,0 + 27), we obtain the

expansion

1 ! 1 .
Xp(r—o) = §m“ +a'pH (T — o) + iy % Z Eage_m””_”), (2.7)
n#0

1 [/ 1 :
Xji(r+o) = Sa'+ap(r+0)+i % > 55‘56_2”“”")7 (2.8)
n#0

From (2.7) and (2.8), we see that the classical motion of the string is described by

the center of mass position, x*#, the momentum, p*, and the oscillator modes.

12



For later convenience, we define the Virasoro operators as Fourier modes of

the stress tensor, which in the right and left moving sectors, respectively, are given

by
T [T , 1 &
Lm = _/ dO-GQZm(T_U)T—— = = Oé‘umfn * Qun, (m 7é 0)7 (29)
2 Jo 2=
4 T " 2im(T—0) 1 - 2
In = g ), AT e =g 2 O oy (A0, (210

with oy = \/%pg . The Virasoro operators satisfy L,, = 0,Vn € Z, and for the case
n = 0, we obtain the mass equations for the right and left moving modes, to be
discussed in more detail in the next section.

The oscillators, center of mass postion, and momentum all satisfy the standard
commutation relations, while the Virasoro operators form what is called the Vira-
soro algebra. In the covariant canonical quantization procedure, these commutation

relations become

[z, p"] = ™, (2.11)
[, o] = MmOy, (2.12)
(6, an] = MmOy, (2.13)
[Lon, Ln] = (m—n)Lm+n+122m(m2—1)5m+n. (2.14)

All other commutators between different combinations of operators vanish. D rep-
resents the central charge, and for the bosonic string, D = n*1,,. The hermiticity
of X* gives () = o¥n ; (a*)" = a"n. The same alegbra holds for the left oper-
ator, Ly,, and from now on, we will assume implicitly when defining properties of
operators in the right sector that analogous relations hold in the left sector. In the
quantization of a classical system, an ambiguity is introduced in the definition of the
operators, but this can be solved if we consider the corresponding normal-ordered

expressions. In the case of the Virasoro operators, the correct definition is given by

13



Ly, =3 _ :ah o, : The only term sensitive to normal ordering is Ly, where
a normal ordering constant, a, is introduced.

In the covariant quantization, we obtain states with negative norm, which
destroy the unitarity of the theory, but we can discharge those by imposing the

constraints:

Lm>olphys) =0, (Lo — a)|phys) = 0. (2.15)

It has been shown that the subset of positive norm states exists only for D < 26
and a < 1. (15)

It is easier to solve the Virasoro constraints in the light cone quantization?
where the states, obtained by solving the mass-shell equation, (2.15), are always
positive. However, if unitarity is guaranteed in this procedure, we need to verify
Lorentz invariance, which is not manifest. We have already mentioned that Lorentz
invariance is preserved for D = 26 and a = 1. Thus, D = 26 is a special choice of
spacetime dimensions, called the critical dimension of the bosonic string.

We use now a residual invariance, leftover after imposing the conformal gauge,

which is a reparametrization invariance up to scaling, generally defined as
oy = floy), oL — f(oo). (2.16)

This invariance allows us to fix the value of X+ as follows, leading to the light cone
gauge,

Xt =zt +2dp"T (2.17)
The light cone coordinates are given by X+ = (X° 4+ XP~1)/y/2, and by using the

Virasoro constraints, we can express X ~ in terms of the transverse coordinates X?,

where ¢ takes values in the transverse directions. This means that we are left only

2 We have already defined the operators in terms of light cone coordinates.

14



with the transverse oscillators, while the light cone oscillators are given by

1 . .
a, = ——— Loy, ant —2ad,0}, 2.18
n \/2—0/p+{z n 0} ( )

meZ

/
at = \/%pﬂ%o. (2.19)

Analogous expressions hold for aF. The Virasoro constraints in the light-cone gauge

define the mass-shell condition for the physical states

D —12 ~
i Lo = Ly. 2.20

9 N
2pTpT = E(LO + Lo —

In the first equation of (2.20), the Riemann-Zeta function® ((—1) = 75 has been
used, as a result of the divergent sums of zero-point energies due to the normal
ordering a of Ly and Ly (16). The second equation in (2.20) is the level matching
condition, a relation which connects the left with the right excitation modes of the
closed string. This constraint has to be imposed for the consistency of every closed
string model, and it contains important information regarding the physical states of
the model; the right and left modes provide the same contribution to the mass of
the physical states of the model. The masses of the string excitations are obtained
by the contributions of the transverse momenta, which for the right moving sector

are provided by the formula Lo = %pipi + N. The mass operator is

2 - D-2
M?==(N+N — T)’ (2.21)

where N = > a_, -y In the case at hand, D = 26, thus the first state

obtained from (2.21) is the ground state, [p#), with N = N = 0, whose mass is given

by M? = %‘,“, where, as stated earlier, a takes the value 1 for consistency. Such

a state is called the tachyon. The first excited state is the tensor o’ o’  |p*). If

we decompose this into irreducible representations of the group SO(24), we obtain

3 The infinite sum due to the zero-point energy is calculated by a regularization procedure
which introduces the Riemann-Zeta function, {(s) = Y ;- ; k~*. It provides the value of a in terms

of the space-time dimension D, which is exactly a = 222, as show in (2.21) for ((—1) = T+ (16).
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a symmetric tensor, g,,, a spin-2 particle which is the graviton, the antisymmetric

tensor, B,,, and a scalar, ¢, the dilaton. At the next level, we obtain states which

ns

are organized into representations of SO(25) and are massive.

2.2 The Superstring

As mentioned at the beginning of this chapter, the bosonic string suffers from
two main problems: the absence of spacetime fermions, which are necessary for a
realistic description of nature, and the presence of tachyons, which is a sign of an
incorrect identification of the vacuum. The solution to these problems leads to the
construction of the superstring, which comes about via the introduction of worldsheet
supersymmetry, realized by including D two-dimensional Majorana fermions, U* =
(W ), u = 0,...,D — 1, on the worldsheet. From the spacetime point of view,
these fields are vectors, but will provide spacetime fermions when combined with
the appropriate boundary conditions. In the following, we will work in the Ramond-
Neveu-Schwarz (RNS) formalism (17; 18), where the Gliozzi-Scherck-Olive (GSO)
projections are introduced in order to obtain supersymmetry (19). The generalized

action in the conformal gauge,
St = L 20(0, X100 X M p™
T=-5 d“o (0, u — W p*0,1,,) (2.22)
is invariant under worlsheet global supersymmetric transformations
0 X" =ey, , 0.X" = —ip®0, X" e, (2.23)

with € a constant spinor and p®, o = 0, 1, Dirac matrices which can be chosen as

P’ = | L pl = . (2.24)
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In light cone coordinates, the fermionic contribution of (2.22) is

V_01¢_ + 1 0_ty, (2.25)

where the spacetime index p has been supressed.

The equations of motion are simply the Dirac equations, 0+1y = 0. Their
solutions are of the form ¥_ =1_(0o,) and ¢, =1, (0_), and we can thus say that
1_ represents the right moving field while ¢, represents the left moving field. The

boundary conditions arise from requiring that

(V40 +1-0¢-)[7=5 =0, (2.26)
which is satisfied if ¢, and ¥ _ are periodic or anti-periodic,

Y (o +7,7) =Y (0,7), (2.27)

V(o +m,7) =Y (0, 7). (2.28)

The periodic case is called the Ramond (R) boundary condition, while the anti-
periodic case is called the Neveu-Schwarz (NS) boundary condition. The general

solution in terms of mode expansion for the right moving states is given by
Yt =) b o). (2.29)

An analogous expression holds for the left moving states, 1, by replacing o_ by
o4, and b by 13’;. As a result of the boundary conditions, the frequency, r, is integer
for R boundary conditions and half integer for NS boundary conditions.

The R boundary conditions and the integer modes describe string states which
are spacetime fermions. If we consider the fundamental state, bj|0; p*), we see that
it is massless and degenerate, as by satisfies the Clifford algebra {bj,b}} = 6. This
means that the Ramond vacuum is a spinor of SO(8), and all the states obtained
from the vacuum with the creation operators are fermionic as well. The NS bound-

ary conditions, on the other hand, with half integer excitations, give bosons. The
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fundamental state, |0; p*), has negative mass, which corresponds to a tachyon, and
is a scalar. The first excited massless state, b"_% |0; p*), is a vector of SO(8), and all
the states in this sector, created by half integer modes, provide bosons.

Because the superstring is an extension of the bosonic case, it is necessary to
expand the algebra which describes the theory. The classical Virasoro constraints

are now generalized to

Je=0, Ty =0, (2.30)

where the supercurrents and the energy momentum tensors are given in their light-

cone gauge coordinates
1
Jy =90, Xy, Ty =0, X0, X, + §¢i3+1/1+#, (2.31)
J_ =P X, T__ =9 _X"0_X, + %wﬁa_qp_u. (2.32)

The quantization of the fermionic fields is obtained by imposing the anticom-

mutation relations

{bM by} =", {Bvlfv BZ} =n"0pys- (2.33)

TS

The anticommutator of left and right oscillators vanishes. For r < 0,0, denotes
the creation operators, and for r > 0,b, denotes the annihilation operators. The
complete spectrum is provided by the action of the creation operators on the vacuum.

The mass-shell condition in (2.21) is now generalized by redefining N as the
number of right bosonic plus right fermionic oscillators acting on the vacuum. The
same redefinition applies to N. We need to take into account that real fermions can
assume either R or NS boundary conditions, which will change the contribution to
the zero-point energy, a. Each fermionic coordinate contributes with a —1/48 in the
NS sector and a 1/24 in the R sector, while each boson gives a contribution of —1/24
in both sectors. In D dimensions, in light cone gauge, we have D — 2 transverse
bosons, and D — 2 transverse fermions, which give a = 0 in the R sector, but give

a=—1/16(D — 2) in the NS sector.
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After quantizing the supersymmetric theory, the Virasoro constraints become

Ly L] = (m—n)Lpyyn + gm(m2 — 1)0m-tn, (2.34)

[Lm7 GT] = (% - T)Gm—i—ra (235)
D

{GrG} = 2L+ 207 - g)am, (2.36)

where the operators are defined by their normal ordered expressions,

L, = L% +1LY, (2.37)
, 1
L = 5 Z D Qg Qg s (2.38)
nez
/ 1 m
b _ . .
Ly = 5 > (= b by, (2.39)
nezZ+a
Gy = ) ibn-an:, (2.40)
nez

For completeness with respect to the bosonic case, we shall provide the light cone
quantization for the superstring case. The theory is ghost free, but not explicitly
covariant. However, we can assure Lorentz invariance if D = 10 and a = 1/2 (20).

The gauge is fixed via the relation ¢, = 0 and X = a/p™7 and because we
are fixing the longitudinal oscillator modes, the only independent degrees of freedom
are the transverse ones.

A supersymmetric non-tachyonic theory is obtained when the spectrum is trun-
cated by GSO projections (21). We will explain this truncation separately in the R
and NS sectors. In the NS sector, the GSO projections, Pgso, are defined by keep-
ing states with an odd number of ' . oscillator excitations and removing those with
even number. The projection operator in the NS sector, and the fermion number

are given by
infty
1 i i
Plso = 5(1 - (=17, F= Z bL, - by. (2.41)
r=1/2

Thus, the bosonic ground state is now massless, and the spectrum no longer contains

a tachyon, which has fermion number F' = 0. In the R sector, the fundamental state,
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a Majorana spinor, lives in the spinorial representation of SO(8), as mentioned

before. If we introduce the projection operator,
1
Pgso = 5(1 - (—1)Frg)a (2.42)

where T’y = b}, ...,b5 is the chiral operator in the transverse dimensions, then the
fundamental state becomes a Majorana-Weyl spinor of definite chirality. Pfy,, while
projecting onto spinors of opposite chirality, guarantees spacetime supersymmetry
of the physical superstring spectrum.*

The general procedure to obtain the massless spectrum is to solve the mass-
less equations for the left and right sectors, apply level matching conditions and
the particular GSO projections depending on the perturbative superstring model
considered, and finally tensor the left with the right states. If we want to proceed
with the explicit calculation of the spectrum, we need to specify the string theory
we wish to analyze. Supersymmetric theories with only closed strings are type ITA,
type IIB, and heterotic models. In types IIA and IIB, supersymmetry is realized in
both sectors, while in the heterotic string, supersymmetry is realized only on the left
(right) sector. By taking the tensor products of the right and left movers in types
ITA and IIB, we get four distinct sectors: NS-NS, R-R, NS-R, and R-NS, where the
former two sectors give bosons and the latter two sectors give fermion fields in the
target space. The features and differences among these two models have been given
in the introduction. In this thesis, we are interested in the heterotic string, and will

hence focus on the technicalities of the heterotic string in Section 2.4.

2.8 Bosonization
In this section, we present the equivalence between fermionic and bosonic con-
formal field theories in two dimensions, a correspondence which allows the consistent

construction of free fermionic models. Before entering into the details, we will give

4 We note that the choice of sign of (—1)fT, = =+1, corresponding to different chirality
projections on the spinors, is a matter of convention.
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the definition of operator product expansions (OPEs) in conformal field theories in

two dimensions, as it is from OPEs that we will show the boson-fermion equivalence.

2.3.1 Product Expansion Operator

In quantum field theory, the infinitesimal coordinate transformations,
z—=z+€e(z), 2> 2=2¢E72) (2.43)

produce a variation of a field, ®(z, Z) given by the equal time commutator with the
conserved charge, Q = 5= §(dzT(z)e(z) +dzT(2)é(z)), where T and T are the stress
energy tensors in complex coordinates. The products of the operators is well defined
only if time-ordered. A complete treatment of the complex tensor analysis can be
found in (22; 23). Here we mention only the results which will be useful for our
purposes.

The commutator of an operator A with a spatial integral of an operator B

corresponds to

[/ doB, Al = j{dzR(B(z)A(z)), (2.44)
which leads to (23) the operator product expansions (OPEs) of the stress energy
tensors T'(z) and T'(2) with the field ®(w, w)

R(T(2)®(w, @) = o+ 0u® + ..., (2.45)

R(T(2)®(w, @) = Db ———0a® + . (2.46)

Equations (2.45) and (2.46) contain the conformal transformations properties of the
field ®, and can thus be used as a definition of a primary field®> for ® with conformal
weight (h,h). We observe that the above products are given by the expansion of

poles plus regular terms, which we can omit.

5 The formal definition of the primary field is: ® is primary of conformal weight (h, h) if it

satisfies the transformation law ®(z, z) — (%)h(g—g)ﬁé(f(z), f(2)), where h and h are real values.
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2.3.2  Free Bosons and Free Fermions

We start by considering a massless free boson, X(z,z), where we can split
the holomorphic and anti-holomorphic components into X,(z) and Xg(Z). For our
purpose, it is sufficient to consider the holomorphic part only. The propagator of the
left component corresponds to (X (2)Xr(w)) = —log(z — w), which means that it
is not a conformal field, but its derivative, 0X(z) is a (1,0) conformal field. This is
shown by taking the OPE with the stress tensor, which is defined as T" = —% :0X?

and comparing with (2.45) and (2.46), we obtain

T(2)0X 1 (w) ~ —— 28XL(w)+ﬁa2XL(w)+.... (2.47)

(z —w)
We now consider two Majorana-Weyl fermions, ¢*(z),7 = 1,2, where a change

of basis rearranges the fermions into the complex form

Loy o 7 Loy

S5 i) = ! i), (2.48)

The theory contains a U(1) current algebra® generated by the (1,0) current J(z) =:

Y =

Y1) .. The OPE for 1) and the holomorphic energy tensor are defined as

P()B(w) = ——— | T(2) = 2 (2)20(2) : (2.49)

Z—w 2

If we calculate the product expansion T'(z)¢(w) with the above definitions, we see
that 1 is an affine primary field of conformal weight (1/2,0).

We first present the boson-fermion correspondence by showing that the same
operator algebra is produced by two Majorana-Weyl fermions in one case and a

chiral boson in the other case. In the fermionic case,

T(z) = % CJ7 (2.50)

which says that the stress tensor has central charge ¢ = 1. We can produce the same

operator algebra by using a single chiral boson, X (z), whose current is given by

J(z) =i0X(2), (2.51)

6 This will be discussed more in the following section, 2.4.
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where the stress energy tensor is 7' = —2 : 9X? :, as at the beginning of the section.

N =

The definitions below thus contain explicitly the boson-fermion equivalence
= XE) ) = 7 XE) (2.52)

Alternately, we can consider the OPE of each of the fields with themselves to
demonstrate the boson-fermion equivalence. If we consider the OPE of two bosonic

fields, X (z) and X (w), we find
X(2)X(0) = —In|z)* + O(2), (2.53)

where we have used the definition provided in the beginning of this section. Consider

+iX (2

now the operators e ). Using the Campbell-Baker-Hausdorff formula,

X giaX — pipX (2)+iaX (0)+3pglX (). X (0)]+-.. (2.54)
we find that they have the OPEs
iX(z) —ix©) _ 1
e e = - +0(2), (2.55)
z
XEXO0) = O(z), (2.56)
e X@iXO) = 0(y). (2.57)

Similarly, consider now the OPE for two Majorana-Weyl fermions, as given in (2.48).

Their OPEs are

Y(E)0) = - +0() (2.5%)
VE0) = O) (2.59)
P(2)P(0) = O(2), (2.60)

which are equivalent to (2.55 — 7).
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Thus, we find the equivalence between bosons and fermions, and we can thus write
b(z) 2 X | f(z) & X, (2.61)
which is the same result as (2.52) (24).7

2.4 The Heterotic String

The heterotic string was first constructed by (25). Employing both the bosonic
string and the superstring, it came about after it was shown (26) that for consis-
tency, an N = 1 supersymmetric string theory requires the presence of an Eg x Fg
or Spin(32) gauge symmetry. Ten dimensional supergravity with these gauge groups
is free of gravitational and gauge anomalies. This observation fuelled an increase in
activity in heterotic models. Before this discovery, the standard procedure to intro-
duce gauge groups in string theory consisted of attaching the Chan-Paton charges
at the endpoints of open strings (27). Such a prescription does not produce the
Eg x Eg, a non-abelian GUT group which allows a more natural embedding of the
Standard Model spectrum at low energy.

In this section, we describe the basics of the heterotic string, an orientable
closed string theory in ten dimensions with N = 1 supersymmetry and gauge group
Es x Eg. Its low energy limit is supergravity coupled with Yang-Mills theory. This
theory is a hybrid of the D = 10 fermionic string and the D = 26 bosonic string,
and the resulting spectrum is supersymmetric, tachyon free, Lorentz invariant, and
unitary. The absence of gauge and gravitational anomalies is obtained by compact-
ification of the extra sixteen bosonic coordinates on a maximal torus of determined
radius. All these properties make the heterotic string one of the most appealing

candidates for a unified field theory.

T Note that here we use the = symbol, whereas in (2.52) we use the : : symbol. The : :
defines the standard normal ordering of operators in a quantum field theory (QFT) and is known
as the regular part, while the = part of the = should be interpreted as being valid primarily as a
statement for the expectation values of the two fields. The two notations are synonomous and can
be used interchangeably.
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In heterotic models, the gauge symmetries are introduced by distributing sym-
metry charges on the closed strings. Such charges are not localized, so we obtain
a continuous charge distribution throughout the string. A way to describe their
currents is to introduce on the worldsheet fermions with internal quantum number,
which are singlets under the Lorentz group. If we take n real Majorana fermions,
A a =1,...,n, and we split them into right and left moving modes, (A\%), we can
write the bosonic action on the worldsheet, including the new internal symmetries,

as

T
5 _E/d%(aaxﬂaaxﬂ S XTOLAT — ATNY). (2.62)

The equivalence of bosons and fermions in two dimensions allows us to convert two
Majorana fermions on the worldsheet into a real boson. We can then obtain 3
bosons, ¢, in the place of fermions, A\*. With this substitution, the theory contains
D + n/2 free bosons and has an SO(D — 1,1) Lorentz symmetry plus an internal
SO(n) x SO(n) symmetry. Its consistency requires D + n/2 = 26, and in the case
of a supersymmetric theory (D = 10), it means that n = 32. If we consider for

our purposes only an SO(n)g symmetry, then the right moving fermion currents are

given by
1

%T&)\‘i(a))\i(a). (2.63)

J3 (o) =
The T generators satisfy the algebra [T%, T?] = i f**YT7, and this relation fixes the

commutation relation for the currents

[J%(0), JE (o)) = if*" T (0)5(0 — o) + %5&55'(0 — ). (2.64)
The previous formula describes the affine Lie algebra Sb(n) with central extension
represented by the second term, or anomaly contribution. If this algebra is built
up from n fermions in the fundamental representation of SO(n), then k = 1. If
the fermions are not in the fundamental representation, then we would obtain a

different, or quantized, value of k.
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We are now ready to describe the heterotic string as it was first formulated in
(26). As we already mentioned, the left moving modes are described in a bosonic
string theory with D = 26, while the right moving modes are supersymmetric with
D = 10. Specific GSO projections ensure supersymmetry for our model. The gauge
degrees of freedom are included in the left sector with an appropriate current algebra.

The general action of this theory is

9

5= _g / (30X, 0" X" — 200 ) — 23 ATON — NOAL). (2.65)

[ a=1
We observe here that the spacetime fermions, ¢* have only right moving compo-
nents, superpartners of X%. The content therefore differs from the type IIB, where
supersymmetry is realized in both the left and right sectors. The left moving sector
contains the spacetime fields X} and the internal Majorana fermions, \®.

If the boundary conditions for A\* are all the same, we obtain the Spin (32)
heterotic theory. Choosing different periodic/antiperiodic boundary conditions be-
tween two sets of 16 real internal fermions will provide the Eg x Eg heterotic string.
It can be shown that the two theories are continuously related (28). In fact, an equal
number of states at every mass level appear in the two heterotic string theories.

In the MSSM we find an N = 1 spacetime supersymmetry and a D = 4 target
space or space time. Again there has been considerable effort to reduce the num-
ber of dimensions and supersymmetries. Although many different ways have been
employed, we note two that have been used extensively. Toroidal compactifications
with twists are the most widely used compactification scheme, in particular orbifold
compactifications. They are identified as Z,; and Z,; x Zy orbifolds. It has been
shown that only a limited number of these types of orbifolds reduce the number of
the supersymmetries to the number of the MSSM (29). Of particular interest for

phenomenology are the Zy x Z, orbifold compactifications. Since the MSSM is a

26



chiral theory, heterotic string theory provides a convenient description in the search

for phenomenological string theories.
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CHAPTER THREE

Free Fermionic Models

In this chapter we describe the free fermionic formulation of the heterotic su-
perstring and focus mainly on a subset of these models which are called semi-realistic
free fermionic models. We provide an overview of the Nanopoulos-Antoniadis-
Hagelin-Ellis (NAHE) set (30), before discussing our own models within this set
in the next chapter. In this part of our discussion, we will describe the consistency
rules necessary for the construction of the theory. The interested reader can find
further details in the original papers (31; 32; 33; 34; 35).

The general procedure for the construction of free fermionic models is based
on two steps. The first is the choice of boundary condition basis vectors for the
class under consideration, and the second is the inclusion of additional basis vectors
which reduce the number of generations in the model to three, while breaking the
four dimensional gauge group. The presence of three Higgs doublets in the untwisted
spectrum is a feature of semi-realistic free fermionic models, and the general pro-
cedure to reduce them to one pair is given by the analysis of the supersymmetric
flat directions. This method consists of giving heavy masses to some of the Higgs
doublets in the low energy field theory (36; 37). We will present some generalities
on the analysis of flat directions and introduce the concept of stringent flat direc-
tions, as this allows the investigation of the low energy properties of free fermionic
models. The flat direction analysis is needed because of an anomalous U(1) which
generally appears in this setup. Its presence gives rise to a Fayet-Illiopolous (FI)
D-term which breaks supersymmetry. However, by looking at supersymmetric flat
directions and imposing F' and D flatness on the vacuum, supersymmetry can be

restored. Analysis for specific models is presented in the following chapter.
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3.1 The Free Fermionic Formulation

Free fermionic model building was developed simultaneously by two groups
(33; 34). The quasi-realistic heterotic string models in the free fermionic formula-
tion, which are related to Zsy X Zy orbifold compactifications, are among the most
realistic string models constructed to date. These models provide a wide vari-
ety of three generation models with an SO(10) embedding of the Standard Model
spectrum, including: the flipped SU(5) models (38; 39), the standard-like models
(40; 41; 42; 43; 44; 45; 46; 47; 48), the Pati-Salam models (49), and the Left-Right
symmetric models (50). Within these models many of the issues pertaining to the
phenomenology of the Standard Model and Grand Unification have been explored
and investigated (51). Free fermionic models also produced the first known string
models in which the matter content of the observable sector in the low energy ef-
fective quantum field theory consists solely of that of the Minimal Supersymmetric
Standard Model (MSSM) (52; 45).

In light cone gauge, a free fermionic heterotic string model contains 64 real
worldsheet fermions, ¥", 1 < n < 20, for left moving worldsheet fermions, and
21 < n <64, for right moving worldsheet fermions, in addition to the left and right
moving worldsheet scalars, X,—;, and X =12, which embed transverse coordinates
of four dimensional spacetime. 9! and 1? are the worldsheet superpartners of the
two left moving transverse scalars. The remaining 62 fermions are internal degrees
of freedom, and some or all of these may be paired to form complex fermions,
Y™ = Y" + ™. If m and n both denote left movers or right movers, then ™™
is a Weyl fermion, but if m denotes a right mover and n a left mover, or vice versa,

then ¢™™ is a Majorana fermion. A specific model is defined by two factors:

(1) Sets of 64-component boundary vectors with components for complex fermions
counted twice, which describe how the worldsheet fermions transform around

non-comtractible loops on the worldsheet, and
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(2) Sets of coefficients weighting contributions to the one loop partition function

from fermions with specific boundary conditions.

In contrast with the ten dimensional superstrings, where the compactification of
the extra dimensions is needed to reduce the spacetime to four dimensions, the
free fermionic formulation directly provides a four dimensional theory with a cer-
tain number of internal degrees of freedom. An internal sector of two dimensional

conformal field theories is required in order to fulfill the following:
e conformal invariance
e worldsheet supersymmetry
e modular invariance

In this approach, all internal degrees of freedom are fermionized, thus producing
world-sheet fermions. Requiring anomaly cancellation fixes the number of fields
in the left and right sector, retaining 18 left-moving Majorana fermions x?, (a =
1,...,18), and 44 right-moving Majorana fermions ®!, (I = 1, ...,44). The spacetime
is described by the left-moving coordinates (X*,v*), and the right-moving bosons,
X*#. The heterotic string has N = 1 spacetime supersymmetry in D dimensions.
This is realized non-linearly (32) among all the fields in the left sector, spacetime

and internal ones, by the supercurrent
TF = W@X“ + fachaXbxca (31)

where f,,. are the structure constants of a semi-simple Lie group G of dimension
18! . The x* transform in the adjoint representation of G. In (53) it is shown that
N =1 spacetime supersymmetry can be obtained in four dimensions when the Lie

algebra G = SU(2)%. In this case, it is convenient to group the x* into six triplets

! In general, the f,;. are the structure constants of a semi-simple Lie group, £, of dimension
3(10 — D), which becomes dimesion 18 for D = 4.
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(X%, vy, w), (i = 1,...,6). Each triplet transforms as the adjoint representation of
SU(2). Thus far, we have ensured superconformal invariance of the theory. We still
need to verify its modular invariance to get a consistent theory, which is acheived
by investigating the properties of the partition function. Modular invariance exists
if the one loop partition function is invariant under S : 7 — —1/7 and T : 7 —
T 4+ R transformations of the complex worldsheet parameter 7 defining the one loop
worldsheet, a torus. In this case, a modular invariant partition function must be
the sum over all different boundary conditions for the worldsheet fermions, with
appropriate weights. For a genus-g worldsheet ¥, fermions moving around a non-

trivial loop o € m(%,) transform as

df = Ry(a)id/, (3.2)
P = =00, (3.3)
X" = Ly(a)x”, (3.4)

where the first transformation refers to the right-moving fields, @7, Lga,Lgb,L;C, fave =
—0afame and 6, = £1, and the second and third transformations refer to the left-
moving fields, ¥* and x®. The spin structure of each fermion is a representation of
the first homotrophy group m(2,) (54). The transformations (2.2 — 4) ensure the
invariance of the supercurrent. We need to require the orthogonality of R,(«) to leave
the energy tensor invariant in the right sector. In order to keep the theory tractable,
commutativity of the boundary conditions has been assumed (31), implying that
Ly(a) and Ry(cr) have to be abelian matrix representations of m(3,). Note that
commutativity is assumed between the boundary conditions on surfaces of different

genus. The previous constraints allow the diagonalizations of the matrices R(a) and

L(«), which are expressed purely as phase changes, and simplifying (2.2 — 4) into

f— —emh (3.5)
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where f is any fermion (¢*, x*, ®1) and a( f) is the phase acquired by f when moving
around the non-contractable loop a.
Then, the spin structure for a non-contractible loop can be expressed as a

vector
a=A{a(f]),...,a(f); a(f1), -, a(fn)} (3.6)

where a(f") is the phase for a real fermion, while &(f¢) is the phase for a complex
fermion. By convention, a(f) € (—1,1]. Then, for the complex conjugate fermion
a(f*) € [-1,1). We set the notation
1 ifa(@*)=0
S0 = (3.7)
—1 ifa(y") =1
where, according to (2.5), the entry 1 represents a periodic (Ramond) boundary
condition and 0 represents an anti-periodic (Neveu-Schwarz) boundary condition.
Since there are 2¢g non-contractible loops for a genus ¢ Reimann surface, we have to
specify two sets of phases, ay, ..., a, b1, ..., B4, to obtain the full partition function.

In its general form, it can be written as a weighted sum over the individual partition

a
functions, Z for specific pairs of boundary vectors

B
g o, Q;
Z=> > ¢ 2 : (3.8)
genus i,j=1 Bj Bj
;G . . . .
where z can be expressed in terms of #-functions. The modular invariance
B;
. . . 0%}
imposes constraints onto the coefficients ¢ . It was shown (55) that modu-
B

lar invariance and unitarity imply that these coefficients for higher genus surfaces
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factorize into the form

ag, ..., 04 aq (0D)] Oy

c =c c ...c . (3.9)
617“'7/89 /81 ﬁQ 69

For this reason, it is sufficient to consider only the one-loop coefficients.

3.1.1 Model Building Rules and Physical Spectrum

In the free fermionic framework, the construction of consistent string vacua
in four dimensions is acheived by applying two sets of rules: the constraints for the
boundary condition vectors, restricted to the case of rational spin structure (31),
and the rules for one-loop phases.

A set of consistent boundary condition vectors form an additive group

E~ZN Q... QN (3.10)

generated by the basis B = {by, ..., b}, where each b; is in the form of (2.6). This

basis must satisfy the following conditions:

szbz . bj = 0 mod 4,

0 mod 8, N; even

0 mod 4, N; odd

.blzl

where N; is the smallest postive non-zero integer for which N;b; = 0 (mod 2) and
Njj is the lowest common multiplier between N; and N;. The inner Lorentz product

is defined by

URSED TS DEE 15 DI DI 10 AT Rt

real left  complex left real right  complex right
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For a consistent basis B, there are several different modular invariant choices of
phases, each one leading to a consistent string theory. The phases under consid-
eration have to satisfy the requirements above, which provide the second group of

constraints below

bZ 2ming 2mim; imb;-bj

o C =dpe i =dye Nioe 2,

K3

bz‘ imh; b, bz
e C = —€e 4 cC s
b; 1

b; 4 .
o = Op,C c :
bj + by b; by

where 1 < n; < Nj and 1 < m; < N;. In addition, there is some freedom for the

by imby by . . « .
phase ¢ = 4e~ 1 , while by convention, ¢ =1and c = 0,, Which

b1 0 0

assures the presence of the graviton in the spectrum.

If we indicate ? by « a generic sector in =, the corresponding Hilbert space,
H,, contributes to the partition function of the model. We adopt the notation
a = {ag|ag} to separate the left and right phases. The states in H,, have to satisfy
the Virasoro conditions and the level matching condition, that, in our formulation,

appear as

1 ag, - A, QR QR
M2 = = N, = -1+ & %
I 2+ 3 + N + 3

+ Ng = M3, (3.12)

2 The notation can be confusing since we use « to indicate both a generic boundary condition
vector and the generic sector in the Hilbert space. We assure from the context that it is always
clear which quantity we are referring to.
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where N and Ny are the total left and the total right oscillator number, respectively,
acting on the vacuum, |0 >,. The frequencies are given respectively for a fermion,
f, and its conjugate, f*, by

1+ a(f)

1—a(f)
Vg = 5 _,

5 (3.13)

, and vy =

The physical states contributing to the partition function are those satisfying the

GSO conditions

*

, a
eimile|s > = 0, ls >a, (3.14)
bi
where |s >, is a generic state in the sector «, given by bosonic and fermionic
oscillators acting on the vacuum. The operator (b; - F},) is given by
b= { X - X hnmn (3.15)
left right

where F' is the fermion number operator with the following values

1 for f
F(f) = (3.16)
—1 for f*.

If the sector o contains periodic fermions, the vacuum is degenerate and transforms
in the representation of an SO(2n) Clifford algebra. Hence, if f is such a periodic

fermion, it will be indicated as |+ > and F' assumes the value

0 for |+ >
P(f) = (3.17)

-1 for |- >.

The U(1) charges for the physical states correspond to the currents f*f and are

calculated by
Q) = galf) + F(f) (3.15)

hence the charge has possible values of {0, %1} for antiperiodic fermions, and {£3}

for periodic fermions.
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The boundary vectors, 3, contribute a set of GSO projections which act on the

« sector states, projecting some of them out of the model. Which states survive is

Q;
a function of the phase coefficients, ¢ . In a given « sector, a state is removed

B

from the model unless it satisfies the GSO projection equation imposed by each basis

vector
1
Bj : Fa = (Z k‘j’iai) + S — §Bj ye’ (mod 2), (319)
or, equivalently,

B;-Q, = () _kja)+s; (mod 2). (3.20)

3.1.2  Construction of Semi-Realistic Models

The construction of semi-realistic free fermionic models is related to a par-
ticular choice of boundary condition basis vectors, and the general procedure of
the construction is based on two principal steps. For the particular class under in-
vestigation, the first stage is considering the Nanopoulos-Antoniadis-Hagelin-Ellis
(NAHE) set (56; 57; 58) of boundary condition basis vectors B = {1, s, by, b, b3},
which corresponds to Zs X Zs compactification and the standard embedding of the

gauge connection (? 59). The basis B is given explicitly below

1 = {gb2 y 1B glen® qylee]gdb gl flend gl23 GL-8Y  (391)
S = {¢"x"%) (3.22)
by = [yl X1, y80|gt6 gled 1y (3.23)
by = {91234 yb2 wS|h?, @S, gLt 72) (3.24)

bg — {w1,2, X5,6, wl,...,4 11—)1,,..,4’ 1/;1,...,5’ 773}’ (325)

where the notation means that only periodic fermions are listed in the vectors. The
left-moving internal coordinates are fermionized by the relation €X' = 1/v/2(y" +
iw'), as explained in Chapter 2, and a similar prescription holds for the right moving

internal coordinates. The superpartners of the left moving bosons are indicated by
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x'. The extra 16 degrees of freedom, 1'% 7423 ¢ , are complex fermions. The

GSO one-loop phases for the NAHE set are

el =-1 ¢ ~1,¢| ' |=-1 (3.26)
b, S 1,8

The gauge group introduced by the NAHE set is SO(10) x SO(6)® x Eg and N = 1

supersymmetry. The spacetime vector bosons generating the symmetry group arise

in the Neveu-Schwarz (NS) sector, and in the sector & = 14 by + by + b3. In

generate the three horizontal SO(6) symmetries. In the untwisted sector, we note
the presence of states in the 10 vectorial representation of SO(10), which represent
the best candidates for the Higgs doublets. The three twisted sectors by, by, and
b3, produce 48 multiplets in the 16 representation of SO(10), which carry SO(6)3
charges, but are singlets under the hidden gauge group.

In the second stage of the construction, we consider additional basis vectors,
generally indicated by «, (3,7, which reduce the number of generations to three and
simultaneously break the four dimensional gauge group. This breaking is imple-
mented by the assignment of boundary conditions, in the form of new basis vectors,
which, through respective GSO projections, keep only the generators of the sub-
group considered. For example, the breaking of SO(10) is due to the boundary
conditions of ¥ in a, B, , which can provide SU(5) x U(1) (38), SO(6) x SO(4)
(49), or SU(3) x SU(2) x U(1)? gauge groups (40; 42; 57; 36). Further attempts in
the construction of realistic models can be found in (50). The SO(6)® symmetries
are also broken to flavor U(1) symmetries. The worldsheet currents, n'i’,i = 1, 2, 3,
produce U(1) charges in the visible sector, and further U(1)" symmetries arise by
the pairing of real fermions among the right internal sector. If a left moving real

fermion is paired with a right moving real fermion, the rank of the right gauge group
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is reduced by one. The pairing of the left and right movers is a key point in the
phenomenology of free fermionic models, as it is strictly related to the reduction of
the untwisted Higgs states, as we will discuss in detail later.

Once we extract the massless spectrum of a particular free fermionic model,
the next step is the analysis of its superpotential. We postpone the explanation of
this topic since it will be treated in the next sections. Further details concerning

the construction of free fermionic models carried out step by step can be found in

(47; 60).

3.2 Minimal Standard Heterotic String Models

After providing the main tools on the construction of model building, we
would like to revisit some of the properties of semi-realistic Standard Model-like
free fermionic models. One of their remarkable successes has been the fact that they
can accomodate the top quark mass (61). These models offered an explanation as
to why only the top quark mass is characterized by the electroweak scale, whereas
the masses of the lighter quarks and leptons are supressed (42; 62). The reason
is that only the top quark Yukawa coupling is obtained at the cubic level of the
superpotential, whereas the Yukawa couplings of the lighter quarks and leptons are
obtained from nonrenormalizable terms that are supressed relative to the leading
order term. As explained earlier, the three generations arise from the three twisted
sectors, whereas the Higgs doublets, to which they couple in leading order, arise from
the untwisted (NS) sector. At leading order, each twisted generation couples to a
separate pair of untwisted Higgs doublets. Analysis of supersymmetric flat directions
implied that at low energies, only one pair of Higgs doublets can remain light, and
the other Higgs doublets must obtain heavy mass from VEVs of Standard Model
singlet fields. Thus, in the low energy effective field theory, only the coupling of the

twisted generation that couples to the light Higgs remains at leading order. The
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consequence is that only the top quark mass is obtained at leading order, whereas
the masses of the remaining quarks and leptons are obtained at subleading orders.
Evolution of the calcuated Yukawa couplings from the string to the electroweak scale
then gives a prediction for the top quark mass. The analysis of the top quark mass
therefore relies on the analysis of supersymmetric flat directions and the decoupling
of the additional untwisted electroweak Higgs doublets, that couple to the twisted

generations at leading order.

3.3 D— and F— Flatness Constraints
The requirements for the preservation of spacetime supersymmetry, expressed
in terms of the D— and F—terms have been reviewed in (44; 52; 63; 45; 37). We
will review them again here, with an emphasis on geometric interpretation of the
non-Abelian VEVs.
Spacetime supersymmetry is broken in a model when the expectation value of

the scalar potential,

dim(Ga)
1 2 a o 2
Vi) =g Ll 3 0iDp + LIRS (3.27)
becomes nonzero. The D—term contributions have the form,
Dy =) @b Tiem, (3.28)

where T is a matrix generator of the gauge group G, for the representation ¢,,.

The F—term contributions are
Fp = — (3.29)

where W is the superpotential. The ¢,, are spacetime scalar superpartners of the
chiral spin—% fermions, v,,, which together form a superfield, ®,,. All of the D and
F term contributions to (3.32) are positive semidefinite, so each must have a zero

expectation value for supersymmetry to remain unbroken. In addition, because the
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D and F terms are independent of one another, each must have zero expectation
value separately.

For an Abelian gauge group, the D—term in (3.33) simplifies to
D=3 Qullenl” (3.30)

where Q%) is the U(1); charge of ¢,,. When an Abelian symmetry is anomalous,

meaning that the trace of its charge over the massless fields is nonzero,
Tr QW #£ 0, (3.31)

the associated D—term acquires a Fayet-Iliopoulos (FI) term, given by

g2
M
), 3.32
1927r2 e ( )
where g, is the string coupling and Mp is the reduced Planck mass, Mp = Mpjaper/ V8T =

2.4 x 10'® GeV. The D—term becomes

=2 @ loml* +e (3.33)

The existence of the anomalous U(1) symmetry is a common feature of free fermionic
models (64). However, it is always possible to put the total anomaly into a single
U(1). The anomalous U(1)4 is broken by the Green-Schwarz-Dine-Seiberg-Witten
mechanism (65) in which a potentially large FI term is generated by the VEV of the
dilaton. The FI term breaks supersymmetry near the string scale, V' ~ g?¢?, unless
it can be canceled by a set of scalar VEVs, {(¢,)}, carrying anomalous charges
Q.

(DM }:Q +e=0. (3.34)
To maintain supersymmetry, a set of anomaly-canceling VEVs must simultaneously

be D—flat for all additional Abelian and non-Abelian gauge groups,

(D) = 0. (3.35)
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A consistent solution to all constraints, (3.32 — 40) specifies the overall VEV "FI-
scale’, (o) of the model. A typical FNY value is {(a) ~ 7 x 101® GeV.

In general, the FI D—term breaks supersymmetry unless there is a direction,
¢ = Sy, in the scalar potential for which = Q% |ay|? is of opposite sign to e,
and that is D-flat with respect to all the non-anomalous gauge symmetries, as well
as F-flat. If such a direction exists, it will acquire a VEV, cancelling the FI term,
restoring supersymmetry and stabilizing the vacuum. The solution to (3.32 — 4),
which corresponds to the choice of fields with non-vanishing VEVs, though non-
trivial, is not unique. Therefore, in a typical model, there exists a moduli space of
solutions to the F' and D flatness constraints, which are supersymmetric and degen-
erate in energy (66). Much of the study of the superstring models phenomenology
involves the analysis and classification of these flat directions. The methods for this
analysis in string models have been systematized in (52; 67; 68; 37).

In general, it has been assumed in the past that in a given string model, there
should exist a supersymmetric solution to the F' and D flatness constraints. The
simpler type of solutions utilize only fields that are singlets of all the non-Abelian
groups in a given model. These are type I solutions. More involved solutions, type
IT solutions, that also use the non-Abelian fields, have also been considered (37).
Non-Abelian fields have also been used in systematic methods of analysis (37). The
general expectation that a given model admits a supersymmetric solution arises
from analysis of supersymmetric point quantum field theories. In these cases, it is
known that if supersymmetry is preserved at the classical level, there exist index
theorems that forbid supersymmetry breaking at the perturbative quantum level
(69). Therefore, in point quantum field theories, supersymmetry breaking may only

be induced by non-perturbative effects (70).
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3.3.1 Non-Abelian Flat Directions and Self-Cancellation

Past investigations have suggested that for several phenomenological reasons,
including the production of viable three generation quark and lepton mass matrices
and Higgs h — h mixing, non-Abelian fields must also acquire Fl-scale VEVs (60).

In a number of these investigations, 'stringent’ F'—flatness is demanded, mean-
ing that each superpotential term is forced to satisfy F'—flatness by assigning no
VEVs to at least two of the constituent fields. The absence of any nonzero terms
from within (Fyp,,) and (W) is itself sufficient to guarantee F'—flatness along a given
D—flat direction, but such stringent demands are not necessary.

Complete absence of these terms can be relaxed, as long as they appear in
collections which cancel among themselves in each (Fgp, ) and (W). It is desirable to
examine the mechanisms of such cancellations, as they can allow additional flexibility
for the tailoring of phenomenologically viable particle properties, while preserving
supersymmetry (71). It should be noted, however, that success along these lines
may be short-lived, with flatness retained in a given order only to be lost at a higher
order.

Since Abelian D—flatness constraints limit only VEV magnitudes, we are left
with the gauge freedom of each group with which to attempt a cancellation between
terms, while retaining consistency with non-Abelian D—flatness. However, it can
often be the case that only a single term from W becomes an offender in a given
(Fs,,) (37). If a contraction of non-Abelian fields bearing multiple components is
present, it may be possible to effect a self-cancellation that is still ’stringently’ flat
in some sense. Even safe sectors of W, in particular with (®,,) = 0, may yield
dangerous (Fy,,) contributions. The individual F'—terms may be separated into two

classes based on whether or not ®,, is Abelian.
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CHAPTER FOUR

Semirealistic Models

In this chapter we present four semirealistic string models within the NAHE
basis set. Before discussing the specifics of each model, we provide as motivation for
investigating this specific class of models the first model within the free fermionic
formulation with a reduced number of Higgs.

The first model is an SO(10) model in the observable sector, while the last
three models are SU(5) models in the observable sector. The hidden sectors, how-
ever, are different in all four models Model 1 has an SU(8) x SU(2) hidden sector,
while models 2 and 4 havel SU(4) x SO(10) hidden sectors. Model 5, however, has
an SU(2)* x SU(4) hidden sector. In the analysis of the flat directions for each of
the models, both Models 2 and 5 lack any singlet D—flat directions with negative
anomalous charge. Thus, in these models, it was necessary to investigate D—flat

directions which are non-Abelian.

4.1 Motiation

In (72), a semi-realistic free fermionic model was presented within the NAHE
basis set which contains three chiral generations charged under the standard-like
model subgroup of the underlying SO(10) symmetry of the NAHE set. Fewer singlet
particles were present from the untwisted sector. Analysis of flat directions showed
that no stringent F'— and D—flat solutions appeared to exist to all order in the
superpotential. In all previous investigations of semi-realistic free fermionic models,
not only were such supersymmetric directions found, but all previous models yielded
stringent flat directions which can be shown to be exact, or flat to all orders of

nonrenormalizable terms. However, in this model, no physical D—flat direction
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that was generated kept F—flatness through sixth order. It was speculated that
only stringent flat directions can be flat to all orders of renormalizable terms. If
validated, it would indicate that the particular model under investigation appears
to have no D—flat directions which can be shown to be F'—flat to all orders, other
than by order analysis.

Our aim, then, was to investigate a series of models within this class. The goal
was to determine whether the flat direction analysis of these models yielded the same
results as the model mentioned above. If that were the case, we could more certainly
conclude that the non-existence of all order flat directions is a general property of
this class of models. However, flat direction analysis of the four models presented
herein shows this not to be the case, as all order flat directions were found in three

of the four of the models.

4.2 Flat Direction Analysis
We begin with the flat direction analysis of each of the four models, beginning
with the simpler models first, those with singlet flat directions. We then discuss
the models with non-Abelian flat directions, and provide discussion of stringent flat

directions.

4.2.1 Singlet Flat Directions
In this section, we investigate the simplest of our four models, those with
singlet flat directions. We have called these models 1 and 4, and their basis vectors

are given in Appendix A and C, respectively.
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4.2.1.1 Model 1. Model 1 contains six U(1)s, five of which are anomalous,

TrQ, = 768, (4.1)
TT’QgZTT‘Q4:—TTQ5 = 192, (42)
TrQs = —2112. (4.3)

The total anomaly can be rotated into a single U(1) 4, rescaling by a factor of 192,

and the new basis reads

Q1 = 401+ Qs+ Q41— Q5 — 11Qs, (4.4)
@y = Q2 (4.5)
Qs = Q3—CQu (4.6)
Qy = 11Q: +4Qs, (4.7)
Q5 = Qs+ Qu+20s5 (4.8)
Qa = —12Q1 + 137(Qs + Qs — Q5) + 33Qs. (4.9)

From now on, we adopt the convention of calling Q},7 =1, ..., 5, simply Q;.

To search for flat directions, we employ the methodology in (73). We start by
constructing a basis of D—flat directions under @); 5, and then we investigate the
existence of D—flat directions in the anomalous U(1)4. Subsequently, we will have
to impose D—flatness under the remaining gauge groups and F—flatness. As we
will see for this model, however, it was only necessary to obtain a basis of D—flat
directions under @), 5. To generate the basis flat directions under )y 5, we start
by forming a basis of gauge invariant monomials under U(1);, which we then use to
construct a basis of invariant monomials under U(1),, and so forth.

As a first step, we investigate the existence of flat directions involving vacuum
expectation values for only the fields which are singlets under both the observable
and hidden sector gauge groups. These fields are ¢; 23, and ¥ 14, a total of 17

fields. Note that we don’t include ®, 3 because, though they are singlets under
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both the observable and hidden sector gauge groups, they carry no U(1) charge.
We have 5 constraints we need to impose, from the original number of U(1)s, six,
minus one anomalous U(1)4, so the basis set of flat directions should contain at
most 12 elements. For a given model, finding less than the maximum amount of
basis directions is possible and simply means that all the fields which comprise the
directions are not completely independent of one another. For this model, all 17 fields
can be incorporated into the flat directions, depicted in Table A.2 of Appendix A.

For any basis set of D—flat directions, the the basis directions can have posi-
tive, negative, or zero anomalous charge. In the maximally orthogonal basis used in
the approach of (68; 37), each basis direction is uniquely identified with a particular
VEV. In other words, although each basis direction generally contains many VEVs,
each basis direction contains at least one particular VEV that appears solely in that
direction. Such is the case for this model, as well. As can be seen in Table A.2
of Appendix A, the fields ¢;23 and 9, ¢ are uniquely associated with one basis
direction.

In our notation, a physical flat direction may have a negative norm-square for
a vector-like field. This denotes that it is the oppositely charged vector partner field
which acquires the VEV, rather than the field itself. Basis directions themselves may
have vector-like partner directions if all associated fields are vector-like. This is the
case for model 1, as Table A.1 in Appendix A shows that all 17 fields which make up
the D—flat basis directions for this model are vector-like. On the other hand, if, in
particular, the field generating the VEV uniquely associated with a basis direction
does not have a vector-like partner, that basis direction cannot have a vector-like

partner direction.
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Since the FI-term for this model is positive,! with TrQ 4 = 1344, a physical flat
direction must carry a negative anomalous charge in order to cancel the dangerous
FI term, as previously discussed. From Table A.2 in Appendix A, we see that three
of the twelve D—flat basis directions, D o3, carry negative anomalous charge. For
this model, then, it is not necessary to continue to investigate a basis set of D—flat
directions from non-Abelian fields which may take on VEVs, and we can proceed to
search for F'—flat directions.

In order to search for F'—flat directions, we must first construct the superpoten-
tial, because according to (3.29), the F'—terms are the derivatives of the superpoten-
tial with respect to the superfields of a given model. We generated the superpotential
for third through sixth order,? and first tested for stringent F'—flatness, in which at
least two fields do not take on VEVs, described in more detail in section 4.2.2, from
all third through sixth order superpotential terms. For those combinations in which
two or more fields did not take on VEVs, we then investigated what combinations
of D—flat basis fields provided F-flatness to what order in the superpotential. This
analysis involved looking at which basis fields taking on VEVs came from which
R/NS sector (1 to 3), summing the totals for each category, and matching them to
the rules in (37). The total number of fields is given by n, and again for 3 < n <5,
the combination was not further tested. For n > 5, the combination was tested. If
the combination followed the rules in (37), it was dangerous, and broke supersym-
metry at order n in the superpotential. However, if the combination did not follow
the rules, supersymmetry was not broken, and we listed the direction as F—flat to

all order.

! In general, there is no restriction on the sign of the FI-term, however models constructed
from the NAHE set typically have an FI-term which is positive.

2 Although we do provide the superpotential for this model here, and for three of the four
models, we have produced it only for third through sixth order, we can generate the superpotential
for any model to any arbitrary order. We have not yet generated the superpotential for model 5,
even though, as discussed in section 4.2.2, we could not find any D—flat direction with negative
anomalous charge.
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For increasing number of basis fields taking on VEVs, the above analysis be-
comes time consuming to do by hand, and it became reasonable to implement a
FORTRAN program to do the flat direction analysis. While implementation of the
program was not necessary for this model, it was used for the flat direction analysis
of the following two models, and can be used for any future model. An additional fea-
ture of the FORTRAN program is its ability to allow for the addition of coeffiecients
to the fields present in the basis directions. Because we need supersymmetry to be
broken at no less than 17th order in the superpotential to be consistent with the
Standard Model, we ran coefliecients from -17 to 17 for all fields. This ensures that a
set of VEVed basis fields can be multiplied by any arbitrary coeffiecient and remain
F-flat to sufficient order. Once a direction was found to be F-flat to at least 17th
order in the superpotential, it was listed as F-flat to all order, as it is not important
that supersymmetry breaks beyond 17th order to be consistent with the Standard
Model.

We hoped to find at least four to six directions that are F-flat to all order
for any given model, to be consistent with past investigations. For the parameter
space of VEVed basis directions investigated for model 1 thus far, we found fifteen
directions which were F-flat to all order. These are listed in Table A.3 of Appendix
A. For model 1, we were able to find a basis set of F-flat directions to all order
which included twelve of the seventeen basis fields making up the D-flat directions.
At low orders, each individual superpotential term includes several stringent F'—term
constraints on the coefficients of physical flat directions. The set of constraints from
the superpotential terms with only singlet fields translate into the requirement that
two or more singlet fields in a given superpotential term cannot take on VEVs, as
will be discussed in section 4.2.2. The five fields which do not appear in the all order
flat directions, 112457, never took on VEVs in the superpotential, and were thus

excluded from the all order flat directions.
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For any given model, finding singlet flat directions to all order means that
non-Abelian flat directions likely exist to all order for that model. Such is the case
for model 1, as well as model 4, below. However, for our purposes, merely finding
singlet directions which are flat to all order is sufficient. Thus, with the first model
we investigated, we were able to show that the lack of F-flat directions to all order
is not a general property of reduced Higgs models.

Once a flat direction basis is found for a given model, we can investigate which
hidden sector fields take on mass, and at what scale they take on mass. In order to
examine which hidden sector fields become massive, we generate the superpotential
for each flat direction. In this analysis, only the superpotential terms which gain
mass are generated. Unlike the observable sector fields, the hidden sector fields do
not require the Higgs to become massive. Instead, we must examine at what order
the hidden sector fields appear in the superpotential, and in what combinations
with observable sector fields they occur. The order at which the hidden sector field
appears in the superpotential corresponds to the order at which that field becomes
massive. The higher the order at which the field appears, the lower the order at
which the field takes on mass. In order for a hidden sector field to take on mass, at
least two hidden sector fields and one observable sector field which takes on a VEV
must appear in a superpotential term.

Preliminary investigation shows a total of twelve of the hidden sector fields
appearing in the superpotential across all fifteen of the F'—flat directions given for
this model. The twelve fields are Hj 23569010 and Hj 312, and most first appear
at third order in the superpotential, meaning that they gain mass at a scale of
approximately one tenth of the string scale, taking 17th order in the superpotential
to be of the electroweak scale. If a field occurs at a higher order in the superpotential,
or if a field appears twice at a given order in the superpotential, that mass is reduced

by a factor of ten.
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The superpotenitial for the first flat direction of model 1 is given at the end of
Appendix A. Again, we begin at third order in the superpotential, which means that
no mass terms exist for first or second order. The reason for this is that we need at
least two non-Abelian fields to occur in a term before it can gain mass. After the
superpotential is generated, we look at which fields in a given superpotential term
take on VEVs. For example, in the superpotential at the end of Appendix A, the
following term occurs,

HyHy 3, (4.10)

where H, and H, are the non-Abelian hidden sector fields, and ¢; is a singlet field.
If ¢5 takes on a VEV, H; and H, will become massive at one tenth the string scale.
However, if ¢5 does not take on a VEV, H; and H, will not become massive; instead
the term represents an interaction term. If a fourth order term appeared in the
superpotential of the form,

HiHyp3s, (4.11)

then H; and H, would only become massive if both ¢35 and ¢, took on VEVs. If
only one of the two takes on a VEV, the term will again be an interaction term.
At any order, all additional singlet fields in a given superpotential term must take
on VEVs for the hidden sector fields to become massive. Other non-singlet fields
may be present in a term, but they are not required to take on VEVs in order for
the hidden sector fields to become massive. Its the requirement that there be at
least two non-Abelian fields and one singlet field in a given superpotential before
the non-Abelian fields can become massive that requires us to look at no lower than
third order in the superpotential.

In addition to any hidden sector fields which can become massive, additional

observable sector matter can be generated in this manner, provided that a given
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superpotential term contains a Higgs. In the case of this superpotential, we have

the following terms with Higgs,
hohoos, hihidsiai)s, (4.12)
which means that both ¢3 and 1, become massive. The scales at which any addi-
tional observable sector fields become massive are the same as those at which the
hidden sector fields become massive. In this case, just as with a hidden sector field,
we would discard the massive term ¢3 because it appears at both third and fifth
order in the superpotential, lessening the mass it gains. We still consider the mass
from 5, because the first place it gains mass is at fifth order, or one thousandth the
string scale.
We then consider a generic SU(N,) gauge group containing Ny flavors of mat-

ter states. When Ny < N, the gauge coupling, g, though weak at the string scale

M., becomes strong at a condensation scale
A= MP68”2/59?, (4.13)

where 8 = —3N. + Ny. The Ny flavors counted are only those which ultimately

receive masses m << A. This results in an expectation value of
W~ NCA?’(%)NJ‘/NC (4.14)

for the nonperturbative superpotential. The scale of (W) corresponds to the scale
at which hidden sector matter condensates into observable sector matter. In this
case, the hidden sector gauge groups are SU(8) and SU(2), and we can therefore
calculate the scale at which the hidden sector matter condensates under each gauge
group for this model. Work on the hidden sector matter states for all the models

presented herein will be presented in (74; 75).
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4.2.1.2 Model 4. Model 4 contains eight U(1)s, seven of which are anomalous:

TT’Ql = T?"Qg = 120,
TrQs = —TrQ, = —96,
TTQ5 = 48,

T’I“Q(; = —TTQ7 = 24.

(4.15)
(4.16)
(4.17)

(4.18)

Again, we rotate the total anomaly into a single U(1)4, rescaling by a factor of 24,

and the new basis reads

Q1 = @,

@y = Q2—Qu
Qs = Qr+Qs,
Q) = Q+Qs,

Qs = Qs — Q7+ Qs,
Qs = 4Q2+4 Q) +5(Qs — Qs),
Qa = Qo +5(Q2+ Q) +4(Qs — Q3) +2Qs + Q7 — Qs.

(4.19)
(4.20)
(4.21)
(4.22)
(4.23)
(4.24)

(4.25)

Again, we begin our search for flat directions as we did for model 1, by first con-

structing a set of basis vectors under )1 . We again include in this analysis only

the fields with vanishing hypercharge and which are singlets under the Standard

Model gauge group.

Beginning again with the investigation of the existence of flat directions in-

volving VEVs for only the fields which are singlets under both the observable and

.....

where again we have excluded @, 5 3 because they carry no U(1) charge. This leaves

us with 28 fields and seven constraints, so the basis set of D—flat directions for this

model should contain 21 elements, as depicted in Table C.2 in Appendix C.
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As we can see from Table C.2, each basis direction again is uniquely identified
with a particular field VEV. Unlike model 1, however, not all the fields comprising
the basis set of D—flat directions for this model are vector-like. In fact, the only
basis direction for this model which is vector-like is Dy, because it uniquely contains
a vector-like field, ¢;. The other three vector-like fields comprising the D—flat basis,
11,23 are associated with at least twelve basis directions.

Since the Fl-term for this model is positive, with TrQ) 4 = 2112, a physical flat
direction must carry a negative anomalous charge to cancel the Fl-term, as men-
tioned before. From Table C.2, we see that five of the 21 D—flat basis directions,
D . 5, carry negative anomalous charge. Once again, for this model, it is not nec-
essary to continue to investigate a basis set of D—flat directions from non-Abelian
fields which may take on VEVs, and we proceed to search for F'—flat directions.

The search again begins with the construction of the superpotential, which we
again generated from third through sixth order. In the F'—flat direction analysis for
this model, we employed the previously mentioned FORTRAN program because the
basis set of fields for the D—flat directions was so large, containing 28 fields. The
first iteration of the program tested for terms in the superpotential in which two or
more fields do not take on VEVs, and the second iteration of the program tested
the rules provided in (37) to assess at what order F'—flatness was broken. This
iteration included the tests for coefficients on the basis directions. For this model,
however, a sufficient number of directions were found for which at least two fields in
the superpotential did not take on VEVs that it was not necessary to run the second
iteration of the program. This could, however, be done in future to see how many
additional directions may be obtained which are F'—flat to all order. Table C.3 in
Appendix C lists the first fifteen F'—flat directions found to all order for this model.
The first iteration of the program produced approximately 100 F'—flat directions to

all order, however, we have listed only the first fifteen, as this search is meant to be
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representative, not exhaustive. This is also the reason we did not continue with the
second iteration of the program. Again, not all fields in the D—flat basis appear in
the F'—flat basis. In this case, only 16 of 28 original fields appear in the F'—flat basis
due to the constraints on the coefficients of physical D—flat directions. This makes
sense because more basis directions will have more constraints, which will eliminate

more fields from the F'—flat basis.

4.2.2  Non-Abelian Flat Directions

In general, systematic analysis of simultaneously D— and F'—flat directions in
anomalous models is a complicated, nonlinear process.® In weakly coupled heterotic
string (WCHS) model building, as mentioned earlier, F'—flatness of a specific VEV
direction in the low energy effective field theory may be proven to a given order
by cancellation of F'—term components, only to be lost at higher order at which
cancellation is not found. An exception is directions with stringent F—flatness
(50; 52; 77). Instead of allowing cancellation between two or more components in an
F—term, stringent F'—flatness requires that each possible component in an F'—term
have zero vacuum expectation value.

When only non-Abelian singlet fields acquire VEVs, stringent flatness implies
that two or more fields in a given F'—term cannot take on VEVs. For example,
for the 1, term in the third order superpotential for model 2, given at the end of

Appendix B, the components of the F-term are:

Fg, = st + PVgrs. (4.26)

For stringent F'—flatness, we require not just that <F@4> = 0, but that each compo-

nent within is zero, i.e.,

W5¢9> =0, <E8E12> = 0. (4-27)

3 In (76) it is argued that, in addition to flat directions, isolated special points generically
exist in the VEV parameter space which are not located along flat directions, but for which all D—
and F'—terms are indeed zero. The interested reader can find additional information in (76; 72).
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Thus, by not allowing cancellation between components in a given F'—term, strin-
gent F'—flatness imposes stronger constraints than generic F'—flatness, but requires
significantly less fine-tuning between the VEVs of the fields.

The net effect of all stringent F'—flatness constraints on a given superpotential
term is that at least two fields in the term must not take on VEVs. This condition
can be relaxed when non-Abelian fields acquire VEVs. Self-cancellation of a single
component in a given F'—term is possible between various VEVs within a given
non-Abelian representation. Self-cancellation was discussed in (52) for SU(2) and
SO(2n) states.

A given set of stringent F'—flatness constraints are not independent and so-
lutions to a set can be expressed in the language of Boolean algebra and applied
as constraints to linear combinations of D—flat basis directions. Such a language
makes it clear that the effect of stringent F—flat constraints is strongest for low
order superpotential terms and lessens with increasing order. In particular, for the
two models discussed in this section, stringent F'—flatness is extremely constrain-
ing on the VEVs of the reduced number of untwisted singlet fields appearing in the
third through fifth order superpotential, even to the point of excluding any stringent
F—flat directions for model 5. This is in comparison to the larger number of singlets
in the two models in the previous section, as well as in the model of (46).

Though it is possible to imagine that stringent F'—flatness constraints require
order-by-order testing of the superpotential terms, this is, in fact, not necessary. All-
order stringent F'—flatness can be proven or disproven by examining only a small
set of possible dangerous superpotential terms, or terms which break F—flatness.
Through various processes (78), a finite set of superpotential terms can be con-
structed which generates all possible dangerous superpotential terms for a given
D—flat direction. The basis of gauge-invariants can always be formed with particu-

lar attributes:
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(1) Each basis element term contains at most one unVEVed field, because to threaten
F—flatness, a gauge-invariant term, which is necessarily without anomalous
charge, can contain no more than one unVEVed field;

(2) There is at most one basis term for each unVEVed field in the model; and

(3) when an unVEVed field appears in a basis term, it appears only to the first
power.

To appear in a string-based superpotential, a gauge invariant term must also
follow R-NS worldsheet charge conservation rules. For free fermionic models, these
rules have been generalized from finite order (79; 80) to all-order (37). The generic
all-order rules can be applied to systematically determine if any product of F'—flatness
threatening superpotential basis elements generated via (78) survive in the corre-
sponding string-generated superpotential. If none survive, then F'—flatness proven
to all finite order. This technique has been used to prove F'—flatness to all finite or-
der various directions in various models (50; 52; 37; 81; 82). Alternately, if any terms
do survive, the lowest order at which stringent F'—flatness is broken is determined.

All-order stringent flat directions contain a minimum number of VEVs and
appear in models as the roots of more fine-tuned, and generally finite order, flat di-
rections which require specific cancellations between F'—term components. General
flat directions, however, may involve cancellations between sets of components of
different orders in the superpotential.

All-order stringent flat directions have indeed been discovered to be such roots
in all prior free fermionic heterotic models for which systematic flat direction analysis
and classification has been performed. Based on the results of the previous two
models presented herein, we can conclude that the lack of all order stringent flat
directions, as in the model presented in (72), is not a general property of low Higgs
models, and we would expect to find all order stringent flat directions in future

investigations into models in free fermionic heterotic models.
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4.2.2.1 Model 2. Model 2 contains seven U(1)s, six of which are anomalous:

TrQ, =TrQs = —TrQ; = —96, (4.28)

T’f‘Q4 = TT‘Q5 = T’I"QG = —48. (429)

Rotating into a single anomalous U(1)4 and rescaling by a factor of 48 gives:

Q1 = Q1— Qs (4.30)
Q@ = Q5 — Qs, (4.31)
Q; = @3+2Qq, (4.32)
Qy = Q1+ Q2—2(Qs + Q) (4.33)
Qs = 2(Q1+ Q242Q5 — Qu) + Qs + Qs (4.34)
Qs = Qr, (4.35)
Qa = —2(Q1+ Q2+ Qs) — (Qu+ Qs + Q). (4.36)

Investigating only fields which are singlets under the observable and hidden sectors

7777777777 12. Again, simple analysis
excludes EY, 3 from the basis directions, so we are left with 21 fields and six con-
straints, which gives us the 15 basis directions that can be seen in Table B.2 of
Appendix B.

We can see that again each basis direction contains a unique field VEV, just
as in the previous two models. In addition, all the fields which make up the set of
basis D—flat directions are vector-like, which means that all 15 of the D—flat basis
directions formed from singlet fields only for this model are vector-like, just as those
in model 1 are. Again, the FI-term for this model is positive, with TrQ 4 = 720, so
again we need a physical D—flat direction with negative anomalous charge to cancel
the dangerous FI term. Since all the D—flat directions in Table B.2 are vector like,

a direction could be physical if it had postive anomalous charge, because its vector

partner would have negative anomalous charge. However, we see from Table B.2
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that no such D—flat directions exist for this model, since no D—flat direction listed
in Table B.2 has any anomalous charge. Therefore, we needed to expand our D—flat
basis direction search to include non-Abelian fields. This result is not altogether
unexpected, as non-Abelian VEVs have been required for physical all order flat
directions in other semi-realistic free fermionic heterotic models in the past (50).
The D—flat basis directions for non-Abelian fields only and for a mix of non-
Abelian and singlet fields are shown in Tables B.3 and B.4 of Appendix B, respec-
tively. Again, all D—flat basis directions for the both the non-Abelian and mixed
fields contain one unique field VEV. However, none of the unique field VEVs for the
non-Abelian basis directions are vector-like, and thus, none of the ten non-Abelian
basis directions depicted are vector-like. Only one of the non-Abelian directions, Dy,
has negative anomalous charge, Q4 = —30, which is sufficent to cancel the danger-
ous positive FI-term, even though none of the other basis directions are vector-like
and thus would have vector partners which took on negative charge, opposite to
their positive charge. Two of the unique fields for the mixed basis vectors are vector
like, and thus the directions containing them, Dg and D7, are vector like. However,
because they have no anomalous charge, they cannot cancel the positive FI-term.
With one physical D—flat direction found to cancel the dangerous FI-term, we
proceeded to search for directions which were F'—flat to all order, starting again with
generating the superpotential for third through sixth order. The third order superpo-
tential for model 2 is given at the end of Appendix B. We again implemented the first
iteration of the FORTRAN program, whereby we looked for stringent F'—flatness
by requiring that at least two fields in the superpotential not take on VEVs. Re-
sults provided over 60 such directions, and listed in Table B.5 of Appendix B are
the first ten of these. Again because the initial search provided so many directions
which were F'—flat to all order, we did not proceed to the second iteration of the

program for the purposes of this thesis. We also note that only twelve of the original
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set of 45 fields are present in the final F'—flat basis, which is to be expected for
a large number of fields with a large number of constraints. Additionally, because
our final flat direction basis includes non-Abelian fields, we have shown that the
hidden sector breaks supersymmetry in this model, as these directions were involved
in investigating which directions were flat to what order.

4.2.2.2 Model 5. Model 5 contains eight U(1)s, six of which have anomalous

charge:

T?”Qg = TTQ4 = —T?"Qg, = TTQ7 = —-96 (437)

TrQs =TrQs = 48. (4.38)

Rotating into a single anomalous U(1)4 and rescaling by a factor of 48 gives:

Q) = Q1+ Qs (4.39)
Qy = Q3—Qu, (4.40)
Q3 = Q6 — Qs (4.41)
Qy = Qs +Qr, (4.42)
Q5 = Q3+ Qu+2(Qs+Qs), (4.43)
Qs = Q3+ Qu+Qs+Qr+2(Qs + Qs), (4.44)
Qa = —2(Q3+Qu— Q5+ Q7))+ Qs+ Us. (4.45)

Once again, we proceed with searching for singlet flat directions. The fields which

.....

..........

they do not carry any U(1) charge. We are left with 16 fields and eight constraints
from the U(1) charges for a total of eight D—flat basis directions, shown in Table
D.2 of Appendix D.

We notice that again, each basis direction has a unique field VEV associated

with it, but the only direction with a unique field VEV from a vector-like field is Ds,
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which has no anomalous charge. For D33 the total anomalous charge is positive,
and the remaining basis directions have no anomalous charge. We therefore have
no D—flat direction which can cancel the positive Fl-term for this model, with
TrQa = 864. We must then proceed to search for non-Abelian D—flat directions,

the results of which will appear in (74).

4.8  Gauge Groups

In this section, we discuss the details of each of the models. Discussion of
matter content and representations is also given. Further details can be found in
Appendices A-D.

Each model has a reduced number of Higgs particles, less than the standard
three, one for each generation. They are denoted by h;. All Higgs particles are paired
with an anti-Higgs particle, h;. While models 1,4, and 5 all have two pairs of Higgs
under the 10 representation of SO(10) and the 5 and 5 representation of SU(5),
respectively, model 2 lacks any Higgs particles at all, making it incompatible with
Standard Model predictions. Additionally, model 4 contains six additional unpaired
Higgs-like particles, denoted by hg g, which are exotic Higgs. The first three are
5 representations under SU(5), while the last three are 5 representations of SU(5).
Exotic Higgs come from the twisted sector of a given model, while the standard
Higgs come from the untwisted sector.

A general property of models with low number of Higgs is that they have
fewer singlet particles from the untwisted sector. This is indeed the case for all of
our models, as we see for each model that only the ¢; fields come from the untwisted
sector. All other singlet fields come from a combination of one or more of the twisted
sectors, which include the sectors from the additional basis vectors for each model.

Model 1 is the only model with four additional basis vectors; all other models

presented herein have three additional basis vectors. The basis vectors of a given
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model determine the gauge groups of that model. Model 1 is our only model with
an SO(10) observable sector gauge group; the three other models all have SU(5)
observable sector gauge groups. Each break to the Standard Model gauge group,
SU(3) x SU(2) x U(1), and they are both equally valid groups from which to obtain
semi-realistic Standard-like GUT Models. The U(1)"?3 gauge groups are standard
symmetries present in all three generation free fermionic models which employ the
NAHE set. Additional horizontal U(1)", where n > 4, symmetries arise by pairing
two real fermions from the sets {7>¢}, {y'? w>®}, and {w'*}. The final gauge
group depends on such pairings, which can be seen in the (d) tables of Appendices
A-D, which contain the additional basis vectors for each model. The number of
pairings corresponds to the number of additional U(1)s, which is two for model 1,
three for model 2, and four for models 4 and 5.

The existence of these additional U(1) gauge groups is correlated with the
assignment of asymmetric boundary conditions with respect to the set of internal
world-sheet fermions, {y,w|y, w}% in the basis vectors that extend the NAHE
for a given model. This assignment of asymmetric boundary conditions in the basis
vector that breaks the SO(10) symmetry to SO(6) x SO(4) results in the projection
of the untwisted Higgs color-triplet fields and preservation of the corresponding
electroweak doublet Higgs representations (83).

In model 1, we find the states which correspond to the three generations,
denoted by Gj.23, are the 16 representations of SO(10), while in the remaining
models, the states corresponding to the three generations are denoted by F} 3 3, which
are the 10 representations of SU(5), and F} 53, which are the 5 representations of
SU(5). All other states in each model are singlets under the observable sector gauge
groups. The non-Abelian fields, denoted by H; and H; are the only states which
are not singlets under the hidden sector gauge groups. In model 1, the non-Abelian

representations are the 8 of SU(8), which only the last three fields contain, and the
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2 of SU(2), which the remaining non-Abelian fields contain. In model 2, Hig 11,12
are 6 representations of SU(4), Hy g9 are the 4 representations of SU(4), and H; ¢
are the 4 representations of SU(4). The remaining non-Abelian fields of model 2 are
10 representations of SO(10). Model 4 contains only an SU(4) hidden sector gauge
group, with all the non-Abelian particles in the 8 representation. Finally, model 5
contains four SU(2) gauge groups and one SU(4) gauge group. Hyg3o are the 6
representations of SU(4) and are singlets under all other gauge groups, while Hy; is
also a 6 representation of SU(4) with 2 representations of SU(2)' and SU(2)? and
contains no U(1)s. The particles which are 4 representations of SU(4) are Hsz 3s,
singlets under all other gauge groups. All other non-Abelian fields for model 5 have

at least one 2 representation of SU(2)%1.
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CHAPTER FIVE
The NAHE Variation With a Geometric Twist

In this chapter, we present a variation of the NAHE basis set for free fermionic
heterotic string models. By rotating some of the boundary conditions of the NAHE
periodic/anti-periodic fermions, {y™, y™,w™,w™}, for m = 1 to 6, associated with
the six compact dimensions of a bosonic lattice/orbifold model, we show an addi-
tional method for enhancing the standard NAHE gauge group of SO(10) back to Fg.
This rotation transforms (SO(10) ® SO(6)?)mebs @ (Eg)nia into (Eg @ U(1)%)ps &
SO(22)pia- When SO(10) is enhaced to Eg in this manner, the 7 Minimal Super-
symmetric Standard Model (MSSM) matter generation in the SO(10) 16, represen-
tation, originating in twisted basis vector b;, recombines with both its associated
untwisted MSSM Higgs in a 10; representation and an untwisted non-Abelian sin-
glet, ¢;, to form a 27, representation of Eg. Beginning instead with the Eg model,
the inverse transformation of the fermion boundary conditions corresponds to partial
Grand Unified Theory (GUT) breaking via boundary rotation.

Correspondence between free fermionic models with Zs ®7Z, twist, especially of
the NAHE class, and orbifold models with a similar twist has received further atten-
tion recently. The NAHE variation discussed here also involves a Zy ® Zo twist and
offers additional understanding regarding the free fermion/orbifold correspondence.
Further, models based on this NAHE variation offer some different phenomenologi-
cal features compared with NAHE based models. In particular, the more compact
Zo ® 7o twist of the NAHE variation offers a range of mirror models not possible

from NAHE based models.
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5.1 A Geometric Twist

The parameter space of the weakly coupled free fermionic heterotic string
(WCFFHS) (33; 31; 34; 35; 53) region of the string landscape has been shown to be
rich in semi-realistic models containing the MSSM or its extensions. The WCFFHS
region has produced a vast range of semi-realistic Near-MSSM-like models (40; 41;
42; 67; 52; 45; 84; 77; 85; 44) semi-GUT models (50; 49; 86; 87), and GUT models
(38), etc. The majority of these models are constructed as extensions of the NAHE
set (56), with the five basis vectors of the NAHE set as their common core. Within
the five basis vectors of the NAHE set, the twelve real free fermions representing the
six compactified bosonic directions have boundary condition vectors equivalent to a
T /7y ® 7y orbifold twist. While basis vector extensions to the NAHE set may or
may not break Zs ® Zo symmetry, the semi-realistic models consistently follow the
latter scheme.

Of current focus is the correspndence between free fermionic and orbifold mod-
els (88; 89; 90). In (88) a complete classification was obtained for orbifolds of the
form X/G, with X the product of three elliptic curves and G an Abelian exten-
sion of a group of Zy ® Z, twists acting on X. This includes T°/Zy @ Zy orbifolds.
Each such orbifold was shown to correspond to a free fermionic model with geomet-
ric interpretation. The NAHE basis and certain model extensions were shown to
have geometric interpretation and thus, to have orbifold equivalences. However, the
general class of semi-realistic models with a NAHE basis were shown not to have
geometric interpretation; specifically, their Hodge numbers were not reproducible
by any orbifold X/G. In other words, the beyond-NAHE basis vectors necessary to
yield a semi-realistic model, by reducing the number of copies of each generation
from 16 to 1 and breaking SO(10) to a viable sub-group,! consistently break the

TC/Zy ® 7 symmetry in a manner that also eliminates geometric interpretation.

1 .S0(10) must be broken via Wilson loop effects of basis vectors rather than by GUT Higgs,
since adjoint or higher dimension scalars are not possible in Ka¢-Moody rank one models.
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The non-geometric feature of the semi-realistic WCFFHS models inspired us
to investigate variations of the NAHE set that might allow for semi-realistic models
with a geometric interpretation, particularly with geometric T°/Z, ® Z, interpreta-
tion. In the next section, we construct a NAHE variation of this form by rotating
(interchanging) the boundary conditions of a subset of the twelve real fermions in
two of the twisted sectors. We conclude by considering some of the phenomenologi-
cal aspects of this new model class, especially in comparison to those of the NAHE

class.

5.2 Construction and Phenomenology of the NAHE Variation

As mentioned earlier, the NAHE basis set consists of five basis vectors: The
all-periodic sector, 1, which is present in all fermionic models, the supersymmetry
generating sector, S, and the three generation sectors, b;—; 2 3. The NAHE set was
given in (3.21 — 5), where the (y,w)™, for m = 1 to 6, are the six pairs of real
fermions that replace the right-moving bosonic scalar fields, x,, for the six compact-
ified directions, and the corresponding (7, @)™ are the six pairs of real fermions that
replace the left-moving y,,.

Again, the gauge group of the NAHE set is SO(10) ® SO(6)? ® Eg with N =1
spacetime supersymmetry. The matter content is 48 spinorial 16 representations
of SO(10) matter states, coming from sixteen copies from each sector, by, by, and
bs. The sixteen copies in each sector are composed of two copies of (16,4;) rep-
resentations and two copies of (16,4;) representations of SO(10) ® SO(6);. The
untwisted sector contains six copies of a pair of Higgs for each generation in the
form of (10, 6,) representations of SO(10) ® SO(6);, in addition to a single (6;,6;)
representation of SO(6); ® SO(6);, for each case of i,j € {1,2,3} and ¢ # j. In a
real basis of the § and w, the generators of SO(6); are (7%, ', 4%, w°, w°); of SO(6),

are (7%, 9%, 9", 9°,4°); of SO(6)3 are (7°, w', w? w*, w
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The three sectors, by, by, and bg, are the three unique twisted twisted sectors
of the corresponding Z$ @ Z¢ orbifold compactification. The Z$ @ Z5 acts on the

(y,w); and (g, w); in the b,; according to

Zs (y,g)"=>% = (y+ 1,5+ 1)™ (mod 2) (5.1)

Z5: (y, )™ % (w, )" = (y+ 1,5+ 1)™; (w + 1,0 + 1)" (mod 2). (5.2)

Thus, by is a Z2 twisted sector, by is a Z5 twisted sector, and bs + 1 is a Z3 @ Z3
twisted sector. The Z$ x Z4 NAHE orbifold is special precisely because of the
existence of three twisted sectors, one per generation, with a permutation symmetry
with respect to the horizontal SO(6)® symmetries. This symmetry also enables
b; +by+bs+1 to generate the massless sector that produces the spinor components
of the hidden sector Eg gauge group.

The NAHE set is common to a large class of three generation free fermionic
models. As previously discussed, model building proceeds by adding three or four
additional boundary condition basis vectors to the NAHE set, which simultane-
ously break SO(10) to one of its subgroups, SU(5) ® U(1),SO(6) ® SO(4), or
SU(3) ® SU(2) ® U(1)?, and reduce the number of generations to three chiral,
one from each of the sectors, by, by, and bz. The various three generation models
differ in their detailed phenomenological properties based on the specific assign-

ment of boundary condition basis vectors for the internal world sheet fermions,

{y, w|g, w}'5.

This is one reason for our interest in examining the properties of
a new class of models based on a NAHE variation for which some of the boundary

conditions of the {y,w|y, w}'° are exchanged.

by = {y*°lg>} (5.3)
b2 — {y1,2,5,6 |g1,2,5,6} (54)
b3 — {yl,...,4|g1,...,4} (55)
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The NAHE variation under discussion is produced by exchanging some of
the periodic and antiperiodic boundary conditions in the second and third gener-

m=>5,6

ation sectors, as shown above. In by, the boundary conditions of (y,7) and

)m:5,6 and

)m=1,2,3,4

(w,w are interchanged. In bgs, the boundary conditions of (y,y

m=1,234 are interchanged. Under this exchange, both Z% and Z° now induce

(w, D)
twists solely among the (y,7)™ and no longer among the (w,w)™. In addition,
7° ® 7P now corresponds exactly to bs, rather than to bs + 1. This effect of the
exchanged boundary conditions for the Z® and Z° twists is very non-trivial.

The observable gauge group is enhanced to Fg ® U(1)®, and the hidden sector
gauge group transforms into SO(22). The change in gauge group occurs because
now it is the combination of S + by + by + bs, rather than of b; + by + bs + 1,
that forms a mass spinor gauge group sector. Thus, in the NAHE variation, there
is a massless spinor sector involving the five complex 7 and the three complex 7
observable sector fermions rather than the eight complex ¢ hidden sector fermions.
This massless spinor sector enhances the SO(10) symmetry generated into Eg. The
enhancement is into g rather than Eg because of the GSO constraints the b, basis
vectors place on the 7° spinors.

The trace component of the three complex 7 fermions is also absorbed into
the Fg, leaving 7' — 72 and 7' + 77* — 27)® as generating 2 extra U(1) charges, along
with the 3 extra U(1)’s generated by the complex 5’ = ' +i%?, y'f = ¢* +iy*, and
g = 55 + b

Instead of producing 8 copies of non-chiral generations of SO(10) 16 repre-
sentations in each b; sector, this model produces one non-chiral generation of Fjg
27 representations in each {1, b;} sector combination and an additional 4 non-chiral
generations in each of the three {S + b; + b;},i # j sectors. Thus, this model

corresponds to h'' = h*! = 15. Thus, this model has the Hodge numbers and
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twisted sector matter distributions of the orbifold models (1 — 2) and (1 — 8)of (88)
and may be the free fermionic equivalent of one of these.

The NAHE variation also contains 45 pairs of vector-like non-Abelian matter
singlets carrying U(1) charges, with 9 pairs coming from the untwisted sector and
12 pairs from each of the three b; 4+ b; sectors. The untwisted sector contains 6
copies of 22 representations of the hidden sector SO(22), while each S + b; + b;
sector produces an additional 8 copies of 22 representations of SO(22). The third
order components of the model’s superpotential are given in Appendix E. The next
lowest order terms are fifth order; there are no fourth order terms.

We note finally that this NAHE variation has connection with another varia-
tion discussed in (86) that is formed from six basis vectors. In that model, the sector
formed by the sum of the three b; in our above variation was denoted as X and was
added to the NAHE group. In the latter, the observable sector GUT gauge group
is also raised to Ejg, with the same U(1) enhancing SO(10) to Eg. The total gauge
group becomes Eg ® U(1)? ® SO(4)® ® Eg, in contrast to our Eg ® U(1)° ® SO(22).

5.8 Discussion

In (91) we introduced a general algorithm for systematic generation of the
complete set of WCFFHS gauge group models up to a chosen number of basis vectors,
L, and order N, the lowest common multiple of the orders N; of the respective basis
vectors? V;, whereby N; is the smallest positive integer such that N;V; = 0 (mod 2).
The algorithm of systematic generation of models containing twisted matter sectors
has been generalized, and we have begun a systematic investigation of SO(10) NAHE
based models (74). Now, with the construction of the Fs NAHE variation presented
in this chapter, we are also initiating a parallel systematic investigation of models

with the NAHE variation as their core. The general phenomenology of this new

2 By gauge basis vectors, we mean those with all anti-periodic left-moving boundary condi-
tions.
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class of models and the particular characteristics of subclasses of models defined by
their observable gauge group will be presented in an upcoming series of papers.

One aspect of the NAHE variation class of models that we will pursue are
mirror models. These models contain matching observable and hidden sector gauge
groups and matter states. The possibility of NAHE based mirror models was ex-
plored in (92), in which it is shown that since the charges of observable sector states
in NAHE based models are spread out beyond half (22) of the total number of right-
moving complex fermions, GSO constraints imposed by the observable sector on the
charges of the hidden sector states significantly hinder realization of mirror mod-
els. In fact, it was shown that in a large class, perhaps all, of NAHE based models
with mirror basis vectors, these GSO constraints enforce spontaneous breaking of
an initial mirror symmetry of gauge groups (92).

However, our variation on the NAHE set appears more condusive to mirror
model construction, since the Z, ® Z, twist in the NAHE variation allows observable
sector states to carry charges within just the first 11 of the 22 right-moving complex
fermions, allowing the additional 11 charges to be reserved for hidden sector states.
Specifically, an additional three sectors denoted bj_,,, mirroring b,_1 53 in the
hidden sector might be added to our NAHE variation to generate an (Eg@U (1)°) s @
(Es ® U(1)°)p;q model with matching matter states.?

It should be noted that, nevertheless, the GSO projections between observable
and hidden massless matter sectors can never be totally independent, since the ob-
servable and hidden matter sectors will always have a periodic complex spacetime
fermion in common. Modular invariance contraints require that any pair of order-2
mirror matter sectors have at least one more non-zero complex fermion boundary
condition in common, albeit the complex fermion can be either left-moving or right-

moving. Hence, for order-2 the modular invariant rules cannot be satisfied by simply

3 Nevertheless, singlet states carrying both observable U(1)3, . and hidden U(1)3,, charges

obs
are likely to exist, and therefore mix the observable and hidden sectors.
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adding an additional set of hidden sector mirror matter sectors, bj_; , 5, with real
right moving components defined by (b})" = (b;)*~". In this case, while b} - b;
satisfy modular invariance requirements, bj - b, do not. As we will show in (93),
for higher order basis vectors, this requirement is lifted; mirror observable/hidden
matter sectors with either only a periodic spacetime boundary condition in com-
mon or else only a periodic spacetime and left-moving complex fermion x boundary
condition in common are consistent with modular invariance.

Results of our full exploration of gauge and mirror models based on our NAHE
variation will appear in (93). Rather than discuss the range now, we close the chap-
ter instead with an interesting NAHE variation-based example of a gauge (but not
matter) mirror model that satisfies modular invariance requirements. The observ-
able and hidden sector matter basis vectors are not completely mirrors among the
{7, 5" w"}. Hence observable and hidden sector matter are not mirror images.
The gauge group is (Eg)ops @ U(1)" @ SU(4) ® (Eg)nig- The model is chiral with 21 27
representations and 3 27 representations of (Eg)obs- The untwisted sector provides 3
27 and 3 27 representations; the 18 net chiral representations are all from the twisted
sectors. The model also contains 12 4 and 12 4 representations, not in vector-like
pairs, of SU(4) and 48 U(1)® charged non-Abelian singlets. There are neither 27
nor 27 representations of (Fg)niq. A net Zg twist from additional sectors is needed
to (1) simultaneously reduce (Eg)ops to a (semi-)GUT that does not require adjoint
or higher scalar representations to induce a spontaneous symmetry breaking to the
MSSM at low energy and (2) reduce the number of copies of each matter generation
from 6 to 1. The basis vectors and GSO projection matrix are given in Tables E.1

and E.2 in Appendix E.
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CHAPTER SIX

Conclusions

In this thesis, we focus our study on heterotic superstring theories and their
applications to particle physics. In particular, we are interested in the search of
semi-realistic four dimensional superstring vacua which can reproduce the Stan-
dard Model physics at low energy. A highly successful approach is given by free
fermionic models, which give rise to the most realistic three generation string mod-
els to date. Their phenomenology is studied in the effective low energy field theory
by the analysis of supersymmetric flat directions. Before discussing each of the four
models presented herein, we mention a model which consists of MSSM states in the
observable Standard Model sector, and which was the first model found with a re-
duced number of Higgs content at the string scale. This result came about through
the application of a new general mechanism which involved a choice of asymmetric
boundary conditions for the internal fermions of the theory. An additional result for
minimal Higgs spectrum models is the fact that the supersymmetric moduli space
is reduced as well, which increases the predictive power of the theory.

A common feature of free fermionic models is the presence of an anomalous
U(1) which gives rise to a Fayet-Iliopoulos D—terms which breaks supersymmetry
at the one loop level in string perturbation theory. Supersymmetry is restored by
imposing D— and F'— flatness on the vacuum. Generally, it has been assumed
that in a given string model, there should exist a supersymmetric solution to D—
and F'—flatness constraints. However, in the model mentioned at the beginning
of Chapter 4, no flat solutions were found after employing the standard analysis

for flat directions. Such a result lead to the investigation of similar free fermionic
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models, with low Higgs content, to assess whether the lack of such supersymmetric
flat directions was a general property of this class of models.

In Chapter 4, we presented four semi-realistic free fermionic models, all with
reduced Higgs content. Standard flat direction analysis showed that supersymmetric
D— and F—flatness existed for all four models. Additionally, two of the models
exhibited non-Abelian singlet flat directions, as had been expected from past free
fermionic heterotic models. While the results herein are not exhaustive, i.e. not
all flat directions are presented for all four models, we required only that they be
sufficient to make a general statement about this class of models. Therefore, the
tables of flat directions listed do not reflect a complete flat direction characterization
for a given model. For the purposes of this work, we are concerned only with whether
or not these flat directions exist, rather than providing an exhaustive list of each flat
direction for each model. In this case, it was sufficient to find just one flat direction
from each model to assess whether the lack thereof was a general property of these
models.

In Chapter 5, we presented a variation on the NAHE set from which the first
four models were derived. Such a variation comes about through the rotation of some
of the boundary conditions of the NAHE periodic/antiperiodic fermions associated
with the six compact dimensions of a bosonic lattice/orbifold model, specifically
those for a subset of the twelve real fermions in two of the twisted sectors, by and
bs. Through this rotation, the observable sector gauge group is enhanced from
SO(10) ® SO(6)3 to Es@U(1)5, and the hidden sector gauge group transforms from
Es into SO(22). The significance of beginning with an Eg model is that the in-
verse transformation of the fermion boundary conditions correspond to partial GUT
breaking through the boundary rotation. In addition, investigation of models within
this variation on the NAHE set offers the possibility of a range of mirror models,

or models which contain matching observable and hidden sector gauge groups and

72



matter states. To date, investigation into specific models within this variation, be-
sides the example presented herein, has yet to be done, and is an obvious place to
proceed with further research.

The main results of this thesis allow for a significant amount of future work,
in addition to that just mentioned. As stated earlier, the search for flat directions
was merely representative, not exhaustive. In this case, further work can be done to
fully classify the flat directions for each of the models. Also, brief work was done to
assess the scale at which hidden sector fields become massive for one of the models
presented in chapter 4. The next step is to investigate at what scale the hidden
sector fields condensate into observable sector fields for a given flat direction, which
causes supersymmetry breaking along that direction. This analysis can obviously be
done for all the four models presented in chapter 4, to more completely characterize
these models.

Though we presented only four semi-realistic models herein, the goal of string
phenomenology is to obtain a semi-realistic string model which accurately describes
the Standard Model in the observable sector, and perhaps gives new insight into dark
matter via the hidden sector. The string models in the free fermionic formulation
give rise to a large class of semi-realistic models which produce solely the MSSM
spectrum in the observable Standard Model charged sector of the effective low energy
field theory. As such, free fermionic models provide an arena to study how string
theory may be related to observed particle data. In turn, the properties of the
models which make them attractive from the point of view of the phenomenological

data may be instrumental in uncovering unexpected properties of string theory.

73



APPENDICES

74



APPENDIX A

Gauge Charges and Flat Directions of Model 1

Table A.1: Gauge Charges of Model 1. The names of the states appear in the first
column, with the states’ various charges appearing in the other columns. All U(1)
charges are multiplied by a factor of 4 (and similarly for all other models).

’

state  SO(10) Uy U, U, U, U, Us SU®) SU(2)
e 16 10 0 -2 -4 0 20 1 1
Go 6 6 2 0 2 0 -30 1 1
Gs 16 12 2 2 2 0 10 1 1
ha 10 -12 2 2 2 0 -10 1 1
hy 0 12 2 2 2 0 10 1 1
ho 10 -12 2 2 2 0 -10 1 1
ho 0 12 2 -2 2 0 10 1 1
o 1 0 0 0 0 0 0 1 1
D, 1 0 0 0 0 0 0 1 1
®; 1 0 0 0 0 0 0 1 1
d1(¢1) 1 0 0 8 0 0 0 1 1
b2(92) 1 24 4 4 4 0 20 1 1
b3(93) 1 24 4 4 4 0 20 1 1
1 (1) 1 12 6 2 2 0 10 1 1
Vo (1hy) 1 0 2 -2 2 0 -7 1 1
V3(13) 1 8 2 2 -10 0 30 1 1
Va(1y) 1 0 0 4 0 0 0 1 1
s (¥s) 1 0 0 4 0 0 0 1 1
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Table A.1: Gauge Charges of Model 1, Continued.
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Table A.3: Basis set of F-flat directions to all order for Model 1. Column 1 denotes
the flat direction number. Column 2 is the anomalous charge. The remaining
columns specify the norm squared VEVs of the respective non-Abelian singlet

fields. All other ”3” tables are structured in a like manner.

FD Qa &1 92 @3 s e s Yo Yo Y Y12 Yz Yug
1 49 0 -3 -144 -98 O 0 92 98 O -98  -92
2 -1 0 -1 -2 2 0 0 0 0 2 0 -2 0
3 -1 0 0 -3 -4 0 0 0 0 2 2 -2 -2

-1 0 -1 0 0 2 0 -2 0 2 0 -2 0

5 -2 0 -3 -1 0 2 0 4 0 4 0 -4 0
6 -1 0 0 1 0 -4 0 -2 0 2 0 -2 0
7T -1 0 0 -1 2 -2 0 0 0 2 0 2 0
8 -2 0 -1 -3 4 -2 0 0 0 4 0 -4 0
9 -1 0 1 O 2 4 0 0 0 2 0 2 0
0 -2 1 0 O 0 6 0 -4 0 4 0 -4 0
1 -5 1 0 3 0 -18 0 -10 0 10 0 -10 0
12 -2 -1 0 O 4 -6 0 0 0 4 0 -4 0
3 -5 -1 0 -3 -10 -12 0 O 0 10 O -10 0
4 -1 0 0 O 0 3 -2 -3 1 0 -1 -2 0
15 -1 0O 0 1 0 4 -2 -4 0 0 -2 -2 0
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Superpotential, Wrpq, for F'—flat Direction 1, for Model 1.

¢1 G b3
+ g @1 Py
+ 3 12 Yo
+ g U1 Y4
+ 1y P2 Yo
+ s By Py
+ Hy Hg 1y

+ b3 P1a 3 Uy U1
+ hy by ¢_53 Es E:s

+ 01 03 P
+ Uy 1y by
+ 5 P11 P10
+ s Yus Y1
+ Y12 P3 Y1
+ Hy H; ¢,
+ Do ha ¢3

+ U5 Uyy ¢35 Uy Ui
+ Uy Uy O3 P3 V3 U3 U1y
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Table A.4: Additional Basis Vectors of Model 1.

WE Y12 APt 56 El vvvvv 5 7o 51 vvvv 8
a4 0 0 0 0 1., 1 0 0 0,00,00,0,0,0
6 0 O O 0 1.1 0 1 0 0,000,000,
»w 0 o o0 o 1,..,10 1 1 0 00,011,000
& 0 0 o0 0 1.1 1 1 1 11,1,1,1,1,1,1

Table A.4: Additional Basis Vectors of Model 1, Continued.

y3 ..... 6 y?, ,,,,, y1,2’w5,6 g1,27w5,6 wld gl
o 1,001 1,001 0001 1,011 00,010 01,11
4 0010 1,011 1,010 1,010 1,000 11,0,
v 01,00 0100 0100 01,00 01,01 00,00
& 00,00 0000 0000 0000 0000 0,000

Table A.5: GSO Projection Matrix for Model 1.

ki; 1S by by by a1 /i 7 &
1 00 0o 1 1T O 0 0 O
s 00 0O O O O 0 0 O
b, 01 0 1 1 0 0 1 1
b, 1 1 1 1 1 0 1 1 1
b; 1 1 1 1 1 1 0 1 1
o 0 0 1 1 0 0 1 1 0
6y 00 1 O 1 1 0 0 1
vw O 0 O O 1 0 1 0 1
64 0 0 0 0o O 1 0 1 1
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APPENDIX B
Gauge Charges and Flat Directions of Model 2

Table B.1: Gauge Charges of Model 2.

! ! !

state  SU(5) Us U, U, U; U, Uy, Us; SU(4) SO(10)
F 10 6 2 2 0 2 -6 2 1 1
F, 10 6 2 0 -4 -2 0 2 1 1
Fy 10 6 0 2 2 4 6 2 1 1
F 5 02 2 2 0 6 -2 -6 1 1
F, 5002 2 0 4 2 -8 -6 1 1
Fy 5 2 0 -2 2 -4 10 -6 1 1
E¢ 1 2 -2 2 0 -6 -2 10 1 1
ES 1 2 2 0 4 -2 -8 10 1 1
ES 1 2 0 -2 2 -4 10 10 1 1
d, 1 0 0 0O 0O 0 0 O 1 1
D, 1 0 0 0O O O 0 O 1 1
Dy 1 0 0 0O O 0 0 O 1 1
o1(¢1) 1 8 0 0 0 16 -8 0 1 1
d2(2) 1 0 0 -8 0 0 0 0 1 1
¢3(93) 1 8 0 4 -8 8 4 0 1 1
d4(¢a) 1 0 0 4 -8 -8 12 0 1 1
¢s5(9s) 1 8 0 4 -8 -8 4 0 1 1
P6(P6) 1 0 0 4 -8 -8 12 0 1 1
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Table B.1: Gauge Charges of Model 2, Continued.
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Table B.1: Gauge Charges of Model 2, Continued.

!

state  SU(B) Us U, U, Uy U, U,

!

U, SUM4) SO(10)

Hy(Hy) 1 8 0 2 -1 2 2 -5 4 1
Hy(Hy) 1 4 0 0 5 2 4 -5 4 1
Hs(H3) 1 4 0 2 -1 6 -2 -5 4 1
H, 1 2 0 2 -3 6 10 5 4 1
o 1 2 2 0 -1 8 -8 5 4 1
Hg 1 2 2 2 5 4 -2 5 4 1
H- 1 6 0 2 5 2 6 -5 4 1
Hy 1 6 -2 0 1 8 0 -5 4 1
Hy 1 6 2 2 3 4 6 -5 4 1
Hig 1 6 2 2 2 6 6 0 6 1
Hi 1 6 2 0 6 -2 0 0 6 1
His 1 6 0 2 0 -8 -6 0 6 1
His 1 10 2 0 2 -2 8 0 1 10
Hiy 1 10 0 2 0 0 -10 0 1 10
His 1 10 2 2 2 2 2 0 1 10
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Table B.2: Basis set of non-anomalous U(1) Singlet D-flat directions for Model 2.

FD QA ¢1 ¢2 ¢3 ¢4 ¢5 ¢6 % w2 ¢3 ¢4 ¢5 % ¢7 w8 1#9 7vblo 77D11 %2
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D
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Ds

Dy

Dy
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Table B.5: Basis set of F-flat directions to all order for Model 2.

FD QA ¢9 ¢10 wll Hl [j[2 [_{3 H4 HlO H12 H? H8

1 o 5 6 -9 0 -66 -48 18 O 24 40 46

2 -1 -2 6 0 0 -42 -42 15 O 18 31 34
3 -4 0 -3 -3 -1 -13 -7 7 0 21 0 14
4 -15 0 -3 -3 -1 -15 -9 8 0 23 1 16
5 -16 1 -3 0 0o -12 -12 9 0 24 1 16

6 -1 0 33 -33 -4 -68 -2 23 O 24 45 46
7 -1 0 30 -30 42 -60 O 21 O 24 39 42
g -1 0 9 -9 0 -56 -38 19 O 20 37 38
9 -4 0 3 -3 -13 -7 -1 7 0 21 0 14
10 -14 -2 6 0 -23 -1 -1 6 1 22 0 16
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Table B.6: Additional Basis Vectors of Model 2.

wu X12 X34 X56 ¢ ~~~~~ ﬁl ﬁ2 ﬁB 5 ,,,,,

a 0 0 0 o 1,.,1 1 0 0 0,0,0,0,0,0,0,0
B 0 O 0 o 1,..,1 0 1 0 0,000,0,0,0,0
v 0 0 0 6 1,.,1 1 1 1 000071111

Table B.6: Additional Basis Vectors of Model 2, Continued.

3.6 73,6 12,56 =12 =56 1.4
Yy, w Yy, w w

-----

a 1,0,0,1 1,0,0,1 0,0,0,1 1,0,1,1  0,0,1,0 0,1,1,1
g2 00,10 1,011 1,0,1,0 1,0,1,0 1,0,0,0 1,1,0,1
v 0,200 0,200 0,200 0,2,0,0 0,2,0,2 0,0,0,0

Table B.7: GSO Projection Matrix for Model 2.

k‘@j 1 S b1 bQ b3 (0%) 62 V2

1 00 1 1 1 0 0 -

N [—=

s 00 o0 o o0 0 0 O

N =

F
—
[S—y
—_
—_
[S—y
@]
—
o=

@ 0 0 1 1 0 0 1 14
B 000 1 0 1 1 0 3
%» 0 0 1 0 0 0 0 -3
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Third Order Superpotential, W3, for Model 2.
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APPENDIX C

Gauge Charges and Flat Directions of Model 4

Table C.1: Gauge Charges of Model 4.

!

state  SU(5) Us U, U, Uy U, U Us U, SU(4)
F 0 20 2 -2 2 2 -2 28 0 1
F, 100 24 0 0 0 2 16 -104 0 1
Fy 0 20 2 2 -2 2 -2 28 0 1
F 5 020 -6 -2 2 -2 -34 -148 0 1
Fy 5 24 -8 0 0 -2 -16 104 0 1
Fy 5024 6 2 2 2 34 16 0 1
E¢ 1 60 10 -2 2 -2 30 92 0 1
E 1 60 -10 2 -2 2 -30 -92 0 1
ES 1 56 8 0 0 -2 48 344 0 1
ES 1 5 10 2 2 2 30 256 0 1
hi(hy) 5 -4 -4 4 0 0 -36 -12 0 1
ha(hs) 5 12 0 2 2 -2 8 52 -8 1
hs 5 20 6 2 -2 2 34 148 0 1
hy 5 8 0 2 -2 2 8 112 8 1
hs 5 8 0 2 2 2 8 112 -8 1
h 5 024 6 -2 -2 2 34 16 0 1
hy 5 8 4 0 0 2 36 -152 0 1
hg 5032 4 0 0 -2 -4 2712 0 1
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Table C.1: Gauge Charges of Model 4, Continued.

/

state  SU(B) Uy U, U, Uy U, Uy Uy U, SU(4)
d, 1 0 0 0 0 0 0 0 0 1
d, 1 0 0 0 0 0 0 0 0 1
By 1 0 0 0 0 0 0 0 0 1
o1(¢1) 1 36 4 4 0 0 -4 108 0 1
U1 (1) 1 4 4 2 2 2 4 220 -8 1
V(1)) 1 4 0 4 0 2 0 -164 0 1
P (13) 1 -4 0 4 0 -2 0 164 0 1
Uy 1 5 10 -2 -2 2 30 25 0 1
Vs 1 12 8 2 2 -2 8 52 8 1
Ve 1 12 8 -2 -2 -2 8 -52 -8 1
(U 1 16 6 0 4 2 26 -128 8 1
g 1 20 6 0 0 -2 2 -292 8 1
(0 1 12 6 0 0 -6 26 36 -8 1
Y10 1 8 6 0 -4 -2 26 200 -8 1
Vi 1 8 0 4 -4 -2 0 -328 0 1
(G 1 0 0 4 4 6 0 0 0 1
Y13 1 0 -4 0 0 -2 36 176 0 1
[ 1 0 0 -4 -4 6 0 0 0 1
Y15 1 8 0 -4 4 -2 0 -328 0 1
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Table C.1: Gauge Charges of Model 4, Continued.

!

state SU(B) Us U, U, U, U, Us U; U, SU(4)
V16 1 40 -4 0 0 2 -4 -5 0 1
Y17 1 -12 -4 2 2 -2 -44 -124 -8 1
(G 1 48 4 2 -2 2 -4 56 -8 1
Y19 1 -12 4 -2 -2 -2 44 -124 8 1
P20 1 -8 -6 0 4 2 -26 -200 -8 1
Yo 1 4 6 0 0 -2 -26 -364 -8 1
P22 1 48 4 -2 2 2 -4 -5 8 1
o3 1 -12 6 0 0 -6 -26 -36 8 1
(O 1 -16 6 0 -4 -2 -26 128 8 1
H, 1 32 4 2 2 -2 24 8 -4 8
H, 1 32 6 0 0 2 6 -8 -4 8
Hj 1 16 2 -2 2 2 -2 136 4 8
H, 1 20 0 0 0 2 -20 -116 4 8
H; 1 16 2 2 -2 2 -2 136 4 8
H; 1 20 2 2 2 -2 -2 28 4 8
H, 1 28 -4 2 -2 -2 24 -172 -4 8
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Table C.4: Additional Basis Vectors of Model 4.

Y L El ~~~~~ ﬁl 7 ﬁg 51 ,,,,, 8
ay 1 0 0 0 1,. 0o 1 0 0,0000,00,0
Bs 1 0 1 0 1. 0 0 00,000,000
Va2 0 0 2 1,. 11 1,1,1,1,1,1,1,1

Table C.4: Additional Basis Vectors of Model 4, Continued.

e Bt L2 56 L2 B6  gple 4 gt
oy 1,0,0,1 0,0,000 0,0,1,0 1,0,1,1  0,0,0,1 0,0,0,1
B4+ 0,0,0,0 1,0,0,1 1,0,1,1 0,0,1,0 0,1,0,0 0,1,0,0
v 0,2,00 2,202 0,2,0,0 0,2,0,0  2,0,2,0 0,0,0,0

Table C.5: GSO Projection Matrix for Model 4.

ki; 1 S by by by as Bs M
1 00 1 1 1 1 1 1
S 00 0 O 0O 0 0 O0
b, 1.1 1 1 1 0 0 3
b, 1 1 1 1 1 0 0 1
b; 1 1 1 1 1 0 1 0
ay 11 1 1 0 1 1 1
By 111 1 1 1 1 -}
v%w 01 0 0 0 o0 1 1
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APPENDIX D

Gauge Charges and Flat Directions of Model 5

Table D.1: Gauge Charges of Model 5.

SU(2)* x SU(4)

/
7

/
6

U,

U,

/ ’ ! !
2 3 4 5

U.

!
1

U

SU() Uy

State

(1,1,1,1,1)

-2

(1,1,1,1,1)

-6

10

Fy

(1,1,1,1,1)

12

(1,1,1,1,1)

-2

-4

(1,1,1,1,1)

-14

-2

(1,1,1,1,1)

4

(1,1,1,1,1)

2

0O 10 -2 0

8

(1,1,1,1,1)

-14

4 -2

10

(1,1,1,1,1)

4

(1,1,1,1, 1)

20

(1,1,1,1, 1)

20

(1, 1,1, 1,1)

4

(1,1,1,1,1)

Py

(1,1,1,1,1)

D3

(1,1,1,1,1)

Q,
$1(1)

¢2((E2>

(1,1,1,1,1)

0o -12 -4 8

0

(1,1,1,1,1)

-12 24

4

0

12

(1,1,1,1,1)

-16

¢3((53>

(1,1,1,1,1)

$4(¢4)
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Table D.1: Gauge Charges of Model 5, Continued.

SU(2)* x SU(4)

/ / ’ / / ’
2 3 4 5 6 7

State SU(5) Ua U,

b5 (ds)
6 (Ps)

(1,1,1,1,1)

-36

(1,1,1,1,1)

-36

(1,1,1,1,1)

-10

U

(1,1,1,1,1)

-10

(C>

(1,1,1,1,1)

-6

-6

-2

Vs

(1,1,1,1,1)

-6

Uy

(1,1,1,1,1)

-24

¥s

(1,1,1,1,1)

-24

Vs

(1,2,2,1,1)

0

(1,1,2,1,1)

-4

H,

(1,1,1,2,1)

4

-2

-5

4

Hj

(1, 1,1, 1, 6)

-10

Hy

(1,2,1,2,1)

10

-8

Hs

(1, 1,1, 1, 6)

2

10

Hg

(2,1,2,1,1)

-2

-6

-10

Hy

(1,1,2,1,1)

10

Hyg

(1,1,2,1,1)

26

Hy

(1,1,2,1,1)

4

-2

HlO

(2,1,1,1,1)

4

-2

Hll

(2,1,1,1,1)

-8

Hip

(1,1,1,2,1)

8

-8

His

(1,1,1,2,1)

-4

-6

H14

(1,1,1,2,1)

14

His
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Table D.1: Gauge Charges of Model 5, Continued.

SU(2)* x SU(4)

/ / / / ’ ’
2 3 4 5 6 7

SU() Ua U,

State

(2,1,1,1,1)

-4 -1 14

-4

Hig

(1,2,1,1,1)

-8

-4

-4

Hy;

(1,2,1,1,1)

0

-4

His

(1,1,2,1,1)

-18

-5

-4

Hig

(1,1,2,1,1)

-2

-4

-

-4

Hyo

(1,2,1,1,1)

12

H21

(17 27 17 17 1)

4

H22

(2,1,1,1,1)

12

H23

(2,1,1,1,1)

-1 2 -4 16

-2

H24

(1,1,1,2,1)

-4 -5 -2 -1

0

Hos

(1,1,1,2,1)

-14

-9

4

Hyg

(2,1,1,1,1)

-14

1

-4

Hyy

(1,1,2,1,1)

0

-4 -5 -2 -1

0

Hag

(1,1,2,1,1)

8

-4 -5 -2 -1

4

Hayg

(1,2,2,1,1)

-16

10

H30

(2,1,1,2,1)

-24

Hs,

(1, 1,1, 1, 6)

-16

10

Hs,

(2,1,1,2,1)

10

H33

(17 27 27 17 1)

-6

H3y

(2,1,1,2,1)

12

His

(1,2,2,1,1)

6

12

H36

(1, 1,1, 1, 4)

22

H37

(1, 1,1, 1, 4)

-22

H38

(1,2,1,2,1)

10

H39
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Table D.1: Gauge Charges of Model 5, Continued.

State SU(5) Uy U, U, Uy U, Uy Uy U, SU(2)*x SU4)
Hyo 1 4 4 0 2 2 2 0 26 (1,1,1,1,-4)
Hy 1 4 4 0 2 2 -2 -8 -10 (1,1,1,1,-4)
Hyo 1 8 4 0 0 4 2 -4 16 (1,1,1,1,4)
Hys 1 4 4 0 0 4 -6 0 8 (1,1,1,1,-4)
Huy 1 4 -4 0 0 -4 2 8 8 (1,1,1,1,4)
Hys 1 0 4 0 0 -4 -6 -4 0 (1,1,1,1,-4)
Hus 1 2 0 0 2 -2 -2 0 6 (2,1,2,1,1)
Hy 1 o 0 0 0 0 0 0 0 (2,1,1,2,6)

Table D.2: Basis set of non-anomalous U(1) D-flat directions for Model 5.

FD Qa ¢ ¢o ¢35 b4 &5 o6 ES ES ES 1 s 3 by s s

D, 144 0 v 0 -2 -2 1 0 0 0O 6 0 0 0 0 6
D, 144 0 4 -3 2 1 -2 0 0O 0O O O 6 0 0 6
D; 144 0 4 -3 1 -2 -2 0 0O 0O O O O O 6 6
D, o o0 o o0-1 1 O o o0 o0 o o0 0 2 0 -2
D5 o 1 -1 -1 1 0 O O O O O O 0O 0 0 0
Dy o o6 -1 o0 o0 o0 -1 2 0 -2 0 0 0 0 0 0
D~ o o 1 1 -1 o0 1 O O O O 2 0 0 0 -2
Dg o o o o -1 -1 0 o0 2 -2 0 0 0 0 0 0
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Table D.3: Additional Basis Vectors of Model 5.

wu X12 X34 X56 ¢ ~~~~~ ﬁl ﬁ2 ﬁB 5 ,,,,,

a1 1 0 o 1,..1 0 1 0 0,0,0,0,0,0,0,0
Bs 1 0 1 o0 1,..,1 1 0 0 0,000,0,0,0,0
V5 2 0 0 2 1,.,1 1 1 1 1,1,11,220,0

Table D.3: Additional Basis Vectors of Model 5, Continued.

3.6 73,6 12,56 =12 =56 1,..,
Yy, w Yy, w w

-----

as 1,0,0,1 0,0,0,0 0,0,1,0 1,0,1,1  0,0,0,1 0,0,0,1
Bs 0,0,00 1,001 1,0,1,1 0,0,1,0 0,1,0,0 0,1,0,0
v 0,200 2,2,0,2 0,0,0,0 2,0,0,2 2,220 0,200

Table D.4: GSO Projection Matrix for Model 5.

kij 1S by by by as B85 75

1 00 1 1 1 0 0 -3
s 00 0 0 0 1 1 0

a 0 0 0 O 1 0 1 -
B 0 0 O O 1 1 0 -
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Basis Vectors and GSO Projection Matrix for Mirror Models Based on a NAHE

APPENDIX E

Variation

Table E.1: Basis Vectors for Mirror Gauge Group Model Based on NAHE

Variation.

I P G/ L/ A AT
1 1 1 1 1 1,.1 1 1 1 1 1 1.1
s 1 1 1 1 0.0 0 0 0 0 0 0,.0
b, 1 1 0 0 1..1 1 0 0 0 0 0,.0
b, 1 0 1 0 1..1 0 1 0 0 0 0,.0
b 1 0 0 1 1..1 0 0 1 0 0 0,.0
b, 1 0 1 1 1..,1 0 1 1 0 0 0,..0
b, 1 0 1 0 1,0 1 0 1 1 0 0,..0
b, 1 0 0 1 1..1 1 1 0 0 1 0,..0

y1,2 gl,Z y3,4 g3,4 y5,6 @5’6 ,wl,2 w1,2 w3,4 @3’4 w5,6 m5,6
1 11 1,1 11 11 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1.1
S 00 00 00 00 00 00 00 00 00 00 00 00
b, 00 00 1,1 11 11 1,1 00 00 00 00 00 00
b, 1,1 1,1 00 00 1,1 1,1 00 00 00 00 00 00
b; 1,1 1,1 11 1,1 00 00 00 00 00 00 00 00
b, 00 00 00 00 00 00 00 00 00 00 00 00
by, 00 00 00 00 00 00 00 00 00 00 00 00
by 00 00 00 00 00 00 00 00 00 00 00 00
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Table E.2: GSO Projection Matrix for Mirror Gauge Group Model Based on a
NAHE Variation.

ki; 1 S by by by b, b, by

1 00 1 1 1 1 1 1

S 00 0 O 0O 0 0 0
b, 1. 1 1 1 1 1 0 0
b, 1.1 1 1 1 0 1 0
b; 1 1 1 1 1 0 0 1
b, 1.1 0 0 0 1 0 0
b, 1.1 0 0 0 0 1 0
b, 1. 1. 0 0 0 0 0 1
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APPENDIX F

Gauge Charges and Superpotential Terms of a NAHE Variation

Table F.1: Fg ® U(1)® ® SO(22) States. Note: all U(1) charges below have been
multiplied by a factor or 4 to eliminate fractions.

HWS Sector State E6 U(l)l U(l)g U(l)g U(1)4 U(1)5 50(22)

1 G, 27 0 8 0 0 0 1
Gy, 27 4 -4 0 0 0 1
Gy 27 -4 -4 0 0 0 1
Gy 27 0 -8 0 0 0 1
Gy 27 -4 4 0 0 0 1
G 27 4 4 0 0 0 1
S+by+by, Gy 27 0 -4 -2 -2 0 1
Gs 27 0 -4 -2 2 0 1
Ge 27 0 -4 2 -2 0 1
G, 27 0 -4 2 2 0 1
Gy 27 0 4 2 2 0 1
Gs 27 0 4 2 -2 0 1
G 27 0 4 -2 2 0 1
G, 27 0 4 -2 -2 0 1
S+b;+by Gg 27 -2 2 -2 0 -2 1
Gy 27 -2 2 -2 0 2 1
G 27 -2 2 2 0 -2 1
G 27 -2 2 2 0 2 1
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Table F.1: Fs ® U(1)® ® SO(22) States, Continued.

SO(22)

U1)s

State

HWS Sector

Gy 27

S +b; + bs

27

27

G12 27

S + by + bs

27

Gis

27

G14

27

G5

27

27

27

27

1 (¢1)
2 (¢2)
3 (¢3)
b1 (¢4)
s (¢5)
s ()
¢7 (&7)
¢s ()

-12

12
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Table F.1: Fs ® U(1)® ® SO(22) States, Continued.

SO(22)

U(1)s

State

HWS Sector

12
12
12
12
0
0
0
0
0

o~ o~ o~ o~ o~ o~~~ o~

~ o~ o~ o~ o~ o~ o~~~ o~~~ o~~~

~— Y N N N N N N Y~ ~—~  ~—~

S +b; + b
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Table F.1: Fs ® U(1)® ® SO(22) States, Continued.

SO(22)

U(1)s

State

HWS Sector

1 -2

(5 (E%)

S + by + b

22

H,

22

Hy

22

Hj

22

H,

22

Hs

22

Hg
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Table F.1: Eg ® U(1)° ® SO(22) States, Continued.

HWS Sector State FEg U(1); U(l)s U(l)s U(l)y U(l)s; SO(22)

S+b;+by, H; 1 4 0 2 2 0 22
Hj 1 4 0 2 -2 0 22
Hy 1 4 0 -2 2 0 22
Hi 1 4 0 -2 -2 0 22
Hu 1 -4 0 2 2 0 22
His 1 -4 0 2 -2 0 22
His 1 -4 0 -2 2 0 22
Hiyy 1 -4 0 -2 -2 0 22
S+b;+bs H;s 1 2 6 2 0 2 22
Hig 1 2 6 2 0 -2 22
Hiy; 1 2 6 -2 0 2 22
Hig 1 2 6 -2 0 -2 22
Hiyg 1 -2 -6 2 0 2 22
Hy 1 -2 -6 2 0 -2 22
Hy 1 -2 -6 -2 0 2 22
Ho, 1 -2 -6 -2 0 -2 22
S+by+by Hy 1 -2 6 0 2 2 22
Hy, 1 -2 6 0 2 -2 22
Hos 1 -2 6 0 -2 2 22
Hog 1 -2 6 0 -2 -2 22
Hoy; 1 2 -6 0 2 2 22
Hog 1 2 -6 0 2 -2 22
Hag 1 2 -6 0 -2 2 22
Hs, 1 2 -6 0 -2 -2 22
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Fs @ U(1)°> ® SO(22) Third Order Superpotential (No Fourth Order Terms Exist)

Gy Gy G
+ Gy Gy 9y
+ G2 G3 ¢
+ G Gio a3
+ G3 Gi3 Gy
+ G, G2 Gs
+ G, G4 Gy
+ Go Gi1 Yo
+ G3 Gua Y35
+ Gy G Gy
+ Gy Gi5 Y15
+ G5 G s
+ G G5 ¢6
+ G7 Gg Gy3
+ G7 G2 s
+ Gs Gis t)s
+ G Gyg 87
+ Gio Gis Y12
+ Gu Gz Y1
+ G2 Gi1 ¥y,
+ Gis Gio 1
+ G G
+ G5 Gho ¥y
+ G5 Gi1 Gra
+ ¢1 b4 P

+ Gy G ¢7
+ G G5 9,
+ Gy Gg Gy
+ Gy Gy Wy
+ G5 G Y33
+ Gy Gyt
+ Gy G5 Gs
+ G, Gs Gy
+ G5 Gis s
+ G4 Gr ¢5
+ G5 Gip Gi3
+ G5 Gz 1
+ G Gs g
+ G7 Gy Gy
+ G7 Gz Y17
+ Gs G15 6
+ G G4 S5
+ Gho Gis Y10
+ G11 Gia o
+ G2 Gi5 ¢,
+ Gis G ¢,
+ G4 Gi3 ¢
+ Gi5 G2 ¢1
+ Gg Gs Gis
+ ¢1 b6 s

+ G1 G3 ¢g
+ G Ge 5
+ Gy Gy Gyo
+ G3 Gy ¢s
+ G5 Gus gy
+ G1 Gs s
+ Ga Gs Yo
+ G Gy Gy
+ G5 G12 Gis
+ Gy Gro P30
+ G5 G11 Gio
+ G5 Gis ns
+ G Gy s
+ G Gy ¢5
+ Gs G o5
+ Gy Gg 1y
+ Gio G4 ¥
+ Gi1 Gq 1y
+ G2 G5 Uy
+ Gi3 G5 Uy
+ G Gy Uy
+ G5 Gy Y5
+ G4 Gio Gis
+ Gg Gy G4
+ P15 Dag

110

+ G, G4 Gy
+ Gy Gr 9y
+ Gy Gs Py
+ G35 G2 ¢
+ G5 G P35
+ Gy G 3
+ Ga Gy 122
+ G3 G 33
+ G3 Gi3 Gu
+ G4 G g
+ G5 Gs ¢
+ Gg Gs G5
+ Go Gia Y20
+ G7 Gs s
+ G Gr 1hag
+ Gy Gr s
+ Gio G5 3
+ G11 G5 gy
+ G2 Gr g
+ Gz Gr ¥y
+ Gha Gg o
+ G5 Gs g
+ G4 Gi1 Gu
+ G7 Gs Gz
+ ¢1 P29 U3

+ G; G5 Gg
+ G G1 ¢
+ Gy Gy 1y
+ G3 Gia Gy
+ G5 Gis5 Y3
+ Gy Gr ¥y
+ Ga Gro o3
+ G5 G s
+ G4 Gyip G5
+ Gy Gig i
+ G5 G V32
+ Go Gy G
+ G Gis5 o
+ G7 Go 17
+ Gs G11 ¢4
+ Gy Gro ¢y
+ Gio Gy ¢4
+ Gu Gs ¢3
+ G2 Gy ¥y
+ Gi3 Gs Uy
+ G Gy V5
+ G5 Gs Vg
+ G5 Gio Gu3
+ Gr Gy Gha
+ 01 P Uy



F¢ @ U(1)° ® SO(22) Third Order Superpotential, Continued.

+ ¢1 Hy Hy
+ @ P Doy
+ ¢3 Y13 U
+ G4 b2 P

+ ¢4 Hig Hoo
+ @5 Vs Uiy
+ @6 Us Uy
+ 7 a6 Vs
+ B U3 Py
+ ¢s Hog Hoy
+ ¢9 H7 Hyg
+ ¢, Hy H;y
+ ¢, Ho Hj
+ ¢5 Hy H;
+ ¢, Ho H;
+ ¢5 Hs H;
+ ¢¢ Hy Hs
+ 07 Yyr Uy
+ P U1a i
+ 0y U5 U
+ ¢y Hiz His
+ 1 Hyy Hj
+ g Py Uy
+ 3 Y15 Yo
+ Ya a2 33
+ 5 Y17 a3

+ &1 Has Hor
+ 2 V34 Yy
+ ¢3 P15 Yo
+ ¢4 s Uiy
+ 05 1 Oy

+ ¢5 Hy Hg
+ ¢¢ H3 He
+ @7 Yoz Y30
+ @8 Yry U1
+ @9 Y5 P12
+ @9 Hg Hy
+ ¢, Hys Hs
+ ¢y Hys Hyg
+ ¢3 His Hy
+ 54 Hy7 Hy
+ ¢5 Hio Hy
+ ¢ Hy His
+ @y g Pag
+ ¢g P15 Yis
+ @9 U6 ¥y
+ U1 a3 Yse
+ 101 Hae Hag
+ 1y Hyy Hog
+ 13 g Yo
+ 4 P13 Yo
+ b5 a5 Py

+ ¢ b3 O

+ ¢ Hy Hy
+ 3 Va1 Yoy
+ G4 P16 Yig
+ @5 b2 B3

+ ¢5 H7 Hyy
+ ¢¢ Hy Hio
+ @7 as P29
+ @ U5 Ui
+ 99 6 Y11
+ 6y Yos Yoy
+ Gy a7 Ug
+ &3 Y18 U
+ 04 U7 Yy
+ @5 Ya Py

+ P Vs by

+ &7 @5 by
+ ¢; Hor Hj
+ @ U6 i7
+ 69 U7 P
+ 11 Yoy Pss
+ b2 Pas
+ 1o Hoo Hoy
+ 13 Hig Hy
+ 4 Py Uy
+ 5 Doy V3

111

+ ¢ ¢6 04

+ ¢o Hoy Hog
+ ¢3 Hy Hg
+ g Py Py
+ @5 U1 Py
+ P P Py
+ ¢7 s P9

+ ¢7 Hog Hog
+ @ Vg Uiy
+ 9 b7 P10
+ 6y V32 U3y
+ Gy U1 Vs
+ 3 Va0 U5
+ Oy Y19 Vi
+ 5 Y11 Us
+ P P Uy
+ &7 o Vs
+ ¢7 Hog Hag
+ ¢g His His
+ 6y s by
+ 1 g Yy
+ V2 s P33
+ V3 a1 Yse
+ 13 Hyg Hog
+ 1y Hyg Hog
+ 5 Hy Hyy

+ 2 Va6 Yo
+ @3 b1 g

+ ¢3 Hys Hyg
+ ¢4 Hy Hg
+ @5 U5 Uiy
+ @ U1 Py
+ ¢7 a5 P32
+ ¢7 Hoy Hog
+ ¢g Hyg Hoo
+ 99 5 1y
+ 6y W36 Vs
+ by W35 U3y
+ 3 You Yoy
+ Oy Y23 Yoy
+ @5 Y12 U
+ P Y10 g
+ &7 Whag Vi
+ P Uns oo
+ ¢5 Hig Hiz
+ ¢g Hi1 Hy
+ 1 Yoo Pag
+ 2 Uiy Uy
+ b3 P P35
+ V1 o1 Y3
+ 1y Hog Hoy
+ 15 Hoy Hos



F¢ @ U(1)° ® SO(22) Third Order Superpotential, Continued.

+ V6 Y1s Y3
+ 7 Y19 V35
+ s 20 P36
+ Y9 Y13 P33
+ Y10 Y14 Y34
+ Y11 Y15 Vs
+ Y12 Y16 V36
+ P13 thas Uy
+ th1a P11 Yo
+ 15 H3 Hao
+ 16 His Hag
+ th1s Uy Py
+ g g Pog
+ 120 H3 Hig
+ a1 Hiy Hoy
+ g Y29 g
+ oy Y32 1y
+ o He Hag
+ o H7 Hyg
+ 31 Hs Hog
+ b33 Hio Hie
+ 3¢ Hy Hi7
+ ¢y His Hos
+ 3 oy Vg
+ by Yoy Py
+ 15 Hig Hos

+ g Va6 1o
+ 7 Yo7 g
+ s Yas Py7
+ g a9 g
+ 10 P30 gw
+ Y11 Y31 @14
+ Y12 V32 @13
+ b1z U1y Yy
+ 1 Hy Hy
+ 15 His Hao
+ 17 P30 Yy
+ g Py Yo
+ 19 H3 Hag
+ a0 Hia Hag
+ W22 thag Uy
+ a3 Y31 g
+ oy Hix Hos
+ thas Hs Hig
+ a9 Hs Hsg
+ 31 Hy Hap
+ 34 Hg Hi7
+ 36 Hy His
+ Uy Pz Y3y
+ by Yoy Vs
+ 1y Hiz Hag
+ g Y1 Vs

+ s Pa3 Uy
+ b7 oy P
+ s Pa3 Yag
+ g oy Pog
+ 10 a1 Yoy
+ 11 Py Yo
+ 12 Py Yo
+ 13 Hy Hao
+ s Hiz Hoy
+ g Yor Py
+ 17 g Pag
+ s Hy Hig
+ 19 Hia Hao
+ a1 s EIO
+ W22 s Uy
+ tha3 Hi1 Hag
+ s Hiz Hos
+ b7 He Has
+ b9 Hig Hao
+ 3o Hs Hoy
+ 34 Hig His
+ 1 o Vs
+ 1y oy Py
+ v Hi7 Ha
+ ¢, His Hos
+ g Hy Hy

112

+ ¢ Hy Hyy
+ 7 Hy Hiz
+ s Hy Has
+ g Hy Hyz
+ 1o Hy Hip
+ Y Hy Hiy
+ 12 Hy Hiy
+ 13 Hiz Hog
+ 15 Yos Py
+ 16 Vg V3
+ 17 Hy Hao
+ s Hin Hor
+ a0 Y31 Yy
+ a1 Yo7 Py
+ a2 Hiz Hos
+ ha3 Hiz Hoy
+ a5 He Hso
+ b7 Hy Ha
+ 30 Hs Hag
+ 32 Hy Hy
+ 35 Hy Hig
+ 1 Yoy Vg5
+ ¢y His Hag
+ 93 His Has
+ s Y17 Vg
+ g His Hy

+ g Haz Hag
+ 7 Hoy Hog
+ g Hoy Hoy
+ g Hig Has
+ 10 Hao Hag
+ 11 Hig Hog
+ 12 Hao Hay
+ Y1a o5 Uy

+ 15 P1g Y3
+ 16 Hz Ha
+ 17 Hix Hog
+ P19 V32 Py

+ a0 U5 Py

+ a1 Hiz Hag
+ oz Hiy Hog
+ g Y30 Py

+ o5 Hg Hao
+ hag He Hor
+ 30 Hio Ha
+ 133 Hg His
+ 35 Ho Hig
+ ¢y Hys Hay
+ vy Hig Has
+ by Yy Yy

+ 5 Hy Hy

+ 1y g Vs



F¢ @ U(1)° ® SO(22) Third Order Superpotential, Continued.

+ 1 Hy Hg

+ by Y13 P

+ 9y Hi7 Hy
+ Y1y Hy Hig
+ iy Hy Hag
+ ¢y Hy Hiz
+ ¢y Hy Hos
+ gy Hy Hy
+ gy Hig Hos
+ ¥y Hs Hog
+ gy Hiz Hys
+ thyy He Hoy
+ 1hgy Hiz Hay

+ 1 Hig Hs
+ by Hy Hy

+ b1y Y15 Pas
+ b1y Hiz Hag
+ by Hy Hys
+ 17 Hig Hos
+ ¥y Hy Hig
+ 1y, Hg Hog
+ y5 Hs Hos
+ 1y, Hys Hyz
+ 30 Hg Hog
+ 13y Hi1 Hi
+ 135 Hia Ho

+ g Pag Y36

+ 1py Hig Hog
+ Py Hi Hig
+ Uy Hs His
+ 15 Hy Hog
+ U5 Hy Hig
+ Ego Hy Hay
+ 13 Hy Hag
+ g5 Hiy Hyz
+ hog Hs Hy,
+ 13y Hi2 Hi
+ 1g3 Hi Ho
+ g5 Hiq Hig

113

+ 1hg Hy Hg

+ 19 P14 P34
+ ¢y, His Hao
+ Uy Hy Hos
+ g Hy Hig
+ 15 Hio Hag
+ 1y, Hy Hag
+ Vg3 Hyg Har
+ Uy Hs Hag
+ Vg His Hig
+ by Hg Hos
+ by Hig Hig
+ tag Hi2 Hoo

+ g His Hag
+ ¢y Hy Hy

+ 1y Y16 Vg
+ 4y Hy Hig
+ g Hy Hy
+ ¢y Hy Hiz
+ Uy, Hg Hay
+ gy Hy Hy
+ Vg6 His His
+ g9 He Hos
+ g, Hi His
+ 13y Hii Hoo
+ 135 His Hag
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