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Chairperson: Gerald B. Cleaver, Ph.D.

Superstring phenomenology explores classes of vacua which can reproduce the

Standard Model at low energy. We consider Weakly Coupled Free Fermionic Het-

erotic String Theory (WCFFHST) which produces four dimensional Standard-like

Models and allows for their SO(10) embedding. In the models herein, we explore the

removal of extra Higgs representations via free fermion boundary conditions directly

at the string level, rather than in the low energy effective field theory. We focus on

the flat direction analysis of four models with reduced number of Higgs, after flat

direction analysis of a three generation reduced Higgs model revealed no stringent

F− and D−flat solutions to all order in the superpotential. Flat direction analysis

of the four models presented herein shows the lack of D− and F−flat solutions to

all order is not a general property of low Higgs models, as stringent flat directions

appear to all order for three of our four models.
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CHAPTER ONE

Introduction

1.1 Motivation

The Standard Model (SM) of Particle Physics correctly describes the physics

of the elementary particles and their interactions, as confirmed by experiment, up

to the electroweak scale, MW = 246GeV . It combines three of the four fundamental

forces of nature, the weak nuclear, the strong nuclear, and the electromagnetic in-

teractions into a single, unique fundamental framework, a Yang-Mills gauge theory

based on the symmetry group SU(3)C×SU(2)L×U(1)Y , where C, L, and Y denote

the color, the weak isospin, and the hypercharge quantum number, respectively. In

particular, the weak nuclear and the electromagnetic interactions are described by

an SU(2)L×U(1)Y gauge symmetry, which is spontaneously broken to a U(1)em by

the Higgs mechanism (1). The resulting massive gauge bosons, W± and Z0, mediate

the weak interactions, while the massless boson, γ, the photon, is the carrier of the

electromagnetic force. The SU(3)C sector describes the Quantum Chromodynam-

ics (QCD), which remains unbroken, and whose messengers are the eight massless

gluons of the strong nuclear force. The SM content consists of three generations of

quarks, in agreement with observed experiments. The predictability of the SM is a

consequence of its renormalizability, which assures a consistent perturbative analysis

of quantities related to particle physics, i.e, infinities that may appear in the calcula-

tions are consitently absorbed into a finite number of physical parameters. Despite

the acheivements accomplished in this setup, however, several issues have not yet

been resolved. In the next few paragraphs, we detail some of the most important

shortcomings of the SM (2).
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The SM does not include in its descrpition Newtonian gravity, which is 42

orders of magnitude smaller than the nuclear forces. Although General Relativ-

ity (GR) describes its infrared properties consistently, gravity is characterized by

nonrenormalizable operators which produce divergences in the ultraviolet limit.

The Higgs boson, responsible for the electroweak symmetry breaking and for

the generations of the masses for the elementary particles, has a mass of the order of

100 GeV if correctly predicted by the SM. This mass receives radiative corrections

which can make the Higgs very heavy (≈ 1019GeV ), while its vacuum expectation

value is of the order of the electroweak scale. The hierarchy between the two energy

scales in the physics of the Higgs boson appears very unnatural, and certainly unap-

pealing for a fundamental theory. The introduction of supersymmetry (a symmetry

between fermionic and bosonic degrees of freedom in the theory) solves this problem

by preventing the scalar particle from acquiring the dangerous contributions from

the perturbation theory, thus stabilizing its mass.

The coupling constants for the electromagnetic and nuclear forces are param-

eters which depend on the energy scale. If their behavior is extrapolated at high

energy, roughly 1016GeV , these values approach one point, but do not coincide. If

supersymmetry is included, the final theory provides a unified description of the

forces of the SM at high energy.

More than twenty free parameters describe the physics of the SM and their

values are completely arbitrary. For instance, the fermion masses, the gauge and

Yukawa couplings, the Kobayashi-Maskawa parameters, and many others have to be

fixed by experiment and put by hand into the theory.

Most quantum field theories predict a very large cosmological constant, of

the order M4
PL, from the energy of the quantum vacuum. However, the measured

cosmological constant is smaller than this by a factor of 10120, and has been called

one of the worst theoretical predictions in the history of physics.
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There are many other open questions related to the physics of the SM, such as

the non-existence of magnetic monopoles, which would explain charge quantization.

Also, there is no reasonable explanation for the number of families. In addition,

there is the issue of the non-zero neutrino masses, due to their oscillations, which

does not fit into the description of leptonic physics of the SM. The attempts at

overcoming all these inconsistencies lead to several different theoretical solutions

in physics beyond the SM, for instance, the introduction of grand unified theories

(GUTs) and supersymmetry. The main goal of GUTs (2; 3) is solving the unification

problem previously mentioned, by extending the gauge symmetry group of the SM

to a GGUT characterized by only one gauge coupling. In principle, the strong and

weak nuclear and the electromagnetic interaction merge together at some higher

energy scale MGUT where the theory has the larger gauge symmetry GGUT . When

the energy decreases below MGUT , the GUT symmetry breaks to the SM gauge group

SU(3)×SU(2)×U(1) and the couplings associated with different factors evolve at at

different rates. The smallest simple group which accomodates the SM is the SU(5)

with MGUT ≈ 1015GeV . (4) A typical feature of GUTs is the mixing of quarks

and leptons into the same group representation. Thus, in the case of an SU(5)

gauge group, a matter generation is confined to the two irreducible representations

{10, 5̄} ∈ SU(5). By considering a larger GGUT , an SO(10) symmetry, for example

(5), it is possible to combine one generation into only one irreducible representation,

precisely the 16 representation of SO(10). In the latter case, the presence of a

singlet state, the right-handed neutrino, and the absence of exotic particles makes

the model highly predictive.

Unfortunately, there are several unsolved questions appearing in GUTs, most

of which originated from the quark-lepton mixing. A first example is given by

the existence of new interactions that violate lepton and baryon number, which

are responsible for the instability of the proton. Another typical problem is the
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presence of color-triplet Higgs states which we do not expect to see in the low energy

spectrum, called the double-triplet splitting problem. Additionally, GUTs do not

provide a solution to the hierarchy problem, which already affects the physics of the

SM. Finally, GUTs still suffer from the lack of gravity.

Several answers to the previous problems are presented by supersymmetric

theories. In particular, the heirarchy problem is solved with the introduction of

supersymmetry (SUSY), as anticipated earlier, which associates to each boson of

the theory a fermionic superpartner with the same quantum numbers (since any

internal symmetry commutes with SUSY). This symmetry is an extension of the

Poincare algebra which includes the fermionic generators Qi, i = 1, ...N , satisfying

anticommutation relations. The way SUSY overcomes the heirarchy problem is

by ’doubling’ the spectrum, where each scalar coexists with its fermionic partner.

Basically, the radiative corrections of the scalar Higgs at one-loop include a divergent

scalar self-energy term. In SUSY theories, a quadratically divergent term from the

bosonic superpartner arises, giving an exactly opposite contribution. Hence, we

arrive at a cancellation of terms which stabilizes the scalar masses of the theory.

At low energies, there is no experimental evidence of SUSY particles, implying that

SUSY has to be broken at a low scale, while being an exact symmetry at high

energies.

1.2 String Theory as a Theory of Unification

As mentioned before, the non-renormalizability of GR makes a consistent de-

scription of quantum gravity problematic. Therefore, the formulation of a quantum

theory that includes gravity with the other three forces is very important. String

theory seems to be the most successful candidate to date for a unified theory of all

the forces in naure. The regularization of the gravitational interactions is realized

courtesy of the introduction of an extended object, the string. The known particles
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are then associated with massless excitations of the string. Beside these particles,

there is an infinite tower of fields with increasing masses and spins(6; 7) with typical

mass of the order of the Planck scale, MP ∼ 1019GeV . Among all excitation modes,

the graviton, the quantum of the gravitational field, arises in the spectrum, and sug-

gests the interpretation of string theory as a quantum theory of gravity. Moreover,

the presence of only one parameter, the string coupling, gs, used in the description

of all phenomena, is considered a key feature in the prospect of a unifying theory.

From a more technical point of view, string theory contains gauge symmetries which

may incorporate the SM symmetry. Finally, supersymmetry arises in a natural way

in this setup, despite the existence of consistent modular invariant string theories

which are not supersymmetric. In the quantization procedure, the consistency of

string theory requires spacetime to have a critical dimension, which corresponds

to D = 10 for supersymmetric strings. In the table below, we present the five

10-dimensional perturbative superstring theories and some of their most important

properties.

Table 1.1: The Five Different Types of String Theories.

Type NSUSY String Massless Bosonic Content

HE8×E8 1 closed and oriented gµν , ϕ, Bµν , Aµ of E8 × E8

HSO(32) 1 closed and oriented gµν , ϕ, Bµν , Aµ of SO(32)

I − SO(32) 1 open + closed unoriented gµν , ϕ, Aµν , Aµ of SO(32)

IIA 2 closed and oriented gµν , ϕ, Bµν , Cµνρ, Aµ of U(1)

IIB 2 closed and oriented gµν , ϕ, BN
µν , ϕ′, BR

µν , D
†
µνρσ

In Table 1.1, gµν , ϕ, Bµν , Aµ, represent the graviton, the dilaton, the anti-

symmetric tensor, and the gauge bosons, respectively. The bosons Aµ belong to the

adjoint representation of E8 ×E8 or SO(32) for the first three cases, while they are
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bosons of U(1) symmetries for the type IIA case. Cµνρ, ϕ′, BR
µν , and D†µνρσ rep-

resent, again respectively, a three-index tensor potential, a zero-form, a two-form,

and a four-form potential, the latter with self-dual field strength. The five super-

string models represent a single, unique theory, known as M-theory, but in different

regimes. Thus, each of the five superstring models are connected by various types of

equivalencies, the so-called string dualities (8). The underlying fundamental theory,

whose low energy limit 11-dimensional supergravity (SUGRA) (9), is still poorly

understood.

Figure 1.1: Supersymmetric perturbative consistent string theories in 10 dimensions.

As we can see from Figure 1.1, the duality transformations relate the super-

string theories in nine and ten dimensions. T duality inverts the radius, R, of the

circle S1 along which a space direction is compactified, R → 1
R

. In particular, this

duality relates the weak-coupling limit of a theory compactified on a space with large

volume to the corresponding weak-coupling limit of another theory compactified on

a small volume. S duality instead provides the quantum equivalence of two theories

which are perturbatively distinct. In fact, it inverts the string coupling, gs → 1
gs

.

The perturbative excitations of a theory are mapped to non-perturbative excitations

of the dual theory and vice versa. Figure 1.1 summarizes the relevant information

of the perturbative string theories and their network of dualities.
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In order to make contact with the real world, the compactification of the six

extra dimensions is needed. This procedure follows the Kaluza-Klein dimensional

reduction of quantum field theory and is generalized to the case where a certain num-

ber of spacetime dimensions give rise to a compact manifold, invisible at low energy

(10; 11). Demanding four-dimensional N = 1 spacetime supersymmetric models

leads us to a special choice of internal manifolds, the so-called Calabi-Yau manifolds

(12). Compactifications of this kind are characterized by some free parameters, the

moduli, generally related to the size and shape of the extra dimensions. The low

energy parameters often depend on these free values which spoil the predictivity of

the theory. The moduli describe possible deformations of the theory, and their con-

tinuous changes allow us to go from one vacuum to another. So far, the problem of

fixing the moduli has not been solved, since no fundamental principle is able to single

out a unique physical vacuum. The study of Calabi-Yau manifolds is complicated

since the computation of properties which are not of topological nature is difficult.

A simpler class of compact manifolds is given by the toroidal compactification, al-

though the resulting theory is not chiral. Hence, combining the desirable pictures

of Calabi-Yau manifolds and toroidal compactifications, we arrive at the orbifold

construction. The orbifold seems to provide a simple framework for the realization

of N = 1 supersymmetric models in four dimensions, which contain chiral particles.

In this thesis, we discuss the free fermionic heterotic construction, one of the

two main compactification schemes which offer complementary advantages in the

understanding of semi-realistic heterotic string models. The free fermionic construc-

tion is based on an algebraic method to build consistent string vacua directly in

four dimensions. In the fermionic formalism, all the world sheet degrees of freedom,

required to cancel the conformal anomaly, are given by free fermions on the string

worldsheet. This setup offers a convenient setting for experimentation of models,

allowing a systematic classification of free fermion vacua and their phenomenological
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properties. Additionally, this setup has provided the most semi-realistic models to

date.

We produced the following results in this thesis. We presented four semi-

realistic models in the free fermionic formulation with a reduced Higgs spectrum.

The truncation of the Higgs is content is realized in this setup at the level of the string

scale, by the assignment of asymmetric boundary conditions to the internal right and

left-moving fermions of the theory. The analysis of flat directions, performed with

the standard methods, leads to very different results for each of the four models,

with two of four models lacking any abelian singlet flat directions to all order. In

addition, we present preliminary analysis of the dark matter content of each model

via the hidden sector, which shows several hidden sector fields taking on mass at one

tenth of the string scale for model 1. This has greater implications to cosmology,

as the dark matter content of semi-realistic free fermionic models can be used not

only to asses the similarity of a given model to our universe based on already known

dark matter constrains, but to provide new results which may assist cosmologists in

constraining dark matter parameters in our universe. Finally, we present a geometric

variation on the Nanopoulos, Antoniadis, Hagelin and Ellis (NAHE) set of basis

vectors which change the standard NAHE gauge group of (SO(10) ⊗ SO(6)3)obs ⊗

(E8)hid to (E6⊗U(1)5)obs⊗SO(22)hid. This setup provides three generations under

the 27 representation of E6. This NAHE variation also provides for the possibility of

the investigation of mirror models, in which the observable and hidden sector gauge

groups are the same.

1.3 Organization of the Chapters

We begin with a general introduction to the bosonic and fermionic string

in order to provide perturbative superstring constructions in Chapter 2. A brief

overview of the partition function which encodes the modular invariant properties
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of the theory is discussed. We explain the bosonization procedure necessary for the

correspondence between fermionic and bosonic conformal field theories. We close

the chapter with some generalities on the heterotic string, which will be analyzed in

detail in the next chapters.

We present the main features of four dimensional semi-realistic models in the

free fermionic construction and show the advantages of using this compactification

scheme in Chapter 3. We fix the formalism to provide the consistency constraints

and the model building rules for this framework and explain the general derivation

of the spectrum before analyzing specific models in the next chapter.

In Chapter 4, we provide examples of four semi-realistic free fermionic models

within the NAHE basis. Analysis and discussion of the matter content in both the

observable and hidden sectors is presented. Flat direction analysis and discussion

for each model is presented. Comparisons to the Standard Model are given, with

emphasis on the observable sector matter. Additionally, where relevant, we discuss

the implications for dark matter constraints and detection in cosmology.

Finally, in Chapter 5, we present a geometric variation on the NAHE set. We

present an example of a model within this variation and discuss its matter content

and gauge group representations. We close the chapter with discussion about the

relevance of investigating this class of models.

We conclude in Chapter 6 underlining the main aim of our research, to obtain

a semi-realistic free fermionic string model which accurately describes the Standard

Model in the observable sector, and perhaps gives new insight into dark matter via

the hidden sector. We present the main results obtained, including different motives

for investigating the different classes of models presented, and we finally provide

possible outlooks.
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CHAPTER TWO

The Heterotic String

In this chapter we construct the heterotic string. We begin by describing

the bosonic string, the simplest example of a string theory. We then discuss the

quantization procedure of the theory, and show how bosons are related to fermions

in a conformal field theory description. This will be one of the building blocks for

the free fermionic description of the heterotic string. Additionally, the four different

closed strings are discussed. We explain how the different string theories are related

by dualities. In most cases, we restrict our discussion to closed strings, since our

target is the construction of the heterotic string.

2.1 The Bosonic String

Strings are one dimensional objects whose propagation in a D dimensional

spacetime gives rise to a two dimensional worldsheet, Xµ(σ, τ), µ = 0, ..., D−1. The

worldsheet is parameterized by the two real and independent coordinates, σ and τ ,

where σ is a space-like parameter spanning the interval [0, π], and τ is a time-like

parameter. In Figure 2.1, this surface is shown for the cases of both the free closed

and free open string.

The simplest action which describes the motion of a string is the Nambu-Goto

action,

SNG = −T
∫
M

d2σ
√
−γ (2.1)

where γ is the determinant of the induced metric on the worldsheet,

γαβ = ∂αX
µ∂βX

νgµν , (2.2)

T is the string tension, T = 1
2πα′

, and the integral is over the string worldsheet,

M . The notation d2σ represents σ = (σ0, σ1) = (τ, σ). The action is proportional
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Figure 2.1: The worldsheets of both (a) a closed string and (b) an open string.

to the area swept from the worldsheet, and thus it provides a geometric and intu-

itive meaning of the string action. By introducing the independent metric on the

worldsheet, hαβ, we obtain the Polyakov action,1

S = −T
2

∫
M

d2σ
√
−hhαβηµν∂αXµ∂βX

ν , (2.3)

where h = det(hαβ), and we have replaced the general metric, gµν , with the Minkowski

metric, ηµν , for a flat D dimensional spacetime (13; 14). For the general background

with gµν(X), (2.3) becomes the worldsheet action of D dimensional scalar fields Xµ

coupled to the dynamical two dimensional metric, which is the theory of quantum

gravity coupled to matter.

The Polyakov action has three symmetries:

• Poincare invariance in the target space, Xµ.

• Local reparametrization invariance.

• Conformal (Weyl) invariance.

The last two properties are local symmetries which can be used to fix the worldsheet

metric in the conformal gauge, hαβ = eφ(τ,σ)ηαβ, obtaining a flat metric up to a

1 We choose to work with the Polyakov action because it supplies the equations of motion
in a simpler way than the Nambu-Goto action.
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scaling function. The equations of motion (EOM) for the bosonic fields Xµ and for

the metric hαβ are obtained via the variation of the action with respect to each of

these fields, as is usual. Varying the Polyakov action with respect to the worldsheet

metric gives the definition of the energy momentum tensor, Tαβ:

Tαβ = − 2

T
√
−h

δS

δhαβ
= ∂αX

µ∂βXµ −
1

2
hαβh

ργ∂ρX
µ∂γXµ, (2.4)

The energy momentum tensor is symmetric and tracless (Tαα = 0) as a result of

the Weyl invariance. Then, requiring that the energy momentum tensor vanishes,

Tαβ = 0, gives the EOM for hαβ. The requirement that the energy momentum

tensor vanishes is a condition called the Virasoro constraint, and is important in

considering the physical states of a given model.

It is convenient to rewrite the Virasoro conditions in light cone coordinates,

σ+ = τ + σ, σ− = τ − σ, where ∂± = 1
2
(∂τ ± ∂σ). Then, we can rewrite the Virasoro

constraints as

T++ =
1

2
(∂+X)2 = 0; T−− =

1

2
(∂−X)2 = 0; T±∓ = 0. (2.5)

The EOM for the fields Xµ take the form ∂+∂−X
µ = 0, whose general solution can

be written as the sum of a ’right moving’ solution plus a ’left moving’ solution,

Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ). (2.6)

Together with the periodicity constraint, Xµ(τ, σ) = Xµ(τ, σ + 2π), we obtain the

expansion

Xµ
R(τ − σ) =

1

2
xµ + α′pµ(τ − σ) + i

√
α′

2

∑
n6=0

1

n
αµne

−2in(τ−σ), (2.7)

Xµ
L(τ + σ) =

1

2
xµ + α′pµ(τ + σ) + i

√
α′

2

∑
n6=0

1

n
α̃µne

−2in(τ+σ), (2.8)

From (2.7) and (2.8), we see that the classical motion of the string is described by

the center of mass position, xµ, the momentum, pµ, and the oscillator modes.
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For later convenience, we define the Virasoro operators as Fourier modes of

the stress tensor, which in the right and left moving sectors, respectively, are given

by

Lm =
T

2

∫ π

0

dσe2im(τ−σ)T−− =
1

2

∞∑
n=−∞

αµm−n · αµn, (m 6= 0), (2.9)

L̃m =
T

2

∫ π

0

dσe2im(τ−σ)T++ =
1

2

∞∑
n=−∞

αµm−n · αµn, (m 6= 0), (2.10)

with αµ0 =
√

α′

2
pµ0 . The Virasoro operators satisfy Lm = 0,∀n ∈ Z, and for the case

n = 0, we obtain the mass equations for the right and left moving modes, to be

discussed in more detail in the next section.

The oscillators, center of mass postion, and momentum all satisfy the standard

commutation relations, while the Virasoro operators form what is called the Vira-

soro algebra. In the covariant canonical quantization procedure, these commutation

relations become

[xµ, pµ] = iηµν , (2.11)

[αµm, α
ν
n] = mδm+nη

µν , (2.12)

[α̃µm, α̃
ν
n] = mδm+nη

µν , (2.13)

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm+n. (2.14)

All other commutators between different combinations of operators vanish. D rep-

resents the central charge, and for the bosonic string, D = ηµνηµν . The hermiticity

of Xµ gives (αµn)† = αµ−n ; (α̃µn)† = α̃µ−n. The same alegbra holds for the left oper-

ator, L̃m, and from now on, we will assume implicitly when defining properties of

operators in the right sector that analogous relations hold in the left sector. In the

quantization of a classical system, an ambiguity is introduced in the definition of the

operators, but this can be solved if we consider the corresponding normal-ordered

expressions. In the case of the Virasoro operators, the correct definition is given by

13



Lm =
∑∞

n=−∞ : αµm−nαµn :. The only term sensitive to normal ordering is L0, where

a normal ordering constant, a, is introduced.

In the covariant quantization, we obtain states with negative norm, which

destroy the unitarity of the theory, but we can discharge those by imposing the

constraints:

Lm>0|phys〉 = 0, (L0 − a)|phys〉 = 0. (2.15)

It has been shown that the subset of positive norm states exists only for D ≤ 26

and a ≤ 1. (15)

It is easier to solve the Virasoro constraints in the light cone quantization2

where the states, obtained by solving the mass-shell equation, (2.15), are always

positive. However, if unitarity is guaranteed in this procedure, we need to verify

Lorentz invariance, which is not manifest. We have already mentioned that Lorentz

invariance is preserved for D = 26 and a = 1. Thus, D = 26 is a special choice of

spacetime dimensions, called the critical dimension of the bosonic string.

We use now a residual invariance, leftover after imposing the conformal gauge,

which is a reparametrization invariance up to scaling, generally defined as

σ′+ → f(σ+), σ′− → f(σ−). (2.16)

This invariance allows us to fix the value of X+ as follows, leading to the light cone

gauge,

X+ = x+ + 2α′p+τ. (2.17)

The light cone coordinates are given by X± = (X0 ±XD−1)/
√

2, and by using the

Virasoro constraints, we can express X− in terms of the transverse coordinates X i,

where i takes values in the transverse directions. This means that we are left only

2 We have already defined the operators in terms of light cone coordinates.
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with the transverse oscillators, while the light cone oscillators are given by

α−n =
1√

2α′p+
{
∑
m∈Z

: αin−mα
i
m : −2aδn0}, (2.18)

α+
n =

√
α′

2
p+δn0. (2.19)

Analogous expressions hold for α̃±n . The Virasoro constraints in the light-cone gauge

define the mass-shell condition for the physical states

2p+p− =
2

α′
(L0 + L̃0 −

D − 12

12
) ; L0 = L̃0. (2.20)

In the first equation of (2.20), the Riemann-Zeta function3 ζ(−1) = −1
12

has been

used, as a result of the divergent sums of zero-point energies due to the normal

ordering a of L0 and L̃0 (16). The second equation in (2.20) is the level matching

condition, a relation which connects the left with the right excitation modes of the

closed string. This constraint has to be imposed for the consistency of every closed

string model, and it contains important information regarding the physical states of

the model; the right and left modes provide the same contribution to the mass of

the physical states of the model. The masses of the string excitations are obtained

by the contributions of the transverse momenta, which for the right moving sector

are provided by the formula L0 = α′

4
pipi +N . The mass operator is

M2 =
2

α′
(N + Ñ − D − 2

12
), (2.21)

where N =
∑

m>0 α−m · αm. In the case at hand, D = 26, thus the first state

obtained from (2.21) is the ground state, |pµ〉, with N = Ñ = 0, whose mass is given

by M2 = −4a
α′

, where, as stated earlier, a takes the value 1 for consistency. Such

a state is called the tachyon. The first excited state is the tensor αi−1
˜αj−1|pµ〉. If

we decompose this into irreducible representations of the group SO(24), we obtain

3 The infinite sum due to the zero-point energy is calculated by a regularization procedure
which introduces the Riemann-Zeta function, ζ(s) =

∑∞
k=1 k

−s. It provides the value of a in terms
of the space-time dimension D, which is exactly a = D−2

24 , as show in (2.21) for ζ(−1) = −1
12 (16).
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a symmetric tensor, gµν , a spin-2 particle which is the graviton, the antisymmetric

tensor, Bµν , and a scalar, ϕ, the dilaton. At the next level, we obtain states which

are organized into representations of SO(25) and are massive.

2.2 The Superstring

As mentioned at the beginning of this chapter, the bosonic string suffers from

two main problems: the absence of spacetime fermions, which are necessary for a

realistic description of nature, and the presence of tachyons, which is a sign of an

incorrect identification of the vacuum. The solution to these problems leads to the

construction of the superstring, which comes about via the introduction of worldsheet

supersymmetry, realized by including D two-dimensional Majorana fermions, Ψµ =

(ψµ−, ψ
µ
+), µ = 0, ..., D − 1, on the worldsheet. From the spacetime point of view,

these fields are vectors, but will provide spacetime fermions when combined with

the appropriate boundary conditions. In the following, we will work in the Ramond-

Neveu-Schwarz (RNS) formalism (17; 18), where the Gliozzi-Scherck-Olive (GSO)

projections are introduced in order to obtain supersymmetry (19). The generalized

action in the conformal gauge,

ST = −T
2

∫
d2σ(∂αX

µ∂αXµ − iψ̄µρα∂αψµ) (2.22)

is invariant under worlsheet global supersymmetric transformations

∂εX
µ = ε̄ψµ , ∂εX

µ = −iρα∂αXµε, (2.23)

with ε a constant spinor and ρα, α = 0, 1, Dirac matrices which can be chosen as

ρ0 =

0 −i

i 0

 , ρ1 =

0 i

i 0

 . (2.24)
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In light cone coordinates, the fermionic contribution of (2.22) is

ψ−∂+ψ− + ψ+∂−ψ+, (2.25)

where the spacetime index µ has been supressed.

The equations of motion are simply the Dirac equations, ∂±ψ± = 0. Their

solutions are of the form ψ− = ψ−(σ+) and ψ+ = ψ+(σ−), and we can thus say that

ψ− represents the right moving field while ψ+ represents the left moving field. The

boundary conditions arise from requiring that

(ψ+∂ψ+ + ψ−∂ψ−)|σ=π
σ=0 = 0, (2.26)

which is satisfied if ψ+ and ψ− are periodic or anti-periodic,

ψµ+(σ + π, τ) = ±ψµ+(σ, τ), (2.27)

ψµ−(σ + π, τ) = ±ψµ−(σ, τ). (2.28)

The periodic case is called the Ramond (R) boundary condition, while the anti-

periodic case is called the Neveu-Schwarz (NS) boundary condition. The general

solution in terms of mode expansion for the right moving states is given by

ψµ− =
∑
r

bµr e
−2iπ(σ−). (2.29)

An analogous expression holds for the left moving states, ψµ+, by replacing σ− by

σ+, and bµr by b̃µr . As a result of the boundary conditions, the frequency, r, is integer

for R boundary conditions and half integer for NS boundary conditions.

The R boundary conditions and the integer modes describe string states which

are spacetime fermions. If we consider the fundamental state, bi0|0; pµ〉, we see that

it is massless and degenerate, as b0 satisfies the Clifford algebra {bi0, b
j
0} = δij. This

means that the Ramond vacuum is a spinor of SO(8), and all the states obtained

from the vacuum with the creation operators are fermionic as well. The NS bound-

ary conditions, on the other hand, with half integer excitations, give bosons. The
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fundamental state, |0; pµ〉, has negative mass, which corresponds to a tachyon, and

is a scalar. The first excited massless state, bi− 1
2

|0; pµ〉, is a vector of SO(8), and all

the states in this sector, created by half integer modes, provide bosons.

Because the superstring is an extension of the bosonic case, it is necessary to

expand the algebra which describes the theory. The classical Virasoro constraints

are now generalized to

J± = 0 , T±± = 0, (2.30)

where the supercurrents and the energy momentum tensors are given in their light-

cone gauge coordinates

J+ = ψµ+∂+Xµ, T++ = ∂+X
µ∂+Xµ +

i

2
ψµ+∂+ψ+µ, (2.31)

J− = ψµ−∂−Xµ, T−− = ∂−X
µ∂−Xµ +

i

2
ψµ−∂−ψ−µ. (2.32)

The quantization of the fermionic fields is obtained by imposing the anticom-

mutation relations

{bµr , bνs} = ηµνδr+s , {b̃µr , b̃νs} = ηµνδr+s. (2.33)

The anticommutator of left and right oscillators vanishes. For r < 0, br denotes

the creation operators, and for r > 0, br denotes the annihilation operators. The

complete spectrum is provided by the action of the creation operators on the vacuum.

The mass-shell condition in (2.21) is now generalized by redefining N as the

number of right bosonic plus right fermionic oscillators acting on the vacuum. The

same redefinition applies to Ñ . We need to take into account that real fermions can

assume either R or NS boundary conditions, which will change the contribution to

the zero-point energy, a. Each fermionic coordinate contributes with a −1/48 in the

NS sector and a 1/24 in the R sector, while each boson gives a contribution of −1/24

in both sectors. In D dimensions, in light cone gauge, we have D − 2 transverse

bosons, and D − 2 transverse fermions, which give a = 0 in the R sector, but give

a = −1/16(D − 2) in the NS sector.
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After quantizing the supersymmetric theory, the Virasoro constraints become

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm+n, (2.34)

[Lm, Gr] = (
m

2
− r)Gm+r, (2.35)

{Gr, Gs} = 2Lr+s +
D

2
(r2 − a

2
)δr+s, (2.36)

where the operators are defined by their normal ordered expressions,

Lm = La
′

m + Lb
′

m, (2.37)

La
′

m =
1

2

∑
n∈Z

: α−n · αm+n :, (2.38)

Lb
′

m =
1

2

∑
n∈Z+a

: (r − m

2
)bm−r · br :, (2.39)

Gr =
∑
n∈Z

: br−n · αn : . (2.40)

For completeness with respect to the bosonic case, we shall provide the light cone

quantization for the superstring case. The theory is ghost free, but not explicitly

covariant. However, we can assure Lorentz invariance if D = 10 and a = 1/2 (20).

The gauge is fixed via the relation ψ+ = 0 and X+ = α′p+τ and because we

are fixing the longitudinal oscillator modes, the only independent degrees of freedom

are the transverse ones.

A supersymmetric non-tachyonic theory is obtained when the spectrum is trun-

cated by GSO projections (21). We will explain this truncation separately in the R

and NS sectors. In the NS sector, the GSO projections, PGSO, are defined by keep-

ing states with an odd number of bi−r oscillator excitations and removing those with

even number. The projection operator in the NS sector, and the fermion number

are given by

PNS
GSO =

1

2
(1− (−1)F ) , F =

infty∑
r=1/2

bi−r · bir. (2.41)

Thus, the bosonic ground state is now massless, and the spectrum no longer contains

a tachyon, which has fermion number F = 0. In the R sector, the fundamental state,

19



a Majorana spinor, lives in the spinorial representation of SO(8), as mentioned

before. If we introduce the projection operator,

PR
GSO =

1

2
(1− (−1)FΓg), (2.42)

where Γg = b1
0, ..., b

8
0 is the chiral operator in the transverse dimensions, then the

fundamental state becomes a Majorana-Weyl spinor of definite chirality. PR
GSO, while

projecting onto spinors of opposite chirality, guarantees spacetime supersymmetry

of the physical superstring spectrum.4

The general procedure to obtain the massless spectrum is to solve the mass-

less equations for the left and right sectors, apply level matching conditions and

the particular GSO projections depending on the perturbative superstring model

considered, and finally tensor the left with the right states. If we want to proceed

with the explicit calculation of the spectrum, we need to specify the string theory

we wish to analyze. Supersymmetric theories with only closed strings are type IIA,

type IIB, and heterotic models. In types IIA and IIB, supersymmetry is realized in

both sectors, while in the heterotic string, supersymmetry is realized only on the left

(right) sector. By taking the tensor products of the right and left movers in types

IIA and IIB, we get four distinct sectors: NS-NS, R-R, NS-R, and R-NS, where the

former two sectors give bosons and the latter two sectors give fermion fields in the

target space. The features and differences among these two models have been given

in the introduction. In this thesis, we are interested in the heterotic string, and will

hence focus on the technicalities of the heterotic string in Section 2.4.

2.3 Bosonization

In this section, we present the equivalence between fermionic and bosonic con-

formal field theories in two dimensions, a correspondence which allows the consistent

construction of free fermionic models. Before entering into the details, we will give

4 We note that the choice of sign of (−1)F Γg = ±1, corresponding to different chirality
projections on the spinors, is a matter of convention.
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the definition of operator product expansions (OPEs) in conformal field theories in

two dimensions, as it is from OPEs that we will show the boson-fermion equivalence.

2.3.1 Product Expansion Operator

In quantum field theory, the infinitesimal coordinate transformations,

z → z + ε(z) , z̄ → z̄ = ε̄(z̄) (2.43)

produce a variation of a field, Φ(z, z̄) given by the equal time commutator with the

conserved charge, Q = 1
2πi

∮
(dzT (z)ε(z)+dz̄T̄ (z̄)ε̄(z̄)), where T and T̄ are the stress

energy tensors in complex coordinates. The products of the operators is well defined

only if time-ordered. A complete treatment of the complex tensor analysis can be

found in (22; 23). Here we mention only the results which will be useful for our

purposes.

The commutator of an operator A with a spatial integral of an operator B

corresponds to

[

∫
dσB,A] =

∮
dzR(B(z)A(z)), (2.44)

which leads to (23) the operator product expansions (OPEs) of the stress energy

tensors T (z) and T̄ (z̄) with the field Φ(w, w̄)

R(T (z)Φ(w, w̄)) =
h

(z − w)2
Φ +

1

z − w
∂wΦ + ..., (2.45)

R(T̄ (z̄)Φ(w, w̄)) =
h̄

(z̄ − w̄)2
Φ +

1

z̄ − w̄
∂w̄Φ + .... (2.46)

Equations (2.45) and (2.46) contain the conformal transformations properties of the

field Φ, and can thus be used as a definition of a primary field5 for Φ with conformal

weight (h, h̄). We observe that the above products are given by the expansion of

poles plus regular terms, which we can omit.

5 The formal definition of the primary field is: Φ is primary of conformal weight (h, h̄) if it

satisfies the transformation law Φ(z, z̄)→ (∂f
∂z )h(∂f̄

∂z̄ )h̄Φ(f(z), f̄(z̄)), where h and h̄ are real values.
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2.3.2 Free Bosons and Free Fermions

We start by considering a massless free boson, X(z, z̄), where we can split

the holomorphic and anti-holomorphic components into XL(z) and XR(z̄). For our

purpose, it is sufficient to consider the holomorphic part only. The propagator of the

left component corresponds to 〈XL(z)XL(w)〉 = −log(z − w), which means that it

is not a conformal field, but its derivative, ∂XL(z) is a (1, 0) conformal field. This is

shown by taking the OPE with the stress tensor, which is defined as T = −1
2

: ∂X2
L :,

and comparing with (2.45) and (2.46), we obtain

T (z)∂XL(w) ∼ 1

(z − w)2
∂XL(w) +

1

z − w
∂2XL(w) + .... (2.47)

We now consider two Majorana-Weyl fermions, ψi(z), i = 1, 2, where a change

of basis rearranges the fermions into the complex form

ψ =
1√
2

(ψ1 + iψ2) , ψ̄ =
1√
2

(ψ1 − iψ2). (2.48)

The theory contains a U(1) current algebra6 generated by the (1, 0) current J(z) =:

ψψ̄ :. The OPE for ψψ̄ and the holomorphic energy tensor are defined as

ψ(z)ψ̄(w) = − 1

z − w
, T (z) =

1

2
: ψ(z)∂ψ(z) : . (2.49)

If we calculate the product expansion T (z)φ(w) with the above definitions, we see

that ψ is an affine primary field of conformal weight (1/2, 0).

We first present the boson-fermion correspondence by showing that the same

operator algebra is produced by two Majorana-Weyl fermions in one case and a

chiral boson in the other case. In the fermionic case,

T (z) =
1

2
: J2 :, (2.50)

which says that the stress tensor has central charge c = 1. We can produce the same

operator algebra by using a single chiral boson, X(z), whose current is given by

J(z) = i∂X(z), (2.51)

6 This will be discussed more in the following section, 2.4.
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where the stress energy tensor is T = −1
2

: ∂X2 :, as at the beginning of the section.

The definitions below thus contain explicitly the boson-fermion equivalence

ψ =: eiX(z) : , ψ̄ =: e−iX(z) : . (2.52)

Alternately, we can consider the OPE of each of the fields with themselves to

demonstrate the boson-fermion equivalence. If we consider the OPE of two bosonic

fields, X(z) and X(w), we find

X(z)X(0) = −ln|z|2 +O(z), (2.53)

where we have used the definition provided in the beginning of this section. Consider

now the operators e±iX(z). Using the Campbell-Baker-Hausdorff formula,

eipXeiqX = eipX(z)+iqX(0)+ 1
2
pq[X(z),X(0)]+..., (2.54)

we find that they have the OPEs

eiX(z)e−iX(0) =
1

z
+O(z), (2.55)

eiX(z)eiX(0) = O(z), (2.56)

e−iX(z)e−iX(0) = O(z). (2.57)

Similarly, consider now the OPE for two Majorana-Weyl fermions, as given in (2.48).

Their OPEs are

ψ(z)ψ̄(0) =
1

z
+O(z), (2.58)

ψ(z)ψ(0) = O(z), (2.59)

ψ̄(z)ψ̄(0) = O(z), (2.60)

which are equivalent to (2.55− 7).
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Thus, we find the equivalence between bosons and fermions, and we can thus write

ψ(z) ∼= eiX(z) , ψ̄(z) ∼= e−iX(z), (2.61)

which is the same result as (2.52) (24).7

2.4 The Heterotic String

The heterotic string was first constructed by (25). Employing both the bosonic

string and the superstring, it came about after it was shown (26) that for consis-

tency, an N = 1 supersymmetric string theory requires the presence of an E8 × E8

or Spin(32) gauge symmetry. Ten dimensional supergravity with these gauge groups

is free of gravitational and gauge anomalies. This observation fuelled an increase in

activity in heterotic models. Before this discovery, the standard procedure to intro-

duce gauge groups in string theory consisted of attaching the Chan-Paton charges

at the endpoints of open strings (27). Such a prescription does not produce the

E8 × E8, a non-abelian GUT group which allows a more natural embedding of the

Standard Model spectrum at low energy.

In this section, we describe the basics of the heterotic string, an orientable

closed string theory in ten dimensions with N = 1 supersymmetry and gauge group

E8 × E8. Its low energy limit is supergravity coupled with Yang-Mills theory. This

theory is a hybrid of the D = 10 fermionic string and the D = 26 bosonic string,

and the resulting spectrum is supersymmetric, tachyon free, Lorentz invariant, and

unitary. The absence of gauge and gravitational anomalies is obtained by compact-

ification of the extra sixteen bosonic coordinates on a maximal torus of determined

radius. All these properties make the heterotic string one of the most appealing

candidates for a unified field theory.

7 Note that here we use the ∼= symbol, whereas in (2.52) we use the : : symbol. The : :
defines the standard normal ordering of operators in a quantum field theory (QFT) and is known
as the regular part, while the = part of the ∼= should be interpreted as being valid primarily as a
statement for the expectation values of the two fields. The two notations are synonomous and can
be used interchangeably.
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In heterotic models, the gauge symmetries are introduced by distributing sym-

metry charges on the closed strings. Such charges are not localized, so we obtain

a continuous charge distribution throughout the string. A way to describe their

currents is to introduce on the worldsheet fermions with internal quantum number,

which are singlets under the Lorentz group. If we take n real Majorana fermions,

λa, a = 1, ..., n, and we split them into right and left moving modes, (λa±), we can

write the bosonic action on the worldsheet, including the new internal symmetries,

as

S = −T
2

∫
d2σ(∂αXµ∂

αXµ − λa−∂+λ
a
− − λa+∂−λa+). (2.62)

The equivalence of bosons and fermions in two dimensions allows us to convert two

Majorana fermions on the worldsheet into a real boson. We can then obtain n
2

bosons, φi, in the place of fermions, λa. With this substitution, the theory contains

D + n/2 free bosons and has an SO(D − 1, 1) Lorentz symmetry plus an internal

SO(n) × SO(n) symmetry. Its consistency requires D + n/2 = 26, and in the case

of a supersymmetric theory (D = 10), it means that n = 32. If we consider for

our purposes only an SO(n)R symmetry, then the right moving fermion currents are

given by

Jα+(σ) =
1

2π
Tαabλ

a
+(σ)λb+(σ). (2.63)

The Tα generators satisfy the algebra [Tα, T β] = ifαβγT γ, and this relation fixes the

commutation relation for the currents

[Jα+(σ), Jβ+(σ′)] = ifαβγJγ+(σ)δ(σ − σ′) +
ik

4π
δαβδ′(σ − σ′). (2.64)

The previous formula describes the affine Lie algebra ŜO(n) with central extension

represented by the second term, or anomaly contribution. If this algebra is built

up from n fermions in the fundamental representation of SO(n), then k = 1. If

the fermions are not in the fundamental representation, then we would obtain a

different, or quantized, value of k.
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We are now ready to describe the heterotic string as it was first formulated in

(26). As we already mentioned, the left moving modes are described in a bosonic

string theory with D = 26, while the right moving modes are supersymmetric with

D = 10. Specific GSO projections ensure supersymmetry for our model. The gauge

degrees of freedom are included in the left sector with an appropriate current algebra.

The general action of this theory is

S = −T
2

∫
d2σ(

9∑
µ

(∂αXµ∂
αXµ − 2ψµ+∂−ψ+µ)− 2

n∑
a=1

λa−∂+λ
a
− − λa+∂−λa+). (2.65)

We observe here that the spacetime fermions, ψµ have only right moving compo-

nents, superpartners of Xµ
R. The content therefore differs from the type IIB, where

supersymmetry is realized in both the left and right sectors. The left moving sector

contains the spacetime fields Xµ
L and the internal Majorana fermions, λa−.

If the boundary conditions for λa− are all the same, we obtain the Spin (32)

heterotic theory. Choosing different periodic/antiperiodic boundary conditions be-

tween two sets of 16 real internal fermions will provide the E8×E8 heterotic string.

It can be shown that the two theories are continuously related (28). In fact, an equal

number of states at every mass level appear in the two heterotic string theories.

In the MSSM we find an N = 1 spacetime supersymmetry and a D = 4 target

space or space time. Again there has been considerable effort to reduce the num-

ber of dimensions and supersymmetries. Although many different ways have been

employed, we note two that have been used extensively. Toroidal compactifications

with twists are the most widely used compactification scheme, in particular orbifold

compactifications. They are identified as ZM and ZM × ZN orbifolds. It has been

shown that only a limited number of these types of orbifolds reduce the number of

the supersymmetries to the number of the MSSM (29). Of particular interest for

phenomenology are the Z2 × Z2 orbifold compactifications. Since the MSSM is a
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chiral theory, heterotic string theory provides a convenient description in the search

for phenomenological string theories.
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CHAPTER THREE

Free Fermionic Models

In this chapter we describe the free fermionic formulation of the heterotic su-

perstring and focus mainly on a subset of these models which are called semi-realistic

free fermionic models. We provide an overview of the Nanopoulos-Antoniadis-

Hagelin-Ellis (NAHE) set (30), before discussing our own models within this set

in the next chapter. In this part of our discussion, we will describe the consistency

rules necessary for the construction of the theory. The interested reader can find

further details in the original papers (31; 32; 33; 34; 35).

The general procedure for the construction of free fermionic models is based

on two steps. The first is the choice of boundary condition basis vectors for the

class under consideration, and the second is the inclusion of additional basis vectors

which reduce the number of generations in the model to three, while breaking the

four dimensional gauge group. The presence of three Higgs doublets in the untwisted

spectrum is a feature of semi-realistic free fermionic models, and the general pro-

cedure to reduce them to one pair is given by the analysis of the supersymmetric

flat directions. This method consists of giving heavy masses to some of the Higgs

doublets in the low energy field theory (36; 37). We will present some generalities

on the analysis of flat directions and introduce the concept of stringent flat direc-

tions, as this allows the investigation of the low energy properties of free fermionic

models. The flat direction analysis is needed because of an anomalous U(1) which

generally appears in this setup. Its presence gives rise to a Fayet-Illiopolous (FI)

D-term which breaks supersymmetry. However, by looking at supersymmetric flat

directions and imposing F and D flatness on the vacuum, supersymmetry can be

restored. Analysis for specific models is presented in the following chapter.
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3.1 The Free Fermionic Formulation

Free fermionic model building was developed simultaneously by two groups

(33; 34). The quasi-realistic heterotic string models in the free fermionic formula-

tion, which are related to Z2 × Z2 orbifold compactifications, are among the most

realistic string models constructed to date. These models provide a wide vari-

ety of three generation models with an SO(10) embedding of the Standard Model

spectrum, including: the flipped SU(5) models (38; 39), the standard-like models

(40; 41; 42; 43; 44; 45; 46; 47; 48), the Pati-Salam models (49), and the Left-Right

symmetric models (50). Within these models many of the issues pertaining to the

phenomenology of the Standard Model and Grand Unification have been explored

and investigated (51). Free fermionic models also produced the first known string

models in which the matter content of the observable sector in the low energy ef-

fective quantum field theory consists solely of that of the Minimal Supersymmetric

Standard Model (MSSM) (52; 45).

In light cone gauge, a free fermionic heterotic string model contains 64 real

worldsheet fermions, ψn, 1 ≤ n ≤ 20, for left moving worldsheet fermions, and

21 ≤ n ≤ 64, for right moving worldsheet fermions, in addition to the left and right

moving worldsheet scalars, Xµ=1,2, and X̄µ̄=1,2, which embed transverse coordinates

of four dimensional spacetime. ψ1 and ψ2 are the worldsheet superpartners of the

two left moving transverse scalars. The remaining 62 fermions are internal degrees

of freedom, and some or all of these may be paired to form complex fermions,

ψn,m ≡ ψn + iψm. If m and n both denote left movers or right movers, then ψn,m

is a Weyl fermion, but if m denotes a right mover and n a left mover, or vice versa,

then ψn,m is a Majorana fermion. A specific model is defined by two factors:

(1) Sets of 64-component boundary vectors with components for complex fermions

counted twice, which describe how the worldsheet fermions transform around

non-comtractible loops on the worldsheet, and
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(2) Sets of coefficients weighting contributions to the one loop partition function

from fermions with specific boundary conditions.

In contrast with the ten dimensional superstrings, where the compactification of

the extra dimensions is needed to reduce the spacetime to four dimensions, the

free fermionic formulation directly provides a four dimensional theory with a cer-

tain number of internal degrees of freedom. An internal sector of two dimensional

conformal field theories is required in order to fulfill the following:

• conformal invariance

• worldsheet supersymmetry

• modular invariance

In this approach, all internal degrees of freedom are fermionized, thus producing

world-sheet fermions. Requiring anomaly cancellation fixes the number of fields

in the left and right sector, retaining 18 left-moving Majorana fermions χa, (a =

1, ..., 18), and 44 right-moving Majorana fermions Φ̄I , (I = 1, ..., 44). The spacetime

is described by the left-moving coordinates (Xµ, ψµ), and the right-moving bosons,

X̄µ. The heterotic string has N = 1 spacetime supersymmetry in D dimensions.

This is realized non-linearly (32) among all the fields in the left sector, spacetime

and internal ones, by the supercurrent

TF = ψµ∂Xµ + fabcχ
aχbχc, (3.1)

where fabc are the structure constants of a semi-simple Lie group G of dimension

181 . The χa transform in the adjoint representation of G. In (53) it is shown that

N = 1 spacetime supersymmetry can be obtained in four dimensions when the Lie

algebra G = SU(2)6. In this case, it is convenient to group the χa into six triplets

1 In general, the fabc are the structure constants of a semi-simple Lie group, L, of dimension
3(10−D), which becomes dimesion 18 for D = 4.
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(χi, yi, wi), (i = 1, ..., 6). Each triplet transforms as the adjoint representation of

SU(2). Thus far, we have ensured superconformal invariance of the theory. We still

need to verify its modular invariance to get a consistent theory, which is acheived

by investigating the properties of the partition function. Modular invariance exists

if the one loop partition function is invariant under S : τ → −1/τ and T : τ →

τ +R transformations of the complex worldsheet parameter τ defining the one loop

worldsheet, a torus. In this case, a modular invariant partition function must be

the sum over all different boundary conditions for the worldsheet fermions, with

appropriate weights. For a genus-g worldsheet Σg, fermions moving around a non-

trivial loop α ∈ π1(Σg) transform as

Φ̄I → Rg(α)IJΦ̄J , (3.2)

ψµ → −δαψµ, (3.3)

χa → Lg(α)abχ
b, (3.4)

where the first transformation refers to the right-moving fields, Φ̄I , Laga′L
b
gb′L

c
gc′fabc =

−δαfa′b′c′ and δα = ±1, and the second and third transformations refer to the left-

moving fields, ψµ and χa. The spin structure of each fermion is a representation of

the first homotrophy group π1(Σg) (54). The transformations (2.2 − 4) ensure the

invariance of the supercurrent. We need to require the orthogonality ofRg(α) to leave

the energy tensor invariant in the right sector. In order to keep the theory tractable,

commutativity of the boundary conditions has been assumed (31), implying that

Lg(α) and Rg(α) have to be abelian matrix representations of π1(Σg). Note that

commutativity is assumed between the boundary conditions on surfaces of different

genus. The previous constraints allow the diagonalizations of the matrices R(α) and

L(α), which are expressed purely as phase changes, and simplifying (2.2− 4) into

f → −eiπα(f)f, (3.5)
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where f is any fermion (ψµ, χa, Φ̄I) and α(f) is the phase acquired by f when moving

around the non-contractable loop α.

Then, the spin structure for a non-contractible loop can be expressed as a

vector

α = {α(f r1 ), ..., α(f rk ); α̂(f c1), ..., α̂(f ck ′)} (3.6)

where α(f r) is the phase for a real fermion, while α̂(f c) is the phase for a complex

fermion. By convention, α(f) ∈ (−1, 1]. Then, for the complex conjugate fermion

α(f ∗) ∈ [−1, 1). We set the notation

δα =


1 if α(ψµ) = 0

−1 if α(ψµ) = 1

(3.7)

where, according to (2.5), the entry 1 represents a periodic (Ramond) boundary

condition and 0 represents an anti-periodic (Neveu-Schwarz) boundary condition.

Since there are 2g non-contractible loops for a genus g Reimann surface, we have to

specify two sets of phases, α1, ..., αg, β1, ..., βg, to obtain the full partition function.

In its general form, it can be written as a weighted sum over the individual partition

functions, Z

α
β

 for specific pairs of boundary vectors

Z =
∑
genus

g∑
i,j=1

c

αi
βj

 z

αi
βj

 , (3.8)

where z

αi
βj

 can be expressed in terms of θ-functions. The modular invariance

imposes constraints onto the coefficients c

αi
βj

. It was shown (55) that modu-

lar invariance and unitarity imply that these coefficients for higher genus surfaces
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factorize into the form

c

α1, ..., αg

β1, ..., βg

 = c

α1

β1

 c

α2

β2

 . . . c

αg
βg

 . (3.9)

For this reason, it is sufficient to consider only the one-loop coefficients.

3.1.1 Model Building Rules and Physical Spectrum

In the free fermionic framework, the construction of consistent string vacua

in four dimensions is acheived by applying two sets of rules: the constraints for the

boundary condition vectors, restricted to the case of rational spin structure (31),

and the rules for one-loop phases.

A set of consistent boundary condition vectors form an additive group

Ξ ∼ ZN1 ⊗ ...⊗ ZNk , (3.10)

generated by the basis B = {b1, ..., bk}, where each bi is in the form of (2.6). This

basis must satisfy the following conditions:

•
∑
mibi = 0⇐⇒ mi = 0 (mod Ni), ∀i,

• Nijbi · bj = 0 mod 4,

• Nibi · bi =


0 mod 8, Ni even

0 mod 4, Ni odd

• b1 = 1

where Ni is the smallest postive non-zero integer for which Nibi = 0 (mod 2) and

Nij is the lowest common multiplier between Ni and Nj. The inner Lorentz product

is defined by

bi · bj =

{
1

2

∑
real left

+
∑

complex left

−1

2

∑
real right

−
∑

complex right

}
bi(f)bj(f). (3.11)
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For a consistent basis B, there are several different modular invariant choices of

phases, each one leading to a consistent string theory. The phases under consid-

eration have to satisfy the requirements above, which provide the second group of

constraints below

• c

bi
bj

 = δbie
2πini
Nj = δbje

2πimi
Ni e

iπbi·bj
2 ,

• c

bi
bi

 = −e
iπbi·bi

4 c

bi
1

,

• c

bi
bj

 = e
iπbi·bj

2 c∗

bj
bi

,

• c

 bi

bj + bk

 = δbic

bi
bj

 c

bi
bk

,

where 1 < ni < Nj and 1 < mi < Ni. In addition, there is some freedom for the

phase c

b1

b1

 = ±e
iπb1·b1

4 , while by convention, c

0

0

 = 1 and c

α
0

 = δα, which

assures the presence of the graviton in the spectrum.

If we indicate 2 by α a generic sector in Ξ, the corresponding Hilbert space,

Hα, contributes to the partition function of the model. We adopt the notation

α = {αL|αR} to separate the left and right phases. The states in Hα have to satisfy

the Virasoro conditions and the level matching condition, that, in our formulation,

appear as

M2
L = −1

2
+
αL · αL

8
+NL = −1 +

αR · αR
8

+NR = M2
R, (3.12)

2 The notation can be confusing since we use α to indicate both a generic boundary condition
vector and the generic sector in the Hilbert space. We assure from the context that it is always
clear which quantity we are referring to.
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where NL and NR are the total left and the total right oscillator number, respectively,

acting on the vacuum, |0 >α. The frequencies are given respectively for a fermion,

f , and its conjugate, f ∗, by

νf =
1 + α(f)

2
, and νf∗ =

1− α(f)

2
. (3.13)

The physical states contributing to the partition function are those satisfying the

GSO conditions

eiπbi·Fα|s >α= δαc

α
bi


∗

|s >α, (3.14)

where |s >α is a generic state in the sector α, given by bosonic and fermionic

oscillators acting on the vacuum. The operator (bi · Fα) is given by

bi · Fα =

{∑
left

−
∑
right

}
bi(f)Fα(f), (3.15)

where F is the fermion number operator with the following values

F (f) =


1 for f

−1 for f ∗.

(3.16)

If the sector α contains periodic fermions, the vacuum is degenerate and transforms

in the representation of an SO(2n) Clifford algebra. Hence, if f is such a periodic

fermion, it will be indicated as |± > and F assumes the value

F (f) =


0 for |+ >

−1 for |− >.

(3.17)

The U(1) charges for the physical states correspond to the currents f ∗f and are

calculated by

Q(f) =
1

2
α(f) + F (f), (3.18)

hence the charge has possible values of {0,±1} for antiperiodic fermions, and {±1
2
}

for periodic fermions.
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The boundary vectors, β, contribute a set of GSO projections which act on the

α sector states, projecting some of them out of the model. Which states survive is

a function of the phase coefficients, c

αi
βj

. In a given α sector, a state is removed

from the model unless it satisfies the GSO projection equation imposed by each basis

vector

Bj · Fα = (
∑
i

kj,iai) + sj −
1

2
Bj · α (mod 2), (3.19)

or, equivalently,

Bj ·Qα = (
∑
i

kj,iai) + sj (mod 2). (3.20)

3.1.2 Construction of Semi-Realistic Models

The construction of semi-realistic free fermionic models is related to a par-

ticular choice of boundary condition basis vectors, and the general procedure of

the construction is based on two principal steps. For the particular class under in-

vestigation, the first stage is considering the Nanopoulos-Antoniadis-Hagelin-Ellis

(NAHE) set (56; 57; 58) of boundary condition basis vectors B = {1, s, b1, b2, b3},

which corresponds to Z2 × Z2 compactification and the standard embedding of the

gauge connection (? 59). The basis B is given explicitly below

1 = {ψ1,2, χ1,...,6, y1,...,6, w1,...,6|ȳ3,...,6, w̄1,...,6, ψ̄1,...,5, η̄1,2,3, φ̄1,...,8} (3.21)

S = {ψ1,2, χ1,...,6} (3.22)

b1 = {ψ1,2, χ1,2, y3,...,6|ȳ3,...,6, ψ̄1,...,5, η̄1} (3.23)

b2 = {ψ1,2, χ3,4, y1,2, w5,6|ȳ1,2, w̄5,6, ψ̄1,...,5, η̄2} (3.24)

b3 = {ψ1,2, χ5,6, w1,...,4|w̄1,...,4, ψ̄1,...,5, η̄3}, (3.25)

where the notation means that only periodic fermions are listed in the vectors. The

left-moving internal coordinates are fermionized by the relation eiX
i

= 1/
√

2(yi +

iwi), as explained in Chapter 2, and a similar prescription holds for the right moving

internal coordinates. The superpartners of the left moving bosons are indicated by
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χi. The extra 16 degrees of freedom, ψ̄1,...,5, η̄1,2,3, φ̄1,...,8, are complex fermions. The

GSO one-loop phases for the NAHE set are

c

bi
bj

 = −1, c

1

S

 = 1, c

 bi

1, S

 = −1. (3.26)

The gauge group introduced by the NAHE set is SO(10)× SO(6)3×E8 and N = 1

supersymmetry. The spacetime vector bosons generating the symmetry group arise

in the Neveu-Schwarz (NS) sector, and in the sector ξ2 = 1 + b1 + b2 + b3. In

particular, the ψ̄1,...,5 are responsible for the SO(10) symmetry, the φ̄1,...,8 generate

the hidden E8 and the internal fermions {ȳ3,...,6, η̄1}, {ȳ1, ȳ2, w̄5, w̄6, η̄2}, {w̄1,...,4, η̄3},

generate the three horizontal SO(6) symmetries. In the untwisted sector, we note

the presence of states in the 10 vectorial representation of SO(10), which represent

the best candidates for the Higgs doublets. The three twisted sectors b1, b2, and

b3, produce 48 multiplets in the 16 representation of SO(10), which carry SO(6)3

charges, but are singlets under the hidden gauge group.

In the second stage of the construction, we consider additional basis vectors,

generally indicated by α, β, γ, which reduce the number of generations to three and

simultaneously break the four dimensional gauge group. This breaking is imple-

mented by the assignment of boundary conditions, in the form of new basis vectors,

which, through respective GSO projections, keep only the generators of the sub-

group considered. For example, the breaking of SO(10) is due to the boundary

conditions of ψ̄1,...,5 in α, β, γ, which can provide SU(5)×U(1) (38), SO(6)×SO(4)

(49), or SU(3)× SU(2)× U(1)2 gauge groups (40; 42; 57; 36). Further attempts in

the construction of realistic models can be found in (50). The SO(6)3 symmetries

are also broken to flavor U(1) symmetries. The worldsheet currents, ηiη̄i, i = 1, 2, 3,

produce U(1) charges in the visible sector, and further U(1)n symmetries arise by

the pairing of real fermions among the right internal sector. If a left moving real

fermion is paired with a right moving real fermion, the rank of the right gauge group
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is reduced by one. The pairing of the left and right movers is a key point in the

phenomenology of free fermionic models, as it is strictly related to the reduction of

the untwisted Higgs states, as we will discuss in detail later.

Once we extract the massless spectrum of a particular free fermionic model,

the next step is the analysis of its superpotential. We postpone the explanation of

this topic since it will be treated in the next sections. Further details concerning

the construction of free fermionic models carried out step by step can be found in

(47; 60).

3.2 Minimal Standard Heterotic String Models

After providing the main tools on the construction of model building, we

would like to revisit some of the properties of semi-realistic Standard Model-like

free fermionic models. One of their remarkable successes has been the fact that they

can accomodate the top quark mass (61). These models offered an explanation as

to why only the top quark mass is characterized by the electroweak scale, whereas

the masses of the lighter quarks and leptons are supressed (42; 62). The reason

is that only the top quark Yukawa coupling is obtained at the cubic level of the

superpotential, whereas the Yukawa couplings of the lighter quarks and leptons are

obtained from nonrenormalizable terms that are supressed relative to the leading

order term. As explained earlier, the three generations arise from the three twisted

sectors, whereas the Higgs doublets, to which they couple in leading order, arise from

the untwisted (NS) sector. At leading order, each twisted generation couples to a

separate pair of untwisted Higgs doublets. Analysis of supersymmetric flat directions

implied that at low energies, only one pair of Higgs doublets can remain light, and

the other Higgs doublets must obtain heavy mass from VEVs of Standard Model

singlet fields. Thus, in the low energy effective field theory, only the coupling of the

twisted generation that couples to the light Higgs remains at leading order. The
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consequence is that only the top quark mass is obtained at leading order, whereas

the masses of the remaining quarks and leptons are obtained at subleading orders.

Evolution of the calcuated Yukawa couplings from the string to the electroweak scale

then gives a prediction for the top quark mass. The analysis of the top quark mass

therefore relies on the analysis of supersymmetric flat directions and the decoupling

of the additional untwisted electroweak Higgs doublets, that couple to the twisted

generations at leading order.

3.3 D− and F− Flatness Constraints

The requirements for the preservation of spacetime supersymmetry, expressed

in terms of the D− and F−terms have been reviewed in (44; 52; 63; 45; 37). We

will review them again here, with an emphasis on geometric interpretation of the

non-Abelian VEVs.

Spacetime supersymmetry is broken in a model when the expectation value of

the scalar potential,

V (ϕ) =
1

2

∑
α

g2
α(

dim(Gα)∑
α=1

Dα
aD

α
a ) +

∑
i

|Fϕi |2, (3.27)

becomes nonzero. The D−term contributions have the form,

Dα
a ≡

∑
m

ϕ†mT
α
a ϕm, (3.28)

where Tαa is a matrix generator of the gauge group Gα for the representation ϕm.

The F−term contributions are

FΦm ≡
∂W

∂Φm

, (3.29)

where W is the superpotential. The ϕm are spacetime scalar superpartners of the

chiral spin-1
2

fermions, ψm, which together form a superfield, Φm. All of the D and

F term contributions to (3.32) are positive semidefinite, so each must have a zero

expectation value for supersymmetry to remain unbroken. In addition, because the
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D and F terms are independent of one another, each must have zero expectation

value separately.

For an Abelian gauge group, the D−term in (3.33) simplifies to

Di ≡
∑
m

Q(i)
m |ϕm|2, (3.30)

where Q
(i)
m is the U(1)i charge of ϕm. When an Abelian symmetry is anomalous,

meaning that the trace of its charge over the massless fields is nonzero,

Tr Q(A) 6= 0, (3.31)

the associated D−term acquires a Fayet-Iliopoulos (FI) term, given by

ε ≡ g2
sM

2
P

192π2
Tr Q(A), (3.32)

where gs is the string coupling andMP is the reduced Planck mass, MP ≡MPlanck/
√

8π ≈

2.4× 1018 GeV. The D−term becomes

D(A) ≡
∑
m′

Q
(A)
m′ |ϕm|

2 + ε. (3.33)

The existence of the anomalous U(1) symmetry is a common feature of free fermionic

models (64). However, it is always possible to put the total anomaly into a single

U(1). The anomalous U(1)A is broken by the Green-Schwarz-Dine-Seiberg-Witten

mechanism (65) in which a potentially large FI term is generated by the VEV of the

dilaton. The FI term breaks supersymmetry near the string scale, V ∼ g2
sε

2, unless

it can be canceled by a set of scalar VEVs, {〈ϕm′〉}, carrying anomalous charges

Q
(A)
m′ ,

〈D(A)〉 ≡
∑
m′

Q
(A)
m′ |〈ϕm〉|

2 + ε = 0. (3.34)

To maintain supersymmetry, a set of anomaly-canceling VEVs must simultaneously

be D−flat for all additional Abelian and non-Abelian gauge groups,

〈Di,α〉 = 0. (3.35)
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A consistent solution to all constraints, (3.32 − 40) specifies the overall VEV ’FI-

scale’, 〈α〉 of the model. A typical FNY value is 〈α〉 ≈ 7× 1016 GeV.

In general, the FI D−term breaks supersymmetry unless there is a direction,

φ̂ =
∑
αiφi, in the scalar potential for which

∑
Qi
A|αi|2 is of opposite sign to ε,

and that is D-flat with respect to all the non-anomalous gauge symmetries, as well

as F -flat. If such a direction exists, it will acquire a VEV, cancelling the FI term,

restoring supersymmetry and stabilizing the vacuum. The solution to (3.32 − 4),

which corresponds to the choice of fields with non-vanishing VEVs, though non-

trivial, is not unique. Therefore, in a typical model, there exists a moduli space of

solutions to the F and D flatness constraints, which are supersymmetric and degen-

erate in energy (66). Much of the study of the superstring models phenomenology

involves the analysis and classification of these flat directions. The methods for this

analysis in string models have been systematized in (52; 67; 68; 37).

In general, it has been assumed in the past that in a given string model, there

should exist a supersymmetric solution to the F and D flatness constraints. The

simpler type of solutions utilize only fields that are singlets of all the non-Abelian

groups in a given model. These are type I solutions. More involved solutions, type

II solutions, that also use the non-Abelian fields, have also been considered (37).

Non-Abelian fields have also been used in systematic methods of analysis (37). The

general expectation that a given model admits a supersymmetric solution arises

from analysis of supersymmetric point quantum field theories. In these cases, it is

known that if supersymmetry is preserved at the classical level, there exist index

theorems that forbid supersymmetry breaking at the perturbative quantum level

(69). Therefore, in point quantum field theories, supersymmetry breaking may only

be induced by non-perturbative effects (70).
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3.3.1 Non-Abelian Flat Directions and Self-Cancellation

Past investigations have suggested that for several phenomenological reasons,

including the production of viable three generation quark and lepton mass matrices

and Higgs h− h̄ mixing, non-Abelian fields must also acquire FI-scale VEVs (60).

In a number of these investigations, ’stringent’ F−flatness is demanded, mean-

ing that each superpotential term is forced to satisfy F−flatness by assigning no

VEVs to at least two of the constituent fields. The absence of any nonzero terms

from within 〈FΦm〉 and 〈W 〉 is itself sufficient to guarantee F−flatness along a given

D−flat direction, but such stringent demands are not necessary.

Complete absence of these terms can be relaxed, as long as they appear in

collections which cancel among themselves in each 〈FΦm〉 and 〈W 〉. It is desirable to

examine the mechanisms of such cancellations, as they can allow additional flexibility

for the tailoring of phenomenologically viable particle properties, while preserving

supersymmetry (71). It should be noted, however, that success along these lines

may be short-lived, with flatness retained in a given order only to be lost at a higher

order.

Since Abelian D−flatness constraints limit only VEV magnitudes, we are left

with the gauge freedom of each group with which to attempt a cancellation between

terms, while retaining consistency with non-Abelian D−flatness. However, it can

often be the case that only a single term from W becomes an offender in a given

〈FΦm〉 (37). If a contraction of non-Abelian fields bearing multiple components is

present, it may be possible to effect a self-cancellation that is still ’stringently’ flat

in some sense. Even safe sectors of W , in particular with 〈Φm〉 = 0, may yield

dangerous 〈FΦm〉 contributions. The individual F−terms may be separated into two

classes based on whether or not Φm is Abelian.
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CHAPTER FOUR

Semirealistic Models

In this chapter we present four semirealistic string models within the NAHE

basis set. Before discussing the specifics of each model, we provide as motivation for

investigating this specific class of models the first model within the free fermionic

formulation with a reduced number of Higgs.

The first model is an SO(10) model in the observable sector, while the last

three models are SU(5) models in the observable sector. The hidden sectors, how-

ever, are different in all four models Model 1 has an SU(8)× SU(2) hidden sector,

while models 2 and 4 havel SU(4)× SO(10) hidden sectors. Model 5, however, has

an SU(2)4 × SU(4) hidden sector. In the analysis of the flat directions for each of

the models, both Models 2 and 5 lack any singlet D−flat directions with negative

anomalous charge. Thus, in these models, it was necessary to investigate D−flat

directions which are non-Abelian.

4.1 Motivation

In (72), a semi-realistic free fermionic model was presented within the NAHE

basis set which contains three chiral generations charged under the standard-like

model subgroup of the underlying SO(10) symmetry of the NAHE set. Fewer singlet

particles were present from the untwisted sector. Analysis of flat directions showed

that no stringent F− and D−flat solutions appeared to exist to all order in the

superpotential. In all previous investigations of semi-realistic free fermionic models,

not only were such supersymmetric directions found, but all previous models yielded

stringent flat directions which can be shown to be exact, or flat to all orders of

nonrenormalizable terms. However, in this model, no physical D−flat direction
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that was generated kept F−flatness through sixth order. It was speculated that

only stringent flat directions can be flat to all orders of renormalizable terms. If

validated, it would indicate that the particular model under investigation appears

to have no D−flat directions which can be shown to be F−flat to all orders, other

than by order analysis.

Our aim, then, was to investigate a series of models within this class. The goal

was to determine whether the flat direction analysis of these models yielded the same

results as the model mentioned above. If that were the case, we could more certainly

conclude that the non-existence of all order flat directions is a general property of

this class of models. However, flat direction analysis of the four models presented

herein shows this not to be the case, as all order flat directions were found in three

of the four of the models.

4.2 Flat Direction Analysis

We begin with the flat direction analysis of each of the four models, beginning

with the simpler models first, those with singlet flat directions. We then discuss

the models with non-Abelian flat directions, and provide discussion of stringent flat

directions.

4.2.1 Singlet Flat Directions

In this section, we investigate the simplest of our four models, those with

singlet flat directions. We have called these models 1 and 4, and their basis vectors

are given in Appendix A and C, respectively.
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4.2.1.1 Model 1. Model 1 contains six U(1)s, five of which are anomalous,

TrQ1 = 768, (4.1)

TrQ3 = TrQ4 = −TrQ5 = 192, (4.2)

TrQ6 = −2112. (4.3)

The total anomaly can be rotated into a single U(1)A, rescaling by a factor of 192,

and the new basis reads

Q′1 = 4Q1 +Q3 +Q4 −Q5 − 11Q6, (4.4)

Q′2 = Q2, (4.5)

Q′3 = Q3 −Q4, (4.6)

Q′4 = 11Q1 + 4Q6, (4.7)

Q′5 = Q3 +Q4 + 2Q5, (4.8)

QA = −12Q1 + 137(Q3 +Q4 −Q5) + 33Q6. (4.9)

From now on, we adopt the convention of calling Q′i, i = 1, ..., 5, simply Qi.

To search for flat directions, we employ the methodology in (73). We start by

constructing a basis of D−flat directions under Q1,...5, and then we investigate the

existence of D−flat directions in the anomalous U(1)A. Subsequently, we will have

to impose D−flatness under the remaining gauge groups and F−flatness. As we

will see for this model, however, it was only necessary to obtain a basis of D−flat

directions under Q1,...5. To generate the basis flat directions under Q1,...5, we start

by forming a basis of gauge invariant monomials under U(1)1, which we then use to

construct a basis of invariant monomials under U(1)2, and so forth.

As a first step, we investigate the existence of flat directions involving vacuum

expectation values for only the fields which are singlets under both the observable

and hidden sector gauge groups. These fields are φ1,2,3, and ψ1,...14, a total of 17

fields. Note that we don’t include Φ1,2,3 because, though they are singlets under
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both the observable and hidden sector gauge groups, they carry no U(1) charge.

We have 5 constraints we need to impose, from the original number of U(1)s, six,

minus one anomalous U(1)A, so the basis set of flat directions should contain at

most 12 elements. For a given model, finding less than the maximum amount of

basis directions is possible and simply means that all the fields which comprise the

directions are not completely independent of one another. For this model, all 17 fields

can be incorporated into the flat directions, depicted in Table A.2 of Appendix A.

For any basis set of D−flat directions, the the basis directions can have posi-

tive, negative, or zero anomalous charge. In the maximally orthogonal basis used in

the approach of (68; 37), each basis direction is uniquely identified with a particular

VEV. In other words, although each basis direction generally contains many VEVs,

each basis direction contains at least one particular VEV that appears solely in that

direction. Such is the case for this model, as well. As can be seen in Table A.2

of Appendix A, the fields φ1,2,3 and ψ1,...9 are uniquely associated with one basis

direction.

In our notation, a physical flat direction may have a negative norm-square for

a vector-like field. This denotes that it is the oppositely charged vector partner field

which acquires the VEV, rather than the field itself. Basis directions themselves may

have vector-like partner directions if all associated fields are vector-like. This is the

case for model 1, as Table A.1 in Appendix A shows that all 17 fields which make up

the D−flat basis directions for this model are vector-like. On the other hand, if, in

particular, the field generating the VEV uniquely associated with a basis direction

does not have a vector-like partner, that basis direction cannot have a vector-like

partner direction.
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Since the FI-term for this model is positive,1 with TrQA = 1344, a physical flat

direction must carry a negative anomalous charge in order to cancel the dangerous

FI term, as previously discussed. From Table A.2 in Appendix A, we see that three

of the twelve D−flat basis directions, D1,2,3, carry negative anomalous charge. For

this model, then, it is not necessary to continue to investigate a basis set of D−flat

directions from non-Abelian fields which may take on VEVs, and we can proceed to

search for F−flat directions.

In order to search for F−flat directions, we must first construct the superpoten-

tial, because according to (3.29), the F−terms are the derivatives of the superpoten-

tial with respect to the superfields of a given model. We generated the superpotential

for third through sixth order,2 and first tested for stringent F−flatness, in which at

least two fields do not take on VEVs, described in more detail in section 4.2.2, from

all third through sixth order superpotential terms. For those combinations in which

two or more fields did not take on VEVs, we then investigated what combinations

of D−flat basis fields provided F -flatness to what order in the superpotential. This

analysis involved looking at which basis fields taking on VEVs came from which

R/NS sector (1 to 3), summing the totals for each category, and matching them to

the rules in (37). The total number of fields is given by n, and again for 3 ≤ n ≤ 5,

the combination was not further tested. For n > 5, the combination was tested. If

the combination followed the rules in (37), it was dangerous, and broke supersym-

metry at order n in the superpotential. However, if the combination did not follow

the rules, supersymmetry was not broken, and we listed the direction as F−flat to

all order.

1 In general, there is no restriction on the sign of the FI-term, however models constructed
from the NAHE set typically have an FI-term which is positive.

2 Although we do provide the superpotential for this model here, and for three of the four
models, we have produced it only for third through sixth order, we can generate the superpotential
for any model to any arbitrary order. We have not yet generated the superpotential for model 5,
even though, as discussed in section 4.2.2, we could not find any D−flat direction with negative
anomalous charge.
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For increasing number of basis fields taking on VEVs, the above analysis be-

comes time consuming to do by hand, and it became reasonable to implement a

FORTRAN program to do the flat direction analysis. While implementation of the

program was not necessary for this model, it was used for the flat direction analysis

of the following two models, and can be used for any future model. An additional fea-

ture of the FORTRAN program is its ability to allow for the addition of coeffiecients

to the fields present in the basis directions. Because we need supersymmetry to be

broken at no less than 17th order in the superpotential to be consistent with the

Standard Model, we ran coeffiecients from -17 to 17 for all fields. This ensures that a

set of VEVed basis fields can be multiplied by any arbitrary coeffiecient and remain

F -flat to sufficient order. Once a direction was found to be F -flat to at least 17th

order in the superpotential, it was listed as F -flat to all order, as it is not important

that supersymmetry breaks beyond 17th order to be consistent with the Standard

Model.

We hoped to find at least four to six directions that are F -flat to all order

for any given model, to be consistent with past investigations. For the parameter

space of VEVed basis directions investigated for model 1 thus far, we found fifteen

directions which were F -flat to all order. These are listed in Table A.3 of Appendix

A. For model 1, we were able to find a basis set of F -flat directions to all order

which included twelve of the seventeen basis fields making up the D-flat directions.

At low orders, each individual superpotential term includes several stringent F−term

constraints on the coefficients of physical flat directions. The set of constraints from

the superpotential terms with only singlet fields translate into the requirement that

two or more singlet fields in a given superpotential term cannot take on VEVs, as

will be discussed in section 4.2.2. The five fields which do not appear in the all order

flat directions, ψ1,2,4,5,7, never took on VEVs in the superpotential, and were thus

excluded from the all order flat directions.
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For any given model, finding singlet flat directions to all order means that

non-Abelian flat directions likely exist to all order for that model. Such is the case

for model 1, as well as model 4, below. However, for our purposes, merely finding

singlet directions which are flat to all order is sufficient. Thus, with the first model

we investigated, we were able to show that the lack of F -flat directions to all order

is not a general property of reduced Higgs models.

Once a flat direction basis is found for a given model, we can investigate which

hidden sector fields take on mass, and at what scale they take on mass. In order to

examine which hidden sector fields become massive, we generate the superpotential

for each flat direction. In this analysis, only the superpotential terms which gain

mass are generated. Unlike the observable sector fields, the hidden sector fields do

not require the Higgs to become massive. Instead, we must examine at what order

the hidden sector fields appear in the superpotential, and in what combinations

with observable sector fields they occur. The order at which the hidden sector field

appears in the superpotential corresponds to the order at which that field becomes

massive. The higher the order at which the field appears, the lower the order at

which the field takes on mass. In order for a hidden sector field to take on mass, at

least two hidden sector fields and one observable sector field which takes on a VEV

must appear in a superpotential term.

Preliminary investigation shows a total of twelve of the hidden sector fields

appearing in the superpotential across all fifteen of the F−flat directions given for

this model. The twelve fields are H1,2,3,5,6,9,10 and H̄1,2,3,12, and most first appear

at third order in the superpotential, meaning that they gain mass at a scale of

approximately one tenth of the string scale, taking 17th order in the superpotential

to be of the electroweak scale. If a field occurs at a higher order in the superpotential,

or if a field appears twice at a given order in the superpotential, that mass is reduced

by a factor of ten.
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The superpotenitial for the first flat direction of model 1 is given at the end of

Appendix A. Again, we begin at third order in the superpotential, which means that

no mass terms exist for first or second order. The reason for this is that we need at

least two non-Abelian fields to occur in a term before it can gain mass. After the

superpotential is generated, we look at which fields in a given superpotential term

take on VEVs. For example, in the superpotential at the end of Appendix A, the

following term occurs,

H1H̄2φ̄3, (4.10)

where H1 and H̄2 are the non-Abelian hidden sector fields, and φ̄3 is a singlet field.

If φ̄3 takes on a VEV, H1 and H̄2 will become massive at one tenth the string scale.

However, if φ̄3 does not take on a VEV, H1 and H̄2 will not become massive; instead

the term represents an interaction term. If a fourth order term appeared in the

superpotential of the form,

H1H̄2φ̄3φ̄4, (4.11)

then H1 and H̄2 would only become massive if both φ̄3 and φ̄4 took on VEVs. If

only one of the two takes on a VEV, the term will again be an interaction term.

At any order, all additional singlet fields in a given superpotential term must take

on VEVs for the hidden sector fields to become massive. Other non-singlet fields

may be present in a term, but they are not required to take on VEVs in order for

the hidden sector fields to become massive. Its the requirement that there be at

least two non-Abelian fields and one singlet field in a given superpotential before

the non-Abelian fields can become massive that requires us to look at no lower than

third order in the superpotential.

In addition to any hidden sector fields which can become massive, additional

observable sector matter can be generated in this manner, provided that a given
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superpotential term contains a Higgs. In the case of this superpotential, we have

the following terms with Higgs,

h̄2h̄2φ̄3, h̄1h̄1φ̄3ψ3ψ3, (4.12)

which means that both φ̄3 and ψ3 become massive. The scales at which any addi-

tional observable sector fields become massive are the same as those at which the

hidden sector fields become massive. In this case, just as with a hidden sector field,

we would discard the massive term φ̄3 because it appears at both third and fifth

order in the superpotential, lessening the mass it gains. We still consider the mass

from ψ3, because the first place it gains mass is at fifth order, or one thousandth the

string scale.

We then consider a generic SU(Nc) gauge group containing Nf flavors of mat-

ter states. When Nf < Nc, the gauge coupling, gs, though weak at the string scale

Mstr, becomes strong at a condensation scale

Λ = MP e
8π2/βg2s , (4.13)

where β = −3Nc + Nf . The Nf flavors counted are only those which ultimately

receive masses m << Λ. This results in an expectation value of

W ∼ NcΛ
3(
m

Λ
)Nf/Nc (4.14)

for the nonperturbative superpotential. The scale of 〈W 〉 corresponds to the scale

at which hidden sector matter condensates into observable sector matter. In this

case, the hidden sector gauge groups are SU(8) and SU(2), and we can therefore

calculate the scale at which the hidden sector matter condensates under each gauge

group for this model. Work on the hidden sector matter states for all the models

presented herein will be presented in (74; 75).
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4.2.1.2 Model 4. Model 4 contains eight U(1)s, seven of which are anomalous:

TrQ1 = TrQ3 = 120, (4.15)

TrQ2 = −TrQ4 = −96, (4.16)

TrQ5 = 48, (4.17)

TrQ6 = −TrQ7 = 24. (4.18)

Again, we rotate the total anomaly into a single U(1)A, rescaling by a factor of 24,

and the new basis reads

Q′1 = Q1, (4.19)

Q′2 = Q2 −Q4, (4.20)

Q′3 = Q7 +Q8, (4.21)

Q′4 = Q3 +Q5, (4.22)

Q′5 = Q6 −Q7 +Q8, (4.23)

Q′6 = 4(Q2 +Q4) + 5(Q3 −Q5), (4.24)

QA = Q2 + 5(Q2 +Q4) + 4(Q5 −Q3) + 2Q6 +Q7 −Q8. (4.25)

Again, we begin our search for flat directions as we did for model 1, by first con-

structing a set of basis vectors under Q1,...6. We again include in this analysis only

the fields with vanishing hypercharge and which are singlets under the Standard

Model gauge group.

Beginning again with the investigation of the existence of flat directions in-

volving VEVs for only the fields which are singlets under both the observable and

hidden sector gauge groups, we are left with the fields Ec
1,2,3, Ēc

1, φ1, and ψ1,...,24,

where again we have excluded Φ1,2,3 because they carry no U(1) charge. This leaves

us with 28 fields and seven constraints, so the basis set of D−flat directions for this

model should contain 21 elements, as depicted in Table C.2 in Appendix C.
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As we can see from Table C.2, each basis direction again is uniquely identified

with a particular field VEV. Unlike model 1, however, not all the fields comprising

the basis set of D−flat directions for this model are vector-like. In fact, the only

basis direction for this model which is vector-like is D5, because it uniquely contains

a vector-like field, φ1. The other three vector-like fields comprising the D−flat basis,

ψ1,2,3 are associated with at least twelve basis directions.

Since the FI-term for this model is positive, with TrQA = 2112, a physical flat

direction must carry a negative anomalous charge to cancel the FI-term, as men-

tioned before. From Table C.2, we see that five of the 21 D−flat basis directions,

D1,...,5, carry negative anomalous charge. Once again, for this model, it is not nec-

essary to continue to investigate a basis set of D−flat directions from non-Abelian

fields which may take on VEVs, and we proceed to search for F−flat directions.

The search again begins with the construction of the superpotential, which we

again generated from third through sixth order. In the F−flat direction analysis for

this model, we employed the previously mentioned FORTRAN program because the

basis set of fields for the D−flat directions was so large, containing 28 fields. The

first iteration of the program tested for terms in the superpotential in which two or

more fields do not take on VEVs, and the second iteration of the program tested

the rules provided in (37) to assess at what order F−flatness was broken. This

iteration included the tests for coefficients on the basis directions. For this model,

however, a sufficient number of directions were found for which at least two fields in

the superpotential did not take on VEVs that it was not necessary to run the second

iteration of the program. This could, however, be done in future to see how many

additional directions may be obtained which are F−flat to all order. Table C.3 in

Appendix C lists the first fifteen F−flat directions found to all order for this model.

The first iteration of the program produced approximately 100 F−flat directions to

all order, however, we have listed only the first fifteen, as this search is meant to be
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representative, not exhaustive. This is also the reason we did not continue with the

second iteration of the program. Again, not all fields in the D−flat basis appear in

the F−flat basis. In this case, only 16 of 28 original fields appear in the F−flat basis

due to the constraints on the coefficients of physical D−flat directions. This makes

sense because more basis directions will have more constraints, which will eliminate

more fields from the F−flat basis.

4.2.2 Non-Abelian Flat Directions

In general, systematic analysis of simultaneously D− and F−flat directions in

anomalous models is a complicated, nonlinear process.3 In weakly coupled heterotic

string (WCHS) model building, as mentioned earlier, F−flatness of a specific VEV

direction in the low energy effective field theory may be proven to a given order

by cancellation of F−term components, only to be lost at higher order at which

cancellation is not found. An exception is directions with stringent F−flatness

(50; 52; 77). Instead of allowing cancellation between two or more components in an

F−term, stringent F−flatness requires that each possible component in an F−term

have zero vacuum expectation value.

When only non-Abelian singlet fields acquire VEVs, stringent flatness implies

that two or more fields in a given F−term cannot take on VEVs. For example,

for the ψ4 term in the third order superpotential for model 2, given at the end of

Appendix B, the components of the F -term are:

Fψ4
= ψ5ψ9 + ψ8ψ12. (4.26)

For stringent F−flatness, we require not just that 〈Fψ4
〉 = 0, but that each compo-

nent within is zero, i.e.,

〈ψ5ψ9〉 = 0, 〈ψ8ψ12〉 = 0. (4.27)

3 In (76) it is argued that, in addition to flat directions, isolated special points generically
exist in the VEV parameter space which are not located along flat directions, but for which all D−
and F−terms are indeed zero. The interested reader can find additional information in (76; 72).
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Thus, by not allowing cancellation between components in a given F−term, strin-

gent F−flatness imposes stronger constraints than generic F−flatness, but requires

significantly less fine-tuning between the VEVs of the fields.

The net effect of all stringent F−flatness constraints on a given superpotential

term is that at least two fields in the term must not take on VEVs. This condition

can be relaxed when non-Abelian fields acquire VEVs. Self-cancellation of a single

component in a given F−term is possible between various VEVs within a given

non-Abelian representation. Self-cancellation was discussed in (52) for SU(2) and

SO(2n) states.

A given set of stringent F−flatness constraints are not independent and so-

lutions to a set can be expressed in the language of Boolean algebra and applied

as constraints to linear combinations of D−flat basis directions. Such a language

makes it clear that the effect of stringent F−flat constraints is strongest for low

order superpotential terms and lessens with increasing order. In particular, for the

two models discussed in this section, stringent F−flatness is extremely constrain-

ing on the VEVs of the reduced number of untwisted singlet fields appearing in the

third through fifth order superpotential, even to the point of excluding any stringent

F−flat directions for model 5. This is in comparison to the larger number of singlets

in the two models in the previous section, as well as in the model of (46).

Though it is possible to imagine that stringent F−flatness constraints require

order-by-order testing of the superpotential terms, this is, in fact, not necessary. All-

order stringent F−flatness can be proven or disproven by examining only a small

set of possible dangerous superpotential terms, or terms which break F−flatness.

Through various processes (78), a finite set of superpotential terms can be con-

structed which generates all possible dangerous superpotential terms for a given

D−flat direction. The basis of gauge-invariants can always be formed with particu-

lar attributes:
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(1) Each basis element term contains at most one unVEVed field, because to threaten

F−flatness, a gauge-invariant term, which is necessarily without anomalous

charge, can contain no more than one unVEVed field;

(2) There is at most one basis term for each unVEVed field in the model; and

(3) when an unVEVed field appears in a basis term, it appears only to the first

power.

To appear in a string-based superpotential, a gauge invariant term must also

follow R-NS worldsheet charge conservation rules. For free fermionic models, these

rules have been generalized from finite order (79; 80) to all-order (37). The generic

all-order rules can be applied to systematically determine if any product of F−flatness

threatening superpotential basis elements generated via (78) survive in the corre-

sponding string-generated superpotential. If none survive, then F−flatness proven

to all finite order. This technique has been used to prove F−flatness to all finite or-

der various directions in various models (50; 52; 37; 81; 82). Alternately, if any terms

do survive, the lowest order at which stringent F−flatness is broken is determined.

All-order stringent flat directions contain a minimum number of VEVs and

appear in models as the roots of more fine-tuned, and generally finite order, flat di-

rections which require specific cancellations between F−term components. General

flat directions, however, may involve cancellations between sets of components of

different orders in the superpotential.

All-order stringent flat directions have indeed been discovered to be such roots

in all prior free fermionic heterotic models for which systematic flat direction analysis

and classification has been performed. Based on the results of the previous two

models presented herein, we can conclude that the lack of all order stringent flat

directions, as in the model presented in (72), is not a general property of low Higgs

models, and we would expect to find all order stringent flat directions in future

investigations into models in free fermionic heterotic models.
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4.2.2.1 Model 2. Model 2 contains seven U(1)s, six of which are anomalous:

TrQ1 = TrQ2 = −TrQ3 = −96, (4.28)

TrQ4 = TrQ5 = TrQ6 = −48. (4.29)

Rotating into a single anomalous U(1)A and rescaling by a factor of 48 gives:

Q′1 = Q1 −Q2, (4.30)

Q′2 = Q5 −Q6, (4.31)

Q′3 = Q3 + 2Q4, (4.32)

Q′4 = Q1 +Q2 − 2(Q5 +Q6), (4.33)

Q′5 = 2(Q1 +Q2 + 2Q3 −Q4) +Q5 +Q6, (4.34)

Q′6 = Q7, (4.35)

QA = −2(Q1 +Q2 +Q3)− (Q4 +Q5 +Q6). (4.36)

Investigating only fields which are singlets under the observable and hidden sectors

leaves us with the fields Ec
1,2,3, Φ1,2,3, φ1,...,6, and ψ1,...,12. Again, simple analysis

excludes Ec
1,2,3 from the basis directions, so we are left with 21 fields and six con-

straints, which gives us the 15 basis directions that can be seen in Table B.2 of

Appendix B.

We can see that again each basis direction contains a unique field VEV, just

as in the previous two models. In addition, all the fields which make up the set of

basis D−flat directions are vector-like, which means that all 15 of the D−flat basis

directions formed from singlet fields only for this model are vector-like, just as those

in model 1 are. Again, the FI-term for this model is positive, with TrQA = 720, so

again we need a physical D−flat direction with negative anomalous charge to cancel

the dangerous FI term. Since all the D−flat directions in Table B.2 are vector like,

a direction could be physical if it had postive anomalous charge, because its vector

partner would have negative anomalous charge. However, we see from Table B.2
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that no such D−flat directions exist for this model, since no D−flat direction listed

in Table B.2 has any anomalous charge. Therefore, we needed to expand our D−flat

basis direction search to include non-Abelian fields. This result is not altogether

unexpected, as non-Abelian VEVs have been required for physical all order flat

directions in other semi-realistic free fermionic heterotic models in the past (50).

The D−flat basis directions for non-Abelian fields only and for a mix of non-

Abelian and singlet fields are shown in Tables B.3 and B.4 of Appendix B, respec-

tively. Again, all D−flat basis directions for the both the non-Abelian and mixed

fields contain one unique field VEV. However, none of the unique field VEVs for the

non-Abelian basis directions are vector-like, and thus, none of the ten non-Abelian

basis directions depicted are vector-like. Only one of the non-Abelian directions, D9,

has negative anomalous charge, QA = −30, which is sufficent to cancel the danger-

ous positive FI-term, even though none of the other basis directions are vector-like

and thus would have vector partners which took on negative charge, opposite to

their positive charge. Two of the unique fields for the mixed basis vectors are vector

like, and thus the directions containing them, D6 and D7, are vector like. However,

because they have no anomalous charge, they cannot cancel the positive FI-term.

With one physical D−flat direction found to cancel the dangerous FI-term, we

proceeded to search for directions which were F−flat to all order, starting again with

generating the superpotential for third through sixth order. The third order superpo-

tential for model 2 is given at the end of Appendix B. We again implemented the first

iteration of the FORTRAN program, whereby we looked for stringent F−flatness

by requiring that at least two fields in the superpotential not take on VEVs. Re-

sults provided over 60 such directions, and listed in Table B.5 of Appendix B are

the first ten of these. Again because the initial search provided so many directions

which were F−flat to all order, we did not proceed to the second iteration of the

program for the purposes of this thesis. We also note that only twelve of the original
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set of 45 fields are present in the final F−flat basis, which is to be expected for

a large number of fields with a large number of constraints. Additionally, because

our final flat direction basis includes non-Abelian fields, we have shown that the

hidden sector breaks supersymmetry in this model, as these directions were involved

in investigating which directions were flat to what order.

4.2.2.2 Model 5. Model 5 contains eight U(1)s, six of which have anomalous

charge:

TrQ3 = TrQ4 = −TrQ5 = TrQ7 = −96 (4.37)

TrQ6 = TrQ8 = 48. (4.38)

Rotating into a single anomalous U(1)A and rescaling by a factor of 48 gives:

Q′1 = Q1 +Q2, (4.39)

Q′2 = Q3 −Q4, (4.40)

Q′3 = Q6 −Q8, (4.41)

Q′4 = Q5 +Q7, (4.42)

Q′5 = Q3 +Q4 + 2(Q6 +Q8), (4.43)

Q′6 = Q3 +Q4 +Q5 +Q7 + 2(Q6 +Q8), (4.44)

QA = −2(Q3 +Q4 −Q5 +Q7) +Q6 +Q8. (4.45)

Once again, we proceed with searching for singlet flat directions. The fields which

are singlets in both the observable and hidden sectors are the following: Ec
1,2,3, φ1,...,6,

and ψ1,...,6, where we do not include Φ1,...,4 in the basis of D−flat directions since

they do not carry any U(1) charge. We are left with 16 fields and eight constraints

from the U(1) charges for a total of eight D−flat basis directions, shown in Table

D.2 of Appendix D.

We notice that again, each basis direction has a unique field VEV associated

with it, but the only direction with a unique field VEV from a vector-like field is D5,
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which has no anomalous charge. For D1,2,3 the total anomalous charge is positive,

and the remaining basis directions have no anomalous charge. We therefore have

no D−flat direction which can cancel the positive FI-term for this model, with

TrQA = 864. We must then proceed to search for non-Abelian D−flat directions,

the results of which will appear in (74).

4.3 Gauge Groups

In this section, we discuss the details of each of the models. Discussion of

matter content and representations is also given. Further details can be found in

Appendices A-D.

Each model has a reduced number of Higgs particles, less than the standard

three, one for each generation. They are denoted by hi. All Higgs particles are paired

with an anti-Higgs particle, h̄i. While models 1,4, and 5 all have two pairs of Higgs

under the 10 representation of SO(10) and the 5 and 5 representation of SU(5),

respectively, model 2 lacks any Higgs particles at all, making it incompatible with

Standard Model predictions. Additionally, model 4 contains six additional unpaired

Higgs-like particles, denoted by h3,..,8, which are exotic Higgs. The first three are

5 representations under SU(5), while the last three are 5 representations of SU(5).

Exotic Higgs come from the twisted sector of a given model, while the standard

Higgs come from the untwisted sector.

A general property of models with low number of Higgs is that they have

fewer singlet particles from the untwisted sector. This is indeed the case for all of

our models, as we see for each model that only the φi fields come from the untwisted

sector. All other singlet fields come from a combination of one or more of the twisted

sectors, which include the sectors from the additional basis vectors for each model.

Model 1 is the only model with four additional basis vectors; all other models

presented herein have three additional basis vectors. The basis vectors of a given
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model determine the gauge groups of that model. Model 1 is our only model with

an SO(10) observable sector gauge group; the three other models all have SU(5)

observable sector gauge groups. Each break to the Standard Model gauge group,

SU(3)×SU(2)×U(1), and they are both equally valid groups from which to obtain

semi-realistic Standard-like GUT Models. The U(1)1,2,3 gauge groups are standard

symmetries present in all three generation free fermionic models which employ the

NAHE set. Additional horizontal U(1)n, where n > 4, symmetries arise by pairing

two real fermions from the sets {ȳ3,...,6}, {ȳ1,2, w̄5,6}, and {w̄1,...,4}. The final gauge

group depends on such pairings, which can be seen in the (d) tables of Appendices

A-D, which contain the additional basis vectors for each model. The number of

pairings corresponds to the number of additional U(1)s, which is two for model 1,

three for model 2, and four for models 4 and 5.

The existence of these additional U(1) gauge groups is correlated with the

assignment of asymmetric boundary conditions with respect to the set of internal

world-sheet fermions, {y, w|ȳ, w̄}1,...,6, in the basis vectors that extend the NAHE

for a given model. This assignment of asymmetric boundary conditions in the basis

vector that breaks the SO(10) symmetry to SO(6)×SO(4) results in the projection

of the untwisted Higgs color-triplet fields and preservation of the corresponding

electroweak doublet Higgs representations (83).

In model 1, we find the states which correspond to the three generations,

denoted by G1,2,3, are the 16 representations of SO(10), while in the remaining

models, the states corresponding to the three generations are denoted by F1,2,3, which

are the 10 representations of SU(5), and F̄1,2,3, which are the 5 representations of

SU(5). All other states in each model are singlets under the observable sector gauge

groups. The non-Abelian fields, denoted by Hi and H̄i are the only states which

are not singlets under the hidden sector gauge groups. In model 1, the non-Abelian

representations are the 8 of SU(8), which only the last three fields contain, and the
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2 of SU(2), which the remaining non-Abelian fields contain. In model 2, H10,11,12

are 6 representations of SU(4), H7,8,9 are the 4 representations of SU(4), and H1,..6

are the 4 representations of SU(4). The remaining non-Abelian fields of model 2 are

10 representations of SO(10). Model 4 contains only an SU(4) hidden sector gauge

group, with all the non-Abelian particles in the 8 representation. Finally, model 5

contains four SU(2) gauge groups and one SU(4) gauge group. H4,6,32 are the 6

representations of SU(4) and are singlets under all other gauge groups, while H47 is

also a 6 representation of SU(4) with 2 representations of SU(2)1 and SU(2)3 and

contains no U(1)s. The particles which are 4 representations of SU(4) are H37,38,

and those which are 4 representations of SU(4) are H40,...,45, all of which are also

singlets under all other gauge groups. All other non-Abelian fields for model 5 have

at least one 2 representation of SU(2)1,...,4.
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CHAPTER FIVE

The NAHE Variation With a Geometric Twist

In this chapter, we present a variation of the NAHE basis set for free fermionic

heterotic string models. By rotating some of the boundary conditions of the NAHE

periodic/anti-periodic fermions, {ym, ȳm, wm, w̄m}, for m = 1 to 6, associated with

the six compact dimensions of a bosonic lattice/orbifold model, we show an addi-

tional method for enhancing the standard NAHE gauge group of SO(10) back to E6.

This rotation transforms (SO(10) ⊗ SO(6)3)rmobs ⊗ (E8)hid into (E6 ⊗ U(1)5)obs ⊗

SO(22)hid. When SO(10) is enhaced to E6 in this manner, the ith Minimal Super-

symmetric Standard Model (MSSM) matter generation in the SO(10) 16i represen-

tation, originating in twisted basis vector bi, recombines with both its associated

untwisted MSSM Higgs in a 10i representation and an untwisted non-Abelian sin-

glet, φi, to form a 27i representation of E6. Beginning instead with the E6 model,

the inverse transformation of the fermion boundary conditions corresponds to partial

Grand Unified Theory (GUT) breaking via boundary rotation.

Correspondence between free fermionic models with Z2⊗Z2 twist, especially of

the NAHE class, and orbifold models with a similar twist has received further atten-

tion recently. The NAHE variation discussed here also involves a Z2 ⊗Z2 twist and

offers additional understanding regarding the free fermion/orbifold correspondence.

Further, models based on this NAHE variation offer some different phenomenologi-

cal features compared with NAHE based models. In particular, the more compact

Z2 ⊗ Z2 twist of the NAHE variation offers a range of mirror models not possible

from NAHE based models.
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5.1 A Geometric Twist

The parameter space of the weakly coupled free fermionic heterotic string

(WCFFHS) (33; 31; 34; 35; 53) region of the string landscape has been shown to be

rich in semi-realistic models containing the MSSM or its extensions. The WCFFHS

region has produced a vast range of semi-realistic Near-MSSM-like models (40; 41;

42; 67; 52; 45; 84; 77; 85; 44) semi-GUT models (50; 49; 86; 87), and GUT models

(38), etc. The majority of these models are constructed as extensions of the NAHE

set (56), with the five basis vectors of the NAHE set as their common core. Within

the five basis vectors of the NAHE set, the twelve real free fermions representing the

six compactified bosonic directions have boundary condition vectors equivalent to a

T 6/Z2 ⊗ Z2 orbifold twist. While basis vector extensions to the NAHE set may or

may not break Z2 ⊗ Z2 symmetry, the semi-realistic models consistently follow the

latter scheme.

Of current focus is the correspndence between free fermionic and orbifold mod-

els (88; 89; 90). In (88) a complete classification was obtained for orbifolds of the

form X/G, with X the product of three elliptic curves and G an Abelian exten-

sion of a group of Z2 ⊗ Z2 twists acting on X. This includes T 6/Z2 ⊗ Z2 orbifolds.

Each such orbifold was shown to correspond to a free fermionic model with geomet-

ric interpretation. The NAHE basis and certain model extensions were shown to

have geometric interpretation and thus, to have orbifold equivalences. However, the

general class of semi-realistic models with a NAHE basis were shown not to have

geometric interpretation; specifically, their Hodge numbers were not reproducible

by any orbifold X/G. In other words, the beyond-NAHE basis vectors necessary to

yield a semi-realistic model, by reducing the number of copies of each generation

from 16 to 1 and breaking SO(10) to a viable sub-group,1 consistently break the

T 6/Z2 ⊗ Z2 symmetry in a manner that also eliminates geometric interpretation.

1 SO(10) must be broken via Wilson loop effects of basis vectors rather than by GUT Higgs,
since adjoint or higher dimension scalars are not possible in Kač-Moody rank one models.
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The non-geometric feature of the semi-realistic WCFFHS models inspired us

to investigate variations of the NAHE set that might allow for semi-realistic models

with a geometric interpretation, particularly with geometric T 6/Z2 ⊗Z2 interpreta-

tion. In the next section, we construct a NAHE variation of this form by rotating

(interchanging) the boundary conditions of a subset of the twelve real fermions in

two of the twisted sectors. We conclude by considering some of the phenomenologi-

cal aspects of this new model class, especially in comparison to those of the NAHE

class.

5.2 Construction and Phenomenology of the NAHE Variation

As mentioned earlier, the NAHE basis set consists of five basis vectors: The

all-periodic sector, 1, which is present in all fermionic models, the supersymmetry

generating sector, S, and the three generation sectors, bi=1,2,3. The NAHE set was

given in (3.21 − 5), where the (y, w)m, for m = 1 to 6, are the six pairs of real

fermions that replace the right-moving bosonic scalar fields, χm for the six compact-

ified directions, and the corresponding (ȳ, w̄)m are the six pairs of real fermions that

replace the left-moving χ̄m.

Again, the gauge group of the NAHE set is SO(10)⊗SO(6)3⊗E8 with N = 1

spacetime supersymmetry. The matter content is 48 spinorial 16 representations

of SO(10) matter states, coming from sixteen copies from each sector, b1, b2, and

b3. The sixteen copies in each sector are composed of two copies of (16,4i) rep-

resentations and two copies of (1̄6, 4̄i) representations of SO(10) ⊗ SO(6)i. The

untwisted sector contains six copies of a pair of Higgs for each generation in the

form of (10,6i) representations of SO(10)⊗ SO(6)i, in addition to a single (6i,6j)

representation of SO(6)i ⊗ SO(6)j, for each case of i, j ∈ {1, 2, 3} and i 6= j. In a

real basis of the ȳ and w̄, the generators of SO(6)1 are (η̄1, ȳ1, ȳ2, w̄5, w̄6); of SO(6)2

are (η̄2, ȳ3, ȳ4, ȳ5, ȳ6); of SO(6)3 are (η̄3, w̄1, w̄2, w̄3, w̄4).
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The three sectors, b1, b2, and b3, are the three unique twisted twisted sectors

of the corresponding Za2 ⊗ Zb2 orbifold compactification. The Za2 ⊗ Zb2 acts on the

(y, w)i and (ȳ, w̄)i in the bi according to

Za2 : (y, ȳ)m=3,...,6 → (y + 1, ȳ + 1)m (mod 2) (5.1)

Zb2 : (y, ȳ)m=1,2; (w, w̄)n=5,6 → (y + 1, ȳ + 1)m; (w + 1, w̄ + 1)n (mod 2). (5.2)

Thus, b1 is a Za2 twisted sector, b2 is a Zb2 twisted sector, and b3 + 1 is a Za2 ⊗ Zb2

twisted sector. The Za2 × Zb2 NAHE orbifold is special precisely because of the

existence of three twisted sectors, one per generation, with a permutation symmetry

with respect to the horizontal SO(6)3 symmetries. This symmetry also enables

b1 +b2 +b3 +1 to generate the massless sector that produces the spinor components

of the hidden sector E8 gauge group.

The NAHE set is common to a large class of three generation free fermionic

models. As previously discussed, model building proceeds by adding three or four

additional boundary condition basis vectors to the NAHE set, which simultane-

ously break SO(10) to one of its subgroups, SU(5) ⊗ U(1), SO(6) ⊗ SO(4), or

SU(3) ⊗ SU(2) ⊗ U(1)2, and reduce the number of generations to three chiral,

one from each of the sectors, b1, b2, and b3. The various three generation models

differ in their detailed phenomenological properties based on the specific assign-

ment of boundary condition basis vectors for the internal world sheet fermions,

{y, w|ȳ, w̄}1,...,6. This is one reason for our interest in examining the properties of

a new class of models based on a NAHE variation for which some of the boundary

conditions of the {y, w|ȳ, w̄}1,...,6 are exchanged.

b1 = {y3,...,6|ȳ3,...,6} (5.3)

b2 = {y1,2,5,6|ȳ1,2,5,6} (5.4)

b3 = {y1,...,4|ȳ1,...,4} (5.5)
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The NAHE variation under discussion is produced by exchanging some of

the periodic and antiperiodic boundary conditions in the second and third gener-

ation sectors, as shown above. In b2, the boundary conditions of (y, ȳ)m=5,6 and

(w, w̄)m=5,6 are interchanged. In b3, the boundary conditions of (y, ȳ)m=1,2,3,4 and

(w, w̄)m=1,2,3,4 are interchanged. Under this exchange, both Za and Zb now induce

twists solely among the (y, ȳ)m and no longer among the (w, w̄)m. In addition,

Za ⊗ Zb now corresponds exactly to b3, rather than to b3 + 1. This effect of the

exchanged boundary conditions for the Za and Zb twists is very non-trivial.

The observable gauge group is enhanced to E6⊗U(1)5, and the hidden sector

gauge group transforms into SO(22). The change in gauge group occurs because

now it is the combination of S + b1 + b2 + b3, rather than of b1 + b2 + b3 + 1,

that forms a mass spinor gauge group sector. Thus, in the NAHE variation, there

is a massless spinor sector involving the five complex ψ̄ and the three complex η̄

observable sector fermions rather than the eight complex φ̄ hidden sector fermions.

This massless spinor sector enhances the SO(10) symmetry generated into E6. The

enhancement is into E6 rather than E8 because of the GSO constraints the bi basis

vectors place on the η̄i spinors.

The trace component of the three complex η̄ fermions is also absorbed into

the E6, leaving η̄1 − η̄2 and η̄1 + η̄2 − 2η̄3 as generating 2 extra U(1) charges, along

with the 3 extra U(1)’s generated by the complex ȳI = ȳ1 + iȳ2, ȳII = ȳ3 + iȳ4, and

ȳIII = ȳ5 + iȳ6.

Instead of producing 8 copies of non-chiral generations of SO(10) 16 repre-

sentations in each bi sector, this model produces one non-chiral generation of E6

27 representations in each {1,bi} sector combination and an additional 4 non-chiral

generations in each of the three {S + bi + bj}, i 6= j sectors. Thus, this model

corresponds to h1,1 = h2,1 = 15. Thus, this model has the Hodge numbers and
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twisted sector matter distributions of the orbifold models (1− 2) and (1− 8)of (88)

and may be the free fermionic equivalent of one of these.

The NAHE variation also contains 45 pairs of vector-like non-Abelian matter

singlets carrying U(1) charges, with 9 pairs coming from the untwisted sector and

12 pairs from each of the three bi + bj sectors. The untwisted sector contains 6

copies of 22 representations of the hidden sector SO(22), while each S + bi + bj

sector produces an additional 8 copies of 22 representations of SO(22). The third

order components of the model’s superpotential are given in Appendix E. The next

lowest order terms are fifth order; there are no fourth order terms.

We note finally that this NAHE variation has connection with another varia-

tion discussed in (86) that is formed from six basis vectors. In that model, the sector

formed by the sum of the three bi in our above variation was denoted as X and was

added to the NAHE group. In the latter, the observable sector GUT gauge group

is also raised to E6, with the same U(1) enhancing SO(10) to E6. The total gauge

group becomes E6 ⊗U(1)2 ⊗ SO(4)3 ⊗E8, in contrast to our E6 ⊗U(1)5 ⊗ SO(22).

5.3 Discussion

In (91) we introduced a general algorithm for systematic generation of the

complete set of WCFFHS gauge group models up to a chosen number of basis vectors,

L, and order N , the lowest common multiple of the orders Ni of the respective basis

vectors2 Vi, whereby Ni is the smallest positive integer such that NiVi = ~0 (mod 2).

The algorithm of systematic generation of models containing twisted matter sectors

has been generalized, and we have begun a systematic investigation of SO(10) NAHE

based models (74). Now, with the construction of the E6 NAHE variation presented

in this chapter, we are also initiating a parallel systematic investigation of models

with the NAHE variation as their core. The general phenomenology of this new

2 By gauge basis vectors, we mean those with all anti-periodic left-moving boundary condi-
tions.
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class of models and the particular characteristics of subclasses of models defined by

their observable gauge group will be presented in an upcoming series of papers.

One aspect of the NAHE variation class of models that we will pursue are

mirror models. These models contain matching observable and hidden sector gauge

groups and matter states. The possibility of NAHE based mirror models was ex-

plored in (92), in which it is shown that since the charges of observable sector states

in NAHE based models are spread out beyond half (22) of the total number of right-

moving complex fermions, GSO constraints imposed by the observable sector on the

charges of the hidden sector states significantly hinder realization of mirror mod-

els. In fact, it was shown that in a large class, perhaps all, of NAHE based models

with mirror basis vectors, these GSO constraints enforce spontaneous breaking of

an initial mirror symmetry of gauge groups (92).

However, our variation on the NAHE set appears more condusive to mirror

model construction, since the Z2⊗Z2 twist in the NAHE variation allows observable

sector states to carry charges within just the first 11 of the 22 right-moving complex

fermions, allowing the additional 11 charges to be reserved for hidden sector states.

Specifically, an additional three sectors denoted b′i=1,2,3 mirroring bi=1,2,3 in the

hidden sector might be added to our NAHE variation to generate an (E6⊗U(1)5)obs⊗

(E6 ⊗ U(1)5)hid model with matching matter states.3

It should be noted that, nevertheless, the GSO projections between observable

and hidden massless matter sectors can never be totally independent, since the ob-

servable and hidden matter sectors will always have a periodic complex spacetime

fermion in common. Modular invariance contraints require that any pair of order-2

mirror matter sectors have at least one more non-zero complex fermion boundary

condition in common, albeit the complex fermion can be either left-moving or right-

moving. Hence, for order-2 the modular invariant rules cannot be satisfied by simply

3 Nevertheless, singlet states carrying both observable U(1)5
obs and hidden U(1)5

hid charges
are likely to exist, and therefore mix the observable and hidden sectors.
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adding an additional set of hidden sector mirror matter sectors, b′i=1,2,3, with real

right moving components defined by (b′i)
n = (bi)

44−n. In this case, while b′i · bi

satisfy modular invariance requirements, b′i · bj 6=i do not. As we will show in (93),

for higher order basis vectors, this requirement is lifted; mirror observable/hidden

matter sectors with either only a periodic spacetime boundary condition in com-

mon or else only a periodic spacetime and left-moving complex fermion x boundary

condition in common are consistent with modular invariance.

Results of our full exploration of gauge and mirror models based on our NAHE

variation will appear in (93). Rather than discuss the range now, we close the chap-

ter instead with an interesting NAHE variation-based example of a gauge (but not

matter) mirror model that satisfies modular invariance requirements. The observ-

able and hidden sector matter basis vectors are not completely mirrors among the

{η̄(′), ȳ(′), w̄(′)}. Hence observable and hidden sector matter are not mirror images.

The gauge group is (E6)obs⊗U(1)7⊗SU(4)⊗(E6)hid. The model is chiral with 21 27

representations and 3 2̄7 representations of (E6)obs. The untwisted sector provides 3

27 and 3 2̄7 representations; the 18 net chiral representations are all from the twisted

sectors. The model also contains 12 4 and 12 4̄ representations, not in vector-like

pairs, of SU(4) and 48 U(1)5 charged non-Abelian singlets. There are neither 27

nor 2̄7 representations of (E6)hid. A net Z6 twist from additional sectors is needed

to (1) simultaneously reduce (E6)obs to a (semi-)GUT that does not require adjoint

or higher scalar representations to induce a spontaneous symmetry breaking to the

MSSM at low energy and (2) reduce the number of copies of each matter generation

from 6 to 1. The basis vectors and GSO projection matrix are given in Tables E.1

and E.2 in Appendix E.
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CHAPTER SIX

Conclusions

In this thesis, we focus our study on heterotic superstring theories and their

applications to particle physics. In particular, we are interested in the search of

semi-realistic four dimensional superstring vacua which can reproduce the Stan-

dard Model physics at low energy. A highly successful approach is given by free

fermionic models, which give rise to the most realistic three generation string mod-

els to date. Their phenomenology is studied in the effective low energy field theory

by the analysis of supersymmetric flat directions. Before discussing each of the four

models presented herein, we mention a model which consists of MSSM states in the

observable Standard Model sector, and which was the first model found with a re-

duced number of Higgs content at the string scale. This result came about through

the application of a new general mechanism which involved a choice of asymmetric

boundary conditions for the internal fermions of the theory. An additional result for

minimal Higgs spectrum models is the fact that the supersymmetric moduli space

is reduced as well, which increases the predictive power of the theory.

A common feature of free fermionic models is the presence of an anomalous

U(1) which gives rise to a Fayet-Iliopoulos D−terms which breaks supersymmetry

at the one loop level in string perturbation theory. Supersymmetry is restored by

imposing D− and F− flatness on the vacuum. Generally, it has been assumed

that in a given string model, there should exist a supersymmetric solution to D−

and F−flatness constraints. However, in the model mentioned at the beginning

of Chapter 4, no flat solutions were found after employing the standard analysis

for flat directions. Such a result lead to the investigation of similar free fermionic
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models, with low Higgs content, to assess whether the lack of such supersymmetric

flat directions was a general property of this class of models.

In Chapter 4, we presented four semi-realistic free fermionic models, all with

reduced Higgs content. Standard flat direction analysis showed that supersymmetric

D− and F−flatness existed for all four models. Additionally, two of the models

exhibited non-Abelian singlet flat directions, as had been expected from past free

fermionic heterotic models. While the results herein are not exhaustive, i.e. not

all flat directions are presented for all four models, we required only that they be

sufficient to make a general statement about this class of models. Therefore, the

tables of flat directions listed do not reflect a complete flat direction characterization

for a given model. For the purposes of this work, we are concerned only with whether

or not these flat directions exist, rather than providing an exhaustive list of each flat

direction for each model. In this case, it was sufficient to find just one flat direction

from each model to assess whether the lack thereof was a general property of these

models.

In Chapter 5, we presented a variation on the NAHE set from which the first

four models were derived. Such a variation comes about through the rotation of some

of the boundary conditions of the NAHE periodic/antiperiodic fermions associated

with the six compact dimensions of a bosonic lattice/orbifold model, specifically

those for a subset of the twelve real fermions in two of the twisted sectors, b2 and

b3. Through this rotation, the observable sector gauge group is enhanced from

SO(10)⊗SO(6)3 to E6⊗U(1)5, and the hidden sector gauge group transforms from

E8 into SO(22). The significance of beginning with an E6 model is that the in-

verse transformation of the fermion boundary conditions correspond to partial GUT

breaking through the boundary rotation. In addition, investigation of models within

this variation on the NAHE set offers the possibility of a range of mirror models,

or models which contain matching observable and hidden sector gauge groups and
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matter states. To date, investigation into specific models within this variation, be-

sides the example presented herein, has yet to be done, and is an obvious place to

proceed with further research.

The main results of this thesis allow for a significant amount of future work,

in addition to that just mentioned. As stated earlier, the search for flat directions

was merely representative, not exhaustive. In this case, further work can be done to

fully classify the flat directions for each of the models. Also, brief work was done to

assess the scale at which hidden sector fields become massive for one of the models

presented in chapter 4. The next step is to investigate at what scale the hidden

sector fields condensate into observable sector fields for a given flat direction, which

causes supersymmetry breaking along that direction. This analysis can obviously be

done for all the four models presented in chapter 4, to more completely characterize

these models.

Though we presented only four semi-realistic models herein, the goal of string

phenomenology is to obtain a semi-realistic string model which accurately describes

the Standard Model in the observable sector, and perhaps gives new insight into dark

matter via the hidden sector. The string models in the free fermionic formulation

give rise to a large class of semi-realistic models which produce solely the MSSM

spectrum in the observable Standard Model charged sector of the effective low energy

field theory. As such, free fermionic models provide an arena to study how string

theory may be related to observed particle data. In turn, the properties of the

models which make them attractive from the point of view of the phenomenological

data may be instrumental in uncovering unexpected properties of string theory.
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APPENDIX A

Gauge Charges and Flat Directions of Model 1

Table A.1: Gauge Charges of Model 1. The names of the states appear in the first
column, with the states’ various charges appearing in the other columns. All U(1)

charges are multiplied by a factor of 4 (and similarly for all other models).

state SO(10) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 SU(8) SU(2)

G1 16 10 0 -2 -4 0 20 1 1

G2 16 6 2 0 2 0 -30 1 1

G3 16 12 -2 2 2 0 10 1 1

h1 10 -12 -2 -2 -2 0 -10 1 1

h̄1 10 12 2 2 2 0 10 1 1

h2 10 -12 -2 2 -2 0 -10 1 1

h̄2 10 12 2 -2 2 0 10 1 1

Φ1 1 0 0 0 0 0 0 1 1

Φ2 1 0 0 0 0 0 0 1 1

Φ3 1 0 0 0 0 0 0 1 1

φ1(φ̄1) 1 0 0 -8 0 0 0 1 1

φ2(φ̄2) 1 24 4 4 4 0 20 1 1

φ3(φ̄3) 1 24 4 -4 4 0 20 1 1

ψ1(ψ1) 1 12 -6 2 2 0 10 1 1

ψ2(ψ2) 1 0 2 -2 2 0 -70 1 1

ψ3(ψ3) 1 8 -2 2 -10 0 30 1 1

ψ4(ψ4) 1 0 0 4 0 0 0 1 1

ψ5(ψ5) 1 0 0 4 0 0 0 1 1
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Table A.1: Gauge Charges of Model 1, Continued.

state SO(10) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 SU(8) SU(2)

ψ6(ψ6) 1 24 4 0 4 0 20 1 1

ψ7(ψ7) 1 12 -6 -2 2 0 10 1 1

ψ8(ψ8) 1 0 2 2 2 0 -70 1 1

ψ9(ψ9) 1 8 -2 -2 -10 0 30 1 1

ψ10(ψ10) 1 -20 2 -2 2 16 -54 1 1

ψ11(ψ11) 1 -20 0 0 0 16 16 1 1

ψ12(ψ12) 1 12 0 0 8 -16 24 1 1

ψ13(ψ13) 1 -8 -4 0 4 16 -44 1 1

ψ14(ψ14) 1 -20 2 2 2 16 -54 1 1

H1(H̄1) 1 24 0 0 0 8 48 1 2

H2(H̄2) 1 0 -4 4 -4 8 28 1 2

H3(H̄3) 1 0 -4 -4 -4 8 28 1 2

H4(H̄4) 1 -12 2 2 -6 8 18 1 2

H5(H̄5) 1 0 -2 2 -2 8 -42 1 2

H6(H̄6) 1 -8 -2 2 6 8 -2 1 2

H7(H̄7) 1 0 -4 0 -4 8 28 1 2

H8(H̄8) 1 -12 2 -2 -6 8 18 1 2

H9(H̄9) 1 0 -2 -2 -2 8 -42 1 2

H10(H̄10) 1 -8 -2 -2 6 8 -2 1 2

H11(H̄11) 1 0 0 -2 -4 -8 -28 8 1

H12(H̄12) 1 2 -2 2 2 -8 -38 8 1

H13(H̄13) 1 10 0 0 0 8 48 8 1
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Table A.3: Basis set of F-flat directions to all order for Model 1. Column 1 denotes
the flat direction number. Column 2 is the anomalous charge. The remaining
columns specify the norm squared VEVs of the respective non-Abelian singlet

fields. All other ”3” tables are structured in a like manner.

FD QA φ1 φ2 φ3 ψ3 ψ6 ψ8 ψ9 ψ10 ψ11 ψ12 ψ13 ψ14

1 -49 0 -3 -144 -98 0 0 0 92 98 0 -98 -92

2 -1 0 -1 -2 -2 0 0 0 0 2 0 -2 0

3 -1 0 0 -3 -4 0 0 0 0 2 -2 -2 -2

4 -1 0 -1 0 0 -2 0 -2 0 2 0 -2 0

5 -2 0 -3 -1 0 -2 0 -4 0 4 0 -4 0

6 -1 0 0 1 0 -4 0 -2 0 2 0 -2 0

7 -1 0 0 -1 -2 -2 0 0 0 2 0 -2 0

8 -2 0 -1 -3 -4 -2 0 0 0 4 0 -4 0

9 -1 0 1 0 -2 -4 0 0 0 2 0 -2 0

10 -2 1 0 0 0 -6 0 -4 0 4 0 -4 0

11 -5 1 0 3 0 -18 0 -10 0 10 0 -10 0

12 -2 -1 0 0 -4 -6 0 0 0 4 0 -4 0

13 -5 -1 0 -3 -10 -12 0 0 0 10 0 -10 0

14 -1 0 0 0 0 -3 -2 -3 1 0 -1 -2 0

15 -1 0 0 1 0 -4 -2 -4 0 0 -2 -2 0
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Superpotential, WFD1, for F−flat Direction 1, for Model 1.

φ1 φ2 φ̄3 + φ̄1 φ3 φ̄2 + ψ1 ψ10 ψ11

+ ψ9 Φ1 ψ3 + ψ2 ψ2 φ̄2 + ψ3 ψ3 φ̄2

+ ψ3 ψ12 ψ10 + ψ5 ψ11 ψ10 + ψ4 ψ10 ψ13

+ ψ6 ψ10 ψ14 + ψ8 ψ14 ψ11 + ψ9 ψ12 ψ14

+ ψ10 Φ2 ψ10 + ψ12 Φ3 ψ11 + ψ13 Φ1 ψ14

+ ψ14 Φ1 ψ13 + H1 H̄3 φ̄2 + H1 H̄2 φ̄3

+ H2 H̄6 ψ3 + h̄2 h̄2 φ̄3 + H̄10 H̄5 ψ13

+ ψ3 ψ12 φ̄3 ψ3 ψ11 + ψ5 ψ11 φ̄3 ψ3 ψ11 + ψ10 ψ10 φ̄2 ψ11 ψ11

+ h̄1 h̄1 φ̄3 ψ3 ψ3 + ψ2 ψ10 φ̄3 φ̄3 ψ3 ψ3 ψ11
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Table A.4: Additional Basis Vectors of Model 1.

ψµ χ12 χ34 χ56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

α1 0 0 0 0 1,...,1 1 0 0 0,0,0,0,0,0,0,0

β1 0 0 0 0 1,...,1 0 1 0 0,0,0,0,0,0,0,0

γ1 0 0 0 0 1,...,1 1 1 0 0,0,0,1,1,0,0,0

δ1 0 0 0 0 1,...,1 1 1 1 1,1,1,1,1,1,1,1

Table A.4: Additional Basis Vectors of Model 1, Continued.

y3,...,6 y3,...,6 y1,2, w5,6 y1,2, w5,6 w1,...,4 w1,...,4

α1 1,0,0,1 1,0,0,1 0,0,0,1 1,0,1,1 0,0,1,0 0,1,1,1

β1 0,0,1,0 1,0,1,1 1,0,1,0 1,0,1,0 1,0,0,0 1,1,0,1

γ1 0,1,0,0 0,1,0,0 0,1,0,0 0,1,0,0 0,1,0,1 0,0,0,0

δ1 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0

Table A.5: GSO Projection Matrix for Model 1.

ki,j 1 S b1 b2 b3 α1 β1 γ1 δ1

1 0 0 0 1 1 0 0 0 0

S 0 0 0 0 0 0 0 0 0

b1 0 1 0 1 1 0 0 1 1

b2 1 1 1 1 1 0 1 1 1

b3 1 1 1 1 1 1 0 1 1

α1 0 0 1 1 0 0 1 1 0

β1 0 0 1 0 1 1 0 0 1

γ1 0 0 0 0 1 0 1 0 1

δ1 0 0 0 0 0 1 0 1 1
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APPENDIX B

Gauge Charges and Flat Directions of Model 2

Table B.1: Gauge Charges of Model 2.

state SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 SU(4) SO(10)

F1 10 6 -2 -2 0 2 -6 2 1 1

F2 10 6 2 0 -4 -2 0 2 1 1

F3 10 6 0 2 2 4 6 2 1 1

F̄1 -5 2 -2 2 0 -6 -2 -6 1 1

F̄2 -5 2 2 0 4 -2 -8 -6 1 1

F̄3 -5 2 0 -2 2 -4 10 -6 1 1

Ec
1 1 2 -2 2 0 -6 -2 10 1 1

Ec
2 1 2 2 0 4 -2 -8 10 1 1

Ec
3 1 2 0 -2 2 -4 10 10 1 1

Φ1 1 0 0 0 0 0 0 0 1 1

Φ2 1 0 0 0 0 0 0 0 1 1

Φ3 1 0 0 0 0 0 0 0 1 1

φ1(φ̄1) 1 8 0 0 0 16 -8 0 1 1

φ2(φ̄2) 1 0 0 -8 0 0 0 0 1 1

φ3(φ̄3) 1 8 0 4 -8 8 4 0 1 1

φ4(φ̄4) 1 0 0 -4 -8 -8 12 0 1 1

φ5(φ̄5) 1 8 0 -4 -8 -8 4 0 1 1

φ6(φ̄6) 1 0 0 4 -8 -8 12 0 1 1
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Table B.1: Gauge Charges of Model 2, Continued.

state SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 SU(4) SO(10)

ψ1(ψ1) 1 -4 0 -2 4 -4 -2 0 1 1

ψ2(ψ2) 1 -4 0 -2 4 -4 -2 0 1 1

ψ3(ψ3) 1 -4 0 -2 4 -4 -2 0 1 1

ψ4(ψ4) 1 -4 0 6 4 -4 -2 0 1 1

ψ5(ψ5) 1 -4 0 0 0 -8 4 0 1 1

ψ6(ψ6) 1 -4 0 0 0 -8 4 0 1 1

ψ7(ψ7) 1 4 0 4 -8 0 8 0 1 1

ψ8(ψ8) 1 4 0 -4 -8 0 8 0 1 1

ψ9(ψ9) 1 0 0 6 4 4 -6 0 1 1

ψ10(ψ10) 1 -8 0 -2 4 -12 2 0 1 1

ψ11(ψ11) 1 0 0 -2 4 4 -6 0 1 1

ψ12(ψ12) 1 0 0 -2 4 4 -6 0 1 1
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Table B.1: Gauge Charges of Model 2, Continued.

state SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 SU(4) SO(10)

H1(H̄1) 1 -8 0 -2 -1 -2 2 -5 -4 1

H2(H̄2) 1 -4 0 0 -5 2 4 -5 -4 1

H3(H̄3) 1 -4 0 -2 -1 6 -2 -5 -4 1

H4 1 2 0 -2 -3 6 10 5 -4 1

H5 1 2 2 0 -1 8 -8 5 -4 1

H6 1 2 -2 2 -5 4 -2 5 -4 1

H7 1 6 0 -2 -5 2 -6 -5 4 1

H8 1 6 -2 0 1 8 0 -5 4 1

H9 1 6 2 2 -3 4 6 -5 4 1

H10 1 6 2 2 2 -6 6 0 6 1

H11 1 6 -2 0 6 -2 0 0 6 1

H12 1 6 0 -2 0 -8 -6 0 6 1

H13 1 10 -2 0 -2 -2 8 0 1 10

H14 1 10 0 2 0 0 -10 0 1 10

H15 1 10 2 -2 2 2 2 0 1 10
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Table B.5: Basis set of F-flat directions to all order for Model 2.

FD QA ψ9 ψ10 ψ11 H̄1 H̄2 H̄3 H4 H10 H12 H7 H8 H9

1 0 -5 6 -9 0 -66 -48 18 0 24 40 46 46

2 -1 -2 6 0 0 -42 -42 15 0 18 31 34 34

3 -14 0 -3 -3 -1 -13 -7 7 0 21 0 14 14

4 -15 0 -3 -3 -1 -15 -9 8 0 23 1 16 16

5 -16 1 -3 0 0 -12 -12 9 0 24 1 16 16

6 -1 0 33 -33 -44 -68 -2 23 0 24 45 46 46

7 -1 0 30 -30 -42 -60 0 21 0 24 39 42 42

8 -1 0 9 -9 0 -56 -38 19 0 20 37 38 38

9 -14 0 3 -3 -13 -7 -1 7 0 21 0 14 14

10 -14 -2 6 0 -23 -1 -1 6 1 22 0 16 15
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Table B.6: Additional Basis Vectors of Model 2.

ψµ χ12 χ34 χ56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

α2 0 0 0 0 1,...,1 1 0 0 0,0,0,0,0,0,0,0

β2 0 0 0 0 1,...,1 0 1 0 0,0,0,0,0,0,0,0

γ2 0 0 0 0 1,...,1 1 1 1 0,0,0,0,1,1,1,1

Table B.6: Additional Basis Vectors of Model 2, Continued.

y3,...,6 y3,...,6 y1,2, w5,6 y1,2, w5,6 w1,...,4 w1,...,4

α2 1,0,0,1 1,0,0,1 0,0,0,1 1,0,1,1 0,0,1,0 0,1,1,1

β2 0,0,1,0 1,0,1,1 1,0,1,0 1,0,1,0 1,0,0,0 1,1,0,1

γ2 0,2,0,0 0,2,0,0 0,2,0,0 0,2,0,0 0,2,0,2 0,0,0,0

Table B.7: GSO Projection Matrix for Model 2.

ki,j 1 S b1 b2 b3 α2 β2 γ2

1 0 0 1 1 1 0 0 −1
2

S 0 0 0 0 0 0 0 0

b1 1 1 1 1 1 0 0 −1
2

b2 1 1 1 1 1 0 1 1
2

b3 1 1 1 1 1 1 0 1

α2 0 0 1 1 0 0 1 1
2

β2 0 0 1 0 1 1 0 1
2

γ2 0 0 1 0 0 0 0 −1
2
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Third Order Superpotential, W3, for Model 2.

φ1 φ4 φ̄5 + φ1 φ6 φ̄3 + φ1 ψ5 ψ5 + φ1 ψ6 ψ6 + φ2 φ3 φ̄5

+ φ2 φ6 φ̄4 + φ2 ψ7 ψ8 + φ̄2 φ4 φ̄6 + φ̄2 φ5 φ̄3 + φ̄2 ψ8 ψ7

+ φ̄1 φ3 φ̄6 + φ̄1 φ5 φ̄4 + φ̄1 ψ5 ψ5 + φ̄1 ψ6 ψ6 + φ̄1 H5 H14

+ φ3 ψ1 ψ1 + φ3 ψ2 ψ2 + φ4 ψ3 ψ4 + φ5 ψ9 ψ10 + φ6 ψ11 ψ11

+ φ6 ψ12 ψ12 + φ̄4 ψ4 ψ3 + φ̄3 ψ1 ψ1 + φ̄3 ψ2 ψ2 + φ̄3 H6 H15

+ φ̄6 ψ11 ψ11 + φ̄6 ψ12 ψ12 + φ̄5 ψ10 ψ9 + φ̄5 H4 H13 + ψ1 ψ1 Φ1

+ ψ1 ψ5 ψ10 + ψ1 ψ5 ψ11 + ψ1 ψ6 ψ12 + ψ1 ψ7 ψ12 + ψ1 ψ8 ψ9

+ ψ2 ψ2 Φ1 + ψ2 ψ6 ψ10 + ψ2 ψ5 ψ12 + ψ2 ψ6 ψ11 + ψ2 ψ7 ψ11

+ ψ2 H2 H̄1 + ψ3 ψ3 Φ1 + ψ3 ψ5 ψ11 + ψ3 ψ6 ψ12 + ψ4 ψ4 Φ1

+ ψ4 ψ5 ψ9 + ψ4 ψ8 ψ11 + ψ1 ψ5 ψ11 + ψ1 ψ6 ψ12 + ψ1 ψ5 ψ10

+ ψ1ψ7 ψ11 + ψ1 H1 H̄2 + ψ2 ψ5 ψ12 + ψ2 ψ6 ψ11 + ψ2 ψ6 ψ10

+ ψ2 ψ8 ψ9 + ψ2 ψ7 ψ12 + ψ4 ψ5 ψ9 + ψ4 ψ8 ψ12 + ψ3 ψ5 ψ11

+ ψ3 ψ6 ψ12 + ψ3 ψ7 ψ10 + ψ5 ψ6 Φ3 + ψ6 ψ5 Φ3 + ψ6 H3 H̄1

+ ψ6 H1 H̄3 + ψ7 ψ7 Φ3 + ψ8 ψ8 Φ3 + ψ9 ψ9 Φ2 + ψ10 ψ10 Φ2

+ ψ11 ψ11 Φ2 + ψ11 H2 H̄3 + ψ12 ψ12 Φ2 + ψ12 H3 H̄2 + Φ1 H3 H̄3

+ Φ2 H1 H̄1 + Φ3 H2 H̄2
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APPENDIX C

Gauge Charges and Flat Directions of Model 4

Table C.1: Gauge Charges of Model 4.

state SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 U

′
7 SU(4)

F1 10 20 2 -2 2 -2 -2 -28 0 1

F2 10 24 0 0 0 2 16 -104 0 1

F3 10 20 2 2 -2 -2 -2 -28 0 1

F̄1 -5 -20 -6 -2 2 -2 -34 -148 0 1

F̄2 -5 -24 -8 0 0 -2 -16 104 0 1

F̄3 -5 -24 -6 2 2 2 -34 16 0 1

Ec
1 1 60 10 -2 2 -2 30 92 0 1

Ēc
1 1 -60 -10 2 -2 2 -30 -92 0 1

Ec
2 1 56 8 0 0 -2 48 344 0 1

Ec
3 1 56 10 2 2 2 30 256 0 1

h1(h̄1) 5 -4 -4 4 0 0 -36 -12 0 1

h2(h̄2) 5 12 0 -2 -2 -2 8 -52 -8 1

h3 5 20 6 2 -2 2 34 148 0 1

h4 5 8 0 2 -2 2 8 112 8 1

h5 5 8 0 -2 2 2 8 112 -8 1

h6 -5 -24 -6 -2 -2 2 -34 16 0 1

h7 -5 8 4 0 0 2 36 -152 0 1

h8 -5 32 4 0 0 -2 -4 272 0 1
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Table C.1: Gauge Charges of Model 4, Continued.

state SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 U

′
7 SU(4)

Φ1 1 0 0 0 0 0 0 0 0 1

Φ2 1 0 0 0 0 0 0 0 0 1

Φ3 1 0 0 0 0 0 0 0 0 1

φ1(φ̄1) 1 36 -4 -4 0 0 -4 108 0 1

ψ1(ψ1) 1 44 4 2 2 2 4 220 -8 1

ψ2(ψ2) 1 4 0 4 0 2 0 -164 0 1

ψ3(ψ3) 1 -4 0 4 0 -2 0 164 0 1

ψ4 1 56 10 -2 -2 2 30 256 0 1

ψ5 1 12 8 2 2 -2 8 -52 8 1

ψ6 1 12 8 -2 -2 -2 8 -52 -8 1

ψ7 1 16 6 0 4 2 26 -128 8 1

ψ8 1 20 6 0 0 -2 26 -292 8 1

ψ9 1 12 6 0 0 -6 26 36 -8 1

ψ10 1 8 6 0 -4 -2 26 200 -8 1

ψ11 1 8 0 4 -4 -2 0 -328 0 1

ψ12 1 0 0 4 4 6 0 0 0 1

ψ13 1 0 -4 0 0 -2 36 176 0 1

ψ14 1 0 0 -4 -4 6 0 0 0 1

ψ15 1 8 0 -4 4 -2 0 -328 0 1
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Table C.1: Gauge Charges of Model 4, Continued.

state SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 U

′
7 SU(4)

ψ16 1 40 -4 0 0 2 -4 -56 0 1

ψ17 1 -12 -4 2 2 -2 -44 -124 -8 1

ψ18 1 -48 -4 2 -2 2 -4 -56 -8 1

ψ19 1 -12 -4 -2 -2 -2 -44 -124 8 1

ψ20 1 -8 -6 0 4 2 -26 -200 -8 1

ψ21 1 -4 -6 0 0 -2 -26 -364 -8 1

ψ22 1 -48 -4 -2 2 2 -4 -56 8 1

ψ23 1 -12 -6 0 0 -6 -26 -36 8 1

ψ24 1 -16 -6 0 -4 -2 -26 128 8 1

H1 1 32 4 2 2 -2 24 8 -4 8

H2 1 32 6 0 0 2 6 -80 -4 8

H3 1 16 -2 -2 2 2 -2 136 4 8

H4 1 20 0 0 0 2 -20 -116 4 8

H5 1 16 -2 2 -2 2 -2 136 4 8

H6 1 20 -2 2 2 -2 -2 -28 4 8

H7 1 -28 -4 2 -2 -2 -24 -172 -4 8
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Table C.4: Additional Basis Vectors of Model 4.

ψµ χ12 χ34 χ56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

α4 1 0 0 0 1,...,1 0 1 0 0,0,0,0,0,0,0,0

β4 1 0 1 0 1,...,1 1 0 0 0,0,0,0,0,0,0,0

γ4 2 0 0 2 1,...,1 1 1 1 1,1,1,1,1,1,1,1

Table C.4: Additional Basis Vectors of Model 4, Continued.

y3,...,6 y3,...,6 y1,2, w5,6 y1,2, w5,6 w1,...,4 w1,...,4

α4 1,0,0,1 0,0,0,0 0,0,1,0 1,0,1,1 0,0,0,1 0,0,0,1

β4 0,0,0,0 1,0,0,1 1,0,1,1 0,0,1,0 0,1,0,0 0,1,0,0

γ4 0,2,0,0 2,2,0,2 0,2,0,0 0,2,0,0 2,0,2,0 0,0,0,0

Table C.5: GSO Projection Matrix for Model 4.

ki,j 1 S b1 b2 b3 α4 β4 γ4

1 0 0 1 1 1 1 1 1

S 0 0 0 0 0 0 0 0

b1 1 1 1 1 1 0 0 1
2

b2 1 1 1 1 1 0 0 1

b3 1 1 1 1 1 0 1 0

α4 1 1 1 1 0 1 1 1

β4 1 1 1 1 1 1 1 −1
2

γ4 0 1 0 0 0 0 1 1
2
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APPENDIX D

Gauge Charges and Flat Directions of Model 5

Table D.1: Gauge Charges of Model 5.

State SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 U

′
7 SU(2)4 × SU(4)

F1 10 8 0 2 -2 0 -2 -4 -2 (1, 1, 1, 1, 1)

F2 10 6 0 2 2 4 0 2 -6 (1, 1, 1, 1, 1)

F3 10 6 0 2 0 -2 4 2 12 (1, 1, 1, 1, 1)

F̄1 -5 8 0 -6 -2 0 -2 -4 -2 (1, 1, 1, 1, 1)

F̄2 -5 2 0 -6 2 -4 0 -2 -14 (1, 1, 1, 1, 1)

F̄3 -5 2 0 -6 0 -2 -4 6 4 (1, 1, 1, 1, 1)

Ec
1 1 8 0 10 -2 0 -2 -4 -2 (1, 1, 1, 1, 1)

Ec
2 1 2 0 10 2 -4 0 - 2 -14 (1, 1, 1, 1, 1)

Ec
3 1 2 0 10 0 -2 -4 6 4 (1, 1, 1, 1, 1)

h1(h̄1) -5 -8 0 4 -4 0 0 0 20 ( 1, 1, 1, 1, 1)

h2(h̄2) -5 -8 0 4 4 0 0 0 20 (1, 1, 1, 1, 1)

Φ1 1 0 0 0 0 0 0 0 0 (1, 1, 1, 1,1)

Φ2 1 0 0 0 0 0 0 0 0 (1, 1, 1, 1, 1)

Φ3 1 0 0 0 0 0 0 0 0 (1, 1, 1, 1, 1)

Φ4 1 0 0 0 0 0 0 0 0 (1, 1, 1, 1, 1)

φ1(φ̄1) 1 4 0 0 0 0 -12 -4 8 (1, 1, 1, 1, 1)

φ2(φ̄2) 1 12 0 0 0 0 4 -12 24 (1, 1, 1, 1, 1)

φ3(φ̄3) 1 -8 0 0 0 -8 -8 0 -16 (1, 1, 1, 1, 1)

φ4(φ̄4) 1 0 0 0 0 -8 8 -8 0 (1, 1, 1, 1, 1)
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Table D.1: Gauge Charges of Model 5, Continued.

State SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 U

′
7 SU(2)4 × SU(4)

φ5(φ̄5) 1 0 0 0 4 4 0 -8 -36 (1, 1, 1, 1, 1)

φ6(φ̄6) 1 0 0 0 -4 4 0 -8 -36 (1, 1, 1, 1, 1)

ψ1 1 4 8 0 2 -2 2 8 -10 (1, 1, 1, 1, 1)

ψ2 1 4 -8 0 2 -2 2 8 -10 (1, 1, 1, 1, 1)

ψ3 1 6 8 0 -2 -6 0 2 -6 (1, 1, 1, 1, 1)

ψ4 1 6 -8 0 -2 -6 0 2 -6 (1, 1, 1, 1, 1)

ψ5 1 6 8 0 0 0 -4 2 -24 (1, 1, 1, 1, 1)

ψ6 1 6 -8 0 0 0 -4 2 -24 (1, 1, 1, 1, 1)

H1(H̄1) 1 0 8 0 0 0 0 0 0 (1, 2, 2, 1, 1)

H2 1 -2 4 5 -2 5 -4 2 -4 (1, 1, 2, 1, 1)

H3 1 2 -4 -5 2 -5 4 -2 4 (1, 1, 1, 2, 1)

H4 1 4 0 0 2 -2 2 8 -10 (1, 1, 1, 1, 6)

H5 1 -4 0 0 -2 2 -2 -8 10 (1, 2, 1, 2, 1)

H6 1 10 0 0 -2 2 0 6 2 (1, 1, 1, 1, 6)

H7 1 -10 0 0 2 -2 0 -6 -2 (2, 1, 2, 1, 1)

H8 1 -4 4 5 0 3 2 8 10 (1, 1, 2, 1, 1)

H9 1 4 4 5 0 3 -2 0 26 (1, 1, 2, 1, 1)

H10 1 2 4 5 -2 5 4 -2 4 (1, 1, 2, 1, 1)

H11 1 2 -4 5 -2 5 4 -2 4 (2, 1, 1, 1, 1)

H12 1 -4 -4 5 2 1 6 0 -8 (2, 1, 1, 1, 1)

H13 1 4 4 5 2 1 2 -8 8 (1, 1, 1, 2, 1)

H14 1 -2 4 5 -2 -3 4 -6 -4 (1, 1, 1, 2, 1)

H15 1 -2 4 5 4 -1 0 2 14 (1, 1, 1, 2, 1)
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Table D.1: Gauge Charges of Model 5, Continued.

State SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 U

′
7 SU(2)4 × SU(4)

H16 1 -2 -4 5 -4 -1 0 2 14 (2, 1, 1, 1, 1)

H17 1 -4 -4 5 2 1 6 0 -8 (1, 2, 1, 1, 1)

H18 1 0 -4 5 2 1 -6 -4 0 (1, 2, 1, 1, 1)

H19 1 0 -4 -5 0 5 2 4 -18 (1, 1, 2, 1, 1)

H20 1 8 -4 -5 0 5 -2 -4 -2 (1, 1, 2, 1, 1)

H21 1 6 4 -5 2 3 4 2 12 (1, 2, 1, 1, 1)

H22 1 2 4 -5 2 3 -4 6 4 (1, 2, 1, 1, 1)

H23 1 6 4 -5 2 3 4 2 12 (2, 1, 1, 1, 1)

H24 1 8 4 -5 -2 -1 2 -4 16 (2, 1, 1, 1, 1)

H25 1 0 -4 -5 -2 -1 6 4 0 (1, 1, 1, 2, 1)

H26 1 2 -4 -5 4 1 0 -2 -14 (1, 1, 1, 2, 1)

H27 1 2 4 -5 -4 1 0 -2 -14 (2, 1, 1, 1, 1)

H28 1 0 -4 -5 -2 -1 6 4 0 (1, 1, 2, 1, 1)

H29 1 4 -4 -5 -2 -1 -6 0 8 (1, 1, 2, 1, 1)

H30 1 10 0 0 0 0 4 -2 -16 (1, 2, 2, 1, 1)

H31 1 6 0 0 0 0 -4 2 -24 (2, 1, 1, 2, 1)

H32 1 10 0 0 0 0 4 -2 -16 (1, 1, 1, 1, 6)

H33 1 10 0 0 -2 2 0 6 2 (2, 1, 1, 2, 1)

H34 1 6 0 0 -2 -6 0 2 -6 (1, 2, 2, 1, 1)

H35 1 12 0 0 2 -2 -2 0 6 (2, 1, 1, 2, 1)

H36 1 12 0 0 2 -2 -2 0 6 (1, 2, 2, 1, 1)

H37 1 2 -4 0 2 2 0 6 22 (1, 1, 1, 1, 4)

H38 1 -2 -4 0 -2 -2 0 -6 -22 (1, 1, 1, 1, 4)

H39 1 10 0 0 -2 2 0 6 2 (1, 2, 1, 2, 1)
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Table D.1: Gauge Charges of Model 5, Continued.

State SU(5) UA U
′
1 U

′
2 U

′
3 U

′
4 U

′
5 U

′
6 U

′
7 SU(2)4 × SU(4)

H40 1 4 4 0 -2 -2 -2 0 26 (1, 1, 1, 1, -4)

H41 1 4 4 0 2 2 -2 -8 -10 (1, 1, 1, 1, -4)

H42 1 8 -4 0 0 4 2 -4 16 (1, 1, 1, 1, 4)

H43 1 4 4 0 0 4 -6 0 8 (1, 1, 1, 1, -4)

H44 1 4 -4 0 0 -4 2 -8 8 (1, 1, 1, 1, 4)

H45 1 0 4 0 0 -4 -6 -4 0 (1, 1, 1, 1, -4)

H46 1 12 0 0 2 -2 -2 0 6 (2, 1, 2, 1, 1)

H47 1 0 0 0 0 0 0 0 0 (2, 1, 1, 2, 6)

Table D.2: Basis set of non-anomalous U(1) D-flat directions for Model 5.

FD QA φ1 φ2 φ3 φ4 φ5 φ6 Ec
1 Ec

2 Ec
3 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

D1 144 0 7 0 -2 -2 1 0 0 0 6 0 0 0 0 6

D2 144 0 4 -3 -2 1 -2 0 0 0 0 0 6 0 0 6

D3 144 0 4 -3 1 -2 -2 0 0 0 0 0 0 0 6 6

D4 0 0 0 0 -1 1 0 0 0 0 0 0 0 2 0 -2

D5 0 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0

D6 0 0 -1 0 0 0 -1 2 0 -2 0 0 0 0 0 0

D7 0 0 1 1 -1 0 1 0 0 0 0 2 0 0 0 -2

D8 0 0 0 0 -1 -1 0 0 2 -2 0 0 0 0 0 0
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Table D.3: Additional Basis Vectors of Model 5.

ψµ χ12 χ34 χ56 ψ
1,...,5

η1 η2 η3 φ
1,...,8

α5 1 1 0 0 1,...,1 0 1 0 0,0,0,0,0,0,0,0

β5 1 0 1 0 1,...,1 1 0 0 0,0,0,0,0,0,0,0

γ5 2 0 0 2 1,...,1 1 1 1 1,1,1,1,2,2,0,0

Table D.3: Additional Basis Vectors of Model 5, Continued.

y3,...,6 y3,...,6 y1,2, w5,6 y1,2, w5,6 w1,...,4 w1,...,4

α5 1,0,0,1 0,0,0,0 0,0,1,0 1,0,1,1 0,0,0,1 0,0,0,1

β5 0,0,0,0 1,0,0,1 1,0,1,1 0,0,1,0 0,1,0,0 0,1,0,0

γ5 0,2,0,0 2,2,0,2 0,0,0,0 2,0,0,2 2,2,2,0 0,2,0,0

Table D.4: GSO Projection Matrix for Model 5.

ki,j 1 S b1 b2 b3 α5 β5 γ5

1 0 0 1 1 1 0 0 −1
2

S 0 0 0 0 0 1 1 0

b1 1 1 1 1 1 1 1 −1
2

b2 1 1 1 1 1 1 1 1
2

b3 1 1 1 1 1 1 1 0

α5 0 0 0 0 1 0 1 −1
2

β5 0 0 0 0 1 1 0 −1
2

γ5 1 1 1 1 0 1 1 1
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APPENDIX E

Basis Vectors and GSO Projection Matrix for Mirror Models Based on a NAHE

Variation

Table E.1: Basis Vectors for Mirror Gauge Group Model Based on NAHE
Variation.

ψµ χ12 χ34 χ56 ψ
1,...,5

η1 η2 η3 η′
1

η′
2

η′
3

ψ′
1,...,5

1 1 1 1 1 1,...,1 1 1 1 1 1 1 1,...,1

S 1 1 1 1 0,...,0 0 0 0 0 0 0 0,...,0

b1 1 1 0 0 1,...,1 1 0 0 0 0 0 0,...,0

b2 1 0 1 0 1,...,1 0 1 0 0 0 0 0,...,0

b3 1 0 0 1 1,...,1 0 0 1 0 0 0 0,...,0

b
′
1 1 0 1 1 1,...,1 0 1 1 1 0 0 0,...,0

b
′
2 1 0 1 0 1,...,1 1 0 1 0 1 0 0,...,0

b
′
3 1 0 0 1 1,...,1 1 1 0 0 0 1 0,...,0

y1,2 y1,2 y3,4 y3,4 y5,6 y5,6 w1,2 w1,2 w3,4 w3,4 w5,6 w5,6

1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1

S 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

b1 0,0 0,0 1,1 1,1 1,1 1,1 0,0 0,0 0,0 0,0 0,0 0,0

b2 1,1 1,1 0,0 0,0 1,1 1,1 0,0 0,0 0,0 0,0 0,0 0,0

b3 1,1 1,1 1,1 1,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

b
′
1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

b
′
2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

b
′
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
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Table E.2: GSO Projection Matrix for Mirror Gauge Group Model Based on a
NAHE Variation.

ki,j 1 S b1 b2 b3 b
′
1 b

′
2 b

′
3

1 0 0 1 1 1 1 1 1

S 0 0 0 0 0 0 0 0

b1 1 1 1 1 1 1 0 0

b2 1 1 1 1 1 0 1 0

b3 1 1 1 1 1 0 0 1

b
′
1 1 1 0 0 0 1 0 0

b
′
2 1 1 0 0 0 0 1 0

b
′
3 1 1 0 0 0 0 0 1
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APPENDIX F

Gauge Charges and Superpotential Terms of a NAHE Variation

Table F.1: E6 ⊗ U(1)5 ⊗ SO(22) States. Note: all U(1) charges below have been
multiplied by a factor or 4 to eliminate fractions.

HWS Sector State E6 U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 SO(22)

1 G1 27 0 8 0 0 0 1

G2 27 4 -4 0 0 0 1

G3 27 -4 -4 0 0 0 1

G1 27 0 -8 0 0 0 1

G2 27 -4 4 0 0 0 1

G3 27 4 4 0 0 0 1

S + b1 + b2 G4 27 0 -4 -2 -2 0 1

G5 27 0 -4 -2 2 0 1

G6 27 0 -4 2 -2 0 1

G7 27 0 -4 2 2 0 1

G4 27 0 4 2 2 0 1

G5 27 0 4 2 -2 0 1

G6 27 0 4 -2 2 0 1

G7 27 0 4 -2 -2 0 1

S + b1 + b3 G8 27 -2 2 -2 0 -2 1

G9 27 -2 2 -2 0 2 1

G10 27 -2 2 2 0 -2 1

G11 27 -2 2 2 0 2 1
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Table F.1: E6 ⊗ U(1)5 ⊗ SO(22) States, Continued.

HWS Sector State E6 U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 SO(22)

S + b1 + b3 G8 27 2 -2 2 0 2 1

G9 27 2 -2 2 0 -2 1

G10 27 2 -2 -2 0 2 1

G11 27 2 -2 -2 0 -2 1

S + b2 + b3 G12 27 2 2 0 -2 -2 1

G13 27 2 2 0 -2 2 1

G14 27 2 2 0 2 -2 1

G15 27 2 2 0 2 2 1

G12 27 -2 -2 0 2 2 1

G13 27 -2 -2 0 2 -2 1

G14 27 -2 -2 0 -2 2 1

G15 27 -2 -2 0 -2 -2 1

1 φ1 (φ1) 1 0 0 0 -4 -4 1

φ2 (φ2) 1 0 0 0 -4 4 1

φ3 (φ3) 1 0 0 -4 0 -4 1

φ4 (φ4) 1 0 0 -4 0 4 1

φ5 (φ5) 1 0 0 -4 -4 0 1

φ6 (φ6) 1 0 0 -4 4 0 1

φ7 (φ7) 1 4 -12 0 0 0 1

φ8 (φ8) 1 4 12 0 0 0 1

φ9 (φ9) 1 -8 0 0 0 0 1
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Table F.1: E6 ⊗ U(1)5 ⊗ SO(22) States, Continued.

HWS Sector State E6 U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 SO(22)

S + b1 + b2 ψ1 (ψ1) 1 0 12 2 2 0 1

ψ2 (ψ2) 1 0 12 2 -2 0 1

ψ3 (ψ3) 1 0 12 -2 2 0 1

ψ4 (ψ4) 1 0 12 -2 -2 0 1

ψ5 (ψ5) 1 4 0 2 2 -4 1

ψ6 (ψ6) 1 4 0 2 2 4 1

ψ7 (ψ7) 1 4 0 2 -2 -4 1

ψ8 (ψ8) 1 4 0 2 -2 4 1

ψ9 (ψ9) 1 4 0 -2 2 -4 1

ψ10 (ψ10) 1 4 0 -2 2 4 1

ψ11 (ψ11) 1 4 0 -2 -2 -4 1

ψ12 (ψ12) 1 4 0 -2 -2 4 1

S + b1 + b3 ψ13 (ψ13) 1 2 6 2 -4 2 1

ψ14 (ψ14) 1 2 6 2 -4 -2 1

ψ15 (ψ15) 1 2 6 2 4 2 1

ψ16 (ψ16) 1 2 6 2 4 -2 1

ψ17 (ψ17) 1 2 6 -2 -4 2 1

ψ18 (ψ18) 1 2 6 -2 -4 -2 1

ψ19 (ψ19) 1 2 6 -2 4 2 1

ψ20 (ψ20) 1 2 6 -2 4 -2 1

ψ21 (ψ21) 1 6 -6 2 0 2 1

ψ22 (ψ22) 1 6 -6 2 0 -2 1

ψ23 (ψ23) 1 6 -6 -2 0 2 1

ψ24 (ψ24) 1 6 -6 -2 0 -2 1
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Table F.1: E6 ⊗ U(1)5 ⊗ SO(22) States, Continued.

HWS Sector State E6 U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 SO(22)

S + b2 + b3 ψ25 (ψ25) 1 -2 6 -4 2 2 1

ψ26 (ψ26) 1 -2 6 -4 2 -2 1

ψ27 (ψ27) 1 -2 6 -4 -2 2 1

ψ28 (ψ28) 1 -2 6 -4 -2 -2 1

ψ29 (ψ29) 1 -2 6 4 2 2 1

ψ30 (ψ30) 1 -2 6 4 2 -2 1

ψ31 (ψ31) 1 -2 6 4 -2 2 1

ψ32 (ψ32) 1 -2 6 4 -2 -2 1

ψ33 (ψ33) 1 -6 -6 0 2 2 1

ψ34 (ψ34) 1 -6 -6 0 2 -2 1

ψ35 (ψ35) 1 -6 -6 0 -2 2 1

ψ36 (ψ36) 1 -6 -6 0 -2 -2 1

1 H1 1 0 0 0 0 -4 22

H2 1 0 0 0 0 4 22

H3 1 0 0 0 -4 0 22

H4 1 0 0 0 4 0 22

H5 1 0 0 -4 0 0 22

H6 1 0 0 4 0 0 22
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Table F.1: E6 ⊗ U(1)5 ⊗ SO(22) States, Continued.

HWS Sector State E6 U(1)1 U(1)2 U(1)3 U(1)4 U(1)5 SO(22)

S + b1 + b2 H7 1 4 0 2 2 0 22

H8 1 4 0 2 -2 0 22

H9 1 4 0 -2 2 0 22

H10 1 4 0 -2 -2 0 22

H11 1 -4 0 2 2 0 22

H12 1 -4 0 2 -2 0 22

H13 1 -4 0 -2 2 0 22

H14 1 -4 0 -2 -2 0 22

S + b1 + b3 H15 1 2 6 2 0 2 22

H16 1 2 6 2 0 -2 22

H17 1 2 6 -2 0 2 22

H18 1 2 6 -2 0 -2 22

H19 1 -2 -6 2 0 2 22

H20 1 -2 -6 2 0 -2 22

H21 1 -2 -6 -2 0 2 22

H22 1 -2 -6 -2 0 -2 22

S + b2 + b3 H23 1 -2 6 0 2 2 22

H24 1 -2 6 0 2 -2 22

H25 1 -2 6 0 -2 2 22

H26 1 -2 6 0 -2 -2 22

H27 1 2 -6 0 2 2 22

H28 1 2 -6 0 2 -2 22

H29 1 2 -6 0 -2 2 22

H30 1 2 -6 0 -2 -2 22
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E6 ⊗ U(1)5 ⊗ SO(22) Third Order Superpotential (No Fourth Order Terms Exist)

G1 G2 G3 + G1 G2 φ7 + G1 G3 φ8 + G1 G4 G7 + G1 G5 G6

+ G1 G4 ψ1 + G1 G5 ψ2 + G1 G6 ψ3 + G1 G7 ψ4 + G2 G1 φ7

+ G2 G3 φ9 + G2 G8 G11 + G2 G9 G10 + G2 G8 ψ21 + G2 G9 ψ22

+ G2 G10 ψ23 + G2 G11 ψ24 + G3 G1 φ8 + G3 G2 φ9 + G3 G12 G15

+ G3 G13 G14 + G3 G12 ψ33 + G3 G13 ψ34 + G3 G14 ψ35 + G3 G15 ψ36

+ G1 G2 G3 + G1 G4 ψ1 + G1 G5 ψ2 + G1 G6 ψ3 + G1 G7 ψ4

+ G1 G4 G7 + G1 G5 G6 + G2 G8 ψ21 + G2 G9 ψ22 + G2 G10 ψ23

+ G2 G11 ψ24 + G2 G8 G11 + G2 G9 G10 + G3 G12 ψ33 + G3 G13 ψ34

+ G3 G14 ψ35 + G3 G15 ψ36 + G3 G12 G15 + G3 G13 G14 + G4 G10 G15

+ G4 G11 G14 + G4 G7 φ5 + G4 G10 ψ30 + G4 G11 ψ29 + G4 G14 ψ16

+ G4 G15 ψ15 + G5 G10 G13 + G5 G11 G12 + G5 G6 φ6 + G5 G10 ψ32

+ G5 G11 ψ31 + G5 G12 ψ14 + G5 G13 ψ13 + G6 G8 G15 + G6 G9 G14

+ G6 G5 φ6 + G6 G8 ψ26 + G6 G9 ψ25 + G6 G14 ψ20 + G6 G15 ψ19

+ G7 G8 G13 + G7 G9 G12 + G7 G4 φ5 + G7 G8 ψ28 + G7 G9 ψ27

+ G7 G12 ψ18 + G7 G13 ψ17 + G8 G6 ψ28 + G8 G7 ψ26 + G8 G11 φ3

+ G8 G13 ψ8 + G8 G15 ψ6 + G9 G6 ψ27 + G9 G7 ψ25 + G9 G10 φ4

+ G9 G12 s7 + G9 G14 s5 + G10 G4 ψ32 + G10 G5 ψ30 + G10 G9 φ4

+ G10 G13 ψ12 + G10 G15 ψ10 + G11 G4 ψ31 + G11 G5 ψ29 + G11 G8 φ3

+ G11 G12 ψ11 + G11 G14 ψ9 + G12 G5 ψ14 + G12 G7 ψ18 + G12 G9 ψ7

+ G12 G11 ψ11 + G12 G15 φ1 + G13 G5 ψ13 + G13 G7 ψ17 + G13 G8 ψ8

+ G13 G10 ψ12 + G13 G14 φ2 + G14 G4 ψ16 + G14 G6 ψ20 + G14 G9 ψ5

+ G14 G11 ψ9 + G14 G13 φ2 + G15 G4 ψ15 + G15 G6 ψ19 + G15 G8 ψ6

+ G15 G10 ψ10 + G15 G12 φ1 + G4 G10 G15 + G4 G11 G14 + G5 G10 G13

+ G5 G11 G12 + G6 G8 G15 + G6 G9 G14 + G7 G8 G13 + G7 G9 G12

+ φ1 φ4 φ5 + φ1 φ6 φ3 + φ1 ψ25 ψ26 + φ1 ψ29 ψ30 + φ1 ψ33 ψ36
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E6 ⊗ U(1)5 ⊗ SO(22) Third Order Superpotential, Continued.

+ φ1 H2 H4 + φ1 H23 H27 + φ2 φ3 φ5 + φ2 φ6 φ4 + φ2 ψ26 ψ25

+ φ2 ψ30 ψ29 + φ2 ψ34 ψ35 + φ2 H1 H4 + φ2 H24 H28 + φ3 φ1 φ6

+ φ3 ψ13 ψ18 + φ3 ψ15 ψ20 + φ3 ψ21 ψ24 + φ3 H2 H6 + φ3 H15 H19

+ φ4 φ2 φ6 + φ4 ψ14 ψ17 + φ4 ψ16 ψ19 + φ4 ψ22 ψ23 + φ4 H1 H6

+ φ4 H16 H20 + φ5 φ1 φ4 + φ5 φ2 φ3 + φ5 ψ1 ψ4 + φ5 ψ5 ψ11

+ φ5 ψ6 ψ12 + φ5 H4 H6 + φ5 H7 H11 + φ6 ψ2 ψ3 + φ6 ψ7 ψ9

+ φ6 ψ8 ψ10 + φ6 H3 H6 + φ6 H8 H12 + φ7 φ8 φ9 + φ7 ψ25 ψ32

+ φ7 ψ26 ψ31 + φ7 ψ27 ψ30 + φ7 ψ28 ψ29 + φ7 H23 H26 + φ7 H24 H25

+ φ8 ψ13 ψ20 + φ8 ψ14 ψ19 + φ8 ψ15 ψ18 + φ8 ψ16 ψ17 + φ8 H19 H22

+ φ8 H20 H21 + φ9 ψ5 ψ12 + φ9 ψ6 ψ11 + φ9 ψ7 ψ10 + φ9 ψ8 ψ9

+ φ9 H7 H10 + φ9 H8 H9 + φ1 ψ28 ψ27 + φ1 ψ32 ψ31 + φ1 ψ36 ψ33

+ φ1 H1 H3 + φ1 H26 H30 + φ2 ψ27 ψ28 + φ2 ψ31 ψ32 + φ2 ψ35 ψ34

+ φ2 H2 H3 + φ2 H25 H29 + φ3 ψ18 ψ13 + φ3 ψ20 ψ15 + φ3 ψ24 ψ21

+ φ3 H1 H5 + φ3 H18 H22 + φ4 ψ17 ψ14 + φ4 ψ19 ψ16 + φ4 ψ23 ψ22

+ φ4 H2 H5 + φ4 H17 H21 + φ5 ψ4 ψ1 + φ5 ψ11 ψ5 + φ5 ψ12 ψ6

+ φ5 H3 H5 + φ5 H10 H14 + φ6 ψ3 ψ2 + φ6 ψ9 ψ7 + φ6 ψ10 ψ8

+ φ6 H4 H5 + φ6 H9 H13 + φ7 φ8 φ9 + φ7 ψ25 ψ32 + φ7 ψ26 ψ31

+ φ7 ψ27 ψ30 + φ7 ψ28 ψ29 + φ7 H27 H30 + φ7 H28 H29 + φ8 ψ13 ψ20

+ φ8 ψ14 ψ19 + φ8 ψ15 ψ18 + φ8 ψ16 ψ17 + φ8 H15 H18 + φ8 H16 H17

+ φ9 ψ5 ψ12 + φ9 ψ6 ψ11 + φ9 ψ7 ψ10 + φ9 ψ8 ψ9 + φ9 H11 H14

+ φ9 H12 H13 + ψ1 ψ23 ψ36 + ψ1 ψ24 ψ35 + ψ1 ψ19 ψ30 + ψ1 ψ20 ψ29

+ ψ1 H21 H30 + ψ1 H22 H29 + ψ2 ψ23 ψ34 + ψ2 ψ24 ψ33 + ψ2 ψ17 ψ32

+ ψ2 ψ18 ψ31 + ψ2 H21 H28 + ψ2 H22 H27 + ψ3 ψ21 ψ36 + ψ3 ψ22 ψ35

+ ψ3 ψ15 ψ26 + ψ3 ψ16 ψ25 + ψ3 H19 H30 + ψ3 H20 H29 + ψ4 ψ21 ψ34

+ ψ4 ψ22 ψ33 + ψ4 ψ13 ψ28 + ψ4 ψ14 ψ27 + ψ4 H19 H28 + ψ4 H20 H27

+ ψ5 ψ17 ψ33 + ψ5 ψ25 ψ20 + ψ5 ψ24 ψ32 + ψ5 H2 H14 + ψ5 H21 H25
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E6 ⊗ U(1)5 ⊗ SO(22) Third Order Superpotential, Continued.

+ ψ6 ψ18 ψ34 + ψ6 ψ26 ψ19 + ψ6 ψ23 ψ31 + ψ6 H1 H14 + ψ6 H22 H26

+ ψ7 ψ19 ψ35 + ψ7 ψ27 ψ18 + ψ7 ψ24 ψ30 + ψ7 H2 H13 + ψ7 H21 H23

+ ψ8 ψ20 ψ36 + ψ8 ψ28 ψ17 + ψ8 ψ23 ψ29 + ψ8 H1 H13 + ψ8 H22 H24

+ ψ9 ψ13 ψ33 + ψ9 ψ29 ψ16 + ψ9 ψ22 ψ28 + ψ9 H2 H12 + ψ9 H19 H25

+ ψ10 ψ14 ψ34 + ψ10 ψ30 ψ15 + ψ10 ψ21 ψ27 + ψ10 H1 H12 + ψ10 H20 H26

+ ψ11 ψ15 ψ35 + ψ11 ψ31 ψ14 + ψ11 ψ22 ψ26 + ψ11 H2 H11 + ψ11 H19 H23

+ ψ12 ψ16 ψ36 + ψ12 ψ32 ψ13 + ψ12 ψ21 ψ25 + ψ12 H1 H11 + ψ12 H20 H24

+ ψ13 ψ26 ψ4 + ψ13 ψ12 ψ30 + ψ13 H4 H22 + ψ13 H13 H28 + ψ14 ψ25 ψ4

+ ψ14 ψ11 ψ29 + ψ14 H4 H21 + ψ14 H13 H27 + ψ15 ψ28 ψ3 + ψ15 ψ10 ψ32

+ ψ15 H3 H22 + ψ15 H14 H30 + ψ16 ψ27 ψ3 + ψ16 ψ9 ψ31 + ψ16 H3 H21

+ ψ16 H14 H29 + ψ17 ψ30 ψ2 + ψ17 ψ8 ψ26 + ψ17 H4 H20 + ψ17 H11 H28

+ ψ18 ψ29 ψ2 + ψ18 ψ7 ψ25 + ψ18 H4 H19 + ψ18 H11 H27 + ψ19 ψ32 ψ1

+ ψ19 ψ6 ψ28 + ψ19 H3 H20 + ψ19 H12 H30 + ψ20 ψ31 ψ1 + ψ20 ψ5 ψ27

+ ψ20 H3 H19 + ψ20 H12 H29 + ψ21 ψ25 ψ10 + ψ21 ψ27 ψ12 + ψ21 H13 H26

+ ψ21 H14 H24 + ψ22 ψ26 ψ9 + ψ22 ψ28 ψ11 + ψ22 H13 H25 + ψ22 H14 H23

+ ψ23 ψ29 ψ6 + ψ23 ψ31 ψ8 + ψ23 H11 H26 + ψ23 H12 H24 + ψ24 ψ30 ψ5

+ ψ24 ψ32 ψ7 + ψ24 H11 H25 + ψ24 H12 H23 + ψ25 H6 H30 + ψ25 H8 H20

+ ψ26 H6 H29 + ψ26 H8 H19 + ψ27 H6 H28 + ψ27 H7 H20 + ψ28 H6 H27

+ ψ28 H7 H19 + ψ29 H5 H30 + ψ29 H10 H22 + ψ30 H5 H29 + ψ30 H10 H21

+ ψ31 H5 H28 + ψ31 H9 H22 + ψ32 H5 H27 + ψ32 H9 H21 + ψ33 H8 H18

+ ψ33 H10 H16 + ψ34 H8 H17 + ψ34 H10 H15 + ψ35 H7 H18 + ψ35 H9 H16

+ ψ36 H7 H17 + ψ36 H9 H15 + ψ1 ψ23 ψ36 + ψ1 ψ24 ψ35 + ψ1 H15 H24

+ ψ1 H16 H23 + ψ2 ψ23 ψ34 + ψ2 ψ24 ψ33 + ψ2 H15 H26 + ψ2 H16 H25

+ ψ3 ψ21 ψ36 + ψ3 ψ22 ψ35 + ψ3 H17 H24 + ψ3 H18 H23 + ψ4 ψ21 ψ34

+ ψ4 ψ22 ψ33 + ψ4 H17 H26 + ψ4 H18 H25 + ψ5 ψ17 ψ33 + ψ5 H1 H7

+ ψ5 H16 H28 + ψ6 ψ18 ψ34 + ψ6 H2 H7 + ψ6 H15 H27 + ψ7 ψ19 ψ35
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E6 ⊗ U(1)5 ⊗ SO(22) Third Order Superpotential, Continued.

+ ψ7 H1 H8 + ψ7 H16 H30 + ψ8 ψ20 ψ36 + ψ8 H2 H8 + ψ8 H15 H29

+ ψ9 ψ13 ψ33 + ψ9 H1 H9 + ψ9 H18 H28 + ψ10 ψ14 ψ34 + ψ10 H2 H9

+ ψ10 H17 H27 + ψ11 ψ15 ψ35 + ψ11 H1 H10 + ψ11 H18 H30 + ψ12 ψ16 ψ36

+ ψ12 H2 H10 + ψ12 H17 H29 + ψ13 H3 H15 + ψ13 H8 H25 + ψ14 H3 H16

+ ψ14 H8 H26 + ψ15 H4 H15 + ψ15 H7 H23 + ψ16 H4 H16 + ψ16 H7 H24

+ ψ17 H3 H17 + ψ17 H10 H25 + ψ18 H3 H18 + ψ18 H10 H26 + ψ19 H4 H17

+ ψ19 H9 H23 + ψ20 H4 H18 + ψ20 H9 H24 + ψ21 H7 H29 + ψ21 H8 H27

+ ψ22 H7 H30 + ψ22 H8 H28 + ψ23 H9 H29 + ψ23 H10 H27 + ψ24 H9 H30

+ ψ24 H10 H28 + ψ25 H5 H25 + ψ25 H14 H17 + ψ26 H5 H26 + ψ26 H14 H18

+ ψ27 H5 H23 + ψ27 H13 H17 + ψ28 H5 H24 + ψ28 H13 H18 + ψ29 H6 H25

+ ψ29 H12 H15 + ψ30 H6 H26 + ψ30 H12 H16 + ψ31 H6 H23 + ψ31 H11 H15

+ ψ32 H6 H24 + ψ32 H11 H16 + ψ33 H11 H21 + ψ33 H13 H19 + ψ34 H11 H22

+ ψ34 H13 H20 + ψ35 H12 H21 + ψ35 H14 H19 + ψ36 H12 H22 + ψ36 H14 H20

113



BIBLIOGRAPHY

[1] P. W. Higgs, Phys. Lett. 12, 132 (1964).

[2] C. Kounnas, A. Masiero, D. Nanopoulos, and K. A. Olive, Grand Unification With
and Without Supersymmetry and Cosmological Implications, World Scientific,
Singapore, Singapore, 1984.

[3] P. Langacker, Phys. Rept. 72, 185 (1981).

[4] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

[5] H. Georgi, AIP Conf. Proc. 23, 575 (1975).

[6] G. Veneziano, Nuovo. Cim. A57, 190 (1968).

[7] M. A. Virasoro, Phys. Rev. Lett. 22, 37 (1969).

[8] A. Sen, arXiV:hep-th/9609176 58, 5 (1997).

[9] C. M. Hull and P. K. Townsend, arXiV:hep-th/9505073, Nucl. Phys. B451, 525
(1995).

[10] J. Scherk and J. H. Schwarz, Phys. Lett. B82, 60 (1979).

[11] E. Cremmer and J. Scherk, Phys. Lett. B72, 117 (1974).

[12] S.-T. Yau, Proc. Nat. Acad. Sci. 74, 1798 (1977).

[13] A. M. Polyakov, Phys. Lett. B103, 207 (1981).

[14] A. M. Polyakov, Phys. Lett. B103, 211 (1981).

[15] M. B. Green, J. H. Schwarz, and E. Witten, Cambridge Monographs on Mathemat-
ical Physics, Univ. Pr., Cambridge, UK, 1987.

[16] L. Brink and H. B. Nielsen, Phys. Lett. B45, 332 (1973).

[17] A. Neveu and J. H. Schwarz, Nucl. Phys. B31, 86 (1971).

[18] P. Ramond, Phys. Rev. D3, 2415 (1971).

[19] F. Gliozzi, J. Scherk, and D. I. Olive, Phys. Lett. B65, 282 (1976).

[20] M. B. Green, J. H. Schwarz, and E. Witten, Cambridge Monographs on Mathemat-
ical Physics, Univ. Pr., Cambridge, UK, 1987.

[21] F. Gliozzi, J. Scherk, and D. I. Olive, Nucl. Phys. B122, 253 (1977).

114



[22] E. Kiritsis, Univ. Pr., Princeton, USA, 2007.

[23] E. Kiritsis, arXiV:hep-th/9709062 (1997).

[24] S. E. M. Nooij, arXiV:hep-th/0603035 .

[25] M. B. Green and J. H. Schwarz, Phys. Lett. B149, 117 (1984).

[26] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, Phys. Rev. Lett. 54, 502
(1985).

[27] J. E. Paton and H.-M. Chan, Nucl. Phys. B10, 516 (1969).

[28] P. H. Ginsparg, Phys. Rev. D35, 648 (1987).

[29] F. Quevedo, arXiV:hep-th/9603074 (1996).

[30] I. Antoniadis, J. Ellis, J. Hagelin, and D. Nanopoulos, Phys. Lett. B194, 231 (1987).

[31] I. Antoniadis and C. Bachas, Nucl. Phys. B298, 586 (1988).

[32] I. Antoniadis, C. Bachas, C. Kounnas, and P. Windey, Phys. Lett. B171, 51 (1986).

[33] I. Antoniadis, C. P. Bachas, and C. Kounnas, Nucl. Phys. B298, 87 (1987).

[34] H. Kawai, D. C. Lewellen, and S. H. H. Tye, Nucl. Phys. B288, 1 (1987).

[35] H. Kawai, D. C. Lewellen, J. A. Schwartz, and S. H. H. Tye, Nucl. Phys. B299, 431
(1988).

[36] G. B. Cleaver, A. E. Faraggi, and D. Nanopoulos, arXiV:hep-ph/9811427, Phys.
Lett. B455, 135 (1999).

[37] G. B. Cleaver, A. E. Faraggi, D. Nanopoulos, and J. W. Walker, arXiV:hep-
ph/0104091, Nucl. Phys. B620, 259 (2002).

[38] I. Antoniadis, J. Ellis, J. Hagelin, and D. Nanopoulos, Phys. Lett. B231, 65 (1989).

[39] J. L. Lopez, D. Nanopoulos, and K. Yuan, Nucl. Phys. B399, 3 (1993).

[40] A. E. Faraggi, D. Nanopoulos, and K. Yuan, Nucl. Phys. B335, 347 (1990).

[41] A. E. Faraggi, Phys. Rev. D46, 3204 (1992).

[42] A. E. Faraggi, Phys. Lett. B278, 131 (1992).

[43] A. E. Faraggi, Phys. Lett. B274, 47 (1992).

[44] G. B. Cleaver, arXiV:hep-ph/9901203 .

[45] G. B. Cleaver, A. E. Faraggi, D. Nanopoulos, and J. W. Walker, arXiV:hep-
ph/0002060, Mod. Phys. Lett. A15, 1191 (2000).

115



[46] A. E. Faraggi, E. Manno, and C. Timirgaziu, Eur. Phys. Jour. C50, 701 (2007).

[47] G. B. Cleaver, Nucl. Phys. B456, 219 (1995).

[48] E. Manno, arXiV:hep-th/09083164 .

[49] I. Antoniadis, G. K. Leontaris, and J. Rizos, Phys. Lett. B245, 161 (1990).

[50] G. B. Cleaver, A. E. Faraggi, and C. Savage, Phys. Rev. D63 (2001).

[51] A. E. Faraggi, arXiV:hep-ph/9707311, Int. J. Mod. Phys. A19, 5523 (2004).

[52] G. B. Cleaver, A. E. Faraggi, and D. Nanopoulos, arXiV:hep-ph/9904301, Int. J.
Mod. Phys. A16, 425 (2001).

[53] H. K. Dreiner, J. L. Lopez, D. Nanopoulos, and D. B. Reiss, Nucl. Phys. B320, 401
(1989).

[54] L. Alvarez-Gaume, G. W. Moore, and C. Vafa, Commun. Math. Phys. 106, 1 (1986).

[55] N. Seiberg and E. Witten, Nucl. Phys. B276, 272 (1986).

[56] A. E. Faraggi and D. Nanopoulos, Phys. Rev. D48, 3288 (1993).

[57] A. E. Faraggi, arXiV:hep-th/9208024, Nucl. Phys. B387, 239 (1992).

[58] S. Ferrara, L. Girardello, C. Kounnas, and M. Porrati, Phys. Lett. B194, 358 (1987).

[59] J. R. Ellis, A. E. Faraggi, and D. Nanopoulos, arXiV:hep-th/9709049, Phys. Lett.
B419, 123 (1998).

[60] G. B. Cleaver, D. Nanopoulos, and J. T. Perkins, Int. J. Mod. Phys. A23, 3461
(2008).

[61] A. E. Faraggi, arXiV:hep-ph/9506388, Phys. Lett. B377, 43 (1996).

[62] A. E. Faraggi, Nucl. Phys. B407, 57 (1993).

[63] G. B. Cleaver, A. E. Faraggi, D. Nanopoulos, and J. W. Walker, arXiV:hep-
ph/9910230, Nucl. Phys. B593, 471 (2001).

[64] G. B. Cleaver and A. E. Faraggi, arXiV:hep-th/9505073, Int. J. Mod. Phys. A14,
2335 (1999).

[65] M. Dine, N. Seiberg, and E. Witten, Nucl. Phys. B289, 585 (1987).

[66] A. Font, L. E. Ibanez, H. P. Nilles, and F. Quevedo, Nucl. Phys. B307, 109 (1988).

[67] G. B. Cleaver, M. Cvetic, J. Espinosa, L. Everett, and P. Langacker, Nucl. Phys.
B525, 3 (1998).

[68] G. B. Cleaver, Mass hierarchy and flat directions in string models, page 101, 1997.

116



[69] E. Witten, Nucl. Phys. B202, 253 (1982).

[70] K. Intriligator and N. Seiberg, arXiV:hep-ph/0702069 .

[71] G. Dvali, R. Kallosh, and A. V. Proeyen, arXiV:hep-th/0312005, J. High Energy
Phys. 01 (2004).

[72] G. B. Cleaver, A. E. Faraggi, E. Manno, and C. Timirgaziu, arXiv:hep-th/08020470,
Phys. Rev. D78, 1103 (2008).

[73] G. B. Cleaver et al., arXiV:hep-ph/9807479, Phys. Rev. D59 (1999).

[74] J. Greenwald, K. Pechan, T. Renner, M. Robinson, and G. Cleaver, Systematic
Phenomenological Study of NAHE-Based Free Fermionic Heterotic Models, in
preparation .

[75] G. B. Cleaver et al., Investigation of Low Higgs Models, in preparation .

[76] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M. Ratz, arXiV:hep-th/0606187 .

[77] G. B. Cleaver, arXiV:hep-ph/0703027 .

[78] e. a. Press, Numerical recipes, 1989.

[79] S. Kalara, J. L. Lopez, and D. Nanopoulos, Nucl. Phys. B353, 650 (1991).

[80] J. Rizos and K. Tamvakis, Phys. Lett. B262, 227 (1991).

[81] G. B. Cleaver, J. R. Ellis, and D. Nanopoulos, arXiV:hep-ph/0009338, Nucl. Phys.
B600, 315 (2001).

[82] G. B. Cleaver, A. E. Faraggi, and S. Nooij, arXiV:hep-ph/0301037, Nucl. Phys.
B672, 64 (2003).

[83] A. E. Faraggi, Nucl. Phys. B428, 111 (1994).

[84] J. Perkins et al., arXiV:hep-ph/0310155 .

[85] G. B. Cleaver, Phenomenological survey of a minimal superstring standard model,
in 7th International Symposium on Particles, Strings and Cosmology (PASCOS
99), page 108, 1999.

[86] G. B. Cleaver, D. Nanopoulos, A. E. Faraggi, and T. Veldhuis, arXiV:hep-
ph/0002292, Int. J. Mod. Phys. A16, 3565 (2001).

[87] A. E. Faraggi and E. Manno, arXiV:hep-ph/09082034 .

[88] R. Donagi and K. Wendland, arXiV:hep-th/08090330 .

[89] O. Lebedev, H. P. Nilles, S. Ramos-Sanchez, M. Ratz, and P. K. S. Vaudrevange,
arXiV:hep-th/0807438 .

117



[90] R. Valandro, arXiV:hep-th/08010584 .

[91] M. Robinson, G. B. Cleaver, and M. Hunziker, arXiV:hep-th/08095094, Mod. Phys.
Lett. A24, 2703 (2009).

[92] B. Dundee, J. Perkins, and G. B. Cleaver, arXiV:hep-ph/0506183, Int. J. Mod.
Phys. A21, 3367 (2006).

[93] J. Greenwald, D. Moore, K. Pechan, T. Renner, and G. Cleaver, Mirror Models
from a NAHE Variation, in preparation .

118


